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Abstract

How much information about the shape of an object can be inferred from its image?
In particular, can the shape of an object be reconstructed by measuring the light it
reflects from points on its surface? These questions were raised by Horn [HO70] who
formulated a set of conditions such that the image formation can be described in terms
of a first order partial differential equation, the image irradiance equation. In general,
an image irradiance equation has infinitely many solutions. Thus constraints necessary
to find a unique solution need to be identified.

First we study the continuous image irradiance equation. It is demonstrated when
and how the knowledge of the position of edges on a surface can be used to reconstruct
the surface. Furthermore we show how much about the shape of a surface can be
deduced from so called singular points. At these points the surface orientation is
uniquely determined by the measured brightness.

Then we investigate images in which certain types of silhouettes, which we call
b-silhouettes, can be detected. In particular we answer the following question in the
affirmative: Is there a set of constraints which assure that if an image irradiance
equation has a solution, it is unique? To this end we postulate three constraints upon
the image irradiance equation and prove that they are sufficient to uniquely reconstruct
the surface from its image. Furthermore it is shown that any two of these constraints
are insufficient to assure a unique solution to an image irradiance equation. Examples
are given which illustrate the different issues.

Finally, an overview of known numerical methods for computing solutions to an
image irradiance equation are presented.

Thesis Supervisor: Berthold K. P. Horn
~ Title: Associate Professor of Computer Science and Electrical Engineering
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Chapter |

Motivation

How much information about the shape of an object can be inferred from its image?
We are interested in a special aspect of this question: the reconstruction problem, which
is to determine the shape of an object from measurements of the light reflected from its
surface. In general, there are many surfaces which can give rise to the same image. So,
we will try to identify and analyze constraints such that the shape of a surface can be
uniquely reconstructed from its image. Our search for these constraints is guided by the
following question: Are there any “properties” of an object that are also “properties”
of its image or vice versa? In fact, as we shall see, such properties do exist.

Our work is based on Horn’s thesis [HO70]. He formulated a set of conditions (to be
discussed in the next chapter) which lead to a relation between the perceived brightness
of a small patch of a surface and its normal vector. This relation, the image irradiance
equation, is a first order partial differential equation (abbreviated in the following by
FOPDE) and each of its solutions determines the shape of an object. The problem of
finding solutions to the image irradiance equation is referred to in the literature as the
shape from shading problem. '

We will take two approaches towards finding a solution to the shape from shading
problem termed as the local and the global approach. By the local approach we mean
that only a small patch of an image is used to determine the shape of a surface. To
the contrary, in the global approach we examine images in which a silhouette can be
detected (here we refer to the outline of an image as a silhouette).

Intuitively, it seems clear that by looking at an image in which a silhouette can be
identified we should be able to conclude more about the shape of a surface whose image
we are analyzing than by just looking at a little patch. We will show that from certain




7

- images which contain a silhouette we can uniquely infer the shape of the surface which
gives rise to that image. Unfortunately the global approach is not always satisfactory;
there are also many images containing silhouettes which could be the images of infinitely
many different surfaces. There are also infinitely many surfaces which locally look the
same. So we will determine conditions under which the global approach is better than
the local approach. Notwithstanding, one can sometimes draw interesting conclusions
about the shape of surfaces which give rise to the same image by just looking at a small
patch of this image.

The local approach is taken to an extreme when we pose the following question:
What can be deduced about the shape of a surface from so-called singular points of an
image irradiance equation? At these points the surface normal to all solutions to such
an equation is uniquely determined by the brightness there. We investigate the above
stated question for a certain class of image irradiance equations, the so-called eikonal
equations, which describe a variety of physical phenomena. For instance, experimental
data suggest that the flux of secondary electrons in a scanning electron microscope can
be described by an eikonal equation [LAWHS60]. By using these secondary electrons to
modulate the appropriate devices, an image of a surface is created by the microscope.
Such an image exhibits shading [HO70, pp.85-87] and therefore to determine the
shape of a surface from its image one effectively has to solve an eikonal equation.
Studying eikonal equations, we show that the absolute value of the Gaussian curvature
at a singular point of all surfaces which give rise to a particular image, is the same.
Furthermore, assuming that the surface is convex at a singular point, we show that
its shape can be uniquely determined in some neighborhood of such a point from the
image intensities alone.

The other aspect of the shape from shading problem which we explore is its solution
when the image contains a b-silhouette (which is defined below). In this case a global
approach is taken. Let us first define the bounding contour of a surface: a point P
is on the bounding contour if the line connecting the viewer and P grazes the surface
(i.e., if this line lies in the tangent plane of P). Furthermore we assume that no two
parts of a surface obscure each other, i.e., we assume that the bounding contour is not
an occluding contour. The image (assuming orthographic projection) of a bounding
contour will be called the b-silhouette. The surface normal at a point on a bounding
contour is parallel to the normal vector to the b-silhouette and both vectors lie in the
same plane. Thus, some or all of the first order partial derivatives of the function
defining the surface are infinite for points on the bounding contour (we will say that
some components of the surface gradient are singular along a curve).

Remark: In the context of this report the phrase a function f(z,y) is singular at a
point (zg,yo) will always mean that:

Jim f(z,y) = J-o0. (I.1.1)

This terminology should not be confused with the notion of a singular solution which
we will explain in section A.4.
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. For example, the bounding contour of a hemisphere lying on a plane B is a circle.
Consider a Lambertian surface which has the property that each surface patch appears
equally bright from all viewing directions. If we look at a Lambertian hemisphere such
that the viewer and the light source are at the same point, its b-silhouette can be .
determined from its image. In this case the image irradiance equation describing the
imaging situation is singular and all the surfaces which satisfy such an equation have
a bounding contour. (We extend the notion of a singular function to equations.)

On the other hand, the existence and the position of a b-silhouette cannot be
determined from a continuous image irradiance equation. Thus the existence of a
surface which satisfies a continuous image irradiance equation and which has a bounding
contour does not necessarily imply that all surfaces which satisfy this equation have a
bounding contour.

In this report, Horn’s work on the shape from shading problem is extended.
He studied primarily images of smooth surfaces where the imaging situation can be
described by a continuous image irradiance equation (which is defined rigorously in
section IIL.1). Yet some objects have edges and their surface normals assume different
values depending upon which side an edge is approached from (we will say that the
surfaces normals are discontinuous along an edge). Can an edge be invisible in an
image? In other words, is it possible that a surface has an edge without it producing a
discontinuity in the equation? As it turns out, discontinuous solutions can arise from
continuous equations. In this case initial conditions (discussed in sections II1.2, A6 and
A.7) provide information about the occurrence of a discontinuity. Additionally, we will
show (in section II.2.3) under which conditions edges on a surface can be used as such
initial data.

We keep in mind that the image irradiance equation describes a physical situa-
tion and therefore the only solutions considered are those corresponding to (piecewise)
smooth surfaces. (A rigorous definition of the notion smooth surface is given in section
I11.1.) However there are image irradiance equations Tor which no solution correspond-
ing to a smooth surface exists. In particular, the existence of such a solution to a
singular image irradiance equation is not guaranteed. We are primarily concerned with
the identification of constraints which allow one to solve the reconstruction problem
uniquely. :

In general, a PDE describes a class of processes rather than a particular one.
Consider, for example, the Laplace equation:

Af =0 | - (112)

where A denotes the Laplace operator and f a-scalar field. This PDE constrains the
sources and the curl of the field f to be zero, but an infinite number of different fields
exist which fall into this category. Only when some further conditions about f are
specified can the solution to the Laplace equation be restricted to a single one.
Similarly, there are an infinite number of different surfaces which satisfy a given
_ image irradiance equation. Thus, as Horn [HOT70, HOT5] has already observed, in
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- general the image irradiance equation alone is not sufficient to solve the reconstruction
problem uniquely. It remained an open question whether there are any imaging situa-
tions for which every surface gives rise to a different image. As indicated before, taking
the global approach towards finding a solution to the shape from shading problem
allows us to answer this question affirmatively. To this end we will postulate three
constraints upon the image irradiance equation and prove that if these constraints are
known to hold, the reconstruction problem can be solved uniquely.

We now briefly describe the different chapters in this thesis.

Chapter II is a summary of the issues involved in the shape from shading problem.
For a more extensive discussion of this material see [HO70], [HO75] and [WOOD78].

Chapter III gives an overview of the different mathematical problems involved in
solving a FOPDE. The mathematical details used in this chapter can be found in
appendix I. In section IIL.1 we define two classes of image irradiance equations, the
continuous and the singular equations. Section III.2 deals in detail with the continuous
image irradiance equation. In particular we exhibit in section [11.2.2 that certain
continuous image irradiance equations can be transformed into singular equations.
This implies that all surfaces which satisfy such an image irradiance equations have a
bounding contour. In section II1.2.3 we examine how edges on a surface can be used
to reconstruct the surface. To help us understand the variety of integral surfaces of an
image irradiance equation we introduce in section 111.2.4 some concepts from differential
geometry and in section II1.2.5 gradient space as popularized by Mackworth [MAC73]
and Horn [HO77]. Section II1.3 describes the basic issues involved in solving a singular
image irradiance equation. In section 111.3.1 Marr’s [MAT7] work on occluding contours
is reviewed. Section II1.3.2 discusses the method of characteristic curves for singular
image irradiance equations.

In chapter IV we show how a singular point of an eikonal equation constrains its
possible solutions. ,

In chapter V we postulate three constraints upon an image irradiance equation such
that the reconstruction problem can be solved uniquely. In section V.1 it is proven that
if an image irradiance equation satisfies these constraints it has a unique solution. It
is shown in section V.2 that any two of these constraints are insufficient to assure a
unique solution to an image irradiance equation. o

Chapter VI gives a brief description and discussion of known numerical methods
for computing solutions to an image irradiance equation.

Chapter VII summarizes the results of this report and suggests some possible
applications.
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Chapter 1l

The Shape from Shading Problem

There are basically three components to the shape from shading problem which
have to be taken into account. They are the light source, the object and the camera as
depicted in figure 1 which is taken from [WOODTS, p.32], and termed as an imaging
configuration. Henceforth we will assume that an image of a surface is produced by
a camera. The shading of such an image can be explained as follows: The exposure
of film in a camera (for fixed shutter speed) is proportional to image irradiance, the
light flux per unit area falling on the image plane. Similarly, grey levels measured in
an electronic imaging device are quantized measurements of image irradiance. It can
be shown that image irradiance in turn is proportional to scene radiance, the light flux
emitted by the object per unit projected surface area per unit solid angle [HOST79].
The factor of proportionality depends on details of the optical system, including the
effective f-number. )

Scene radiance depends on the

o surface material and its microstructure,
o the incident light flux, and,
e the orientation of the surface.

Now we want to relate the shape of a surface to the shading of its image. Consider
a viewer-oriented coordinate system with the viewer located far above the surface on
the z-axis. If the objects imaged are small compared to their distance from the viewer,
_ one can approximate the imaging situation by an orthographic projection:
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Figure 1. Imaging configuration

2 §= 2 (IL1.1)
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where (Z,§) are the coordinates of the image of a point (z,y,z) made with a system
of effective focal length f, and the viewer is at a distance 2o above the origin. We
assume that (z2 + y% + 2?) < z3. For simplicity and without loss of generality it is
also assumed that the viewing direction coincides with the z-axis.

The orientation of a patch of a surface can be specified by its gradient (p,q,—1),
where p and g are the first order partial derivatives of z with respect to z and y. For a
given surface material and known incident light flux, scene radiance will depend only on
surface gradient. The function which describes this dependence, R(p, q), (or a contour
representation in gradient space), is called the reflectance map.

Recall that image irradiance and scene radiance are proportional and that we
assume orthographic projection. If E(z,y) is the observed image irradiance at the point
(Z,9) in the image then:

R(p,q) = E(z,9) (I.1.2)

where (p, g) are two components of the gradient at the corresponding point on the object
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being imaged. This equation is called the image irradiance equation. It is clearly a first
order partial differential equation since it involves only the first order partial derivatives
p and ¢ and the coordinates: z and y. In summary, to derive an image irradiance
equation we have to know the reflectivity function and the geometry relating the light
source, the object and the camera. :

How can an image irradiance equation be used to analyze images? Informally, sup-
pose enough information about the imaging situation is known so that the reflectance
map can be derived. Then at every point (zg,yo) the image irradiance denoted by Ey
can be measured. ‘Using the image irradiance equation we can determine the possible
values for p and g such that:

R(p, q) = Ey. (11.1.3)

However, the values for p and q cannot be chosen independently as p and ¢ have to be
the first order partial derivatives of a function 2z = z(z,y) defining a smooth surface. In
general there are many values for p and g which satisfy equation (II.1.3) and represent
the components of a surface gradient. Consequently, an image irradiance equation has
many solutions or equivalently, for a fixed imaging configuration many surfaces will
give rise to the same image. Thus we shall determine constraints under which the
solutions to an image irradiance equation are restricted to a unique one.
A word of caution: Several issues such as mutual illumination, shadows or specularity

are not addressed here.
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Chapter il

Overview

I1l.1. Classification of the Image Irradiance Equation

In this chapter, we will further investigate the shape from shading problem. Our
interests are twofold:

1) We wish to find the solutions to an image irradiance equation.

2) We wish to determine constramts which guarantee a unique solution to an
image irradiance equation.

The results concerning these two issues are different for continuous and singular image
irradiance equations, both of which are defined later in this section. First we make
some general observations concerning an such equations and their solutions.

An image irradiance equation is a first order partial differential equation in two
variables z and y. We are looking for a solution z = z(z,y) (also called integral surface)
which is a function of z and y and defines a surface from which light is reflected.
To be precise, the class of functions which we allow as solutions to the FOPDE has
to be specified and we proceed now with some relevant definitions. Using standard
nomenclature, a function f(z,y) is said to be of class C* if it has continuous k-th order
partial derivatives. The following definition captures formally our geometrlcal intuition
about a surface in R3:
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_ Definition: Let B C R2 be a connected and closed region, and let 2:B — R3 be
continuous on B. Then the single-valued function z = 2(z,y) defines a smooth
surface if z is C! at-every interior point of B. '

For smooth surfaces the unit surface normal is well defined for every point on the

surface by: :
(1,0, g’:‘:") X (0,1, 35)
1(1,0,42) x (0,1, 85)

A piecewise smooth surface is defined similarly. Unless otherwise stated we will always
assume that the solutions to any given FOPDE are (piecewise) smooth surfaces. We -
will denote by p and q the first order partial derivatives of z = 2(z,y) with respect to
z and y.

(L1.1)

We shall exploit the following two facts about an image irradiance equation:
1) The equation does not depend explicitly on 2.

2) The equation involves only two functions R and E, such that R depends
only on p and ¢ and E depends only on z and y.

An immediate consequence of 1 is that there are no singular solutions to the equation,
i.e., the complete integral describes all possible solutions. (For an explanation of these
terms see section A.4). As for 2, we will study image irradiance equations which fall
into either one of the following two categories:

1) The functions R and E are C'. We say that such an ima.ge irradiance
equation is continuous. This case is discussed in section II1.2.

2) The function R is C'. The function E is singular in z and/or y but for all
points (z,y) at which E(z,y) assumes finite value, it is C!. We say that such
an image irradiance equation is singular. This case is discussed in section III.3.

Since the measured image irradiance is always finite, it seems at first that singular
image irradiance equations are not of practical interest. However, for our purposes we
can think about such equations as useful mathematical constructs, i.e., a singular image
irradiance equation can be obtained by transforming a continuous image irradiance
equation appropriately. By appropriately we mean that the transformation is one-to-
one and onto and that the solutions to the original equation and the transformed one
_ are the same (section 1I1.2.2). For example, there is a transformation between the
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continuous image irradiance equation (III.1.2) and the singular equation (III.1.3):

2 o
1_%;;———12—(15 =z%+y? (11.1.2)
2 | .2 '
P +e’=1— (;_"’_ o (IIL1.3)

We still have to explain why such a transformation is useful, i.e., why it makes
more sense for us to analyze the singular equation (II1.1.3) instead of the continuous
equation (II.1.2). The reason is that we can gain some information about the integral
surfaces of a singular image irradiance equation without first solving it. To this end let
us define the terms bounding contour and b-silhouette:

Definition: A point P lies on the bounding contour of a surface defined by
z = z(z,y) if the tangent plane at P is perpendicular to the z-y plane. The
b-silhouette is the orthographic projection of the bounding contour onto the
z-y plane.

We will show below that each integral surface of any singular image irradiance equation
has a bounding contour, a fact which is not true for continuous image irradiance
equations. In section II1.2.2 we will construct two integral surfaces of a continuous
image irradiance equation such that one of them has a bounding contour whereas the
other does not. Why do all integral surfaces of a singular image irradiance equation
have a bounding contour? Recall (chapter I) that for points on the bounding contour
p and/or g become infinite. Now, an image irradiance equation is singular if there
are points (zg,yo) such that the only values for p and ¢ which satisfy the equation at
(2o, yo) are infinite. This explains the previously stated question. Furthermore, as the
b-silhouette is the projection of the bounding contour onto the image plane, the points
which constitute the b-silhouette can be uniquely determined from a singular image
irradiance equation (section II1.3). ,

We will not be concerned with discontinuous reflectance maps since these are rare.
They may occur when dealing with specularities, an issue not addressed in this report.
(It is also assumed that the reflectance map is not a constant since then the image will
also be constant.)

[11.2. The Continuous Image Irradiance Equation

In the mathematical literature, the most studied FOPDE’s are continuous and
have continuous first order partial derivatives. An overview of known results in this
area can be found in appendix I and we summarize them in the next few sections
only very briefly. In particular we explain why, in general, additional information is
needed to restrict the solutions to a given image irradiance equation to a single one.
Furthermore we address the problem of whether one can deduce any properties of the
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integral surfaces of a given image irradiance equation by just inspecting the equation.
To this end we investigate singular points, at which the tangent plane to all integral
surfaces of an image irradiance equation is uniquely defined by the image intensity
(section III.2.2). We can, then show (chapter IV) that for a class of image irradiance
equations the absolute value of the curvature of the integral surfaces at a singular point
is uniquely defined by the measured brightness there. In addition, we discuss a class
of image irradiance equations for each member of which we can deduce that all of its
integral surfaces have a bounding contour.

The main tool for solving a FOPDE is the construction of so called characteristic
curves. The following is a short explanation of this notion. A more detailed exposition
can be found in sections A.2 and A.3. Let

R(p,q) = E(z,y) (I11.2.1)

be a continuous image irradiance equation. What kind of information about an integral
surface (defined by z = 2(z, y)) of the previous equation can be deduced from it? For a
given point P on z the quantities p and q are constrained by (III.2.1) to lie on a curve.
Since p and g determine the normal (p,q,—1) at P, equation (III.2.1) constrains the
feasible tangent planes at P to a one-parameter family, “enveloping a conical surface
with P as vertex, called the Monge cone” [COHI62b, p.75]. The directions of the
generators of a Monge cone are called characteristic directions. Now, the characteristic
curves are those curves on an integral surface which at every point have as their tangent
direction a characteristic direction. The characteristic curves can be determined by
solving the characteristic equations which are five ordinary differential equations whose
solutions depend on initial values:

dz d dz

=" f; = F, =P +aFy (111.2.2)
d d

Z=—0FR+F) = Z=—(F+F)

Equivalently, we can say that for distinct initial values, different characteristic curves
are determined. Since each integral surface of a FOPDE is swept out by characteristic
curves (which we prove in section A.3), initial conditions (which are discussed further in
the next sections) are necessary to restrict the solutions to an image irradiance equation
to a single one; in the case where an image irradiance equation is continuous, a unique
solution to the problem can be found provided that an appropriate initial strip defined
by z =.z(t),y = y(t),z = 2(t),p = p(t) and ¢ = ¢(t) is known (section A.6 and
A.T). By appropriate we mean that this strip is not a characteristic strip and that the
following condition holds:

= et — . 111.2.3
A ds dt ds dt 70 ( )
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.Depending upon the initial curve, the integral surface is either continuous or discon-
tinuous as will be discussed in greater detail later on.

II.2.1. The Linear Continuous Imagé Irradiance Equation

We first review the case where the image irradiance equation is a linear FOPDE
e.g.,:
ap + bqg = E(z,y) (111.2.4)

where a and b are constants. This equation is of practical interest as its linear reflectance
map describes the reflectivity properties of the maria of the moon where the constants
o and b define the direction towards the light source (i.e., the sun) [HO70]. Linear
FOPDE’s are special cases of quasi-linear FOPDE’s (in which a and b are functions of
7,y and z). However, an image irradiance equation cannot be a quasi-linear FOPDE
unless it is a linear FOPDE. Furthermore we can show the following lemma:

Lemma: The solutions to an image irradiance equation of the form:

f(ap 4 bg) = E(z,y) (I11.2.5)

where f is a bijection, f—(E(z,y)) is C! and where a and b are constants,
can be obtained by a simple coordinate transformation from the solutions to
an image irradiance equation of the form:

p = E(z,y). (I11.2.6)

Remark: A bijection is a one-to-one and onto function. In the above lemma, f—?!
denotes the inverse function of f.

Proof: Since the function f is a bijection, equation (II1.2.5) and the transformed
equation (I1.2.7):
ap + bg = [ (E(z,y)) (I1.2.7)

have the same solutions. We abbreviate f~!(E(z,y)) by E(z,y). To prove the lemma
we distinguish three cases depending upon the values of a and b.

Case 1) a %4 0and b5% 0

The image irradiance equation is of the form:

ap + bq = E(z,y). (I11.2.8)
Now let z = 2(z, y) be a solution to:

p = E(%,7) (111.2.9)
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where Z and ¢ are defined by:

Then (%, §) = 2(z(%, ¥), ¥(Z, §)) is a solution to (II.2.8).

First we express z and y in terms of Z and ¥:

=2, Y
=gt
_z_ ¥

2a 2b°

(I11.2.10)

(I1.2.11)

Now we determine the first order partial derivatives of Z with respect to Z and y in

terms of the first order partial derivatives of z:

9z 0z0z , 0z0y 9z 1 dz 1

3% 0zd% ' Oydt 9z2a ' Jdy2a
93 9z9x  Dz8y 9z1 921

3y 09z0y ' oydy Odz2b dy2b

0z 0z 0z - -
d—a—i- +b§§ = 'a—z = E(z,y)
Thus: a3 3"’
z z S
a'a—i- + b5§ = E(Z, y)

which is the same equation as (II1.2.8).
Case2)a;é0a.ndb=0“ |
The image irradiance equation is of the form:

ap = E(z,y).
As aF# ()‘,'we can write this equation equivalently as:

E(z,y)

p=

_ which is of the form (II1.2.6).

(I11.2.12)

(I11.2.13)

(II1.2.14)

(I11.2.15)

(I11.2.16)




- Case 3)a=0and b4 0

The image irradiance equatior is of the form:
| bq = E(z,y). (II1.2.17)

As b 7% 0, we can write this equation equivalently as:

q= E(—:?l (IIL.2.18)
Now let z = z(z,y) be a solution to:
p= E(’;‘, %) (I11.2.19)
where Z and ¥ are defined by:
F=y (I11.2.20)
y==z. '

Then 2(Z,y) = 2(z(y), y(&)) is a solution to (II1.2.17).

Now we show that the first order partial derivative of Z with respect to ¥ is the first
order partial derivative of z with respect to z:

—_——— — 111.2.21
ay  ozay P ( )
Thus: .
0z _ E(%,9)
—_— = I11.2.22
ay b ( )

which is the same as equation (II.2.17).

Hence it suffices to examine linear image irradiance equations of the form (III.2.6). |

As previously mentioned, a FOPDE has, in general, infinitely many solutions.
What kinds of conditions can one impose such that the solutions to a FOPDE are
restricted to a single one? A solution to the Cauchy problem which is the problem of
constructing an integral surface passing through any given curve C, provides us with
one answer to this question and is stated in the following theorem:

Theorem: Let p = E(z,y) a linear image irradiance equation and let C' be an
initial, continuous and non-characteristic curve. If A (II1.2.3) does not vanish
along C, then there exists a unique, smooth integral surface through C.
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Proof: The proof follows from the existence and uniqueness theorem' for ordinary
differential equations and can be found in [COHI62b, pp.145-147] and in section A.6.

If A vanishes along C, then C is either a characteristic curve and the equation has
infinitely many solutions, or the integral surface does not have continuous derivatives
along C. In particular at the end of section A.6 the following lemma is shown:

Lemma: Let ap + bg = E(z,y) be a linear FOPDE. Let C be a non-
characteristic initial curve for which A vanishes (II1.2.3). Then the solutions to
this FOPDE are cylindrical surfaces perpendicular to the z-y plane.

Proof: The proof can be found in section A.6. 1|

In the previous theorem C was assumed to be a continuous curve. However, it can
be shown that “any singularities of the initial data propagate in the z-y plane along
the projection there of the relevant characteristic curve” [GAR64, p-22]. This is not
surprising since characteristic curves can be viewed as branch curves along which two
integral surfaces meet.

Let £ = z(t) and y = y(t) denote the parametric representation of a curve in
the z-y plane. A point P = (zo,yo) is called a double point, if several values of ¢
correspond to P. In the case where an initial curve C or its projection onto the z-y
plane has double points, the integral surface containing C has self-intersections and
therefore z is not a single-valued function of z and y.

The projection of a characteristic curve onto the z-y plane is called a base charac-
teristic. In the case of a linear jmage irradiance equation the base characteristics are
unique. An integral surface of a linear continuous image irradiance equation can have
a bounding contour and we can show the following lemma:

Lemma: Let ap + bq = E(z, y) be a continuous 'image irradiance equation and
let an integral surface which has a bounding contour be defined by z = 2(z, y).
Then its b-silhouette is a base characteristic.

Proof: For points on the bounding contour p and/or g are singular. Thus any initial
curve which has a point in common with the bounding contour is discontinuous and
the singularity propagates along a characteristic curve. [

l.2.2. The General Continuous Image lrradiance Equation

We discuss now general continuous image irradiance equations. A more detailed
exposition of this material can be found in section A.3. In deriving the system of
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. characteristic equations (I11.2.2) it is also assumed that an integral surface z has con-
tinuous second order partial derivatives and therefore that the equation py = ¢ holds.
In [PLI54] it is shown that an integral surface can also be built from characteristic
strips in the case when only its first order partial derivatives are continuous.

The Cauchy problem for a general FOPDE is formulated in the same way as for
linear FOPDE’s and is discussed in more detail section A.7. Let C be an initial curve
specified in parametric form by z = z(t),y = y(t) and z = 2(t). Then p(t) and g(t)
along C can be determined by solving the two equations:

R{p(t) a(8) = E(a(0),v(2) (11.2.23)
Z_ p(0) 5 + L. (I11.2.24)

As (I11.2.23) is, in general, a nonlinear equation in p and g, several solutions may be
possible for p(t) and g(t) along C. To “avoid inessential reference to possible multiple
valuedness of solutions for p and g along C” [COHI62b, p.80] it is assumed that p and
q are also known as initial data. For the following discussion we assume that p and
q are specified along C. In other words the initial data is an initial strip (which we
denote by C;). Now if A 5 0 (II1.2.3) along C' then a unique integral surface may be
obtained:

Theorem: Let R(p,gq) = E(z,y) be a continuous image irradiance equation.
Then for every initial strip which is not a characteristic strip and for which
A 5 0, there exists a unique integral surface through this strip.

Proof: The proof follows from the existence and uniqueness theorem for ordinary
differential equations and can be found in [COHI62D, pp.79-82] and in section A.7.
It has been shown [HA28] that if the initial data does not have continuous second order
derivatives, then the solution does not have continuous first order derivatives. |}

An integral surface of an image irradiance equation is a solution to a Cauchy
problem only under the assumption that R2 4 R3 5 0 (section A.3). Let S be an
integral surface of an image irradiance equation for which the condition RZ4+R2ZF#0
holds. Then there exists an initial strip Cy such that the solution to the characteristic
equations with C; as initial values is the surface S. Thus the points of a reflectance
map at which Rf, + Rg = 0 have to be investigated separately. Such points are called
stationary points and are defined as:

Definition: A smooth function f(z,y) has a stationary point at (zo, Yo) if

fz(zo0,90) =0 (111.2.25)
fy(zo,90) = 0.
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We discuss now the conditions under which stationary points -constrain the integral
surfaces of an image irradiance equation. First we must define critical elements of the
characteristic equations of an image irradiance equation:

Definition: Let R(p,q) = E(z,y) be an image irradiance equation. Then a
point denoted by (2o, Yo, Po, go) is a critical element if (zo,yo) is a stationary
point of E(z,y) and (po, o) is a stationary point of R(p,q).

The point (o, Y6, Po, go) is a critical point of the image irradiance equation if it
is a critical element and if the values (o, Yo, Po, go) satisfy the image irradiance
equation.

The point (2o, Yo, Po, qo) is' 2 singular point if it is a a critical point for which
the values (po, go) are uniquely determined by the values (zo, ¥o)-

A point P is an isolated critical element if in some neighborhood of it, it is the
only stationary point of E(z,y) and R(p,q). Isolated critical (singular) points
can be defined similarly.

Hence at a singular point the gradient of each integral surface can be uniquely deter-
mined from the measured brightness. For example, the lines z = 0 and p = 0 consist
entirely of critical points of the image irradiance equation p? = z2. Note that these
points are not singular as the value for ¢ cannot be uniquely determined at a point
(0,y) in the z-y plane. The point (z,y,p,9) = (0,0,0,0), however, is a singular point
of the image irradiance equation p? + ¢% = 2* + y2. Thus the tangent plane to each
integral surface of this equation at the point (0,0, 2) is parallel to the z-y plane. In
chapter IV we will show how singular points constrain the integral surfaces of an image
irradiance equation.

Discussing the Cauchy problem further, the case A = 0 for a general FOPDE is
analogous to the case A = 0 for a linear FOPDE. If an initial strip is a characteristic
strip, then the equation possesses infinitely many solutions. Again, the question arises
as to whether it is possible to specify an initial strip Ci, (i.e., a curve C and p and
g along it), such that A = 0 and C; is not a characteristic strip. Such a strip can
be specified but “then there exists no integral surface which contains this initial strip
and has continuous derivatives up to the second order in its neighborhood” [COHI62b,
p.83]. However, it might be possible to construct a surface through C;. Then the curve
C is a singular curve for that surface [COHI62b, p.83), i.e., along this curve the function
defining the surface does not have continuous second order partial derivatives.

Thus the solutions to a continuous image irradiance equation do not necessarily
have continuous partial derivatives everywhere. In particular p and g can be singular as
shown in the example below. So, one integral surface of a continuous image irradiance
equation can have a bounding contour although this does not imply that every integral
surface of this equation has a bounding contour. For instance:

z(z,y) = 42'* + f(v) (111.2.26)
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where f is any continuous function, defines an integral surface of the following image

irradiance equation:
(P —1)? _ (1—2d)’
P +1? (Q+zh?
Note that for z == 0, p, the first order partial derivative of z with respect to z as
defined by (11.2.26), is singular. Thus this surface has a bounding contour and its
image contains a b-silhouette. However E(z,y) and 9E are continuous along the curve
z=0.
On the other hand, there exist integral surfaces of (111.2.27) which do not have a
bounding contour. For example, the integral surface defined by:

(I11.2.27)

z(z,y) = %x* + g(v) (I11.2.28)

where g is any continuous function is a solution to (111.2.27).

There are, nevertheless, continuous image irradiance equations for which all integral
surfaces have a bounding contour as shown in the next lemma. Any such equation can
always be transformed into a singular image irradiance equation such that the original
and the transformed equations have the same solutions:

Lemma: Let R(p,q) = E(z,y) be a continuous image irradiance equation.
Then all of its integral surfaces have a bounding contour, if there exist a C?
bijection g, a C! function f and if the following conditions hold:

¢ The reflectance map can be written as:

R(p,q) = 9(f(p,9))- (I11.2.29)
e There exist finite values for z and y denoted by zo and yp such that:
Jim g Y (E(z,y)) = *too. (I11.2.30)
y—*vo

Proof: The solutions to the continuous image irradiance equation R(p,q) = E(z,v)
and the equation f(p,q) = g !(E(z,y)) are the same. Note that the points (o, Yo)
constitute the b-silhouette. Thus by virtue of the preceding discussion of bounding
contours and b-silhouettes, the lemma is self-evident. i

In section II1.3 and chapter V we will discuss the solution to the reconstruction
problem in the case where a b-silhouette can be uniquely identified in an image.

The last case of interest here is where an initial curve C degenerates to a point P
(see also section A.7 and note that the following discussion is relevant only for FOPDE’s
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which are not quasi-linear). Then “all characteristic curves through a fixed point P
of z,y,2z-space form an integral surface” [COHI62b, p.83]. Such a surface S has a
conical singularity at P and the Monge cone is the tangent cone to S at P. A surface
constructed in such a manner is called the integral conoid of the partial differential
equation. For a given image irradiance equation and a given point P there exists
exactly one integral conoid.

In summary, the method of characteristic curves can be used to determine the
solutions to a FOPDE. An initial curve which lies on the integral surface must, in
general, be specified in order to restrict the solutions to a continuous image irradiance
equation to a single one. The-critical points of an image irradiance equation have to
be analyzed separately.

I1.2.3. Edges and Vertices

In this section we give examples of how to formulate the Cauchy problem such
that its solution is an integral surface containing an edge. As previously stated, if an
initial curve C is discontinuous then the surface normals to the integral surface which
contains C are discontinuous. We give a very simple example illustrating this. Two
planes intersect along a straight line as depicted .in figure 2. The image irradiance
equation is assumed to be linear and the same for both planes:

p+q=1. : (III.2.31)

We pose the following questions: Do the planes have to be oriented in a particular
way to assure that the previous image irradiance equation holds? Are there any other
integral surfaces which contain the edge constituted by the intersection of two such
planes? The answers to these questions depend upon additional information about the
scene which is available. Referring to figure 2, if we specify the curve K in three space,
it can be used as initial data to uniquely reconstruct the two planes from the image
irradiance equation. As the image irradiance equation is linear, the curve T has to be
a characteristic. We observed earlier (section II1.2.1) that characteristic curves can be
viewed as branch curves at which two different integral surfaces meet. Through every
curve which is not a characteristic there exists exactly one smooth surface. Thus if
an integral surface of (I[1.2.31) contains an invisible edge, its projection onto the z-y
plane is a line whose slope is 1. (The characteristic curves of a linear image irradiance
equation whose reflectance map is of the form R(p,q) = ap -+ bq where a and b are
nonzero constants, are straight lines whose slope is proportional to %)) Recall that the
linear reflectance map describes, for instance, the reflectivity properties of the maria
of the moon and that the constants a and b specify then the direction towards the sun
~ (section 111.2.1). We conclude therefore that any ridges on the moon which are not
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Figure 2. Two intersecting planes

visible are in the direction of the sun. _

On the other hand, if only the edge T is specified, the two surfaces (which may
not be planes) cannot be reconstructed in a unique way from a linear image irradiance
equation. This follows from the fact that T has to be a characteristic curve. For
example, the surfaces defined by the next two equations are solutions to (III.2.31):

2z, y)=z+(y— z)? (I11.2.32)
2(z,y) = z + sin(y — z). (I11.2.33)

At their intersection these two surfaces form an edge which is defined by:
T=y z2=1. (I11.2.34)
Furthermore the two planes (which are also solutions to (I11.2.31)) defined by:

z—2y+2=0 (I11.2.35)
2t —3y—+2z2=0 (I11.2.36)

give rise to the same edge.

If an image irradiance equation is nonlinear, however, there is only a small number
of surfaces which can give rise to a specific edge. In particular an edge cannot be a
characteristic curve, as two integral surfaces which meet along a characteristic curve
also have the same tangent plane there. So let T be an edge given in parametric form.
Using equations (I11.2.23) and (I11.2.24) we can determine the possible values for p and
q along T. Since the image irradiance equation is assumed to be nonlinear, several
solutions for p and q are possible, so many different integral surfaces can be constructed
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“LINE1

SURFACE 3 SURFACE 2

LINE3

LINE 2

SURFACE 1

Figure 8. Vertex

each of which has the edge embedded in it. Any two of these surfaces will intersect
at an edge. Hence in the case of a nonlinear image irradiance equation, only a small
number of different surfaces can give rise to a particular edge.

Let us new specify a vertex V in space from which three straight lines emanate
(referred to as a corner) as shown in figure 3. The equations of the three lines are
given in three space. Assume, as well, that the following image irradiance equation

holds in all three regions: :
PP+q*=1 (I11.2.37)

We ask how many integral surfaces exist which have the same shading and contain the
vertex and the three lines. (Note that these lines are not visible.) Clearly, all such
surfaces will have a singularity at the vertex, i.e., the function z = 2(z,y) defining a
surface is not differentiable at V. A priori there are two ways of interpreting the lines
leading from the vertex: ‘

1) as curves lying on a smooth surface or

2) as edges.

We will discuss both interpretations.

" Assuming case 1, we are faced with the problem of constructing a smooth (except
at V) surface S which has a conical singularity at V' and has the three lines embedded
in it. Thus the vertex is a degenerate initial curve (see sections I11.2.2 and A.7) and §
is the integral conoid. If such a surface S exists, the image irradiance equation cannot
_ be linear, the generators of the integral conoid must be straight lines and the vertex
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. cannot be a singular point of the image irradiance equation. In section 111.2.2 it was
shown that there cannot be another surface besides the integral conoid which has a
conical singularity at V as the integral conoid is uniquely determined by the image
irradiance equation and this vertex. So if the integral conoid with its vertex at V can
be constructed such that the three lines lie on it, the surface S is unique. In the case
where V is a singular point or the generators of the integral conoid are not straight
lines, no surface S can be found and the three lines necessarily specify three edges.

We show now that to be able to construct the surface S as described in the preceding
paragraph, the three lines necessarily are characteristic curves of the image irradiance
equation. So suppose that the integral conoid can be constructed at V such that it
contains the three lines. Then the integral conoid and the Monge cone are identical,
which follows from the fact that the Monge cone is the tangent cone to S at V. Thus
if the integral conoid has straight lines, they must coincide with the generators of the
Monge cone. The lines leading from the vertex are therefore characteristic curves of
the image irradiance equation. In other words, if the lines are characteristic curves and
if V is not a singular point, then an integral conoid which contains the corner exists.

In our particular example the integral conoid of (II1.2.37) is a right circular cone
whose generators are inclined to the z-y plane at 45 degrees. (A cone is called a right
circular cone if the angle between its axis and a plane containing the circular cross
section is 90 degrees.) Thus if the three lines are characteristic curves, the right circular
cone is the desired surface S.

The other interpretation of the corner is that the three lines originating at the
vertex specify three edges. Again only in the case where the image irradiance equation
is nonlinear can we possibly find three surfaces which form the three edges since, if
the image irradiance equation is linear, different integral surfaces intersect only along
characteristic curves. Yet the base characteristics are all parallel for a linear equation,
hence the projection of the three lines onto the z-y plane cannot be base characteristics
and so the lines cannot be characteristics. }

We want then to find three surfaces which intersect along the three lines using these
lines as initial data. For a particular corner, three such surfaces do not necessarily exist
as can be easily seen using equation (I11.2.37). The integral surfaces of (II1.2.37) that
are constructed using a straight line (which is not a characteristic) as initial data, are
planes inclined at 45 degrees to the z-y plane. Although through three lines which
constitute a corner we can always find three planes, they are not necessarily inclined
at 45 degrees to the z-y plane and are therefore not necessarily integral surfaces of
(111.2.37). However, if three integral surfaces do exist, they are unique. From the two
lines which are embedded in every surface, p and g can be uniquely determined. If
" these values for p and q as functions of z and y satisfy the image irradiance equation
then each of the surfaces can be uniquely determined.

Summarizing the observations made above: if three lines which form a corner are
characteristic curves of an image irradiance equation, then the surface containing the
corner is the integral conoid of the equation. Otherwise such a corner can be used to



28

reconstruct the three surfaces which form it. '

lil.2.4. Gaussian Image

In the previous sections we reviewed the well known results concerning continuous
FOPDE'’s and showed that in general, a continuous FOPDE has infinitely many solu-
tions. Only after imposing some additional constraints (in particular by specifying an
initial strip which is not a characteristic strip) can the solutions be restricted to a single
one.

It is clear, then, that a continuous image irradiance equation does not contain
sufficient information to uniquely reconstruct the shape of a surface from its image.
What partial knowledge about a surface does an image irradiance equation provide? To
understand this problem better, certain concepts taken from differential geometry are
now introduced as they provide us with a formalism to discuss the shape of a surface.
Some technical prerequisites are first reviewed briefly. A more detailed exposition can
be found in any standard book on differential geometry, e.g., [CAR76]. For the rest of
this section we assume that a function z = 2(z, y) which defines a surface is C2.

The Gaussian sphere is a sphere of unit radius. The surface normal at every point
on the Gaussian sphere can have two possible orientations, referred to as the positive (or
outward) and negative (or inward) directions. We adopt the convention that a surface

“normal on the Gaussian sphere points outward. The Gaussian mapping maps a point P
on a surface into a corresponding point PC on the Gaussian sphere such that P and P€
have the same surface normal. This mapping is well defined since no two points on the
Gaussian sphere have the same normal. The Gaussian image (sometimes referred to as
the spherical image) of a connected patch of a smooth surface maps into a connected
region on the Gaussian sphere. The area of the Gaussian image of a surface is called
its integral curvature.

Points on a surface are classified accordmg to the behavior of the tangent planes
with respect to the surface:

Definition: A point P on a surface is elliptic if the tangent plane at P does not
intersect the surface at any other point. A point P is hyperbolic if the tangent
plane at P intersects the surface in a curve which has two branches intersecting
at P. A point P is parabolic if the tangent plane at P intersects the surface
along a single curve (which can degenerate to a point).

A surface which consists only of elliptic points is locally convex. We will say a
surface is hyperbolic if it consists only of hyperbolic points. The points which separate
regions where a surface consists of elliptic and hyperbolic points, respectively, are
parabolic points.

The grouping of points on a surface into elliptic, hyperbolic and parabolic points
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Figure 4. Gaussian image of a neighborhood of an elliptic point

can easily be expressed in terms of Gaussian curvature. Let F' be a simply connected
and bounded surface patch which is enclosed by the closed curve k and let G denote
the Gaussian image of F', which is enclosed by the closed curve kC. “We divide the
area G enclosed by kC on the sphere by the area F' enclosed by k on the surface and
then shrink the curve k down to a point P on the surface. Then F' and G approach
zero and their quotient approaches a definite limit K:

im & =K. (II1.2.38)

The number K defined in this way is called the Gaussian curvature” [HICV52, pp.193-
194]. A point P on a surface is elliptic if the Gaussian curvature is positive there,
hyperbolic if the Gaussian curvature is negative, and parabolic if the Gaussian curvature
is zero. If z = z(z,y) specifies 3 surface and is C?, then the Gaussian curvature at a
point (z,y, z) is defined by:

2
ZyxZyy — 2%
i (I11.2.39)

Ke = raar

The common notions of a surface being convex or concave do not refer to the type
(as defined above) of points a surface consists of. They merely distinguish the two sides
of a locally convex surface (or correspond to the two possible directions of a normal
vector) with respect to a viewer.

The mapping between a surface and the Gaussian sphere is one-to-one if the surface
is either locally convex or hyperbolic. “If we move around an elliptic point along a
small closed curve that lies on the surface, its spherical image - assuming that the
surface has no double points - will also be a closed curve without double points, and
this curve is traversed in the same sense as the original curve (figure 4). A small curve
without double points about a hyperbolic point is also mapped into a curve without



30

Figure 5. Gaussian image of a neighborhood of a hyperbolic point

double points, but in this case the sense is reversed (figure 5)" [HICV52, pp-195-196].
The spherical image of a surface which consists of elliptic, hyperbolic and parabolic
points consists of several sheets, i.e., several points on a surface get mapped into the
same point on the Gaussian sphere.

We will also need the definitions of a closed and a compact surface:

Definition [CAR76, p.112]: Let A be a subset of ®3. We say that p € R3isa
limit point of A if every neighborhood of p in R3 contains a point of A distinct
from p. A is said to be closed if it contains all of its limit points. A is bounded
if it is contained in some ball of R3. If A is closed and bounded it is called a

compact set.

For example, the surface of a sphere is compact, whereas a paraboloid of revolution
defined by z(z,y) = 22 -+ y? is a closed but not compact surface.

The notion similar captures formally what we mean by saying that two surfaces
have the same shape: ’

Definition: Two surfaces in R are similar if they can be mapped into each
other by a composition of translations, rotations, reflections and dilations.

.2.5. Gradient Space

In this section we will briefly discuss gradient space as popularized by Mackworth
[MACT73] and Horn [HO77)] and which is now a standard tool in vision research. Our
objective is to show how the concepts from differential geometry help us to understand
the variety of integral surfaces of an image irradiance equation. We will also investigate
how different constraints may restrict the number of possible solutions to a given image
irradiance equation.




Figure 6. Map: reflectance map — Gaussian sphere

Let
R(p,q) = E(z,v) (IT1.2.40)

be an image irradiance equation. For simplicity of exposition we assume that E(z,y)
is defined at every point in the z-y plane. Then we can write the previous equation as
a system of two equations:

R(p,q)=c¢ (I11.2.41)
E(z,y)=c¢ (I11.2.42)

where ¢ is a constant. In the p-g plane (also called gradient space), the graph of
R(p,q) = c, for all possible values of ¢, is called the reflectance map. A reflectance
map can be mapped onto the Gaussian sphere by placing the south pole of the Gaussian
sphere onto the origin of the p-¢ plane by means of a simple projection from the center
of the sphere, as illustrated in figure 6. Note that the mapping between gradient space
and the Gaussian sphere is conformal. The graph of E(z,y) = ¢, for all possible
values of ¢, can be drawn in the z-y plane, referred to as the image plane. For example
consider the following eikonal equation:

PP +q* =2 +y% (I11.2.43)
This equation can be rewritten as:

pPPg=c (I11.2.44)
24+ y? =c ’
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Figure 7. Graphs for the equation p* + ¢* = z* + y?

The graphs for these equations are depicted in figure 7.

Let z = 2(z,y) define an integral surface of an image irradiance equation. Then
the gradient at every point of z is the vector (p, g, —1) where p= 42 and ¢ = % As
‘discussed in chapter II, we assume that each point P = (z0, Yo, 2(Z0, Yo)) on the surface
is mapped via orthographic projection into the point (zo, Yo) in the image plane. We also
define a mapping from surface orientation to gradient space: The gradient (po, g0, —1)
at P is mapped into the point (po, go) in gradient space.

An image irradiance equation gives us some information about the correspondence
between points in the image plane and points in gradient space. In particular, if (Zo, Yo)
lies on the curve E(z,y) = co for some constant co, then (po, o) lies on the curve
R(p,q) = co. Note that determining an integral surface (up to a constant factor) of
an image irradiance equation is equivalent to specifying the correspondence between
points in the image plane and points in gradient space.

We want to show now that any two integral surfaces of an image irradiance equation
need not be similar. For two such surfaces to be similar, it is necessary that they consist
of the same type (i.e., elliptic, hyperbolic or parabolic) of points. An image irradiance
equation, however, does not restrict the type of points on the integral surfaces. So
by knowing one integral surface of an image irradiance equation, other such surfaces
cannot, in general, be obtained through similarity transformations. To prove these
assertions we examine some integral surfaces of (I11.2.43). In particular the surface
defined by the following equation consists entirely of elliptic points:

o) =5 + v (I1.2.45)
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Figure 8. Graph for characteristic curves

whereas the surface defined by:

is hyperbolic.

(I11.2.46)

As already noted several times, the basic tool for solving a FOPDE is the method
of characteristic curves. Using gradient space, the characteristic curves of an image
irradiance equation and the necessity of specifying an initial curve to restrict the possible
solutions to a single one can be visualized easily [HO75]. In the following we use
only four of the five characteristic equations (II1.2.2) of an image irradiance equation

R(p,q) = E(z,y):

2 = Ro(p.9)
% = Ry(p, q)
Z—’: = Ex(z,y)
2 = By(z,).

(IT1.2.47)
(I11.2.48)
(I11.2.49)

(IT1.2.50)
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In the image plane, dz and dy can be viewed as the two components of a vector and
E. and E, as the direction of a normal vector to the curve E(z,y) = c (where c is
a constant). In the same way dp and dgq can be interpreted in gradient space as the
components of a vector and R, and R, as the direction of a normal vector to the iso-
brightness curves R(p,q) = c. From equations (II1.2.47) and (II1.2.48) one can deduce
that the two vectors (dz,dy) and (R,, R,) are parallel. Similarly, equations (II1.2.49)
and (II1.2.50) indicate that the two vectors (dp, dq) and (E;, E,) are parallel.

Now let the point (zg,yo) in the image plane correspond to the point (po, go) in
gradient space (see also figure 8 which is taken from [WOOD78, p.190]). Then a
step in the image plane from the point (zo,yo) in the direction of a characteristic
curve, corresponds to a step in gradient space from (po, qo) in the direction (E;, Ey).
Conversely, a step from the point (po,go) in the direction (dp,dq) corresponds to a
movement in the image plane starting at (zo, ¥o), in the direction (R,, R,). Specifying
an initial curve now gives a correspondence between a set of points, denoted by X, in
the z-y plane and a set of points, denoted by P, in gradient space. If this initial curve
is not a characteristic, the characteristic curves can be expanded from each point in X
which just corresponds to expanding curves in gradient space from every point in P. In
this manner a point (p, ) is assigned to each point in the image plane. Once p and g are
known at every point on the surface, the function 2z = 2(z, y) defining the surface can
be found by integration (assuming that p and g satisfy the equation py = ¢.). Thus to
determine a unique (up to translation in the 2-direction) solution to an image irradiance
equation, enough information has to be known so that the characteristic curves can be
expanded simultaneously in the image plane and in gradient space.

I11.3. The Singular Image Irradiance Equation

In section III.1 we classified image irradiance equations into two categories. In the
previous sections, we discussed equations which fall into the first category, i.e., the
case where E(z,y) is C!. This section deals with the second class, i.e., the case where
E(z,y) is singular. '

Recall (chapter I) that a function E(z,y) is singular at a point (2o, o) if:

lim E(z,y) = doo. (II.3.1)

y—*vo

Lemma: Let R(p,q) = E(z,y) be a singular image irradiance equation. Then
the b-silhouette consists of those points (zg,yp) in the z-y plane for which
- E(z,y) is singular.

Proof: Each singular image irradiance equation defines a b-silhouette. The lemma
~ follows. [
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Let us recall here briefly the geometry of the image forming system as discussed
in chapter II. It is assumed that the viewing direction  coincides with the z-axis.
Furthermore, we approximate the imaging situation by orthographic projection hence
the lines connecting the viewer and points on the surface are parallel to each other and
perpendicular to the z-y plane. For simplicity we will restrict our attention to images
where a single b-silhouette occurs. Images with multiple b-silhouettes can be treated
in a similar fashion. We will call a b-silhouette nondegenerate if it is a connected and
smooth curve in the z-y plane.

Let R(p,q) = E(z,y) be a singular image irradiance equation, let the b-silhouette
be defined by w(z,y) = 0 and let z = 2(z,y) define an integral surface. Then
its bounding contour consists of the points (zo, ¥o, 2(Z0,y0)) on the integral surface
such that (zp,yo) belongs to the b-silhouette. We assume that integral surfaces are
(piecewise) smooth (section II.1). So, no parts of an integral surface obscure each
other and therefore the bounding contour is a set of (piecewise) continuous curves. As
previously stated, the lines connecting the viewer and points on the bounding contour
graze the surface. In other words, at every point on the bounding contour the tangent
plane is perpendicular to the z-y plane. In terms of p and g this means that p and/or ¢
assume infinite value at points on the bounding contour. The spherical image of points
on the bounding contour (section III.2.4) corresponds to points on the equator of the
Gaussian sphere.

If the equation of the b-silhouette is known, the surface normal to points on the
bounding contour can be determined. (This follows directly from the definition of
bounding contour. The surface normal at a point (zo, Yo, 2(Z0,y0)) on the bounding
contour is (4wz(Zo,yo), +wy(zo, Yo),0) where the 4 and — sign distinguish the two
sides of a surface with respect to the viewer.) This surface is tangent to a cylinder
whose intersection with the z-y plane is the b-silhouette and whose generators are
perpendicular to the z-y plane.

So again we pose the quest.ion: What are the constraints necessary to obtain a
unique solution to a singular image irradiance equation? We shall proceed in two ways.
In section II1.3.2 we show that the method of characteristic curves can be used to find
the integral surfaces of a singular image irradiance equation. Unfortunately, specifying
a bounding contour does not restrict the possible integral surfaces to a single one, as
shown by means of an example in section II1.3.2. In chapter V we investigate constraints
which enable us to solve the reconstruction problem uniquely.

The existence of a smooth integral surface is not guaranteed for every singular
image irradiance equation as we now demonstrate. It is important to notice that we
are looking for a global solution to an image irradiance equation, i.e., an integral surface
which is defined at every point (z,y) for which the equation is defined. In particular,
an integral surface should be bounded for points (z,y) which lie on the b-silhouette. An
example of an image irradiance equation for which no global bounded solution exists
is given by:
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p= (I1.3.2)

|-

The general solution to this equation is:

2(z,9) =lnz+ f(y)+¢ - (m3.3)

where f is any cohti'nuous function and c is a constant. For points on the y-axis (i.e.,
z = 0) 2(z,y) as defined by the previous equation is not bounded.

For any given singular image irradiance equation, the points on the b-silhouette
can be found by inspection of E(z,y). The following example should clarify this:

2, a_ 2 +9¢ |
pPte = — @ 97 (I1.3.4)

Aloﬁg the circle z2 + y? = 1, E(z,y) assumes infinite value. An integral surface of the
previous equation is a sphere defined by:

#(z,9) = \/1— (2 + ) (IL.3.5)
with p and q given by:
p= —Z : (111.3.6)
V1—(z2+93)
q —Y

T Vi@t

Along the circle z2 + y? = 1, p and q are infinite but the surface normal there is well
defined as (z,y,0). Note also that if z = 2(z,y) is a solution to an image irradiance
equation, then so is 2 = 2(z,y) -+ ¢ for any constant c. As we are solely interested in
determining the shape of surfaces, we will assume in the following chapters that c is
given. (In other words, all integral surfaces are determined only up to translation in
the z-direction. Thus when we say, for instance, that there is a unique integral surface
of an image irradiance equation we mean that it is unique up to translation in the
z-direction.) In section V.2 we show that the convex and the concave hemispheres are
the only two integral surfaces of (II1.3.4) which have continuous second order partial
derivatives.

.3.1. Marr’s Occluding Contours

One of the first to investigate b-silhouettes was David Marr [MAT77]. His nomencla-
_ ture differs from ours and to avoid confusion we compare the two terminologies. In his
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Figure 9. Generalized cone

paper bounding contours are referred to as contour generators, and b-silhouettes, as
contours.

Marr poses the question of what can be inferred about the shape of a surface
from its b-silhouette alone. In order to more easily approach this problem, a priori
assumptions about the surface must be made. The restrictions imposed are:

R1.) The surface is defined by a C? function.

R2.) Each point on the bounding contour projects to a different point on the
b-silhouette.

R3.) Nearby points on the b-silhouette arise from nearby points on the bound-
ing contour.

R4.) The bounding contour is planar.

As discussed in the paper, the first three restrictions are not severe. Marr points out
that for bounded surfaces, R3 follows from R2 but he nevertheless chooses to state
the two restrictions separately as “they have sufficiently different meaning” [MAT77].
The third restriction states that there are no gaps in the viewing direction. Implied
by this is that a bounding contour cannot be created by two surfaces, one of which
partially occludes the other, as this would violate R2. A consequence of the first three
restrictions is that a bounding contour is a continuous curve.

The main technique used in [MA77] to interpret b-silhouettes is to examine their
inflexion points, i.e., those points which separate convex regions on a b-sithouette from
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concave ones. If a bounding contour is assumed to be planar, inflexion points on the
b-silhouette imply the existence of inflexion points on the bounding contour. This
observation leads to restriction R4 which as Marr observes, is a very strong one. He is
therefore only able to analyze a small number of scenes.

The main theorem of [MAT7] (theorem 1) states that generalized cones are the only
type of surfaces which satisfy the four restrictions above plus an additional assumption
about the viewing direction. “A generalized cone (as shown in figure 9) is the surface
generated by moving a smooth cross section p along a straight axis A. The cross section
may vary smoothly in size (as prescribed by the axial scaling function h(z)), but its
shape remains constant” [MAT77]. Not only is R4 a very strong assumption, but for
theorem 1 to hold, the viewing direction is confined to a plane which lies parallel to a
cross section of the cone whose shape we wish to determine. However, a priori, there
is no way to determine if the viewing direction satisfies the constraint of the theorem!

The proof of theorem 2 as stated in [MAT77] is wrong. This theorem claims that
a surface obeys the four previously stated restrictions for all viewing directions if and
only if it is a quadratic surface. In the proof given it is assumed that the surface can
be defined by a polynomial; the theorem is therefore only shown to hold for this special
case.

.3.2. The Method of Characteristic Curves

Let us recall here that the method of characteristic curves can be used to solve
a continuous image irradiance equation. Is this method still valid in the case where
an equation is singular? In fact, the answer is positive. The method of characteristic
curves is based on a local theory as stated in [COHI62b, p.62]: “It should be emphasized
again that all statements and derivations are in the small, i.e., they concern merely
neighborhoods of points, etc., without necessarily specifying the extension of these
neighborhoods.” It is precisely the local nature of this theory which allows us to apply
it to singular image irradiance equations. ‘ '

Let R(p, q) = E(z,y) be a fixed, singular image irradiance equation. The charac-
teristic curves can be constructed in a fashion analogous to the continuous case. A
difficulty arises only when the Cauchy problem is stated for this equation. In the con-
tinuous case, for any strip denoted by C; (as defined in section I11.2.2) which is not
a characteristic strip and for which A £ 0 (IIL3.3), an integral surface can be found
which has C; embedded in it. Furthermore this integral surface is uniquely specified by
the FOPDE and the strip C;. The theorem used to obtain this uniqueness result is the
existence and uniqueness theorem for ordinary differential equations. Unfortunately,
in some neighborhood of a b-silhouette this theorem does not hold anymore, so there
is no guarantee that the equation will have a solution for any initial conditions.

To understand why the existence and uniqueness theorem for ordinary differential
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Figure 10. Solutions to II.3.8

equations does not hold at a singularity, we examine the equation:

Yy _zty (I11.3.7)
dz z

which is singular at (z,y) = (0,0). The set of solutions are:
y = z In(cz) (111.3.8)

where ¢ denotes any constant. The graphs of some of the curves defined by the previous
equation are depicted in figure 10 [SMI68a, p.148].

The initial condition that the solution must pass through the point P, which has
the coordinates (0,0), does not suffice to pin down the solution to (IIL.3.7) uniquely.
Furthermore there is no solution which passes through the point P° with the coordinates
(0,3). This implies that for the initial condition P9 no solution exists. In summary,
one cannot claim that for any initial condition, (III.3.7) can be solved in a unique way.
Moreover, the type of singularity in an ordinary differential equation constrains what
initial data is consistent.

If an image irradiance equation is singular, i.e., if E(z,y) is singular, then some
or all of its characteristic equations are singular. Thus when specifying a bounding
contour, there is no guarantee that a solution exists which has the given bounding
contour embedded in it. Furthermore we can show the following lemma:

Lemma: A singular image irradiance equation can have several integral surfaces
cach of which has the same bounding contour.
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Proof: We will prove the lemma by showing it for a particular image irradiance equation.
The two surfaces defined by (I11.3.10) are solutions to (II[.3.9) and each has the same
bounding contour: ' -

Phgd= —41 (I1L.3.9)
zi
2(z,y) = —4zt +y (I11.3.10)

2(z,y) = 4zt +v.

In chapter V we shall prove that the only integral surfaces of ([I1.3.4) are the
convex and concave hemispheres. So for any bounding contour C other than the one
specified by z2 +y? = 1,2 = 0, no integral surface exists which has C embedded in it.
Note in addition that the concave and the convex hemispheres have the same bounding
contour. By assuming that the surface is convex in the direction of the viewer, the
solutions to (II1.3.4) are restricted to a single one although this is not true if we forego
this assumption, as shown in the proof of the previous lemma.
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Chapter IV

Singular Points

IV.1. Basic Concepts

The question which we analyze in this chapter is: How much information about
the shape of a surface can one obtain from a singular point of an eikonal equation? At
a singular point of an image irradiance equation the gradient of all its integral surfaces
is defined by the image intensities there (section II.2.2). As discussed in chapter I,
equations of the form:

p* + ¢* = E(z,y) (Iv.1y)

are called eikonal equations and describe for instance the flux of the secondary electrons
in a scanning electron microscope since this varies approximately as f (p® + ¢2) where
f is a continuous function [LAWH60].

To obtain our results we will impose some technical conditions upon E(z,y) (which
we will discuss later in this section) and shall refer to eikonal equations which satisfy
these conditions as constrained eikonal equations. The two results which we prove are:

e There exist exactly two locally convex integral surfaces of a constrained
eikonal equation in some neighborhood of a singular point.

e At a singular point, the Gaussian curvature of each integral surface of a
constrained eikonal equation has the same absolute value.

The first statement can be expressed in other words as: if z = z(z,y) defines one
locally convex solution, then z = —2z(z,y) defines the other. Hence this result can be
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“viewed as a uniqueness result modulo the concave/convex ambiguity. The second result
exhibits a situation where a “property” of surfaces can be determined from their given
(common) image. Our theorems apply also to more general equations: in appendix II
we exhibit a class of image irradiance equations whose solutions can be obtained by
solving an appropriate eikonal equation. »

To characterize a constrained eikonal equation we need the following definition:

Definition: A function g(z,y) vanishes precisely to second order at the point
(0,0) if its (limited) Taylor series expansion at (0,0) is of the form:

o(z,y) = az? + Bzy + 1v* + ol(|z] + l¥])?) (Iv.1.2)

where a, f and 7 are constants, at least one of which is nonzero.

Then a constrained eikonal equation is defined as:

Definition: An eikonal equation p? 4 ¢* = E(z,y) is constrained if E(z,y) is
a C® function satisfying the following conditions in some neighborhoed of the
point (zo,y0):

1) (zo,y0) isa stationary point of E(z,y)

2) E(zo, ¥o) =0 : (Iv.1.3)
3) E(z7 y) >0 for (z) y) 7& (20’ yO)

4) E(z,y) vanishes precisely to second order at (zo, yo)-

Let us discuss these conditions a bit further. The reflectance map of an eikonal
equation is R(p, q) = p? + ¢° and therefore its stationary point is given by p = 0 and
g = 0. We have imposed the condition that (zo,yo) be a stationary point of E(z,y).
Thus the point P = (z,y, p, q) = (%o, Yo, 0, 0) is a critical point of a constrained eikonal
equation. Whence it follows from condition 2 that P is a singular point of such an
equation. From the third condition we can deduce now that P is an isolated singular
point (section II1.2.2). By using a suitable linear transformation we may assume,
without loss of generality, that the point (0, 0) is the stationary point of E(z,y)- Since
E(z,y) is assumed to be positive near the origin: '

az’+ Bzy +y? > 0 for (z,y) #(0,0) (Tv.1.4)

defines a positive bilinear form. Thus the subsequent inequality [BRSETS5, p-182] holds:

2
a5 >0 (IV.1.5)
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‘Moreover, the constants o and + in the (limited) Taylor series expansion of E(z,y) must
be positive. '

As mentioned earlier, if z = z(z,y) defines a locally convex solution, then so does
2z = —z(z,y). Hence, to simplify subsequent discussions, we will say that z(z,y) is
a locally convex solution to a constrained eikonal equation if it satisfies the following
positivity conditions in some neighborhood of the origin:

1) 2(0,0)=0
2) z(z,y) € C? (Iv.1.6)
3) 2(z,y) >0.

Throughout this chapter it is assumed that a solution z = 2(z, y) satisfies the positivity
conditions and that the origin is the isolated singular point of a constrained eikonal
equation.

Horn [HOT5] used singular points to compute initial conditions sufficient to solve
an image irradiance equation. In particular he assumed that an integral surface is
convex at a singular point. In general, however, such a surface does not exist. Our
results show when Horn’s method can be used and we prove that in those cases, no
initial conditions are needed to compute the convex surface.

IV.2. Preliminaries

The results we prove in this chapter require a number of technical prerequisites
which are introduced in this section. One of the key concepts is that of a Taylor series,
which is discussed in order to deal with the problem of approximating a function by
polynomials. To be able to write the Taylor series expansion of a C* function 2(z,y) in
a concise form we introduce the.notion of a homogeneous polynomial, which is a sum
of terms of the same degree:

Definition: A polynomial P(z,y) is a homogeneous polynomial of degree k if it
is of the form:

k
P(z,y) = ) _hziy*—7 (Iv.2.1)
=0

where for each j, h; denotes a constant.

Definition: Let z(z,y) be a C* function. Then its (limited) Taylor series
expansion at the origin is:

k
2(z,9) = 20+ D 2z + of(|z| + ly])*) (Iv.2.2)

j=1
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_ where zo denotes a constant and for each 3, 2, is a homogeneous polynomial of
degree j. For any j such that 0 < 7 < k, there exists exactly one polynomial
z; which matches z at the origin up to the j-th derivative. '

Let us denote by f the first ¥ + 1 terms in the Taylor series expansion of z(z,y) at
the origin. Then f approximates z up to k-th order, i.e., the error between f and z
vanishes faster than any polynomial of degree k.

Now we investigate the characteristic equations of a constrained eikonal equation
and their solutions in some neighborhood of an isolated singular point. The four relevant
characteristic equations are: '

% — 2g (IV.2.3)
% = Ez(z,y)
X — £,(z,9)

Since E(z,y) vanishes precisely to second order at (0,0), we can rewrite the charac-
teristic equations in some neighborhood of the origin as:

dx
#=
Yy _
g{ _ 2 (IV.2.4)
E’E = 2az + By + of|z| + |yl)
d
d_‘tl = Bz + 27y + o(|z] + |yl)-

One can view z, ¥, p and ¢ as coordinates in R¢. So, let ¢ denote the four-tuple (z, y, p, q)
and let F(z,y,p,q) = p? + ¢* — E(z,y). We will say that £ € F if z,y, p and g satisfy
the equation F' = 0. Using this notation we introduce:

Definition: Let p? + q? = E(z,y) be a constrained eikonal equation and let £
- denote the four-tuple (z,y,p,q). The characteristic equations can be written
as:
g

- = AE+G(¢) (Iv.2.5)
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where A is the four by four matrix:

_ 0 0 20
0 0 0 2
A=|,, g 0 0 (IvV.2.6)
g 2y 0 0
and where G has the following properites:
1) Gleec?
2) G(0)=0 (Iv.2.7)
aG
3) 35_(0) =0
Every solution ¢ = £(t) to (IV.2.5) is called an orbit. The equation:
9 _ 4¢ (IV.2.8)

dt

is called the linearized characteristic equation.

To describe orbits in some neighborhood of an isolated singular point the following
concept is useful:

Definition: Let

% —ac+60 (IV.29)

be an ordinary differential equation as in (IV.2.5). An orbit { = £(t) is
quasiradial if:

lim £(t)=0. (IV.2.10)

t—-o00

Equivalently we can express this definition as:

tjiglm(m(t),y(t))=0 Jim_(p(t), q() =0 - (vaa)
im(2(t), 4(£)) =0 im (p(t), o(t) =0 (Iv.2.12)

In other words, if the characteristic curves are quasiradial, they are quasiradial in the
image plane and in gradient space. Some quasiradial orbits are depicted in figure 11.

The stable manifold theorem [ABMASO, p.527] and [HAR64, p.242] defines condi-
tions under which the solutions to the linearized characteristic equations (IV.2.8) have
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Figure 11. Quasiradial orbits

the same topological structure as the solutions to the characteristic equations (IV.2.5).
One of the crucial constraints is that all eigenvalues of A have non-vanishing real part.
A precise definition of a manifold can be found in [STO69, p.203]. Here it suffices to
observe that a surface defined by a C* function z = z(x,y) is a two-dimensional ck
manifold. Before discussing the stable manifold theorem we state a theorem concern-
ing two ordinary differential equations in two unknowns in some neighborhood of an
isolated critical point: ’

Theorem: (Node Theorem [HAR64, p.213]) Let

dz

o = ou? + a2y + fi(z,y) (IvV.2.13)
d K .

Ezti = a31Z + a2y + fa(2,y)

be a system of two ordinary differential equations where a; ; for 2,7 = 1,2 are
constants such that a;;azs —ai2a21 7 0 and f; for ¢ = 1, 2 are real continuous
functions for which the following conditions hold in some neighborhood of the
origin:

fi=o(lz|+1y)  f2=o(lz|+ y]) (IV.2.14)

Thus (z,y) = (0,0) is an isolated critical point. If both eigenvalues of the
linearized equation of (IV.2.13) are real and have the same sign, then all orbits
are quasiradial and the critical point is called a node. In particular if both
eigenvalues are negative, then each orbit tends to the origin as ¢ — +o0 and if
both eigenvalues are positive, then each orbits tends to the origin as { —+ —oo.
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The previous theorem can be viewed as a special case of the following theorem:

Theorem (Stable Maifold Theorem): Let
d
71% = A¢ + G(§) (Iv.2.15)

be an ordinary differential equation where A is a constant matrix which has
d, eigenvalues with negative real part and d, eigenvalues with positive real
part, where d; and d; are both positive, and where G(€) satisfies the following
conditions:

1) G(¢)ec?
"2) G(0)=0 (IV.2.16)

3) %%(o) —o0.

Then there exist an € > 0 such that (IV.2.15) has solutions { = E(t) #0
satisfying:

lE@lle* -0 as t—o0 (IV.2.17)
and has solutions ¢ = £(t) = 0 satisfying:
|€(t)lle* =0 as t— —oo (IV.2.18)

Furthermore, for sufficiently small € > 0, the point ¢ = 0 and the set of points
¢(t) which satisfy (IV.2.17) sweep out a unique C? manifold of dimension dl,
the stable manifold. Similarly, for sufficiently small e > 0, the point £ = 0 and
the set of points £(t) which satisfy (IV.2.18) sweep out a unique C? manifold
of dimension d2, the unstable manifold. :

Thus the curves which sweep out the stable (unstable) manifold are quasiradial.

IV.3. Integral Surfaces near a Singulaf Point

We will now prove the main results of this chapter.

Lemma: Let p? + ¢°> = E(z,y) be a constrained eikonal equation. If a locally
convex solution exists in some neighborhood of the singular point, then it is
swept out by quasiradial characteristic curves.

Proof: Suppose a locally convex solution z = 2(z,y) exists. As 2 = z(z,y) is assumed
to be C2, we can write p and g in some neighborhood of the singular point as:

p=a117 + a12y + of|z| + |y]) (IV.3.1)
q = a127 + a22y + ol|z| + |y])
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where a;; for 4,5 = 1,2 are constants. As the origin is a singular point, p and q have
no constant terms. Note that the Gaussian curvature K of z = 2(z,y) at the origin is
defined by: o

= ) K = a31G22 — ng. ' (IV.32)
Recall (section III.2.4) that a surface is locally convex at a point if its Gaussian curvature

is positive there. Substituting the expressions (IV.3.1) into the first two characteristic
equations (IV.2.3) of a constrained eikonal equation gives:

d
E::- = 2(6112 + a12y) + o(|z| + |v]) (Iv.3.3)
Y — 20132 + azay) + offal + I

Using the node theorem we deduce that the characteristic curves in the z-y plane are
quasiradial if and only if both eigenvalues of the linearized equations have the same
sign. A simple calculation shows that this is the case only when K > 0. Similarly, we
can show that the characteristic curves in gradient space are quasiradial if and only if
K > 0 which in turn is true only if a;; and a2z have the same sign. Assuming that
K > 0, the sign of the eigenvalues is the same as the sign of a;. |

In the next section we will actually compute the coefficients a;; for 7,5 = 1,2 such
that K > 0.
Finally we are ready to state and prove the main theorem of this chapter:

Theorem: Let p2 + ¢ = E(z,y) be a constrained eikonal equation. Then there
exists a unique locally convex solution in some neighborhood of the singular
point.

Proof: It follows from the previous lemma that if a locally convex solution to a con-
strained eikonal equation exists, it is swept out by quasiradial characteristic curves. So
we have to show that such a solution exists and is unique. This is achieved by showing
that the unstable manifold is the locally convex solution. To this end we investigate the
linearized characteristic equations (IV.2.8) of a constrained eikonal equation. An easy
calculation shows that the matrix A has two positive, real eigenvalues and two negative,
real eigenvalues. Thus we can apply the stable manifold theorem, which states that
there exist exactly two C? manifolds which are swept out by quasiradial characteristic
curves. A locally convex solution therefore exists. From the node theorem we get that
the solution z = 2(z,y) satisfying the positivity condition is the unstable manifold,
whereas the stable manifold is the surface defined by 2 = —z(z,y). Hence the locally
convex solution is unique.
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-IV.4. Formal Power Series Solution

In the previous section we-proved that there exists a unique, locally convex solution
to a constrained eikonal equation in some neighborhood of the singular point, but did
not show how to actually compute such a solution. We will do so in this section for the
case where E(z,y) is analytic. In particular, we shall construct a formal power series
solution. In the case where the eikonal equation is not analytic, such a solution tells
us only about the behavior of an integral surface of the equation.

Definition: A formal power series is an expression of the form:

f=z2+)_ % (IV.4.1)
j=1

where zo denotes a constant and for each J, zj are homogeneous polynomials
of degree 7. We write the first order partial derivatives of f as:

af >

5— ;pj . (N.4.2)
of b .

dy —J.Z:lq’

where for each j, p; and g; are homogeneous polynomials of degree 5. We will
say that p? 4 ¢> = E(z, y) is a super constrained eikonal equation if E(z,y) is
C®. Then f is a formal power series solution to a super constrained eikonal
equation if:

af 2 af _ 2 = )
(5;) + (55)2 = az® + fzy +1v° + Ze, (IV.4.3)

j=1

where for each j, e; is a homogeneous polynomial of degree j.

Suppose for a moment that we have computed a formal power series solution to a
constrained eikonal equation. A theorem due to Borel [HAR, p.261} states that there
exists a C™ function z(z, y) which has a given power series as its Taylor series expansion.
Unfortunately f does not determine z(z,y) uniquely since two different functions can
have the same power series expansion. For example the functions g(z,y) and §(z,y)
defined by (IV.4.4) have the same power series expansion at the origin:

9(z,y) = i 2’ + i y’ (IV.4.4)

j=1 j=1

i(z,y) = g(z,y) + €= + e V.
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Note that the first order partial derivatives of g(z,y) and g(z,y) are the same only at
the origin. Thus they cannot both be solutions to a given eikonal equation. As a formal
power series solution satisfies the eikonal equation at the origin but not necessarily at
any other point, it is not necessarily a solution to a given constrained eikonal equation.
Yet the formal power series solution does tell us, qualitatively, about the behavior of a
solution to an eikonal equation. Suppose a solution Z to the eikonal equation exists in
some neighborhood of the origin. Then 2 and Z are tangent to at least second order at
the origin. '

Lemma: Let p? +¢2 = E(z, y) be a constrained eikonal equation where E(z, y)
is analytic. Then its formal power series solution is the solution to the equation.

Proof: A version of the sta.ble> manifold theorem proves that if E(z,y) is analytic, then
the stable (unstable) manifold is analytic [COLE55, p.330]. The lemma follows. |

Lemma: Let p? 4+ ¢ = E(z,y) be a super constrained eikonal equation.
Then there exists a unique, locally convex formal power series solution to this
equation in some neighborhood of the singular point.

Proof: (outline) Equating the appropriate terms in (IV.4.3) we obtain

e an equation for the quadratic terms and
e a recurrence relation for each of the higher order terms.

First (section IV.4.1) we shall prove that there is a unique solution to the equation for
the quadratic terms if we impose the constraints that the formal power series solution
be positive and convex. The next step (section IV.4.2) is to determine the higher order
terms which is done by inductively solving the recurrence relation. If the quadratic
terms have been determined such that the formal power series solution is convex, each
step of this induction can be carried out uniquely. The first of the following two
equations determines the quadratic terms and the second is the recurrence relation
from which the higher order terms can be calculated:

p? + q¢ = az® + Py + (IV.4.5)
2p10k + 2919k = Gk+1 - for k>1 (IV.4.8)

where for each k, g denotes a homogeneous polynomial of degree k. Each gy is easily
computed using the power series expansion of E(z,y) as we will show in section IV.4.2.
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- IV.4.1. Quadratic Terms

In this section we determine p; and ¢, for given values of o, 8 and v in (IV.4.5).
Note that these terms define the Gaussian curvature of a solution to a constrained
eikonal equation. Since p; and q; are linear homogeneous polynomials they can be
written as:

p1 = anz+ a2y (IV.4.7)
q1 = a21% + a2y

where the coefficients a,; for 7,7 = 1,2 are constants. As p; and g; satisfy equation
(IV.4.5), the coefficients a;; for 7,j = 1,2 are constrained by:

(a112 + a129)? + (@212 + a229)? = az® + Bzy + 7y°. (IV.4.8)

Furthermore p; and q; are the linear terms of the first order partial derivatives of a
smooth function. Thus the so-called compatibility condition has to hold:

apb dq

—_ = — IV.4.9

dy Oz ( )
which constrains the coefficients a;5 and ag;:

12 = QG21. (N410)

Equating appropriate terms in (IV.4.8) and using the compatibility condition we derive
three equations for a;1,a12 and ags:

4oy —a
2a12(a11 +a22) =P . (Iv.4.11)
al, + a3, =1.

This system of equations only has a solution if both @ and « are not negative, which
was assumed.

As we wish to show that there exists only one positive convex formal power series
solution z(z,y) to an eikonal equation, we want the coefficients a;; for ¢,7 = 1,2 to
satisfy the previous equations and K to be positive:

K = a11Q29 — 032. (N412)

Thus the Gaussian curvature of z at the origin is determined only by p; and ¢;. We will
say that a solution for the coefficients a;; for ¢,7 = 1,2 is convex when K is positive.
Note that for K to be positive it is necessary that a;; and az2 have the same sign.
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"}

”

Figure 12. Vectors p, and ¢,

We can view p; and q; as vectors in the z-y plane. Then the vector product of the
vectors p; and g is:
p1 X g1 = G11a33 — afy. (Iv.4.13)

Recall that the vector product of two vectors can be written also as:

p1 X g1 = |p1||aa|sinp (IV.4.14)

where o denotes the angle between the vectors p; and ¢, as shown in figure 12. Thus
for p; and g; to define a convex surface, the angle between them has to be less than
180 degrees. We show now that the equations (IV.4.11) constrain this angle. The inner
product of p, and ¢ is:

p1 - @1 = @12(a11 + a22). (IV.4.15)

Equivalently, we can write the inner product of p; and q; as:

p1-q1 = |pllas|cosp (IV.4.16)

where o again denotes the angle between the vectors p; and g;. The following equations
also hold: ‘

lpa| = |y/a}s + aal (IV.4.17)

la:| = ly/ada + alal.

So, we express the cosine of the angle p between p; and q; as:

__ B
cosp = WG (Iv.4.18)
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. and there are two different angles ¢, and s = 27 — p; which satisfy this equation.
The next equation defines sin ¢ in terms of a2, @ and 7: -

(i\/a — a'i’z)(:t\ﬁ— a%z) — af,
Nzl . (IV.4.19)

Inasmuch as we are interested solely in convex solutions (i.e., p < 180°), this equation
has to be solved only for the case where the product of the square roots is positive, or
equivalently, when a;; and as2 have the same sign. Combining the last two equations

yields:
Ve—dhvy—ah—al, _ [, B (IV.4.20)
NGR] 4any

Since the the coefficients o, # and + define a positive form, the previous equation is
well defined and can be rewritten as:

4Vd4ay—p*+ o+ ~y)a2, = B> (Iv.4.21)

It is possible to determine a;2 in terms of &, and « from this equation as long as
o 7 v and B 54 0. The case where a =y and 8 = 0 will be investigated later.

sin p =

Case 1) a % vy and B #% 0

Let us denote the two possible solutions for aj2 obtained from (IV.2.21) by &@;2 and
—dy.. Without loss of generality we assume that § > 0. The results for B < 0 are
analogous. The two solutions for ay3,a12 and azp are:

a1 = \/a—al, a1y = G129 aze = \/7— &%, (IV.4.22)

a1 = —\Ja—a?, a2 = —aj2 a; =—\/7—3@
The coeficients defined by (IV.4.22) determine the uniqﬁe positive convex solution.
Case 2) a=+vyand =0

In this case equations (IV.4.11) can be written as:

afl + a%g =« (N4.24)
2a13(ayy +a22) =0 (IV.4.25)
a2, + a3, = . (Iv.4.26)
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Subtracting (IV.4.26) from (IV.4.24) we get:

| a3, —ad; =0 | (V42T
and deduce that: . o

‘ a1 = :L-agz. » (IV.4.28)

When 6;;. = —a22, K is negative. So we only have to investigate the case where

a1; = Ga2. It follows from (IV.4.25) that a;2 = 0, thus we can express the coefficients
a;; for 3,7 = 1,2 in terms of « as: -

ey = 2vVa
" a13=0 (IV.4.29)
622 = +Va.

Both solutions for the coefficients a,; for i,j = 1,2 are convex, but only one of them
is positive. Thus we have shown that in the case where a = 7 and § = 0 a unique
positive convex solution exists. [ ] :

Actually we can also show the following theorem:

Theorem: Let p2+¢? = E(z, y) be a constrained eikonal equation. Then at the
singular point, the Gaussian curvature of each integral surface has the same
absolute value and is determined by the (limited) Taylor series expansion of
E(z,y) at that singular point.

Proof: Recall that the curvature at the origin, denoted by K, is:

K= a11G22 — ai,. . (IV.4.30)

Using equations (IV.4.11) we derive an expression for this curvature in terms of o, 8,7
and ay3:

2
(@11 +a32) 17, |
(a11 + a23)? = a —al, + 7 —al; + 2¢n162; (Iv.4.31)

(a11 + 622)* = a + 7+ 2K.

Thé desired expression for K is:

K= %[% — (a4 (1v.4.32)
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. From equations (IV.4.18) and (IV.4.19) we get the two solutions for a?, in terms of a, 8
and v: _ .

a2, = g (IV.4.33)
4[\/2ay — B2 + (e +1)]
ﬂz
2
Q12 =

4[v/Aay — B + (@ + 7).

Substituting these two expressions for a2, into equation (IV.4.32) gives:

|K| = %N 4oy — B3. (IV.4.34)

Thus the absolute value of the curvature at the singular point of all integral surfaces of
a constrained eikonal equation can be directly determined from the image intensities
defined by E(z,y). |

IV.4.2. Higher Order Terms

In this section we calculate the higher order terms in a formal power series solution
to a constrained eikonal equation using the solutions for p; and g, and show that this
can be done in a unique fashion if p; and g1 determine a locally convex solution. First
we derive the recurrence relation which has to be solved to determine the higher order
terms. Suppose that p; and g are known. For p; and gz the following equation must
hold:

2p1p2 + 29192 = l3- (IV.4.35)
For ps and g3 the following equation holds:
2p1ps + 24193 + P3 + @5 = ls. (IV.4.36)

Now, by assumption p; and g are homogeneous polyﬁomials of degree two. We can
therefore write the previous equation as:

2p1p3 + 24193 = 94 (IV.4.37)

where g4 can be determined from l4,p2 and g. Thus to determine, for each k, py and
gi we have to solve the following recurrence relation:

P1Pk—1 + q1Gk—1 = Gk (IV.4.38)

where g;. is a known homogeneous polynomial of degree k.
We now introduce a new coordinate system denoted by X and Y:

X=p Y=aq. (IV.4.39)
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We can do so, as p; and g; are linearly independent vectors. (An easy calculation shows
that if p; and g are linearly dependent they define a surface which has zero curvature
at the origin. In other words the coefficients o, and ~ would not define a positive
form.) Thus for each k > 2, we can write (IV.4.38) as:

XP(X,Y)+YQ(X,Y)=F(X,Y) (Iv.4.40)
where F(X,Y)is a homogeneous polynomial of degree k and P(X,Y) and Q(X,Y) are

homogeneous polynomials of degree k— 1. This follows immediately from the definition
of X and Y. This last equation always has a solution, i.e.,:

Fx(X,Y)

P(X,Y)= P (Iv.4.41)
ax,v) = &
since, using these two functions in (IV.4.40), we obtain:
XFx(X,Y)+ YFy(X,Y) = kF(X,Y) (IV.4.42)

which is Euler’s homogenity relation [BRSET75, p.246] for a homogeneous polynomial
of degree k.
Now we show that any solution for P(X,Y’) and Q(X,Y’) can be written as:

PX,Y)= P(X, YY)+ C(X, Y)Y (IV.4.43)
Q(X: Y)= Q(X’ Y) - C(X:Y)X

where C(X,Y) is a homogeneous polynomial of degree k — 2. Suppose that PY(X,Y),
Q'(X,Y) and P3(X,Y),Q*(X,Y) satisfy (IV.4.40). Then P(X,Y) = P! — P? and
Q(X,Y) = @' — @2 have to satisfy the following equation:

XP(X,Y)+YQ(X,Y)=0. (IV.4.44)
We are looking for two functions P(X,Y) and @(X,Y) which satisfy the last equation
and are homogeneous polynomials of degree £ — 1. Furthermore P(X,Y) must vanish
at Y = 0 whereas @(X,Y) must vanish at X = 0. Thus P(X,Y) and Q(X ,Y) must
be of the form:

P(X,Y)= C(X,Y)Y : (IV.4.45)
QX,Y)= —C(X,Y)X

~ which proves our assertion (IV.4.43).
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Hence we can write the functions P(X,Y) and Q(X ,Y), which satisfy equation
(IV.4.40), as: :

P(X,Y) = F_X(%f—) +CX, Y)Y (IV.4.46)
QX,Y) = f!%ﬂ — C(X,Y)X.

Yet we want to find some P(X,Y) and Q(X,Y) which not only satisfy (IV.4.40) but
also the compatibility condition:

of _9% (IV.4.47)

We will show that if p; and q; define a convex solution, only one homogeneous poly-
nomial C(X,Y) of degree k — 2 exists such that P and Q satisfy this condition. Using
(IV.4.46), the partial derivatives of P and Q with respect to = and y are:

oP 1 ax Y. oYy aC 8X  8CaY

or _ 2 il 9Ty 22 VY4 V(LS L L0y (V448
dy k(FXXBy +FXY6y)+6yC(X’ )+ Y (5% 6y+3Y6y ( )
0Q 1 X ay. o8x aC 0X = dCaY

9z _I;(FYX oz + Fry 6:::)— oz ClX,Y) X(BX oz + dY 8z’

Recall the definitions of X and Y in terms of z and y:

X =a112 + a12y ' (IV.4.49)
Y = aj2z + a2y.

So the partial derivatives of X and ¥ with respect to = and y are:

0X ;). 4 :
-5__,; — 011 _é? — (],12 (IV.4-50)
ay -

oz

0
— == a12 — = 0.22.
dy

As F(X,Y) is a homogeneous polynomial, Fxy = Fyx. Using equations (IV.4.48) and
(IV.4.50) we can express the compatibility condition (IV.4.47) as:

1
~[Fxx612 — Fryaiz + Fxy(az —an)l = (IV.4.51)
- (X, Y) a1 + a22) — Cx(Xan +Yaiz) — Cy(Xaiz +Yazs).

We wish to determine when there is only one polynomial C(X,Y) of degree k — 2
which satisfies the previous equation. In so doing, we will compute the coeflicients in
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the polynomial C(X,Y). Then let

k
F(X,Y)=)_ fifiX'Y*

."=°

k
Fx(X,Y) = Zfi,k_;ixi“lY"—‘
i=1
k—1 o ‘
Fy(X,Y)= Z fik—ilk — )X Yk——1

1=0

k
Fxx(X,Y) =Y fix—iili — )X 2y~
§=2
k—2

Fyy(X,Y) = Z Jie—i(k — i')(k —i— )XYk 2

i=0
k—1 . |
Fxy(X,Y) = Z fik—it(k — )Xy k——1,
=1
Similarly, letting
k——z - .
CX,Y)= ch,k—j._szYk—"—z
5=0
k—2 . .
Cx(X,Y) = Y cjh—j2j X ~1Y*k—i—2

i=1
k—3

Cy(X,Y) = Z cj,k—-j—z(k —7— 2)ijk-—.1'—3

j=0
gives:
k_.z . .
XCx(X,Y) =D ¢jp—jajX?Y*F—372
J=1
k—2 . _
YCX(X,Y) = ch,k—-j——&jXJ—lkaJ_l
j=1
k—3 :

| XCY(X7Y) = ch,k—j—2(k — ] —_— 2)X.‘i+1Yk—j—3

j=0
k—3

Jj=0

(IV.4.52)

(IV.4.53)

(IV.4.54)
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- Using the last three systems of equations in (IV.4.51) we can rewrite the compatibility
condition as: :

k
1 . o
E[Efi',k—iz(z - I)X‘ 2Yk ’012 —_—
=2
k—2

D Fak—ilk — )k — i — )XY* 20y, +
=0
k—1
E fik—it(k — )X 7Y "1 (agy — ayy)] = (IV.4.55)
i=1
k—2

— E ¢ k—i—2 XY *I7%(a;; 4 azq) —
j=0

k—2
33y k—j—2
D Cik—jaf XIY* I "2, —

j=1
k—2

sy — 1y kg —
3 Cikmj—af XITIY R g,

o]
k—3 .

D Cik—j—a(k — j — XTIy F—i—3g,,
s

k—3
Z CJ',k.._j___g(k _ ]' —_ 2)Xij'_j_2022.
J=0

Equating the coefficients of the powers X*Y*—# for y = 0, ...,k — 2 we obtain the
following equations: )

For u = 0:

1
E[fz,k—22012 — fo,kk(k — 1)a12 + fr,k—1(k — 1)(a22 — ap1)] = (IV.4.56)
— co,k—2(@11 + a22) — ¢1,k—3a12 — co,k—2(k — 2)azz

Foro<u<k—2:

%[f#+2,k—;4—2(“ + 2)( +1)arz — fup—ulk — p)(k — p—1)asz +
futtk—p—1(k— p—1)(k — p)(a2 — a11)] = (IV.4.57)
— Cuk—p—2(@11 + a22) — Cpk—p—2pa11 —

— Cut1,k—p—3( +1)a12 —cu—y k—p—1(k — p — 1)ass —
Cuk—p—2(k — p — 2)agy



Foruy=k—2:

. ;lc'[fk.ok(k —1)a1z — fi—2,22012 + fe—1,1(k — 1)(422 —ay)] = (IV.4.58)
— cx—2,0(611 + 822) — ck—3,0(k — 2)a1s — cx—3,1013. :

Denote by F,, for u = 0, ..., k — 2, the left hand side of each appropriate equation,
multiplied by —1. Then we can rewrite (IV.4.56), (IV.4.57) and (IV.4.58) as:

Fo =co,k—2[a11 + az22(k — 1)] 4 ¢1,k—3612
Fy =cy—1,k—y—1(k—p—1)a12 + (IV.4.59)
Cuk—p—2[a11(p + 1) + a2s(k — p — 1)) +
Cut1,k—u—3(u + 1)a12
Fir—2 =c¢i_3,1812 + ck—2,0[a11(k — 1) 4 aza).

‘Now, for each fixed & > 2 we need to determine the coefficients ¢; x—,—2 from the
previous system of k — 1 linear equations. This system can be written in matrix form
as: ‘

Ax_jc=F (Tv.4.60)

and has a unique solution if the matrix A,_; is nonsingular (i.e., its determinant is
not equal to zero). Note that Ax_y is a tridiagonal band matrix, so its determinant
can be computed using the recurrence relation (IV.4.61) which we now derive.

Let B, be an n X n matrix, let Bo_; denote the submatrix of B,, obtained from
B,, by eliminating its top row and leftmost column and let B,,_; be similarly obtained
from B,,_;. Then B, can be written as:

a b 0 »
Bn= c Bn—-l . (N.4.61)
0 .

The determinant of B, may be computed in terms of the determinants of its sub-

matrices:
det B, = adet B,__; — bcdet B, _3. (Iv.4.62)

It suffices to prove by induction that Ax._; is nonsingular if ajja22 — af, > 0.
Without loss of generality (see section IV.4.1) we can assume that a;; > 0 and az2 > 0.
The uth row of Ax—; is:

| . (k""‘ b —1)ayy an(p+1)+ank—p—1) a12(un+1). (Iv.4.63)

Set § = k — u — 2 and denote by A, the determinant of the submatrix of Ax—;
consisting of its 7 4+ 1 bottom rows and 7 + 1 rightmost columns. We prove that Ax_
is nonsingular by induction on j.
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For the basis case, we have to show that Ao # 0 and Ay # 0:

Ao = an(k —_ 1) +422 (IV.4.64)
Al = [au(k - 2) + 2a22][a11(k - 1) + (122] —_ afz(k —_ 2)

By assumption A is positive. Rewrite A, as:
Ay = a2, (k —2)(k — 1) 4 2a11a22(k — 1) + 222, + (a11022 — a2,)(k — 2). (IV.4.65)

Since we have assumed that aj1a20 — a%2 > 0, it follows that A; is always positive.
Assume now that A;_, and Aj_q, for j > 1, are positive. We show that Ajis
then also positive which completes the proof. Using (IV.4.62) we get:

Aj = [ayi(k — 7 — 1)+ a22(j + 1)]Aj—1 — ady(k — § — 1) A, 2. (Iv.4.66)
where A;_; is defined by:
Aj—1 = [agi(k — 7) + @225]A;—2 — a3y (k — 5)(7 — 1)A;—s (IV.4.67)
and where we define A__; to be 1. Using (IV.4.67) in (IV.4.66) gives:

A; =ays(k — § — D{[ass(k — ) + a225]A5—2 — aZy(k — )i — DAj—a} +

az(j + 1)Aj—1 — afp(k — j — 1)jA, (IV.4.68)
A; =(a11092 — ady)(k — 5 — 1)7A,;—3 + az2(j + 1)A;—1 +
a11(k — 7 — 1)(k — f)len1dj—2 — aly(5 — 1)A,—s]. (IV.4.69)

To verify that A; is positive, one need only show, therefore, that:
a1l 2 > qu(j —1)Aj—3. (IV.4.70)
We proceed, once again, by induction. For 7 = 3 we wish to show:
a118y > 2a%,00. (IV.4.71)
Using (IV.4.64) and (IV.4.65) in (IV.4.71) this can be equivalently written as:

au[afl(k -_ 2)(’(3 —_ 1) + 20,11(122(’(7 — 1) -+- 20%2 + (011022 —_ afz)(k -—_ 2)] > (IV272) .
2a3,[a11(k — 1) + a22].

To see that the previous equation holds it suffices to observe that:

2a%,az0(k — 1) > 2a3,a11(k — 1) (IV.4.73)
2a11a§2 > Zafzagg. ‘
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This solves the basis case. Assume, by induction, that the next inequality holds:

auAJ‘_g > a"l’z(j —_— I)Aj__a. (IV.4.74)A

L

We need to show that:
auAJ'__]_ > a"l’szj_z. (IV.4.75)

Using (IV.4.67) in this last inequality gives:.
afl(k - j)Aj__z + auazngj_.z — auafz(k —])(] — I)Aj_._:; > a%szj__g. (IV476)
This holds if:
a2 (k — j)Aj—2 > analy(k — ) — 1)Bj—s (IV.2.77)

which is true by the induction hypothesis (IV.4.74).
Hence there exists a unique locally convex formal power series solution to a con-
strained eikonal equation which can be easily computed. [
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Chapter V

B-Silhouettes

V.1. Overview of Basic Concepts

As discussed, our goal is to find necessary constraints such that an image can be
interpreted in a unique way when its image irradiance equation is known. It was shown
in chapter IIl that, in general, there can be an infinite number of different surfaces
which satisfy the same image irradiance equation; in other words, the image of each
of these surfaces is the same for a fixed imaging configuration. Recall that in sections
II1.2.2 and III.3 we discussed how to detect a b-silhouette in an image. It remains
now to investigate whether the existence of such b-silhouettes can be used to interpret
an image. In this chapter we will identify three constraints upon an image irradiance
equation, one upon the reflectance map, one upon the b-silhouette and one upon the
function E(z,y). If these constraints hold for some image irradiance equation, only one
surface defined by a C? function which satisfies the equation exists.

What kind of information about an integral surface can one deduce from a singular
image irradiance equation? Let R(p,q) = E(z, y) be a fixed, singular image irradiance
equation whose nondegenerate b-silhouette is defined by w(z,y) = 0. As previously
discussed (section IIL.3), the surface normal to the bounding contour of an integral
surface is parallel to (4w, 4-wy,0).

V.2. Uniqueness Theorem

In this section we obtain constraints which assure that if an image irradiance
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equation has a C? integral surface, it is unique. So let
R(p,q) = E(z,4) (V2.1)

be a singular image irradiance equation. Consider the following constraints upon this
equation:

Cl) R(p, q) = p:} + q2.

C2) The b-silhouette defined by w(z,y) =0isa closed, smooth curve in the z-y
plane. Furthermore, the points (z,y) at which the image irradiance equation is
defined, lie in the region hounded by this b-silhouette.

C3) The function E(z,y) has exactly one stationary point (o, yo) and satisfies
the following conditions in some neighborhood of (zo, vo): E(Zo,¥0) = 0,
E(z,y) > 0 for (z,y) # (%o, Yo) and E(z,y) vanishes precisely to second order

at (:l:a, yo).

Uniqueness Theorem: Let R(p,q) = E(z,y) be an image irradiance equation
for which constraints C1, C2 and C3 hold and suppose a C? integral surface
defined by z = z(z,y) of this equation exists. Then the only other solution to
the equation is z = —z(z,y).

Proof: Let R(p, q) = E(z,y) be a fixed image irradiance equation for which constraints
C1, C2 and C3 hold. First note that the point P = (z,¥,p,9) = (0,%0,0, 0) is an
isolated singular point of the image irradiance equation (see also section IV.2). There
are then two observations which allow us to prove the theorem. First, as the b-silhouette
is a closed curve, an integral surface of the equation has to be compact. Second, from
constraints C1 and C3 we can deduce that such a surface is convex at the singular
point, which allows us to apply results of the previous chapter.

Suppose z = 2(z,y) defines a C? integral surface of an image irradiance equation
as defined in the uniqueness theorem. Then from C2 we may infer that z defines a
compact surface (section II.2.4). Note also that #(z,y) is defined for every point (z,v)
which lies within or on the b-silhouette and therefore has a bounding contour. Thus
there exists a point P at which z has an extremum. In particular the tangent plane at
P is parallel to the z-y plane.

From condition C3 we can deduce that there exists a point (zo, Yo, 20) on z such
that the plane tangent to z at this point is parallel to the z-y plane, i.e., p(zo,y0) =0
and q(zq, yo) = 0. By assumption this is the only singular point of the image irradiance
equation and therefore the only point on z where the tangent plane is parallel to the
z-y plane. Furthermore, as the image irradiance equation is singular, the point (z0, ¥o)
lies in the interior of the region of the z-y plane bounded by the b-silhouctte. Hence
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P= (zo, Yo, Z0)- By the assumption on E(z,y), z is either convex at P or has a saddle
point. Since P is the point where the surface has maximal (minimal) height, z must be
convex there. ' .

In chapter IV we proved that if an image irradiance equation satisfies C1 and C3,
there exists only one positive and exactly one negative convex solution denoted by 2z,
and 2z, = —2zp respectively. Thus there are exactly two integral surfaces z = 2(z,y)
and 7 = —z(z,y). |

By using transformation methods, we can enlarge the class of singular image irradiance
equations for which the uniqueness theorem holds. Let

f(Ap? + 2Bpq + Cq* + 2Dp + 2Eq) = E(z,y) (v.2:2)

be a singular image irradiance equation where f is a bijection and A, B, C,D and E
are real constants such that § > 0 and AS < 0 where 5,A and S are defined in the
following equations:

§ = AC — B?
A B D

A=|B C E (V.2.3)
D E 0

S=A+C.

The constraints upon the constants A, B,C,D and E in equation (V.2.2) assure that
the curves R(p,q) = ¢, for any constant c, are closed. Let the b-silhouette of the
equation be a closed and smooth curve. Then (V.2.2) can be transformed into an image
irradiance equation of the form (V.2.1) for which C2, holds as is shown in appendix
TI. If, after the transformation, the function E(z,y) satisfies C3, then the uniqueness
theorem holds for (V.2.2).

The next corollary follows directly from the uniqueness theorem in this chapter.

We will abbreviate y/z2 + y2 by r.

Corollary: Let p? 4 ¢ = E(r) be an image irradiance equation where E(r)
satisfies constraints C2 and C3. Suppose a C? integral surface of this image ir-
radiance equation exists. Then it is rotationally symmetric and can be obtained
by integrating E(r). In this case the b-silhouette is a circle.

Proof: First we write the eikonal equation in polar coordinates:

22 + ;la-zg = E(r). (V.2.4)
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Let # = 2(r) define the rotationally symmetric integral surface of the above eikonal
equation. Thus Zg(r) = 0 and we can compute both rotationally symmetric solutions by
integrating ++/E(r). It-follows from the uniqueness theorem that the image irradiance
equation has only rotationally symmetric integral surfaces. i

Note that the above corollary does not hold if the image does not contain a
b-silhouette. In section II1.2.5 we showed that the integral surfaces of a continuous
rotationally symmetric eikonal equation are not themselves necessarily rotationally
symmetric. The uniqueness result for the special image irradiance equation (111.3.4)
has been independently obtained by [DSY80].

V.3. Counterexamples

In the previous section we discussed sufficient constraints under which the solution
to a singular image irradiance equation is unique. Are these constraints necessary?
Although we are not able to answer this question completely, we now shed some light
upon it. In particular we try to find the class of image irradiance equations for which
most likely there is no set of constraints that assure the existence of only one global
solution.

Image irradiance equations satisfying the constraints of the uniqueness theorem
have closed iso-brightness curves, i.e., the curves R(p,q) = c are closed. So let us
examine singular image irradiance equations whose iso-brightness curves are not closed.
Such an image irradiance equation is given by:

Vi—@+9) -

While constraint C2 holds for (V.3.1), an image irradiance equation where the reflectance
map is R(p,q) = p + ¢ never has a singular point. The general solution to (V.3.1) is:

ptag=

o(z,y) = \/1— (2 +v?) + w(y — 2) (V.3.2)

where w is any C! function. Figures 13 through 16 illustrate some solutions to equation
(Tv.3.1).
Another example of an image irradiance equation whose iso-brightness curves are
not closed is given by: '
| | %y (V.3.3)

1=+
This equation satisfies constraint C2, i.e., its b-silhouette is a closed and smooth curve.

Furthermore (0,0) is the singular point of (V.3.3) and E(z,y) vanishes precisely to
second order there although E(z,y) is not positive in the neighborhood of (0,0). One
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Figure 13. 2(z,y) = /1 — (2 + ¥?)

Figure 14. z(z,y) = /1 — (22 +¥3) + (v — )
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Figure 16. 2(c,y) = /1 — (2 +v7) + (y —2)°
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of the solutions to (V.3.3) is the sphere:

oz,y) = \/1— (@2 +¥7) (V.3.4)
whereas another surface satisfying (V.3.3) is:

2(z,y) = f() +2° — y? where (V.3.5)
t=1—(z2+y% and

1 1 1 1
f(t)=t\/;ﬁ+1+§[1n( E+1+1)—ln( 12-1"1"‘1)]-

Recall that constraint C2 expressed the fact that the b-silhouette is a closed and
smooth curve. We now demonstrate that if the b-silhouette does not obey C2, our
uniqueness result does not hold. Previously, it was not expected that the uniqueness
results for image irradiance equations containing closed b-silhouettes would be different
from the results for those containing open b-silhouettes. An example of an equation
for which C1 holds, but whose b-silhouette is not a closed curve is:

2 2 1
+q¢=—++1 V.3.6
P T 41z 1 ( )

Equation (V.3.6) does not have a singular point. A solution to this equation is:

2(z,y) =V +y (v.3.7)
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Figure 17. z(z,y) =+Vz +y

which is shown in figure 17. Two other solutions to (V.3.6) are:

1 1 1 1
—_— — ed — — - 1 -— 1 . Je
z,9) = 2y o + D+ ol g 1+ D -G/ H1-DL (V38
vVz(l —8z

2(z,y) = ( )— 1 atan\/—l-—l—{—\/gy

2 42 8z

A more complicated counterexample is:
z2 2
pP+q¢¢ = —1—+—3L- (v.3.9)

This equation clearly satisfies C1 but its b-silhouette is not a closed curve. The function
E(z,y) vanishes precisely to second order at the singular point of (V.3.9) and is positive
in the neighborhood of the origin. Two different solutions to (v.3.9) are given by
equation (V.3.10) (shown in figure 18) and (V.3.11) (shown in figure 19).

=2\/1—z

2(z,y) = y
2 __ .2
Z(z,y)=(1—zy)\/1 ! —1— atan, | 1 2y (V.3.11)
1—zy 1—zy 2

(V.3.10)
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Figure 18. 2(z,y) = 2/1— 1y

Note that the surface defined by (V.3.11) is C! at the origin (although not C?) and is
only defined in two quadrants, whereas the image irradiance equation is defined in all
four quadrants. The surface defined by equation (V.3.10) is not convex at the origin.
Only when the b-silhouette is a closed curve can we deduce that a surface is convex
at the singular point, an observation which allows us to prove the uniqueness theorem.
For the following eikonal equation we give two solutions which are both C? at the origin
but only one of which is convex:

' 2 2
2 2 z° 4y
+ ¢ = —. V.3.12
P q 1— 2242 ( )

Equation (V.3.12) has a singular point and E(z, y) satisfies constraint C3. Two solutions
to this equation are:

z(z,y) = arcsin(zy) . (V.3.13)

2
x —
o(z,y) = VI— 22y + T
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Chapter VI

Numerical Methods

VI.1. General Remarks

In this chapter we discuss some numerical methods proposed to solve the shape
from shading problem. The first shape from shading algorithm was implemented by
Horn [HO70], who proposed to solve the characteristic equations (III.2.2) using standard
numerical methods for solving ordinary differential equations. Horn observes that the
surface gradient at a singular point P (section II1.2.2 and chapter IV) is uniquely defined
by the image irradiance equation. By assuming that a surface is locally convex in some
neighborhood of P and then estimating the curvature of this surface, he is able to
calculate an initial curve (sections A.6 and A.7). Horn notes that using this heuristic,
only one surface is calculated. However, it is not guaranteed that there exists a solution
to any given image irradiance equation which is locally convex in some neighborhood of
P and so the surface determined using Horn’s algorithm may not be an integral surface.
Furthermore, the algorithm computes at most one of the possible integral surfaces of
an image irradiance equation. We proved in chapter IV that in the case of an eikonal
equation where some technical conditions are imposed on E(z, y) a unique locally convex
solution exists in some neighborhood of a singular point. In this situation then, Horn’s
algorithm computes the unique convex solution. (Note that using our results it is not
necessary to estimate the curvature at a singular point in order to uniquely compute
the surface.) Unfortunately, the algorithm is slow, numerically unstable, and relies on
the presence of singular points.
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Strat [STRT79] developed an iterative shape from shading algorithm which we
discuss in detail in section VI.2. One of the major shortcomings of this algorithm
is that an initial curve lying on a surface is required as an input.

Brooks [BRO79] suggests a Waltz-like [WAT75] constraint propagation scheme to
determine the shape of a surface from its shading. Like Strat, Brooks assumes that a
surface is C? and that an initial curve which is embedded in the surface is known.
In addition, he imposes an upper limit upon the curvature of a surface that can
be determined. This constraint (which stems from experiments with human visual
systems) is needed for the algorithm to converge.

The three methods mentioned above can only solve the shape from shading problem
under the assumption that a surface is smooth and does not have a bounding contour.
If an image contains a b-silhouette it can be analyzed by using the algorithm due to
Ikeuchi and Horn [IKHOS81] which is explained in section VI.3.

VI.2. Strat’s Algorithm

Strat [STR79] proposes an iterative algorithm to solve an image irradiance equation
under the assumption that an integral surface is defined by a C? function z = 2(z, y).
. He assumes that image irradiance is measured at discrete points on the image plane
and that the reflectance map is given. In this scheme, a square grid is imposed on the
z-y plane. We denote a grid point by the tuple (, 5), the image irradiance measured at
(¢,5) by E; ;, the first order partial derivatives of z = 2(z,y) (which defines an integral
surface) at a point (7, 5) by p; ; and ¢; ;, and the reflectance map evaluated at (p; ;, ¢;,;)
by R; ;. The objective of the algorithm is to calculate p; ; and ¢; ; at every point (3, 7).
Strat does not address the problem of how to compute the function which defines the
surface, i.e., z;,;, from the values of p; ; and ¢; ;.

So let R(p,q) = E(z,y) be a given image irradiance equation. We now show how
to obtain a function e (called the error function) in the variables p; ; and g; ; which is
zero when the image irradiance equation is satisfied at every point and p; ; and g; ; are
the first order partial derivatives of 2 = 2(z, y). Strat’s algorithm computes iteratively
the values for p; ; and ¢; ; which minimize the function e. This function is the weighted
sum (over all (4, 7)) of two functions € ; and ¢! . whose derivations we now explain. The

2 ‘IJ
function €] ;, defined by (VI1.2.1), is zero when p; ; and g; ; satisfy the image irradiance
equation:
e:’j = (E,',j — Rg,j)2. (VI.2.1)

The values for p;; and g;; which minimize €] ; cannot, however, be chosen inde-

pendently; they are the first order partial derivatives of a C? function z = z(z,y).
Consequently, equation (VI.2.2) holds for p and ¢ [DIRT72):

Py = 4x. (VI.2.2)
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Gi+1) : C Er1g+1)

@ > —O(i+1)

Figure 20. Template

Strat assumes that the image irradiance equation is solved over a simply connected
region in the z-y plane. Hence (V1.2.2) can also be expressed in integral form [DIR72]:

f. pdz + qdy = 0. (V1.2.3)

We now show how a discrete approximation of equation (VI1.2.3) is used to derive €; ;.
Strat suggests the loop around four adjacent points on the grid as a path over which
the integral in (V1.2.3) should be taken. Such a path is depicted in figure 20. A discrete,
first order approximation to equation (V1.2.3) is then given by:

P+ Pit 1,5 F Gk 1,5 F Gitr,54+1 — Pit 1,41 — Pig1 — G+ T 0 = 0. (V1.2.4)
Thus the values for p; ; and g;; which the algorithm calculates must not only satisfy
the image irradiance equation, but also equation (V1.2.4). In general, a point (2, )
belongs to four templates. For each template, a discrete approximation of (V1.2.3) can
be derived and p; ; and g;,; must satisfy each such approximation. So € ; is defined
as:

€, =(Pit1,5 + Git+1,5 + Gitr+1 — Pitti+1
Pij+1 — Gij+1 + Pij — :,5)° +
(pij—1 + Pit1,i—1 + Git1,5—1 T Git1,5 —
Pit1,j — Gij—1 — Pij — is)" +
(Pi—1,j—1 + Pij—1 + @i, j—1 — Pi—1,5 —
(Pi—1,j + Gi5+1 — Pij4+1 — Pi—1,5-+1 —
Qi—15+1—Gi—1,5 T Pi,; + g ) (V1.2.5)
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The total (global) error e is then defined as:

=D (e, + pei,;) (Vi.2.6)
) _ ' :

where p is a constant scalar chosen appropriately to equate the dimensions and to
weigh the magnitudes of the errors €} ; and €] ;. At each iteration, Strat’s algorithm
minimizes e. Hencé at every point (2, j) the following two equations must be solved for

pi;j and ¢i;:

de

=0 VI1.2.7
3pi; ( )
Oe =0,
9q;,;

The Gauss Seidel method is used to solve equations (VI.2.7).

It remains to describe how the initial assignment for the values p;; and g;,; is
chosen. Strat assumes that the algorithm is applied to solve an image irradiance
equation over a rectangular region in the z-y plane. For points (3, 7) on the boundary
of the rectangle, the values for p; ; and ¢;; are given as input data and for interior
points, p; ; and g;,; are set to zero. As mentioned in section V1.1, Strat’s method is not
very useful in practice, since it requires, as input, the initial values for pi,; and ¢; ; at
the boundary of the domain in which the algorithm is applied. It is not shown whether
the solution computed by the algorithm is independent of this initial choice of values
for p;,; and g;,; at the interior points.

Experimental results appear to support the conjecture that Strat’s algorithm con-
verges, although a proof of convergence is not given. One of the shortcomings of Strat’s
algorithm is that its performance depends upon the order in which the grid points are
scanned, i.e., the order in which the values for p; ; and ¢; ; are updated.

VI.3. Ikeuchi and Horn’s Algorithm -

Ikeuchi and Horn [IKHOB81] designed and implemented an iterative algorithm which
differs in various respects from the ones described in the previous sections.

e Their assumption about the surface whose shading is to be analyzed is weaker.
They .observe that for a surface to look smooth it suffices for the function
defining it to be only C. Recall that under this assumption, an integral surface
of an image irradiance equation can be built from characteristic strips (see -
chapter III and appendix I). '

e They show that a b-silhouette can be used as initial data, which is not possible
using Brooks’ or Strat’s algorithm.
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* One of the strongest features of the method is that it incorporates data obtained from
a b-silhouette. Recall that the surface normal at a point on the bounding contour is
parallel to the normal vector to the b-silhouette. Before proceeding to describe and
analyze Ikeuchi and Horn’s algorithm, we review their slightly different formulation of
an image irradiance equation. ‘

In chapter III it was shown that an image irradiance equation defines a relation
between the image plane and gradient space. In the original formulation of this equation
[HOT5] the (p,q) coordinate system was chosen to specify gradient space. With this
underlying coordinate system an image irradiance equation can be formulated as a
FOPDE. On the other hand this system has the disadvantage that for points on the
bounding contour p and/or q assume infinite value. In order to find a numerical solution
to an image irradiance equation it would be useful to transform gradient space into
a different space SP, where (u,v) is the underlying coordinate system, so that the
components of a surface normal vector (which always have finite value), instead of p
and g, can be computed. To achieve this we have to find a space SP and a mapping
m between gradient space and SP, satisfying the following constraints:

o The mapping m between gradient space and a region of SP is one-to-one and
onto. '

o The mapping m maps the whole (unbounded) p-q plane into a bounded region
in SP. '

Recall (section II1.2.5) that gradient space can be obtained by projection of the Gaussian
hemisphere from its center onto a plane placed at its south pole. Ikeuchi and Horn
observe that by choosing a different projection of the Gaussian hemisphere onto a plane,
each point on this hemisphere gets mapped into a point other than infinity on the plane.
Several projections are suggested, one of them being the stereographic projection. We
can think of this projection in geometric terms as a projection onto a plane tangent to
the hemisphere at the south pole. The center of projection is the north pole, not the
center of the sphere. In this case the resulting coordinate system, denoted by (f,9), is
defined in terms of p and q by: :

_wViteite -1 | (V1.3.1)

d p?+q
29(v1+p*+¢*—1) o
= . V1.3.2
, g p? +¢° ( )
~ We cq.h now write an image irradiance equation in the form:
R(f,9) = E(z,y). | (V13.3)

Next we describe Ikeuchi and Horn’s method of solving the shape from shading
problem. The basic concepts of this algorithm are similar to those described in sec-
tion VI.2. The inputs to this algorithm are the measured image irradiance and the
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reflectance map R(f,g) and the desired outputs are the values f;; and g;;. (The
problem of how to determine 2;; from the values of f;; and g;,; is not addressed by
Tkeuchi and Horn.) There are two major differences between this and Strat’s procedure.
First, a different error function is used, and second the initial values for f;; and g¢;,;
are computed for points on the b-silhouette. (The case where there are no b-silhouettes
in the image is discussed later.) For points not on the b-silhouette, fi,; and g;; are
initialized to zero just as in Strat’s algorithm. ’

We now explain’ Ikeuchi and Horn’s derivation of the error function. They exploit
the assumption that the function z = z(z,y) defining an integral surface is C'. A
function F' = F(z,y) is continuous at a point (zo, yo) if, for any € > 0, there exists a )
such that, for any (z,y) which lies in the circle defined by (z — zo)* + (v — v0)? < 6,
we have:

|F(z,y) — F(zo, o)l <€ (V1.3.4)
A discrete approximation of equation (VI1.3.4) is given by:
|Fit15 + Fic1,i + Fijr + Fijo1 — 4Fi5] < 4e. (V1.3.5)
The error function e is therefore defined to be:
e= E(e,‘?'j + Xef;)  where ' (V1.3.6)
65 '
e, =(Eij — Rij)* (V1.3.7)
el ; =(fit+r,j + fimri + fijr + fig—1 — 4fi,j)2 + |
(9it1,5 + 9i—1,5 + 9ii+1 + 9ij—1 — 4g;;)°. (V1.3.8)

In equation (V1.3.6) A denotes a scalar factor chosen appropriately to equate the
dimensions and to weigh the magnitudes of the errors ¢ ; and €l ;-

As in Strat’s algorithm, the function e is minimized. Thus, at every iteration the
next two equations are solved for f;,; and g;,;: '

de

=0 ' V139
3 | ( )
Oe
—— =0.
agi,5

Once again the Gauss Seidel method is used to solve equations (V1.3.9). A lower bound
on the number of iterations needed using this method is proportional to the mesh size
but an upper bound is not known. However, numerical experiments indicate that indeed
the algorithm converges. ' '

As mentioned before, f; ; and g;,; are initialized to zero at every point except those
on the b-silhouette. It is not shown that the algorithm is independent of these initial
values.

In the case where there are no b-silhouettes in the image, heuristics have to be
used to initialize the algorithm. Ikeuchi and Horn do not specify the pumber of points
at which the exact values for f; ; and g;,; need to be known in order to guarantee that
the algorithm will compute an answer.
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Chapter VI

Conclusion

In this report, we have investigated the question of how much information con-
cerning the shape of an object can.be deduced from its shaded image. Even assuming
that adequate data is available to derive an image irradiance equation is insufficient to
solve the reconstruction problem uniquely; in general, for a fixed imaging configuration
there are many surfaces which have the same shaded image. Thus our goal has been
to identify constraints by which the reconstruction problem can be solved uniquely.

We first analyzed the continuous image irradiance equation. The information
needed to restrict the solutions to such an equation to a single one, was previously
known [COHI62b]: If a strip is specified which is not a characteristic strip and along
which A £ 0 (I11.2.3), then there exists a unique surface which contains this strip
and whose image has a particular shading for a fixed imaging configuration. We were
interested in whether edges could constitute an initial curve. In the case where the
image irradiance equation is linear, it is not possible to distinguish among the multiple
surfaces which could give rise to a known edge. For nonlinear image irradiance equations
an edge constrains the possible surfaces to a small number. However, if there exists a
surface which contains a vertex and edges emanating from it, it is unique.

Then we discussed how singular points of an eikonal equation constrain its possible
solutions. In particular we proved that there exists a unique (up to translation in
the z-direction) positive convex surface which satisfies an eikonal equation in some
neighborhood of a singular point.

Finally we investigated images in which b-silhouettes can be detected. An image
irradiance equation which describes the relationship between the gradient of a surface
whose image contains a b-silhouette, and the shading of this surface, can be singular.
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We showed that singular image irradiance equations may be solved using the same
methods applied to find the integral surfaces of a continuous image irradiance equation.
However, our ultimate ambition was to answer the following question:

Is there a set of constraints which assure that if an image irradiance equation
has a solution, it is unique?

We answered this qu'éstion affirmatively in chapter V. It was shown there that if three
constraints are known to hold, the information about the imaging situation and the
surface as captured by an image irradiance equation, allow one to reconstruct the shape
of the surface in a unique manner. Furthermore one can easily check whether an image
irradiance equation satisfies these constraints. It is surprising that our uniqueness
theorem holds only when the b-silhouette is a closed curve (constraint C2).

In order to evaluate the usefulness of our uniqueness theorem, we need to know
which of the commonly arising image irradiance equations actually obey the above
mentioned restrictions. In his paper on hill-shading [HO79], Horn discusses eighteen
different reflectance maps which are applied to solve that problem. Constraint C1 holds
for five of those reflectance maps. These equations are of the form:

R(p,q) = f(p* +4°) (VIL.L1)

where f is a bijection. A reflectance map of the form (VII.1.1) describes, for instance,
the situation when the object is Lambertian and the light source and the viewer have
the same position. Furthermore eikonal equations can be also used to automatically
analyze images taken by a scanning electron microscope which seems to be one of the
prime applications of our uniqueness theorem.

There are several issues not treated here which would be interesting to investigate
further: mutual illumination, shadows and specularities, for example. Another open
problem is to determine the class of functions R = R(p, q) which are reflectance maps.
Our only restriction upon these functions has been that they be C. If a smaller set
can be found which is known to contain all reflectance maps, better methods could
be developed to solve the shape from shading problem in practice. A further research
problem is to find a good numerical shape from shading algorithm.
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Appendix |

‘Mathematical Details

This appendix contains a summary of results known about first order partial
differential equations. A thorough treatment of this material can be found in [COHI62b,
pp.62-153] and [SMI68b, pp.259-301].

A.1. Basics

For simplicity of exposition, we will discuss only first order partial differential
equations involving a function z of two variables, z and y. The results can be generalized
to functions of m variables in a straightforward fashion. Let p and g denote the first
order partial derivatives of z with respect to z and y respectively. Then the relation:

F(z,y,2,,0 =0 (A.1.1)

where F is a function of z,v, z, p and g, is called a first order partial differential equation
(abbreviated in the following by FOPDE). The relation (A.1.1) is a linear FOPDE if it
is linear in p and g with coefficients depending only on z and y and (A.1.1) is quasi-linear
if it is linear in p and g with coefficients depending on z,y and 2.

A function 2(z,y) is called a solution to (A.1.1) if in some region of the z-y plane
the function and its derivatives identically satisfy the equation in z and y. Such a
function is also called an integral surface.

" The general solution to a FOPDE is a whole set of solutions, each of which satisfies
the equation. Given a FOPDE, what kind of constraints can be imposed so that there
is only one integral surface which satisfies both the constraints and the equation? Such
constraints are for example boundary conditions or initial values. In section A.4 we will
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state precisely what comprises a general solution and in sections A.6 and A.7 discuss
what kind of constraints are necessary to pin down a particular solution.

Unless otherwise stated,-we assume that F',z and all relevant derivatives are
continuous.

A.2. The Quasi-Linear FOPDE |

We consider qua’éi-linear FOPDE’s first as their geometric interpretation is rather
clear and so the relevant method for solving them can be explained and understood
easily. In this case we rewrite the relation (A.1.1) as:

a(z,y, 2)p + b(z,y, 2)g = (2, ¥, 2). (A.2.1)

Furthermore we assume that:

a? + b2 # 0. (A.2.2)
Suppose that the solutions to (A.2.1) are written implicitly as:

G(z,y,2) = 0. | (A.2.3)

Differentiating (denoted by subscripts) (A.2.3) with respect to z and y yields:

G:+G,zz=0 and Gy+G.2y=0 (A.2.4)
or equivalently:
G Gy
—_ = ——, A.2.
=—G. and ¢ C. (A.2.5)

Using these equations in (A.2.1) we obtain:

a(z,y,2)Gz(z,y, 2) + b(z,y, 2)Gy(z, v, 2) + c(,y, 2)G,(z,y,2) =0. (A.2.6)

Note that, in general, (A.2.1) is a nonlinear FOPDE for the function z(z,y) whereas
(A.2.6) is a linear FOPDE for G(z,y,2). We can interpret the coefficients a,b and ¢
in (A.2.6) as the components of a vector field which is defined by £ = £&(z,y,2) =
[a(z, ¥, 2), b(z, y, 2), c(2, y, z)]. Then we can rewrite (A.2.6) as:

where VG denotes the gradient of G and (, ) the inner product of two vectors. Equation
(A.2.7) expresses the fact that ¢ is perpendicular to VG. Since the vector VG is
perpendicular to the surface defined by G(z,y, 2z) = 0 at each point (z,y, z), we deduce
~ that £ lies in the tangent plane of this integral surface at that point.
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A field line is a curve whose tangent at every point has the same direction as the
field vector there. An integral surface of (A.2.7) can be built up from field lines (called
characteristic curves in this context) of the vector field ¢. To reiterate the previous
statements: The tangent at each point of a characteristic curve has the same direction
there as the vector ¢ and therefore, by virtue of (A.2.7), is perpendicular to the surface
normal to the integral surface G(z,y, 2) = 0. This does not mean that each quasi-linear
FOPDE has a single solution. Such a FOPDE only constrains the possible orientations
of the tangent planes at each point to a one-parameter manifold. As (A.2.1) is linear
in p and ¢ at every point of any integral surface, all feasible tangent planes intersect in
a line which is called the Monge axis.

We describe now a method for finding characteristic curves. Such curves can be
defined as functions of one parameter s: = x(s), y = y(s) and z = z(s). The vector

[z(s), y(s), 2(s)] is denoted by x. Then & — [2=) df‘i&s), 42(0)] has the same direction

as ¢ and so the outer product of 94X and ¢ must equal zero:
ds

dz dy
b-(—ig — C-g—s- =0
dz z
2 a2 = A2,
cds ads ( 8)
dy dz
aa—; -_ bE ==

The relations (A.2.8) are normally written as:
dz:dy:dz = a:b:c. (A.2.9)

The solutions to the equations (A.2.9) comprise a two-parameter family of curves
in space (a family of characteristic curves), yet only a one-parameter subset of them
generates the solutions to the FOPDE. To find this subset, an arbitrary function
between the two free parameters obtained when solving (A.2.9) is introduced. Hence the
general solution to (A.2.1) contains this arbitrary function. So each surface produced
by a one-parameter family of characteristic curves is an integral surface. Conversely
we now show that each integral surface is generated in such a fashion.

On each integral surface z = z(z,y) the equations:

dz dy
ds a(x) y’z) '&; = b(xry’z) (A°2'10)

define a one-parameter family of curves: z = z(s),y = y(s), z = 2(z(s), y(s)). Note
that on any curve in this family:

% = c(z,y, 2) , (A.2.11)



as:.

dz _ 0zdz | Odzdy _ —c A.2.12
G~ ozds Toyas P ThI=c ( )

Thus every integral surface is swept out by a one-parameter family of characteristic
curves. The following example illustrates these ideas.

Example:
The following FOPDE is to be solved:

F(z,y,2,p,9) = 2p+yg— 2z =0. (A.2.13)

As a(z,y,2) = z, b(z,y,z) = y and ¢(z, y, z) = 1, the equations for the characteristic
curves (A.2.9) are:
dz:dy:dz = z:y:1 (A.2.14)

and have as their solution the two-parameter curves in space:

Y= leE (A215)
z2=0Chz

where C; and C, are constants. Any integral surface can be built from the curves
described by equations (A.2.15) and every such surface is a one-parameter manifold of
these curves. Each of these manifolds is determined through coupling C; and C; by
an arbitrary relation w:

==@=wwg=m§. (A.2.16)

2= w(¥)z. (A.2.17)
z
Writing this in parametric form gives:

y=0Cz and z = w(C)z. (A.2.18)

A.3. The General FOPDE

We can apply methods similar to those developed in the previous section to solve
a general FOPDE:
F(z,y,z,p,q) =0 (A.3.1)
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where we require that: .
F24+F;7#0. S (A.3.2)

Our goal is to transform the problem of finding a solution to (A.3.1) into the problem
of integrating a set of ordinary differential equations. Again, geometrical reasoning will
help to find these equations. ,

Let P be a given point on an integral surface. Then the quantities p and g, which
determine the direction of a tangent plane at P, are constrained by (A.3.1) to a one-
parameter family of curves. (In other words: once the coordinates z, ¥ and z of a point
P are fixed, (A.3.1) is an equation for p and ¢. To write this equation in parametric
form only one parameter is needed.) The envelope of the tangent planes is a conical
surface which can have several sheets and is called the Monge cone. (A conical surface
is produced by moving a straight line which is fixed at one point, along a curve.) “The
considerations here refer merely to a suitable small range of tangent planes, e.g., a
portion of a sheet of the cone where g can be expressed as a single-valued differentiable
function of p” [COHI62b, p.75]. Each generator of this cone represents a possible
direction of the tangent plane at P and is called a characteristic direction. Thus the
integral surface has to fit into the field of Monge cones, i.e., has to always be tangent
to them.

Recall now that in the quasi-linear case, a Monge cone degenerates to a Monge
axis. To determine the solution in that case, we find the characteristic curves which
at every point have as their tangent direction the direction of the Monge axis there.
An integral surface is swept out by these curves. In the case of a general FOPDE, the
same basic idea works. Again, we have to find the curves which at every point have as
their tangent direction a characteristic direction. Let such a curve (called focal curve)
be given by = = z(s),y = y(s) and z = z(s). Remember that a one-parameter family
of such curves should sweep out an integral surface z(z, y) of a given FOPDE; in other
words, the functions z(s), y(s), 2(s), p(s) and g(s) have to satisfy this FOPDE. The focal
curves determine z(s),y(s) and 2(s). Yet, (A.3.1) gives only one relationship between p
and ¢ and so in order to determine p and g, another equation is needed. This equation
can be obtained by requiring that focal curves be embedded in an integral surface. (A
focal curve is embedded if in some neighborhood of the projection of this curve onto
the z-y plane, z is a single-valued, twice continuous differentiable function of z and
y.) Focal curves which satisfy this last condition are called characteristic curves and a
one-parameter family of characteristic curves sweeps out an integral surface.

The problem which actually has to be solved is that of finding an integral surface.
So the solution to this proceeds in the opposite direction from that described in the
preceding paragraphs. First, a set of equations, called the characteristic equations has
to be found. The characteristic curves are a subset of the solutions of this set, from
which an integral surface can be built up. In the following paragraphs the technical
prerequisites needed to find an integral surface of (A.3.1) are developed.

As a first task we determine the equation of the Monge cone. Again, let P be a
fixed point which has the coordinates (z,y,2). Then p and g, which satisfy (A.3.1),
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are written as functions of a parameter u and all feasible tangent planes at (z,y, 2) are
expressed as: ' _
(2 — 2) = (X — 2)p(w) + (¥ — )a(u). (A33)

The envelope of the planes described by the previous equation defines the Monge cone,
a conical surface whose vertex is (z,y, z). The equation of the Monge cone is found by
eliminating u from (A.3.3) and from (A.3.4) which is obtained by differentiating (A.3.3)
with respect to u:

_ (X —z)dp , (Y —y)dq
0= "= T (A.3.4)

Differentiating (A.3.1) with respect to the parameter u gives:
dp dq
F,—— + F,—=. A.3.
0= o T (A.3.5)

Assuming that neither j‘% and ‘a’{- nor F, and F, vanish simultaneously, we derive the
following equation from (A.3.3), (A.3.4) and (A.3.5):

X—z Y—y Z—2

— = . A.3.6
Fy Fq pF, + qF, ( )

By substituting all possible values for p and g (i.e., all values for p and ¢ which
satisfy (A.3.1)) we obtain all generators of the Monge cone at the point (z,y, 2). “Space
curves having a characteristic direction at each point shall be called focal curves”
[COHI62b, p.76]. Therefore focal curves have to satisfy the following differential
equations: :
dz ‘ dy dz
== 2 = —_— = . A3.7
ds FP v ds Fq ds pr+QFq ( )
To show that every integral surface z can be generated in such a fashion, let z = z(z,y)
be an integral surface on which p and g is also known. Then the equations:

dz dy
o= F, % =T (A.3.8)

define a one-parameter family of curves. On these curves:

dz dz _«_ig

—— — Ao .

= =Py T, (A-3.9)
holds and using (A.3.8) in (A.3.9) we obtain the third equation of (A.3.7):

dz

22 — pF, + qF,. (A.3.10)

ds
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_The above equation is called the strip condition. “It states that the functions z(s), y(s),
z(s), p(s) and g(s) not only define a space curve, but simultaneously a plane tangent to
it at every point. A configuration consisting of a curve and a family of tangent planes
to this curve is called a strip” [COHIB2b, p.77].

Equation (A.3.9) states that the curves defined by (A.3.7) are focal curves. Now it
is also required that a focal curve be embedded in an integral surface. Differentiating
(A.3.1) with respect to z and y we obtain:

Fops + Fyqz + Fap+ Fz =0 (A.3.11)
Fppy + Faqy + F,q+ Fy =0.

Using (A.3.7) and the fact that p, = ¢z leads to the following equations:

dp dz dy

X —p, — 2 = A.3.12
ds pn:ds +pyd8 szp""Qqu ( 3 )
dg  dz dy

2s g ds+qyds = pyFp + @ Fy

Finally, using (A.3.11) in (A.3.12) yields:

% 4+ Fop+Fy=0 (A.3.13)
dg —
s + F,q+ Fy =0.

In summary: If a focal curve is embedded in an integral surface then along this
curve the coordinates z, ¥, z and the quantities p and ¢ satisfy the following five ordinary
differential equations:

dz dy dz :
= =F = = = = + A3.14
ds P ds Fq ds pFp qFy (A3 )
dp dq

— F, + F, — ] .
ds (p F.) ds O F)

We can consider this system of differential equations (which are called characteristic
equations) by itself, i.e., disregarding that we obtained it with a given integral surface
in mind. Note first that F(z,y,2,p, q) is constant along each solution to the system
(A.3.14) since:

dF _ dp dq dz dz dy
— =4l p7~ F,— z2 5 F - =
ds pds+ qu+F ds+F ds+Fyds
= — Fyp(pF; + F)— F,(qF: + F,)+ F,(pFp + qF,) + F2Fp + F,F, (A.3.15)
=0.
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Thus F(z,y,2,p,9) = ¢, where c is a constant, is a solution to (A.3.14). The sys-
tem of characteristic equations defines a four-parameter family .of curves. By impos-
ing the additional constraint-that the solutions to (A.3.14) also satisfy the FOPDE
F(z,y,2,p,q) = 0 we obtain a three-parameter subset of the solutions. “Every solu-
tion of the characteristic differential equations which also satisfies the equation F' =0
will be called a characteristic strip; a space curve z(s), y(s), 2(s) bearing such a strip is
called a characteristic curve” [COHI62b, p.79]. The fact that a one-parameter subset
of the three-parameter family of curves sweeps out the integral surface has already
been established. Thus the problem of finding a solution to a FOPDE is equivalent to
integrating the system of five (or equivalently four if the equations are not written in
parametric form) ordinary differential equations (A.3.14). Note that since the charac-
teristic curves depend on the solution, their range of influence cannot be determined in
advance.

In the next section we discuss the notion of a complete integral and then show how
to choose the appropriate one-parameter subset of the solutions to the characteristic
equations.

A.4. General Solution, Complete and Singular Integral

We showed in the previous section that each solution to a general FOPDE is swept
out by a one-parameter family of curves. Thus we can write the equation of an integral
surface as a function of the coordinates z and y and an arbitrary function of one
variable. Such an equation is called the general solution to a FOPDE.

Suppose now for a moment that a solution 2 = &(z,y, a,b) to a FOPDE is known,
where @ depends on the two parameters a and b. Then &(z,y, a,b) is called a complete
integral if A, defined by:

A=D;;Pyp — PrtPya (A.4.1)

is not equal to zero. This condition assures that @ really depends on a and b, i.e., that
there is no ¥ = g(a, b) such that &(z,y, a,d) = ¥(z,y,7)-

From the two-parameter family of surfaces defined by &(z,y,4,b), we can chose
a one-parameter subset by introducing an arbitrary function w which relates a and
b, e.g., by setting b = w(a). Note that the family &(z,y,a,w(a)) is a solution to the
FOPDE. The envelope of the family &(z,y, a, w(a)) is again a solution to the FOPDE
since at each point it touches a member of the family &(z,y, a, w(a)), i.e., a solution.
We obtain the equation of this envelope by eliminating the parameter a from the two
equations:

2 = &z, y, 0, w(a)) | (A.4.2)
®4(z,y, a,w(a)) + Ps(z, y, a, w(a))w'(a) = 0.

We assume throughout that all eliminations are possible and that during the course
of this process only functions with continuous derivatives are obtained. Eliminating a
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. from (A.4.1) yields an expression involving an arbitrary function w of one variable
which is a solution to the FOPDE and therefore the general solution. We demonstrate
this fact analytically by differentiating the first equation of (A.4.2) with respect to z
and y: :

zg = ®; + (Do + Pow'(a))asx (A.4.3)

| zy =&y + (P + d,w'(a))ay.

Recall that &(z, v, a, w(a)) is a solution to the FOPDE for any choice of the parameter
a. Using (A.4.2) (i.e., @o + Pow'(a) = 0) in the previous equations establishes the fact
that for all z and y the values of z,z; and 2z are the same as those of &, &P, and P.

So if a complete integral of a given FOPDE is known, we can obtain the general
solution by differentiation and by elimination of parameters. (This latter process can
in practice be tedious or impossible but is often not necessary sirice every solution to
the FOPDE is obtained by substituting all possible values for a.) In the next section
we will show that with the help of the characteristic equations, a complete integral can
found.

The general solution does not comprise all solutions to a FOPDE. The envelope
of a complete integral, the so called singular integral, is a solution which cannot be
obtained from the general solution. The equation of the singular integral, which does
not contain any arbitrary elements, is found by eliminating the parameters a and b
from the equations:

é(z,y,a,b) = z
®,(z,y,a,0) =0 (A.4.4)
&y(z,y,a,b) = 0.
In fact, we do not have to know a complete integral of a FOPDE in order to find
the singular solution. Note that for a complete integral @, F(z,y,®, Dz, Py) vanishes

identically for all choices of the parameters a and b. Differentiating the FOPDE with
respect to a and b we obtain:

Fo®, + FpPza + Fy®Pya =0 (A.4.5)
Fo®p + Fp®2b + Fy®y = 0.
As @ is a complete integral, A = @, Pyp — &Py, is DOt equal to zero. Furthermore
&, and P, are zero (equations (A.4.4)) and therefore we may derive the equation of the
singular integral by eliminating p and q from: ‘
Fp=0 Fe=0 F =0. (A.4.6)

Note that equations (A.4.6) are derived from (A.4.5). (Remark: In this case we do not
assume that F'2 4 F'Z 5£ 0 as we did to obtain the characteristic equations.)

If 2 FOPDE does not contain the function z(z,y) explicitly, then no singular
solution can exist as in this case the complete integral is of the form [COHI62b, p.24]:

_ 2z =®(z,y,a)+ b (A4.7)
and the condition @, = 0 cannot be fulfilled.
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A.5. A Method for Finding the Complete Integral

In the previous sections we showed two methods for finding the solutions to a given
FOPDE. Here, we explain how to find the complete integral using the characteristic
equations. Furthermore we describe how to determine a one-parameter subset from the
four-parameter family of solutions to the characteristic equations.

First let us discuss a special form of a FOPDE called Pfafl’s equation:

l‘f(x’ Y, 2)dz + g(z,y, z)dy + h(z, y, z)dz =0. (A.5.1)

In the case where h = 0 and f and g depend only on z and y, this equation degenerates
to an ordinary differential equation called an exact differential equation:

f(z,y)dz + g(z, y)dy = 0. (A.5.2)
The equation is called total if f and ¢ satisfy the integrability condition:
fy(z,y) = 9z(2,¥)- (A.5.3)

In the case of a total differential equation it is easy to find a solution to (A.5.2). On
each simply connected region we can determine a function H (z,y) such that:

oH . o0H
— —— d — N A.504
oy = J@y)  an 3y 9(z,y) (A.5.4)
Then: :
dH = f(=z,y)dz + g(z,y)dy (A.5.5)
and the equation dH = 0 are both equivalent to (A.5.2). Thus H(z,y) = ¢, where ¢
is a constant, is a solution to (A.5.2) and the function H can be found by integrating
(A.5.4). '

In the case where a FOPDE is exact but not total, an integration factor u(z,y)
can be always introduced such that the equation: '

pfdz 4 pgdy =0 (A.5.6)

is total, i.e., such that (uf)y = (ug)s. Equivalently, u(z,y) has to be a solution to the
following FOPDE which we can solve using the method of characteristic curves:

p(fy — 9z) + vy — 29 = 0. (A.5.7)

' Equation (A.5.1) is also easy to solve if its left hand side is a total differential of a
function H(z,y, 2) i.e., if:
oH oH 0H
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. For the previous equations to hold, i.e., for the functions- f, g and h to be the first

order partial derivatives of a function H, it is necessary that the following integrability
conditions be satisfied:

9 _ 8 89 _oh oh _of
dy Oz 9z 8y dz 8z’

(A.5.9)

In a simply connected region these integrability conditions assure the existence of a
function H(z,y, z) which satisfies (A.5.8) and can be calculated as:

(:c,y,z)

H(z,y,3)=/

T0,Y0,20

)(f dz + gdy + hdz) 4 C (A.5.10)

where (o, yo, 20) is a fixed point and C is a constant. Clearly H(z,y,2) = c, where ¢
is a constant, is a solution to (A.5.1).

In (A.5.9) is not satisfied, it is again desirable to find an integration factor w(z,y, z)
such that the expression ufdzr 4 ugdy + phdz is a total differential of a function. In
contrast to the case of Pfaff’s equation in two variables, it is not always possible to find
such a factor. For such a u to exist, it is necessary that the following equation holds:

£(9: — hy) + alhe — f2) + B(f, — g2) = 0. (A.5.11)

It can also be shown (simple, but tedious) that in a simply connected region the

previous equation is sufficient for (A.5.1) to possess a one-parameter family of solutions

H(z,y,2) = c. We demonstrate now how to construct such a function H (z,y, 2).
First consider the abbreviated equation:

f(z,y,2)dz 4 g(z,y, z)dy = 0. (A.5.12)

This is a Pfaff’s equation in the two variables z and y, with z as a parameter. Thus a
solution to it can be always found (if necessary with the help of an integrating factor
Az, v, 2)):

¥(z,9) = u(z,y,2) = ¢ (A5.13)

where ¢ is a constant. Note that:

o nd g =2, (A.5.14)

Vz?ﬂ ’ dy

Now we define a function S which depends upon the three variables z,y and 2:

Ju
= —_—— 5.1
S(@,4,2) = \h— 2 (A.5.15)
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Using (A.5.13) we redefine S as a function of z,u and z, say: -
T(z,u,2) = S(z,y, 2). (A.5.16) -

Suppose that T is independent of z. Then we can find H (z,y, z) by solving another
Pfaff’s equation in the variables u and 2. In fact, it is easy to see that T is independent
of z. One just has to prove that 4T = 0 which we do using equations (A.5.14) and
(A.5.15): :

d 0
aa—z(xh — 8) = upy = bg(x 9
0 o

a()\g) = Ugy = 5;()‘]‘)

Equations (A.5.17) written out in full are:

Sz = hhz — Az + Nhz — £3) (A.5.18)
—8y = gh; — Xy + \(gz — hy) (A.5.19)
0= fA\y — gz + Mfy — 92). (A.5.20)

Multiplying (A.5.18) by g, (A.5.19) by f, and (A.5.20) by h and then adding up the
three equations using condition (A.5.11) yields:

gS: — fSy = 0. (A.5.21)
Differentiating (A.5.16) with respect to z and y gives:
S, = T, + Tyu, (A.5.22)
Sy = Tyuy.

By combining (A.5.14), (A.5.21) and (A.5.22), we obtain:

0=9S; — Sy = gT; + gTyuz — fT,uy = (A.5.23)
= 9Tz + NfgTu — NfgT, = ¢T.

Because g % 0 ‘we may conclude that T; = 0. Thus we rewrite (A.5.16) as:
S(z,y, 2) = T(u, 2). (A.5.24)

Equation (A.5.1), after multiplication by X\ and using the expressions (A.5.14) and
(A.5.15) becomes:

Nfdz + gdy + hdz) = udz + uydy + (u, 4 T)dz = 0 (A.5.25)
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. or, equivalently: :
du + T(u,2)dz = 0. : (A.5.26)

This is again a Pfaff’s equation in two variables, which can always be solved using an
integrating factor. Its solution is (u,2z) = c where c is a constant. Therefore the
solution to (A.5.1) is:

H(z,y,2) = 7»0(“(21 Y, 2), z) =c (A‘5'27)

which is a one-parameter manifold.

Finally, we describe a method for finding a complete integral of a general FOPDE
F(z,y,2,p,q) = 0. The basic idea is that the total differential of a solution z(z,y) to
the FOPDE: ,
dz = pdz + qdy (A.5.28)

can be interpreted as Pfaff’s equation in the variables z,y and 2. In order to do so, p
and g must be expressed as functions of z,y and z. So assume that two functions f
and ¢ can be found such that:

p = f(z,y,2,a) and q =9g(z,y,2,a) (A.5.29)
where a is an arbitrary constant. Then the FOPDE and (A.5.11) (with h = —1):
fng'gfz—fy“'"gz:o (A.5.30)

are satisfied. In this case the solution to (A.5.12) is a one-parameter manifold, but since
a parameter a is already build into the equation, this solution contains two parameters
and is the complete integral. Hence the problem of finding the appropriate functions

f and g has to be solved.
Suppose that a function G(z, y, z, p, q) exists such that the following equation can

be solved for p and g (or equivalently for f and g):

F(Z, Y,2,p, q) = 0 : (A‘5‘31)
G(z,y,2,p,9) = a.
For this to be possible, the inequality F,G, — F,G, 5% 0 has to hold. We have to
prove that f and g obtained in such a fashion satisfy (A.5.30) identically in the three
variables 7,y and z. Differentiating the equations (A.5.31) with respect to z,y and 2
gives:
Fz+szp+QIFq=o Gz+szp+Qqu=0
Fy+pyFp+qFg =0 Gy +pyGp+ ¢yGq =0 (A'5'32)
Fy4+p.Fp+q.Fy =0 Gz+szp+‘Iqu=0-

After expressing p;, q., py and g, from the previous equations in terms of the derivatives
of F and G and substituting these expressions into (A.5.30) we obtain a lincar FOPDE
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for the function G:

We cah solve this equation by the method of characteristic curves.. The appropriate
system of characteristic equations is the same as the one for F(z,y,2,p,q) = 0:

dz:dy:dz:dp:dq = Fo:F:(pFp + qFy): — (pFs + Fz): — (aF: + F,). (A.5.34)

Only one solution to these equations which is independent of F' and contains at least
one of the variables p and g is needed. Such an integral is the desired function G
and will always exist since the solution to the characteristic equations comprises a
four-parameter family:

vi(z,¥,2,p,9) = Cs 1=12,3,4 (A.5.35)

The v; are independent and at least one of them must contain either p or gq.

The method we have described is due to Lagrange and Charpit. It has the
advantage over the method of characteristic curves discussed in section A.4 in that
one needs only to find a single integral of (A.5.34) rather then a four-parameter family
of curves. '

A.6. The Initial Value Problem for Quasi-Linear FOPDE’s

In this section we attack the problem of how to determine a particular solution of
a FOPDE, once the general solution is known. First we consider a quasi-linear FOPDE:

a(z,y, 2)p + (2,9, 2)g = ¢(z,, 2)- - (A61)

In particular we discuss the problem of how to find an integral surface z(z,y) of (A.6.1)
which contains a given curve C in space. In the literature, e.g., [COHI62D, p. 40), this
problem is referred to as Cauchy’s problem. Clearly the following questions have to be
answered:

1) What conditions on C' are necessary to make this problem is solvable?

2) When is such a solution unique?

Let C be given by three continuous differentiable functions of a parameter &: z(t), y(t), 2(t).
Furthermore, we assume that the projection of C onto the z-y plane (referred to as Co)
does not contain double points and that z? + y2 £ 0. If Cp contains double points, an
integral surface with self-intersections is obtained, hence, z is not everywhere a single-
valued function of z and y which implies that along the line of intersection, p and ¢
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_are discontinuous. Now to find a solution to the FOPDE containing C, we construct
a characteristic curve through each point of C. The equations for the characteristic
curves depend upon two parameters:

z=1x(s,t) y=1y(s,t) | z = 2(s,t). (A.6.2)

Note that the functions z,y, z are still continuously differentiable. To get the equation
of the integral surface, we must eliminate the parameters s and ¢ from the previous
equations, i.e., we must express s and ¢ in terms of z and y. A sufficient condition
for this to be possible is that the functional determinant A, which is specified by the
following equation, does not vanish along the curve C:

drdy dydz

A= -(IS-_(;; — -a-;—d-? (A.6.3)

Using the characteristic equations, we rewrite (A.6.3) as A = d% — b4z, Thus if
A £ 0, we may express z as a function of z and y and be assured that C lies on the
surface. This solution is also unique which is a consequence of the following lemma:

Lemma [COHI62b, p.64]: Each characteristic curve which has one point in
common with an integral surface lies completely on this surface.

This lemma follows from the uniqueness theorem for solutions to ordinary differential
equations.
We can interpret the determinant A as the outer product of the two vectors:

£ = (?) and & = (?) (A.6.4)
i 2
which are the projections of the tangent and the characteristic direction onto the z-y

plane, respectively. In the special case where A vanishes along C, these two directions
coincide and we may deduce that C has one of the following three properties:

1) C is a characteristic curve.

2) C is the envelope of the characteristic curves (called an edge of regression).

3) Cy is the envelope of the projections of the characteristic curves onto the
z-y plane.

We discuss when case 1 occurs first. From A = 0 we infer that:

lff__.. 1dy

ldz _lay AS.
adt bdt (A-6:5)
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Using z(t) and y(t) (from the equation for C) in 2(z,y) the following equation has to

hold along C:
' dz __  dz dy
haind = = = c. A.6.6
i oyt =aptbg=c (A.6.6)

This means that C satisﬁes the characteristic equations and is therefore a characteristic
curve. In this case, there exist infinitely many surfaces through C' which satisfy the
FOPDE. To see thls Jjust choose another curve C which has a point P in common with
C. Now to construct the solutions through C’ a characteristic curve is passed through
every point of C’ in particular through P. The characteristic curve through P is C, thus
an integral surface through C contains C. In this manner we can construct infinitely
many integral surfaces which contain C. They all meet along the characteristic curve
C which therefore can be viewed as a branch curve.

One assumption made throughout should be stressed again here: we require the
solutions to a FOPDE to be continuous and continuously differentiable in some neigh-
borhood of C. It might be possible to find a solution z through C, along which A
vanishes, without C being a characteristic curve as occurs in cases 2 or 3 mentioned
above. However, the derivatives of z are then not continuous along C. This fact is
illustrated in the following example.

Example:

We wish to solve the following equation:

F(I, Yv,z2,p q) = 3(2 —_— y)2P —q= 0. (A67)

The characteristic equations are:
<= ' (A.6.8)

The solution to these equations, with the initial values zg, yp, 2o, is:

T = (20 —yo+ 8)> + 20— (20 — y0)3
y=—s+yp (A.6.9)
Z = 2.

Now we impose the constraint that the integral surface passes through C which is given
by:
r=20 y=t z=t. (A.6.10)
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Note that C is not a characteristic curve. Setting the initial values zq, yo, 2o (i.e., z,y,2
for s = 0) to:

zg=0 Yo =1t 20 =1, (A611)
(A.6.9) becomes:
z=g3
y=—s-+t (A.6.12)
z=1.

In this case the determinant A is:

A= ——— — = =342 (A.6.13)

Thus along the curve C (i.e., s = 0) A = 0.
There is, however, a solution to the FOPDE which contains C:

z=z¥ 4. ' (A.6.14)
Note that p = $z~% does not exist along C (as z = 0 there).

In the case of a linear FOPDE we can make some further statements about the
solution in the case where A vanishes along C. Here, the integral surfaces are cylindrical
surfaces perpendicular to the z-y plane, i.e., the function defining an integral surface
is independent of z. The linear FOPDE is:

o(z,y)p + b(z, y)g = ¢(g,y). (A.6.15)

Recall that A is defined as: _
A= ZsYt — TtYs. ‘ (A.6.16)

Using the characteristic equations:

z, =a (A.6.17)

the following equation is obtained for A,:

As = asys + ayst — bszy — bzsy =
= agY; + abt _— bszt -_— atb. (A.6.18)

Note that if A, (the first order partial derivative of A with tespect to s) and A vanish
along C, then A vanishes everywhere. The proof of this last assertion follows from the
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existence and uniqueness theorem for ordinary differential equations. By diﬁ'erentiating
a and b with respect to s and ¢ and using relations (A.6.17), equations (A.6.19) are
obtained: . ' ’

as; = aza -+ ayb

ar = a;T¢ + ayy, (A.6.19)
by = bza + byb
by = bz + byy,
and so:
A, = (az + by)A. (A.6.20)
To express z as a function of y and 2, say, z = f(y,z), we have to assume that

Ys2t — Z5Y; 7 0 along C.

Now, in order to prove that the integral surface z is a cylindrical surface, it suffices
to show that f, = 0. Differentiating z with respect to s and ¢t we derive the following
equations:

Ty = fyya + f22s

Ty = fyyt + f,zt. (A.621)
Then:
A = fi(2:y: — 21ys) (A.6.22)
from which it follows that:
f=0. (A.6.23)

A.7. The Initial Value Problem for General FOPDE’s

Here we pose the question: What are the constraints necessary to determine a
solution to a general FOPDE uniquely? Clearly more information than in the quasi-
linear case is needed as now the solutions to the characteristic equations form a three-
parameter family of curves. So let C be a curve given by z(t), y(t) and z(t) such that
neither C nor its projection onto the z-y plane have double points. Furthermore p(t)
and q(t) along C have to be specified such that the condition:

dz dz dy
& i AT1
| i~ Pa Ty (A7)
holds and the FOPDE (A.3.1) (i.e., F = 0) is identically satisfied in {. Thus the
functions z(t), y(t), 2(t), p(t) and q(t) define an initial strip which we denote by Cj.
From now on, the procedure is very similar to the one used in solving the initial value

problem for a quasi-linear FOPDE. Through every element of C1 a characteristic strip
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is constructed which can be written as z(s, t), y(s, t), z(s, t), p(s, ) and ¢(s,t). To be able
to express the parameters s and ¢ in terms of z and y:

A =z,y — 21y, = Fpy: — Fyz: (A.7.2)

cannot vanish identically along the initial strip. Assuming this holds, z,p and q can be
expressed in terms of z and y. It then remains to check whether p and g written in
such a fashion are the first order partial derivatives of the integral surface 2(z,y). This
involves showing that the quantities U and V:

U=z —pz: — qu: (A.7.3)
V =23 —PTs — qYs .
vanish identically. Since we assumed that A £ 0 we deduce from the previous equations
and:
0 =2y — 2:2 — 2yY;
0 =2z, — 2;%s — 2yYs (A.7.4)

that z; = p and zy = ¢. Recall now the characteristic equations:

dz dy dz
= F' 2 =F —_— = + qF,. A.7.5
ds P ds q ds pFp +qF, ( )

Using the first two of these equations in the last one, we obtain:

which implies that V vanishes identically. Now to prove that also U vanishes identically,
note that:

oU

—6_3 = 2st — PsTt — PTst — QsYt — qQYst (A-7-7)
v :
-53— = Zst — PtTs — PLst — QtYs — qYst- (A~7-8)

Subtracting (A.7.7) from (A.7.8) yields:

-oU 9V

ErRr) = —PsTt — PtTs + qsYt — qtYs- (A.7.9)

Taking into account the characteristic equations and the fact that V = 0 implies
9Y — 0, we rewrite the previous equation as:

oUu

e peFp + @ Fg + 2. Fz + v Fy + (pze + qye) F. (A.7.10)
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However, the FOPDE F = 0 holds identicallj in s and ¢t. Differentiating F with respect
to t gives: _ I
' Fzzg —I‘Fyyg +F,Ztv+ Fppt +qut =0. (A.7.11)

Using the previous equation in (A.7.10) we obtain:
N _Fu. (A7.12)

For any fixed ¢, (A.7.12) is an ordinary differential equation for U as a function of s
with the solution: 7 ]
- U(s) = U(O)efo —FU, (A.7.13)

Since by assumption, U(0) is zero, U vanishes everywhere.
To summarize the previous results: given a curve z(t), y(t) and 2(t) along which
p(t) and ¢(t) are known such that:

dz dz dy
@~ P& T

F(a{t), u(t), 2, o) at) = 0 (A7.14)
A = Fpys — Foz: 5£ 0, |

there exists a unique integral surface through the initial strip. We obtain a unique
surface because the solution to the characteristic equations is uniquely determined by
their initial values.

The exceptional case where A = 0 along C is analogous to the one discussed in the
previous section: there are infinitely many integral surfaces through C, if and only if it
is a characteristic strip. Again we can view any characteristic curve as a branch element
since, on either side of it, there can be another member of the family of solutions to a
FOPDE, while along such a curve the first derivatives are continuous. Note that higher
order derivatives along the curve may be discontinuous. If C} is only a focal strip along
which A = 0, then it might be possible to find an integral surface z containing it. As
in the quasi-linear case, this surface does not have continuous derivatives.

Finally, suppose C degenerates to a point P with coordinates (zo, %o, 20). Then '
the strip condition is identically satisfied for all pg and gp which satisfy the FOPDE,
i.e., for all pg and go which determine the feasible tangent planes at P. So po and go
can be written as functions of a parameter ¢. If the quantities zo, Yo, 2o, Po(t) and go(%)
are used -as initial values when solving the characteristic equations, a unique integral
surface which has a conical singularity at P is obtained. It is called the integral conoid
of the partial differential equation at P.
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Appendix i

Transformation

In this appendix we show that any solution to an image irradiance equation of the
form (B.1) can be obtained from the solutions to an image irradiance equation of the
form (B.5). Let

J(A9® + 2Bpq + Cq? + 2Dp + 2Eq) = E(z,y) (B.1)

be an image irradiance equation where f is a bijection and A, B,C,D and E are real
constants such that § > 0 and AS < 0, where §, A and S are defined by:

s = AC — B?
A BD ,

A=|B ¢ E| . | (B-2)
D E @

S=A+C.

As f is a bijection, equation (B.1) and the following transformed equation have the
same solutions: o '

A +2Bpg + C¢* +2Dp+ 2Bq = f~(Ez3). (B
Equivalently, we can write the previous equation as: |

Ap? 4 2Bpq + Cq* + 2Dp + 2Eq = E(z,y). (B9
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Now let z = 2(z,y) be a solution to:
P +q =EE§+ec (B:5)

where Z, ¥ and c are defined by:

~ B VAC — B?
Z=—z-+ y
Ve VT
§=VCxz (B.6)
¢ = Aa® 4 2Baf + Cp?
and o and g are defined by:
CD— BE
a = —m (B.7)
= AE — BD
 AC—B?’

Then (%, §) = 2(2(%, ), (%, §)) — aZ — By is a solution to (B.3).

Proof: The proof proceeds by diagonalization of a quadratic form. First we express z
and y as functions of T and ¥:

y
T = (B.8)
VG
_ Ci—By
/C(AC — B?)
The first order partial derivatives of Z are abbreviated by p and g:
0z
P = — B.9
p=3= (B.9)
%
q - ag .
In the following equations we express p and g in terms of p and ¢q and vice versa:
i vVC
pP=q———— —«
VAC — B? |
§=p— B (B.10)

- —B
p\/'C' q\/C(AC—Bz)
p B+ ) +CA+h)

VvC
q= _.___._'AC—'Bz(i, + a).

VC
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if an image irradiance equeation has a solution, it is unique? To this end we
postulate three constraints upon the image irradiance equation and prove that
they are sufficient to uniquely reconstruct the surface from its image.
Furthermore it is shown that any two of these constraints are insufficient to
assure a unique solution to an image irradiance equation. Examples are given
which illustrate the different issues.

Finally, an overview of known numerical methods for computing solutions to
an image irradiance equation are presented.
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