

Tius blank page was inserted to preserve pagination.

ABSTRACT

COHERENT BEHAVIOR
FROM INCOHERENT KNOWLEDGE SOURCES IN THE
AUTOMATIC SYNTHESIS OF NUMERICAL COMPUTER PROGRAMS

by Richard Brown

A fundamental preblem in artificial intelligence is obtaining coherent behavior in rule-based
problem solving systems. A good quantitative measure of coherence is time behavior; a system
that never, in retrospect, applied a rule needlessly is certainly coherent; a system suffering from
combinatorial blowup is certainly behaving incoherently.

This report describes a rule-based problem solving system for automatically writing
and lmprovmg numerical computer programs from specifications. The specifications are in
terms of “constraints” among inputs and outputs. The system has solved program synthesis
~ problems involving systems of equations, determining that methods of successive approximation
converge, transforming recursion to iteration, and manipulating power series (using differing
organizations, control structures, and argument-passing techniques).

The theory of coherent problem solving used by this system is based on syntactically
restricting the rule language so that the effect of using a rule can be accurately predicted. Each
rule is independently pre-analyzed and an abstract description of its possible effects is produced.
These descriptions are combined with a local analysis of the current status of the deduction
process to decide whether a rule should be applied. This report explains how to perform this
analysis so that all known forms of combinatorial blowup are eliminated from the deduction
process. Because this process depends only weakly on the nature of the task (program synthesis),
there is hope that this theory of control can be adapted to other problem domains.

In addition to this theory of coherent rule-based deduction, results concerning the use of
EL-like constraint networks as a programming language have been obtained (EL was a system
written by Stallman, Sussman and others [S79] for electronic circuit analysis). In particular a
new and powerful way to describe and manipulate looping control structures has been developed.

Thesis supervisor: Gerald J. Sussman.

Title: Associate Professor, Departrﬁent of Electrical Engineering and Computer Science.

This empty page was substituted for a
blank page in the original document.

contents

Contents

2 Abstract

3 Table of Contents

6 Table of tables

7 Table of Diagrams

9 Chapter 1. Introduction and Overview

Nature and direction of the research
Key Results
The nature of expert problem solving systems
A problem-solving methodology

Examples
Systems of equations: the "linear equations problem"
Finding the inverse of a function: The SQRT problem
A digression

SQRT example resumed: The "Newton’s SQRT problem”

Iteration and Recursion: The "Factorial problem”
Data structures and Bernoulli numbers

Thesis

A Sketch of the Synthesis system
Stating the problem
Transformation rules
Limiting expressive power and combinatorial blowup
Specifications involving iteration

Related work

49 Chapter 2: Incoherent sources of knowledge

'55
59
60
62
63
66
69
73
78
80
80
83

Local vs. Global
A glimpse of coherent behavior
Devices
Macro-devices and loops
Rule closures
Networks
Complex devices
Transforms
Add-break facility
Macro-devices for Transforms
Solution to the “factorial” problem
The Free-with-respect-to test
Variable Nodes
K-variable node specifications
U-variable node specifications

contents

contents 4 contents

85 Doublets _
90 Donblets and variations of transforms
90 Solution to SQRT problem
95 Newton’s method -- the basic device
96 Newton's method -- proving convergence
100 Summary
104 Tables for chapter 2
114 Chapter 3: Coherent Behavior
114 The top level
116 Matches and psuedo-devices
118 Deciding which rule to apply
119 Circuits
121 Classification of Transforms
123 Types of transform rule application
127 Assumptions and Enablements
128 Extending and cutting back on assumptions
130 Special handling for Macro Devices
131 Example: three linear equations solution
139 Modification of the selection algorithm for improving code
142 Example: Solving systems of linear equations continued
143 Finding matches
145 Finding nodes for K-variable specifications
147 Finding nodes for U-variable specifications
149 Applying transformation rules
151 Finding macro-devices
154 The notion of “free with respect to”
157 "Free with respect to" testing
159 Concluding remarks
161 Tables for chapter 3
165 Chapter 4¢: Walk Through and Conclusion
165 The problem statement
167 Outline of the solution
160 Stating the problem
170 -Convergence and primitive recursion
174 Finding an algorithm
174 Initialization of the deductive process
176 Matching (first rounds)
177 Using the power series for exponentiation
181 Multiplication of power series

185 Completing the deduction

- 193

187
189
192

o SR *»TL;A?H&AT’
Conclusion = SAURTS S 7*&*'1“&‘!5\&’*‘"&#‘{ OO TIBAT
Cmmeaal oo ’ 2 ' uw‘fms 1I8AT
o0l norve(wari 37 olds’T -
 “meitsemictansy T 13D aideT
{K}HTZ*H SHROTWIA 1I8AT
&_sﬁtww‘;swq{) JIEAT
mrm’mtm”{ Bvuwﬂ-ﬁ 3&54’5’3"

195
198
207

wid ¥ mﬁ:‘t ﬂi zﬁéﬁ‘

‘mm»qmﬁ:mm -W%i‘m ads” TIBAT

“0o03 amiT ilivorss®” TITAT
AVH illvorsd” 3IEAT

33%?‘3“ t&mums 9 mm* o
*shad gm& i 28T smmsidend” ATFAT -

“stx SHIVOSGME 100 wan wemaldend” TJEAT .

. 7‘.{,?;33"&'%’?5&1" # awmm AT u&m‘ S

5 “snvell e‘%?"mdﬂ”f'" L
CTUSTIUM-2S T 3AEAT

3 ’2&&&313" JHEAT AR

PA00-26 7T RIRAT

Vshel Hponts 8" 8T 3

contents 6 contents

The tables are all collected at the end of each chapter.

Tables in Chapter Two
TABLE 'FACETS'
TABLE 'CONSTRAINT-RULE CONSTRUCTIONS'
TABLE "KNOWLEDGE SOURCES SUMMARY"
Table "Three Device Definitions"
Table "Order Transformations”
TABLE "NEWTON'S METHOD"
TABLE "Operator-like Devices”
TABLE "Derivative Transforms”

Tables in Chapter Three
TABLE "TRANSFORM TYPES"
TABLE "Enablement Tests for Writing Code”
TABLE “Enablement tests for IMPROVING code”
TABLE "PACKAGING PRIMITIVES"

. Tables in Chapter Four
Table "TPS Device"
TABLE "TPS-MULT-U"
TABLE "SIGMA2"
TABLE "TPS-CONSTANT-COLLAPSE"
TABLE "Other code written during Bernoulli number problem"
Table "Bernoulli Code”
TABLE "Bernoulli Time Cost"
- TABLE "Bernoulli NVALUE facet”

contents 7

11
15
15
35

35
38

38
43
45
52
57
61
65
71
77
82

84
88

91
93
94
97
99
120

120
124

126
132
133
136
138
140
150
152
156
166
168
178

TABLE OF DIAGRAMS

Bernoulli Example

Problem Solver

Tree of Data bases

T'wo linear equations

funny associativity

Doubling

Two linear equations solution
Interchange Problem
Introduction to Macro-devices
Value propagation example
BSFZ

SQORT problem statement
ADD-BREAK in SQRT
Single-rec-gen

Single-rec application
Search-inverse

Variable node comparison
Doublet Example

Derivation using doublets
SQRT ready for search-inverse
BSFZ SQRT solution
Transform Try-newton
Newton Sqrt solution

Circuit Definition
Funny-assoc

Two linear equations problem
Three linear equations problem
Sum of square roots

Three linear equations

Three lineat equations LE3A
LE?2

Double-sum

External node in square-root
Alternative Recursive Factorial
Free problems

Bernoulli problem statement
Sigma device

Why no duplicates in outline

contents

179 IXM&PM .

SMARDAIG TOBIAT

g m‘&g Huonsd

t@s 190l ewT
f,;imwmn ynnul

m m»:ps wwonil owT

_msidond sgmdamﬁi

pebr-a1as M 03 noiagbortnl

magsqmq sl

fastt 14
2 m&iqu TR

" poiulos TADZ S328
2 mw‘r motensrT

l : wzmhﬁ HudH)
mzs~mrn:‘~'!‘
y ygonif ow T

001 1RUR To mud

s fesail a9 T
o 231
S]

o Mﬁmm shon Ianiexd

sholos’ aﬁa&mﬁ SYUBMISHA

goliduad’

- m)wp 1sonil T

y 180l 99wl

AL
. ovloZ maldord 24
wﬁ sis(Yo T TS
2t
BE
LT
&
SR
i — BT
THDZ o AAIFE-AAA 22

AR
e
% 11p2 Aotwshl
0%d
3 A
a8l
500 o
“ERL
- %1
_,am,
?r&aﬁ B
i sef
sy 3moldog 918 -
mansian msldory ifluorsd
L miveb smgi
b aé smseaitau o0 (AW

ee

el
aal
831
8%y

I. Introduction and Overview 9 Nature and Direction of the Research

CHAPTER 1
INTRODUCTION and OVERVIEW .

This report is about rule-based problem solving. It has a motto:

The less a rule can do, the better the effects of using it can be predicted.
This motto suggests the key to obtaining coherant behavior by avoiding exponential behavior
(combinatorial explosion) in problem solving. The remainder of this report shows how to do
this, at least in the domain of synthesizing numerical computer programs from their

non-procedural specifications.
Nature and direction of the research

One of the central goals of research in Artificial Intelligence is to learn how to creaté automatic
“expert problem solvers.” Perhaps the fact that the author of an expert problem solver must '
have some expertise in the solver’s domain explains the popularity (at least at MIT) of electrical
circuits and computer programming domains. This research concerns the latter.

To construct an automatic programming system, several separate but related
sub-domains and their corresponding experts are required. These inclﬁde program
understanding, specification acquisition, program verification, and program synthesis. The

last is the domain of expertise of the system described by this report.

I. Introduction and Overview 10 Nature and Direction of the Research

A program synthesi's system takes a specification (for example, a predicate calculus
description of the relationships between the inputs and the outputs) of a program and produces a
program (in, for example, the programmming language LISP) that meets those specifications.
Two quick examples of the kind of problem a program synthesis system should be able to solve
(given a suitable rule library) are: |

L. If told that the output times the output is the input, it should write a square root

program. The system should be able to adopt Newton’s method for finding zeros of
functions to this problem.

2. If told that F(0) = 0 and that F(nsl) = 2F(n)sl, it should discover that F(n) = 2" - 1
and write a program that computes this quantity.

This report describes a numerical program synthesis system. The kinds of problems it can
currently solve (these include the two examples above) are described in the next section.
Diagram "Bernoulli Example”™ shows an input specification (in mathematical notation) and the
‘resulting code -- chapter 4 has the details.

The fundamental difficuity in constructing problem-solving systems is the so-called
~combinatorial explosion” problem. That 'is'to say, given a reasonable measﬁre of how hard the
problem at hand should.be, a "combinatorially explosive” problem solver takes an amount of
time proportional to an exponential (or worse!) function of that measure (chapter 3 is more
explicit). The measure of "how hard the problem is" need not be the usual complexity-theoretic
“size of input” measure! In general, the size of program (and therefore certainly the time needed -
to write it) is an unl'Jo‘unded function in the size of its specification. For purposes of measuring

the coherence of a problem solver, a measure of "how hard a problem is” could be the number

DIAGRA "BERNOULLI EXAMPLE"

M8
o3
Zl~
Sz
~r
rt
q
L[}
et

(e - 1)

B(N) is the Nth Bernoulli number. The problem is:
Given N, find B(N).

The system wrote the following function:

{DEFUN BERNOULLT (N)
(00 ((COUNT 0.0) (P (CREATE-VECTOR 0.0 N 1.0)))
((= COUNT N) (ACCESS-VECTOR P N))
(SETQ COUNT (PLUS 1.0 COUNT) P
(STORE -VECTOR
P
COUNT
((LAMBDA (G006S)
(TIMES (COND ((= ((LAMBDA (G0041)
(COND ((= (RFACTORIAL G0041) 0.0) (ERROR))
(T (QUOTIENT 1.0 (RFACTORIAL 60041)))))
(DIFFERENCE (PLUS COUNT 1.0) COUNT))
0.0) ’
(COND ((= GO06S 0.0) (ERROR)) (T (ERROR))))
(T (QUOTIENT G006S
{{(LAMBDA (G0041)
{COND ((= (RFACTORIAL GO041) 0.0) (ERROR))
(T (QUOTIENT 1.0 (RFACTORIAL 60041)))))
(DIFFERENCE (PLUS COUNT 1.0) COUNT)))))
(RFACTORIAL COUNT)))
(DIFFERENCE
{COND ((= (PLUS COUNT 1.0) 1.0) 1.0) (T 0.0))
(00 ((SuM 0.0) (M 0.0))
((= M COUNT) SUM)
(SETQ SUM
(PLUS SUM
((LAMBDA (G0068)
(TIMES (COND ((= (RFACTORIAL M) 0.0)
(COND {(= G0068 0.0) (ERROR)) (T (ERROR))))
{T (QUOTIENT 60068 (RFACTORIAL M})})
((LAMBDA (60041)
{COND ((= (RFACTORIAL 60041) 0.0) (ERROR))
(T (QUOTIENT 1.0 (RFACTORIAL G0041)))))
(DIFFERENCE (PLUS COUNT 1.0) M))))
(ACCESS-VECTOR P M)))
M (PLUS 1.0 M))))})D)))

- 11 -

1. Introduction and Overview 12 Nature and Direction of the Research

of rule applications that Qere needed (as opposed to the larger number actually performed) in
the solution found. This is the measure that will always be used in this report.

In order to be practical, a program synthesis system must take less than an exponential
amount of time in the number of rule applications required, and in order to be usable it must not
take more than a low-order polynomial amount of time in the number of rule applications
required. Complexity theory tells us that in general there exist general recursive functions for
which there is no "optimal” implementation. Even if there is for the particular function being
synthesized, a practical implementation would generate one implementation fast, and then as a |
back-ground task be able to improve this function.

The result of this research is a collection of techniques (embedded in a synthesis system)
that synthesize numerical computer programs. These techniques do not depend strongly on the
fact that the task is synthesizing programs, so there is hope that they could be adapted to
problem solving in other domains. I conjecture that these techniques in fact run in time
proportionil to a polynomial function of the number of rules required to solve a synthesis

problem.

Key Results

What constitutes a "result” in the field of artificial intelligence? The goals of Al are to make
machines smart and to understand human intelligence using the computational metaphore. A

result in Al is therefore something that pulls that goal closer. Specifically, it is an insight into

L. Introduction and Overview 13 Nature and Direction of the Research

the nature of a task (possibly reformulating the description of the task) that makes the
+ computational aspects of performing the task more tractable: a faster procedure or one requiring
less memory, a method for performing the task on a larger “"example space”, or even a
methodology making the programming of the task radically simpler.

Success in obtaining a result in Al comprises:

I A task description, perhaps informal, with a sufficient number of dissimilar target
examples to show the plausibility of covering the "example space.”

2. A working program at least capable of solving the target examples. The program
should not solve the examples by luck or accident.

3. A set of identifiable principles explaining why the working program functions.
These identifiable principles constitute the result(s).

This research has been successful. The target examples (to be discussed in detail shortly) were
selected to span the difficult subtasks involved in synthesizing numerical computer programs
that do not use data-structures. A working program was obtained that (on a relativély unloaded
PDP-10) can solve severallexamples faster than an expert human programmer.

There are three basic principles on which this research is based:

L. Synthesis by analysis of constraints. Since the first use of "networks of constraints”
in Stallman and Sussman’s EL system [$79), this formalism has become increasingly
popular. This research uses the idea of propagating code fragments (in addition to
the usual arithmetic 'and algebraic expressions) through a network of constraints in
order to write code. Stated another way, the "data base” of constraints connected
together to form a network is interpreted many different ways by the synthesis
system. :

2. Diagrams provide insight. In terms of the actual implementation, synthesis
problems are of course presented as text strings. But what might be termed
“topological configurations” seem to be the real key in deciding what deductions to
perform next. By extensively using the diagrams of networks of constraints, much’
insight into the recognition and use of these "topological configurations™ was obtained.
3. Combinatorial Blow-up should be the central concern. People can perform the task

I. Introduction and Overview 14 Nature and Dire;tion of the Research

of writing code given specifications. What ever this task actually involves, people do
not suffer from combinatorial blow-up. This observation should be the starting point
for an attempt to get computers to perform program synthesis: if a combinatorial
amount of work is required to perform the task, then the task must be reformulated.

I believe the three principles above can and should be applied to other research in artificial

intelligence.

T he nature of expert problem solving systems

At a very abstract level, a problem solver has four major components, as illustrated in diagram
:'problem solver”. Rules may be assumed to be of the situation/action type, where the action 1s
to (in general) produce a new data base by modifying the old one. Statements in the
rule-application library tell when rules should (and more particularly should not) be applied.
Since the topic of statements in the rule-application library is different from the topic of the
rules, there is reason to believe that these two libraries are written in different languages. (But
see de Kleer et al [dK79)).

The deductive mechanism has two sub-components: a matcher or rule-applier, and a
truth-maintainer that makes sure the updated data base is consistent.

The data base may be thought of as the current state of mind. In the absence of strong
evidence to the contrary, it should be assumed that for any data base, several rules can be
applied. Therefore, one must assume that the deduction mechanism gives rise to a tre= of data
bases as shown in diagram “tree of data bases”. From this diagram it is evident that one must

assume the number of data bases explored is exponential in the length of the solution derivation.

DIAGRAM "PROBLEM SOLVER"

o ‘h\\ T

.d‘f
~ RULE APPLICATION
RULE LIBRARY

- LIBRARY
-

—,

RULE APPLYER

TRUTH MAINT.

R

< DATA BASE

"~

"TREE OF DATA BASES"

INITIAL DATA BASE
v 0\@
Ko N
8 b 0. RULES A AND B APPLY
gF c E £ gF E g RULES C AND D APPLY
0060060 RULES E AND F APPLY

- 15 -~

I. Introduction and Overview 16 Nature and Direction of the Research

The British Museum algorithm for program synthesis would generate (in order of
increasing length) all possible programs and all possible program correctness proofs. A proof
checker would then examine each proof as it is generated. The first program whose proof 1s
correct and shows that the specification has been satisfied would be returned. Although
absurdly impractical, the British Museum algorithm takes an amount of time that is only
exponential in the length of the program plus correctness proof.

The discussion above leads to the conclusion that in order to be better than the British
museum algorithm, a rule-based expert problem solver must have some combination of the
following properties:

1. For any realistic data base, only one rule is applicable (a special case of 4 below).

2. The data base tree is always shallow. |

3. The rule-application library is good enough to guarantee that the average number

of data bases explored is polynomial (in the depth of the tree).

4. The data-base “tree" converges so that the breadth at each level is bounded by a

polynomial of the depth.

5. The form of rules allowed, and the deductive mechanism applying them, have been

restricted sufficiently to guarantee that rules do not combine combinatorially.
Although a rigorous proof has not been found, the problem solver described in this report
appears to have the fifth property. This means that as long as the rule library is consistent (not
an unreasonable expectation), the problem solver is conjectured to expend only polynomial effort
(in the number of rule applications actually required) in writing a program meeting the
specifications (provided such a program exists and can be found using the rules in the library)

regardless of how many rules are present and regardless of how much apparent potential there

is for combinatorial explosion.

1. Introduction and Overview 17 Nature and Direction of the Research

A problem-solving methodology

This report presents a problem-solving methodology (in the guise of a system thaf uses it) that
is not based on the traditional goal/subgoal paradigm. It is a matter of speculation as to
whether human problem-solving is goal-di;ected or only appears to be goal-directed. But as
far as this program synthesis system is concerned, it only appears to be goal-directed, as will be
evident when the theory of its innermost operation is revealed. That is to say, this system
demonstrates (for at least the task of program synthesis) a workable substitute for an explicit
goal/subgoal organization.

I believe a truely intelligent problem solving system will have both a strategic
(goal/subgoal paradigm) and a tactical (this system’s paradigm) component. The strategic
component might have rules concerning topics like

+ How to decompose a problem into (relatively) independent subproblems [Sa75a,b).

* How to form and debug an appropriate analogy [Br77), [U77), [W79).

* A sequence of steps to try performing to solve a class of problems.

* How to form and debug approximate solutions to the problem [Su75)
If the strategic component is (as I believe) inherently exponential, then combinatorial explosion
can be prevented by limiting the depth of the strategy goal tree. Therefore one only wants the
strategic component to operate at very high levels of abstraction.

The tactical component comes into play when the level of detail becomes too fine for the
strategic component to deal with effectively (or when no strategic rules appear applicable).

Given a relatively simple problem, the tactical component solves that problem without

generating any new goals or subgoals.

L. Introduction and Overview 18 Nature and Direction of the Research

The system described here is a prototype of a tactical component. It is surprisingly
powerful in its. domain considering its lack of global perspective. If the tactical component can
take care of as wide a range of problems as this report suggests, then perhaps the strategic
component can ignore details below a higher level of abstraction than previously believed. The
tactical component could be thought of as the applier of "brute force.” But the brute is a nohle
savage: street wise with animal cunning.

Both the tactical and strategic components might make use of specialists to do things
like (in the domain of numerical programs) solve integrals. These specialists could ...

But enough speculation!
Examples

Naturally one must be concerned that a program synthesis system with a restrictive rule
language (and specification language) nonetheless still be able to solve “interesting” problems and
write “interesting” code. The following four problems are the central examples used in this
report to illustrate the theory of operation of the program synthesis system. These examples
concern the following general topics:

1. Systems of equations
2. Inverses and zeros of functions
3. Changing recursive control flow to iterative, and vice versa

4. A peek at algorithms involving data structures
The "example space” of numerical computer programming problems is very large; the list of

I. Introduction and Overview 19 Examples

example problems above is'very small. Nonetheless, this small list will force the system to
demonstrate corﬁpetence in handling many (if not most) of the concepts of numerical computer
programming. These concepts include: convergence, power series, successive approximation,
symbolic differentiation (and other symbolic operations), transformations of program control
structures, and' limits. Since this system demonstrates “understanding™ of these concepts, it is
plausible that with a larger library of facts the system could solve any problem in the "example

space.”

Systems of equations: the "Linear equations problem"

The synthesizer is given the following three linear equations in three unknowns (the patsing of
these equations has been shown explicitly):
((x +y)-z)= A
(x-y)+2)=B
((x+y)e2)=C
It is told to write a program that takes A, B, and C as inputs and produces (for example) "x" as
output.
Two observations about the synthesizer can be made concerning its ability to solve this
problem. First, the system is not based on "refinement rules (Ba77)" The specification of the
problem does not give any hint as to the eventual structure of the program. The system is not

told it is solving a system of (linear) equations -- nor does it eventually recognize that it is doing

so. Nor, for the same reason, is the synthesis system particularly "goal oriented”™ -- its goal is to

L. Introduction and Overview 20 Examples

get a program to compute the answer, but no other subgoals (in the traditional sense) are
generated.

The second observation concerns the potential for combinatorial explosion. In solving
this problem, the system only uses the standard arithmetical axioms of commutativity,
associativity, identity (e.g. q + 0 = g), and the distributivity of multiplication over addition. If
the system is to avoid exponential behavior, it must avoid discovering things like

2A-A=A
That exponential behavior in this problem has been avoided will be demonstrated (in chapter 2)
by the fact that the system needed (in retrospect) every deduction it made, with the exception of
a few initial applications of commutativity. That is to say, the solution effort did not involve
any unnecessary steps. Some statistics concerning this forthcomming solution may be of interest:
Number of rule pattern matches found: 148
Number of rules applied: 13

Number of rule applications required: 5
All unneeded rule applications concerned commutativity of addition.

Finding the inverse of a function: The SORT problem

The synthesisvsystem is told that
X*XaY
and is asked to write a program that takes Y as input and produces X as output. Since this
specification neither guarantees any real output (the case if Y is negative) or a unique output (the

case if X is negative), the system is also told that

L. Introduction and Overview 2 Examples
X>0
Y>0
Finally, the “absolute error” in X is bounded by a constant E. The system, using the fact about
multiplication
"If A>0and C>0and if A+B = C, then B > C if and only if | > A”
deduces that

ifY>Lthenl<X <Y
fY<lLthenY <X <l

So the system knows upper and lower bounds for the value of X. The system also decides ‘that
the quantity X is a zero of the function

F(X) =Y - (X » X).
The system finally writes code implementing a bisection search for the zero of the auxiliary

function F(X).

A Digression

If my supervisor sent me a system message "Quick, write me a square root program” I would
write a program using a bisection search because that is the program I'm able to write the
fastest and with th;e least amount of thought. But I wouldn’t be surprised to receive a second
message "Thanks, I'll use that, but why don't you try to write a better program.”

A practical automatic programming system (or, perhaps more accurately, a

semi-automatic program development system, since even if programs won't need debugging,

L. Introduction and Overview ‘ 22 Examples

program specifications certainly will) should write programs as fast as it can so testing can
proceed in a timely manner, and use its “spare time” to polish, hone, fine tune, and otherwise
generally improve its code.

For both this practical reason and for complexity-theoretic reasons (various speedup
theorems show that “optimal” programs do not exist for some recursive functions) the program
synthesis system described in this report uses the same data base, rule library, and control

mechanisms to write LISP programs, and to improve programs it has written.

SORT example resumed: The "Newton’s SORT problem”

The synthesizer has written a square root function using a bisection search algorithm. It is now
asked to improve that code.
The system continues using everything it discovered in the initial problem solving
- effort. One of the rules in the system’s library says that if Newton’s method converges, then on
the average Newton’s method will require many fewer iterations to obtain the same accuracy as
the bisection method.
The rule says to use the following test (see [R69), p.1178, section 3l.4.c) to check for
convergence:
1. A zero of F(x) is in the range [a,b]. -
2. F'(x) is either always positive or always negative for x in [a,b].
3. F"(x) is either always positive or always negative for x in [a,b).
4. F(a) and F(b) have different signs.

5. Start with initial x = a or b, depending on which of F(a), F(b) has the same sign as
F"(root). (The rule actually used ignores this restriction, but it could easily be

L Introduction and Overview 23 ~ Examples

included.
In order to apply this test, the system must be able to take symbolic derivatives, and
symbolically determine whether certain functions have zeros within specified ranges.

After succeeding in proving Newton’s method converges, the system compares the
time-costs of both methods, and decides that Newton's method is superior. In any future
improvement efforts it will be the Newton’s method computation that receives attention, not the
bisection search computation.

The description above of the system’s problem solving effort is in terms of goals and
subgoals. It must be remembered that these terms are the author’s. In fact, the system at no
time announces to itself “"now I will try to solve this subproblem”. ~

In addition to showing the incremental nature of the synthesis system, this example also
illustrates the system's approach to (worst case) time-cost analysis. There are two popular

~ techniques of time-cost analysis:

1. Comparison of algebraic descriptions of the time-cost (the system can always obtain
such an expression for an upper bound of the code’s time cost).

2. Comparison of the numeric time-cost quantity for some “typical” set of inputs (this
is the only method used by Kant's LIBRA system [K77)).

The synthesis system described here uses both techniques and notes an anomality if the two

analyses do not agree in which computation is faster.

Iteration and Recursion: The "Factorial problem”

L. Introduction and Overview 24 Examples

Notions of looping control control structure -- iteration and recursion -- are the most dist‘mgtive
aspects of programming. These notions are absent in (if the reader will excuse the term)
classical mathematics. A program synthesis system must therefore exhibit a facility in dealing
with looping. Furthermore, the underlying theory of the system should include some description
of recursion and iteration that is deeper than a purely syntactic distinction in the data-base
representation.

The example used in illustrating the system’s facility in dealing with loops starts out
with a specification of the factorial function:

f(n) = n * f(n-1)
f(0) = 1 (specified as base step)

When asked to write a program for "f", the system produces a recursive factorial (no interesting
deductions are required) like the one below (I- is MacLISP's decrement function):
(DEFUN FACTORIAL (N)
(COND ((= N 0) 1)
(T (= N (FATORIAL (1- N))))))

This is an appropriate point to mention that program specifications can themselves be
programs. In at least a limi‘ted sense a program synthesis system is also a program
transformation system and a hairy optimizing corﬁpiler.

There are (at least) two iterative factorials that could presumably be derived from a
recursive factorial function:

(DEFUN FACTORIALL (N)

(00 ((M N (1-°M))
(FACT 1 (» M FACT)))

L Introduction and Overview 25 Examples

({= M 0) FACT)))
(DEFUN FACTORIAL2 (N)
(0O ({M 0 (1+ M)
(FACT 1 (% FACT M)))
({(= M N) FACT)))
Symbolically these three functions compute different expressions:

FACTORIAL: (N # ((N-1) + ((N-2) ...)) “counts down, computes up”
FACTORIALI: (.{(N * (N-1)) # (N-2)) ...) "counts and computes down"
FACTORIALZ. (N+ .. +(3+(221))) "counts and computes up”

The transformations from FACTORIAL->FACTORIALI is only legitimate because
multiplication is associative. The transformation from FACTORIAL->FACTORIAL2 is only

legitimate because the function "I-" has a functional inverse.
The synthesis system can perform both of these transfromations. The easier rule to
state turns out to be the one resulting in FACTORIAL->FACTORIAL2. The other

transformation can only be partially implemented because the system does not pursue subgoals of

the form "prove the following (complex) operation is associatiative.”

Data Structures and Bernoulli Numbers

A quick perusal of the literature on automatic programming, apprentice programmers, and
program synthesis would suggest that the principal difficulty is associated with devising and
manipulating the appropriate data structures for the particular program-task. So it must be

surprising that, as yet, none of the examples have used a data structure more complex than

1. Introduction and Overview 26 Examples

“floating point” numbers, where even the number of digits of precision has not been relevant. In
fact, the domain numerical computer programs was carefully selected to specifically avoid
having to consider the problem of data structure design.

Why avoid worrying about data structures? There were several reasons. One_was
simply to limit the amount of work involved in the research (no one can fault the author for
that!). Another reason is of more general interest. It has often been noted that there is
"something funny” about the distinction between what might be called temporal organization and
spatial organization within a computer program. Many computer programming languages use a
“pun” in treating an array access in syntactically the same way as a function invocations When
one works at the assembly language level, one occasionally finds it faster to re-compute a
quantity when ever it is needed than to store and recall it each time.

A decision was made to avoid data-structure considerations. But then the problem of
computing Bernoulli numbers came up, and rather than generate horribly inefficient code, the
author decided to build into the system a little data-structure design capability. This example
shows what resulted.‘

Bernoulli numbers (written as a function B(n) for n a positive number) are déf‘ined by
the equation

SUM from n=0 to inf. B(n}{t"/n)) =t / (' - 1)
Suppose the system is given this equation, and asked to write a program for B(n). The

definition of B(n) is "buried” inside an (infinite!) loop. One might expect that this would make

L. Introduction and Overview 21 Examples

the problem hard to state, and the rules needed to solve this problem very hard to write. In
fact, the representation for loops makes no distinction between "inside” and “outside”, and the
rules can be written straightforwardly.

The system solves this problem, unsurprisingly, in a more or less standard way. The
left side is (or can be viewed as) a polynomial series (power series) in the variable "t". Using
the fact (contained in the set of rules provided to the system) that

e! - 1 = SUM from m=l to inf t™/m!
the defining equation can be written as the multiplication of two power series. But there is a
general rule for multiplying power series. The system derives
SUM from L=l to inf [SUM from p=0 to L-1 B(p)s(l / (P! » (L-p)))] » th =t

But from this it can be deduced that, except for L=l, the equation

SUM from p=0 to L-1 [B(p){1 / (P! # (L-p})] = 0
holds. Looking at the equation above, it is clear that if B(0) up to B(L-2) are known, then
B(L-1) can be computed. Specifically,

B(L-1) = - SUM from p=0 to L-2 [B(p)(1 / (p! # (L-p}))] # (L-1}

For L-=l, it must be that

SUM from p=0 to L-1 [B(p)«(l / (P! # (L-p)))] = 1
so B(0) = 1.

The analysis above can be used to write a program to compute B(n), see table

"Bernoulli code” in chapter 4, and diagram “Bernoulli example”. If a recursive program is read

I. Introduction and Overview , 28 ~ Examples

" off of the equations directly, the resulting program will run exponentially in the size of its
argument. On the other hand, an algorithm employing a dynamically built table starting Qith
B(0) up to B(n) has a time-cost of about n,

Ther® should be no surprise that the .synthesis system is able to write the "exponential”
Bernoulli number generator. The purpose of the fourth example is to show how the classical n®

algorithm is found and illustrating how algorithm specification and derivation might lead

directly to data-structure specification and realization.
THESIS

One can investigate expert problem solving either "in general” or in a particular domain. Ths
report concerns expert problem solving in the particular domain of numerical program synthesis.
Free use is made of particular (and perhaps unusual) features of this domain. Although 1 will
argue that the results of this investigation are generally applicable, the thesis being presented
only c-oncerns numerical program synthesis.

The usual investigation of expert problem solving develops a deductive compcnent and
a knowledge-representation scheme that is (claimed) sufficient for the task of interest.
Beginning with a selection of facts and rules about the domain, these investigations develop
systems capable of applying these facts and rules. Attention then is centered on controil‘mg the

system (or, rather, had better be centered on ..1), which may be more powerful than is actually

I. Introduction and Overview 29 Thesis'

necessary.

In sharp contrast, this investigation focusses on what deductive capabilities are
necessary for the task of program synthesis. This research approach begins with constraints on
the capabilities of the deductive component. The knowledge representation scheme reflects these
constraints by (initially) having limited expressive capabilities. From this starting point the
research approach turns to encoding domain facts and rules.

What a priori limitations can be bplaced on the deductive capabilities of a program
synthesis system? While one would expect a synthesizer to be able to apply Newton’s method
for finding zeros of a function, for example, it need not be able to invent Newton's method.
That is to say, there are problems we would all agree are simply too hard for a synthesis system
(any system) to solve. There must be a class of problems (humanly solvable) that one would not
ask human prograrnrﬁers to solve -- so an automatic system need not be capable of solving
problems in this class.

One class of problems (writing code) we all can agree to try avoiding could be
characterized as

"problems whose solution time is exponential (or worse) in fhe length of the solution
derivation.”
(Solution time and length refer to writing the code, not running the code). Notice this is not the
usual time-complexity measure. There are several useful operations for program synthesis that

are (on the face of it) exponential. These include register-allocation (Bruno and Sethi show this

I. Introduction and Overview 30 Thesis

t;:: be NP-complete [Br76]), and theorem proving to show some series converges (discussion
below shows this has an NP-complete problem as a subproblem). As a detailed example of this
kiﬁd of problem is that of proving a statement in the propositional calculus is not a tautology
(this is known to be NP-complete). The statement "A or B implies A" is not a tautology because
it is false if A is "false” and B is "true”. A proof is an assignment of "true” and "false” to the
variables in the statement such that the entire statement is false. The best (known) algorithm
for finding proofs like this 'is exponential in the number of variables (the length of the
"solution™).

One way to limit a deductive system (hoping to make it run in polynomial time) is to
limit the expressive power of the "rule language." The term “expressive power” refers not to (an
absence of) syntactic sugaring, but to the existence of predicate calculus formulae that cannot (in
any way) be translated into rules. As an example of such a restriction in expressive power,
consider a modification to the task (above) of proving the non-tautologic status of certain
propositional calculus expressions. Suppose the form of the expression is limited to implications
of conjunctions of variables -- expressions without the "OR" connective and without the "NOT"
operator (these are Horn clauses, [H74]). Such an expreﬁsion (like "A and B and C implies A
and D) can easily be shown not a tautology by finding a letter variable (D in this case) on the
right hand side of the implication that is not among the conjuncts to the left of the implication.
‘lf this letter variable is assigned "false” and all others assigned “true”, the entire expression

evaluates to "false.” ‘Expressions of this restricted form can be proven non-tautologies in linear

L Introduction and Overview 3l Thesis

time (actually O(n+log(n)) because of the time taken to look up variable names).
With these preliminary remarks, the thesis can be succinctly stated:
By limiting the expressive power of @ rule language and correspondingly limiting
the capabilities of the deductive system, a problem solver can be developed in which
any problem whose observed solution involved N steps (solution of length N) will be
solved in steps numbering no more than a polynomial function of N.
If solution time is a polynomial in the total number of rules applied (and it is), then a convenient
measure of solution length is the number of rule applications actually required to solve the code
synthesis problem. The thesis says that although useless deductions might be made, the number
of useless deductions will be kept reasonably low (bounded by a polynomial in the number of
worthwhile deductions that will be required) by virtue of the deduction algorithm.

This thesis is still only a conjecture. It will be defended, but not formally proven, by
exhibiting a rule language whose expressive power has been limited in a way very similar to the
way expressions were limited in the propositional calculus example above. A deductive
mechanism will be described and demonstrated on the four key programming problems

described above.

A Bketch of the Synthesis System

Here is a brief sketch of the synthesis system. The reader should not worry much about the

L. Introduction and Overview 32 A sketch of the system

details; all will be explained in chapters two and three.

In writing axioms for arithmetic, one often finds instead of, say, addition being treated
as a function of two arguments, it is written as a predicate of three arguments. To say, for
example, that A=X+Y and B=X-Y, one would write something like

(+CX Y A)and (+CB Y X).
- The logician (ignoring the problem of how the variables should be quantified) would then
interpret these expressions as declaring that certain relations hold among the variables X, Y, A,
and B.
On the other hand, a computer scientist might interpret a statement
A=X+Y

as a computational specification -- it tells how to compute the value of a variable A from the
values of variables X and Y.

The rule language for the program synthesis system is based on a representation
combining both the declarative and computational interpretations. Specifically, a +C device
would be defined as having three terminals (arguments) named SUMMANDI, SUMMAND?Z,
and SUM. Some constraint rules would be written telling that some terminals can be computed

on the basis of others, and giving details about how that computation is effected:

I. Introduction and Overview 3 A sketch of the system

terﬁina\ computed terminals needed expression
SuM SUMMAND1, SUMMAND2 (+ SUMMAND1 SUMMANDZ)
SUMMAND] SUM,SUMMAND2 (- sum SUMMAN;JZ)

SUW\AN62 SUM,SUMMAND1 {- SUM SUMMAND2)

The expressions can be thought of as LISP code, although the system actually uses a separate
constraint rule language and interpreter system so that expressions can be evaluated not only to
form code, but to provide time-costs, upper and lower bounds, and symbolic expressions.

The separation of "what terminals are needed” from "how to do it" is both due to
efficiency considerations and for theoretical reasons. If 1 were to tell you that

C+D=EandC+D=F
you would immediately conclude that E and.F were the same. But if I claimed that
D = E2 and D = F2

you would not feel safe in asserting that E = F. (E=3, F=-3, D=9 for example). In the next
chapter it will be shown that whether identity can be deduced or not in the two cases above

depends entirely on the “terminal-needed” parts of the constraint rules.

- Stating the Problem
A programming problem is given to the synthesis system as a series of devices connected (at

their terminals) to various variables (represented by nodes). When devices are connected to

L. Introduction and Overview 34 A sketch of the system

nodes, a network is formed. In addition to a network, the programming problem also specifies
which nodes are to be inputs, and which is the outpuf.

Although these networks are given to the system as a sequence of LISP expressions,
several important insights can be obtained by examining a network drawn out in a diagram.
The network corresponding to

(+«CXYA)and +«CB Y X)
is shown in diagram “two-linear-equations”. This network fo.rmalism is based on Stallman and
Sussman'’s electronic circuit analysis program EL [$79).

Suppose that nodes A and B are specified as inputs, and node Y is specified as the
output. A process called propagation (a form of local deduction) would éxamine the constraint
rules of the two +C devices (named DI and D2) to see if any other nodes can be assigned values
(see diagram "Value Propagation Example” in chapter 2). In this example no new values can
be obtained, so some other, more global, deductions apparently must be made.

The diagram for this example contains a very important configuration called a circuit.
This circuit starts at node X, goes to device DI (direction is not important), then to node Y, then
to device D2, and finaily back to node X. None of the nodes in the circuit have been given
values (which is to say that the system doesn’t know how to compute them yet). A key
observation is that if a problem can be solved, but is not solved by propagation, then the output
node must be in a circuit (or can be determined by propagation from nodes that are in a circuit).

A second key observation is that to solve a problem one wants, somehow, for circuits to

D1

AO plus
(input)
DIAGRAM "TWO LINEAR EQUATIONS"
PSRN |
e PLUS e left part
(pattern)
(gq+r) +s=(qg+s)+r
‘U’ hashed line shows part of circuit
to shrink

S R e o o | \M right part

Sepmpfei~i=| PLUS e (instantiated
r

DIAGRAM "FUNNY ASSOCIATIVITY"

- 35 -

I. Introduction and Overview 36 A sketch of the system

get smaller (see "Two Linear Equations Solution"). The system uses a library of transformation

rules (or simply transforms) to make this happen.

Transformation rules

It is the language for writing these transformation rules that has been restricted. Recall
that a network is a collection of interconnected devices and nodes. A network can also be
considered as a conjunction of constraints (a constraint is a device interpreted as a "predicate” of
all its terminals). By their nature (e.g., usage in this system) constraints must all be satisfiable
(be “true®) in the sense that, there must exist some assignment of values to nodes so that all
constraints (considered to be predicates) evaluate to “true.” A transformation rule is a statement
to the effect that one network can be transformed into another (called the "instantiation
-network”). Of course the entire transformation must be “true” when considered as a
mathematical statement. But to prevent expressing a disjunction, a stronger restriction is
imposed: the instantiation network, considered in isolation, must have the property that all its
constraints (expressed as devices) are satisfiable.

For example, one transformation the system has in its library says that r+r=2r:

(\CRRS)) =>((+C 2R S)).
This transform could be drawn as shown in diagram “doubling.” An important observation to .
make concerning this diagram is that if S is known and node R is not, then the left side of the

diagram contains a circuit (with only one node R) but the right side does not. The “"doubling”

' l..lntroduction and Overview ” A sketch of the system

transformation apparently "removes" a circuit when § is kﬁdwn and R is not.
Another transform, expressing the mathematical fact that
(Q+R)+S«(Q+S)+R
is shown in diagram “funny associativity." There is nothing special about this transformation,
| other than it happens to help solve the current problem. Written as constraints, this transform is
o (\LCRQD)(+CDSE) = ((4C S QF)(+C RF E).
The left part of this diagram (the pattern) matches the problem in the diagram “twa linear
equations” with the correspondence |
Qo> Y.Re>B S Y, Em A
"The transform node D is also matched, but this doesn't matter because D does not appear on thev
right-hand side. Tl;e' result of applyihg the "funny associativity” transform is ta add a copy of
 the instantiation network to the problem network (of course, this may t;igger other rules --
‘combinatorial explosion is a danger the system controls, see chapter 3). A new node must be
created for the node F because it does not appear in the Ieﬂ-hand”pattem part §f the transform.
The solution to this problem is found in the data base after applying “funny associativity”
foilowed by "doubling.” The state of the data base after all this is shown in diagram “two
linear equations solution.”
' An impoftant observation to make concerning the"‘funny associativity” diagram is that,
in the left (pattern) part, there are exactly two circumstances in which using this transform will

result in shrinking a circuit. These are first if nodes "Q" and "S" are known, and nodes "R" -

rg)

plus | 20

DIAGRAM "DOUBLING"

ORIGINAL:

smaller:

DIAGRAM "TWO LINEAR EQUATIONS SOLUTION"

- 38 -

L Introduction and Overview 39 A sketch of the system

and "E” are unknown, and second if nodes “R" and "E" are known and nodes "Q" and "S" are
unknown. The second situation is extant in the initial problem.

In the diagram “two linear equations solution” the node C can be assigned a value by
propagation (the value is A - B). Then Y can be assigned a value by the "xC" device via
propagation. If code fragments are propagated instead of symbolic values, then code will be

written for computing Y from inputs A and B, as was requested.

Limiting expressive power and combinatorial blowup

The mathematical facts contained in the "funny associativity” and "doubling” are of the form
that the left side (a conjunction) implies the right side (another conjunction). All transforms
have this simple form. Although all examples have been equivalences this is not generally true
Disjunctions (use of OR) and negations (use of NOT) are not allowed. The expressive powet
of the transformation rule language has been limited. Furthermore, it should be remembered
that propositional statements of this restricted form (implications of con'junctions) are precisely
those for which the non-tautology proof was easy.

To see that the expressive power Aas been limited, notice that even though implicatic;n
can be rewritten as shown, it cannot be used to encode disjunction:
A=>Bis eqﬁivalent to~AORB
Trying to encode a d.isjunction using negation doesn’t work because negations are not allowed:

(~A) => B (equivalent to A OR B).

1. Introduction and Overview 40 A sketch of the system

Direct use of negation is not allowed. But maybe indirectly one could encode negation:
C => "FALSE" (equivalent to ~C OR "FALSE", equivalent to ~C).
But consider what such a transformation rule would have to say: From C one can deduce that
some constraint holds among some nodes when in fact it can never be satisfied! This violates
the imposed condition that all constraints in a network are ;atisfiable. That is, the
transformation rule would necessarily be a lie. So a disjunction cannot be constructed in this (or
any other) way. Besides, since the really important feature of the restricted form is that
disjunctions cannot appear on the right-hand side of implications, the simplest "bad” form looks
like:
A => [(C => "FALSE") => B] (equivalent to A => (B OR C)).
The form above is not an implication of conjunctions as required.
The restrictions to the transformation rule language may look familiar to those working
with resolution theorem provers. A Horn clause has the form
(OR A ~T1~T2..~TN).
It is a disjunctive clause with no more than one positive literal. Any implication of conjunctions
of positive literals can be translated to Horn clauses (this is not true for more general forms).
Resolution becomes more effi.cient if only Horn clauses are involved, see [H74).
By using this restricted form of transformation rule two separate kinds of combinatorial
explosion (exponential behavior) have been avoided. The first concerns the general problem of

proof by contradiction and data base splits. The second concerns legitimate but useless

L l_nti'oduction and Overview -4 A sketch of the system

deductions. -
Ifa problein;solver is faced with a fact like “x implies y or z" a common reaction is Gf
X is true in the current data base) to assume y and see if a contradiction resulits. lf one does,
then (one way or another) the deductwe system “backs up" and decides that "not y" and "z" are
both the case. Smce in effect the problem solver is thus searching a tree, there is a potﬂntlal for
| exponennal behav:or = an exponentul number of data bases must be searched (m general) as a
function of the depth of the tree. |
| In sharp contrast, the transformation rule language has been restricted so that it is
impossible to state a rule that might gjve eise to a tree of data bases. Reasoning‘ by
centradiction cannot be used by the deductive system because fhe rules are not expreseive
‘enough to say what should be done if a contradicﬁon is found. | |
Another kind of exponential behavior arises in the problem of finding the value 6f. a
~ varjable Vf given the values of V| through Vn when the following is true:
| (VE+ (VL4 (V24 .o (VEo.J)) =0,
Suppose that the system can interchange two variables without changing the nesting. By
applying the interchange operation, all sequences of Vf and V1 through Vn can be generated,
and there are 0.5¢(n+2) such sequences. If the system can solve the problem‘ after getting the
Atwo V£ variables next to each other, then in fact no more than n interchanges actuall‘y need to
be performed. Since the factorial function grows worse than an expenentiel. there is a kind of -

exponential behavior to avoid. See diagram “Interchange Problem" for a demonstration of how

L. Introduction and Overview 12 A sketch of the system

knowledge of circuits solves this combinatorial problem.

Because the form of transformation rule is so simple, one can determine in advance the
effect of applying a transformation with respect to shrinking or removing circuits. The doubling
transformation, for example, removes the circuit containing the node R. Before an applicable
transformation is actually used, the system performs a few simple tests to see if the
transformation will shrink or remove a circuit of current interest (these tests involve examining
nodes to see if they are known or unknown). If it won't, then the transform's use is postponed.
In this way, the form of exponential behavior'described above is avoided. If disjunctions were
allowed on the right of implications, this style of analysis would be impossible.

The mechanisms sketched out above are, of course, not sufficient for solving more
interesting problems in program synthesis. Nothing has been said about representing and
making deductions about iterative and recursive procedures, for example. The next sections
hints at how the system can reason about iteration. There are other forms of combinatorial
explosion to be avoided. To this end, attention-focusing mechanisms and local approximation
techniques are used. There are philosophical questions like "How does one prove a rule library
correct and consistent?™ that must be addressed. These are the topics of the chapters that

follow.

Specifications involving iteration

Iteration and recursion are fundamental features of computer programming. They become

£

- 0.0
_ NB NA NF
VA,VB,Vl1l,...,VN ARE KNOWN, SOLVE FOR VF
nodes NA, NB, ... are unknown, node NF and nodes to right are
‘ known»by,prqugatioa
b | L
a ~—— t‘. b 4
] d > ; d
C i Cir ' ‘

Above 1s the "interchange rule". A priori, this shrinks a circuit c—-b,
so system only (but see chapter 3) applies this rule if
nodes c,b are unknown and nodes a,d are known.

The ‘only site meeting application‘tequirementé has matching:
c ~NA, a-~VA, b~VF,d - NF

AFTER APPLICATION AND PROPAGATION, CIRCUIT WILL LOOK LIKE THIS;

~yNF (known)

N g -

NG (is computed by propagation)
NOW THE ONLY SITE FOR "INTERCHANGE RULEFIS: v o
¢ -NB, a-VB, b-VF, d - NG.

DIAGRAM "INTERCHANGE PROBLEM"

- 43 -

L Introduction and Overview 14 A sketch of the system

manifest in an actual program’s control structure. They also occur in specifications. One would
like to be able to reason directly about looping control structures, but the undecidability of
almost any question concerning looping procedures makes the situation hopeless. Since one
cannot in general reason about looping control structures, the approach taken in this research has
been to "bury” looping in device rules.

For example, there is a SIGM A device (see diagram "Sigma Device” in chapter 4) that
contains prepackaged looping control structures for computing SUM from C, N, and a function
F:

SUM =sum M from C to N of F(M).
The device rule for the SIGMA device contains a "blank” to be filled in with "code” for the
function called F. This funcﬁon F is to be found by the synthesis system. When the system
finds how to compute F, that knowledge is packaged into a structure called a macro-device.

The key to being able to "bury” all iteration and recursion into prepackaged control
structures is being able to tell the synthesis system how to find macro-devices.

When the user writes a device rule that uses a macro-device, the user must also teli the
system how to find the macro-device when it is needed. This is always done by telling the
system that the macro-device has certain nodes as inputs, and others as outputs. In the case of
SIGMA, terminal F-in is macro-device F’s input, and terminal F-out is F’s output.

Diagram “Introduction to Macro Devices” summarizes how the system responds to a

device rule in SIGMA asking for a macro-device F. Essentially, three steps are involved: first

Lo —u————-.’--'

A

c ' n
SIGMA (::>
defined by device rule: Found by system

given c,n

am cumy wn s wm s W@ om e -

user
compute sum
by adding ...
,
) A
sum l
|
I
X b e e e e e oo b
B
2 made by system
x = (m + C) (
m = in T . out
F

SYSTEM ACTIVITY

Find portion of network. In this case, portion that computes F-out from
F-in.

Construct macro-device "containing" a copy of the portion of network
found in step 1.

® OO

Use macro-device in interpretation of device rule.

DIAGRAM "INTRODUCTION TO MACRO-DEVICES"

- 45 -

- 1. Introduction and Overview 16 A sketch of the Eystem

find the portion of the network that can perform the required computafion, then package this
portion of the network into a macro-device, and finally use the macro-device in device rule
interpretation. Later chapters will give algorithms for accomplishing these steps.

By using the macro-device mechanisms, devices for various kinds of iteration and
recursion, as well as devices like SIGM A, devices for doing bisection searches, and devices for
power serries manipulation have been written. Transformation rules involving these devices' can

ignore the fact that the devices’ definitions involve looping control structures.
Related Work

‘Several other investigators have worked on the problem of program synthesis. There
are three dimensions in which to classify these efforts: specification technique, rule form, and
control mechanisms.

One can divide specification techniques into roughly five catagories:

1. Pre--and Post- conditions [M79).

2. 1/O relations (this work)

3. Very High level languages [Ba77), [Bu77].

4. Examples [S77], [H75] and traces [Bi76]

5. Analogy [Br77], [U77]

By providing pre-conditions and post-conditions, side effects can be specified -- 1/O relations

can only specify what the output should be. Very high level languages (weaker still) are

specifications that can (however inefficiently) be interpreted on specific inputs to obtain the

L. Introduction and QOverview 147 Related Work

desired output.

As an alternative to describing the program, catagories 4 and 5 are potentially handy
specification techniques to incorporate into a large automatic programming system.

A second dimension concerns the form of rules used by the system. There are about
three broad catagosies:

1. Axioms/Theorems (this work), [E76], [G69]

2. Rewrite rules [M79], (Ba77]
3. Others [R80]

" It is amusing that Emden and Kowalski's [E76) approach also restricts itself to Horn clauses.

Barstw [Ba77] and Rich [R80] have concentrated in building comprehensive libraries of rules,

There are three levels of interest in controlling the synthesis system:

1. Completely manual [M79)

2. Semi-automatic Apprentice approach [R79), [R80), [Bu77)

3. Completely automatic (this work) [K77)

Kant’s [K77] LIBRA system was the controller in Barstow’s [Ba77] PECOS synthesizer
component of the PSI [G76] automatic programming system.

Program synthesis is on the fringe of several other areas of current research. It can bwe
viewed as the task accomplished by a smart compiler for very high level languages like CI.UJ
[L75) and Alphard [Wu76). Weigbreit [We76] discusses such a smart compiler.

Traditionally, programming languages have tried to isolate} the innocent programmer

from details concerning storing data structures (early examples are ALGOL'’s dynamic array

allocation and LISP’s garbage collection). Low [L78] discusses the problem of efficient data

I Introduction and Overview 48 Related Work

structure selection.

The subjects of program specification and proving programs correct could be viewed as
the “inverse” of the subject of program synthesis. Syntbeds goes from specification to programs,
while proving a program correct goes the oth;r way. The “verification” literature is vast.
Shrobe [Sh79] suggests that understanding code, expecially when the understanding can be

modified as code is modified, is much more valuable than proving it correct.

I1. Incoherent sources of Knowledge 49 Overview

CHAPTER 2
INCOHERENT SOURCES OF KNOWLEDGE

Local vs. Global

The term “incoherent” in the title is not intended to refer to the expository style of the chapter
but to the ';local" nature of descriptions. That is, the various descriptions (embodied in “rules")
don’t know about each other, and so they cannot negotiate cooperation in any way other tfwan
their effects.

One way to describe the meaning of a relation like +C or *C (corresponding to
operations of addition and multiplication) uses a computational model. Another employs
axiomatic methods.

Using the +C relation introduced in chapter 1, if the constraint

(+CABC)
holds, then by using a computational model one could determine a value (symbolic or numeric)
for C given values for A and B. The system uses constraint rules as a source for this kind of
knowledge.

The synthesis system also uses axiomatic descriptions. One would state the standard
associative axiom for addition as a transformation rule:

(+C AB G)and (+C G C D)

=> («CAED)and («CBCE).

11. Incoherent sources of Knowledge 50 _ Overview

Both of these types of rules are local in the sense that they describe behavior of structures
(devices and networks of devices) in isolation.. One might think that information concerning
.when these local rules should be applied must be non-local in nature. Chapter 3 will show how
this knowledge can be (mechanically) derived from these local, incoherent sources.

Table "Knowledge Sources Summary” lists the basic knowledge sources for the system.
This chapter explains these sources in the order shown in the table.. It concludes with 2

complete solution to the square root problem.

A glimpse of coherent behavior

The system’s deductive capabilities center on two different procedures: value propagation
(uses constraint rules) and transformation application (primarily uses transformaiton rules).

~ The system’s representation of problems is primarily relational. This means that the
system must have a simple and straightforward way to extract computational representations
from relational ones. The procedure used for this purpose is value propagation. Looking at the
diagram “value propagation example”, suppose the node A has as a value the system’s
expression

(+VARIABLE A)

and that nodes X, Y, Z, W, and B do not have values. The value propagation'(or simply
propagation, though the term will also be used for the matching process) procedure finds all the

devices attached to node A. These are devices DI, D2, and D3. Each device's list of constraint

IL. Incoherent sources of Knowledge 51 Overview

rules is then searched to find rules with values in all the nodes corresponding to termipals in the
rule’s terminal-needed list. Each device happens to have such a rule. The rules are then
interpreted. The rule for device DI under the interpretation for algebraic expressions yields for
node X (notation will be explained later):
(*EXPRESSION (PLUS (#VARIABLE A) (#CONSTANT 3.0))).

Similarly expressions will result for nodes W and Z. Finally, propagation checks to see if the
resulting expression is an improvement over the expression (if any) already in the node. If it is,
the node’s value is updated. This process is repeated until either the output node (say node B)
receives a value, or until no more propagation can take place. In Stallman and Sussman [$79),
other propagation techniques are used (“plunking”). These techniques are compatible with the
Fechniques used here, but have not been incorporated into the system.

Value propagation does not lead to exponential behavior. The same wonderful accolade
cannot be given to tﬁe transform application process. Obtaining coherent behavior in applying
transforms will be a topic of the next chapter. Briefly, the steps in applying a transform are:

~ I Match the pattern of the transform to the problem’s network (the datum network).

2. Bind any variable-nodes. - (This is probably incomprehensible, but don't worry, an
explanation is coming.)

3. See if the problem context is one that agrees with the network’s applicability (for
example, can the transform reduce the size of a circuit). This step (and some of the

following) constitutes the main topic of the next chapter. Assumptions may need to be
made.

4. Match any macro-device specifications . (Ditto).

5. Check any node-independence requirements. These arise in, for example, rules for
taking derivatives (the derivative of something that doesn't depend on the variable
under consideration is zero, etc.).

6. If everything matches up properly, add the instantiation part of the transform to

D3

PLUS

D7

e

3.0

3.0
Lﬁ D2 D5
r PLUS TIMES
1.0

6.0

If A is given, propagation gives values as shown in the table:

Device responsible node value assigned
D3 z A2

D1 X 3*A

D2 W A+1

D5 C wtb = a + 7

D4 | Y x2 (= (c*a)?)
D7 B z+c

D6 B 3%y

DIAGRAM "VALUE PROPAGATION EXAMPLE"

- 52 =

IL Incoherent sources of Knowledge 53 Overview
the datum network.
7. Instantiate any required macro devices (see next chapter).
This chapter explains how to provide the system with all the information needed to perform
transform application. The algorithms and control mechanisms will be found in the next

chapter.

DEVICES

Problem: To say anything about computation, I need objects and something that acts on those
objects. :

Solutton: Nodes "contain objects, and devices act on those objects according to rules.

The basic relational and computational building block in the system is the (constraint) device.
The term “constraint™ will be used to emphasize the relational nature, and "device” to emphasize
the computational nature of the concept. This section explains how devices are defined. For
purposés of illustration, this discussion will center on three devices used in the SQRT example.
The device named "+C" is used to express multiplication and division. The device
"GREATER" expresses inequality. The device "BSFZ" finds the zero of a function by using
bisection search. Table “Three Device Definitions” shows how these devices are described to
the system.

The statement

(MAKE-DEVICE name-of-device <name-of-terminal>)

causes the internal data structures for a device type to be set up. These structures include

IL. Incoherent sources of Knowledge 5¢ Devices

device templates and empty rule lists for both weak and strong constraint rules. Terminals are
like LISP lambda variables in that they are a way for something conceptually inside a device to
refer to a node outside. In this report phrases like “the terminal’s value” usually are shorthand
for "the value of the node attached to the terminal” (where “value” is again shorthand for some
expression of a facet in the node's value structure). The casual reader can safe'ly ignore the
distinction between “terminal” and “node.” |

The device type named "+C" has only strong constraint rules. These rules claim that a
value can be computed for one terminal on the basis of values on other termin.als (actually the
value structure of a node attached to a terminal can be constructed on the basis of the value
structures of nodes attached to other terminals). The statement for making a rule has the form

(RULE-OF name-of-device terminal-computed
(<terminal-needed>) expression [(<macro-device-specific_ation>)]).

T;|e purpose of having macro-device specifications will be explained in the next section. BSFZ
uses a macro-device it calls F.
If one knows that X > Y, expressed as
(GREATER X Y (+MODE-CONSTANT +TRUE))

and if one also knows the value of X, then the value of Y can be constrained even though it
cannot be computed. In particutar, if X = 30, then Y's upper bound can be computed to be 3.0
(or less). Similarly, from Y’s value, X's lower bound can be determined. These facts about the
meaning of the GREATER constraint are expressed by weak constraint rules:

(WEAK-RULE-OF name-of-device terminal-computed

‘ I1. Incoherent sources of Knowledge 55 Devices

(<terminal-needed>) expression).

The term "weak” is used to indicate that the rule is not strong enough to constrain the value
facet of the node of the terminal computed.

Expressions are written in the device-rule language. The form of these expressions is
generally one of the following:

(type-of-construction expression)
(type-of-construction (<expression>)).

The types of constructions used by the system are shown in the table "constraint-rule
constructions.” If the type is *<EXPRESSION, then the expression itself can be used "bare”
without the tag "«EXPRESSION". Some constructions require mode expressioﬁs in certain
positions (for exarﬁple. a *CASES construction does a dispatch on the result of evaluating a
mode expression). In these circumstances the tag "tMODE~EXPRESSl.ON" can similarly be
left off. This use of modes was suggested by the representation in EL of transistor (devices) as
operating in different modes (specifically in "active®, "saturated”, and "cutoff” modes).

It is important that all devices in a network be satisfiable. In the initial problem
specification this means that there must exist some assignment of numeric, mode, or
"non-existant” (+NOT-EXIST constructions, see table "constraint rule constructions”) va'lues

such that if any device rule is interpreted, the "new" value and existing values agree.

Macro-devices and Loops

I1. Incoherent sources of Knowledge 5 Devices

Problem: To solve the square root problem I want to use a bisection-search schema. This
schema says “code for finding a zero of some function F looks like this, with blanks that
need to be filled in with code for the function F." The device rules will let me write such a

_ schema, except for specifying the blanks and for finding the function F.

Solution: 1 have an algorithm (Chapter 3) for finding, coding, and packaging up functions given
a specification of the function’s input and output nodes. The output of this algorithm is
called a macro-device.

Subroutines and looping control structures (whether using GOTOs, DO loops, or
recursion) are fundamental to programming. The synthesis system brings a collection of novel
and powerful techniques to bear on the problem of reasoning about looping control structure.
The basic idea is to "package” the computational relationship between two (or more) nodes of a
network into a structure called a macro-device. Having the computation path in this easily
digested form lets the constraint rule interpreter use that computation to build code (and other
facets) involving looping control structures. Manna and Waldinger [M79]) use an alternative
technique first presented in Burstall and Darlington [Bu77). The technique is based on the
simple idea of noting when a subgoal is an instance of the top-level goal.

As an example, the bisection solution to finding square roots is in diagram "BSFZ
- SQRT solution”. The BSFZ device wants to write a code-fragment containing a DO loop to
find the zero of some function (see diagram "BSFZ"). Although the device rule doesn’t really
kirow what the function is, the rule says where to find the function (internally called F): it is the
function that, given a value in terminal X (node NX), will compute a value for terminal FX

(node NFX). The device rule only tells where to find the function; how to find it is a topic of

the next chapter.

ZoOHRAPBOD AW

(make-device-type bsfz e ub 1b zf fx x)
(rule-of bsfz zf (ub 1b e)

== R @ N - s <> L/,

INPUTS

error bound Cﬂi—-—
upper bound

cLB '
lower bound O

PRXEmommwnm

BSFZ

ZF
OUTPUT: zero of function "F"

LB is less than ZF is less than UB

(*do ((bit-1ength (prim-div (prim- ub b) e))
(prim-less (prim- (#do-variable lub) (wdo-variabie 11d)) @)
(»do-variabie L)
(1 (prim-div (prim+ ub 1b) (*constant 2.0))
(prim-div (prim+ (*do-variable Tub) (*do-variabie 11b))
(xconstant 2.0)))
(sgn (prim-sign ((*macro-device f fx) ub)) (*do-varisble sgn))
(lub ub (»cases ((prims
(prim~s$gnl££ﬁmacro-devicc f fx) («do-veriadle I)L)
{~do-variable sgn})
(»true (wdo-variable 1))
{(=faise (*do-variable lub)))))
(17b 1b {*cases {(prim=
(prim-sign ((*macro-device f fx) (#do-variable)
(*do-variable sgn))
(#true (*do-variable 11b))
(=false («do-variable 1)))))))

(r (x) (12))))
(S

where to look for "F"

DIAGRAM '"'BSFZ"

- 57 -

F

qNCTION DEFINITION
|
[
|
!

BLANKS TO FILL IN
WHEN "F" IS FOUND

<
<’

"

IL Incoherent sources of Knowledge 58 Devices

A macro device is specified (within a device rule) by giving a name (meaningful only
for the particular device instance), a list of terminals to be considered as inputs to the macro
device, and a list of terminals considered as out puts:

(macro-device-name (<input-terminal>) (<output-terminal>)).

Occasionally, one needs a macro-device with multi-directional functionality. For
example, one might need a macro-device with two terminals that can compute either terminal
from the other (two directional functionality). For obscure and unimportant reasons, a separate
format is used. The first direction is defined using the form above, and subsequent directions
are defined using the form

((original-name new-name) (<input-terminal>) (<output-terminal>)).
In any such construction some of the original input terminals will necessarily become output
terminals, and vice versa. An example of this construction can be found in the rules for a
 device named SIGM A2, discussed in chapter 4.
The macro-device specification for F in the rule for BSFZ is
(F (X) (FX))

If such a macro-device can be found (as it can in diagram "BSFZ SQRT solution” as shown by
the dotted lines), then the device’s constraint rule can be interpreted. The computational
relationship of the inputs to an output contained in a macro-device can be accessed in the rules
by a construction:

((«MACRO-DEVICE device-name output-terminal-selected) <input-expression>).

I Incoherent sources of Knowledge 59 Devices

This construction is little more than a subroutine call, where the subroutine was written as a
result of findiﬁg the macro-device. The macro-device found for F has an extra input.terminal
for node SQ (the number to find thg square root of). It will turn out that these extra inputs
play several importané roles.

The algorithm for finding what nodes and devices to include in a macro-device is a
major topic of the next chapter. The computation path discovered for a rlnacro-device (both for
constraint rules above and for transform macro Specifications below) is always packaged up in

its own network.

Rule Closures

Problem: Propagating time-costs and value expressions separately causes a technical probler;'w of
synchronization.

Solution: Rule closures are a technical fix for this problem.

When a rule of a particular instance of a device type is used to update some facet of a
node’s value structure, the rule is recorded along with the new value. It is recorded in the form
of a rule closure that cont.ains the rule, the device having that rule, and any macro-devices the
rule used. As with a rule, a rule-closure can be interpreted for various facets. The system
insures that, for example, the TIME-COST facet in a node’s value structure is the cost

corresponding to the code-fragment in the CODE-EXP facet of that node by using the

rule-closure for one facet to get the expression for the other.

I1. Incoherent sources of Knowledge 60 Networks

Networks

Problem: 1 need to talk about collections of nodes and devices for a host of purposes.
Solution: Networks are a bookkeeping structure for such collections.

A network is simply a collection of instances of devices and nodes all connected together.
Certain nodes of a network are singled out as corresponding internally to the network’s
terminals. For example, the following creates a network that serves as one form of the problem
statement for the SQRT example:

{define-network sqgrtnet (sq sqrt erb)

{*c sqrt sqrt sq)

(greater sq {*constant 0.0) («mode-conatant *true))

{greater sqrt (*constent 0.0) (*mode-constant #true))

(error-bound sqrt erb (#*mode-constant #true))

(*c (*constant 10000.0) erb sq))
Another statement (the one for the example to be solved) can be found in diagram "SQRT
Problem Statement.” The statement above has the form

(DEFINE-NETWORK network-name (<terminal-names>) <device-specification>)
where a device-specification has one of the following two forms:
(dev_ice-type <node-reference>)
((device-type <node-reference>) device-name).

The sequence of node-references corresponds to the sequence of terminal names in the

device-type declaraction. Naturally I have written a parser to convert “algebraic forms” into

networks, but the details of this parser are not interesting.

(input) *TRUE

0'0

*TRUE
> .0

O
SQRT
(output)

ERB_| ERROR
(input)

*TRUE

diagram ""SQRT PROBLEM STATEMENT"

gaare-ront eramnel o,

yvHere is Lhe

(ddetur testasart
(ua sart erhb

R

{elefine-netuwork soart

(ke sart sart

mr owe (Xeonstanl
Croomstant

aart ern Do

Q.0 ChEmodale-constent ftrue)d)d
L-comnstant Ftruel)d
Al Hhae)
fmartd)

{gre
(greater sart

(errar-Dour
(oncode-metwark $orroabs Tasept-erd Claa ari)

0.0 Clmocta

P-ooms

- 6L -

IL. Incoherent sources of Knowledge 62 | Networks

Networks are basically a convenience for bookkeeping. For example, the map from
atomic names of devices and nodes to the structures named is recorded on the property of the
network.

The system creates a network whenever a macro-device is found. This vnetwork then
serves as part of the definition of the macro-device. Similarly, when the synthesis system
creates a (LISP) function to compute one network terminal from others, the relevant information
concerning how that function was written is recorded on the defining network.

Within the synthesis effort, there is always a current-network. This is the network
created by the problem statement. It serves as a data base for the synthesis system’s two
deductive procedures. In particular, transform application may add devices and nodes to the

current-network.

Complex Devices

Problem: 1 need to express hierarchies. I can build a network out of devices, but I cannot then
use that network in building a larger network.
Solution: Complex devices are devices with networks that describe their “internal structure.”
The devices discussed thus far have all been "simple” devices. They are given rules,
but they have no internal structure. It is possible to create another kind of device with an
internal structure specified by a network. The system in fact creates these complex devices

whenever it finds a macro-device.

The role of complex devices in the synthesis process is two-fold. First, they are added

I1. Incoherent sources of Knowledge 63 ‘ Networks

to the problem network when it is necessary to copy a computation path. By using complex
devices rather than copying the constituent nodes and devices of the computation path, the
amount by which the network’s size increases can be limited. The second role of complex
devices is as a form of "grey box." One of the first th{ngs the system does when trying to
improve code is to find all the complex devices actually used and expand them by creating
copies of the nodes and devices in the defining network and adding them to the problem
network.

It is also pessible to create a complex device manually, although it is extremely painful

to do so.
TRANSFORMS

Problem: Deduction via value propagation is not sufficient to solve some synthesis problems.
For example, the SQRT problem cannot be solved using propagation alone.
Solution: Transforms change one synthesis problem to a (hopefully) simpler one.

A transformation rule (or transform) is a type of situation/action rule. The “situation”
part of the transform is specified by a pattern network and certain other auxiliary
specifications. The “action” that may follow detecting the specified situation is always the
addition of devices and nodes to the current network. This action is accomplished by

instantiating the instantiation network of the transform.

A transform is defined by a statement of the form

I1. Incoherent sources of Knowledge 64 Transforms

(DEFINE-TRANSFORM name (<common-terminals>) (<pattern-device-spec>)
(<instantiation-device-spec>)
((<add-break-spec>)))

The first pattern device is always considered the "seed” device (see chapter 3). The first
important transform to be used in the SQRT example is the following:
"If A and C are known to be positive, and if A # B = C, then if A > I, then B (which

must be positive because both A and C are) must be less than C. Similarly, if A <,
then C < B." That is, the range of B can be determined by a range test on A.

This transform (see diagram "Add-break in SQRT") is written as follows:

(define-transform muit-sign {(a b c)
;;Pattern network:
({(x¢ a bc))
((greater a (*constant 0.0) ((*mode-constant s#true) pl)) gdl)
“{(greater ¢ {(*constant 0.0) ((*mode-constant #true) p2)) gd2))
silnstantiation network:
((greater (*constant 1.0) a rtestgt)
(greater b c rtestgt))
i.Here are the add-break declarations
((g9dl pl) (gd2 p2)})

The two devices named GDI and GD2 are flagged as add-break devices, to be explained in the
next section. Notice that the node named RTESTGT (which is a mode valued node) could be
compute.d by either of the GREATER devices.
Both the pattern network and the instantiation network have the same terminal names
(A, B, and C). When compared to the network in diagram "SQRT problem statement”, these
terminals match up as shown:
A => SQRT; B => SQRT; C => SQ,

Instantiating the instantiation network results in creating two new devices, both of type

MODIFIED SQRT
PROBLEM

RTESTGT

GD2 is the "ADD~BREAK" B C
device

MULT-SIGN TRANSFORMATION RULE

*true

Add-break device copied

0.0 <Z== and added

(problem network
modified)

*true

SQRT 1.0

I PP2

In applying MULT-SIGN, D1 3 PD1, Pl # PP1, C - SQ, A - SQRT, B -» SQRT
GD2 fails to match. ADD-BREAK restrictions are met, so a new device ND1
is created. Now propagation gives:
P? = *TRUE
Now GD2 matches ND1, P2 4 P?, etc.

DIAGRAM "ADD BREAK IN SQRT"

- 65 -

I Incoherent sources of Knowledge 66 Transforms

GREATER, and creating two new nodes, one for RTESTGT, and the other for a constant
value 1.0. .

Since each device in a network can be interpreted as a predicate, it is possible to prove
each rule correct, in the same way one could prove a theorem about mathematics. Because
iteration, recursion, and data structures (see chapter 4) are packaged inside devices, these issues
can be ignored when proving a transformation rule correct. Naturally, one must also prove that
device rules "do the right thing."

Having proven device rules and transformation rules correct, then assuming the rule
application mechanism performs as advertised, one can conclude that all code synthesized is
correct (it meets the specifications presented to the synthesis system). Better test it anyway --

just because something has been "proven” doesn’t make it true!

Add-Break facility

Problem: Sometimes the system says to itself "I could match this transform to the problem
network if only 1 could find out if 'X?* were true.”
Solution: The Add-break mechanism lets the matcher ask "X?" and take a break while value
propagation tries to find the answer.
Suppose in the SQRT example that instead of declaring that the input (5Q) was
greater than the constant 0.0, I had said it was greater than 1.0 as shown in diagram
"Add-break in SQRT." Then the transform MULT-SIGN above would not have matched --

a problem! The solution (discussed below)' involves adding (under certain circumstances) a copy

of the pattern device that didn't match to the problem network. The pattern device that can be

IL Incoherent sources of Knowledge 67 Transforms

copied is flagged as an "add-break" device (the copy is added du;'ing a "break” in the matching
process).

There are several approaches to this problem, including attaching "arbitrary” predicates
to match nodes or using data-type predicates like POSITIVE, and pushing around devices to
check these predicates. For example,

(define-transform positive-declaration (x y)

((greater x y (*mode-constant *true)))

((POSITIVE y mvl) (POSITIVE x mv2) (IMPLIES mvl mv2)))

This transform (not in the system!) could be used to deduce that if the input SQ is greater than
1.0 then it must be positive.

There is a basic problem underlying this issue having to do with the interaction
between deduction via computational models and deduction via axioms. Under certain
circumstances a relation in an axiom can be replaced by a check with the computational model.

The add-break facility is the synthesis system’s way of allowing the matcher to perform
computational checks by invoking all its capabilities of value propagation (and incidentally all
other deductive mechanisms as well). Certain devices in a pattern network can be flagged as
"add-break” devices. If the matcher cannot find one of these devices, it creates a new device of
the proper type, and any new nodes required (see below), and adds the device and nodes to the
datum network. Then value propagation is attempted for the device added. If propagation
takes place, then the match is retried (this is a very limited type of subgoal -- limited because

success of the goal does not really depend on the success of the subgoal, and the validity of the

I1. Incoherent sources of Knowledge 68 Transforms

subgoal deductions does not depend on assumptions made for the goal). In diagram "Add-break
| in SQRT" propagation does take place, and when the match is retried it succeeds.
There are some restrictions on what devices in a pattern can be flagged as add-break.
" At the time of a match, the nodes on the terminals of the add-break device will fall into three
catagories (these can be determined a priori).

MATCHED: nodes that have been matched in the datum network.

INITIALIZED: unmatched nodes that should be initialized if they are created and

added to the datum network by the add-break facility. |

UNINITIALIZED: unmatched nodes that should not be initialized.
Matching add-break devices is left until last by the matcher. This means that unmatched
pattern nod.es are not connected to pattern devices other than perhaps to othgr add-break devices
in the pattern. The add-break device must have strong constraint rules for all the uninitialized
terminals, and these rules should need only terminals with matched or initialized nodes on them.
The add-break device must not have a strong constraint rule computing matched nodes. If
these restrictions were not satisfied, then possible contradictions would be created as a result of
adding the device.

In principle those pattern devices that could be flagged as add-break devices could be

found and flagged automatically. Currently they must be specified manually. An add-break
specification has the form

(add-break-device-name <uninitialized-node-name>).

I1. Incoherent sources of Knowledge 69 : Transforms

All instances of devices meeting the criteria above have been so flagged (currently only equality

and ordering predicates are affected)

Macro-devices for Transforms

Problem: Usually 1 want to modify 2 problem network by adding devices. But sometimes
simply adding structure will cause "global” contradictions. 1 need to specify a portion of
network to copy, and then make the additions to the copy.

Solution: Macro-device specifications for transforms specify where to find the portion of
network to copy, and where to copy it.

Just as with constraint rules for devices, macro-device specifications can be associated
with transforms. Again, a macro-device is specified by giving a set of terminals to be
considered inputs and a set of output terminals. Just as for a constraint rule, the system creates
a network containing the macro-device’s computation path. But since transform rules can add
devices to the datum network, a transform’s macro-device specification , in addition to
instructions on where to find the macro-device, has instructions telling where to add extra copies
of it. The specification is written:

(DEFINE-TRANSFORM-MACRO transform-name
(name-of-macro-device (<input-terminal>) (<output-terminal>))
<(<instantiation-network-node-names>)>)

The instantiation instructions are simply lists of instantiation-network nodes. A regrettable

punning is always in effect between the (atomic) terminal names of a transform, the pattern

network terminals, the instantiation network terminal names, and the names of the nodes

corresponding to those terminals in the respective networks.

H. Incoherent sources of Knowledge 70 Transforms

Here's an example of a macro-device specification for a transform named
SINGLE-REC-GEN that transforms singly recursive "programs” to "programs” using iteration
on two variables. Refering to diagram "SINGLE-REC-GEN" may help clarify what is going
on, but for the moment don't worry about what the transform "really does.”

(define-transform single-rec-gen (input tst output base-value depth-1imit
recurse-on recurse-return nbtm base-return) _
((recrl depth-1imit tst input output recurse-on recurse-return nbtm base-return)
(eq? input base-value t;t))
((do2 base-value do-variable2 depth-1imit tst noutl nout2 output nin2init)
(eq? base-value input tst)))
{define-transform-macro single-rec-gen
(pop (recurse-on output) (recurse-return)) (base-value nout? do-variable2))
The name of the macro-device (mostly ignored by the system) is POP. It takes two inputs
(specified as the nodes attached to transform terminals RECURSE-ON and OUTPUT) and
produces a single output for the node attached to the transform terminal
RECURSE-RETURN. Altogether POP has three terminals.

The remaining macro-device specifications for SINGLE-REC-GEN are shown below:

(define-transform-macro single-rec-gen

(bumpinv (input) {recurse-on)) (noutl base-value))
;:nbtm 1s the first value “"sppearing” on input satisfying the test. In this
;;example, it wil) always have the value of base-value.
{(define-transform-macro single-rec-gen

{s {nbtm) (base-return)) (base-value nin2init))

The system’s action on a transform rule’s macro device specification is to package the

computation path it discovers in the datum network from the input datum nodes (specified by

INPUT QUTPUT

BASE-VA
| IN 1.0 DEPTH
LMt CiMIT
ST RECL DY 5 RECURSE-RETURN
DOWN BTM SUP
RECURSE > ASE-
ON s RETU
-
BUMPINV o\
>
s
BASE- “VAR.Q In2INTT
 §
IMIT 0 DEPTH LIMIT
oy D02

UT1

BUMPINV

"

DIAGRAM "SINGLE-REC~GEN"

- 71 -

I1. Incoherent sources of Knowledge 72 Transforms

the transform terminals) to the output datum nodes into a new network. This network serves as
the definition of a newly created complex device type: the type of the macro device found.
This find macro device algorithm will be explained in full detail in the next chapter. |

If everything goes well the instantiation network is eventually expanded so that the
datum network will have a new DO2 device (a primitive for iteration on two variables), a
commuted EQ? device, and some additiénal complex devices defined by networks created
when macro-devices were found. One of these results from the POP macro-device
specification. Recall that this device has three terminals. Originally these terminals could have
been connected to nodes @RECURSE-ON, eOUTPUT, and eRECURSE-RETURN:

(POP @RECURSE-ON eOUTPUT eRECURSE-RETURN)
where POP is the type of a complex device found to satisfy the macro-device specification (in
the system this name will always be a gensym). The instantiation instructions say that a new
device of the type of the POP macro-device should be created and attached to the newly
expanded datum network as follows:
(POP @BASE-VALUE eNOUT2 eDO-VARIABLE?)

where @BASE-VALUE is the node in the datum network corresponding to the instantiation
network's node BASE-VALUE. Similarly, @NOUT?2 and ei)O-VARlABLE2 are nodes in
the datum network that were created to correspond to the instantiation network’s nodes NOUT2

and DO-V ARIABLEZ, respectively.

I1. Incoherent sources of Knowledge L& Transforms

Solution to the "Factorial" problem

Before continuing with the sources of knowledge, let's look at a short example showing how
recursive definitions can be transformed into iterative procedures.

What does the SINGLE-REC-GEN transformation above actually do? For
non-tail-recursive functions there are two well known ways to convert recursion to iteration. The
view to take is that going "down,” elements of some set are being generated, coming “up” they
are being accumulated. If the generation order can be reversed, then the function only needs to
come “up”, and this can be done via an iteration involving two variables: one for the current
element; the other for accumulation. This is the transformation performed by
SINGLE-REC-GEN. The other way to convert recursion to iteration is to reverse the order of
accumulation. Some optimizing compilers have special cases of both of these transformatians
built into them.

‘The RECRI device is a primitive for singly recursive control structures. It i1s define
as:

(make-device-type recrl 1imit test in out down up btm sup)
{rule-of recrl out {in limit)
{*recursive ({(invar in))
Timit
{(amacro-device stest test) (xdo-variable invar))
((#macro-device start sup) (*do-variable invar))
{(*macro-device pop up)
(#do-variable invar)
(*do-variable out))
(out ((*macro-device bump in) (*do-variable invar)))))

;icontinued: here are macro-device specs
({stest (in) (test))

11. Incoherent sources of Knowledge 74 Transforms

(bump (down) (in))
(start (btm) { sup))
(pop (down out) (up))))

The DO2 device is a primitive for doubly-indexed iteration:

(make-device-type do2 inl in2 1imit test outl out2 result in2init)
(rule-of do2 result (inl inZinit Vimit)
(*do (V1imit
{(*macro-device tester test) (xdo-variable 1vl) (#do-varisble 1v2))
{*do-variable 1v2)
{1vl inl ({*macro-device bump inl) (*do-variable Ivl) (*do-varisble 1v2)))
{1v2 in2init ((#macro-device bump in2) (+do-variable 1vl)
{*do-variable 1v2)))))
{((tester (inl in2) (test))
(bump (outl out2) (inl in2))))

Any relation between the two iteration variables (network structure between nodes on terminals
INI and IN2) is a loop invariant. The loop invariants may‘not (in this example are not) he
strong enough to constrain IN2's initial value. For this reason the DO2 device has a separat»
terminal for initializing the second iteration variable.

A recursive def;nition of the familiar FACTORIAL function is expressed by the

network FPROB (see diagram "Single-rec-application”):

(define-network fprobl (n fact)
({eq? n ((xconstant 0.0) cOnode) nt) dl)
{(+c n ((*constant 1.0) clnodel) nd) d2)
{(+c nb ((*constant 1.0) clnode2) nsv) d3)
((tp nd fact nv) d4)
({(recrl n nt n fact nd nv nb nsv) d5))

II. Incoherent sources of Knowledge 7 Transforms

Asked to write code for computing FACT from N, the system comes up with:

(DEFUN FACTORIAL (N) (INTERN AL N))
(verun INTERN AL (1N)
(PROG (OUT)
(COND ((= IN 0.0)
(RETURN (PLUS IN 1.0)))
(T (SETQ OUT
(INTERN AL (DIFFERENCE IN 1.0)))
(RETURN (TIMES IN OUT)))))).

In this example, the system’s gensymed atoms have been replaced with italic mnemonic names
This code works, of course (if it weren't true, it wouldn't be published!) but it can be improved.
If it could be converted to an iterative procedure then it might run a little faster because the
code could avoid using the (Lisp) stack.

Tail-recursive programs have the property that the input arguments are not used after
the program’s single recursive call. The tail-recursive to iterative transformation algorithm
should be part of every compiler’s "bag of tricks." The factorial program above is not
tail-recursive, so if one wants to convert it to an iterative form, one needs a more complex
transformation. The system'’s response to a request to improve the factorial function:

(IMPROVE-FUNCTION 'FACTORIAL)
is to commute all the +C and +C devices. The system’s library also contains other
transformations that apply, but they are all rejected in favor of using the SINGLE-R EC-GEN

transformation. The diagram "SINGLE-REC-application” shows what happens when this

tranform is applied to the network FPROB. Solid boxes with other devices inside are complex

I1. Incoherent sources of Knowledge - 7% _ Transforms

devices. They result from the transform's macro-device specifications, and in the code
sometimes show up as subroutine calls (actually function applications). Dashed boxes are
macro-devices found by constraint rule macro-device specifications. They also show up in the
code as system-written functions.

The improved code (the system looks at the time cost to see if improvement takes place)
is shown below. It is slightly faster, and much less readable, than the recursive FACTORIAL.
(DEFUN FACTORIAL (N)

(PrROG (TEMP)

(RETURN
(00 ({LV1 0.0
(PrOG (NEW-LV 1)
(sETQ NEW-LVI (PLys Lv1 1.0))
(seTQ TEMP (TiMes wv2 NEW-LV 1))
{RETURN NEW-LV 1))
(Lvz (PLus 1.0 0.0) TEMPY)
((= LVL N) Lv2)))))
Discussion of the multi-return processing (responsible for TEMP directly, and NEW-LV1
indirectly) will be postponed. The system failed to perform “constant foldving" because the
addition was hidden inside a system-created macro-device. In fact, normally the system wil!
perform “constant folding” as a post-processing step.

The diagram "SINGLE-REC-application” also illustrates finding and using so-cailed

constant terminals. A macro-device specification (both constraint rule and transformation rule

specifications) says certain nodes (refered to by terminal names) are to be inputs. The system

may decide that in addition to those nodes, other nodes are also required and (hard to

ronstan

L.0
terminal®

r""",

CONODE|
0.0{

///’———’———T;EEST

TIMES

RECR1
TST
S
-" constant
P terminal

FPROB

Tﬁlimit

PLUS

A

_

PLUS
' 1.0
, constant term.
8 e e _ —

ouf?2 L result

t
k\~‘——-€>FACT
\

pu—

-— e

LT

———

DIAGRAM '"SINGLE-REC-APPLICATION"

- 77 -

AFTER IMPROVEMENT

I Incoherent sources of Knowledge 78 Transforms

determine) safe to use. These are added to the macro-device’s definition (a network) as constant
terminals -- so called because they are guaranteed to be "constant” with respect to the specif 1ed
input/output'computation path. The free test is used to determine whether this is true. It is
diséussed further in the next section.

If one of the outputs of a macro-device is itself free, then with regard to that output the
macro is a constant macro-device. The synthesis system knows about these sorts of things. This
means that in the original FPROB network, the device named D3 could be eliminated and the
node BASE-RETURN could be initiaiized as a constant 1.0 and everything would work
more-or-less the same (this time the constant would be folded in because the addition waould
never be refered to). In initially writing code, the RECR!'s START macro-device would be a

constant macro-device.

The Free-With-Respect-To Test

Problem: In order to show Newton’s method converges, I need to take symbolic derivatives. 1|
could write a transformation rule for Derivative[G(x) + c] = Derivative{G(x)} provided 1
could tell the matcher to make sure “c" does not depend on "x.”

Solution: 1 have an algorithm (chapter 3) for determining answers to questions like that. The
matcher uses “free-with-respect-to” specifications to invoke this algorithm.

In the previous section it was mentioned that with respect to a given computation path
the system may need to decide whether a certain node is free or not. Examples are pointed cut

in diagram "SINGLE-REC-application.” The idea behind the free test is that if some nodes

are inputs, and other nodes are needed as outputs, then sometimes the computation cannot take

IL Incoherent sources of Knowledge 7 Free-with-respect -to

place unless certain (free) nodes’ values are also used, and these nodes cannot be determined on
the basis of only the input nodes. |

The system uses a conservative algorithm to determine if a node is free with respect to
a specified set of inputs and outputs. This algorithm, which can err by claiming a ncde it not
free when it really is, will be discussed in the next chapter. For now, suppose that such an
algorithm exists.

If F(x) = Ax then the derivative of "F(x)" with respect to "x" is the constant "A" The
condition one wishes to impose on this "transform” is that- A be free with respect to the
computation path from "x" to "F(x)"

Similarly, if

F(Y) = G(y) - NFY

and if G(y) depends on Y but NFY does not, then the derivative of F(y) with respect to "y" 1t
simply the derivative of G(y) with respect to "y". Again, one wants to insure that NFY is fres
with respect to the computation path from “y" to F(y). The synthesis system’s transform and
additional information to express this fact is: |
;:The constant is in node NFY,
(define-transform d-minus-constant (x fx y fy nfy rfy er)

((deriv x fx y rfy er) (+c rfy nfy ty))

((deriv x fx y fy er)))
(define-free-wrt d-minus-constant nfy (y) {rfy))

The DERIV device computes its second terminal by evaluating the derivative of the function

computing its fourth argument from the third at its first argument (to within some error bound

I1. Incoherent sources of Knowledge 80 Free-with-respect-to

supplied by its fifth argument). The syntax of the "free with respect to" declaration is:

(DEFINE-FREE-WRT transform-name terminal-to—be-checked
(<input-terminal>) (<output-terminal>))

where terminals are for the transform.

VARIABLE-NODES

‘Transforms are essentially a kind of patternfaction rule. The additional specifications
concerning finding macro-devices and test for Free-;NRT only refer to nodes already matchecl.
Furthermore, a match sequence can be written (see chapter 3) so that at every point in the
matching process all nodes already matched can be reached from a device matched earlier.
This section introduces other mechanisms for matching nodes. The synthesis system has twe
kinds of what might be called "variable node” matching processes. Both have the property that

if a match can be found for the "variable node,” then that match is unique. This a#mds all

potential problems with combinatorial blowup involving “trying all nodes.”

K-variable node specifications

Problem: If 1 can write code for G’l(x), then I can use a bisection search to write code for G(x).

Suppose | say H(x)2 = x>. Neither the code for H(x) nor for H"(x) are self-evident, but
the problem of writing H(x) is the same (almost) as writing square-root.

Solution: 1 have an algorithm that can discover that G"(H(x)) = H(x)z. The matcher uses
K-variable node specifications to invoke this algorithm.

In the course of solving the SQRT problem the system uses a transformation rule

IL. Incoherent sources of Knowledge 8t Variable nodes

SEARCH-INVERSE stating approximately

"if you want to find a value FND between two known values U and L to within some
specified error bound E and you happen to know a way of computing some known
value OT on the basis of FND, then a new function can be constructed that has
FND for a zero. Furthermore, a bisection search can be used on this new function to
find FND."

The rule goes on to specify how this new function can be constructed. See diagrams
"Search-inverse” and "SQRT ready for Search-inverse.”

The difficulty in stating this transform concerns getting one's hands on the node the
transform wants to call "OT." The pattern network, macro-device specification, and
instantiation network are defined as shown:

;:The meaning of (BTWN a b c pred) is that pred is true iff a ¢ b C ¢c.
::The meaning of (ERROR-BOUND x e pred) is
i: that x has an asbsolute error less than £ 4f pred is true.
(define-transform search-inverse (u) ot fnde)

iiPattern network:

({btwn 1 fnd u {smode-constant #true))

(error-bound fnd e (tmodcfconstont *true)))

;sInstantiation network:

((bsfz e u) fnd fxnode xnode)

(+c fxnode ot xint)})
(define-transform-macro search-inverse:(mac (fnd) (ot)) (xnoﬂo xint))
The macro-device could be found if the system knew which node OT were, but since it isn't
mentioned in the pattern network some further specification will be needed.

The situation is as follows:

MAC's input node (FND) has been found (eg. matcﬁed) but it doesn’t have a value
yet. MAC's output OT node has not been found, but the intent is that it should have
2 known value.

7IRUE
(>)
O————| ERROR-BOUND __,__(l——ﬁ 00T

OT is a K-variable

XNOD

v — BSFZ
INT

L.——————-
%

PLUS

FXNODE
FND

DIAGRAM '"'SEARCH-INVERSE"

- 82 -

IL Incoherent sources of Knowledge 83 Variable norles

In this kind of situation OT is a K-variable node (the "K" is for "Known", to be contrasted:
with a U-variable ("U" for "Unknown") below). These variables are specified by: .

(DEFINE-K-VARIABLE-NODE transform-name
(k-variable-terminal (<assume-known-terminal>)))

The "assume-known-terminals” must all be unknown (meaning that the nodes connected must
not have NV ALUE facets) for the specification to be met. The K-variable specification for the
SEARCH-INVERSE transform is shown below:

(define-k-variable-node search-inverse {ot (fnd)))
The result of applying transform SEARCH-INVERSE is shown in diagram "BSFZ SQRT
Solution." This, by the way, completes the problem of writing the initial version of the cade for

the SQRT problem.

U-variable node specifications

Problem: In chapter 4, during the solution of the Bernoulli problem, a situation arises in which a
very powerful solution technique can be used. This technique essentially solves a
polynomial reversion problem -- but it needs to know what to solve the problem for.

Solution: None of the previous specifications really works, but there is an algorithm (chapter 2)
that can find the right node to solve for. The U-variable specification is used by the
matcher to invoke this algorithm.

The previous section told about one kind of "variable" node in a transform. This section 15
about another kind of variable: the U-variable. Glancing at diagram "variable nnde
comparison” shows that in a sense U-variables and K-variables are symetric cases.

The.idea is to find a potential computation path from some "inputs” to some "outputs”

sl sidge N {8 sgbelwon A 1o 297002 inetedoon] 11

bavrges et of Tawend vl o AT w45 sbon eldsitev- 8 2 TO noisuniz 0 boid 2y al

I beitioege 918 2aidid

SPECIFIED
(ORRRNONNE Y1103 29P00 84l }ﬁr‘t };;s’ssm) mvmim »d s rUm 3imimai~nwnn3 smuyzzs” o T

sabi e nedezhioegs sidawe- A T S35 54 o8 mﬁg};‘ﬁ,mz st 0l (zh:s‘% JUJAVH st:i on
wetad war 2i molensy 3293 VIAL-HOAATL
w{bm) 1) revni-Azes: shon-sldaisy-H-omilab)
A N 128" mavgeih of awedz a 3%5@3“?%{-%%3?&36 sme'izf-:m gniviays o Hfuey sd T
ol b cdd i neiev Bk end gettiie To muidong dl zai-nqﬂm .z&w sy yd udT "nouulod

nidoig T AOE et

) sher sidvimme-\d

7 , & e

™ oeairs OISUNE & 8 il o T aﬁ!gﬁtwbmmﬁ et
viarniseey supindael 2ud T bsw o ﬂm wpmd:m aoiuioz GENEINGRRE)Y 12
) maldeg ads evkzz ot 1edw wond of shevn o fud — nwddory noizrevey Ieimaayiog

O b AIegIE 08 2 9vadd Jud advow giEm 2n0itsailizege aueiverg o) To anoM cnmnsle
chrogd Lowe n nonentosge eideitsv-U adT 10l svler of shout gt edl b} ned iesl)

R araoaitisgls 2y sdovai of ednem
DIAGRAM "VARIABLE NODE COMPARESOWHH3ls 7is oy o1 w:i2ie

gt ua T mnlaasy § 4 shon Teidsiv” Yo baid 0. mods blot otz ausivarg sl

O

Gfiiy margsib 18 geonsld sidensv-U sds caidsivsy Yo bued 1edions suods

iy g8 2alenag A bus ssldunsv-U wose & o teds zwork “noziisgmod

"
.t
g
[t

T w01 Tanpan” ez men? disg solsugmoo {siseg £ bl ol o sebiad T

IL. Incoherent sources of Knowledge 85 _ Variable nodes

that is being blocked because some node is unknown. The blocking node is the U-variable. An
example of how the need for such a pattern-matching capability could arise, and how the
U-variable meets this need can be found in the diagram "Transform TPS-MULT-U" in
chapter 4.

The specification of a U-variable has the form

(DEFINE-U-VARIABLE-NODE transform-name
(U-variable-terminal (<input-terminal>) (<output-terminal>)))

The nodes matched by the transform’s terminals (actually nodes corresponding to the specifuerl
terminals) in the output terminal list must be currently unknown. If a U-variable node is found,
- it-will also be currently unknown and not one of the inputs or outputs.

The U-variable node may in fact depend (only) on the input terminals, but at the time
the transform is being applied the nature of this dependency will not be known. It will be the
case that the outputs can be computed if the inputs and the U-variable node are known, but not

if just the inputs are known.

DOUBLETS

All sources of knowledge have now been presented. This section explains a transformation

applied to transformation rules.

Suppose that one knows

I1. Incoherent sources of Knowledge 86 Doublets

X=A+B; Y=A+B
What enables one to deduce that X = Y? Furthermore, is it just that the algebraic expressions
for X and Y are the same, or is the relationship more intimate?
To answer this question without bias, the problem must be stated without an imphcit
éomputation direction. In terms of constraints, suppose for an arbitrafy constraint FOO:
(FOO X AB) ; (FOOY AB)
Under what circumstances can one conclude that X and Y are identically the same node?
The two FOO devices mentioned above form a peculiar configuration. If one were to
call the constraint "+C" rather than “FOO", then one could record the following observations.
1. X can be uniquely computed on the basis of A and B.
© 2. Y can be unigquely computed on the ba;is of A and B.
2. The relation X has to A and B is the same as the refation Y has to A and B.
From the three facts above (known to be true for +C), one can conclude that X and Y are
identically tfve same node. In the event that A or B (or both) are not in the number systzm, then
the number system can be extended (for the purposes here) so that facts | and 2 rernain true
and the values do exist (a tNOT-EXIST form could be used to form such an extension).
Then clearly X and Y are identical. Therefore one might as well assume they are identical in
the unextended system (though they might be vacuously identical in that neither can receive a
numeric value).

The above is a special case of the doublet theorem. This theorem is invoked by the

I1. Incoherent sources of Knowledge 87 Doublets

system whenever a device terminal is attached to a node. Stated in terms of device rules:
Doublet T heorem: If a pair of devices of the same type are found for which a rule
"exists whose terminal-needed list agrees (ie., each terminal in the needed-hst goes ti
the same node in each device), then the terminal-computed nodes (the nodes at the
respective terminals) are identical and can be merged.
There are a few additional conditions that need to be imposed. If the devices in question use
macro-devices, then these macro-devices need to be computationally equivalent. Currently the
system avoids the question of computational equivalence by simply not looking at device rules
using macro-devices. Some device rules are “special case” rules. These are also detected and
ignored when applying the doublet theorem.
Devices can be merged if they argee as to type, and all terminals are identical.
For an example of the way the doublet theorem gets used, consider the network for the
pair of non-linear equations (see diagram "Doublet Example”):
(R1+R2)/(RI+R2)= A
R2/(R1+R2)=B
This network would initially contain four devices:
((+scr1 r2 ph dl)
((+c rl 12 pr) d2)
((xc pl b r2) d3)
((+c pl a pr) d4))
To solve this pair of non-linear equations for Rl given values for A and B, the system first

commutes the four devices DI through D4. It then rather blindly tries to commute the

commuted devices, but each time the new device is merged with one of the originals. So after

0RO 0 A

PROBLEM

NETWORK PR IMES
D2
B
— R2
PL D5
S
X
MULT-ASSOC
= Y W
Y
Q
R1 New devices added: D6, D7
EIMES A
D6 R
- FOO
Doublet gives
=
FOO = B
| TIMES R2 D6
PL D7
B
TIMES
g
D5

DIAGRAM "DOUBLET EXAMPLE"

- 88 -

I1. Incoherent sources of Knowledge 89 Doublets

the initial spat of commutations, no new ones really take place. One of the commuted devices
comes from device D3: ‘
(¢ b pl r2) db).
At this point, the system finds 30. new things to do. One of them is to apply the

transform MULT-ASSOC3:

.

kdefine-transform mutt-assoc3 (s y q x)

((*c s y 2) (*c q x 2))

({(*c s w x) (*c wqy)))
with the correspondence

X->A; Q-> PI; Y->R2;S->R1.
The transform adds two new devices to the network:
((+c r1 foo a) d6) ((xc foo pl r2) d7)

Now notice that devices D7 and D5 form a doublet. Therefore nodes FOO and B are

identical. This means that device D6 is really

((+¢ rl b a) d6)
and simple propagation will give node Rl the symbolic expression A/B. Devices D5 and D7 are
duplicates. Duplicates are automatically detected and merged. The code written by the system
is shown below:
(DEFUN SYS1 (A B)
(COND ((= B 0.0)
(COND ((= A 0.0) (ERROR))

(T (ERROR))))
(T (QUOTIENT A B)))).

I1. Incoherent sources of Knowledge %0 Doublets

It is amusing that the system distinguishes between the error of trying to compute 0/0 (which

could be any value, after all), and division by 0.

Doublets and Variations of Transforms

The previous section had an example involving the transform named MULT-ASSOC3
Where did this come from? This transform is just the familiar multiplicative axiom of
associativity:
Associativity: {{(asb)sc) = (ax(bxc))
Assocd: ((s+y)Ix) = (yl(x/s))
There is an automatic way to obtain all such variants of an axiom. The operation (an cperation
on transforms) involves imagining what would happen if a doublet were added to the datum
network, and then the transform were applied, and finally after the transform were applied a
newly created doublet were removed. Although this sounds like something that should be part
of the matching process, it really is a pre-processor operation on transforms. Diagram
"Derivation using Doﬁblets" shows the steps involved.
Although this process could be automated, the current system expects it to be done by

hand. All rules have been so permuted.

Solution to SQRT Problem

TIMES
q)
s
((r*q)*s) = t = (r*(q*s))
ADD & 10 LEFT PART, AND ADD o TO RIGHT
- Y
TIMES TIMES | vEs t
(o}
q
a DL

LEFT - DOUBLET + B == RIGHT - DOUBLET + a

DL

((s*y)/x) = r = (y/(x/s))

DIAGRAM '"DERIVATION USING DOUBLETS"

- 91 -

IL. Incoherent sources of Knowledge 92 Solution to SQRT Problem

This section ties together the sources of knowledge presented above.

In the preceeding sections the original problem network and several required transforms
have been given for the problem of finding square roots. Diagram "SQRT ready for
SEARCH-INVERSE" shows the complete network after transforms MULT-SIGN,
GT-TRANS, and BTWN-DEDUCE have been applied in that sequence. The later two
transforms are shown in table "Order Transformations.” The bisection solution makes use of a
MPX (for "multiplex") device. This is used to select one of two values depending on whether a
predicate is true or false. Its clefinition is included in table "Order Transformations.”

The bisection code is obtained by propagation. from the portion of the solution network
shown in diagram "BSFZ SQRT solution." The code generated is shown below

(DEFUN SQRT-ERB (SQ ERB)
{pro6 (DIR)
(SETQ DIR (LESSP SQ 1.0))
(RETURN (DO ((L (QUOTIENT (PLUS {COND (DIR 1.0)
(T 5Q))
(cono (DIR sq)
(T 10))
2.0))
- (SGN (SIGNUM ((LAMBOA (TEMP) (DIFFERENCE (TIMéS TEMP TEMP)
‘ 5Q))
(cono (DIR 1.0)
(15Q)))
(Lus (coNp (DIR 1.0) (T $Q)))
(LL (cono (DIR sQ) (T 1.0))))
((LESSP (DIFFERENCE LUB LLB) ERB) L)
(SETQ L (QUOTIENT (PLUS LUB LLB) 2.0)
SGN SGN
LUB (COND ((= (SIGNUM {DIFFERENCE (TIMES L L) SQ)) SGN) L) (T LuB))
LLB (COND ((= (SIGNUM (DIFFERENCE (TIMES L L) SQ)) SG6N) LLB) (T L))

(nodes with the same name
are the same)

ERB

ERROR-BO

*TRUE

ADDED BY MULT-SIGN

ADDED BY GT-TRANS

ORIGINAL
PROBLEM.

INPUTS: SQ, ERB

OUTPUT: SQRT

P? is now computable

—0— —O—

LB

‘—-*TRUE ‘——\\

BTWN UB

SQRT

5Q

SEARCH-INVERSE MATCHES WITH

E » ERB, FND #SQRT, OT - SQ,
L LB, U +UB

DIAGRAM "SQRT READY FOR SEARCH-INVERSE"

- 93 -

ERB o—-b——‘-

u

O | BSFZ
SQRT
(outoyt
TIMES
1.
SQ
(input)
slc
tv
MPX v
tv
MPX
fv

I1f 1 is greater than sq, then 1b = sq, ub = 1.

DIAGRAM "BSFZ SQRT SOLUTION"

- 94 -

IL. Incoherent sources of Knowledge 95 Solution to SQRT Problem

There are several ways the code above could be improved. Some of them, like getting rid of
the repeated test to see which way to update the bounds, could easily be accomplished by
rewriting the BSFZ rule. Others, like eliminating the tests in the initialization.of L, would

involve making BSFZ a complex device, and then distributing addition over multiplexing.

Newton’s method -- the basic device

The system can be asked to try improving the SQRT-ERB function it wrote:
(IMPROVE-FUNCTION 'SQRT-ERB).
This will cause the system to eventually write code using Newton's method. Newton’s method
finds a zero of a function F(x), froni successive approximations X(0), X(1), etc, as shown:
X(0) = (UB + LB)/2
X(n+1) = X(n) - F(X(n)I/F'(X(n)).

The device with a "canned” Newton’s method is NEWTCN-FZ defined in table "Newton's
Method." Note that its only device rule is a special case rule. The device will find a zero only
if CONV? is known to be true.

Currently, CONV? must receive a symbolic constant *TRUE in order for
NEWTON-FZ’s rule to be used. This is a limitation, but it can be overcome. The idea is to
write code with a computational convergence test and a branch to Newton's method or bisection
dépending on the outcome. The system has a partially installed facility for combining a special

case with another expression so that a "run-time” check could be used for convergence, but that

I Incoherent sources of Knowledge 9% Solution to SQRT Problem

will not be needed. An even more interesting idea stems from the observation that for some
problems Newton's method does not converge in the initial region. Then one might use bisection
until a region is found in which Newton’s method does converge. The problem‘ of synthesizing
code incorporating that scheme has not been investigated.
The number of iterations is claimed to be
logg (logg (number of intervals of size E between bounds)).

It turns out that if Newton’s method converges, then within its region of convergence there is a
sub-region in which. Newton's method, converges quadratically, doubling the number of bits of
~ precision per itération.

The NEWTON-ZF device rule uses a macro-device with two outputs specified, so one

would expect the resulting code to show evidence of the multi-return facility’s operation.

Newton’s Method -- proving convergence

There are a number of tests that can be used to tell if Newton’s method converges. The
system uses the one mentioned in chapter I, embedded in the transformation narpv:d
TRY-NEWTON shown in diagram “Transform TRY-NEWTON" and also in table
"Newton’s Method."

The AND-C device simply performs a logical conjunction. This transform uses two
other devices that have not been seen before: DERIV and ZERO-FREE. These are defined

in table "Operator-like Devices.”

U o— BSFZ
L Ol +—O rx
L FND
lL CVTEST1

CVTEST \‘A ND-C geyEsTp

conv?
N z
EO—- = v— E
X R
W
T 0
C>"‘—H 0 " ¢
U F
N FX F
| L = R
E
F . F
O 7 di E
- l
zf
out-eval
FND \\ |
U R E
0 R
I E ™™ I
F \Y
L= R DDNFX2 DFNX
E
E
out-eval

DIAGRAM "TRANSFORM TRY-NEWTON"

- 97 -

I1. Incoherent sources of Knowledge 98 Solution to SQRT Problem

The rule for ZERO-FREE Is rather interesting because it asks explicitly for the upper
and/or lower bound of one of its terminals. The weak rules are used to move bounds around.
As soon as those bounds can'be propagated, the two convergence test prédicates can be assigned
values. The DERIV device is willing to do a simple {but not particularly accurate) numericat
differentiation, but that will not be required for this problem.

Three transforms are used to perform symbolic differentiation in this prdblem. In
order of application they are: D-MINUS-CONSTANT, D-SQUARE-SPECIAL, Nand
D-CONST-MULT. They are given in table "Derivative Transforms." Note in particular the
way Free-WRT specifications are used.

The Newton’s method solution is produced after these transforms are applied. The
path through which bounds information is propagated is shown in "Newton SQRT Solution.”
The code produced is shown below. The two loop variables are CRCT, the “correction term”,
and RSLT, the most recent approximation. ABS is a standard LISP function that takes the

absolute value of its argument. Notice again the multi-return facility operation.

e—=CVTEST1 = *TRUE
*T
AND C ——=CUYTEST2 = *TRUE
2.0
N
E
from D-SQUARE-
(inP“t)E ¥ TIMES SPECTAL
i ——— O
U N
|
—_— F
L z
SQRT PLUS
(output) . (input) D-MINUS-CONSTANT
—O SQ) considered SQ as
. iVTESTl '
TRUE a constant.
Z
U E
R [n— X
? Lower-~bound = L
L a F
R X
E o Lower-bound = 2L
E (lower bound of 2L is 0.0)
*TRUE ’ CVTEST2
U 7 NX2 Lower bound = L
E
R
0
! 2.0
F — From D-Constant-Mult
L = R via
E Doublet deletion
E

DIAGRAM "NEWTON SQRT SOLUTION"

- 99 -

I1. Incoherent sources of Knowledge 100 Solution to SQRT Problem

(DEFUN SQRT-ERB (SQ ERB)
(PrOG (MR-TEMP DIR)
(SETQ DIR (LESSP 50 1.0))
(RETURN (DO ((CRCT (DIFFERENCE (COND (DIR 1.0)
(T s0))
(cono (DIR sq)
(T1.0))))
{RSLY {QUOTIENT (PLUS (coNb (DIR sQ)
(1 1.0))
(cono (DIR 1.0)
(T s50)))
2.0)))
((LESSP {ABS CRCT) ERB) RSLT)
(SETQ CRCT (QUOTIENT (PROG NIL
(SETQ MR-TEMP (TIMES 2.0 RSLT))
(RETURN (DIFFERENCE (TIMES RSLT RSLT)
sQ)))
MR-TEMP)
RSLT' (DIFFERENCE RSLT CRCT))))))

This code is fairly efficient. The multi-return temporary variable MR-TEMP didnt make
very much difference because the two returns didn't use any intermediate results in common.

Again, there is a need to distribute addition and subtraction over the multiplexing.
Summary

The principle structural elements in this report’s theory of program syvnthesis have bren
described. This section brings them all together. .

Nodes serve as a repository for various kinds of information (facets) about values. A

node’s value structure is an association between facets and expressions. The various facets and

I1. Incoherent sources of Knowledge 101 ‘Summary

meanings of the associated expressions can be found in table "Facets”. Two distinct nodes can
be identical in‘ any or all of their facets, and still represent distinct values.

Devices are the basic relational and computational element for the system. A device
type is defined by a device name, and a list of the device's terminal names. In order for a
device to be properly connected in a network, each device terminal must be attached to some
node. Each device type may have constraint rules associated with it. There are two classes of
constraint rule: strong constrant rules that can compute values, and weak constraint rules that
cannot compute values but can still compute other facets (like bounds).

Constraint rules are written in a special rule language in which only one rule is needed
to express a "computation.” The meaning of this rule is changed from facet to facet by the
interpreter. The structure of the interpreter is two-tiered. One tier is structural (expressions,
conditionals, iteration, etc.) and the other is operational (operations like addition and
multiplication). Each operation has a handler for each facet. While new structural expressions
are hard to add, a new operation is easy: simply write a handler for each facet.

In addition to refering to values at terminals, constraint rules may also refer to
computations between terminals via a macro-device facility. Besides allow‘ing the description of
iterative and recursive devices, the macro-device facility is used in describing devices for doing
things like summation and bisection searches (see diagram "BSFZ").

A collection of devices and their connecting nodes forms a network. Networks have

three major uses in the system. First, LISP programs are only written for networks. Second,

I1. Incoherent sources of Knowledge 102 Summary

“transformation rules are written by saying that if one network (the match pattern) is present as
a subnetwork (of the datum network), then another network (the instantiation pattern) may be
added (by copying) t‘o the datum network. The third use of networks is as an implementation of
the notion of a grey box. Any device (usually considered a "black box" by the system) may have
associated with it a defining network that reveals its internal structure.

Like a device, a network has ferminals. Associated with each network terminal is a
node inside the network. A network may have encoded-functions associated with it for
computing one terminal (the output of the function) from others (the inputs). These are usually
written by the system. Unlike device rules, networks have a multi-return facility; some
encoded-functions set up registers to be used by other encoded-functions (the LISP machine
multiple-value return is another way to accomplish the same thing). Code resulting from the
multi-return facility’s operation has an appearance that will annoy structured programmers.

Transforms are objects expressing transformation rules. Fundamentally, a transform
claims that the exisfence of the pattern network as a subnetwork of the datum network implies

~ that the instantiation network should also be a subnetwork of the datum network. The result pf

successfully applying a transform is to copy the instantiation network into the datum network.

Five kinds of suplemental information may be associated with a transform:

. ADD-BREAK flags

2. U-variables

3. K-variables

4. Macro-devices (both pattern and instantiation)
5. "Independence” thecks

II. Incoherent sources of Knowledge 103 Summary

Certain devices in the patfern network may be flagged by an add-break property saying "if this
- device isn't present, create these nodes (some with initial values) and add a device of the proper
type.” In addition to nodes in the pattern ﬁetwork, certain auxiliary nodes may also be matched
with ﬁodes in the datum. There are two kinds of these variable-nodes, with correspondingly
different selection algorithms. U-variables are matched with nodes in the datum network whose
values are currently unknown. K-variables are matched with nodes whose values are known.
Finally, macro-devices can be found and copied as a result of applying a transform, and can be
used in determining if some nodes are "independent” of others.

This completes the brief (but complete) list of the system's sources of knowledge.
Currently the system needs to be told certain other things having to do with controlling
transform application, but the next chapter will explain how this information could be

automatically derived by a pre-processor.

IL. Incoherent sources of Knowledge 104 Tables for Chapter I

TABLE 'FACETS’
Facet-name type of exp. meaning
NVALUE symbolic: description of the value
CODE -EXP . code-fragment: If executed in proper environment this

fragment would compute the numerical value for this node

TIME-COST symbolic: Time executing the code-fragment would take

{including time-cost of arguments)

NODE -USED special: Nodes whose value was used in obtaining this

node's value. Divided into

definitely-used and possibly-used

parts.
LBOUND symbolic: Lower bound for value
UBOUND symbolic: Upper boind for value
ERROR-BOUND symboljc: Maximum amount by which "true value

may differ from “computed velue.”
TYPICAL-VALUE numeric: Example of a typical value this node might have.

{not implemented)

These facets are relative to a particular set of inputs

I1. Incoherent sources of Knowledge 105 Tables for Chapter 11

TABLE 'CONSTRAINT-RULE CONSTRUCTIONS'

(*CONSTANT numeric-value) This is obvious, the TIME-COST interpretation is
(«CONSTANT 00). The numeric value must be a floating-point number.

(*MODE-CONSTANT mode-value) Modes are things like #TRUE and «FALSE. The
distinction between modes and numbers is used by several algorithms. The notion of a
“mode” was suggested by EL’s transistor model.

(+#EXPRESSION expression) The expression is interpreted by refering to the handlers of the
function names for each facet.

(*MODE-EXPRESSION expression) Just like sSEXPRESSION except a mode value (either a
constant or. an expression) is returrned.

(*VARIABLE atom) This symbol is passed around as a value. The TIME-COST
interpretation is (#\CONSTANT 00). Generally, an atom in an argument position to a
function will mean the device's terminal.

(«+NOT-EXIST atom) This is something like a «VARIABLE except it is not a value. The
atom is an indication of why the value doesn’t exist. For example, division by zero will
generate one of these symbolically. This is not used very often.

(*ANOMALOQUS atom) Similar to a non-existant value. The difference is illustrated by
considering what it would mean for a node to be assigned both an *+EXPRESSION and a
*NOT-EXIST construction (a contradiction!), as compared to being assigned both an
*EXPRESSION and an xANOMALOUS construction (not a contradiction). '

(*CASES (mode-expression <(mode-symbol expression)>)) The interpretation of this is that the
result of evaluating the mode-expression is a mode-symbol (like sTRUE or +FALSE).
The value represented by a *xCASES is then the value represented by the expression
corresponding to this mode-symbol. Naturally if the symbol is not known because the
mode-expression resulted in a *MODE-EXPRESSION construction, then a +CASES
construction results. Some *CASES expressions are said to be special-cases because the
expression for one of the listed mode-symbols is NIL.

I1. Incoherent sources of Knowledge 106 Tables for Chapter 11

((¢(MACRO-DEVICE device-name terminal-selected) <expression>) This construction 15
described in the text. The significance of the sequence of express:ons is that they
correspond to the sequence of device terminals declared as “inputs” to the macro-device.
The terminal-selected above is one of the terminals declared as an output terminal in the
macro-device specification. ’

(#EXTERNAL-NODE node) This should never occur in a rule. It is used by the system to
process extra terminals in macro-devices.

(«DO (limit test result <(variable initial iteration)>)) where limit is an expression whose value is
an upper bound on the number of times the variables will need to be updated before test
becomes sTRUE. Test is a mode-expression. Variables are do-variables, and may be
used in the expressions for result and iteration. The initial expressions may not refer to
do-variables. The interpretation is quite similar to the LISP DO construction, except that
there is no provision for anything “inside” the loop other than incrementing do-variables.
All initializations are assumed to take place "in parallel,” but iterations take place
sequentially. By clever use of multi-return macro-devices, any combination of
parallel/sequential iterative assignments can be obtained.

(tDO -VARIABLE atom) This can only occur inside a +DO or a +RECURSIVE construction,
and refers to the most recent value assigned to the variable named. There is a problem if
an expression like this is used in a TIME-COST facet. The NVALUE interpretation of
this form is the same *DO-V ARIABLE form. Time-cost interpretation is 0.0. Although
not completely satisfactory, these forms are replaced by the "limit’s" NVALUE
interpretation whenever they occur in a time-cost expression (see chapter 4 for brief
discussion).

((RECURSIVE ((<(input-variable expression)>) limit test start-up upward <(variahle
<expression>)>)) This is the most complex construction.The idea is that if test is true, then
start-up is returned. Otherwise recursive calls are used to set all the variables
(simultaneously), and then upward is used to obtain the value to return. Limit is the limit
to the depth of the recursion. Each entry (variable <expression>) is a recursive call to the
code described by the +RECURSIVE construct. The number of these entries is the order
of the recursion. Input-variables and variables are atoms, and are refered to within the
limit, test, start-up, upward, and expression as (+*DO-VARIABLE atom). The
expressions for the input-variables are the values those input variables should have at the
outermost call. . The start-up and expressions cannot use the atoms in the variable slot.

1L Incoherent sources of Knowledge 107 Tables for Chapter 11

TABLE "KNOWLEDGE SOURCES SUMMARY"
(MAKE-DEVICE name-of-device <name-of-terminal>)

(RULE-OF name-of-device terminal-computed

(<terminal-needed>) expression [(<macro—device-speciﬁcation>)]).
(WEAK-RULE-OF name-of-device terminal-computed

(<terminal-needed>) expression).
See table “constraint rule construction” for how device rules are written.
Macro-devices are always specified by a name and a list of terminals:

(macro-device-name (<input-terminal>) (<output-terminal>)).
Multi-directional capabilities are added with specifications like:
((original-name new-name) (<input-terminal>) (<output-terminal>)).

(DEFINE-NETWORK network-name (<terminal-namess) <device-specification>)

(DEFINE-TRANSFORM name (<com mon-terminals>) (<pattern-device-spec>)
(<instantiation-device-spec>) [(<add-break-spec>)])
Add-break devices are specified by:
(add-break-device-name <uninitialized-node-name>)

(DEFINE-TRANSFORM-MACRO transform-name
(name-of-macro-device (<input-terminal>) (<output-terminal>))
<(<instantiation-network-node-names>)>)

(DEFINE-FREE-WRT transform-name terminal-to-be-checked
(<input-terminal>) (<output-terminal>))

(DEFINE-K-VARIABLE-NODE transform-name
(k-variable-terminal (<assume-known-terminal>)))

(DEFINE-U-VARIABLE-NODE transform-name
(U-variable-terminal (<input-terminal>) (<output-terminal>)))

Chapter 3 explains cne more (derivable!) source of knowledge

See table "Transform Types" (chapter 3) for meaning of "type":

(DEFINE-ENABLEMENT transform-name type
<((<outline-terminal>) (<input-terminal>) (<output-terminal>))>)

11 Incoherent sources of Knowledge 108 Tables for Chapter 11
Table "Three Device Definitions”

(MAKE-DEVICE-TYPE #C A B C)
(RULE-OF #C C (A B) (PRIM« A B))
(RULE-OF #C A (B C)
(#CASES ((PRIM= B (*CONSTANT 0.0))
(*TRUE (*CASES ((PRIM= C {#CONSTANT 0.0))
(*TRUE (*ANOMALOUS Z-DIV-1))
(*FALSE (*NOT-EXIST DIV-BY-ZERO)))))
(*FALSE (PRIM-DIV C 8)))))
(RULE-OF +C B (A C)
(#CASES ({PRIM= A (*CONSTANT 0.0))
(*TRUE (#CASES ((PRIM= C (*CONSTANT 0.0))
(#TRUE (*ANOMALOUS Z-D1V-Z))
(*FALSE (*NOT-EXIST DIV-BY-ZER0)))))
(*FALSE (PRIM-DIV C A)))))

(make-device-type bsfz e ub 1b zf fx x)
(rule-of dbsfz zf (ub 1b e)
{*do ((bit-Yength (prim-div (prim- ub 1b) e))

(prim-less (prim- (*do-variable Tub) (*do-varisble 11b)) e)

{*do-variable L)

(1 (prim-div {prim+ ub 1b) (*constant 2.0))

(prim-div (prim+ (*do-variable lub) (#do-variable 11b))
{xconstant 2.0))))

(sgn (prim-sign ((*macro-device f fx) ub)) (»do-varfable sgn))

{1ub ub (*cases ((prim=
{prim-sign {(*macro-device f fx) (*do-variable 1}})
(*do-variable sgn))
(*true (*do-variable 1))
(#false (*do-variable lub)))))

(11b 1b (*cases ((prim= .
(prim-sign ((*macro-device f fx) {#do-variable 1)))
{xdo-variable sgn)) ’
{*true (*do-varieble 11b))
{xfalse (*do-variable 1}})))))

((r (x) (fx))))

~'8mxexplmudinnbh'm¢rm'

mwmwmm, oo wmmw n

(make-device-type greater by 181 p) umﬁsmwmﬂ’ w&wo‘ sidsT

(rute-of grester » (bg 111) o Ufaatg > 6} damas-tg mc'umm m%%b)
(omede-oxpransion (srim-1ass 1t} w)) L {nas3pd s aatesap))
(wesk-rute-of grester by {p 1t1) . {{tsasg 3 ¢ esasnp)
{ecoses (p , ({{2es1g 5 8 nstesag))

(otrue (lovar-bovnd-op w)y
(*Calse nit}))) {(!tni') {v £} itn } 1v0mNT 10871~ Sa stm’ﬁmz»osrub)‘

{wask-rule-of greater 1t} {9 bg)

(ecases (p v . ' (tt&twti @8] asubeb-netd mioizARA] - aﬂrleb; o

(strue (m-mu-,i.)} (3amiub 8 s ratesng))
(.;‘4,, ,g;;)’; o L ({teatin o ¢ ysfssg)

{reaqu Saatazh 3 8 xqm))
Pabome} 1saau ¢ tewal awtd)
 f{rvwnt reatatn o 3 xom)

(teo ts ;3:‘ 'y egnen ""%‘*"a'éiﬁri«s ,:mr-a}r?ifo&??w) N
| mmw}m 'n"non%gzﬂ_as# wy u L
: gt;i}Afig; ¥ ;f ggm:aqgs‘,;;v,g;,,,*;}.

| ":135:; viku?) 1fi1'i§k:§n-‘1#1":it

',>(‘i uTre) $302) dersse)
§({£v? ;;K;Yi} ' '

E212% 3!*1) v xam %a a!u«) _

3T mente) galn) t&zsa*}
({{éirn az{ﬁﬁt} :

graiz 3%:97 1 ng ie«siu1)~ ’
(Irnrsawf*‘ $3f1) ze:em#}
{(({tfﬁw sefitt} '

11 Iﬁcoherem‘s;wrces of. Knowledge 1o . Tables for (‘:hapt.er n

Table "Order Transformations”
(define-transform gt-trans (a c ptest)
‘ ((graater a b gtest)
(greater b c gtest))
({greater a c gtast)))

(dofinofcncblemmnt gt-trans remove { ni) {a c) (gtiit)))

(define-transform biwn-deduce (8 b ¢ dirtest)
((greater a b dirtest)
(greater b ¢ dirtcst))_
({mpx & c dirtest upper)
(btwn Yower b upper (*mode-constens atrus))
(mpx ¢ a dirtest lower)))

(define-enablement btwn-deduce range (nil (a ¢) (b)))
sMERE 1S THE DEFINITION OF THE MPX DEVICE:
(nlho-dcv1cc-typc mpx tv fv sict rsit)

(r&l§~of mpx rsit (tv fv sict)

(vcases (slct (*true tv)
{+false fv))))

(rule-of mpx tv (rs1t sict)
(rcases (sict (#true rsit)
(*false nil))))

{rute-of mpx fv (rsit slct)
(ecases (slct (*true nil)
(efalse rsit))))

IL Incoherent sources of Knowledge | Tables for Chapter 11

TABLE "NEWTON'S METHOD"
{make-device-type newton-fz conv? e ub 1b zf fx x divfx)

(rule-of newton-fz 2f (conv? ub b e)
(*cases
(conv?
{*true
(#do ({bit-Tength (bit-length (prim-div (prim- ub 1b) e)))
(#mode-expression (prim-less (prim-abs (#do-varisble crct)) e))
(*do-variable rsit)
{crct (prim- ub 1b)
(prim-div ((*macro-device f fx) (*do-variable rsit))
{{*macro-device f divfx) (*do-variable rsit))))
(rs1t (prim-div (prim+ 1b ub) (*#constant 2.0))
{prim- (~do-variable rsit) (*do-variable crct))))))
(#false nil)))
;;Macro-device
((r (%) (fx divfx))))

(define-transform try-newton (e ul fnd x fx)

((bsfz e u 1 fnd fx x))

{(newton-fz cvtest e u 1 fnd fx x dfnx)
(and-c cvtestl cvtest2 cvtest)
(zero-free cvtestl u 1 x dfnx)
{zero-free cvtest2 u 1 nx2 ddnfx2)
{deriv x dfnx x fx e)
{deriv nx2 ddnfx2 x dfnx e)))

(define-enablement try-newton speedup (nil {ule)(fnd)))

I1. Incoherent sources of Knowledge 1V " Tables for Chapter 1l

TABLE "Operator-1ike Davices®
{make-device-type zero-free pread upper lower x-in fx-out)

(weak-rule-of zero-free x-in (lower)
{Yower-bound-op lower))

{weak-rule-of rero-free x-in (upper)
(upper-bound-op upper))

{rule-of zero-fres pred (fx-out)
(*mode-express fon : :
(prim-or {prim-1ess (#constant 0.0) (1bouhds fx-out))
{prim-1ess (ubounde fx-out) (¢constant 9.0)))))

(make-device-typs DERIV in-eval out-evel x-def fx-def abserr)

(rute-of deriv out-eval (1in-eval abserr)

(prim-div
{prim- :
((*macro-device fun fx-def) (primé in-sval sbserr))
((*macro-device fun fx-def) (prim- in-sva !iurr)n
(prims (*constant 2.0) abserr)) '

;:Macro definition

A(fun (x-def) (tx-def))))

11 Incoherent sources of Knowledge m
TABLE *Oerivative Trensforms®
sRFY = F{y) - constent
:The constant s in node NFY.
(define-transtorm d-minus-constant. (x fx y fy nfy rfy er)
((deriv x fx y rfy or) (+c rfy nfy fy))

((deriv x fx y ty er)))

(define-free-wrt d-minus-constant nfy (y) (rfy))

(define-anablement d-minus-constant reduce (n4) (x) (rx)))

(define-transform d-square-special (x x)
((deriv x fx y ysq err) (¢c y y ysq))
((%c (*constant 2.0) x fx)))

{def ine-anablament d-squars-special remove (n1) a1l nt1))

Tables for Chapter 11 -

s:The instantiation portion of this rule s unfortunate bacsuse what | reslly want to say
ii13 simply "merge nodes FX and NFY". But | cannot (for no particularly good resson), so 1

isneed to go sround the bush a bit
(define-transform d-const-mult (x tx y fy nfy)
((deriv x fx y ty err) (oc nty y fy))
((*c tx y ty)))

(define-free-wrt d-const-mult nfy {y) (ty))

(define-enablement d-const-mult remove (a1l niY ai1))

I11. Coherent Behavior li4 Top Level brganization

CHAPTER 3
COHERENT BEHAVIOR

In chapter 2 the system’s sources of knowledge were presented and explained. The problem
addressed by this chapter is to obtain coherent behavior from these isolated, local sources of
knowledge.

_All researchers have an intuitive notion of what “coherent behavior” means: if the
problem solving system “does it like I might,” then it is coherent. A more objective quantitative‘
measure of coherence is the ratio of the time taken by the syst&n to the observed difficulty of
the problem. As in chapter 1, the observed difficulty of a problem is the number of rule
applications that, in retrospect, were actually required. In what follows, terms like "polynomial
behavior®, "exponential behavior,” etc., will always refer to this ratio.

The principle effort of this research has been to eliminate exponential behavior from
rule-based problem solving, at least as applied to numerical program synthesis. For the most.
part, this effort has been successful, in that exponential behavior does not occur in any of the

test cases. The remainder of this chapter explains how this has been accomplished.

The Top Level

The basic top level for both initially writing code and later improving it looks like

I11. Coherent Behavior i5 Top Level Organization

TOP LEVEL
(INIT) List of previous matches is empty
LOOP
(PROP) propagate all value structures
(TEST) if outputs have values (improved values if
improving code), then write code and quit
(FIND) Find all new matches, and add any found to front
of list of previous matches
(SELECT) Search list of previous matches for best one to apply
(APPLY) Apply it. Go to LOOP
The three steps PROP, FIND, and APPLY can all be shown to be polynomial in the number
of devices in the problem network (see individual sections following). Except for add-break
devices, the problem network’s size is only increased by the APPLY step. Since there is some
maximal size of transformation rule instantiation network, the total number of devices added to
the original problem network is bounded by a linear function of the number of rules applied.
(One reason transformation rule macro-device specs create a new complex device rather than
causing the computation path found to be copied is so that this observation will hold).
Add-break devices unfortunately make a more precise argument difficult.

A lower bound on the system’s time cost is provided by the FIND step. If N is the
number of devices in the solution network (this is the original problem network with all the
devices added by all the rules applied), and M is the maximum size of any transformation
rule’s pattern network, and there are K transformation rules, then step FIND will take (for each
time around the loop) time bounded by (see below):

K«NM

This is, of course, a polynomial in N, which is in turn a polynomial in the number of rules

1. Coherent Behavior 116 Top Level Organii%tnon

applied. This worst case never occurs in practice.

As one might have suspected, the critical problem is how to select, from a number of
applicable rules, the correct rule to actually apply (or, rather, how to avoid making poor choices).‘
The next section gi;/es a solution to this problem. But first, a more detailed description of the

top level is needed.

Matches and Psuedo-devices

. The matching process will be, completely described later in this chapter. But some facts about
it are needed now.

Transforms are typed according to a scheme to be described later (see table
"Transform Types”). Whether an effort is made to find a match for a transform's ;;attern is
determined (in part) by this type. These types are ranked in a strict sequence. In grneral, the
matching process doesn’t go further in this sequence than necesssary.

A transform’s pattern network is examined by a pre-processor. Starting with a "secd”
device (manually selected now), a match sequence is created with the prﬁperty that each device
(except the "seed”) in the pattern is reached from a node already matched.

This match sequénce is then used to control the way an object called a partial match is
propagated in the datum (problem) network. This propagation procedure may add deviﬁes to
the network corresponding to those flagged as add-break devices in the pattern network. When

all devices in the match sequence have been matched, then the partial match is said to be

IIL. Coherent Behavior) Top Level Organization

completed. At this point, macro-device specs, U-variable nodes specs, K-variable node specs,
and “free-wrt” specs still need to be processed.

All completed partial-matches are further processed by being instantiated. This
process creates a structure called a psuedo-device (used instead of real devices for eff iciency)
that is hooked into the problem network in a way similar to the way a device is connected. Like
a device, a psuedo-device has terminals. These are the same as the transform’s terminals, and
are connected to the nodes matched by the appropriate pattern nodes. This instantiaticn of
partial matches also makes sure all U-variable and K-variable specifications have been
satisfied. After instantiation all transform terminals have been matched.

The FIND step of the top level involves both partial match propagation and
intantiation of partial matches. The SELECT step actually examines a list of psuedo-devices,
and only looks at the terminals of these psuedo-devices.

To apply a transformation rule, the psuedo-device created for the completed partial
match corresponding to the transform’s pattern network is expanded. Expanding a
psuedo-device involves satisfying all macro-device specs, performing all Free-wrt tests, and
finally adding all the transform's instantiation network's devices and nodes to the problem
network.

To summarize, the system’s top level looks like
TOP LEVEL (derail) - 4
(INIT) Initialize list of psuedo-devices to nil

for initial writing, and to old list for
improving code.

I11. Coherent Behavior : 18 Top Level Organization

Set remembered type to "RESTATE."
LOOP
(PROP) propagate all value structures.
(TEST) if all outputs have values (improved values if
improving code), then write code and quit.
(FIND) For all new devices, try starting partial matches if
transform's seed matches.
Propagate partial matches according to schedule,
down to and including remembered type.
Possibly create and add “add-break” devices
Instantiate all completed partial matches:
Satisfy K-variable specs.
Satisfy U-variable specs.
Add new psuedo-devices to front of list.
(SELECT) Search list of psuedo-devices to find best one to apply.
Only the terminals of the psuedo-devices are examined.
(APPLY) Expand selected psuedo-device:
Apply Free-wrt tests.
Satisfy macro-device specs.
Add instantiation-network nodes and devices.
Add required macro-devices as complex devices.
Remember type of transform responsible for
~ expanded psuedo-device.
Go to LOOP.

Deciding which rule to apply

In order to de;:ide which rule to apply (or, more specifically, which psuedo-device to expand),
the system uses the results of a preprocessing analysis of the possible effects of the
transformation rules. The results take the form of a classification of types of effect, and a list
(called the enablement) of the circumstances under which this effect may be obtained.

There are two different kinds of problems the synthesis system solves: ihitially writing

II1. Coherent Behavior 19 Which rule to apply

code and improving code already written. Although the principles behind the rule sel:ction
mechanisms are the same for both kinds of problems, the mechanisms themselves are different.
The emphasis in this section is on the initial writing problem.

At any point in the deduction process, certain nodes will have values (be known), and
others will be unknown. In addition to this division among nodes in the problem network, the
selection mechanism maintains three lists of nodes as assumptions. One result of deciding to
apply a rule (that is, expanding a psuedo-device) is to add nodes to the variaous assumption
lists.

The selection mechanism looks like

SELECT (but see detail below)
For each psuedo-device, see if the enablement is satisfied
If 50, record the number of additions to the assumptions required.
Select the psuedo-device requiring the fewest additions. In case of tie, pick the
earlier in the psuedo-device list.

‘The tie-breaker above encourages depth-first search. The following sections discuss the selection

mechanism in complete detail.

Circuits

As was mentioned in chapter 1, the main thing one wants to do in trying to solve a problem is
reduce the size of circuits, and remove them when possible. Globally, a circuit is a directed
sequence of devices (see diagram “circuit definition™) and nodes whose values are unknown such

that

D1 outline D2 outline

114 99

>
XO(?_ Xlo .
D1 D2
D3
<<
D3 outline

D1AGRAM "CIRCUIT DEFINITION"

- amms gecems pe— wm—— oveen — pu— . e essms e

"SEED"
PLUS
PLUS E
S ’-_'—
Y
v ———
D
S =t PLUS E

DIAGRAM "FUNNY-ASSOC"

~ 120 -

IIL. Coherent Behavior 121 - Which rule to apply

I Each circuit node appears as the node computed by a device rule of a circuit device. -
2. Each rule above has as nodes in the needed list only circuit nodes and outline
nodes.
3. All outline nodes are known (and only nodes needed for 2 are outline nodes).
The diagram illustrates a typical circuit. Note that outline nodes can be shared, and that
several of the nodes needed by a rule can be circuit nodes.

This definition cannot actually be used because the third restriction (outlines must be
known) is too strong. In operation it is replaced by a weaker criteria: outline nodes should be
known or assumed known, or otherwise singled out (details follow).

The system does not actually find circuits, both because that would be a glabal
operation and because the number of circuits grows exponentially with the number of devices
(among other things, the assumptions cause this exponentiallity). Fortunately, on the basis of

local evidence one tan determine whether a portion of network could potentially be part of a

circuit. This forms the basis of the selection mechanism.

Classification of Transforms

The “funny-associativity” transformation rule was mentioned in chapter 1. It is reproduced
below, and also shown in diagram "funny-assoc”

(DEF INE- TRANSFORM FUNNY-ASSOC (Q R S E)
((4#C QR D) (+CDSE)) ((4CRSF) (+CF Q E)))

There are four ways this transform could reduce the size of a circuit. The outline nodes could

be Q and E, or they could be R and S. For each of these outline node sets, either of the

HI. Coherent Behavior 122 Which rule to apply

remaining terminals of the transform could be the input of the directed circuit.

The above analysis is typical of the preprocessing required for each transform. The
type of effect of the transform is to REDUCE the size of a circuit, and the four collections of
outline, input, and output nodes are the enablements. In principle, this analysis could be
automated, but the current system requires these to be entered by hand (automated analysis
would be at least exponential in the 'number of terminals). This is done once as part of the
transform’s definition.

The form for stating an enablement is

(DEFINE-ENABLEMENT transform-name type
<{(<outline-terminal>) (<input-terminal>) (<output-terminal>))>)

For example, the enablement for FUNNY-ASSOC is:

(define-enablement funny-assoc REDUCE ((r s) (q) (e))
((r s) (e) (a))
((a e) (r) (s))
((a e) (s) (r)))

There are six _possible types of effect a transformation rule may have. The type of a
transform, as defined in table "Transform types,” is used to decide what partial matches to try
propagating. The sequence used for initially writing code is:

REMOVE SUMMARIZE REDUCE RANGE RESTATE SPEEDUP.

For improving code the sequence is very similar; the SPEEDUP type is moved to between

REDUCE and RANGE. These sequences are quite reasonable considering the semantics of the

types.

II1. Coherent Behavior 123 ‘Which rule to apply

 Types of transformation rule application

As explained in the previous section, enablements have the form o‘f a triplet of lists of

transform terminals:
((<outline>) (<input>) (<output>))

where the computation path being affected or resulting from the application of the rule is
specified as going from the inputs to the outputs. Although not apparent from the discussion
thus far, this computation path is not necessarily actually usable because, for example, a dgvice.
rule might require a macro-device that cannot actually be found. However, the general id-a is
that the computation path also uses the (presumed) known values of the outline terminals in the
course of propagating a value from the inputs to the outputs.

There are two very different ways to use a transformation rule. The distin;tions are
most easily seen by considering a REDUCE transform. Supposing one could take a global view
of }the problem network, one would notice that there are two kinds of circuit (assuming certain
outline nodes are known when they aren't really): those containing the desired output or nodes
leading to immediately being able to compute it, and those not containing it or any node
immediately leading to being able to compute it. In fact, both of these circuits should be
reduced in size, but the local circumstances under which they should be reduced are different.

Diagram “Two linear equations problem” contains a circuit, and the circuit contains the
desired output Y. The pattern for FUNNY-ASSOC matches this problem with

Q->B,R>Y,S>Y,E-> A

A o ©xnvaded swyarioly 1

iﬂ:ﬂ& mg ﬁm m‘;mumzzm 7% *m &

W oaand se pslurws o o oot gdy svan sinrmsidang | mobisee w\mww *mz it tfsm LSS m

i mysi mm‘%mm}
iz o coiinoilags edy movl gaiilet 1 hfletis ;;;m v:f d:mg emxm iiqm"‘} IR *wiw
SRS

Jeioang fon 2t cigg aoisNqmes udr gst sudy

e
o~

fz wnass mds mﬁvgi&eﬁ&sm s spst srigim stuy
arit ai gengmss soilivo ol % zsuiav nwond {%&Mﬁﬁq; Eh T 20 arzis r*.mz GOl %é*fz*%w 341 mfﬁ
B, A o ol o megm 31 mort mv 5 gritensqos b S

o1 rombeusb sl sl soiss mw*:xm; 8 #2l O qm P tzh gzw oW1 TR HT wET

s siki B a0 ggsszw%qaa ,m*i{iiégsaﬁ .'ii.‘.rui%.?ifﬁé 5 gaﬁryé&zm},ﬁ ness glizes feom

pinced mimirzel 1Lt Yo eb aid owl s1g eredt gy sation %‘;fw:ww%s; Jowma meldog ol 1
b g e bengsh sdl ginmsingg %zz:@ziz :{?itmxf‘;swz *{ssif mﬁw awond w15 obon 2nilivo
mivas v oUE 1 gHiniined You 9204 beg .zi smq,m:. o msﬁa gmsé fzazsaz}*msma ey gmﬁsﬁ
s Bieads 2tiurs szadr o dtad Y el 4 stvgmel of **fis ﬁme{i o} gmi}mi yihimts?mmi “

et e dmoubey sd bz vadt doldw whrw ma}xm&mm is;wi oddi sud 3uz o beoubet

diagram “TWO LINEAR EQUATIONS Pi
2T STAESINOT BUTD %ﬁf b'ss iﬁmu & 2051002 mﬂm zﬁesssix;m m&m! aw"i' mmwﬂ‘

Aiive mﬁéde'ifq Tt Em D0zeA- wmu { 161 m&imq o ”z“ ¢ tuqivo batiasb

A B H s ?;,"!' {a‘ﬁ & {"5}

IIL. Coherent Behavior 125 Which rule to apply

One of FUNNY-ASSOC's enablements describes a situation where the transform's output is
“helpful” in computing the desired output:
(QE)(S)(R))
(reversing S and R doesn't matter, so that enablement also works). This kind of apphcation is
unimaginatively called a TYPE-B application; it is distinguished (basically) by all of the
outline nodes being known, and the outputs leading to the desired problem solution.
Diagram "Three linear equations problem" is more complex. Firstly, with only nodes A,
B, and C assigned values, there are no circuits in the diagram by the definition given above.
However, if the single node Y (the desired output) is allowed as an outline node, then the circuit
shown in the diagram does meet the definition.
The transform FUNNY-ASSOC matches the problem diagram several ways, but the
two of interest are when the seed matches device Al, and when it matches A5 (respectively):
Q>X,R->Y,S->A E->Z
Q->ZR->Y,$->CE->X
In both of these matches, the global view containing the circuit in the diagram, the desired
output (Y) is in the outline. This is the distinguishing feature of a TYPE-A rule application.
To summarize: there are two ways to apply a transformation rule. In terms.of its
enablements, the outline can contain the desired output (TYPE-A), or the circuit can contain the
output (TYPE-B). The next section gives the details of the tests used to delterrnine if a

transformai:on rule should be applied.

PLUS W

| PLUS

C

OUTPUT: Y

INPUTS: A, B, C
(there are others)

circuit: x, xy, a, yz, X

DIAGRAM "THREE LINEAR EQUATIONS PROBLEM"

- 126 -

s gy o Y WY

rl
L y 5

I11. Coherent Behavior 127 Which rule to apply

Assumptions and Enablements

The sysiem uses three lists of nodes to help determine if a particular transform should be.
applied, and whether the application is TYPE-A or TYPE-B. These assumption lists are
modified as a side-effect of the selection algorithm. Basically, these assumption lists are used as
an attention focussing mechangsm. They are:

*ASSUME-KNOWN -- These nodes don’t have values, but the selection algorithm has
previously treated them as if they were known.

*ASSUME-UNKNOWN -- These nodes are thought to be computationally “close” to the
desired output, in the sense of leading immediately to being able to compute the

output if they are known,

*REDUCE-GROUP -- These nodes are thought to belong to a circuit for which TYPE-A
rule applications are appropriate.

Both TYPE-A and TYPE-B applications have several conditions in common. One is that all
outline nodes should be distinct (that is, no duplications should occur in the outline). The
reasoning behind this restriction is that if outline nodes (tﬁat is, nodes attached to the
psuedo-device’s terminals specified as outline terminals in the transform’s enablement under
consideration) are duplicated, then there ought to be a special case rule to deal with it. Also see
diagram "Why no duplicates in outline” for an example of the kind of trouble this restriction
eliminates.

Another restriction both TYPE-A and TYPE-B applications have in common is that
the output nodes must in fact be unknown. If they were known, then the path could not be part

of a circuit. This restriction must be altered when improving code.

I1I. Coherent Behavior 128 4 Which rule to apply

The complete list of restrictions can be found in table "Enablement Tests for Writing
Code.” Notice that if the enablement has an empty outline, then TYPE-A fails and TYPF-B
becomes simply “outputs are unknown.”

The restrictions in table(s) "Enablement tests for writing (improving) code” were
derived empirically. Althphgh they "work” for all the examples in this report, they might need
further refinement.

The assumption lists are initialized as shown below:

+REDUCE-GROUP, *ASSUME-KNOWN are initially empty

+ASSUME-UNKNOWN initially the desired output nodes

Extending and cutting back on assumptions

There are two ways the assumption list can be consistently extended. If one assumes that some
collection of nodes is known, then one can determine what nodes are also known. This
ALSO-KNOWN extension is the basis of both assumption extension mechanisms (rules
involving macro-devices and special case rules are not used in finding this kind of extension).
. For example;', if "x" is assumed known, then “y”cxzol?a would be in the also-known extension of
"x".

Whenever, as a result of analyzing an enablement and on that basis applying a rule, the

system adds some nodes to the sassume-known assumption list, the also-known extension is also

added, provided it does not intersect assume-unknown.

IIL. Coherent Behavior 129 Which rule to apply

Similarly, when trying to minimize the number of new nodes being added to
sassume-unknown, if two enablements both w;uld cause the same number of additio.ns. then if
one addition constitutes wishful thinking (described below), it is prefered. A perhaps useful
refinement of this would be to compute the "wishful thinking distance,” but this has not been
tested.

Wishful-thiﬁking is straight-i‘orward to test for: if the also-known extension of the
addition to #assume-unknown would result in nodes already in #assume-unknown being known.
then the addition constitutes wishful thinking. It would be simple to also measure the smallest
number of devices involved in obtaining any such node already in sassume-unknown.

The sequence of additions to the assumption lists is retained. Since it is inconsistent for
a node in sassume-unknown or sreduce-group to have a value, these lists are trimmed back to
the state they were in before the node (r;ow) having a value was added. No such inconsistency
occurs when an sassume-known node receives a value. But to simplify the code, these known
nodes are removed from the *assume-known list.

The complete criteria for which rule to select (which psuedo-device to expand) can now
be given:

SELECT (detailed)
Pick the rule with the highest type (in the transform type order being used).
Among rules of the same type:
Rules that add to sreduce-group are WORSE than those that do not.
The number of additions to sreduce-group is minimized.
Rules that add to *assume-known are WORSE than those that do not.

Rules that add to sassume-unknown are WORSE than those that do not. Among
rules that add to *assume-unknown:

II1. Coherent Behavior : 130 Which rule to apply

The fewer the number of additions to *assume-unknown, the better.
Among rules adding the same number of nodes to sassume-unknown,
wishful-thinking additions are better.
All things being equal, pick the rule most recently matched (depth-first preference).

The selection algorithm above is used to compare two potentially applicable matches (more

correctly, the psuedo-devices resulting from instantiating the completed partial match). After

sweeping through all applicable psuedo-devices, a psuedo-device to expand is thus selected.

S pecial handling for Macro Devices

The discussion thus far has ignored the presence of macro-device speciﬁcations.in device rules.
Under certain circumstances these specifications can affect the assumption lists.

Device rules assert that some computational relation exists between the needed terminals
(inputs) and the terminal determined '(output) of a rule. But there is also some kind of
connection between a device rule’s needed terminals, and the terminals specified as inputs to a
macro-device used by that rule.

Suppose, as in kthe square-root example, the system knows

X2:Y; X >0,Y >0
and that given Y, it is to write a program to compute X. Then the node for X would be on the
sassume-unknown aﬁsumption list, and Y would have a value. This problem (for which a
" solution has already been given) can be modified so that instead of simply computing the
square-root of Y, the system is asked to compute the sum of square-roots of the numbers 1.0 to Z,

inclusive. This problem is illustrated in the diagram "sum of square roots.” In this diagram it

IL Coherent Behavior 13l Which rule to apply

should be obvious that if the system were to add node NS* to sassume-known and node NSFX
to sassume-unknown then as far as the rule-selection mechanisms are concerned, this problem is
about the same as the original square-root problem. |

It should come as no surprise that the system has a rule:

Inward Macro-device Assumption Extension: If all a rule’s needed-node list is
known, and the node determined by that rule is unknown, and that rule uses

macro-devices, then add the macro-device's input nodes to #assume-known, and the

macro-device’s output node(s) to sassume-unknown.

Perhaps more surprising is that the system also extends assumptions in the other direction:
Outward Macro-device Assumption Extension: If any of a rule’s macro-device input
nodes are known, then add the rule’s needed nodes to »assume-known. Furthermore,
if the macro-device’s output node(s) are unknown, add the rule’s output to
sassume-unknown.

The Bernoulli example (in chapter 4) shows a case where this extension is needed.
Diagram “Bernoulli problem statement” shows the initial situation. The result of using the rule
above on the device TPS (term-wise Power Series) is to add NT to *assume-known, and add
PSX to #assume-unknown. This allows the system to become interested in expanding the
exponentiation device EXP. The complete solution to this problem is the backbone of thapter 4.

Example: Three linear equations Solution

Diagram "Three linear equations” shows the network expressing the following system of linear
equations:

(x#y)oA:z
(x+2)+B=y

i wivansd pwrsdeld 1

ha o ataw mwiye wl B e 2woivido 9 Livorz

3 beoriang 98 Mnmingdiam apiteler-sivr sd7 28 w2 rwé? mw;inwmu&ﬂ b2

@,a,gz:' Iztr"é:m s Ry i3 HCds

szrigie off 26 3 biuogz 11
rom

ix Bpunt
18 awnnd
wfw-‘fﬂ“zm

Roirgmuzes WA, 318

sty o tgyos Y mehae o sendmate %s% g1y \;«mﬁg:‘x
M:i"*%mmwﬁ 3t zaimn bebesn 25l %ﬁs bbe fed) nwond s18 subon
iny 918 {althon FOUMD eIV e edi

awondny SLEs

§

alaey nopoievixg sl s aasn i pwode (B velgals op slgoinse Wuoins el

N YT T O w i > sioed . e et e ; - L) R
R &1 .43:;“_- R ey {\3‘%'} sy, a‘%v {f:_v;hﬁg ‘),»*2 pandy IEmTTIN: {&; ;i’(}?(gf‘;uu ‘3‘!.} ;“%5?'352’3

S RS ob b W e sra-mst) 29T niveb ortt 0o svode

i bodesyadal amodsd of mai z 3448 awolls ad T nwondnu-smueess 08 K39

4,00 *»;xs & f‘“é‘jr‘ ‘c‘g B

%1 .;ﬁémif:z smlzmos o T KT 2nved noilglinenogXe

Reny o meizg W

gdsivs) IR

Y R
yef iz)

- 133 -
DIAGRAM "THREE LINEAR EQUATIONS"

N N 1 '] <L [g
1 ¥ ¥ L} L} T 7
PLUS vz PLUS)
A5 A6

Y "solve for Y"

A3 "
FUNNY~-ASS0C
Q = | \ |
) ., D R
o PLUS >\., — PLUS
s / S ‘ / E
Q
Enablements: ((R $) (E) (Q)) ((Q E) (R) (SN
REDUCE ((R 8) (@) (E) ((Q B (8) (R))
+ASSOC
1 A1
PLUS D
B PLUS
Enablements: ((A D) (B) (C)) ((B C) (A) (D))
REDUCE ((A D) (C) (B)) ((BC) (D) (A)
+ASSOC4
{_— S
PLUSj X ¥~
_ PLUS PLUS
=
yd \'Y

Enablements: ({Q X) (S) (Y)) (@ X) (Y) (s))
REDUCE

111. Coherent Behavior : 134 Which rule to apply

(z+y)+C=x
This diagram and set of equations will be used for two different probléms. One (let’s call it
LE3) is "Write code for computing Y given A, B, and C." The other (LE2) is "Write code for
computing Y given A, B, C, and X." The second (LE2) is a simpler problem, but it has some
redundant facts in it. Most problem-solving systems blow up when given too much information;
this system does not.

The diagram "Three linear equations” also shows three associativity rules.
FUNNY-ASSOC and +ASSOC are almost identical -- the only differences involve comuting
the arguments. Most problem-solving systems blow up when given redundant rules; this system
does not. Each of these transforms are of type REDUCE and have four enal:lements.
+ASSOCH4 is derived from +ASSOC by doublet introduction and deletion (see diagram
“derivation using Doublets” in chapter 2). Since the rule is symetric, only two enablements
(instead of four) are required.

Both problems use the same initial assumptions: *assume-known and sreduce-group are
empty, and *assume-unknown has only node Y. In problem LE2, node YZ's value can be
determi.ned (x-c).

No REMOVE transforms match. Commutation of addition is performed by a
SUMMARIZE transform. For this, 6 matches and expansions occur, one for each device.
Trying to commute these commuted devices results in duplicating devices already in the

network. The system detects this and merges the duplicated devices.

II1. Coherent Behaviny 135 Which rule to appily

The real action begins when partial-matches for REDUCE transforms are p1opagat-d
The system finds 72 matches for the five associativity transforms in the system’s ibraty Some
examples are:

A: Funny-assoc q -z, v »y, s>, e-xx ((r s) () ()
Funny-assoc q->x. 1 >y, s-23, e--2 ((r 5) () (9))

B. Funny-assoc g »yz, r->¢, s>y, e->xy ((r s) {e) (q))
Funny-assoc g->xy, 1 >3, s>y, e->yz2 ((r 5) (e) (q))

C: Funny-assor q->2. v->x, 5 5b 2-»y {(r $Y(q) ()
Of course, whenever Funny-aserc matches, +assoc will also.

In problery 1.FY no type-h applications are possible. The first four matches ahove all
meet the type a citoris I all G cases, the outline node that could intersect #assumie unk i
is Y (already in that het) The ciucut (nputs to outputs of the enablement) is incicared n
diagram "Three Linear Eguations” and globally contains X, XY, Z, and YZ Which af thea
four transforms (or their +assac counterparts) is actually used depends on “the luck of 1he draw”
(actually it is deternunistic) Let's fou.ow two different solution paths: LE3A applies

A: Funny-assoc q->2, r->y, s->C, €->X
adding X and 7t sreduce-group, and LE3B applies
B Funny-assoc g->yz, r->c, 57>y, e->Xy

adding XY and Y7 o sreduce-group.

In problem LE? {rememiser X 1s known in this example), the last match (C) iri the it

does meet the type b criteria with enablement (R SXQXE)):

Transformatricn rule NEG-ASSOC, type REMOVE @

enabliements: (N1i. (R) (8)) (NTL (S) (R))

matches with R » G2, 0 Z, ¢ + X, S » Gl

DTAGRAM "THREE 1. TNEAR EQUATTIONS LE3AT

"type~A shrunken

circuit"

II1. Coherent Behavior 137 Which rule to apply

outline: X, B; input: Z; output: Y.
By the way, this fails type-A criteria number 1. Another enablement for this transform uses
nodes Z, Y for the outline, and type-a criteria number 2 fails. The reason Y rather than Z was
chosen as the output is that minimizes the number of additions to sassume-unknown.

Continuing with the three solutions LE3A, LE3B, anél LE2, now all the devices added
must be commuted -- two in each case. No REMOVE type transforms apply, so ancther round
of matching REDUCE type transforms occurs. The number of new matches is as shown below.

LE3A: 56; LE3B: 48; LE2: 56.

Why find more matches before using the ones already known? The system does not
follow either a depth-first or a breadth-first strategy. Rather, it collects all the tmns&xrma
(partial matches, actually) it could apply, and then decides which to apply.

In the LE3 problem, none of these new matches are used. In LE3A, the old
Funny-assoc match

Funny-assoc g->X, r->y, s->a, e->1
doesn’t result in any additions to assumption lists under type-a criteria. Similarly, in LE3B the
match
Funny-assoc g->xy, r->a, s->y, e->yz
can be used without additions. Notice that "mixing” these would require additions to the
sreduce group. See diagram "Three Linear Equations LE3A" for the situation after these

transforms have been applied.

ORIGINAL
CIRCUIT
SHOWN

k 1 pLUS X+ ‘PLUS)' ADDED BY FUNNY-ASSOC
| Py

\ (ADDED BY +ASSOC4
Y PLUS PLUS x Y, x 3 X+B
L_—_/ pN - q*Y, y+XC

transform DOUBLING 2.0
R cC pus PO TP TIMES D
R

(X+B)+(X=C)

2.0

diagram '"LE2"

- 138 -

HI. Coherent Behavior 139 Which rule to apply

Diagram "LE2" shows how one of the newly matched transforms, the VASSOCA
transform, matches and how later the DOUBLING transform is applied to finally solve the
problem.

Another round of matching takes place. In both LE3A and LE3B, a REMOVE type
transform named NEG-ASSOC matches (see diagram "Three Linear Equations LE3A").
These have enablements that satisfy type-b requirements. Using this transform in LE2A causes
one of Gl, G2 to be added to *assume-known, and the other to sassume-unknown. Similarly for
LE3B. Notice that Gl is a wishful-thinking addition (so is G2).

Another round of propagating REMOVE type transforms occurs in both LE3A and
LE3B. Again, matches are found, this time for the DOUBLE-SUM transform (different
matches in LE3A and LE3B, of course). This transform is shown in diagram “Double-sum.”
The enablement is satisfied. When this transform is applied to LE3A and LE3B, the problem
is solved, and Y=(A+C)/-2.0.

The solution to LE2 was

Y 2 [(X +B)+ (X - O]/ 20
The code for this solution is actually slower than the code for LE3. A later section will show

how the solution can be improved.

Modification of the Selection Algorithm for Improving Code

In the preceeding sections the emphasis has been on initially finding a computation path from

S BRI NI 288 Y Erind smwraded 18

3

g A aprars o Nakil badass i ~ iy it 1o sno wod zwedz "C307 muigadd

338 3 mwhosy Z}ﬁ BUOQ0 »d1 veisl wod bas adzmm nwolnsu

meideg

bavor Adfhns

" mergsi see) aadmm Qﬁ??ﬁ DAV Bsmen miolzngn

by fa b ond araieng g o pregaiirer doogyl ¢laisz IsdY ginseatdane svan g aesd T

w19 NG A Lo ppvasd-smozee o3 babbe oo 0y O 10 Ta s
roitishe goidnidrsidaw £ 21D et okt d63d
i ST 50 COERL0 RPN W ohopot edton

: b rnesyt MUS-ZIEUOU e Wl ~m13 dilr brool a6 zsdaem RETERCY S Ea O |
transfomtion DOUBLE—SM

seazeal ol vistgeth moawedz u smwlenes 3::;1" fsawey 10 FL3A bas ATEI ni eadossin

¢ 4230 or beilugs 1 nclansu okl ned W petaiez 20 gnsmeldeny 28T

DS ARY brs bevier #

I} o1 noitulos ad'T

DRAUG - X3+ {8 Diw Y

FAE b sy wir st needy vlisuos gl nooulor Liiu it ahor sAT

type REMOVE, enablement: ((A C) NIL (Y)) _z‘:‘svoxgma sh ARy Acitulog st wod

DIAGRAM "DOUBLE-SUM"

hel yeiseramy vy mdtiragih goibal wdy o ¢

rfiihoth

sAf pnoitie gniboorrig 84l 6l

¢ R ipaE

IH. Coherent Behavior 141 . Which rule to apply

the input nodes to the output nodes. Much use has been made of the simple observation that
any node whose value is unknown must depend on those nodes whose values are known. As a
very general str;tegy the system tried to reduce the number of unknown nodes.

If a computation path already exists from input to output, however, the distinction
between known and unknown nodes is no longer particularly useful. In its place, the system uses
an even more revealing source of information about computational dependence: the computauoﬁ
path already discovered.

The initialization procedure used for a network for which code has already been written
includes

1. All nodes actually used are added to a list snodes-definitely-used.

2. All complex devices actually used either directly or in macro-devices are expanded.
3. Nodes used more than oncé in the computation path indicate the presence of a
circuit-like structure in the computation path. These nodes are added to
sassume-unknown, and also to xreduce-group.

4. The output is added to *assume-unknown.

5. The xassume-known list is initialized by the inputs minus the multiply-used nodes
(4 above) and minus the output.

6. Any macro-devices used have their input nodes added to *assume-known, and their
output nodes added to *assume-unknown.

When this initialization has been completed, matching and propagation take place much as in
the initial-writing case. Instead of looking for a value in the desired output node, the system

looks for an improvement in the time-cost. As mentioned before, the SPEEDUP transform type

1IL Coherent Behavior ' 142 Which rule to apply

is used earlier on when improving code.

While propagating values is a network to be “improved,” the system maintains a list -

+«IMPROVED-NODES. This list is used in the enablement criteria.
The tests to see whether a transform should be applied must be adapted. As before,
two types of application, TYPE-A, and TYPE-B, are used. The restrictions and effects are

shown in table "Enablement tests for Improving Code.”

Example: Solving systems of lincar equations continued

In an earlier section, a problem involving three linear equations was presented and solved for

two cases. One (LE2) involved redundant information in the problem statement, and it

happened that the system found a Jess efficient solution in this case than for the LE3 problem.

When the system is asked to improve this inefficient code, the system determines that
node X is used more thﬁn once in finding the solution. The initial assumption lists are

~ sassume-known: A, B, C; sassume-unknown: X, Y;
sreduce-group: X.

The system starts with a list of all the old matches. Of this initial collection, several can be
applied without adding any nodes to‘ the assumption lists, but these céate only dupficates of
~ already existing devices;
.The actual work begins when an old +ASSOC transform satisfying type-a criteria is

- selected. This matches the problem network with

I11. Coherent Behavior 143 Which rule to apply

D->ZC->AB->Y, A->X.

The enablement is (B CYAXD)).

In fact, this is the "same” transform as the Funny-assoc application that started the
LE3A problem variant. The type-a circuit is the same for improving the LE2 code as for
writing the LE3 code originally. The LE3B variant solution is not used because it would
require a larger number of additions to sreduce-group.

T'he remainder of the “improvement" example follows exactly the LE3A solution shown
previously, except that in addition to the matches found in initially writing the code, 44 more

REDUCE type matches were found (and more of other types as well).
FINDING MATCHES

The mechanism that matches transformation rule patterns against the datum network (which is
the original problem network with new devices and nodes added) has three distinct parts: a
preprocessor, a partial match propagation routine, and routines for finding nodes for U-variable
and K-variables. When the matcher has finished, a psuedo-device can be created (as described
earlier). The mechanisms for expanding (or instantiating) psuedo-devices will be discussed in
the next section.

The preprocessor takes the network that constitutes the transform’s pattern, and

produces a match sequence. The details of this preprocessor are not very interesting. The

I11. Coherent Behavior 144 : Finding Matches

match sequence starts with the seed device, followed by node/device pairs such that the node has
already been matched and the device has the node on one of its terminals. The Add-Break
devices are the last devices on the match sequence.

The partial match propagation mechanism is also quite simple. First, the system
compares a transformation rule’s seed against a datum device. If they match, then the devices’
terminals are compared. If they are compatible (constants in pattern only match constants in
datum), a partial match is created and stored in the datum node corresponding to the first node
in the match sequence.

Partial matches‘ are propagated from one node to another according to the match
sequence, subject to the restriction that a datum device cannot be matched by more than ane
device in any patte:rn (this ié critical’). A datum device can of course be involved in several
pattern matches. Each propagated partial match is stored in the appropriate "next” node in the
match sequence. If propagation fails because a device of the proper type is not on the datum
node, and that pattern-device has been flagged as being an add-break device, then a new device
is added to the datum network, a round. of value propagation takes place, and then
partial-match propagation continues.. Propagation ends when the match sequence has heen

exhausted.

WREE P SRR

The third and final part of the match mechanism finds nodes to match U-variable and -

K-variable specifications. The algorithms for finding matches in these two cases will be

described separately below. The semantics of these specifications. were carefully engineered so

T T

II1. Coherent Behavior 145 Finding Matches

that for any match of the pattern network to the datum network, if the specification could be
satisfied, only one datum node per variable-node needs to be considered.

A lower bound on the system’s time performance is provided by the matching
mechanism. For any particular transformation rule, the worst-case number of possible matches
is computed as follows. Suppose the pattern has M devices, and the datum network has N
devices. Then the seed device could match as many as N devices, and then the next device in
the #equence could match as many as (.N-l) devices, etc. The number of possible matches,
assuming all devices in the pattern and in the datum are of the same type, is given by

N#(N-D#(N-2..4(N-M+1)
This expression is strictly less than NM for M > 1. Of course this worst case never occurs
because firstly, the devices are (usually) of different types, and secondly because the terminals of

a device are distinguished. The worst observed case was quadratic (an associativity pattern).

Finding nodes for K-variable specifications

A K-variable specification is essentially a list of nodes (specified by transform terminal) to be
considered as “inputs” for the K-variable. The values of these nodes are currently unknown
(else the search for a K-variable node fails), but if they were known would allow some node (the
node one wants to find) whose value is currently known (and not a mode value) to be compbted
from the "inputs.”

The algorithm for finding these nodes (if they can be found) uses several operations

II1. Coherent Behavior 146 Finding Matches

that are also used for finding macro devices (explained in the next section). These are
explained in table "Packaging Primitives.”

To find a node to match a K-variable specification, the following procedure is used:

If any of the “inputs” are known, fail.
Push-value-structures.
Initialize K-variable “inputs."
LOOP
Propagate values. If a node receives a value and that node was previously
computable, then go to WIN. '
Suggest external nodes.
If no nodes can be suggested, then fail (pop value structures and return).
Go to LOOP.
WIN
Pop value structures.
Return node that was previously computable.

A part of the algorithm above is testing to see that the external nodes found (if any) are
in fact free with respect to the computation path from the k-variable specification “inputs” to the
node eventually found (if the search was successful). Since no output can be specified for the
computation path, this test takes a very simple form (see discussion following).

Currently, if the search for a K-variable (or a U-variable) fails, it is never attempted
again. This may not really be correct.

How much time does this search take? Pushing and popping value structures takes no
more than time proportional to the number of nodes. Suggesting external nodgs (to be discussed
later) also takes time proportional to the number of nodes in the network (it involves analyzing

the entire network, and then using the results of this analysis in judging each node to see if it

can be suggested). The loop in the algorithm above cannot be executed more than the number

II1. Coherent Behavior 147 Finding Matches

of nodes in the net, because at least one node must be suggested as external each time arcind
(and no duplicate suggestions can occur). Therefore, the algorithm (in the worst case) takes time
proportional to the square of the number of nodes in the network, and by previous arguments,

this is polynomial in the number of transforms applied.

Finding nodes for U-variable specifications

Unlike the algorithm for finding K -variable nodes, value propagation cannot be used in
finding U-variable nodes. Recall a U-variable specification is written as:

(DEFINE-U-VARIABLE-NODE transform-name
(UJ-variable-terrninal-name (<input-terminal>) (<output-terminal>))).

The idea is that there is a compatation path from the input terminals (of the pattern network) to
the output-terminals specified The iputs from the specification may be known, but the ourputs
must not be currently known However, if all the inputs and the node matching the specificatinn
were known, then the cutputs should be computable. The node found should not be an output
node.

The problem with sansfying this kind of specification is to avoid examiming all
computation paths from input to output, because the number of such paths is (in the warst ¢as)
exponential in the number of devices. In all other situations where the system must find a
computation path, any computation path will suffice. But here a special computation path 15
required. it must involve a nade currently unknown as a so-called external node (i.e., 1t must he

free with respect to the computatien path specified).

HI. Coherent Behavior 148 Finding Matches

The algorithm makes use of a list ¥IN-EXT, initialized to contain the also-known
extension of the. input nodes from the U-variable specification. If any output node 15 in
#IN-EXT, then the search fails.

The system then constructs a list of nodes it will "back-up™ #*NBKUP. Initially this

list contains the output nodes from the specification. The overall algorithm looks like:

Initialize +IN-EXT and +NBKUP.
If «IN-EXT and sNBIUP intersect, fail.
LOOP
Form new «+NBKUP by backing up from old £NBKUP. This step will he
explained in detail below.
If backup step discovered a U-node, then return it.
If +NBKUP empty, then fail.
Go to LOOP.

The backup step is. for each node in +NBKUP, examine the devices attached to the nede,
ignoring devices that have already been "backed up through." Each device is then +xamned
for a rule that computes the node being backed up. Rules that compute a mode, and rules that
use macro-devices are excluded. If such a rule can be found, a list of nodes is formed such that
I. The node is not in «IN-EXT.
2. The nade is not known.
3. The node is not in the output node list.
4. The node is needed by the rule.
There are evidently three cases for the length of this list of nodes:
The list could be empty. This is actually impossible, because then the node being back. ed
up could nat have been in *#NBKUP.

The list contains one ncde, and all the outputs are in that nodes also-known extensim
(including «IN-EXT as known). This is the U-variable node. Return it.

. Coherent Behavior 149 - Finding Matches
Otherwise. Pick one of the nodes in the list (at random) and add it to the new +NBKUP.
If any of the nodes are already in *NBKUP, then none need to be added.

This completes the description of the backup step
That the node found by this procedure satisfies the specification is evident by testing to
see that the outputs are in the also-known extension. Although in the worst case the list
*NBKUP can grow exponentially with the number of times around the loop, no duplicate
entries are permitted, so the length of +NBKUP is bounded by the number of nodes in the
network. Similarly the number of times around the loop is bounded by the number of devices
in the network, so the overall time cost is proportional to the number of devices times the

number of nodes, and therefore polynomial in the number of transformation rules applied.
APPLYING TRANSFORMATION RULES

The result of applylhg a transformation rule is to add a number of devices to the datum (o
“problem”) network. The number of devices added is equal to the number of devices in the
instantiation network plus the number of macro-device instantiation specifications.

In addition to creating and adding copies of the instantiation network devices and
nodes, the critical steps of applying a transformation rule are applying "Free with rrspect to”
tests and finding macro-devices. These two steps are closely related. In fact, testing for nocles
being free with respect to a computation path is part of the process of finding a2 macro-device

The principle problem in finding and packaging macro-devices centers on the so-called

K*i‘i':fi‘f'ﬁ& ERTIORE 1o I8 4 1

ﬁfzuvebr IR

el hﬁ"wﬁ whol odt 04T

is ¢ pahpind o ool 8fd B ¥ 1e ghplirnd Fowdien
' adl ybabeigd of geol ot buuons swmut do e deun sdipyls 2w

—-—-—--—--——-—._

it ligmovn ady op | Arnwion sdl 8

b 1o edmon

FON) = OUT = (INMIN)-SQ, o 1us3 WOTTAMEOUBVART DVIVIGLA

If F(IN)=0 then IN is the square—rqot of 8Q.

& i g PR LT L I s
sy rediapa v ohE o a0 sl sonsrmoleRg T & snlgns o tuasy adl

reftrnsghnl asvebrons:

sailn BNOW P 6 3 5 IRy o AT 3
" PO ST 1 oo I P >
3o o e wasn 8 giviegs o 2wk b odr esbon
¢ . vt el 1 aumvslroiam g zjend
'j'\ ¥ 2

II1. Coherent Behavior 151 Applying Transformation Rules

“external nodes.” For example, in solving the square-root problem the system found a mac{.m
device F (see diagram "External node in square root”). This device was specified as computing
a nodé OUT from a node IN. The macro-device found included a third terminal that was
connected to the node SQ, and is an “"external node.” The following sections describe how these

macro-devices, and in particular these external nodes are found.

Finding Macro Devices

A macro-device 15 specified by selecting a set of nodes as inputs, and another set as outputs. It
may be that some outputs are also inputs. These "identity function” outputs are handled
specially by the system.

Another class of outputs the system handles specially are those that are known and free
with respect to the specified inputs. This situation arises in the diagram "Alternative Recursive
Factorial” in finding the macro-device for START. The node on RECRI's SUP terminal 15 a
constant 1.0, and is free with respect to the node on terminal BTM (compare this with the
diagram "single-rec-apAplication"). In this case, the macro-device for START encodes a constant
function for SUP.

In the discussion below, it is convenient to ignore this special case of "constant functions”
as well as the special case of "identity functions.”" That is to say, in the following, outputs are net
also inputs, and do ciepend on the inputs for their values.

The process of finding a macro-device closely resembles that of finding a K-variahle.

limit

an e 8 e - e s

Ld
]
1
v
'
+

MACRO DEVICES NEEDED BY RECRI1:
(STEST (IN) (OUT))
(BUMP (DOWN) (IN))
(POP (DOWN OUT) (UP))

DIAGRAM "ALTERNATIVE RECURSIVE FACTORIAL"

- 152 -

IIN Coherent Behavior 153 Applying Transformation Rules

The algarithm, outlined below, uses primitives in the table “Packaging Primitives”.

Finding a Macro Device

Push value structures.
Initialize input nodes.
LCOP

Propagate value structures.

If all output nodes have values, go to WIN. :

Suggest external nodes. If no nodes can be suggested, the macro device « «nci be
found at this time. Pop value structures. Fail.

Suggestions are recorded as possibly-external.

Go to LOOP.

WIN

Find nodes used in computing output nodes. These nodes are to be divided into two
classes: internal and external. ‘ :

The list of external nodes is initialized to contain the inputs and outputs.

Divide nodes used. This step is described in detail below.

Create a complex device with a terminal for each external node.

Create a defining network by copying all nodes used and all devices with all
terminals attached to nodes used.

Write device rules for new complex device by encoding functions for the defining
network. :

Pop value structures.

Return complex device.

The step that divides the nodes used requires further explanation. If a node is neither external
nor possibly-external (i.e, neither an input nor an output nor suggested as an external), then it is
an internal node. Each possibly-external node in the list of nodes used is further examined by
seeing if it could be computed using other possibly-external nodes (possibly not in the list of
nodes used). If it can, then it is made internal, and the possibly-external node(s) used in
computing it are added to the list of nodes used.

This complex post-analysis is required because the precise computation path cannot be

IIL. Coherent Behavior 154 Applying Transformation Rules

known when externals are suggested, and so it can happen that mutually computable external

nodes are suggested. The post-analysis resolves this uncertainty.

Sugpgesting Externals

In order to be suggested as an external node, either for the purpose of finding a macro-d=vice
;>r for finding a K-variable node, the node in question must both be previously computable
(easily decided by using the set of pusﬁed value structures), and be free with respect to the
computation path from inputs to outputs.

The process for suggesting externals involves examining each device in the network,
and each rule in a device. The system is looking for a (non-special case) device rule whose node
- computed doe§ not have a value, and whose list of needed nodes contains only nodes that are
either known or both previously-computable and free with respect to the inpt.nt-outpht
computation path. If such a rule can be found, ail nodes in the second catagory are suggested as

externals.

T he notion of "Free With Respect To"

Three processes involve testing to see if a node is free with respect to a specified computation
path from input nodes to output nodes: finding K-variable nodes, finding macro-devices, and
satisfying FREE-WRT specifications associated with transformation rules. Since the way the

system represents iteration and recursion dependins on finding macro-devices, this algorithm .is

I1L. Coherent Behavior 155 Applying Transformation Rules .

critical to the op;eration of the entire system.

To simplify the following exposition, the term “free” will be used as a shorthand for
“free with respect to the computation path from the specified inputs to the specified outputs (if
any)".

The notion of a node being “free” has not been defined well enough to allow a proof
that the system’s test is correct. Consider the situation in diagram "Free Problems.” The
diagram shows how a node Q2-NODE shifts from being judged free (by the algorithm used by
the system) or not free as the situation is slightly changed.

The notion of a node being “free” is similar to the notion of a quantity being a
parameter in a mathematical formula. A quantity can be a parameter if it can be held constant
as the input(s) of ‘the formula are changed. Any node judged free has this property.

Problems arise when more than one computationally related quantity could be thought
of as the parameter. In these cases, the system prefers to consider the node furthest from the
output as the independent parameter. In most cases this agrees with intuition, but the “right”
answer to these problems is sometimes not at all obvious.

'The question should not be "is the free test correct?” so much as "does the system do
the ’right’ thing in situations where the free test is used?” In seeing if FREE-WRT
specifications are satisfied, if the node is free, then it is both used to compute the output and not
computable using only the inputs (even assuming 1-device circuits can always be eliminated and

allowing use of constants).

- 156 -

DIAGRAM '"FREE PROBLEMS"

input-node

Q2-NODE distance = 2

OUTPUT-NODE

Suppose FOO is a PLUS device. Then Q2-NODE is not free.

Suppose FOO has only the rule ¢ = ABS(a + b). Then both
Q1-NODE and Q2-NODE are free.

Suppose device FOO is replaced as shown below. Then Q2-NODE is not free,

but o = Q1-NODE is free
B = Ql1-NODE is free
Q2-NODE distance = 3 distance > 3 distance > 3
b — - = ""l
-

B

|
AN
PLUS ABS —O—— —
!
a

i

III. Coherent Behavior 157 ~ Applying Transformation Rules

In findAing K-variables the free test is crippled by not having an output specified. In
this circumstance the test amounts to judging nodes computable from the input assuming
I-device circuits can be removed as not free, and the rest as being free. Considering the nature
of finding K-variables, this is appropriate.

In finding macro-devices, the question of which independent parameter depends on
which is solved after a value for the output is found.

In conclusion, using the free test below lets the system do the “right” thing in ali cases.

“Free with respect to" Testing

- The algorithm below tries to determine if a2 node QNODE (for the node in question) is free,
The algorithm may make an error and claim that QNODE is not free, even though it is. The
idea is to see if QNODE could possibly be computed on the basis of the input nodes and other
nodes “further” from the output nodes than QNODE.

The first step in the free test is to order the nodes in the network according to their
distance from the output nodes (if any). The ordering is easy to obtain. The outputs are given
distance = I. Then for each node N newly assigned a distance D the devices connected to it are
examined. If any of these devices has a rule computing this node N, then the nodes needed by
this rule that have not already been assigned a distance, and are not in the also-known extension
of the input nodes are now assigned a distance D+l. This process is repeated until no more nodes

can be assigned distances. The distances thus assigned are the minimal number of devices a

1I1. Coherent Behavior 158 Applying Transformation Rules

computation could pass through.

To determine if QNODE is free, its distance is determined using the distances
computed above. If there were output nodes specified, then the QNODE must have heen
assigned a distance (else fail). A list of "addable” nodes is fo'rmed containing thase nodes
strictly further away than QNODE from the outputs (the list is empty if no outputs were
specified). A property of this list is that any constants that might be combined with the input to
give QNODE a value will be in the addable list.

A list of nedes currently hav'ing values is formed; call it NLST. (In the case of
checking FREE-WRT specs, NLST is initialized to the nodes specified as inputs instead of
nodes having values). Naturally this list cannot contain QNODE (if QNODF. can be
determined on the basis of inputs, fail). The free test works by adding new nod‘es to NLST,
and seeing if QNODE ever gets added. If it does, then the test returns "no, QNODE is not
free.” If no more nodes can be added to NLST (whose elements are those nodes potentially
computable), then QNODE must be free, so the test succeeds.

Nodes are added to NLST by finding device rules meeting certain requirements. If
these can be met, then the node determined by the rule is added to NLST. These restrictions
should be considered a relaxation of the normal interpretation of the relation of needed-node to
node determined by a rule. Even if a needed is not known, if it is further from the output than‘
the node-determined (and QNODE) it will be considered "known,” since it has the potential of

being known and having the output depend on it. Furthermore, if there is a l-device longr

II1. Coherent Behavior 159 Applying Transformation Rules

circuit, as evidenced by some of the terminals needed being connected to the terminal computed,
then the system is willing to assume that the circuit can be eliminated. -

A slightly different set of conditions is used for complex devices because the rules for a
complex device generally do not reflect the entire "computational dependency” story.

These requirements are:

FOR SIMPLE DEVICES

I. Node computed is not already in NLST.,

2. Rule does not return a mode.

3. Each node-needed is either in NLST or in the addable list, or equal to the
node-determined.

4. Rule does not use any macro-devices (this should probably be moderated?).

5. If node determined is addable, then it must have a smaller distance than any of
the nodes needed.

FOR COMPLEX DEVICES

I. Form set of nodes attached to complex device terminals not marked as being
either constant-terminals or mode-terminals.

2. 1f QNODE and a member of NLST are in this set, then QNODE is not free.
Test fails.

3. If all nodes in this set are in NLST or addable except one, then add that one to
NLST. :

4. If all nodes in the set are either in NLST or addable, then select the node closest
to the output (using distances previously computable) and add it to NLST.

This completes the description of the free test,

Concluding Remarks

All the basic algorithms have now been described. The next (and last) chapter will "walk

through™ an example that exercises much of the system’s capabilities. Hopefully this will put

II1. Coherent Behavior 160 Summary

everything into perspective.

Many of the activities of the system have not been described. For example, detailed
explanations have not been given for how device rules are interpreted, how doublets are
detected, how nodes and devices are merged, and how tim?-costs are summarized so they can b
compared.

. Other back streams and side waters of the system will be mentioned in passing during
the next chapter. These include topics like how time-costs are propagated through
macro-devices and how code is generated.

Similarly, many of the procedures that Aave been described would be horribly time
consuming if implemented as described. The system uses many interlocks, tables of previous
results, update lists, etc. to actually end up doing as little as possible.

No apology is offered for these sins of ommission and commission; this document is not
an implementation manual but the presentation of a theory of problem solving. Hopefully the
reader can imagine solutions to all of the problems mentioned above. Some, no doubt, would be

superior to the ones actually used.

IIL. Coherent Behavior 161 Tables for Chapter 111

TABLE "TRANSFORM TYPES"

REMOVE -- removes a circuit, or more generally creates a new computation path from input to
output when the pattern doesn’t contain such a computation path. The inputs and
outputs refer to the newly created computation path.

SUMMARIZE -- this is a transform that doesn't result in any new nodes. Commutation is a
good example of this type.

REDUCE -- reduces the size of a circuit by extablishing a new computation path containing
fewer devices. If the new path uses a macro-device, the "count” should include the
devices packaged into this macro-device, '

RANGE -- This is like 2 REMOVE transform except that only a computation path involving
weak device rules is established between inputs and outputs. MULT-SIGN (used in
the square-root example) is a good example of this type.

RESTATE -- None of the above. SINGLE-REC-GEN is an example of this (it doesn’t result
in a qualitative speedup). ’

SPEEDUP -- This is only used for improving code. No new computation paths are created,

except those between nodes already having a computation path. The time-cast of the
path from input to output is (qualitatively) reduced.

For writing code, partial matches (except from SPEEDUP transforms) are propagated
according to the order above. In general, the types propagated are those down to and including

the type responsible for the most recent successful rule application.

IT1. Coherent Behavior 162 Tables for Chapter 11

TABLE "Enablement Tests for Writing Code”

FOR TYPE-A

I. Outline nodes could intersect *assume-unknown set. One node in outline 1s neither
known nor in +assume-known. If no outline, TYPE-A fails.

2. One outline 1s actually known. (dropped if only one outline node is specified)

3. The outputs are unkriown and not in +assume-known. This restriction makes sure that
the assumptions abicut the state of the deduction are consistent.

4. All inputs and outputs are in fact unknown. This guarantees that the computation path
could be part of a legitamate circuit.

5. No duplications in outline. This was discussed above.

6. If sreduce-group is non-empty, then computation path (inputs and outputs) interc-cts
sreduce-group. This focuses the attention of the system on one circuit at a ume for
TYPE-A purposes. :

RESPONSE:

Outline not 1n +assume-known and not actually known added to sassume-unknown. This
couples with restriction | above.

Inputs and outputs added to reduce-group. This couples with restriction 6 above.

FOR TYPE-B

1. All outline nodes are known or *assume-known. Compare this to TYPE-A restriction .

2. If any outline is in +assume-known, then no inputs or outputs can be in *assume-known.
This combines with a side effect below to keep the system from getting distracted by
non-productive rule applications. '

3. No duplications in outline.

4. All cutputs are in fact unknown. This is meant to suggest that the output could lead to
computing the desired output of the problem statement.

RESPONSE

Inputs added to sassume-known. This couples with restriction 2 to prevent non-praductive
rule applications at the same “site” on a circuit. This contrasts with TYPE-A, where
multiple applications at the same site are encouraged (A6).

Outputs added to *assume-unknown.

III. Coherent Behavior 163 Tables for Chapter 111
TABLE "Enablement tests for IMPROVING code”

FOR TYPE-A
1. One outline in *asume-known (dropped if only one outline).
2. One outline either not in ¥assume-known but in nodes-definitely-used, or in #assume-unknown.
3. Output not in nodes-definitely-used.
4. If sreduce-group non-empty, either one of the inputs or outputs is in +reduce-group, or none of
the inputs are in nodes-definitely-used.
5. Outline must be non-empty, and no duplicate nodes in it.

RESPONSE:
Inputs and outputs added to sreduce-group.
Outline not already in *assume-known added to sassume-unknown.

FOR TYPE-B

1. All outline in nodes-definitely-used or +assume-known.

2. Inputs known or in *assume-known, but not in *assume-unknown.

3. No outline depends on output (or output unknown).

4. Any output not In assume-unknown but in nodes-definitely-used should depend on inputs.
This says that a type-b application should shrink previously used paths.

5. Either outline empty, or does NOT intersect assume-unknown.

6. The inputs intersect either nodes-definitely-used or #improved-nodes.

RESPONSE: .
Output added to +assume-unknown Input added to sassume-known

H1. Coherent Behavior 164 Tables for Chapter IH

TABLE "PACKAGING PRIMITIVES®

Pushing-value-structures -- at any particular time, nodes in the datum network have value
structures. These can be pushed onto an auxiliary list, to be later popped. The
node’s value structures are replaced with “empey®. Noee it turns out that this is
never done recursively. '

Initialize-a-node -- this sets up a new variable name, and gives the node that varisble name for
a value. All other facets are similarly initialized.

Previously-computable-node? -- a node can be looked up in the list created by
push-value-structures to determine if its value was known when value structures were
pushed. If its value was known, then this test succeeds.

Suggest-external-nodes'» This suggests “extra” node's whose values used to be computable and.
are guaranteed to be free with respect to the computation paths from the inputs to the
outputs (if applicable). Nodes suggested are Mﬂmd (see tbtwe)

Pop-value-structures - restores’state of world to wl\at it was before pushing.

IV. Walk Through and Conclusions 165 Bernoulli Number problem

CHAPTER 4
WALK THROUGH and CONCLUSION

- This chapter has two goals. The first goal is to put the various procedures and capabilities of
the system into perspective by following its operation while it solves the moderately difficult
problem of writing a "Bernoulli number generator.” The second goal is to review and speculate

about the theory of problem solving presented in the preceeding chapters.

T he problem statement

The usual text-book definition of the n'® Bernoulli number B(n) is the following claim about
the set of Bernoulli numbers:
Sum from n=0 to inf.LB(N)/(nMIt" = t/(e* - 1)
Just to make the problem solution a little shorter, the code-writing problem given to the system

h coefficient equal to B(n)/(n!). Tt would be

will be stated in terms of a power series with the n!
easy to write a transformation rule to make this restatement. Diagram "Bernoulli Problem
Statement™ shows the original problem network.

On the face of it, the problem statement is asking for the "insides” of a DO-loop to be
written, based on the overall result of the DO-loop. The "t" in the definition is universally

quantified, but isn't really a parameter: the quantification would be "for all n, exists B(n), for all

t” rather than the usual function definition "for all n,t exists B(n)" (where B(n) is a variable, not

- 166 -

DIAGRAM '"'BERNOULLI PROBLEM STATEMENT"

CO-NODE = 0
A T (PSPROD)

INPUT

FACTORIAL

fact-n

O BN (OUTPUT)

EXPONANTIAT

BN is the Nth Bernoulli number
as a function of N

This defines B(N). The
equation is to hold for

all positive t.

—me o Em e e em e o e o am ER e o e e em em R e e e e e Em ee Em e e e e e e e = - -

Definition of TPS:
convergence is implied

CcO
e VI
G N

TPS

inf a
PSX = z G(n) x
N =c0
one rule -- computes PSX from c0

and x.

IV. Walk Through and Conclusions 167 Bernoulli Number problem

a Skolem function). The reader is cautioned against being concerned with quantification in

what follows.

Outline of the solution

The solution to the Bernoulli number generator problem involves applying three transformation
rules in the sequence shown:
I. Expand the form e'-l to a term-wise power series. The transform 1s named
EXP-I-FEXPAND.
2. Note that "t“ is the result of a multiplication of two power series. A new power
series is formed for this product. The transform is named TPS-MULT-U.
3. Note that if a power series has the property that for all x {P(x)=x], then all
coefficients are zero except for the coefficient 3 (= 1.0) of x.
Then a device ‘rule for summation uses the fact that if the result of summing from CO to N is
known for each N, then each term of the summation can be determined.

The summation device used in this problem is closely related to the SIGMA device
shown in the diagram "Sigma Device." This device shows the power inherent in the techmiques
developed within these pages for dynamically configuring looping control structures.

In device SIGMA the decision as to whether the computation from N to SUM s
“inside”™ or "outside” the loop is left until relatively late in the problem-solving effort. While
there are ather ways to make DO-loops "work” in an EL-like constraint language, no others as
yet developed have the capability of defining a device like SIGMA.

The solution to the problem of efficiently implementing the course-of-values recursive

function for computing F (in diagram "Sigma Device") will be examined in detail later, when

DIAGRAM "SIGMA DEVICE"

c N F-in

SIGMA . F

F-ou
sum

Two rules: Given "c" and 'N", compute '"SUM"
N
SUM = E F(m) = G(N)
m=_c

Given "F-in'" and "C", compute "F-out" using an equivalent algorithm to
the recursive "F':

F(c) = G(c)

F(N+1) = G(N+1) - E F{(m)

m=C

(this only uses F(c),...,F(n) to compute F(n+l))

- 168 -

IV. Walk Through and Conclusions 169 Bernoulli Number problem

the solution of the Bernoulli number problem needs it. A mathematical treatment of this

solution was given in chapter 1.
Stating the Problem

The Bernoulli problem is hard to state, and therefore provides a good context in which
to compare and contrast this system’s approach with the systems built by Burstall and
Darlington [Bu77], Barstow [Ba77], and Manna and Waldinger [M79].

Burstall and Darlington’s transformatiori system takes first-order recursion equations as
specifications. The Bernoulli problem statement certainly isn't one of these.

Barstow’s system takes as its specification the results .of McCune’s [Mc77) program
model builder. These specifications are actually very high level language programs in that they
always can be interpreted (however inefficiently). How much effort would be required to
convert the Bernoulli problem statement to this form? To start with, the problem would have to
be solved, and then a high level program would need to be constructed. That is, information
gathered while solving the problem may need to be thrown a;«ray in order to use Barstow's
system.

Manna and Waldinger's system uses a specification technique potentially more powerful
than the technique used here, since they can specify side effects. They can "non-constructively”

specify a function like GCD:

IV. Walk Through and Conclusions 170 Stating the Problem sp
GCD(x y) <= COMPUTE max{z:zlx and zly}
where x and y are positive integers
This specification cannot be interpreted as it stands, because without using} some other facts
there is no obvious upper bound on the values for "z" that must be examined. The braces {.}
are set-constructors, and on the face of it the set above is infinite.
Incidentally, this system could state the GCD problem slightly differently:

X positive, Y positive, X|GCD, YIGCD, XINE, YINE
NE > GCD, and NE has the value (NOT-EXIST input-spec)

That NE has a value constrains the GCD to be the largest number meeting the other
constraints because any value NE larger than GCD also meeting those constraints is known not
to exist. Naturally, something like a set-constructor could also be created.

The ;ituation with the Bernoulli problem is that the output of the Bernoulli function is
specified in terms of the behavior of the entire function, not just by the relation of the output to
the input. This distinction is similar to the distinction between first and second-order predicate
calculus.

In conclusion, none of the three systems discussed can even state the Bernoulli number
problem, and only Manna and Waldinger's system has the potential for a "slight extension” that

will let it express the problem.

Convergence and Primitive Recursion

In order to express the Bernoulli number problem and the concepts required for its solution, the

IV. Walk Through and Conclusions m Stating the Problem.sp

system must come to grips with notions like the convergence of power series. Burstall [B69],
Floyd [F67), Manna and Waldinger (M78}, [M79), and others suggest using well-founded sets to
prove termination. Even if one can convert a question of a power series converging into a
question of a program terminating, finding a well-founded ordering of the real numbers so that’
a proof can be constructed is as hard as proving convergence in the first place.

The following explains one way to approach the problem of convergence within the
“"network of constraints™ formalism,

The TPS (term-wise power series, see table "TPS Device") device has a rule for
computing the value on its PSX tem;inal using terminals START and X, and uses a macro
~ device from terminal N to terminal FN (called G in diagram "Bernoulli problem statementf).
A power series could also be defined by giving a way to compute the "next” coefficient (such an
“incremented-term-wise power series” device has not been implemented).

In order to determine time-costs, and in order to guarantee that the programs written by
the system terminate, it is necessary to specify an upper bound to the number of times the body
of a loop will be executed, or the maximal depth of a recursion. This means that any
computation path contained in a network is expressed in a primitive recursive form. There are
functions, like the well-known Ackermann's function and the LISP interpreter, that are not
expressable in a primitive recursion form.

This limitation isn't as serious as it seems. Most practical non-primitive recursive

functions look something like

IV. Walk Through and Conclusions 172 Stating the Problem.sp

(DO-FOREVER (SETQ X (READ)) (P X))

where P is primitive recursive. Language interpreters are not primitive recursive because they
must interpret programs that are themselves not primitive recursive.

Another apparent p}oblem concerns the fact that primitive recursive functions written in
a primitive recursive language are (in general) much longer than they would be if written in a
general recursive language (like LISP). But this isn't really applicable to thé synthesis system
because the laﬁguage it writes code in ¢s general recursive.

The. real difficulty in only working with p;'imitive recursive procedures becomes
apparent when trying to write a device rule for TPS. Some'power series are uniformly
. convergent (within the region of interest).

$ (x) = (the usual partial sum) = Sum from n=0 to m: a X"

S(x) = 3g + X + 32x2 4+ anx“ ‘o

If for any E, there is an, M such that
I5(x) - Spy(x) < E

then S(x) is uniformly convergent.
" Even knowing that the power series described by the TPS device is uniformly convergent
doesn’t tell how fast the series converges.

The decision was made to avoid the convergence problem by fiat: the device rule
claims that the number of terms required is bounded by the square of the number of bits of
accuracy required (compare to Newton's method where the upper bound of the number of terms

is the log of the number of bits of accuracy, when it converges). Before meeting this decision

with too loud a cry of outrage, consider two points. First, in the Bernoulli problem- statement it

IV. Walk Through and Conclusions 173 Stating the Problem sp

is impossible to tell how fast the series will converge because the function from N to B(N) hasn't
been discovered yet' Second, there isn't anything wrong with using a special construction
cases where a series is known to converge as fast or faster than a certain rate.

Closely related to the rate of convergence is the problem of how the series converges
In the simplest case, cne would like the remaining error to be no more than the fast correction:

IS(x) - SM’l(x)I < ISM(X) - Sm+l(x)|
(By the way, this condition alone does not guarantee convergence). If this is true, then the
general recursive form of the approximation function for S can examine the size of each term to
tell if the desired accuracy has been obtained. Unfortunately, this turns out not to be true for
the Bernoulli numbers. B(cdd-number) 1s zero except for B(l)=-1/2.

The solution to this problem selected for the TPS device is to refuse to "belive” that
the significance of each new term 1s falling off faster than an exponential decay. Again, this is a
reasonable, but not universally applicable assumption (if a term’s significance falls off very
much slower, then a string of 00 terms would cause the system to stop summing terms earlicy
than it should have). The TPS device rule is shown in table “TPS Device”.

The problems of rate of convergence and manner of convergence are apparently
unavoidable and unsolvable in trying to write a general purpose power series evaluatinn routing.
This illustrates why an automatic program synthesis system is needed. That the system being
described can handle problems of convergense (at least in some situations) has already ben

demonstrated in the Newton's method solution to the square-root problem.

IV. Walk Through and Conclusions 174 Finding an Algorithm

Finding an Algorithm
The system breaks the code synthesis task into two distinct phases:‘ finding an
| algorithm, and implementing the: algorithm. The first phase sometimes involves a lot of

deduction. The second phase involves little more than propagating CODE-EXPression facets.

Initialization of the Deductive Process

The problem statement is givén to the system by first defining the problem network BSPEC (
in the diagram “Bernoulli problem statement™) and then asking the system to encode a particular
computation path from the network terminal N (corresponding to the internal node of the same
name) to the terminal BN. The system is further instructed to call this function

"BERNOULLI"

{(define-network bspec (n bn)

((tps («constant 0.0) psprod psx n fn) deftps)

~ (factorial n factn)

({*c factn fn bn) oprod)

({*c netl psx psprod) dtpsprod)

(exp psprod net)

(+c netl (xconstant 1.0) net))
(encode-network 'bspec 'bernoulli '(n) ‘bn)

After the function ENCODE-NETWORK has completed its effort, in addition to a new LISP
function BERNOULLI having been written, there will be a new complex device of type
BSPEC with two terminals N and BN available for use in other networks.

After removing value structures (except values noted as being inputs like the constants

1V. Walk Through and Conclusions 175 Finding an Algorithm

0.0 and 1.0), the input node N is given a value
(*VARIABLE N).

The normal assumption list initialization gives

+ASSUME-KNOWN empty

*ASSUME-UNKNOWN BN

+REDUCE-GROUP empty
Value propagation takes place, and only the node FACTN can be given a value. Although
chapter 2 showed how the factorial function could be synthesized and a complex device created,
here factorial is treated as a primitive.

Value propagation is a two step operation (repeated until no more propagation can be
accomplished), the first propagating LBOUND. ERROR-BOUND, and UBOUND facets’
independently, and the second propagating TIME-COST, NODE-USED, and NVALUE in
that order. If a TIME-COST facet is propagated, then the resulting rule-closure is used to
propagate NODE-USED int> the same node. If that succeeds, then NVALUE is pmpagéto:'d,
again using the same rule-closure. In what follows, the LBOUND, ERROR-BQUND, and
~ UBOUND facets are never important.

The TPS device has 2 macro-device specification going from (nodes) N to FN, and N
is known while FN is unknown. This configuration satisfies the conditions for the outward
macro-device assumption extension rule (i‘n chapter 3, repeated here): |

Outward Macro-device Assumption Extension: If any of a rule’s macro-device input’
nodes are known, then add the rule’s needed nodes to sassume-known. Furthermore,

if the macro-device's output node(s) are unknown, add the rule's output to
*assume-unknown.

IV. Walk Through and Conclusions 176 Finding an Algorithm

The node PSPROD (on the "X" terminal of the TPS device) is added to sassume-known, and

the node PSX is added to *assume-unknown.

Matching (First Rounds)

Since no more value propagation can take place, partial matches are started for REMOVE
type transforms. None of these partial matches can succeed at this point. SUMMARIZE type
transforms are tried next. Three partial matches are completed, and psuedo-devices are creawd,v

These transforms are all for performing commutations: two for multiplication and one
for addition. There are, of course, other ways to tell a system (but not this system) abrut
commutative rules. The disadvantages of the approach used here are that the datum netwerk
(the "data base”) grows, causing the number of partial matches to increase. Another
disadvantage is that simply adding these commuted devices takes a while. The advantage is a
.simpler, more unifo.rm representation of knowledge. «

The system performs a round of partial-match propagation for each psuedo-device
expansion (transform application) that actually does something {either adding a non-duplicated
device or merging nodes). When trying to expand psuedo-devices, all unexpanded devices are
examined. In what follows, this subtlety will normally be glossed over.

Again, no REDUCE matches afe found, but some SUMMARIZE traﬁsforms succeed.

These are transforms trying to commute the commuted devices. As soon as each of these

twice-commuted devices is added to the datum network, duplicate devices are detected and

IV. Walk Through and Conclusions m Finding an Algorithm

merged. Part of the merging process involves combining lists of partial matches already trind.
This means that since one of the devices being merged (the original) has already had a
commutation transform started in it, the result of the merge will be immune to commutation.
There is one more hurdle to go over before the system “gets down to business.” The
pattern formed by a pair of commuted devices matches two different associativity patterns, each
two different ways. Since there are three such commuted pairs, there are twelve REDUCE
transfor.'ms potentially applicable. The sitvation is shown in diagram "Why no Dupllcates in

Outline.” All enablements for these situations fail (regardless of the state of the deduction).

Using the power series for exponentiation

A well-known power series expansion for exponentiation is:
K lex +xYe e xnle..
In the Bernoulli number problem, there is a form eX - 1 with its own power series expansion
derived from the above by ignoring the first term. This power series is encoded into a

transform EXP-I-EXPAND with enablement as shown (see diagram "EXP-I-EXPAND"):
{define-transform exp-l-expand {t et-1)
{((exp t et)
(+c et-1 (#constant 1.0) et))
((tps (*constant 1.0) t et-1 node-n node-fn)
(factorial node-n n-fgct)
(*c node-fn n-fact (#constant 1.0))))

(define-enablement exp-1-expand restate (nil (t) (et-1)))

The pattern of this transform matches the problem network, the enablement fails TYPE-A (see

DIAGRAM "WHY NO DUPLICATES IN OUTLINE"

+ASS0C2
AT D :
plus c plus
typical enablement:
X REDUCE ((C D) (B) (A))
plus

s
(

plus X -

typical enablement: REDUCE ((S X) (Y) (Q)) plus
Q="

PAIR OF COMMUTED DEVICES: (seed from above can match

J either device in this
f pattern)

plus

]
K~______p1us

+ASS0C2 +ASSOC3

A=B » S =X

C=D Q=Y

fails: duplicate outline fails : duplicate outline
- 178 -

4R N Y

BRSNS

y

DIAGRAM "EXP-1-EXPAND"

L i ‘ ﬁ&ﬁs*iué‘f{)@’) Bng dovond T W

fr i “shall gmsz‘sw w0 2 "”‘f LR SEEN

éﬁ of ol /Y siHD

TRSCTEI onetall ogneessed g taldueh o tuist 2 o
y X n?blenent RESTATE (RIL % (ET-l)) N
T MY Y ton Buew 2y guduee: ows o beliggs emw (JHA 4
aiviovm 1s0gepaben nour ol ar sub)
3 besizng uo

‘%} r;ﬂ!'nﬁ)ms; s

wit Yo 21Rq IngirogaY

«emIokeaEil & b asgqed bloow iz

start s

Fs ié ?Mim@ﬁ*} §-13 »fsg; 3
i Maslamuan) Dstes ateshos 3t}

l.o

$initas el 847

B

sl msidotg

P ing¥inoue) |

e snit winl B esumdsd Wimien mven o bluow

IV. Walk Through and Conclusions 180 Finding an Algorithm

table "Enablement Tests for Writing Code" in chapter 3) but passes the TYPE-B application
criteria. In addition to adding three devices to the datum network, node NETI is added to
sassume-unknown (by the way, NET1 was flagged as a "wishful thinking” extenbsion). No other
assumption extensions are made. Diagram "Bernoulli after EXP-I-EXPAND" shows the
important parts of the datum network after this transform has been applied.

What would happen if a transformation EXP-EXPAND (also a RESTATE type of
transform) for expanding the exponentiation device were present in addition to
EXP-I-EXPAND? -

(define-transform EXP-EXPAND (t et)

((exp t et))

((tps (*constant 1.0) t et-1 node-n node-fn)

(fagtorul node-n n-fact)

(+c et-1 (*constant 1.0) et)

(*c node-fn n-fact (*constant 1.0))))
The instantiated +c device from EXP-EXPAND could immediately be merged with the
problem device

(+c netl (xconstant 1.0) net)

as a result of doublet processing. Unfortunately if both EXP-EXPAND and
EXP-I-EXPAND were applied, the two resulting TPS devices would not currently be merged
due to implementation inadequacies involving macro-device indexing.

Using (instead of the above)

(TPS (xconstant 0.0) T ET NODE-N NODE-FN)

would be more painful because a later rule pattern (TPS-MULT-U) would no longer match

IV. Walk Through and Conclusions 181 Finding an Algorithm

until after a rule pulled the subtraction into the TPS “loop.”

In the previous chapter a suggestion to measure "amount” of "wishful thinking” was
briefly discussed. One reason to believe something like that would be handy is illustrated here
EXP-1-EXPAND involves.less wishful thinking to get form NETI to P5SX than
EXP-EXPAND would in getting from NET to PSX.

Another way to think about expanding the exponentiation device is that the EXP
device could be defined as a complex device with both rules (as it has now) and # defining
network. The issue involved in expanding user-defined complex devices have not heen
explored, but it would seem that these expansions should take place affer matching RFESTATE
transforms. As mentioned in the previous chapter, any complex devices actually nsed for
writing code are expanded as part of improving code.

This same issue also arises when considering the FACTORIAL device. In chapter 2
there was a demonstration showing how this function could be written from a specificatinn
This device could also be written as a complex device (or system-defined devire) The

potentials of using complex devices have not been explored.

Multiplication of Power Series

After worrying about commutation a while, the system again looks at the partial matches nf
REDUCE typr transtorms. There are two ways the pattern network of the TPS-MULT U .

transform (see diagram "Transform TPS-MULT-U" and table "TPS-MULT-U") can march

1V. Walk Through and Conclusions 182 Finding an Algorithm

the datum network. The two resulting partial matches are both instantiated, creating two
psuedo-devices. The psuedo-device from the partial match with the seed TPS device matching
the original TPS device fails the U-variable specification because the constant 1.0 is not
unknown.

If the TPS-MULT-U seed device matches with the datum TPS created by
EXP-I-EXPAND, then the U-var:ule search succeeds with UFY -> BN. The enablement for
this transform meets the TYPE-B criterii,' so expansion of the psuedo-device takes place. A
new complex device type is created for computing (I/x!). A device of this new type is added to
the datum network according to the transform’s macro-device specification along with copies of
the devices in the transforms instantiation network.

"The assumptions are not modified as a result of applying this transform.

Although the TPS-MULT-U transform looks like a handy transform for multiplying

power series together, using it this way is made difficult by the presence of the U-variable -

specification. In order to write a power series multiplication rule (call it TPS-MULT), about all
that would be needed is to drop the U-variable specification and change the SIGM A2 device
(defined pelow) to thé SIGMA device discussed earlier. Unfortunately, it turns out that the
suggested rule TPS-MULT does not lead to a solution of the Bernoulli numbeir problem. .

The SIGMA2 device is defined as shown in table *SIGMA2". Note the use of
embedded *DO constructions and the multi-directional macro-device specification. This device

is a close relative to the SIGMA device discussed earlier. It is used here because the terms

DIAGRAM "BERNOULLI AFTER EXP-1-EXPAND"

PSPROD

0.0
TPS TPS
(original) (from EXP)
(INPUT)
N
FACTORIAL
TIMES FACTORIAL
PSX NET1
BN 1.0
(OUTPUT)

- 183 -

DIAGRAM "TRANSFORM TPS-MULT-U"

- . e T aeeEmea ™o

-

UFY dis a
U~-VARIABLE w0 nx | -
MY - MFY ’ 1 il)
MY*\) i . | ‘
TPS TPS ‘ MULT-F
O O— 1 (seed) : acro dev.
UFY MFY
‘P2 Pl FFX1
§
MPROD
c0 Cl
PLUS
TPS
" MPROD

enablement: REDUCE((CO C1) (MY) (UFY))

- 184 -

I'V. Walk Through and Conclusions 185 Finding an Algorithm

being summed depend not only on the summation index (in MY, terminal DEF-X) but the
value of K (or L) on terminal TO. The explicit claim about SIGM A2 is that the value an

terminal INTERM depends only on the value on the DEF-X terminal, and not on terminal

TO.

The SIGMA2 rule for computing INTERM uses data structures. Discussion of this

topic will be postponed.

Completing the Deduction

Only one more transform application is required to obtain a solution network for the Berncally
number problem. The TPS-CONSTANT-COLLAPSE, of type REMOVE, i~ shown in tahle
"TPS-CONSTANT-COLLAPSE" To see how the pattern configuration arises, ntice thit
when the TPS-MULT-U transform was applied, MX -> PSPROD, MPROD -> PSPROD)
a TPS device was created with its "input” and “output” tied together.

The significant parts of the solution network, after applying
TPS-CONSTANT-COLLAPSE, are shown in diagram “"Bernoulli Solution.” Remember that
the solution network has many more devices than shown in this diagram.

As a result of applying this transform, xassume-known is extended to include node I,
and #assume-unknown is extended to include node SUM. But it hardly matters, because the
;:)roblem is solved by virtue of the rules in SIGMA2: the rule claims to compute a value for the

node on terminal INTERM., and as shown in diagram “Bernoulli Solution,” this terminal is

1.o'<l‘

1.0

PLUS

L
PLUS
0.0 N
\ to
FACTORIAL
SIGMA2
MULT-F
pdatied Dt |
|
SUM ¢ '
FACTORIAL '
1.0 L}
t
—-—J '
MPX *
‘
f ! .
i 1
0.0]
\ .
The complete solution network has many I 1.0)

D e AR A g s s -

more devices than shown above.

- 186 -

IV. Walk Through and Conclusions 187 Finding an Algorithm

connected to node BN; BN is the node for the solution.
DATA STRUCTURES AND CODE GENERATION

The SIGM A2 device has a pre-packaged solution to a typical data-structure design problem:
speed up an implementation of a function defined by course-of-values recursion. There are
several possibilities including association-lists, stacks, and (used here) arrays.

How does SIGMA2's rule work? A variable P is initialized as an empty vector (hut
the synthesizer "thinks" P is a floating point number) containing some number of elements. The
vector runs from the value on the terminal FROM (in this case 0.0) to the value on the terminal
DEF-X (in this case the input N). The first element in the vector is also assigned.

Vectors (in this "toy" implementation) are manipulated by three functions:

(CREATE-VECTOR from to initial-value) => vector
(STORE-VECTOR vector index value) => vector
(ACCESS-VECTOR vector index) => value (or error!)

The deductive system onl& has two “types” of values: floating point numbers (of
unspecified precision) and mode values (currently only #TRUE and #FALSE, though all crle is
completely general). This type-less approach is inadequate for any domain except the essentially
untyped domain of numerical programs investigated here. At the very least one needs tn
distinguish among integers, floating point numbers, character strings, and complex data

structures. A possible way to represent this "type” information is as a separate facet in the value

IV. Walk Through and Conclusions 188 Data Structures and Code Generation

structure, The proposed way to design data structures is an elaboration on this idea.

Both data-structures and control-structures are in a sense prepackaged in the device
rules. Two methods of combining these prepackaged control-structures are used: concatenation
and packaging via macro-devices (and the associated multi-return facility to be discussrd
shortly). What would it mean to combine prepackaged data structures?

The accessing pattern packaged in SIGM A2 migh: be described as follows:

I. Size of indexed structure known when it is created.
2. Elements of structure are floating point numbers.
3. Stores occur in sequence, starting at the bottom index.
4. Accesses (“fetches”) occur in sequence, starting at the bottom and going all the way
to the most recently stored,
A data structure with these properties can be implemented in various ways including a LISP L«
(do a RPLACD at the end to add a new element), or an array. A more interesting and efficint
implementation uses a block of contiguous memory and two pointers. The first pointer is the
"next fetch” pointer, and the second is the "next store" pointer. The beauty of this
implementation is that the only arithmetic operation needed for manipulating the printers is
"increment by I" (usually a very cheap machine instruction). General vectors and arrays do net
have this nice property. Such a structure might be called a file.

How could a "data structure designer” be added to the synthesis system? A« a

speculation, suppose descriptions similar to the one given above for the structure used by

SIGMAZ could be propagated much like yalues are currently propagated. As this description

was propagated through the network, and used in computing "cost”, it could be mcdified by

IV. Walk Through and Conclusions 189 Data Structures and Code Generation.

relaxing various restrictions (for example, the “fetches become non-sequential but always in
increasing index). Perhaps at the eﬁd of the deductive process, after the output has received a
value but before code-expressions are propagated, the data structure specifications could be
examined. There are probaﬁly only a few fundamentally distinct data structures, so it migl;t be
possible to do the design almost by table lookup. -

This approach should be contrasted with Barstow’s [Ba77] method of refining along
(essentially) an “implements a kind of" hierarchy. Rosenschein and Katz [R77] discuss notions
similar to the proposal here in a user—inte}active context.

The view suggested here is that the synthesizer should worry about the influence of
control-structure decisions on data-structure design, rather than data-structure decisions on
control-structure design. Several investigators have advocated concentrating on data over
procedures. Hewitt [H79) shows how.control structures can be viewed in terms of the
interaction among datum. Dennis [D75] discusses a similar view of computation in terms of
data flow. Liskov and Ziles [L75] discuss language design issues inherent in this "data first”
view.

1 believe something along the lines sketched out above could be made to work despite
the large number of open problems involved. [also believ? this is the most important direction

" in which to extend this research. .

Generating Code

IV. Walk Through and Conclusions 190 Data Structures and Code Generation

At tﬁis point, node BN (the desired output) has received a value structure with expressions for
its TIME-COST (see table "Bernoulli Time-cost”), NODE-USED, and NVALUE (see tahle
"Bernoulli Nvalue”) facets. Some peculiar things were done to obtain its time-cost; tﬁese will he
discussed shortly. The system is now ready to write code. Of course, this is not the first time
the system has generated code while solving the problem: it wrote code for the MULT-F
macro-device when the TPS-MULT -U transform was applied, and it wrote three subroutines
when finding macro-devices for the sigma2 device. The code for these functions (it 1sn't very
pretty) is shown in table “Bernoulli other code" The resulting code for computing Berncutl
numbers is shown in table “Bernoulli code.”

When code fragments are being propagated, the system knows how many times each
node was used. If a node was used more than once, the first time its value is used, a SETQ IS
constructed and the code fragment in the node is modified to be the (gensym) variable
SETQed. Unfortunately this problem has no examples of this.

SIGM A2 does not use a macro-device with more than one output specified, so the
multi-return facility was not employed. When this is used, the code written for the first of the
outputs includes SETQs to temporary gensymed variables for all of the other outputs. If the
macro-device is used and the first output is specified, then the nearest PROG variable list has
the temporary variable names added to it. Code is also generated for all the other outputs
specified when the macro-device is created. However, before “"plugging in" these code

fragments, a check is made to see if the most recent use of the macro-device computing the first

IV. Walk Through and Conclusions 191 Data Structures and Code Generation

output involved the same input forms, and if so the preper temporary variable is used instead.
The code that eventually emerges is correct but (according to sofne) ugly because it uses a
non-local variable.

Lambda applications result from using macro-devices (in a round-about way). To

make the code look a little more attractive, a form involving a lambda application is massaged

A by’ checking the arguments to the '.mbda, and noting any that are atomic (either a variable

name or a number). These atomic arguments (if any) are used to rewrite the lambda form to
reduce the number of arguments taken by the lambda. One can see this by close inspéction of
the tables of code.

The above operation is an example of the kind of improvement found to be mare easily
accomplished on the resulting code than during the propagation process. Another improvement
performed as a post processing step is so-called "constant folding.” If all of the arguments to a
LISP function are numeric, then the function is evaluated and the form replaced by the result.
COND forms are also improved by constant folding and dead-code elimination. Earnest [E74]
gives a good summary of code optimization (sic) techniques.

Another kind of improvement not performed involves repeated terminal references in a
device rule. The code has several instances of the following:

{COND ((= (RFACTORIAL gensym) 0.0) (ERROR))
(T (QUOTIENT 1.0 {RFACTORIAL gensym)))).

This code fragment results from the rule for the #C device:

(RULE-OF «C A (B C)

1V. Walk Through and Conclusions 192 Data Structures and Code Generation

(*CASES ((PRIM= B (*CONSTANT 0.0))
(ATRUE (*CASES ((PRIM= C (*CONSTANT 0.0))
{*TRUE (*ANOMALOUS 2-DIV-1))
(*FALSE (*NOT-EXIST DIV-BY-ZERO)))))
(*FALSE (PRIM-DIV C B)))))
Notice that the device rule uses the terminal more than once. It would be easy enough to detect
this situation and issue a SETQ or build a LAMBDA expression, but the current
implementation doesn’t handle this in the best way.
Why does the test to see if the factorial of a number is equal to 0.0 occur? If there were

a weak rule for the factorial device noting that the lower bound of the output is 1.0, then this test

would have been eliminated.

Packaging Code for a Complex Device

In order to be able to use complex devices for value propagation, a minimum of four facets
must be handled: TIME-COST, NODE-USED, NVALUE, and CODE-EXP. Of these,
three are quite easy, given that the code for the defining network has been written and given a
name. The methods used are outlined below.

NODE-USED -- combine node-used expressions of the input terminals

NVALUE -- return a form applying the name of the function to the NVALUE
interpretations of the arguments.

CODE-EXP -- return a form applying the name of the function to the CODE-EXP
interpretations of the arguments. Actually, the lambda expression for the function
definition is used, instead of the name so that the various improvement techniques can
be applied.

It would not have been too difficuit to be able to package knowledge about bounds (LBOUND

IV. Walk Through and Conclusions 193 Data Structures and Code Generation

and UBOUND) but the current implementation does not have this capability.

Information relating the name of the LISP function written for a complex device, the
defining network, the device type, and how the various facets are to be propagated is put
together in a structure indexed by a atomic encoded function name (usually gensymed).

Encoded functions can be used, for example, in NV ALUE-like expressions.

The Truth about TIME-COST Propagation

Propagating TIME-COST through a complex device turns out to be difficult. Consider the
macro-device formed for MULT-F (see diagram "Bernoulli Solution”). The time cost of
computing RFACTORIAL turns out (in this system) to be proportional to the size of the input.
But the size of the input is not known when the complex device is created.

Instead of a TIME-COST expression, a summary is recorded (along with other
information) when an encoded function is defined for a network. This summary (type and on«
or two numeric parameters) gives the "order” of the time cost according to the following
classification scheme ("Lg" is Knuth's suggested abbreviation for "Log base 2"):

CONSTANT A
POLY-LOG BxALgx)
POLY BxA
POLY-EXP BxA2*

In the above, A and B are numeric parameters, and "x" is used to represent the most significant
input terminal(s). For example, if the time cost depended on the product of two input terminals,

then the summary would be like x2 The system summarizes Lg{Lg(x)) as a constant, and a

IV. Walk Through and Conclusions 194 Data Structures and Code Generation

similar faux pas is used to close the summaries under each operation.

The system’s treatment of complex devices with regards to TIME-COST analysis is
similar to the style of analysis humans perform. In order to propagate a TIME-COST through
a complex device (or, equivalently, the "device” found for a macro-device specification), an
expression is built using the complex device's summary and the NVALUE of the “principle
terminal" The principle terminal of = complex device found for a macro-device specification 1s
(arbitrarily) that terminal corresponding to the first argument of the specification.

The summary algorithm is one of the two techniques used for comparing TIME-COST
expressions. The other uses "typicél values” for inputs and does a numeric comparison of
evaluated expressions. These two analyses will not always agree!

Another peculiarity about TIME-COST propagation concerns cases when the body of
loop (either iterative or recursive) has a time cost depending on the value of a loop variable.
This problem arises in the Bernoulli number example (see table "SIGMA2"). There 1s no way
to produce an accurate time cost in these situations without possibly introducing iterative
constructions into time-cost expressions. While there is no theoretical reason why this could nrt
be done, in practice these expressions would be extremely clumsy to deal with. As an
engineering judgemental désign choice (read "kludge”) any *DO-VARIABLE form in a
time-cost expression is arbitrarily replaced by the expression for "maximum number of times
the loop body will be executed.”" The final time-cost for the solution to the Bernoulli numher

problem (see diagram “"Bernoulli Solution”) is in table "Bernoulli Time Cost." The systrm

1V. Walk Through and Conclusions - 195 Data Structures and Code Generation

discovered that the code ran like N3, The final code is in table "Bernoulli Code.” This code
has defects similar t§ those noted for the Newton’s method SQRT code.

The classical algorithm for finding Bernoulli numbers is the N3 algorithm found by the
system. There are much better algorithms. The Bernoulli problem is an instance of a more
general class of probléms involving the reversion of formal power series: Given a power series
S(x) in terms of its coefficients, find the coefficients for another power series P(x) so that
S(P(x))=x. Brent and Kung [B78] show that using Newton’s method yields an O(N?/2)
algorithm, and also using Fast Fourier techniques gives an O((N lg N)*/2) algorithm for solving

power series reversion problems.
CONCLUSION

This report has described a system for writing and improving code described by (essentially)
input/output specifications. Although the system has solved a variety of coding problems, it
should not be called an expert at this task in the domain of numerical programs. That was not
the goal of the research.

The goal was to explore a different way to build an automatic problem solving system.
The goal was to construct a system robust enough to solve several kinds of problems in a
complex domain, and still have the property that the solution effort was “coherent.” T his gnal

has been obtained.

IV. Walk Through and Conclusions 196 Conclusion

Coherent behavior was obtained from local, axiom-like rules by first restricting the
expressive power of these rules, and then making use of two consequences of this restriction.
The first consequence was that "backtracking”, "guessing”, splitting the data base to handle
disjunctions, and other operations to accomplish the same task were made unnecessary because
disjunctions were eliminated. For the same reason tautologies in the restricted rule language
could be recognized in polynomial time. The second consequence was that the rules were simple
enough to automatically predict their etfect on the state of the solution effort.

By deriving an abstract characterization of the rule’s effect on a problem netwark in
terms of its effect on circuits and computation paths, possible rule application sites could hw
ordered in terms of a selection criteria. The classification scheme, acceptence criteria for the twa
types of application, and the methods of modifying the problem state descriptions :ve basic
results of this research.

Another basic result concerned a way to represent recursive and iterative constructinns
within the network of constraints formalism. This method involved dynamically finding
portions of the problem network to “fill in blanks” in a pre-packaged schema involving bnth
control structures and data structures. The advantages of this approach are two: complex
time-cost projections can be easily encoded in the system’s rules, and manipulation of things like
power series became surprisingly easy (the Bernoulli example in this chapter used only a few
short rules).

The system's computational mechanisms heavily use a propagation process in one guise

IV. Walk Through and Conclusions 197 Conclusion

or another. Propagation processes have the important property that tiwey easily lend themselves
to a parallel-processor implementation (provided, as in this system, no "race conditions™ accur
because of backup). Moare traditional goal/subgoal deductive systems do not have this property.
As VLSI technology makes multi-processor processors financially more attractive, this
consideration will become increasingly important.

Aithough primarily concerned with problem-solving in a particular domain, the
deductive procedures, control mechanisms, and representational scheme should be adaptable to
other domains’that share the following properties with the programming task:

I. The "answer” is an arrangement of steps.
2. The steps generate and/or modify objects of some sort.
3. Questions can be asked of some objects.
Even in domains that do not have the properties above, use can be made of the key ohservatinn

that if the knowledge representation scheme is weak and inexpressive, then the deductive system

can use the fact that certain things cannot happen to be more efficient.

IV. Walk Through and Conclusions 198 Tables for Chapter 1V

Table "TPS Device"

(make-device-type tps start x psx n fn)
(rule-of tps psx (start x)
(*do ((prim+ {xconstant 36.0) (prime x x))
(prim-less (*do-variable mva)
iiInsist on six decimal degits of accuracy
{prim* x (*constant 0.000001)))
(*do-variable sum)
iiNote well: first pass is setup only
+;indx goes from start to whatever
;int is the new term. it is added to sum, and averaged into mva
i.mva is a 4-wide moving average. it starts out at x (not the first term!)
sixprod starts at x"start, and gets multiplied by x at each step
(nt (%constant 0.0)
(ﬁrim* {(*macro-device ftps fn)
(*do-variable indx))
(*do-variable xprod)))
(xprod (expt x start) (primt {sdo-variable xprod) x))
(indx start (prim+ (*do-variable indx) (*constant 1.0)))
(sum (*xconstant 0.0)
{(prim+ (*do-variable sum) (*do-variable nt})))
(mva (prim* (*constant 4.0) (prim-abs x))
(prim+ (primx (#constant 0.75)
(*do-variable mva))
{prim-abs nt)))))
s:Macro-device specification:

({fips (n) (fn))))

<

rre (’ ey 'S’—“, t\, &\ u‘&:‘?,, ;‘._A'v,,“\‘., LR AN . - .

<

o,

s

’
; .
3
172
L

1

T g AR

;,,,’;.

1

S

v
*
-
e
e
S,
.
. -
v
t
s
s
L2

R A St

IV. W IPwbiigh ‘e Eonclusions 19955 anoizul 003 dys RN CRIpHE -V
Tanie AR P
{xt-%lak %‘sﬂfﬁé ?»‘w’b iié;@u g1 Moty iampis syl <33 veh-sigm) R

(n'1m-troﬁﬂm tps-mult-v ' et b o1t Samois Yo-8iut}
- N =% 33 m
{co cl mx mprod fx} ffxl my Wiy ,dﬂ Amo *' bl Y 1sb) ob#) :
({tps c1 m pl ful ffxl)
(tps =0 biplriyidRgye srdntev st wmng) avtasvgus-sbomd } "

(.C »l ,z m.‘,) ‘ > At ley; .
(19 c12 wn mprog } ya)l* 12" {3 2idaiaav-obe) nofony-cvson)
2“?@3%2 m&f “raend® Fadd “QW..&QM;?WV oy taueti

(+¢ ‘{H“ﬁ" pidy: syc-obn) (8.1 Pandangae} @tﬁq} sosY fauys)
%= Yab moeY vofasv-afests) q)

{+c my y1 1) e ')
(ec mfy fyl sig) fonefnt 33 aatwe *.s»o:u :
(sigme2 0 b y2 wont wer

uly :12
.ff vty ufu&zsnxw}i

(defins-transform-macro m% ? , .
i afdsiwiv-phe} fofasv-gnoiL)

(malt-f (¥x1) (?x3)) . -
(n ty1)) Ciauga sldetsav-che]

(daf ina-u-varisbla-node tps-muit-y 5137 11 satvat-ensanti)

{3 a(%;’si 3@ {tﬁ} {3omus sl4aTi8V-0b®)

(def ina-ensdlement tps-mult-u 2 4 $oluspocnsar)) -mhag)
e ey o) 1 O

ERE S A X Gl LN
AARLERNT '“éﬁtiﬁ gg i} ons}
THUOT SIAAT v«mx, 243,

e 434
wotresages-shome}

TEr tann; o 48 ey -aht) {0 sideregyophe emfagl
fonse gidbbnnv-ghs}
(& & fnsfoonst) sug

Cmer owbiiabuyyooahed detyed
Petowel F opurvshosvIReL)]}

oo midategy gl

i a’fﬁww‘nram?

TS ri

L tagteseoe o smreg) agrt W)

{ix3-1s8} {ovadat «-Tab v} 1)
{{mratnt) {x¥-%8b ¢-Ipb o} [$1})
{ {Ettoean) {af) iF

IV. Walk Through and Conclusions 200 Tables for Chapter IV

TABLE "SIGMA2"

(make-device-type sigma2 from to result def-x interm def-fx)
{rule-of sigma2 interm (def-x from)
(*do (def-x
{s«mode-expression (prim= (*do-variable count) def-x))
sireturn)
(access-vector (#do-variable p) def-x)
viiteration variables. Remember that "bumps®™ occur sequentially
{count from (prim+ (*constant 1.0} (*do-variable count)))
{p (create-vector from def-x
({*macro-device 2 interm)
from from
((#macro-device k result) from)))
(store-vector (*do-variable p)
(*do-variable count)
((*macro-device f2 interm)
(*do-variable count) (%do-variable count)
(prim- ((*macro-device k result)
(*do-variable count))
(~do (;;The number of iterations is realiy
;sthe (#DO-VARIABLE COUNT)
DEF -X
(*xmode-expression
(prims («do-variable m) (#do-variable count)))
(*do-variable sum)
(sum (xconstant 0.0)
(prim+ (*do-variable sum)
((*macro-device f def-fx)
(*do-variable count)
{(*do-variable m)
(access-vector (xdo-variable p)
(*do-variable m)))))
(m from (prim+ (sconstant 1.0)
(#do-variable m)))))))))))
((f (to def-x interm) (def-fx))
((f2 ¢) (to def-x def-fx) (interm))
{k (to) (result))))

IV. Woll Thvogh andifoncisions sz aociautnsDUNS URHPIRW VT

(rule-of sigmel rasult (from 18) «3:a4:ic0-THAYZNOD-29T% JJGAT
(*de ({prim- frem ts) L
(proms (ne-vorieble count) to) aaqe!ion-taetencs-2a} mreiinsat-sarteb)

(*de-varistle sum) - {x = 53}
(count fram (arime (sde-variabte: apil AW c91))
(sum {(smsere-device :ww me3e) ¥ Tpe})

U0 teatenent) xqm)
fee S AgheN ;;fﬁ'?lﬁ 8 tnedenens)
teom : : ey 99’?&
| (sou-vartebie commtI M) (g
((stghed (Teom dut-x) {dof-1x}}})) ‘ =

(prenr sum

mw sagst fonr-1nefenes 248 Srame | daan -t Yab)
ey Tk {133

: {éi most) Fluest Sempis So-sfun}
SRR {63 movY -awea}) o)
(def ina-transtorn tps- m&m«unm (a# éfm o187 ey nabx) omb 1y)
{e2 x ¥} : S {mur sfestrev-obe)
t{mﬁt&&waf; {1oumy sTdRCN-oBR] Ha g} MY Taued)
i xmp %ﬁa w& sai’ew-wmn)

. :;ﬂ o : UL e mau}
. 4§51 Yo Wi »h#hmnmjﬁ
’ . PRy

(e sideragvooba) -
{41{R1-Ten) {x-Yob movY) bodgte))
((et) (=) t!ﬂ) B ‘

IV. Walk Through and Conclusions 203 Tables for Chapter 1V

TABLE "Other code written during Bernoulli number problem*

Code for macro-device MULTI-F:
(DEFUN 60042 (GO039 GDO41)
(COND ((= (RFACTORIAL G0041) 0.0) (COND ((= 60038 0.0) (ERROi))
(T (ERROR))))
(7 (QUOTIENT 60039 (RFACTORIAL G0041)))))

Code for macro-device F:
(DEFUN 60069 (G0066 G006? GDO6B GOOG3 GOOG4)
(TIMES (COND ((= (RFACTORIAL G0067) 0.0) (COND ({= 60068 0.0) (ERROR))
(T (ERROR))))
(T (QUOTIENT GOO6S (RFACTORIAL G0067))))
((LAMBDA (G0041)
(COND ((= (RFACTORIAL GO041) 0.0) {COND ((= 60063 0.0) (ERROR))
| (T (ERROR))))
(T (QUOTIENT GO063 (RFACTORIAL 60041)))))
(DIFFERENCE (PLYS 60066 GO064) 60067))))

Code for macro-device F2 (note duplicated vartiable names):
(DEFUN G0071 (GOO66 GOO67 GOO65 G0O63 60064)
(TIMES (COND ((s ({LAMBDA (G0041)
{COND ((= (RFACTORIAL G0041) 0.0)
(COND ((= G0063 0.0) (ERROR)) (T (ERROR})))
(T (QUOTIENT G0063 (RFACTORIAL G0041)))))
(DIFFERENCE (PLUS GO066 GOOG4) GOO67))
0.0)
~ (COND ((= G0065 0.0) (ERROR)) (T (ERROR))))
(7 (QUOTIENRT G0065
{(LAMBDA (G0041) _
(COND ((= (RFACTORIAL G0041) 0.0)
(COND ((= 60063 0.0) (ERROR)) (T (ERROR))})
{T (QUOTIENT 60063 (RFACTORIAL 60041)))))
(DIFFERENCE (PLUS GOO86 60064) G0067)))))
(RFACTORIAL G0067)))

Code for macro device K:
(DEFUN G0087 (GOOB6 GOOB1 GOOB2 GOOS3 G0O0A4)
_(COND {(= (PLUS GO086 GO0B2) GOOSL) 60084) (T G0083)))

IV. Walk Through and Conclusions 204 Tables for Chapter 1V

Table "Bernoulli Code"

(DEFUN BERNOULLI (N)
(DO ((COUNT 0.0) (P (CREATE-VECTOR 0.0 N 1.0)))
((= COUNT N) (ACCESS-VECTOR P N))
(SETQ COUNT (PLUS 1.0 COUNT) P
(STORE -VECTOR
P
COUNT
((LAMBDA {G0065)
(TIMES (COND ((= ((LAMBDA (60041)
(COND ((= (RFACTORIAL 60041) 0.0) (ERROR))
(T (QUOTIENT 1.0 (RFACTORIAL 60041)))))
(DIFFERENCE (PLUS COUNT 1.0) COUNT))
0.0)
{COND ((= GOO65 0.0) (ERROR)) (T (ERROR))))
(T (QUOTIENT G0065
((LAMBDA (G0041)
{COND ((= (RFACTORIAL G0041) 0.0) (ERROR))
(T (QUOTIENT 1.0 (RFACTORIAL G0041)))))
(DIFFERENCE (PLUS COUNT 1.0) COUNT)))))
(RFACTORTAL COUNT)))
(DIFFERENCE
(COND ({= {PLUS COUNT 1.0) 1.0) 1.0) (T 0.0))
(DO ((SUM 0.0) (M 0.0))
((=.M COUNT) SUM)
(SETQ SUM
(PLUS SUM
{ (LAMBDA (60068)
(TIMES (COND ((= (RFACTORIAL M) 0.0)
{COND ((= 60068 0.0) (ERROR)) (T (ERROR))))
(T (QUOTIENT GOO68 (RFACTORIAL M))))
((LAMBDA (G0041)
(COND ((= {RFACTORIAL 60041) 0.0) (ERROR))
(T (QUOTIENT 1.0 (RFACTORIAL 60041)))))
(DIFFERENCE (PLUS COUNT 1.0) M))))
(ACCESS-VECTOR P M)))
M (PLUS 1.0 M)

Wy T T g

NG chda

KT

PR

R

LA AT

-4

e

A

AT,

<

B A R

O L

AT AT

IV Wtk Thiough:and Conclusions o0 ¢ zeniaood s WHOEhapilt WV Y
TASUR s "DdvnidiN1 4 [tome eie e 541
(*EXPRESS 10M . 04}
(eRIN . W 3idainaved}
(+EXPRESSTON LIRS {THU0D 148 a;ﬁw £88) =MINAY BUIRZIROND SOOMs
{PRIM O SRR 135RTHaV-Gux) BOTIIV- L2300R) ROIIZIGMNIs)
(*EXPRESS 1O o HEA mzﬂzﬁm»; TRUOD i
(PRIMS LI TR 1488 1§ G IACARY SMIRY . uOlAI s]
(*CONSTANT 14.0) ' "5}
{SEXPRESS 10N T E LTS3 A3} BRII2IRBLA)
(m IRATIROGAY (B.E TEATARDDS) *‘3&53 KR
* (EAPRESSION (PREMD {GLONEVNAT2.9) (SVAREABLE W)))
(1 (+ERORESTION
{9 PRANRED D
T (8 & (ACONBEANY 27.0)
fiie (umtu (PRIMe (SENPRESSION (PRENS. (+CONSTANT 28.9)
PECCTH THATIAGIRY {91 TRATZRGIA ' tm IWe (SCONSTANT 2.0)
ey U R
(.y“;wgmm {4 110A15AY-0F0) ROTITV.38072)
(*VARIABLE N))) , _‘ o1 reBu Ae
(*CONSTANT 14.0)))) Sregnt LigALRAY-Dae (TRUDD XiBALRAYV 04« 27080)
This con be susmerized to: . BOLRLIRTK I
(POLY 3.0 2.0) REELE
This maens the tikl:editing “séutﬁﬁ? iﬂ (TR 3 A¥-Ggat (B2E) HOTZZITINGs]
. {%“e THATERGS ¢ B}
[MYF SSRATRAY D0l SMINY
D oLapEa) WORZE3EGR1s)
fiin 5 Ak
L}

1V. Walk Through and Conclusions 206 Tables for Chapter IV

TABLE "Bernoulli NVALUE facet”

{*DO
((*VARIABLE N)
(*MODE -EXPRESSION (PRIM= (*DO-VARIABLE COUNT) (#VARIABLE N)))
(*EXPRESSION (ACCESS-VECTOR (#DO-VARIABLE P) (#VARIABLE N)))
(COUNT (*CONSTANT 0.0)
(*EXPRESSION (PRIM+ {#CONSTANT 1.0) (%DO-VARIABLE COUNT))))
(P
(*EXPRESSION (CREATE-VECTOR (#*CONSTANT 0.0) (#VARIABLE N)
(*EXPRESSION (60071 (CONSTANT 0.0) (#CONSTANT 0.0)
(EXPRESSION (60087 (+CONSTANT 0.0)
(*CONSTANY 1.0)
(*CONSTANT '1.0)
(*CONSTANT 0.0)
(*CONSTANT 1.0)))
(*CONSTANT 1.0) (*CONSTANT 1.0)))))
(*EXPRESSION '
(STORE-VECTOR {#DO-VARIABLE P) (#*DO-VARIABLE COUNT)
(*EXPRESS [ON
(60071 (*DO-VARIABLE COUNT) (#DO-VARIABLE COUNT)
(*EXPRESSION
(PRIM-
(*EXPRESSION (GO0B7 (%DO-VARIABLE COUNT) (#CONSTANT 1.0) (#CONSTANT 1.0)
(CONSTANT 0.0) (*CONSTANT 1.0)))
(*D0
({*VARTABLE N)
(*MODE -EXPRESSION (PRIM= (#DO-VARIABLE M) (%DO-VARIABLE COUNT)))
(*DO-VARIABLE SUM)
(SUM (*CONSTANT 0.0)
(#EXPRESS ION
(PRIM+ (*DO-VARIABLE SUM)
(*EXPRESSION (60069 (*DO-VARIABLE COUNT) (#DO-VARIABLE M)
(*EXPRESSION (ACCESS-VECTOR (#DO-VARIABLE P)
(#DO-VARIABLE M)))
(*CONSTANT 1.0) (*CONSTANT 1.0))))))
(M (#CONSTANT 0.0)
(*EXPRESSION (PRIM+ (#CONSTANT 1.0) (2DO-VARIABLE M))))))))
{(#CONSTANT 1.0) (*CONSTANT 1.0)))))}))

Bibliography 207 Bibliography
Bibliography
[Ba77] Barstow, D. Automatic Construction of Algorithms and Data Structures Using a

Knowledge Base of Programming Rules, Stanford Al Memo 308, 1977,

[Bi76] Biermann, A. and Krishnaswamy, R. "Constructing programs from example
computations,” /EEE Transactions on Software Engineering, Vol. SE2, Sept. 1976.

[(B78) Brent, R. and Kung, H. “Fast Algorithm for Manipulating Formal Power Series,” J AC M
Vol. 25, No. 4, Oct. 1978. S ,

[Br77) Brown, R. Use of Analogy to Achieve new Expertise, Al-TR-403, 1977,

[(Br76]Bruno, J. and Sethi, R. "Code generation for a one-register machine,” JACM Vol. 23,
No. 3, July 1976. -

[B69) Burstall, R. "Proving properties of programs by structural induction” Computer J., Vol.
12, Feb. 1969.

(Bu77) Burstall, R. and Darlington, J. "A Transformation System for Developing Recursive
Programs,” JACM Vol. 24, No. |, Jan 1977, '

[dK 79] de Kleer, J.» Doyle, J., Steele, G., Sussman, G. “Explicit Control of Reasoning” in
Artificial Intelligence: An MIT Perspective Winston and Brown (eds.), MIT Press, 1979,

[D75] Dennis, J. First Version of a Data Flow Procedure Language, MIT LCS LM-6l, 975.

* [Do79) Doyle, J. "A Glimpse of Truth Maintenance” in Artificial Intelligence: An MIT
Perspective Winston and Brown (eds.), MIT Press, 1979.

(E74) Earnest, C. "Some Topics in Code Optimization,” JACM Vol. 2, No. 1, Jan. 1974.

[E76] Emden, M. and Kowlaski, R. "The Semantics of Predicate Logic as a Programming
Language,” JACM Vol. 23, No. 4, Oct. 1976. : :

[F67] Floyd, R. “Assigning meanings to. programs” Proceedings of Symposium on - Applied
Mathematics, Vol. 19, Schwartz (Ed), AMS, 1967.

[G76) Green, C. "The Design of the PSI Program Synthesis System,” Proceedings of the |

Bibliography 208 Bibliography

Second International Conference on Software Engineering, 1976.
[G69] Green, C. "Application of theorem proving to Problem Solving,” 1 JC Al 1969.
{H75) Hardy, S. "Synthesié of LISP functions from examples,” / JC Al 1975.

[H74] Henschen, L. and Wos, L. "Unit Refutations and Horn Sets,” JACM Vol. 2I, No. 4,
Oct. 1974

(H79] Hewitt, C. "Control Structure as Patterns of Passing Messages” in Artificial Intelligence:
An MIT Perspective Winston and Brown (eds.), MIT Press, 1979.

(K77} Kant, E. "The Selection of Efficient Implementations for a High-Level Language,”

Proceedings of the Symposium on Artificial Intelligence and Programming Languages,
1977.

(L75) Liskov, B. and Ziles, S. "Specification techniques for data abstractions,” IEEFE
Transactions on Software Engineering, Vol. SEI, No. 1, March 1975.

[(L77]) Long, W. 4 Program Writer LCS TR-107, November 1977.

[L78] Low, J. "Automatic Data Structure Selection: An Example and Overview,” CAC M
Vol2l, No. 5, May 1978.

[M75] Manna, Z. and Waldinger, R. "Knowledge and Reasoning in Program
Synthesis,” Artificial Intelligence, No. 6, 1975,

(M78] Manna, Z. and Waidinger, R. "The Logic of Computer Programming," IEEE
Transactions on Software Engineering, Vol. SE4, No. 3, May 1978.

(M79] Manna, Z. and Waldinger, R. "Synthesis: Dreams => Programs,” /EEE Transactzons on
Software Engineering, Vol. SE5, No. 4, July 1979.

[Mc77) McCune, B. “The PSI Program Model Builder,” Proceedings of the Symposium on
Artificial Intelligence and Programming Languages, 1977.

[R69] Rektorys, K. Survey of Applicable Mathematics MIT Press, 1969.

[R79] Rich, C. and Shrobe, H. "Design of a Programmers Apprentice,” in Artificial
Intelligence: An MIT Perspective Winston and Brown (eds.), MIT Press, 1979.

Bibliography 209 Bibliography

[R80] Rich, C. On the Use of Inspection Methods tn Programming, forthcomming thesis 1980.

[R77) Rosenschein, S. and Katz, S. "Selection of Representations for Data Structures” AIPL
1977. :

[S75A] Sacerdoti, E. A Structure for Plans and Beharior, SRI Technical Note 109, 1975.
[S75B) Sacerdoti, E. The Non-linear Nature of Plans, SRI Technical Note 101, 1975.

[Sh79) Shrobe, H. Dependency Directed Reasoning for Complex Program Understanding,
MIT-AI-TR503, 1979.

(S79] Stallman, R. and Sussman, G. “Problem Solving About Electrical Circuits” in Artificial
Intelligence: An MIT Perspective Winston and Brown (eds.), MIT Press, 1979.

[S77) Summers, P. "A Methodology for LISP Program Construction from Examples,” J AC M
Vol. 24, No. |, Jan. 1977.

[Su75) Sussman, G. A4 Computer Model of Skill Acquisition, American Esevier, 1975.

[U77] Ulrich, J. and Moll, R., "Program Synthesis by Analogy,” Proceedings of the Symposium
on Artificial Intelligence and Programming Languages, 1977.

(We76] Wegbreit, B. "Goal-Directed Program Transformation,” /EEE Transactions on
Software Engineering, Vol. SE2, No. 2, June 1976.

[W79) Winston, P. "Learning by Creating and Justifying Transfer Frames"in Artificial
Intelligence: An MIT Perspective Winston and Brown (eds.), MIT Press, 1979.

[Wu76] Wulf, W., London, R., and Shaw, M. "An Introduction to the Construction and
Verification of Alphard Programs,” IEEE Transactions on Software Engneering Vol.
SE2, No. 4, Dec. 1976.

This empty page was substituted for a
blank page in the original document.

CS-TR Scanning Project .
Document Control Form Date : 02 /ol9~/ T

Report # AL-TR-6(0 .

BRI

Each of the following should be identified by a checkmark:
Originating Department:

X Artificial Intellegence Laboratory (Al)
[0 Laboratory for Computer Science (L_CS)

Document Type:

JX Technical Report (TR) [Technical Memo (TM)
O other:

Document Information Number of pages: 210 (U 6~,maCxs)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: intended to be printed as :
O Single-sided or O Single-sided or
X Double-sided X Double-sided
Print type:
[Typewriter Offset Press [] Laser Print
[0 inkietPrinter [] Unknown (] Other:

Check each if included with document:

\ﬂ DOD Form Y[Funding Agent Form x Cover Page
{0 spine [0 Printers Notes O Photo negatives
O Other:

Page Data:

Blank PageStypeemmer;_[oLloows TiTLE PAGK FLAST PR (2.0%)

Photographs/Tonal Material ey page numben.

Othel' {(nots description/page numbed:
Description : Page Number:

T @ (]~ 10) 2 Wit BN 3-d0%, UNEE 5T) BRONK.
(20 =16) SenveiITROL ,<oy£R, PO o*chrr’SDB
Q) Tons papm PR.AT

Scanning Agent Signoff: -
Date Received: & /33 /1€ Date Scanned: _2-/JOY € Date Returned: %, 109 196

Scanning Agent Signature: %/\LJ“’\X W .
1

Rev %94 DSALCS Document Control Form cstiform.ved

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
t. REPORT NUMBER 2. GOVT ACCESSION NO.] 3. RECIPIENT'’S CATALOG NUMBER
AI-TR-610
4. TITLE (and Subtitie) S. TYPE OFf REPORT & PERIOD COVERED
Coherent Behavior From Incqherent Knowledge Technical Report
Sources In The Automatic Synthesis of
Numerical Computer Programs 6. PERFORMING ORG. REPORT NUMBER
7. AUTHORC(s) 8. CONTRACT OR GRANT NUMBER(a)

Richard Brown N00014-80-C-0505

OGRAM ELEMENT. PROJECT, TASK
EA UN S

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10.
IT NUMBER

Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projects Agency January 1981
1400 Wilson Blvd 13. NUMBER OF PAGES
Arlington, Virginia 22209 211

T4 MONITORING AGENCY NAME & ADDRESS(/! different from Controlling Office) | 5. SECURITY CLASS. (of thie report,
Office of Naval Research UNCLASSIFIED

Information Systems
Arlington, Virginia 22217

1%a. DEC&ASSIFICA?ION/DOWNGRADING
SCHEDULE

Y ey P ————
16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side if necessary and identily by block numbder)

Automatic Programming
Problem Solving
Numerical Programming

20. ABSTRACT (Continue_on reverse eide If necessary and identity, by dlock pumber) . P
A fundamental problem in artificia 1nte1?ﬁgence is obtaining coherent

behavior in rule-based problem solving systems. A good quantitative measure
of coherence is time behavior; a system that never, in retrospect, applied
a rule needlessly is certainly coherent; a system suffering from
combinatorial blowup is certainly behaving incoherently. This report
describes a rule-based problem solving system for automatically writing and

improving numerical computer programs from specifications.

FORM
DD , Jan 73 1473 eoiTioN OF 1 NOV 65 1S OBSOLETE UNCLASSIFIED
S/N 0102-014-6601 | —_ —
SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntered)

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

