ical Report 633

Foundations
of Actor

Semantics

William Douglas Clinger

MIT Artificial Intelligence Laboratory

Foundations of Actor Semantics
by

William Douglas Clinger

May 1981

© William D Clinger, 1981

The author hereby grants to M.LT. permission to reproduce and to distribute copies of this thesis
document in whole or in part.

This report reproduces, with corrections, a dissertation submitted 1 May 1981 to the Massachusetts
Institute of Technology Department of Matheinatics in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

Foundations of Actor Semantics
by
William D Clinger

Submitted to the Department of Mathematics
on 1 May 1981 in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy in
Mathematics and Computer Science

Abstract

The actor message-passing model of concurrent computation has inspired new idcas in the areas
of knowledge-based systems, programming languages and their semantics, and computer systems ar-
chitecture. The model itself grew out of computer languages such as Planner, Smalltalk, and Simula,
and out of the use of continuations to interpret imperative constructs within A-calculus. The math-
cmatical content of the model has been developed by Carl Hewitt, Irene Greif, Henry Baker, and
Giuseppe Attardi. This thesis extends and unifics their work through the following obscrvations.

The ordering laws postulated by Hewitt and Baker can be proved using a notion of global time.
The most gencral ordering laws are in fact equivalent to an axiom of realizability in global time.
Independence results suggest that some notion of global time is essential to any model of concurrent
computation.

Since nondeterministic concurrency is more fundamental than deterministic sequential computa-
tion, there may be no need to take fixed points in the underlying domain of a power domain. Power
domains built from incomplete domains can solve the problem of providing a fixed point semantics
for a class of nondeterministic programming languages in which a fair merge can be written.

The event diagrams of Greif's behavioral semantics, augmented by Baker’s pending events, form
an incomplete domain. Its power domain is the semantic domain in which programs written in actor-
based languages are assigned meanings. T his denotational semantics is compatible with behavioral
semantics.

The locality laws postulated by Hewitt and Baker may be proved for the semantics of an actor-
bascd language. Altering the scmantics slightly can falsify the locality laws. The locality laws thus
constrain what counts as an actor semantics.

Thesis Supervisor: Dr Carl Hewitt
Title: Associate Professor of Electrical Engincering and Computer Science

This thesis is dedicated to
Richard Browning and Bruce Acklin.

Acknowledgements

I wish to thank:

Carl Hewitt, my thesis advisor, for years of patient help, and for his vision of computing, the actor
model of computation.

Robert Halstead and Michacl Sipser, my readers and members of my interdepartmental committee,
for their willingness to read and question a thesis that lately threatened to disappear into a chasm
betwixt their respective departments.

Giuseppe Attardi and Irene Greif, for sharing their ideas and suggesting new directions.

Giuseppe Attardi, Bob Berwick, Dean Brock, Sy Friedman, Anne Hartheimer, William Kornfeld,
Bruce Schatz, Richard Stallman, Gerald Sussman, and Barbara White, for reading and remarking
upon carly drafts of pieccs of this thesis.

The members of the MIT Artificial Intelligence Laboratory, for ideas and encouragement, friendship
and tutelage.

The citizens of these United States, for funding the first three years of my graduate education through
a National Science Foundation Graduate Fellowship in mathematics. May their generosity redound
to the benefit of all nations.

Chapter I

Chapter 11

S BN O

Chapter 111

1.

Contents

Tntroduction . . . o . e e e e e e e e e e e e e e e e e 8
Faiffess & » v v v e 9
OVEIVIEW &+ v v e 12
Related ReSCaICh . o . v v v v v e e e e e e e e e e e 14
OrderingLaws o v vt 16
The ActorModel v v v i e e e e e e e e e 16
Global Timeis NECESSATY + v v v v v v v v v e e e e e e e e e e 21
A Mathematical Formulation« . o v v e e e 23
Time, Causality, and Computation« v v v oo 26
The Strong Axiom of Realizability oo v oo 30
The Weak Axiom of Realizability« c o v v v v oo e 37
A Strong Independence Result oo e e 42
ModifyingaProof e 46
NondeterMIiMISI . . .« v v v v e e e e e e e e e e e e e e e 52
Nondeterminism can be Viewed as Incomplete Specification 52

B

S AN

Chapter IV

R = AN A o A R

Chapter V

3

AT ol

Chapter VI

Fixed PoInt Semantics . . « « v v v o v oo e e e e e 58

Domains and Their Completions e e e e e e e 60
The Power DOMAin o + v o o v v v v v o v o e e e e e 68
Power Domains from Incomplete Domains o v v v ve e 75
Implementations are not Meanings oo e e 78
Choice Nondeterminism is Bounded« o v v v oo e ve e e e 19
Fairness Implies Unbounded Nondeterminism« vvveee e e e 82
ACtOr SCMANEICS .+« v v o o e e e e e e e e 87
Primitive SCHializers . . « v« o v e v e e e e e 87
ACtOr BEhaVIOTS « + v v v v e v e e e e e e e 89
The Actor Event Diagram Domain« o« oo v e o e e 91
Meanings as Fixed Points o o o v oo i 99
Example: Infinite LOOP .« v v v v v v e 108
Example: Terminating Unbounded ChoiCe . « + v v v v v e e e e 111
Example: Possibly Nonterminating ChoiCE . . v v v v v e e e e e e e 116
Relation to Standard Power Domains o v oo e e e e e 120
Locality LAWS . o o v v v v v e e e e 123
ACtOT ACQUAINLANCES .+« « v v v v v o e oo s e m 123
ACtOr CTEALON .+ « v v v v e v e v oo e e e a e e e e 124
Locality Laws AddPower o o oo v v e e 128
Semantics with Actor Creation . . . v o v e 132
ATOYLANGUABE . o« o v v oo o om o e e 136
The Locality Lawsmay notHoldo v v e e 137
The Locality Laws may be Provable v oo v oo e e 138
ConclUSION .+« v v v e e e e e e e e e 141

Appendix I

Appendix II

Appendix I1I

Appendix IV

References

Atolia: Informal Deseription oo o 143
Atolia: Sample Programso o oo e e e 153
Atolia: Comparison with Actl and CSP e e e e e e e e e 158
Atolia: Formal Semantics« o o oo e e e 161
....................................... 174

Chapter |

Introduction

Today’s algorithmic programining languages were designed to express deterministic sequential
algorithms. They were not designed to express algorithms for the distributed computer networks and
network-like multiprocessors that arc now being designed and built. Algorithms for these nectworks
and multiprocessors make use of concurrent computation and are often nondeterministic in that they

do not specify a unique outcome.

The now classic Scott-Strachey theory of programming language semantics deals only with deter-
ministic programming languages. That is, using the Scott-Strachey theory to describe the semantics
of a language defines a unique mathematical object for every well-formed language construct. The
hallmark of nondeterministic programming languages, however, is a kind of semantic ambiguity:

some programs may for a given input produce any of several possible outputs.

Why not extend the Scott-Strachey theory by making the mathematical object corresponding
to the output of a nondeterministic program be the sct of its possible outputs? Gordon Plotkin

has done preciscly that in working out the theory of power domains, SO called by analogy with

power sets.! Each element of a power domain is a set of possible outcomes of a nondeterministic
program or program fragment. One of the most important shortcomings of power domains has been
their seeming inability to deal with fair merge, finite delay, unbounded nondeterminism, and other
manifestations of fair parallelism.

This thesis presents a theory of semantics for a class of nondeterministic programming languages
with fair parallelism. Specifically, this thesis is concerned with programming languages based on the
actor model of concurrent computation.? Actor semantics shows that power domains can be made to

overcome the problem of fairness.

I.1. Fairness

Consider the problem of scheduling disk operations requested by concurrent processes. Because
the disk is slow relative to the processes, requests should be buffered; let’s call a request in the buffer
a pending request. Two possible scheduling strategies are the First Come First Served strategy and
the Shortest Seek Time First strategy. The First Come First Served strategy services pending requests
in the order they arrive at the scheduler. The Shortest Seek Time First strategy attempts to minimize
disk head motion by always servicing the pending request that involves moving the disk head the
shortest distance. In many cases the Shortest Seek Time First strategy gives better average response
time than the First Come First Served strategy.? Unfortunately, the Shortest Seek Time First strategy
is incorrect because it cannot guarantee that every pending request will be serviced.

Figure 1 shows why. Process Py wishes to rcad a cylinder near the center of the disk. Process Py
wishes to read and write cylinders near the disk’s outer edge. The disk head happens to be over Py’s
cylinders. Suppose process Py, in a burst of activity, sends fifty or so requests to the disk scheduler, all
involving cylinders near the outer edge of the disk. Suppose furthermore than whenever process Py

receives confirmation that onc of its requests has been serviced, it sends yet another request to the disk
1G D Plotkin, “A powerdomain construction”, SIAM J Computing 5, 3, September 1976, pages 452-487.

2For a very diverse, nontechnical, amusing introduction to actor-based languages, see Ted Nelson [editor), “Symposium
on actor languages”, Creative Computing 6, 10, October 1980, pages 61-86, continued in Creative Computing 6, 11,
November 1980, pages 74-94. -

3Micha Hofri, “Disk scheduling: FFCIS vs. SSTF revisited”, CACM 23, 11, November 1980, pages 645-653. This article
fails to observe that without modification the SSTF algorithm is incorrect.

Figure 1. Disk cylinders accessed by two processes.

scheduler. If the disk scheduler is using the Shortest Seek Time First strategy, process P, will capture
the disk. Process Py will be locked out, and any disk requests made by process Py will remain pending

forever. That isn’t fair.

On the other hand the First Come First Served scheduling strategy is fair. For that very rcason,
however, it causes problems for power domain semantics. For cxample suppose process Py makes
onc disk request, represented by a 0, while process P, makes infinitely many disk requests, each
represented by a 1. This situation is diagrammed in Figure 2, where 1% indicates an infinite sequence
of ones. As is usual in programming language scmantics, time has been left out of the picture in
order to obtain a more abstract description—but as a result it is impossible to say where the 0 should
appear in the output of the First Come First Served scheduler. Depending on the timing, the output

could be any of

4Throughout this thesis w is the first infinite ordinal, the first infinite cardinal, and the set of natural numbers with the
usual ordering. ldentifying these three conceptually distinct objects is a vice common among mathematicians who have
studied set theory.

10

First Come
First Served
Scheduler

-~

Figure 2. Data flow diagram of a scheduling problem.

O11111111 ---

101111111 ---

110111111 ---

111011111 ---
and so on. The infinite sequence of ones is not a possible output, though, because it does not contain
the 0 that is sent to the scheduler by process Pp. In other words the First Come First Scrved scheduler,
abstractly considered, performs an arbitrary fair merge on its inputs.

Notice that nondeterminism is a property of our abstract description of the First Come First
Served scheduling algorithm, not a property of the algorithm itself.

Nonetheless conventional power domain scmantics attempts to account for nondeterminism in
terms of choice points within the program’s exccution sequence. In the case of a merge program the
choice points represent decisions about which valuc to output next. Figure 3 shows the choice tree for
a merge of 0 and 1“. At the beginning of exccution no outputs have been produced, so the root of the
choice tree is labelled by a special symbol _L standing for the empty output. The program must then
choose whether to produce 0 or 1 as its next output. If it produces 0, each subsequent output must be

a 1. Ifit produces 1, however, it faces the same choice all over again.

11

i
|
0
l

o1
l

011

0111

|

01«

N

1
|
10 11

101

l

1011

101«

|

110 111

I SN

1101 1110 1111

s

1101¥ 11101« 111101¢ 1¢

Figure 3. The choice tree for a merge of 0 and 1¢.

Conventional power domain semantics regards each branch of the choice tree as a possible ex-

ecution sequence of the merge. The possible outputs of the merge are the limits of these branches.

Observe, however, that 1¢ is the limit of the rightmost branch, so the choice tree in Figure 3 does

not represent a fair merge of 0 and 1. In fact, no such choice tree drawn according to the rules

of conventional power domain semantics can represent the arbitrary fair merge of 0 and 1“. As a

corollary, conventional power domain semantics cannot give the abstract semantics of a First Come

First Served scheduler.

Fair scheduling can be programmed in languages based on the actor model of computation.’

Conventional power domains are therefore inadequate as a basis for actor semantics. Chapters III and

1V develop and illustrate unconventional power domains that can deal with fair parallelism.

5Carl Hewitt, Giuseppe Attardi, and Henry Lieberman, “Specifying and proving properties of guardians for distributed
systems”, in Semantics of Concurrent Computation, Springer-Verlag Notes in Computer Science 70, 1979.

12

1.2. Overview

The actor message-passing model of concurrent computation has inspired new ideas in the areas
of knowledge-based systems,® programming languages and their semantics,” and computer systems
architecture. The model itself grew out of computer languages such as Planner,® Smalltalk,!° and
Simula,!! and out of the use of continuations to interpret imperative constructs within A-calculus.!?
The mathematical content of the model has been developed by Carl Hewitt, Irene Greif,!3 Henry
Baker, 4 and Giuseppe Attardi.'® This thesis extends and unifies their work.

Chapter 1I introduces the actor model and gives a mathematical definition of the actor event
diagrams introduced by Greif.1® The main result of Chapter I is that the most general ordering
laws postulated by Hewitt and Baker!? are equivalent to an axiom of realizability in global time. A
strong independence result further emphasizes the importance of global time in the actor model, and
suggests that some notion of global time is essential to any model of concurrent computation.

Chapter 111 discusses nondeterminism. It argues that nondeterminism in a programming lan-

guage semantics is better understood as incomplete specification than as random choice. It follows
6E.g. Kenneth M Kahn, “An actor-based animatién language”, Creative Computing 6, 11, November 1980, pages 75-84.

TEg. Guy Lewis Steele Jr and Gerald Jay Sussman, “§cheme: an interpreter for extended lambda calculus”, MIT Al
Memo 349, December 1975.

8E.g. the design of the Intel 432 was influenced by the Actor model.

9Carl Hewitt, “Planner: a language for manipulating models and proving theorems in a robot”, Proceedings of the First
International Joint Conference on Artificial Intelligence, Washington DC, 1969.

10pyaniel H H Ingals, “The Smalltalk-76 programming system: design and implementation”, Conference Record of the
Fifth Annual Symposium on Principles of Programming Languages, Tucson AZ, January 1978, pages 9-16.

11w R Frantz, “Simula language summary”, and Kristen Nygaard and Ole-Johan Dahl, “The development of the Simula
language”, two papers presented at the ACM SIGPLAN History of Programming Languages Conference, Los Angeles
CA, June 1978, preprint in SIGPLAN Notices 13, 8, August 1978, pages 243-272.

12 ¢ Michael § C Gordon, The Denotational Description of Programming Languages, Springer-Verlag, New York, 1979.
13+gemantics of communicating parallel processes”, MIT Project MAC Technical Report 154, September 197S.
4w pctor systems for real-time computation”, MIT LCS Technical Report 197, March 1978.

15¢ar Hewitt, Giuseppe Attardi, and Henry Lieberman, “Specifying and proving properties of guardians for distributed
systems”, in Semantics of Concurrent Computation, Springer-Verlag Notes in Computer Science 70, 1979.

16«gamantics of communicating parallel processes”.

1741 aws for communicating parallcl processes”, 1FIP-77, Toronto, August 1977, pages 987-992. “Actors and continuous
functionals”, TFIP Working Conlference on Formal Description of Programming Concepts, St Andrews, New Brunswick,
Canada, August 1977, 16.1-16.21.

13

that the nondeterminism in a programming language semantics is, in David Park’s term, loose non-
determinism.'® The importance of these philosophical distinctions is that fairness implies unbounded
nondeterminism, whereas viewing nondeterminism as random choice leads to the conclusion that all
nondeterminism is bounded.

What is new in Chapter III is the treatment of po.wer domains. Instead of beginning with a
semantics for sequential programs and then trying to extend it for nondeterministic concurrency, ac-
tor semantics views nondeterministic concurrency as primary and obtains the semantics of sequential
programs as a special case. The mathematical import of this approach is that there is no longer any
need to take fixed points in the domain underlying a power domain. As a result the underlying
domain need not be complete. Extending the power domain construction as in Chapter III to apply
to incomplete domains makes possible a power domain semantics for a class of nondeterministic
programming languages in which a fair merge can be written.

Chapter IV verifies that claim by presenting a specific power domain semantics for actor-based
languages. The event diagrams of Greif's behavioral semantics, when augmented by Baker’s pending
events,'® form an incomplete domain. Its power domain is the semantic domain in which programs
written in actor-based languages are assigned meanings.

Chapter V points out that whether or not the locality laws postulated by Hewitt and Baker?? hold
for a toy language depends upon details of the language’s semantic cquations. The conclusion there
drawn is that the locality laws constitute the acid test of a programming language’s faithfulness to the
actor model. Chapter V also extends the semantics of Chapter IV to deal with actor creation.

The concluding chapter, Chapter VI, suggests som¢ directions for further research.

The appendixcs present the toy language used throughout the thesis to illustrate actors.

1.3. Related Research

Plotkin’s original power domain construction was simplified by Michael Smyth, whose paper

1813avid Park, “On the semantics of fair parallelism”, University of Warwick Theory of Computation Report 31, October
1979.

19«Actor systems for real-time computation”.

201 aws for communicating parallel processes” and “Actors and continuous functionals”.

14

remains the standard introduction to the subject.2! A number of nondeterministic programming lan-
guages have now been given a power domain semantics. Of these, the semantics of Communicating

Sequential Processes?? has had the most influence on actor semantics.

The semantics in Chapter IV is probably the first power domain semantics for languages with fair
parallelism, but it is not the first power domain semantics to deal with unbounded nondeterminism.
R J Back has given a power domain semantics for a language with unboundedly nondeterministic
assignment statements as basic operations.23 Three differences between Back’s work and actor seman-
tics stand out. One difference is the source of nondeterminism—basic assignment statements in
Back's paper, message dclays in actor semantics. A second difference is that Back is thinking of non-
deterministic sequential programming languages, while actor semantics is concerned primarily with
concurrent programming languages. The third differcnce is that Back’s power domain apparently is
constructed from a complete underlying domain. This third difference is not entirely clear because
Rack’s power domain construction appears to be nonstandard. A similarity between Back’s work and
actor semantics is that Back found it necessary to build the power domain out of execution sequences
instead of single states: the actor power domain is built out of actor event diagrams, which may be

thought of as generalized exccution sequences.

2lupower domains”, J Computer and System Sciences 16, 1978, pages 23-36.

22Nissim Francez, C A R Toare, Danicl J Lehmann, and Willem P de Roever, “Semantics of nondeterminism, concurrency,
and communication”, J Computer and System Sciences 19, December 1979, pages 290-308.

23«Semantics of unbounded nondeterminism”, Mathematisch Centrum Report IW 135780, April 1980.

15

Chapter |l

Ordering Laws

This chapter illustrates the actor model at its most abstract. A notion of global time is introduced
and used to prove the ordering laws postulated by Hewitt and Baker. Necdlessly restrictive ordering
laws are avoided, so that axioms of realizability in global time can be shown cquivalent to the ordering
laws. The importance of global phenomena is emphasized through a strong independence result.
Finally, a theorem by Hewitt and Baker is shown to remain true under laws cquivalent o a weak

axiom of global time rcalizability.

I1.1. The Actor Model

Ordinary sequential computation is the simplest case of concurrent computation, a far more
gencral catcgory that includes various kinds of parallel computation as well as the scquential case.
While the sequential case is fairly well understood, however, general concurrent computation is not.
There are two evident ways to develop a better theory of concurrent computation. One is to generalize
the existing theory of sequential computation. The other is to begin with a model of concurrent com-

putation and create an entirely new theory that can be checked against current theory in the special

16

case of sequential computation. The actor model is intended to support this second sort of theoretical
development. Generalizing existing theory, as in the first approach, can lead to significantly different
theoretical predictions, as will appear in Chapter IIL

As a model of concurrent computation, the actor model emphasizes the communication occur-
ring during computation. Examples of such communication are the signals transferred along the bus
linking the CPU and memory of a conventional sequential computer, parameter passing between
subroutines of a program, messages transferred between computers in a geographically distributed
network, and process synchronization in a multiprocessing computer. All these communications may
be considered examples of what has come to be called message passing.

The actor model is one of a number of message passing models that have been developed in the
past decade.! These models differ in their conception of message passing. For some, the mechanism
of message passing resembles a telephone network, so that message transmission is essentially instan-
tancous, but there are times when the line is busy and messages cannot be sent.2 For the actor model,
however, message passing resembles mail service, so that messages may always be sent but are subject
to variable delays en route to their destinations. As a result, the actor model can be used to analyze
distributed computer networks as well as multiprocessors and programs.

In the actor model, cach communication is described as a message arriving at a computational
agent called an actor. Memory chips, subprograms, and entire computers arc examples of things
that may be thought of as actors. The memory chip might receive addresses and function codes as
messages, while the subprograms might reccive values or locations of parameters, and the computer
might receive messages as blocks or packets. The actor model refers to the arrival of a message at
an actor as an event. Thus all events in the model are arrival events, and there is no such thing as a
sending event.

The graphic representation of an event is a dot, as below.

YTwo examples are C A R Hoare, "Communicating scquential processes”, CACM 21, 8, August 1978, pages 666-677,
and George Milne and Robin Milner, “Concurrent processes and their syntax”, JACM 26, 2, April 1979. pages 302-
321

2This is one way to understand the semantics of “Communicating sequential processes”. See Nissim Francez, C A R
Ioare, Daniel J Lehmann, and Willem P de Roever, “Semantics of nondeterminism, concurrency, and communication”,
J Computer and System Sciences 19, December 1979, pages 290-308.

17

The actor that receives a message in an event is called the farget of the event. The message that
the target receives is just called the inessage of the event. The target and message of an event are often
described by the notation

[target — message]

which may appear beside dots representing events.

Sometimes the target of an event, as a direct result of that event, will send messages to other
actors. For example, a memory module receiving a message instructing it to fetch the contents of a
certain address should respond by sending the value stored at that address to the CPU. In this case,
the event of which the memory module is the target activates the event in which the contents of the
specified address arrives at the CPU.

The activation relation appears as an arrow in diagrams.
[memory « fetch address]
e [CPU — contents]

An event may activate several subscquent events. That is, the arrival of a message at an actor
may cause that actor to send out a number of messages to other actors. The events that a given event

activates are said to have that event as their activator.

Thus eg activates ey, €z, and e3, each of which has ey as activator. e is an cxample of an external
event, that is, an event with no activator. Its cause must be external to the system being modelled,

hence the name? No event has more than one activator, because the message of an cvent has been

3xternal events were calied initial events in Carl Hewitt and Henry Baker, “Actors and continuous functionals”, 1FIP
Working Conference on Formal Description of Programming Concepts, St Andrews, New Brunswick, Canada, August
1977, 16.1-16.21. ‘This usage conflicts with that in Carl llewilt and Henry Baker, “Laws for communicating parallel
processes”, TFIP-77, Toronto, August 1977, pages 987-992. ‘The usage of the lalter paper is better motivated, since it
defines an initial event as an event that is initial in the activation ordering considered as a category.

18

sent only once.

Chains of activations define the activation ordering.
VAN
et/ €2 ® €3
€4 ® - (] e ¢g

Thus ep activates ez which activates eg, S0 €o precedes e in the activation ordering. Similarly both
ep and e; precede ey in the activation ordering. e4 and e3 are not related by the activation ordering.

Sometimes an event will not activate any other events. When that happens, the only effect of the
event is whatever effect it may have on the (local) state of its target. Considering the memory module
again, the message Store 7 in 321 will probably cause it to change its state. In this way events

can influence future events even though they do no activate any events themselves. Graphically

e, ¢ [memory « Store 7 in 321]
€ [memory +« Fetch 321]

ese [CPU + 7]

There is no explicit path in this diagram to show that e3 depends upon e;. To remedy that the

actor model introduces the arrival ordering of the memory module, which appears as a vertical line.

e, [memory « Store 7 in 321]

€ [memory « Fetch 321]

€3 [CPU « 7]

Adding this arrival ordering shows that e; precedes ez in the combined ordering, which is simply the

combination of the activation and arrival orderings.

19

The arrival ordering emphasizes that the relative order of e; and e is significant.

[memory « Fetch 321] e

[memory « Store 7 in 321] e, ¢ e “o[CPU « 0]

Here e, does not precede e4 in the combined ordering.

The actor model postulates an arrival ordering for each actor. These arrival orderings are sup-
posed to be linear, which means that for any two events with the same target, it is always the case
that one of the twd occurs first. Some form of arbitration may be necessary to make this supposition

realistic, of course.

An arrival ordering represents the order in which events occur at a particular target actor. Thus
an arrival ordering represents the local time of an actor.

Conventional models of sequential computation make usc of global time and global state. That s,
there is only one clock in the system, and the computation is in exactly one well-defined state at any
given time. The transitions between global states are linearly ordered in the global time of the system,
which is what makes sequential computation sequential.

When computation is not sequential, the notions of global state and global time may be inap-
propriate. An extreme example suggests why. Suppose a computer in Dallas and another one in
Oklahoma City are linked together to function asa dual processor. The computers are one millisecond
apart at light speed. It is therefore not helpful to insist that events occurring with megahertz fre-
quencies at the two sites must be thought of as totally ordered in a single global time, for an event
in Dallas clearly cannot affect any part of a hypothetical global state on which an event nanoseconds
later in Oklahoma City depends. Such concurrent systems arc better analyzed by splitting the global
state into local picces and viewing the overall computation as a sct of local computations interacting
through message passing.

This kind of local decomposition is important for multiprocessor systems as well as for geographi-

cally distributed systems. Several experimental multiprocessors resemble computer networks, and

20

multiprocessor networks are becoming available commercially as well.*

Even large sequential programs are constructed from local modules that communicate through
the conventional mechanisms of subprogram calls with parameters and shared variables. These
mechanisms may also be regarded as special cases of message passing.

The actor model emphasizes the ideas of local time and local state. Local times are represented
by the arrival orderings of actors, which operate independently of each other except when they in-
teract by means of message passing. The communications between actors are represented by the
activation ordering. Hence the combined ordering indicates all possible dependencies among events.
Since in the actor mode! events capnot be influenced by events that do not precede them in the
combined ordering, the actor model helps to illustrate the modular structure of a computation. On the
other hand, using a single global time to order computation events linearly makes it appear that an

event depends upon all events that happen to come before it in global time.

11.2. Global Time is Necessary

Nonetheless it turns out that some notion of global time is essential to any model of concurrent
computation. The purpose of this chapter is to show why that is so for the actor model, and to use the

idea of global time to motivate and improve upon the ordering laws introduced by Hewitt and Baker.8

So far the arrival orderings have been required only to be total. Consider, however, an arrival

ordering with the same order type as the nonpositive integers.

4A commercial example 1 happen to be familiar with is the Advanced Flexible Processor built by the Information Sciences
Division of Control Data Corporation. Up to sixteen of these processors can be configured in a simple bidirectional
ring network, providing a computation rate of well over a billion fixed point arithmetlic operations per second in some
signal processing applications.

5Carl Hewitt, “Viewing control structure as patterns of passing messages”, Artificial Intelligence 8, 1977, pages 323-363.
Also in Winston and Brown [ed]. Artificial Intelligence: an MIT Perspective, MIT Press, 1979.

8Carl Hewitt and llenry Baker, “Laws lor co;nmunicating parallel processes”, ITIP-77, Toronto, August 1977, pages
987-992. Carl Hewitt and Henry Baker. “Actors and continuous functionals”, IFIP Working Conference on Formal
Description of Programming Concepts, St Andrews, New Brunswick, Canada, August 1977, 16.1-16.21.

21

l'C--s
ee_4
*E_3
®E_9
$e_j

 &50]

This arrival ordering scems unlikely to arise in practice. For an even unlikelier arrival ordering,
considerably harder to draw, consider the order type of the nonnegative rationals. These examples
suggest that the actor model should place further restrictions on the arrival orderings. Such restric-
tions are stated by the ordering laws.

For cxample, one ordering law states that for any two events having the same target there are
only finitely many events lying between them in the arrival ordering of the target. This law rules
out arrival orderings having the order type of the nonnegative rationals, but does not rule out arrival
orderings having the order type of the nonpositive integers. Another ordering law must be added to
climinate that order type. Other ordering laws must be stated to govern the activation ordering. To
rule out the possibility of impossible situations arising from the interaction of allowable activation and
arrival orderings, ordering laws must be sfatcd for the combined ordering.

While laws can be generated by thinking of arrival, activation, and combined orderings having
undesirable order types and then postulating ordering laws that eliminate them, it would never be
possible to have (otal confidence that all undesirable order types have been ruled out by such a
process. In other words, this ad hoc approach leaves open the question of the sufficiency of the
ordering laws. Another, less important question concerns the independence of the laws. For example,
Hewitt and Baker conjectured that their law governing the combined ordering was redundant, but
could not prove it.”

The questions of independence and sufficiency turn out to be related, in that the question of in-

T«Actors and continuous functionals”.

22

dependence points to the importance of global time, which provides an intuitive basis for considering
the question of sufficiency.

The answer to the question of sufficiency runs as follows. The ordering laws are nothing more
than conditions necessary for orderings to be realizable in global time. They should therefore be
considered complete if they form a necessary and sufficient set of conditions for orderings to be
embedded in global time. The three strongest ordering laws form such a complete set. That is
the message of Theorem 1 of §5, wherein they are shown equivalent to a statement of global time
realizability.

As for the question of independence, the three strongest ordering laws are strictly stronger than
the conjunction of all the other ordering laws, even in the presence of the locality laws® discussed
in Chapter IV. In particular, the law governing the combined ordering is independent of the other
laws, which explains why Hewitt and Baker were unsuccessful in proving their conjecture. The reason
for this law’s independence is that the combined ordering is a global ordering, while the other laws
deal only with local orderings, namely the activation and arrival orderings. As shown by this law’s
independence, local laws are not by themselves enough. A global law is needed to make the actor

model an adequate account of concurrent computation,

11.3. A Mathematical Formulation

So far the actor model has been described informally. A more rigorous presentation at this point
will avoid some confusion later on, as well as provide a chance to review the model. Some details
of the actor model, such as the contents of messages and the behaviors of actors, make no difference
when discussing the ordering laws. Hence they will not be discussed now, but will reappear later.
The simplified actor model used in this chapter is less detailed and more general than the versions
considered in chapters 111, IV, and V.

The actor model is perhaps best motivated by the prospect of highly parallel computing machines
consisting of dozens, hundreds, or even thousands of independent monoprocessors, each with its own

8 lewitt and Baker, “laws for communicating parallel processes” and “Actors and continuous functionals”.

local memory and communications processor, communicating via a high performance communica-
tions network in a system much like the computer nctworks now coming into widespread use. The
model may be thought of as an idcalization of such a multiprocessor network, in which the number of
available processors is potentially infinite, much as the tape of a Turing machine is potentially infinite.

The primitive objects of the simplified model are cvents and actors. The actors represent com-
putational agents. In the idcalization suggested above, an actor may be thought of as a program that
has been given its very own processor on which to run. An event represents the arrival of a message at
a target actor.

The model uses partial orders on these events to represent concurrency. There is a treelike
activation ordering that represents causality, and a set of lincar arrival orderings, one for cach actor,
that represent local times. The combined ordering is the transitive closure of the activation and arrival
orderings, and may be considered to represent feasible concurrency. The combined ordering is similar
to the concurrency orderings of some other models, but its decomposition into activation and arrival
orderings is unique to the actor model.

Write the set of events of a computation as F, and the set of actors as A. Associated with each
event is its target actor, so let T:E — A be the function giving the target of each event. The model
does not need to record the sender as well as the target, because the sénder can be determined from
the activation ordering unless the event is external. The events with a given target are lincarly ordered
by the arrival ordering of the target, so let Arr be a collection of irreflexive total orderings —arr,—
defined on 7—!(a), for a € A. There is also the activation ordering —act—, an irreflexive partial
order on E such that no event has more than one immediate prcdccessor.9

A computation thus becomes a structure
(E,A, T, —act—, Arr).

Not all such structures correspond to reasonable computations, however. The purposc of the ordering

laws is to characterize those structures that represent rcal computations.

9 is an immediate predecessor of z with respect to an irreflexive ordering < if T <C z but there is no y such that
ry<z

Figure 1. An example of an activation ordering with two components.

Some readers may be uncomfortable with the infinities allowed by such a structure. The con-
siderations of the next section will require that the set of events E be countable. E cannot be
required to be finite because that would make the model useless for nonterminating computations.
For the same reason there may be infinitely many external events, which are simply events having
no predecessors in the activation ordering. External events are intended to represent events whose
cause is external to the system being modelled, such as the event of pressing a button or kicking the
machine. There must be at least one such event in a nonempty computation, but there is no reason to
insist that there be only one. Each external event defines a component of the activation ordering, and
cach component is a trece with the external event as its root. Sce Figure 1.

Figure 1 also illustrates the fact that an event can activate infinitely many events.'® For example,
recciving a message can causc an actor to enter an infinite loop in which it continues to send out mes-

10 Jewitt and Baker did not allow this. §8 shows how to modify a proof of theirs that assumed that events can activate
only finitcly many events.

25

sages. Another example, motivated by the language Ether,!! is an event that results in broadcasting a
message to every present and future actor.

The number of actors must be potentially infinite because at times actors represent software
entities such as programs and functions, and in languages such as Lisp new functions can be generated‘

automatically and endlessly.

Il.4. Time, Causality, and Computation

Let — denote the combined ordering, which is the transitive closure of the activation ordering
—act— and the a'rrival orderings in Arr. If an event e; precedes another event ey in the combined
ordering, then there exists a path of causation and local time from e; to ep. If that is so then e} must
occur before ey in time. It makes no difference whether time is measured in the reference frame of the
target of e, the target of ey, or in any other reference frame, for the existence of the path of causation
and local time between e; and ez implies that the time sequence of the two cvents is invariant among
all observers. Some time relations are absolute, even in the theory of relativity.

Pursuing that thought a bit further, the theory of relativity allows each observer his or her own
global time. These global times may differ, however, concerning the order of events whose relation in
time is not absolute.

There is an analogy with global time in the actor model. When e; precedes ez in the combined
ordering, all global times must have e; happening before e;. When e; and e are not comparable
under the combined ordering, however, there will be global times in which e; happens first and other

global times in which e, happcns first.

The mathematical notion of global time appropriate for event-structured models of computation
is of a function from the computation events into the real numbers. Often the global time function is
required to be integer-valued, and that will turn out to be the case for the actor model, but for now it

will just be a real-valued function. For the actor model, then, a global time is a mapping

gE—- R

Bill Kornfeld, “ETIIER—a parallel problem solving system”, WCAI-79, pages 490-492.

26

Figure 2. A combined ordering that is not irreflexive. (Arrival orderings point downward.)

where R denotes the real numbers.

The reason for considering global times is that commonly held notions about time and com-
putation will constrain the structures possible for the combined ordering and thus allow an intuitive
derivation of the ordering laws.

One constraint on the global time mapping g is that cause precedes effect. Thus

[1] g preserves the activation ordering —act—.

Thatis, if e; —act— ey, then g(e1) < g(e).

Another constraint is that global time be consistent with all local times. Thus
[2] g preserves all the arrival orderings —arr,—, fora € A.
Consequently

[3] g preserves the combined ordering —.

and

[4] The combined ordering — is irreflexive.

27

[3] and [4] are equivalent to [1] and [2]. Irreflexivity of the combined ordering does not follow from
irreflexivity of the activation and arrival orderings, as illustrated in Figure 2. It must be stated as a

fundamental ordering law. Hewitt and Baker named it the Law of Strict Causality.

Law of Strict Causality. The combined ordering — is an irreflexive partial ordering.

So-called Zeno machines are paradoxical machines that can do infinitcly many things in a finite
amount of time. An cxample is Huffman’s Lamp, which when switched on lights for only thirty
seconds before turning itself off for fifteen seconds, and then comes back on for seven and a half
seconds before turning off for threc and three quarters scconds, and so on. After one minute it
ceases to change state. At onc second into the second minute, is it on or off? Zeno machines, if they
existed, could be used for many useful purposes such as providing a decision procedure for first order

predicate calculus. The fact that they do not exist leads to requiring that

[S] The range of g has no accumulation points.

Equivalently, no bounded interval in 3R contains infinitely many images of E under g. Equivalently,
because the combined ordering is irreflexive, a global time g can be found that is integer-valued and

one-to-one.

Together with [5] above, the following implies that there is a first event, and thus that the

computation has a definite beginning.

[6] the range of g is a subset of the nonnegative real numbers.

Putting the above constraints together yields the fundamental axiom on actor orderings, the

(Strong) Axiom of Reaiizability. There exists a one-lo-one mapping g from the events E into
the nonnegative reals that preserves the combined ordering — and such that g~ (I) is finite for every
bounded interval I of R. Equivalently there exists a one-lo-one mapping g:£ — w that preserves —,

where w is the set of natural numbers.

28

Occasionally there may be reason to weaken this axiom slightly by not assuming a definite begin-
ning to the computation as in [6]. For example, many propertics of a computer network that has been
operating continuously for years will in no way depend upon there having been a time before the
system was brought up, and so any proof that made use of that fact would be suspect. On the other
hand, if the assumption really is necessary to the proof, then that tells something about the property
being proved, namely that it depends upon the existence of some initial state. For these reasons, and
against the chance that steady state theory may come back into fashion in cosmology, this chapter will

also consider the

Weak Axiom of Realizability. There exists a one-10-one mapping g from the events E into the real
numbers R that preserves the combined ordering — and such that G—'(I) is finite for every bounded
interval [of R. Equivalently there exists a one-to-one mapping ¢:E — Z that preserves —, where 7 is

the set of integers.

As will be shown, the ordering laws follow from the definitior: of the structure
(E, A, T, —act—, Arr)

together with one of the versions of the realizability axiom.

Two of the ordering laws stated by Hewitt and Baker do not so follow, however, and are not in
fact true in the system of this chapter. One of the laws asserted the existence of an initial event preced-
ing all other events in the activation ordering. This was nothing more than a simplifying assumption
appearing only in the paper “Laws for communicating parallel processes”. The other asserted that
an event can activate only finitely many events. The previous section gave iwo examples to justify
omitting this law, one of them being the possibility of an actor entering an infinite sending loop.
Apparently Baker wished to rule out the possibility of loops internal to actors.'2 It is also possible
that the choice of the phrase “immediate successors in the activation ordering”, while well grounded
in established mathematical usage, may have led to thinking of immediate in the sense of time rather

than in the sense of being without intervening events.'
21{enry Baker, “Actor systems for real-time computation”, MIT LCS Technical Report 197, March 1978, page 64.
Y3pid, page 37.

29

I1.5. The Strong Axiom of Realizability

An actor event diagram is defined to be a structure
(E, A, T, —act—, Arr)

that satisfies the strong Axiom of Realizability, where E and A are arbitrary sets and T', —act—, and
Arr are as described in §3. This section considers the ordering laws as consequences of that definition,
while the next section considers weaker ordering laws that still hold when the strong axiom is replaced
by the Weak Axiom of Realizability.

The global time g whose existence is asserted by the axioms of realizability is not part of the
structure of an actor event diagram. The axioms assert only that it is possible to embed the activation
and arrival orderings in time in a certain way. Generally there are many acceptable embeddings.
Thus, although a particular actor cvent diagram must be realizable in time, no time sequencing is
associated with it except the combined ordering. Furthermore, as shown by the main thcorems of this
and the next section, the realizability axioms arc equivalent to certain simple ordering laws, so that the
st of actor event diagrams may be defined using the ordering laws instead of a realizability axiom,
and the definition need never explicitly mention global times at all.

Apparently the global time itself is seldom needed in practice. The mere possibility of one is
quite constraining, implying as it does the ordering laws, and the ordering laws arc generally more
convenient for proofs. It is usually easicr to prove properties of computations by considering the
partial orderings themselves than by considering all possible global times, since in considering all
possible linearizations of the partial orders in global time the proof still has to rcly on properties of the
partial orders. Hence there is no point to disguising the partial orders by mapping them into linear
time.

As an example, consider the parallelism fork and join in Figure 3. Here an actor exccuting
a process sends messages to two other actors asking them to start subprocesses to be computed in
parallel with the main process. Either subprocess may finish and return its result first, so Figure 3
shows two possibilities for the join. Each actor event diagram in Figure 3 can be embedded in time in

essentially three ways. For the event diagram on the feft, the order of events in global time must be

30

€1 \ € €1 /' €
e

[X~ p

Figure 3. Parallelism fork and join.

one of
€p, €3, €)1, €3, €4

€0, €1, €2, €3, €4

€0, €1, €3, €2, €4
but it makes no difference which. Hence the additional ordering information given by the global time
is useless. Since the global time disguises the fact that ey and e3 cannot influence one another, the
global titne actually gives less information than the actor event diagram.

An exceptional situation when it is just as cfficient to consider all global times arises when con-
sidering all interleavings of clementary operations in a multiprocessor system where communication
is by means of shared memory.'® In this instance the possible arrival orderings of the shared memory
when considered as an actor are essentially the same as the possible interleavings, so there is nothing
to gain from the actor point of view. In short, the local time of the memory is effectively the global
time of the system. In less centralized, more modular systems, however, considering the partial or-
ders directly is superior to considering their many linearizations. Once the ordering laws and their
cquivalence to the global time axioms have been derived, therefore, the realizability axioms will have
fulfilled their main purpose.

Most logics that have been proposed for reasoning about parallel programs are based upon

sequences of global states. The realizability axioms suggest that the actor model may be made com-

18ee for example J M Cadiou and) J Levy, “Mechanizable proofs about parallel processes”, Proceedings 14th Annual
Symposium on Switching and Aulomata Theory, October 1973, pages 34-48.

31

patible with thesc logics by treating an cvent as a change of global state, so that a global time specifies
a sequence of global states. To do so, however, is to sacrifice the advantages being claimed for the
actor model. The actor model requires its own verification logic, which remains to be developed. The

semantics presented in Chapter I1I may be used to justify the proof rules of such a logic.

The first two ordering laws follow from either the weak or the strong rcalizability axiom. They

are the
Law of Strict Causality (1.SC). Fornoe € E doese — e,
and the

Law of Countability (LC). There are at most countably many events. That is, E is countable, where

a finite set is considered countable.

The first law was stated by Hewitt and Baker!> and the second is provable in the system of “Laws for

communicating parallel processes”.

When the strong axiom is assumed, the intuition that events are only finitely removed from the

beginning of computation comes back out as the
Law of Finite Predecession (LFP). For all eventse, the set{e| e — e, } is finite.

These three laws are in fact equivalent to the Strong Axiom of Realizability. It is thus a matter
of choice whether to formalize actor event diagrams using the strong realizability axiom as has been

done here or using these three ordering laws instead.

Theorem 1. The strong Axiom of Realizability is equivalent to the conjunction of the Law of Strict
Causality, the Law of Countability, and the Law of Finite Predecession.\®
Proof. The realizability axiom is easily seen to imply all three (I.SC, LC, and LFP).

Let { ey, €1, €, . .. } be the st of events. Define a global time ¢ inductively as follows.
151 aws for communicating parallel processes” and “Actors and continuous functionals”.

6By assuming the existence of a single initial event that precedes all other events, and that no cvent can activate
infinitcly many events, Hewitt and Baker were able to prove that the law of Discreteness (given in the next section)
implied a statement cquivalent (o the strong Axiom of Realizability. Under their assumptions the Law of Countability
and the law of Iinite Predecession also hold, so they had a greatly weakened version of the “if” part of this theorem.
Sce §2.1 of “Laws for communicating parallel processes”.

32

Letg(eg) = 1.

Suppose that g has been defined on { ey, ..., en— 1 } in such a way that it preserves the com-
bined ordering — on the events on which it is defined. That is, g(e;) < g(e;) whencver e; — e; for
i, < n. The strategy for defining g(en) will be to place it as far to the right as possible. Precisely, if

therc exists a j < n such that e, — ¢;, then let k be such that
g(ex) = min{ g(e;) len—e€;, j<<n}

Define
o) = 3(ote0-+ max((ae 1 oe) < st 5 < U0

so that g(eg) is the first point on the right of g(e,). The claim is that g is now defined on
{eo, ..., en—1, e, } in such a way as to preserve the combined ordering. If not, then, by the induction
hypothesis and the fact that g(e,) << gle;) whenever e, — €5, J <1, there must be some par-
ticular i < m such that ; — €, but g(e,) << g(e;). This implics also that g(ex) < g(e;). Now
since e,, — e, the transitivity of the combined ordering gives e; — e, which by LSC contradicts the
fact that g preserves — on { o, ..., €n—1 }. Thus no such ¢ can exist, and g has been extended to
{eo,...,€n—1, en } while still preserving the combined ordering.

If there is no such j << n such that e, — ¢;, then just put glen) out to the right of all other points
defined so far, say

glen) = 1 + max{g(e;) | j <n}.
As before, the combined ordering is preserved.

By induction the combined ordering is preserved at all stages. Any non-preservation of that
ordering in the whole function g would already have arisen at some finite stage, and so g is a one-
to-one positive-valued function that preserves the combined ordering. It only remains to be shown
that its range has no limit points. This is equivalent to showing that the left-open unit intervals with
integral endpoints, that is, intervals of the form (m, m + 1] for m a natural number, each contain
only finitely many points of the range.

If (m, m + 1] contains any range points at all, then by the way g is defined m + 1 == g(en)

for some n, and the interval (m, m -+ 1] contains nonc of the points g(eo), - - -, g(én—1). That is, the

Figure 4. Irreflexive activation and arrival orderings do not imply an irreflexive combined ordering.

interval was empty when g(e,,) was defined. Now it happens that the pre-images of all range points
placed in that interval after g(e,,) precede e, in the combined ordering. Whenever g(e) is defined to
be a non-integer, e precedes the pre-image of the range point immediately to its right at the time ofits
definition. Thus the pre-image of the first range point placed in (m, m < 1] after g(en) precedes e,
in the combined ordering. The second does also, by transitivity of — if needed, and so on for all the
range points placed in the interval. Hence if g takes infinitely many values in the interval (m, m + 1]
then there must be infinitely many events that precede ey, in the combined ordering. This contradicts

the Law of Finite Predecession. |

The proof just given reveals that if e, ¢ & F are not related by the combined ordering, then there

cxists a global time g such that g (€) < g(€).

The Law of Finite Predecession has two immediate corollaries concerning the primitive, local

orderings, but taken together they remain weaker than LFP itself.

Law of Finite Predecession in the Activation Ordering. For all eventse, the set
{e|e—act— e}

is finite.

Law of Finite Predecession in an Arrival Ordering. For all events ey and actorsa the set
{e|e—arr,— e}

is finite. (Of course the set is empty if T(e1) 7 a.)

34

Figure 5. An infinite backward chain in the combined ordering.

Theorem 2. The strong Axiom of Realizability is stronger than

1. The conjunction of all the laws in this section and the next except for the Law of Strict

Causality.

2. The conjunction of all the laws in this section and the next except for the Law of Countability.

3. The conjunction of all the laws in this section and the next except for the Law of Finite

35

Predecession.

Proof. It suffices to consider the five laws stated above, except that for part 3 the Law of
Discreteness (or its equivalent) from the next section must be considered because it is a corollary of
the law being excluded.

Part 1 is shown by Figure 4. Without the Law of Countability, there may be uncountably many
external events, whence part 2. Part 3 is shown by Figure 5, which illustrates an infinite backward
chain in the combincd ordering having the order type of the negative integers and consisting of alter-
nating arrival and activation ordering links, where each arrival ordering link is taken from a different

arrival ordering. i

The independence results of Theorem 2 already provide abundant evidence that local laws can-
not replace global time in the actor model. To paraphrase the theorem, irreflexivity of the activation
and arrival orderings does not imply irreflexivity of the global combined ordering, the local laws do
not insure global countability, and finite predecession in the activation and arrival orderings does not
imply finite predecession for the combined ordering. Indeed, local discreteness does not imply global
discreteness, but that fact will not be stated preciscly until the end of the next section and then an
entire section will be devoted to its proof.!?

Independence results similar to Theorem 2 continue to hold even in the presence of ordering
laws stronger than those presented in this section. The axiom then becomes merely independent of
rather than stronger than the conjunctions of ordering laws, of course. In particular, modulo the
replacement of “stronger than” by “independent of”, parts 1 and 3 of Theorem 2 remain true in the
presence of additional ordering laws forbidding more than one external event and forbidding events
that activate infinitely many events.

On the other hand, in the presence of the Law of Discreteness from the next section, the exist-
ence of an initial event preceding all other events in the combined ordering implies the Law of Finite

Predecession. Thus adding a law postulating such an initial event would require modifying assertion

7 §2.4.10 of “Actor systems for real-time computation”, Tlenry Baker gave an example showing that discreteness
of two trees docs not imply discreieness of the transitive closure of their union. The counterexample to be presented
in §7 of this chapter improves upon his result by taking into account the special nature of the activation and arrival
orderings.

36

3 of Theorem 2 so as to exclude the Law of Discreteness and its equivalent, the Law of Finite Chains
Between Events in the Combined Ordering, as well as the Law of Finite Predecession.
An independence result that strengthens part 3 of Theorem 2 by allowing locality laws and these

additional ordering laws is presented formally in §7.

11.6. The Weak Axiom of Realizability

Now suppose that the strong Axiom of Realizability is replaced by the Weak Axiom of Realiza-
bility, so computations are allowed to be infinite in past time as well as in future time. This may seem
a strange possibility to consider. Its practical motivation s the fact that some programs are pure in the
sense that they never change, and properties of such programs may be proved using only the weak
axiom.!8 Properties whose proof requires the strong axiom depend upon what has happened in the
past, and are usually proved by induction from some initial state. Hence there is a real and useful
distinction between propertics that require only the weak axiom and those that requirce the full power

of the strong axiom.

The Law of Strict Causality and the Law of Countability remain true under the weak axiom, but

the Law of Finite Predecession is replaced by the

Law of Discreteness (1.D).!° For all eventse, and ey, the set
{e|ler—e— e}

is finite.
This law is cquivalent to the

Law of Finite Chains Between Events in the Combined Ordering. There are no infinite chains of

events between two events in the combined ordering —20

187 simple example of such a proof is found in §8.

197his was called the Law of Finitely Many Events between two events in the Combined Ordering in a revised version
of Carl lewitt and Hlenry Baker, “Actors and continuous functionals™, MIT 1.CS Technical Report 194, December 1977.
It appeared first in Hewitt and Baker, “Laws for communicating parallel processes”, August 1977, but in that paper it
was equivalent to the Law of Finite Predecession due to their assumplion of an initial event.

20A chain is just a lincarly ordered set.

37

Theorem 1. Assume the Law of Sirict Causality. Then the Law of Discreteness is equivalent to the
Law of Finite Chains Between Events in the Combined Ordering!

Proof. The only if direction is trivial.

To prove the converse, assume there are no infinite chains between cvents in the combined
ordering. Then by the totality of arrival orderings, an event has either no predecessors in the arrival
ordering of its target, or it has a unique immediate predecessor. Similarly, an event is either external
or has a unique immediate predecessor in the activation ordering, namely its activator. Therefore no
event has more than two immediate predecessors in the combined ordering.

Now suppose that for some E; and E the set {e | Ey — ¢ — E } is infinite. We will inductively
construct an infinite chain, contrary to hypothesis. Let eg = Ej. |

We have a sequence e, . . ., €, such that
Ei—ep—en — <o eg = Ey

and {e | Ey — ¢ — ¢, } is infinite. If e, is not an external event, let I be its activator, and if e, is
not the first event in the arrival ordering for T'(ey) let E” be the unique immediate predecessor ofe, in
that arrival ordering. If e,, is not external and { e | E; — ¢ — E'} is infinitc, then define e,y = E.

Otherwise E/ exists and { ¢ | E; — e — E'} is infinite, so define e gy = E'. 11

This proof is essentially the proof of Konig’s Lemma for ordered trees, and docs not assume an axiom
of choice.22 Thus the two laws may be interchanged frecly. Usually the Law of Finite Chains in the
Combined Ordering will be easier to prove, and the Law of Discreteness will seem stronger in use.

The Law of Discreteness also implics the existence of global time functions.?

21This is a sharpened statement of a fact observed by Hewitt and Baker in the revised version of “Actors and continuous
functionals™. Since in their paper events could only activate finitely many events, Konig’s Temma could be used in ecither
dircction. No proof appears in that paper, but the proof given by Baker in “Actor systems for real-time computation”,
MIT LCS Technical Report 197, March 1978, fails without the assumption of finite activation. Incidentally, the footnote
in “Iaws for communicating parallel processes” that says that discreteness is the stronger condition must refer to general
orderings.

22Raymond Smullyan, First Order Logic, Springer-Verlag, New York, 1968. Baker’s proof used Konig's Lemma for
unordered lrees and thus assumed an axiom of choice.

23T1is was observed by Hewitt and Baker in “Laws for communicating parallel processes”, but their statement assumes
also the existence of an initial event, so for them the law of Discreteness was equivalent to the Law of Iinite Predecession.
They also assumed no cvent could aclivate infinilely many events.

38

Theorem 2. The Weak Axiom of Realizability is equivalent to the conjunction of the Law of Strict
Causality, the Law of Countability, and the Law of Discreteness.

Proof. The weak axiom clearly implics LSC,LC, and LD.

Leteg, €, €, - - . be the events, Define a global time g inductively as follows.

Define g(ep) = 0.

The induction hypothesis for n, IH(n), is the following: g(eo), - - - , g(en—1) have been defined

so that
1. g is one-to-one.
2. g is integer valued.
3. the combined ordering is preserved.
.

4. g is alrcady defined on all ¢ lying between any two of e, ...,en—1 in the combined

ordering. That is,
Vi,jk 0<i,j<n—1Ae—eg—e = 01<k<n—1

Clearly the fourth part of the induction hypothesis will be impossible to arrange without periodically
re-ordering the e;’s, and we must be careful in that re-ordering not to upset the main induction.
Assume IH (n). There are two cases, depending on whether or not e,, is related by — to any of

€, . . .,en_1. In the simple case, when e, is not related, define
glen) = 1 -+ max{g(e) |0 <i<n—1}.

Clearly 1, 2, and 3 of IH(n) hold. Also 4 holds because — is transitive and e, is unrclated to
€, -+)€n—I-

Now the hard case, where e, is related to at least onc of ey, ...,en—1. By 4 of IH(n), cither
en, precedes all those it is related to, or it follows all those it is related to. Let us say e, follows all
of e, . .., en—1 that it is rclated to, since the other possibility is handled in exactly the same fashion.
(That is, with arrows reversed, 1 4 max{g(e;) | 0 <7 < n— 1} replaced by min{ g(e;) | 0 <

i<<n—1}-—1 ctcetera)

39

If there does not exist a e, such that k > n and, for some 2,0 <1 < n—1,¢ — e — €y
is true, then define g(e,) = 1 4+ max{g(e;) | 0 < ¢ < n— 1}. IH(n + 1) then clearly holds.
Otherwise we must re-order { ¢; | ¢ > n}.

Let
n—1

{€ry---r6k, } = U{ek|k>nande,-—>ek—-»en}.

i=1
The finiteness of this set is guaranteed by LD. We may assume ky << kp < -+ < k.. We re-order
theset {e; | n < i < ky,} by pulling e, . . ., €k, €n out of it and placing them in front, so that the

new order looks like

€kyy €k« « 3 Chpy Eny Ent-1y + +) Cloy—1) Chy4-1, + + - 5 Chpp—1

and relabel as

€ Enplr - s €1 Enpmo b -2 €y L Eer 1 4-(m—L)r - - A

What has been accomplished by this re-ordering? First of all, nothing has been ruined by it.
g is still defined in the same way on the same events, and IH (n) still holds. Some points are now
farther back—at most m cvents farther back—in the new ordering, but if g were to be defined on
€kpr - - - » €k, AN €, (newly relabelled €], ..., €, 1, €4 ,,) Without any further relabelling of the
é€,1 > n -+ m, then every event €, would be at least one cvent closer to being defined than in the
original labelling. And in fact it is possible to define gone), ..., €, 1 e, +m While maintaining
the induction hypothesis and without disturbing €}, > n + m.

Proof of claim: TH(n) still holds, so try again to define g on the n event, but this time use
the new ordering, ie define g(¢/). Relabelling may again be necessary, but no ¢; with ¢ > n -+ m
will be relabelled. That is because e; — ¢; — ¢, for some 7,0 < j < n — 1 would imply
e;j — €; — ey (since €, — e,), contradicting €. & {ex, ..., e,) In fact, scveral relabellings may be
necessary before g becomes defined on an nth event, but these relabellings can only affect the order of
€, .- € m1- Bach relabelling changes the labels on a smaller initial scgment of {€;]1>n},

and so finally €, becomes such that no €;,4 > n lics between it and any of ey, ...,en—y in the
n 1

40

combined ordering. ‘At that point g becomes defined on its nth event. Furthermore g will be defined
onallofé,...,€ m 1 €, 1-m efore it is necessary to disturb the labelling above n -+ m, by the
same reductio ad absurdum as above. Thus the claim.

For each event e;, therefore, g(e;) is eventually defined. g is a one-to-one integer valued function
that preserves —, since any non-preservation would show up at a finite stage contrary to the induc-

tion. Hence the Weak Axiom of Realizability is satisfied.]
The Law of Discreteness has two immediate consequences for the primitive orderings.

Law of Discreteness in the Activation Ordering. IfC is a chain of evenls in the activation ordering

fromey to ey, thenC' is finite.

Law of Discreteness in an Arrival Ordering. For all events 1 and e such that T(e)) = T(ex) =

a,{e| e —arr,— e —arr,— e } is finite.

The first two parts of the following independence theorem are essentially the same as Theorem 2

of §5.

Theorem 3. The Weak Axiom of Realizability is stronger than the conjunction of

1. All the laws in this and the previous section except for the Law of Strict Causality.

2. All the laws in this and the previous section except for the Law of Countability.

3. All the laws in this and the previous section except for the Law of Discreteness, the Law of Finite

Chains Between Events in the Combined Ordering, and the Law of Finite Predecession.

The third part of this theorem is less obvious, and its proof will be deferred to the next section. It
amounts to asserting that the Law of Finite Chains Between Events in the Combined Ordering is
independent of the corresponding laws on the activation and arrival orderings. In other words, local
discreteness does not imply global discreteness. Hewitt and Baker conjectured that adding additional
local laws, which they called locality laws, sufficed to derive the Law of Finite Chains Between Events
in the Combined Ordering from the corresponding local laws.2? The next scction is devoted to a

counterexample.

24«Actors and Continuous Functionals™.

41

Ey) €1 XS

Figure 6. A counterexample to a conjecture by Hewitt and Baker.

11.7. A Strong Independence Result

Figure 6 shows that finite predecession in the activation and arrival orderings does not imply
discreteness in the combined ordering. Between any two events in the figure there cxists a directed
finite path in the combined ordering. In particular, E; — ¢; for all ¢, so there are infinitely many

events between Ey and e;. In fact, all the events of the figure fall into the infinite chain
E,——;El—v,Ez—)E3—+E4—>u»—-»e/4——+e4—»e'3—+e3-oe’2—+e2—ve’l-—;el_

This proves part 3 of Theorem 3 of the last section.

Consider the finite “top sections” obtained by restricting the diagram in Figure 6 to the events

(B i <n}Jeli<n}Jleli<n}
for integers n. While the figure as a whole fails to satisfy the Weak Axiom of Realizability, cach top

section satisfics the strong Axiom of Realizability and is thus a valid actor event diagram. Not only

42

are the top sections formally acceptable, but they are physically possible as well. Even supposing that
the message of e, is sent before the message of ey (which is not implicd by the fact that their activators
occur in that order), it is entirely possible for event ez to occur before ¢;. That is because messages
being sent over computer networks are subject to variable delays from varying route choices andb
processor loads. While the larger top sections are not very probable, they are still possible. The entire
figure is quite impossible, however, instead of being possible with probability zero as extrapolation
would suggest.

Figure 6 is the basis for a counterexample to the cdnjecture that discreteness follows from dis-
creteness in the activation and arrival orderings together with the locality laws discussed in Chapter
V.25 All that needs to be shown is that acquaintances and creation events can be assigned so that the
locality laws are fulfilled. Logically that should await the definition of the locality laws in terms of the
structure (E, A, T, —act—, Arr) and new objects acq, Ao, and creation. 1llogically it appears here as

the proof of a theorem asserting independence of the ordering laws from the locality laws.

Theorem 1. There exists a structure
(E, A, T, —act—, Arr, acq, Ao, creation)

of which the Law of Finite Chains in the Combined Ordering is not true, but for which all of the
Jollowing hold.

L. E is the set of events.

2. A is the set of aclors.

3. T is the target function:E — A.

4. —act— is the activation ordering, an irreflexive partial order on E such that no event has more
than one immediate predecessor.

S. Arr is the set of arrival orderings, a set of irreflexive linear orders —arr,— oh T (a), for
a €A

6. acq is the acquaintance function:E — finite-subscts(A).

7. Ao is the set of primeval actors.

25 {ewitt and Baker, “Actors and continuous functionals”.

43

8. creation is the creation function:(A — Ag) — E.

9. The Law of Strict Causality.
10. The Law of Countability.
11. The Law of Finite Predecession in the Activation Ordering.

12. The Law of Finite Predecession in an Arrival Ordering.

13. All the locality laws in Chapter IV.

14. There is only one primeval actor. That is, Ag is a singleton.

1S. No event is the creation event for infinitely many actors. That is, Ve € E {a € A
creation(a) = e} is finite.?®

16. No actor ever has more than two acquaintances. That is, Ve € E acq(e) contains at most two

actors.27

17. There is an initial event preceding all other events in the activation ordering.*8
18. No event activates infinitely many events.?®

Proof. The cvents are, as in Figure 6,
E={E|i=>0}Jeli=1}Hdli=1}
Of course this is just a sct of names. Let
A={ai|i =0}

be the set of actors, also a set of names. The target function is defined by

T(e;) = ai, 1 2 L

T(¢) = a;, i > L.
26This was a law in “Actors and continuous functionals”.
2TRaker, “Actor systems for real-time compulation”, required that the number of acquaintances of an actor be bounded.
28This was postulated for simplicity in Hewitt and Baker, “Laws for cornmunicating parallel processes”.

29This was a law in “Actors and continuous functionals”.

44

The activation ordering is defined by

E; —act— Ej, 0 < i < j;

E; —act—e;, 0<i<5,5 21

E —act— ¢, 0<i<j+Lji=]
eir1 —act— e, 1 > 1.

The arrival orderings —arr,,—, a; € A, are defined by

E; —arrg,— Ej, 0 S 1 << j;

¢, —arry,— e, 1 > 1.
The acquaintance function is defined by

acq(Eo) = {ao };
acq(E;) = {ao,ai }, 1 = 1;
acqg(e;) =0, t = 15
acq(¢)) =9, 1 = 1.
The only primeval actor is ag, $0 Ag == {ap }. The other actors are created in the course of computa-

tion, and their creation events are defined by
creation(a;) = E;—1, t = L.

The structure so defined confirms the claims of the theorem. |

Describing this pscudo-computation informally, there is only one actor ag that exists at the
beginning. The initial event Ey tells it to begin. It then creates a; and sends a message to itself. When
that message arrives in event Ej, it creates ay, sends a message to as telling it about ay, forgets about
ai, and sends another message to itself. When that message arrives in event E,, it creates ag, sends
a message to a3 telling it about ap, forgets about ay, and sends another message to itself. In gencral,
when a message from itself arrives in an event E;, actor ag Creates a1, sends a message t0 @i-1
telling a;4-1 about di, forgets about a;, and sends another message to itself. It does this forever, so the
computation cannot terminate.

Each created actor a;, 2 > 1, upon recciving a message naming an actor, sends a message to that
actor. The content of the message is irrelcvant.

Figure 7 defines these actor behaviors using a toy programming language.

45

(master = acg initially [1
inside
accept []
(create ((slave = accept [x]
if actorp(x)
then send "ignore" to x
else dummy))

(if equal [acq [] 1]
then dummy
else send acq to slave) ;
change acq to slave) ;
send [] to master)

Figure 7. A program to illustrate the counterexample.

It is possible for ag’s message to ay to be slow, so that event Ej occurs, az is created and receives
the message about ay, and the message from ay arrives at ay, all before ag’s message arrives at ;. In
that way €| can precede € in the arrival ordering of a;. This scenario can occur at any number of
actors, even infinitely many. Figure 7 shows it occurring at all actors, however, and that cannot be.

Figure 7 can be seen to be impossible only when it is considered as a whole. This shows the
“globalness” of the phenomenon, and that a truly global law, such as the Law of Discreteness, must be

devised to take care of it.

Upon learning of this counterexample, Professor Hewitt sct the problem of finding a coun-
terexample as an exercise for MIT subject 6.835. Valdis Berzins solved the excrcise, finding a

different, symmetric counterexample.3°

11.8. Modifying a Proof

One of the purposes of this chapter has been to relax unnecessary restrictions on the actor event
diagrams. As noted at the end of §3, there is good reason to allow an event to activate infinitcly many
cvents. This was not allowed by Hewitt and Baker, partly because they wished to assume finite activa-

tion in proofs, and partly for reasons mentioned at the end of §4. Having removed the assumption

30yaldis Berzins, “An independence result for actor laws”, MIT 1L.CS Computation Structures Group Note 34, December
1977.

46

of finite activation from Theorem 1 of §8, it is now time to remove that assumption from the main
theorem of “Actors and continuous functionals”.
Considerable notation and some definitions from that paper will be needed before proving the

lemma that depended upon finite activation.

Messages must be represented in some language, and have some kind of structure. For the
purposes of this proof there are two sorts of messages, corresponding to two kinds of events. A request
event is an event of the form

[f — request:z, reply-to:c]
which represents passing an argument z to the actor f, with instruction to send any result to a

continuation actor ¢. A reply event is an event of the form

[c — reply:y]

which represents the arrival of a result y at the continuation actor ¢. By convention, replies are

responses to previous request events.

Definition. [fan event ey is of the form
[.. ~ request:...,reply-to:c|,

e9 is of the form

[c — reply:...],

e, —act— ey, and for no evente of the same form as ey is e; —act— € —act— ey true, then ey is said

to be areply loej.

A request event may have no replics, one reply, ninctecn replies, or infinitely many replies. For a
request event whose target is an actor that behaves as a procedure, however, there is at most one reply,
by definition3!

Forancvente let R(e) = {e}U{¢ | e — ¢ } and L(e) = {e}U{¢|€—e}.

31gce “Actors and continuous functionals”.

47

e ([delay « request: 0, reply-to: c]

¢ s{jay — request: 1, reply-to: d]
e’l

e [c ~ reply: 0]

/.

e [d « reply: 1]

e —cont— €
¢ —cont— €’

~e —cont-— €'

Figure 8. The continuation ordering may not be transitive.

Definition. Ife is a request event then the activity corresponding to € is

R(e) ﬂ(U{ L(¢) | € isareplytoe}). |

Perhaps not all events in the activity corresponding to e actually contribute to answering the
request e, but certainly all events that do contribute are in the activity. An activity may not be finite,
because a request can have infinitcly many replies. If a request has only finitely many replies, though,
as is the case if its target is a procedure, then its activity is guarantced to be finite by the Law of

Discreteness.

Definition. Ife and € are events, e — €, and there is some activity a such that e, ¢ € a, then we

say e —cont— €.

Although —cont— is called the continuation ordering, it is not in general a true ordering because

it may not be transitive. In Figure 8, € —cont— ¢ and € —cont— ", but e —cont— ¢€" is not

48

true. The continuation ordering is transitive when restricted to activities corresponding to requests of
a procedure, though, because by definition the activites of a procedure are properly nested. Note that
_cont— is a subrelation of the combined ordering —.

An actor that is a procedure and initiates the same activity, in the sensc of the same messages
with the same targets and the same relationships between events, whenever it is sent the same request
is said to behave like a function.

The definition of an immediate fdescendant in the first version of “Actors and continuous func-
tionals”32 contained a small but subtle error that was partially corrected in subsequent versions.33
The idea is that the immediate f-descendants of (z,y) € graph(f) are those (¢, /) € graph(f)
that must be known in order to compute f(z) without recursing. As is often the case, the proof is
correct because it depends on what the definition is supposed to be, not its formal specification. The

definition below is supposed to be what the definition was supposed to be.

Definition. Suppose an actor f behaves like a mathematical function, {z,y) € graph(f), and
(', y) € graph(f). Then («, y') will be said to be an immediate f-descendant of (z, y) if there is some

history of f that has events ey and e of the form

er:[f — request:z, reply-to:...]

ex:|f — request:a/,reply-to:...]

such that es belongs to the activity initiated by e; (so that e, —cont— ep) and it is not the case that

there is an event e of the form
e:[f « request:..., reply-to:...]
such thate; —cont— e —cont— eg.

Definition. Suppose that (z, y) € graph(f). Then

immediate-descendants((z, ¥)) = {(z/, y) | (=, &) is an inmediate Fdescendant of {z, Y} }.

32]FIP Working Conference on Formal Description of Programming Concepts, August 1977, 16.1-16.21.
33MJT LCS Technical Report 194, December 1977.

49

As an example, Hewitt and Baker give the following procedure.

fib(n) =
if n=1 then 1
if n=2 then 1
if n>2 then fib(n-1)+fib(n-2).

immediate-descendantsg ({1, 1))
immediate-descendants¢ ({2, 1))
immediate-descendantsg ;5 ((3,2)) = {(1,1),(2, 1) }
immediate-descendants¢ ;,((5, 5)) = {(3,2),(4,3) }

Now the only real use Hewitt and Baker make of the assumption of finite activation is in proving

=1
=

the following lemma.

Lemma 1. If an actor f behaves like a mathematical function and (z,y) & graph(f), then
immediate-descendants((z, y}) is finite.

Proof. Let ¢; be a request for the procedure f to compute the value f(z). That is, e; is of the form
ei:[f — request:z, reply-to:...}].

By the way Hewitt and Baker definc “function” there can be at most one reply to this request. There
is a reply, since (z,y) € graph(f), so call it es. Since e; has a unique reply, the activity initiated
by ey is just { ey, ex 2 J{e | & — € — e }. This set is finite by the Law of Discretencss, and so

immediate-descendants/({(z, y)) is finite by the definition.

The lemma thus remains true without the assumption of finite activation. As this lemma is the
only place in its proof where Hewitt and Baker use finite activation, the theorem to be stated below no

longer depends upon that hypothesis.

Definition. If'G is a set of input-output pairs, then

Dy(G) = {(z,v) | (z,y) € graph(f) and immediate-descendants,((z, y)) C G }.

50

Theorem 2. (Hewitt and Baker.)" If an actor f behaves like a mathematical function, then Dy is
a continuous functional in the sense of Scott, and graph(f) is the limit of Dy beginning with the empty

graph. Also graph(f) is the minimal fixed point of Dy.

51

Chapter Il

Nondeterminism

Is the universe deterministic? Regardless of the answer, there exist systems so complex that their
unique future behavior cannot exactly be predicted in any practical sense. In practice such systems are
considered nondeterministic.

This chapter deals with the semantics of nondeterministic programming languages. The usual
way of representing nondeterminism in a denotational fixed point semantics is by means of power
domains, so called by analogy with power sets. Extending the power domain construction to apply
to incomplete domains makes possible a power domain semantics for nondeterministic programming

languages in which a fair merge can be written.

I1I.1. Nondeterminism can be Viewed as Incomplete Specification

Abstraction is essential to understanding complex systems. One difference between good and
bad programmers is that good programmers think in terms of the function performed by a program
scgment whereas bad programmers are likely to think of the program segment as a sequence of steps.

Programming language semantics secks to provide abstract descriptions of program segments.

52

As part of the abstraction process, details are suppressed. One detail universally suppressed
by programming language semantics is the amount of time required to do a particular thing, since
it varies from implementation to implementation or even from moment to moment. As a result
programming language semantics cannot always say exactly what the output of a program with con-
currency will be, because the output may depend upon.timing. Abstraction can therefore lead to
nondeterminism,

Nondeterminism can result from any incomplete specification of a programming language,
whether deliberate as in the case of abstraction or accidental as in the case of oversight. Though the
nondeterministic program given below is written in APL, it uses no special features of that language.
Almost any popular programming language would have served. APL was chosen partly because it is
simple, concise, and well-known, but the main reason is that an ambiguity in APL.’s order of evalua-
tion went unrccognized for many years, the ambiguity created significant nondeterminism, and the
ambiguity was of the sort that can be exploited through concurrency.

Consider the program FOO defined by

V RESULT + FOO X
[1] GLOBAL « 0
[2] RESULT « (F X) + (G X)
v
which, given an argument X, sets the global! variable GLOBAL to 0 and then returns as its result the
sumof F X and G X, where F and G are user defined “function” subprograms. If F and G do any
significant computation at all, then the time required to cxecute FOO on a sequential machine is the
sum of the exccution times for F and G. For example, if F and G cach take one minute to return their
answers, then exccuting FOO takes two minutes. With the advent of multiprocessors capable of per-
forming several independent computations concurrently, it has become feasible to consider cvaluating
F and G at the same time on separate processors, so that executing FOO might take as little as half the

time required when only a single processor is used.

This example suggests one of the speed gains possible through multiprocessing. The particular

'In the sense that the memory location denoted by GLOBAL is accessible to subprograms invoked by FOO. The example
is indifferent to the question of whether the memory location can be dircctly accessed by all hardware processors.

53

speedup illustrated is possible any time that two or more arguments to a function each require
significant time to evaluate. Devotees of largely functional languages such as Lisp and APL perceive
this to be of profound importance for the design of languages intended for execution on multiproces-
sors.?

Nondcterminism often accompanies this and many other techniques for concurrency. That is,
the outcome of a program may no longer be completely determined. Nondeterminism may or may
not affect the usefulness or correctness of a program. Consider, for example, a program that conducts
a parallel search for a proof of or a counterexample to the Goldbach conjecture. It does not matter
which particular proof or counterexample is first found. While some programs must be deterministic
to be correct, nondeterminism has a role in artificial intelligence programs and programs such as
operating systems that depend on inputs presented at unpredictable times.

Even so simple a program as FOO can be nondeterministic. Suppose the subprograms F and G

invoked by FOO are defined as follows.

V RESULT « F X
[1] RESULT « GLOBAL
[2] GLOBAL + 1

v

V RESULT «~ G X
[1] RESULT +- GLOBAL
[2] GLOBAL « 1
v
Aside from their names, these programs are identical. Each reads the global variable GLOBAL and,
after setting GLOBAL to 1, returns the value read as its result.
On a sequential machine, thesc definitions cause FOO to evaluate to 1 (regardiess of the value of
X). Here is what happens. First FOO sets GLOBAL to 0. Then, in line 2 of FOO, G is invoked with X
as its argument.? G reads the global variable GLOBAL, finds its value to be 0, sets GLOBAL to 1, and

returns 0 as its result. Then F is invoked with argument X. F reads GLOBAL, finds its value to be 1, sets

2See for example Friedman and Wise, “Aspects of applicative programming for parallel processing”, IEEE Transactions
on Computers C-27, 4, April 1978, pages 289--296.

3Since APL as now defined evaluates right-most arguments first.

54

GLOBAL to 1, and returns 1 as its result. FOO then sums the results of F and G to obtain its result: 1.

On an interactive APL terminal:

X «— 297 (or other arbitrary value)
FOO X

Were F X and G X to be evaluated in parallel on a multiprocessor, FOO X might sometimes
return 0 instead of 1. The reason is that F and G might both read the global variable GLOBAL before
the second line of cither subprogram had been executed to set GLOBAL to 1. Thus both F and G might

return 0 as their result. On an APL terminal:

FOO X

would be possible as well as

FOO X

A given multiprocessor implementation might consistently return a particular one of these two
possible results. Nonetheless the program must be regarded as nondeterministic, since the program
itself does not determine a unique answer; only when the program is paired with an implementation
can the result be determined. Indeed the result may not be determined even then, since the result may
be affected by dynamically changing conditions within the multiprocessor. For example, the number
of processors available to a computation can change in response to resource requests by concurrent
computations.

Thus parallel cvaluation of arguments can lead to nondeterminism because the order in which
events occur in global time is left incompletely specified. Were the semantics of a program to deter-
mine completely the order of events in global time, the program would be sequential; it is when
the semantics least constrains the order of events that there exist the greatest opportunitics for paral-

lelism. Opportunities for parallelism thercfore arise from a kind of semantic ambiguity regarding the

55

order of events in global time. Until recently, for example, the (informal) semantics of APL did not
prescribe a definite order of evaluation of expressions, so that some APL implementations evaluated

the expression

X - (X — X - 1)

from left to right and obtained 1, while other equally correct APL implementations evaluated from
right to left and obtained 0.4 Had a multiprocessor implementation of APL existed, it could have
evaluated the subexpressions X and (X «— X - 1) in parallel, obtaining 0 on some occasions and 1
on others. This ambiguity in the semantics of APL has now been fixed by the adoption of a standard
order of evaluatioﬂ, but the remedy precludes the parallel evaluation of arguments that was allowed
by the ambiguity of the old scmantics.

What if the programmer intends a program to be deterministic? Then the programmer. must
arrange for the scquence-sensitive portions of the program to be executed in a definite order. FOO, for

example, could be rewritten as

V RESULT « F002 X; LOCAL1; LOCAL2
[1] GLOBAL + 0

[2] LOCAL1 « F X

[3] LOCAL2 + G X

[4] RESULT « LOCAL1 + LOCAL2
v

using local variables to hold the results of evaluating F X and G X. FOO2 is deterministic even when
function arguments arc evaluated in parallel. Remember that the possibility of evaluating arguments
in parallel was not considered when the APL language was designed, and even so the only reason F
and G cause problems when cvaluated in parallel is that cach assigns to a global variable referenced
by the other. Most well-written subprograms have no such side effects. In a language designed
specifically for concurrency, troublesome side effects could be expected to be even rarer.

Not only is sume incompleteness in specifying the order of events in global time desirable be-

cause it allows concurrency, but it is necessary when concurrency is allowed. For a programming

4Richard 11 Lathwell, “Some implications of APL order-of-execution rules”, APL79, API, Quote Quad 9, 4-Pait 1, June
1979, pages 329-332.

56

language semantics to specify completely the order in which events are to occur during multiprocessor
execution of a concurrent program is generally impossible, since it would entail fixing myriad details
such as the number and relative speeds of concurrent processors, the exact times of and delays occa-
sioned by page faults and other interrupts, the timing of signals between processors and the manner
in which they arc arbitrated, and so on, down to the levels of time resolution at which quantum
indeterminacy becomes important.

Except for two general requirements, the actor model specifies none of these timing details. The
first requirement is that in keeping with the idea of actors as independent computational agents each
actor has the computing energy® it needs to process messages sent to it. The second requirement is
that cvery message eventually arrives at its target, a requirement known as finite delay. These require-
ments leave much unsaid about the order of events in an actor’s arrival ordering. The nondeterminism
that results will be called arrival nondeterminism.

Arrival nondeterminism is similar to the notion of global nondeterminism introduced by Francez
et al for the programming language CSP.% but §8 points out an important difference. The local
nondeterminism of CSP is a form of the choice nondeterminism discussed below.

Choice nondeterminism arises from the presence of choice points within a program, where an
implementation is allowed to choose the program’s flow of control af random from among a finite
set of alternatives. The implementation does not have to make the choice randomly, but it may.
Dijkstra’s guarded commands are examples of such choice points. Although choice points permit
concurrency, they have the defect of permitting random choice as well. Choice points arc of interest in
this dissertation only because they are often used to model the nondeterminism that accompanies con-
currency. Nondeterministic concurrency differs from random choice, but using choice points to model
nondeterministic concurrency reduces the problem of providing a semantics for nondcterministic
concurrent programs to the problem of generalizing the existing theory of semantics for sequential
programs to handle choice points. It is then important to remember that in this context choice points

SComputing energy is computing power integrated over time. If several actors share time on a single processor, for
example, an actor’s computing encrgy is the computing power of the processor multiplied by the time that the actor
actually uses the processor.

8Nissim Francez, C A R Iloare, Danicl J Lehmann, and Willem P de Roever, “Semantics of nondelerminism, concurrency,
and communication”, J Computer and System Sciences 19, 1979, pages 190-308.

57

are only an attempt to model concurrency. If theories of sequential programs with choice points turn
out to produce different conclusions about concurrent programs than theories based directly upon
true concurrency, then the idea that concurrency can be modelled by choice points must yicld. That
has turned out to be the case. Considering concurrency directly lcads to regarding some programs as
unboundedly nondeterministic, but it can be shown that no sequential program with random choice
points is unboundedly nondeterministic.

Unbounded (infinite) nondeterminism is a property of programs that on some fixed input are
certain to return an answer, but the set of possible answers is infinite. Unbounded nondeterminism
will be considered at some length in §7 and §8, but its present importance is that a plausible theory of
semantics for concurrent computation must differ from a theory of semantics for sequential programs

with choice points.

The next three sections present the mathematical foundation underlying a theory of semantics

for concurrent computation.

I11.2. Fixed Point Semantics

The denotational theory of programming language semantics is concerned with finding mathe-
matical objects that represent what a program does. Examples of such objects arc partial functions,
sequences of states, and actor event diagrams. Usually there is a partial ordering << on these objects
with z < y meaning that z is compatible with but possibly less defined than y. In other words, z
approximates y. If the objects are partial functions, for example, f << g may mean that f agrees with
g on all values for which f is defined. If the objects are actor event diagrams, z <X y means Z is a
possible initial history” of y. The object representing a program P is found by solving an equation of
the form z = fp (z). This section states conditions guarantecing a solution to that equation.

Let (D, <) be a partially ordered set, and let A be asubset of D. a € A is a minimal clement of

A iff A contains no clements below a. That is,

VieA z<a = z=a.
TSee §IV.3.

58

a € Ais a least element of A iff a lies below every other element of A, That is,
VeeEA a<luz.

Maximal and greatest elements are defined dually.

An upper bound for A C D is an element u € D such that
VzeA z<u.

A least upper bound for A C D is an upper bound that is least in the set of upper bounds for A in
D. (Least upper bounds are sometimes called /imits, because they are a special case of colimits in
category theory; there is also a Tp topology on D in which the least upper bound of an increasing
sequence is a limit of the sequence in the topological sense.) In general, a set may not have upper
bounds, and a sct may have upper bounds but no least upper bound. Exarmnples are the rationals Q
under the usual ordering, and the negative rationals as a subset of D = Q — {0 }. If a set has a least
upper bound, though, it has exactly one. The least upper bound of A C D will be written Vze sz or
V/ A, except that [and | | will sometimes be used in place of < and V.

A set A C D is directed iff every pair of elements of A has an upper bound in A. It then follows
that every finite subsct of A has an upper bound in A. These upper bounds need not be least. For
example, suppose D is the power set of the natural numbers w ordered by inclusion. Then the set of
all finite subsets of w is directed, as is the three element set consisting of {0}, { 1 }, and w.

Let (D, <) and (IY, <') be partially ordered sets. A function f:D — D' is monotonic iff it

prescrves order, so that Vz, y € D

z<y = flz) <)

f is w-continuousiff it is monotonic and preserves all existing least upper bounds of countable increas-

ing sequences, so that if { z; }.. is a sequence in D with z; < z; 4 forall ¢ € w then
Jicw = i+

f(View xi) = VIiEw f(xi)'

59

(Equivalently, f is w-continuous if it preserves least upper bounds of countable directed sets.) Note
that this definition does not presume that all countable increasing sequences have least upper bounds,
but states only that f preserves those least upper bounds that exist.

(D, <) is w-complete iff every countable increasing sequence (equivalently every countable
directed set) has a least upper bound in D. That is, if for all { € w z; € D and z; < 7,44, then
Vic. i exists.

Now suppose (D, <) has a least element | and is w-complete. Then every w-continuous
function f:D — D has a fixed point given by Vicw fi(LL), and furthermore this fixed point is least
among all fixed points of f.

This is the most basic fact of fixed point semantics. Typically D is a set of possible meanings
for programs, such as a set of partial functions from inputs to outputs, ordered according to some
approximation ordering. The semantics of a programming language defines for each program P a
continuous function fp:D — D. The program P is then said to denote the least fixed point of its
associated continuous function fp. The domain D must be w-complete to ensure that the least fixed
point exists.

For more information on fixed point semantics, readers should consult the tutorial article by
Tennent? the textbook by Stoy,® or the comprehensive volumes of 4Milnc and Strachey.'® These
references deal only with fixed point semantics on lattices, however, while we must consider more

general partial orders.

I11.3. Domains and Their Completions

Usually there is an intuitive sense in which some elements of the partially ordered sets con-
sidered by fixed point semantics are finite. They may be partial functions defined for only finitely
8R D Tennent, “The denotational semantics of programiming languages”, CACM 19, 8, August 1976, pages 437-453.

9oseph I Stoy, Denotational Semantics: The Scott-Strachey Approach 1o Programming Language Semantics, MIT Press,
Cambridge MA, 1977,

'R obert Milne and Christopher Strachey, 4 Theory of Programming Language Semantics, Chapman and Hall, London,
1976.

60

zo\ %Y

o4 D=1{0,1,2,3,...}U{z, v}
I3 iy ifi <y
1 i1z
2 iCy
1,
y

Figure 1. A partial order in which every element is isolated.

2

AN

4e o 4 D={0,1,2,3,...}U{0, 1,2,3,... }U{z}
31 T3' =y iy

I I L

2 9/ iz

I e

1 L

oI To'

Figure 2. A partial order in which no element is isolated.

many values, for example, or they may be finite partial computations. This sensc of finitencss lies

behind the following abstract definition.

Let (D, <) be a partially ordered set. An clement z € D is isolated iff whenever A C D is
directed, \/ A exists, and z << \/ A, there exists e € A withz < a. In other words, z is isolated if one

must go through z in order to get up to or above z via the limit process. As cxamples, the finite sets

61

are the isolated elements of the power set of w ordered by inclusion; the ordinal w -+ 1 is isolated in
the set of countable ordinals under the usual ordering; in the partial order of Figure 1, every element
is isolated, while in the partial order of Figure 2 no elements are isolated.

The least clement of a partially ordered set is always isolated provided it exists. 0 is the least
element of the nonnegative rationals under the usual ordefing, and it is also the only isolated clement.
The entire set of rationals has no isolated elements under the usual ordering.

For purposes of programming language semantics, partially ordered sets with least elements
form too general a category. The partially ordered sets of greatest interest for computer science are
those whose isolated elements are dense in the sense that every clement is a least upper bound of a
countable set of isolated elements. To avoid transfinite inductions, and to make directed completeness
equivalent to w-completeness, it is convenient to assume also that there are only countably many

isolated elements.

Definition. A domain is a partially ordered set (D, <) such that

1. D has a least element _|_. '

2. Every element of D is the least upper bound of a countable increasing sequence of isolated
elements.

3. The isolated elements of D are countable.

This definition is nonstandard. The standard definition requires also that D be w-complete, so
that w-continuous functions from D to D will have fixed points.

An w-complete domain is complete in the sensc that every directed subset has a lcast upper
bound. An w-complete domain is also known as a countably algebraic complete partial order.!!

Every domain D can be embedded in an w-complete domain D that is, in a precise sense, the
smallest w-complete domain containing D. The isolated elements of D are precisely the isolated

clements of D,!? but in general D contains limit points that are not found in D. D is uniquely
1M B Smyth, “Power domains”, J Computer and System Sciences 16, 1978, pages 23-36.

2fence D differs from completions that do not preserve least upper bounds, such as the basis completion (Markowsky
and Roscn) and Bloom’s w-completion. D is isomorphic to the basis completion of {z € D] x is isolated in D}.
Sce G Markowsky and B K Rosen, “Bases for chain-complete posets”, IBM J Research and Development 20, 2, March
1976, pages 138-147, Stephen L Bloom, “Varieties of ordered algebras”, J Computer and Svsiem Sciences 13, 2, October
1976, pages 200-212, and Danicl l.ehmann, “On the algebra of order”, J Computer and System Sciences 21, 1, August
1980, pages 1-23.

62

~ /[A~

- r >
1 h l’ 1 s l’
N Ll

Figure 3. A domain and its w-completion.

determined up to isomorphism, and is called the w-completion, or simply the comipletion, of D. Tt
will be shown that for any domain D the power domain of D is isomorphic to the power domain of
its completion D. Then why not use w-complete domains only, as is standard? Because the power
domain is interpreted with reference to the domain from which it is built. As will be explained in §5,

the underlying domain is incomplete in actor semantics.

At this point readers may wish to read the definition of the closure operation © on the next page
and then skip to §4. The remainder of this section shows how D may be constructed, and proves the
facts mentioned above.

As an aid to understanding the concrete construction of D that follows, consider the domain

€0,1,2,3,.. M Hwi (0 1,2,3,...},C)
where

iy i<y
S 5
By i<y
tCw

63

N
J L

Figure 4. An incomplete domain.

This domain is pictured in Figure 3, along with its intuitive completion. Figure 4 shows why w must
be less than w’. The domain in Figure 4 is incomplete because the increasing sequence { 7 } icw Nasw

and ' as its upper bounds, but neither is least.
Let (D, <) be a domain.

Definition. The closure of A C D is

A°={d €D|3X CD, Xdirected, d = \/ X, andVz € X Jac Az < a}.

Lemma 1. Ifa,b € D are isolated and have an upper bound d, then they have an isolated upper
bound ¢ such that ¢ < d.

Proof. Let {d;};c,, be an increasing scquence of isolated clements with V., di = d.
{d;|i € w} is dirccted, so there exist d; and d; witha < d; and b < d;. Letk = max{4, 5 } and
c=d. |

Lemma 2. IfY C D isdirected, andxz = \| Y, then there exists a directed set Z, consisting solely

of isolated elements, such that

$=VZ

64

and

VeeZIyeYz<y.

Proof- Fory € Y let Z, be a directed set of isolated elements with y = \/ Z,, and let

z=\J z,
yey
It is clear that Z consists of isolated clements, and thatVz € Z Jy € Y 2 < y.

Letz),2 € Z, and let y1, 32 € Y besuch thatz; € Z, and % € Z,,,. Let y3 € Y be an upper
bound for y; and 49, and hence for z; and z3. By Lemma 1 there exists an isolated z € D such that
2,20 < 2 < y3 = V Z,. Letz3 € Zyy, be such that 2 < 23. 23 is an upper bound for z; and 2 in Z,
so Z is directed.

Clearly z is an upper bound for Z.

Let 2/ be an upper bound for Z. 2’ is an upper bound for each Z,,soy = \/ Z, < 2. Thus 2’ is
an upper bound for Y, whencez = \/ Y < «’. Therefore z is the least upper bound of Z. |}

Lemma 3. The map € is a closure operator on the power set of D,

Proof If A C B, then A° C B¢. Also A C A°

To show (A°)° = A letz € (A°)°. A° is downward-closed. Thatis, ifa € A°and z < a then
z & A Therefore there exists a directed set Y C A with z = \/ Y. Let Z be a directed set of
isolated clements withz = \/ Z and Z C A°.

Let 2 € Z. Since z € A€ there exists a directed set W such that z = \V W and Yw €
W Jda € A w < a. Since 2 is isolated there is some w € W with 2z << w. Hence there existsa € A
such thatz < a.

Z isdirected,z =\ Z,and Vz € Z Ja € A z < a. Conscquently z € A°.

Note that A is downward-closed and is closed under existing least upper bounds in D of

directed subsets.

65

Definition. Let (D, <) be a domain with least elemen: | . Its completion is (D,), where
D= {A°| 1L € ACD, Adirected}
and forall A,B € D
ACB = ACB.

This makes D a partial order. Generally (D, [Z) is not a lattice.

Lemma 4. IfA € D andz,y € A are isolated, then x and y have an isolated upper boundz € A.
Proof. Let Ag © D be dirccted with A = A. letz = \ X where X is directed and
Yw € X 3a € Ap w < a. Since z is isolated, z € X. Thus there exists 27 € Ag with z < 7/,
Similarly there exists ¥/ € Ag with y << ¢/. Let 2’ € A be an upper bound for 2’ and ¢/. Let z be an
isolated upper bound for z and y withz < /. z € AsinceZ € A and A is downward-closed. [
Lemma 5. Let A € D, and let Ag be the set of isolated elements of A. Ao is directed, and Ag = A.
Proof. Immediate from Lemma 4 and the fact that every element of D is a lcast upper bound of

isolated clements. [}

Theorem 6. IfX C D is directed, then X has a least upper bound in D given by

L]x =WUx)

Proof. 1t suffices to show that ([X)¢ € D, which requires finding a directed Y C D with
Yo = (UJX)-
For A € X, let Y4 be the set of isolated elements of A. Each Y4 is directed, and Y& =

Since X is directed in D, J 1oy Ya is directed in D. Clearly {J 4 « Y4 C U X, s0

(U varcqJxr

AEX

Letz € (UX)S, with z = \/ Z’ where Z’ is directed and Z/ C |J X. By Lemma 2 there
exists a directed set Z C |J X consisting solely of isolated clements such that z = \/ Z. Since
Z C Uaex Ya 2 € (Usex Ya)

Therefore (U e x Y4) = (U X)% and (UX)°€D. |

66

Hence (D, [Z) is a complete partial order.
D may be regarded as a subset of D via the continuous injection Z given by z +— T where
z={d €D|d <z} FromLemmas5 it can be seen that
A= |] =z

TEA
z isolated

for any A € D. The following theorem thus completes a proof that D is an w-complete domain with

least element { _L }.

Theorem 7. The isolated elements of D are precisely the images E of isolated elements z in D.

Proof Let z be isolated in D, and let X & D be directed with

z={yly<z}C|]X

By Theorem 6 z € ({J X), solet Y C |J X be directed with z = \/ Y. z is isolated, so z € Y. Thus
£ € A for some A € X. For that A, Z [A. Therefore Z is isolated in D.
Conversely, let A € D be isolated. Let { L = by, by, by, ... } be the isolated elements of D.

Define an increasing sequence { #; },;, in D by

T ="by= L
A z; bip1 EA;
T b bipr €A

wherck = punbig < b, A 7 S by A b, € A]. The isolated elements of A are directed,
and z; € A, so0 k is defined whenever b, € A. For every isolated y & A there exists k£ such that
y < 7. Since A = ({y € A | yisolated })°, A = | |;c,, Z:- {Z: | 1 € w} is directed since {z;}is

increasing. Therefore A = Z; forsome¢.

That D is the unique completion of D is guaranteed by a universal mapping property.!> This
universal property is hardly more than a paraphrase of a theorem on finitary catcgories by Smyth and

Plotkin. 14

13Gaunders Maclane, Caregories for the Working Marhematician, Springer-Verlag, New York, 1971.

MM B Smyth and G D Plotkin, “The category-theoretic solution of recursive domain cquations”, Proceedings 1gth
Annual IEEE Symposium on Foundations of Computer Science, 1977, pages 13-17.

Theorem 8. IfE is an w-complete domain, and f:-D — E is w-continuous, then there exists a

unique w-continuous map g:D — E making the diagram below commulte.

f
— E

8l
| &——©
<Q

In other words, any continuous map f from D to E factors uniquely through D: f == go Z.

This means that any w-complete domain containing D also contains D, so that D is the smallest w-

completion of D. Furthermore any w-complete domain with this property is isomorphic to D via a

unique isomorphism.

I11.4. The Power Domain

The idea of power domains is that a nondeterministic function may be described as a determinis-

tic set-valued function, where the set contains all values the nondeterministic function can take for the

given argument. Consider, for example, the program

[1]
(2]

1]
2]

(1]
[2]

V RESULT «— FOO X
GLOBAL + 0

RESULT «— (F X) + (G X)
v

V RESULT « F X
RESULT ~ GLOBAL
GLOBAL « 1

v

V RESULT «~ G X
RESULT « GLOBAL
GLOBAL ~— 1

v

68

Figure 5. N, the flat domain of natural numbers.

defined in §1. When the subprograms F and G are evaluated in parallel on a multiprocessor, FOO can

map its input to either 0 or 1. This behavior can be described by
z— {0,1},

and this is the best description of FOO0’s input-output behavior possible when arguments are evaluated
in parallel.

Since fixed point semantics works by generating a sequence of ever-better approximations to the
meaning of a program, some ordering C_ must be placed on sets of values so that A [C B means that
B is at least as good an approximation as A. The values will be drawn from some domain (D, <).

One of the simplest domains is the flat domain of natural numbers (N, <), where N =
{1,0,1,2,3,...}andz < yiffz = y orz = L. (Note that < is not the usual ordering on
N.) This domain is pictured in Figurc 5. Suppose for simplicity that APL programs can return only
nonnecgative integers as values, so that the output of FOO lies in N. As alrcady noted, the possible

outputs of FOO when arguments are evaluated in parallel are best described by the set

{0,1}.
Which subsets of N should count as approximations to this set? There are at least three rcasonable
answers. To each answer there corresponds a way of interpreting scts, and to each interpretation there
corresponds a preorder. The three preorders we will consider are written To, Ly, and T -
One approach is to interpret a set as including a description of every possible output value. Not
every element of the set has to describe an output value, but every output value has to be described by
an clement of the sct. In this approach N and {0, 1, 2 } both approximate {0, 1}, but {0,1,2} isa

more refined approximation than N:

N;[){O,l,z}[;o{o,l}

69

{0,1,3} is an example of an approximation to {0, 1} that is incomparable with {0,1,2}. For

general domains this approximation ordering is given for A,BC Dby
ALoB & VYyeBlhzcAz<y.

As is true also of the next two approximation orderings, Lo is in general only a preorder. In
the case of oo, { L.} To D o { L} o is the Smyth ordering, and yields a so-called weak
power domain.'® It has been used to give a semantics for a model of concurrency based on message
passing.18

Another approach is to interpret a set as giving descriptions of some possible output values. Not
every possible output value has to be described by an element of the set, but every clement of the set
has to describe an output value. In this approach { _L_ } and { 0 } both approximate {0,1}, but{0}

is a more refined approximation that {L}:
{LIC {0} {0,1}.

{1} is an example of an approximation to {0,1} that is incomparable with {0}. For general

domains this approximation ordering is given for A,BC Dby
ACIB = VzeAdyeBz<y.

In this ordering approximations build up to a limit, while in the Smyth ordering approximations nar-
row down to a limit. In other words, [Z; corresponds to a generative approach while =g corresponds
to a restrictive approach. [also gives rise to a weak power domain, and has been used in the theory
of Petri nets.!” The actor semantics presented in the next chapter will use 5.

Historically, the first approach was to interpret a set in both of the preceding ways. For flat
domains such as N the Egli-Milner ordering [E-M Was defined by

AlCpmB = (LZAAA=B)
V(LEAANA—{L}CB).

>M B Smyth, “Power domains”.

'SGeorge Milne and Robin Milner, “Cencurrent processes and their syntax”, JACM 26, 2, April 1979, pages 302-32L

""Mogens Nielsen, Gordon Plotkin. and Glynn Winskel, “Petri nets, event siructures and domains”, in Semantics of
Concurrent Commpuation, Springer-Verlag 1ecture Notes in Computter Science 70, 1979, pages 266-284.

70

Gordon Plotkin generalized to arbitrary domains by the definition!8
A;E‘MB = A;()B/\AQIB.

In this approach { 1} and { _L,0} both approximate {0, 1}, but {_L,0} is a more refined ap-

proximation than { |_}:
{L}Cpm{L, 0} Crp {01}

{L,1} is an example of an approximation to {0,1} that is incomparable with { | , 0}. The
Egli-Milner ordering has been used to give a semantics for Communicating Scquential Processes, a
language based on message passing.19

Each of the three preorders, (g, [y, and L g-M, gives rise to a power domain construction
applicable to any w-complete partial order having a least element.?? But for the need to solve recur-
sive domain equations involving power domains, at least the first two of these constructions could be
extended to incomplete domains as well. In the actor semantics presented in Chapter IV there is no
necd to solve recursive domain equations involving the power domain. Furthermore the domain of
augmented event diagrams, from which the actor power domain is to be built, is naturally incomplete.
The remainder of this section therefore defines power domains for alldomains, complete or incom-
plete, and shows that for an incomplete domain D the power domain so defined is isomorphic to the

conventionally defined power domain of its w-completion D.

Michael Smyth has given a succinct characterization of conventional power domains, which we
will now review.2! He points out that the simplest way to build a power domain is first to decide
what is to count as a finite piece of information about the result of a computation, and then to place
an approximation ordering on the finite pieces of information. The power domain then becomes the

essentially unique completion of the partial order so defined.
18G D Plotkin, “A powerdomain construction”, STAM J Computing 5, 3, September 1976, pages 452-487.

19Njissim Francez, C A R Hoare, Daniel J I echmann, and Willem P de Roever, “Semantics of nondeterminism, concurrency,
and communication”, J Computer and System Sciences 19, 1979, pages 290-308.

M CB Hennessy and G D Plotkin, “Full abstraction for a simple parallel programming language”, FOCS-79, Springer-
Verlag Iccture Notes in Computer Science 74, 1979,

2IM B Smyth, “Power domains.”

71

Let (D, <) be a domain. In the most commonly encountered domains, isolated elements
represent finite chunks of information in D, and indeed the term “finite” is often used in place of
“isolated”. A finite piece of information should therefore be a nonempty finite set of isolated elements
from D. Smyth preordered these sets using [and [\, but we will use [y, so that a nonempty

finite set of isolated elements A C D is interpreted to mean
VocAdrceRa<lr

where R is the actual set of values possible as the result of a nondeterministic program. Letting
A= Biff AL, BandB [C, A, the equivalence classes of such sets under = are partially ordered
by the quotient ordering = / =;.

The equivalence classes can be avoided by dealing with distinguished representatives of them.

Accordingly define the finite frontiers of D as

F(D) = {A C D | Ais anonempty finite set of isolated elements, and
Vi, y€Az<y = z=y}.

A € F(D) is called a fronticr because each of its elements is both minimal and maximal in A.
(F(D), Zy) is isomorphic to the set of equivalence classes under =, of nonempty finite sets of
isolated clements of D, ordered by 2y / ==y. (F(D), CZ;) is a domain with least element { {_} iﬂ
which every element is isolated. It therefore has an w-completion (F(D), [Z), which is the power
domain, up to isomorphism,

Observe that only the isolated elements of D matter to the construction. It is therefore irrelevant
whether D is w-complete.

The following lemma characterizes the conventional power domain (F(D),).

Lemmal. S € FT(D_) if and only if both the following hold:

1.S={FeFD)|FCUS}

2 Ifse€US, z isisolated, andz < s, thenz € |J S.

Proof. Since every element of (D) is isolated, S € F(D) iff S is downward-closed and directed
as a subsct of F'(D).

Let S € F(D).

72

Let s € |JS, and let z be isolated with z < s. There exists F € S with s € F, and so by
definition { z } [C F. Therefore { } € S since S is downward-closed, whence z € |J S.

IfF € S, thenF € F(D)and F C |JS. Suppose F = { fp, ..., f,} € F(D) with F C |JS.
Since S is downward-closed, { f;} € Sfori = 0,...,n. Since S is directed, F = | | [{{f£}|i =
0,...,n}ES. ’

Conversely, suppose S satisfies conditions 1 and 2 of the lemma. Let F},F, € S. Fy U Fy C
FUFR”, C US, soFi L Fy, € S and S is directed. Let F; € S, and let F [, F. For every
z € F there exists s & F} with z < s. By condition 2 F C US. Bycondition 1 F € S. Thus S is
downward-closed. Being downward-closed and directed, S € F(D). |

A corollary of this lemma is that the least upper bound of an increasing sequence { S; } in

1IEw

F(D)isgivenby | |;c, S = U;,, Si-

The concrete power domain that we will use is defined below. As will be shown, it is isomorphic

to (F(D),).

The closure operation © was defined in §3.

Definition. Let (D, <) be a domain. Its power domain is (P[D], [Z), where
PID|={A°| L €ACD}

and, forA, B € P[D],
ACB = ACB.

In other words, P[D] is the collection of downward-closed subsets of D that are also closed under
existing least upper bounds of dircected sets in D. Note that while the ordering on P[D] is given by the
subset relation, least upper bounds do not in general coincide with unions.

For the actor event diagram domain D, an element of P[D] represents a list of possible initial
histories of a computation. Since for clements £ and y of D, z < y means that z is an initial scgment
of the initial history y, the requirement that elements of P[D] be downward-closed has a clear basis in

intuition.

73

The next theorem gives several nice properties of the power domain. In particular, it is an w-

complete domain, so w-continuous functions have fixed points.

Definition. A countably based continuous complete lattice is an w-complete domain such that for

any subset X of the domain both a least upper bound | | X and a greatest lower bound 1MX exists.

Theorem 2. If (D, <) is a domain, then (P[D], 2 is a countably based continuous complete
lattice.

Proof 1 X C PID], then | | X = (J X)°and X = N X.

The isolated elements of P[D] are the closures of finite sets of isolated elements, that is sets of
the form { zy,...,z, }° where 2o, . . ., 7, are isolated in D. To prove it, let o, . . ., z,, be isolated
and let X C P[D] be directed with { zg,...,z,}° = || X. Since z; € (|J X)° and z; is isolated,
z; € UX. Let A; € X have z; as an clement. Let A € X be an upper bound for A, ..., An.
{z0,...,2,} C A.

Conversely, let A € P[D] be isolated and let { z; | © € w } be the isolated elements of A. Let

Then { X¢} X¢, so for some n, A = X¢.

new 18 an increasing sequence in P[D] and A = | |,

The following theorem says that at a certain level of abstraction P[D] is the same as the conven-
tional power domain of D. While P[D] will be used in the next chapter to give a semantics for actor-
based programming languages with unbounded nondcterminism, however, the conventional power
domain is usually considered incapable of expressing unbounded nondeterminism. This points out

the importance of the concrete interpretation placed upon clements of the power domain.

Theorem 3. If(D, <) is a domain, then {P[D), CC) is isomorphic to (F(D),).
Proof. Consider the map from F(D) to P[D] given by F' + F°, This map is monotonic and is
trivially continuous since F'(D) has only isolated elements. By Theorem 8 of §3 there cxists a unique

continuous extension of this map with domain FI(D). This unique extension is n: F(D) — P[D] with

n(S) = (US)° for all S € F(D). It remains to be shown that n is one-to-one and onto and has a
continuous inverse.
(U S)° is the same as (|J S) except for non-isolated clements, so n is one-to-one by Lemma 1. If

A € P[D], then
A ={z € A|zisisolated }*

=n({FeFD)|FCA})
son is onto P[D].
The inverse of n is §: P[D] — F(D) where 8 (A) = {F € F(D) | F C A}. 0 is clearly
monotonic. To show @ continuous, let { A; }

0(Ll;cp,A:). Thatis, F C ||

scw DC an increasing sequence in P[D] and let F' €

icwAi = (UjenAi)®. Each z € F is isolated and so z € A; for
some 7. F' is a finite set, and {A; }

F = UiEwe(Ai)‘ I

icw 18 an increasing sequence, so F' & A; for some ¢. Therefore

I11.5. Power Domains from Incomplete Domains

Usually the partial order from which the power domain is constructed is required to be w-
complete. There arc two reasons for this. The first reason is that most power domains are simply
generalizations of domains that have been used as semantic domains for conventional sequential
programs, and such domains are all complete because of the need to compute fixed points in the
sequential case. The sccond reason is that w-completeness permits the solution of recursive domain

cquations involving the power domain such as
R~S — P[S+ (S X R)]

which defines a domain of resumptions.?2 As shown in the previous section, however, power domains
can be defined for any domain whatsoever. Furthermore the power domain of a domain is essentially
the power domain of its w-completion, so recursive cquations involving the power domain of an
incomplete domain can still be solved, provided the domains to which the usual constructors (-, X,
—, and *) are applied arc w-complete. It happens that defining actor semantics as in the next chapter

does not require solving any recursive equations involving the power domain,

22piotkin, “A powerdomain construction”.

75

In short, there is no technical impediment to building power domains from incomplete domains.

But why should one want to do so?

In behavioral semantics, developed by Irene Greif, the meaning of a program is a specification of
the computations that may be performed by the program. AThe computations are represented formally
by the actor event diagrams considered in Chapter I1. Greif specified the event diagrams by means of
causal axioms governing the behaviors of individual actors.?3

Henry Baker has presented a nondeterministic interpreter generating instantaneous schedules
which then map onto event diagrams. He suggested that a corresponding dcterministic interpreter
operating on sets of instantaneous schedules could be defined using power domain semantics.24

The semantics presented in the next chapter is a version of behavioral semantics. A program
will denote a set of actor event diagrams. That set will be defined extensionally using power domain
semantics rather than intensionally using causal axioms. The behaviors of individual actors will be
defined functionally. It will be shown, however, that the resulting set of actor event diagrams consists
of exactly those diagrams that satisfy causal axioms expressing the functional behaviors of actors.
Thus Greif's behavioral semantics is compatible with a denotational power domain semantics.

Baker’s instantancous schedules introduced the notion of pending events, which represent mes-
sages on the way to their targets or in the process of being sent. Each pending event must become
an actual (realized) event sooner or later, a requircment referred to as finite delay. Augmenting
actor event diagrams with sets of pending events helps to express the finite delay property, which is
characteristic of true concurrency.2’

The augmented actor event diagrams form a partially ordered set (DD, <C) from which to con-
struct the power domain P[D]. The augmented diagrams aic partial computation histories repre-
senting “snapshots” of a computation on its way to being completed. Forz,y € D, z < y means z
is a stage the computation could go through on its way to y. The completed clements of D represent

computations that have terminated and nonterminating computations that have become infinite. The

rene Greif, “Semantics of communicating parallel processes”, MIT Project MAC Technical Report 154, September
1975.

2Henry Baker, “Actor systems for real-time computation”, MIT LCS Technical Report 197, March 1978.

25Jerald S Schwarz, “Denotational semantics of parallelisin”, in Semantics of Concurrent Computation, Springer-Verlag
Lecture Notes in Computer Science 70, 1979.

16

completed elements may be characterized abstractly as the maximal elements of D.28 Concretely, the
completed elements are those having no pending events. Intuitively, D is not w-complete because

there exist increasing sequences of finite partial computations
<<l

in which some pending event remains pending forever while the number of realized events grows
without bound, contrary to the requirement of finite delay. Such a sequence cannot have a limit,
because any limit would represent a completed nonterminating computation in which an event is still
pending,.

Many readers will be concerned about the possibility of a nonterminating computation proceed-
ing merrily along from one finite stage to the next but blowing up at infinity without a trace, that is,
without an element in D to represent the entire nonterminating computation. That cannot happen.
In Chapter IV it will be shown for every program that the set of partial computations that can occur
is exactly the set of initial histories of the completed computations that can occur. Every element
of D lies below a completed element, and the completed clements represent all possible completed
computations, both terminating and nonterminating. If an increasing sequence does not have a limit,
then it does not represent a possible computation, because the sequencé reveals a message that is sent
but that never arrives at its target. w-incompleteness thus follows from the assumption of finite delay.

The fact that there exist increasing sequences without least upper bounds will seem strange to
those accustomed to thinking about the semantics of sequential programs. It may help to point out
that the increasing sequences produced by sequential programs all have Ieast upper bounds. Indeed,
the partial computations that can be produced by sequential computations form an w-complete sub-
domain of D. An informal proof follows.

From the actor point of view, sequential computations are a special case of concurrent computa-
tions, distinguishable by their cvent diagrams. The event diagram of a sequential computation has an
initial event, and no ¢vent activates more than one cvent. In other words, the activation ordering of a

scquential computation is linecar; the event diagram is essentially a conventional exccution sequence.

26Gee 80 of William W Wadge, “An extensional treatment of dataflow deadlock™, in Semantics of Concurrent Computation,
Springer-Verlag Iecture Notes in Computer Science 70, 1979.

71

This means that the finite elements of D
< <<l -

corresponding to the finite initial segments of a sequential execution sequence all have exactly one
pending event, excepting the largest, completed element if the computation terminates. One property
of the augmented event diagrams domain (D, <) is that if z << y and ¢ # y, then some pending
event of z is realized in y. Since in this case each z; has at most one pending event, every pending

event in the sequence becomes realized. Hence the sequence
<7<l

has a least upper bound in D, in accord with intuition.

The above proof applies to all sequential programs, even those with choice points such as
guarded commands. Thus actor semantics includes sequential programs as a special case, and agrees
with conventional semantics on the meanings of such programs.

For convenience, though, the behavioral semantics presented in the next chapter will assume that
all actors are deterministic, which rules out choice points. We exclude choice nondeterminism, the
better to study arrival nondeterminism.

To repeat, the actor event diagram domain D is incomplete because of the requirement of finite
delay, which allows any finite delay between an event and an event it activates but rules out infinite
delay. Finite delay follows from leaving much timing information unspecified, such as the cylinder
that happens to be under a disk head at a particular instant, the detailed time-dependent behavior
of a communications network, the relative speeds of concurrent processors, and the exact times at
which inputs are prescnted to the computing system by the external world. All these timing details are

suppressed in the interest of obtaining greater abstraction.

The next three sections explain the relation between finite delay and fair parallelism.

I11.6. implementations are not Meanings

It is not necessary for the semantics to determine an implementation, but it
should provide criteria for showing that an implementation is correct.

18

Thus spoke Dana Scott of the purposes of a programming language semantics.2” Usually, however,
the formal semantics of a conventional sequential programming language may itself be interpreted to
provide an (inefficient) implementation of the language. A formal semantics need not always provide
such an implementation, though, and to believe that semantics must provide an implementation leads
to confusion about the formal semantics of nondeterministic languages. Such confusion is painfully
evident when the presence of unbounded nondeterminism in a programming language’s semantics is
said to imply that the programming language cannot be implemented.

Although the meaning of a computer program may be described by an element of a power
domain, so that the program’s meaning is a set, execution of the program is not supposed to produce
the set as its answer. Rather the set describes the possible outcomes of executing the program.

Indeed, although the meaning of the program is represented as a set of possible outcomes, it
is not necessary that every possible outcome be possible in every implementation of the program.
This permits nondeterministic languages to be implemented cfficiently on deterministic, sequential
machines,

In other words, implementations are not required to preserve all the nondeterminism present in

the semantics. This corresponds to loose nondeterminism in the distinction drawn by David Park:28

tight nondeterminism: cach correct implementation must, according to some
precise sense of “possible result”, produce all and only those possible results
which the semantics of the language prescribes.

loose nondeterminism: there may or may not be a sense in which the im-
plementation can produce more than one result; the only constraint is that
every result produced is one of those prescribed by the semantics.

I11.7. Choice Nondeterminism is Bounded

Unbounded nondeterminism, defined below, is an arcanc technical notion of little interest in

its own right. It is useful in pointing out the difference between choice nondeterminism and the

27“What is Denotational Semantics?”, MIT Laboratory for Computer Science Distinguished Lecture Series, 17 April
1980.

28-0On the semantics of fair paraliclism”, University of Warwick Theory of Computation Report 31, October 1979.

9

nondeterminism that arises from concurrency, and in discussing the interesting and practical question
of fairness.

If, for some fixed input, a program always returns an answer but the number of possible answers
is infinite, then the program is said to exhibit unbounded nondeterminism. Unbounded nondeter-
minism as thus defined is not a very precise concept since it depends critically upon the meaning of
“possible”. In my opinion it is best to take the possible answers as those permitted by the semantics of
the programming language in which the program is written. This gives unbounded nondeterminism a
meaniﬁg as precisc as can be had given the semantics of the language under consideration. Under this
interpretation unbounded nondeterminism is a property of programs, not a property of implementa-
tions.

Nondcterminism that is not unbounded is bounded. Thus the nondeterminism of a program that
may not halt is bounded.

Nondeterministic Turing machines have only bounded nondeterminism.2® Sequential programs
containing guarded commands as the only sources of nondeterminism have only bounded nondeter-
minism.3° Briefly, choice nondeterminism is bounded. Plotkin gave a proof in his original paper on

power domains:3!

Now the sct of all initial segments of exccution sequences of a given non-
deterministic program P, starting from a given state, will form a tree. The
branching points will correspond to the choice points in the program. Since
there are always only finitely many alternatives at cach such choice point, the
branching factor of the tree is always finite. That is, the tree is finitary. Now
Konig’s lemma says that if every branch of a finitary tree is finite, then so is
the trec itsclf. In the present case this means that if every execution sequence
of P terminates, then there are only finitely many execution sequences. So if
an output set of P is infinite it must contain [a nonterminating computation).

This proof depends upon the premise that if every node z of a certain infinite branch can be reached
by some computation c, then there exists a computation ¢ that goes through cvery node z on the

29A nondeterministic Turing machine is a mathematical abstraction, not a physical machine, A given nondeterministic
Turing machine is thus belter viewed as a program than as an implementation.

3"Edsger Dijkstra, 4 Discipline of Programming, Prentice Hall, 1976.

31G D Plotkin, “A powerdomain construction”, SIAM J Computing 5, 3, September 1976, pages 452-487.

80

branch. In other words, the premise is of the form
Vz 3¢ F(z,¢) = 3¢ Vz F (2, ¢).

Clearly this premisc follows not from logic but rather from the interpretation given to choice points.
This premise fails for arrival nondeterminism because of finite delay. Though each node on an infinite
branch must lie on a branch with a limit, the infinite branch need not itself have a limit. Thus the
existence of an infinite branch does not necessarily imply a nonterminating computation.

The following program, written in Communicating Sequential Processes,? is an example of a

program with choice nondeterminism. Its nondeterminism is therefore bounded.

[P :: n: integer; n := 0;
guard: boolean; guard := true;
*[guard — n :=n + 1
0 guard — guard := false]

The repetitive guarded command might never terminate, because the first guard might always be
chosen in preference to the second. While in a sense this is unfair to the second guard, it is allowed by
the interpretation of choice points, because random choice is a valid implementation of choice points.
An implementation that chose guards at random might choose the first guard on each repetition, and
while the probability of that happening would be zero it would still be possible. Since the implemen-
tation using random choicc is allowed to choose the first guard forever, deterministic implementations
arc also allowed to choose the first guard forever. According to loose nondeterminism, therefore, in

some valid implementations this program could not possibly halt.

Arrival nondeterminism, however, can be bounded. Consider a dual processor system. As
timesharing users know, from a user’s viewpoint the cffective speed of a processor varies with the
computational tasks it is calied upon to perform. Suppose one of the dual processors is used for

timesharing as well as batch computation while the other is reserved for batch computation. As the

32C A R oare, “Communicating sequential processes”, CACM 21, 8, August 1978, pages 666-677.

81

timesharing load increases, the relative effective speeds of the two processors varies. The effective
speed ratio is bounded only by the degraded response time that users are willing to tolerate, so for the
purposes of mathematical discussion the effective speed ratio is unbounded.

The unboundedness of the effective speed ratio gives rise to unboundedly nondeterministic
programs. Suppose the timesharing processor counts to ‘100 and then sends a message to the other
processor. Meanwhile the relatively free processor has been counting as fast as it can; how high can it
count before it receives the message? As more users burden the timesharing processor, successive runs
of the program yield higher and higher counts. No princibled bound can be set.

One possible objection to this scenario as an example of unbounded nondeterminism is that
the behaviors of the timesharing users and the timesharing system must be included in any proper
account of the concurrent counting program. If this objection is to be allowed, though, the semantics
of concurrent programs becomes quite intractable. Semantics is useful only to the extent that such
details can be suppressed.

An analogous scenario can be constructed for a single sequential machine through the use of two
agendas from which tasks are selected alternately and to which tasks are added unevenly. Again an
unbounded delay can be achieved. It is the property of finite but unbounded delay that gives rise to
unbounded nondeterminism. Finite delay is a common and natural property of abstract descriptions

of concurrent systems.

I11.8. Fairness Implies Unbounded Nondeterminism

Fairness, roughly speaking, is a property of programs that take inputs from two or more concur-
rent processes in such a way that each attempt by a process to provide input is bound to succeed
sooner or later. A fair (two-way) merge, for example, is a program that takes values produced by
two processes and merges them into a single sequence, never ignoring forever a value that one of the
processcs is trying to feed it. If onc of the processes gencerates an infinite sequence of zeroes and the
other an infinite sequence of ones, then the set of sequences that could be produced by a fair merge

of those processes is the st of sequences containing infinitely many zeroes, infinitcly many ones, and

82

nothing else; formally

(0*11*0)~.

An unfair merge would be a sequence with only finitely many zeroes or ones.

The ability to write a fair merge is very important to programmers of operating systems and
concurrent systems. By no means is it an ability provided by all concurrent programming languages.
Unbounded nondeterminism serves as one test for fairness: if a fair merge can be written in the
language, then the fair merge can be used to write a program with unbounded nondeterminism. To
sce the idea behind this bit of folk wisdom, consider a program written in Communicating Sequential

Processes (CSP):33

[X :: Z!stop() ||

Y :: guard: boolean; guard := true;
*[guard — Z!go(); Z?guard] ||

Z :: n: integer; n := 0;
continue: boolean; continue := true;
*[X?stop() — continue := false
0 Y?go() — n := n + 1; Y!continue]

This program illustrates global nondcterminism, since the nondeterminism arises from incomplete
specification of the timing of signals between the three processes X, Y, and Z. The repetitive guarded
command in the definition of Z has two alternatives: cither the stop message is accepted from X,
in which case continue is sct to false, or a go message is accepted from Y, in which case n is
incremented and Y is sent the value of continue. If Z ever accepts the stop message from X, then
X terminates. Accepting the stop message causes continue to be sct to false, so after Y sends its
next go message Y will receive false as the value of its guard and will terminate. When both X and
Y have terminated, Z terminates because it no longer has live processes providing input.

33C A R Hoare, “Communicating sequential processes”, CACM 21, 8, August 1978, pages 666-677.

83

As the author of CSP points out, therefore, if the repetitive guarded command in the definition
of Z were required to be fair, this program would have unbounded nondeterminism: it would be
guaranteed to halt but there would be no bound on the final value of n. In actual fact, the repetitive
guarded commands of CSP are not required to be fair, and so the program may not halt.3* This fact
may be confirmed by a tedious calculation using the semantics of CSP,?® or simply by noting that
the semantics of CSP is based upon a conventional power domain and thus does not give rise to
unbounded nondeterminism.

The rcason unbounded nondetcrminism does not apear in conventional power domain semantics
is that each element of the power domain is interpreted as a finitely generable subset of the underlying
w-complete domain. In the w-complete domains that have been proposed, finitely generable subsets
are cither finite or contain an clement representing a nonterminating or undefined computation, for
essentially the same reason that choice nondeterminism is bounded.®® In the actor event diagram
domain and its completion, however, the augmented diagrams contain so much operational infor-
mation that one can distinguish computations that violate finite delay from other nonterminating
computations. Intuitively, the actor cvent diagram domain is incomplete because the computations
that violate finite delay have been thrown out.

To return to the proof that choice nondcterminism is bounded and to see why that proof does
not work for arrival nondeterminism, it is first of all not clcar that the tree of initial segments of
exccution sequences of a concurrent program is always finitary, sirce the alternatives may for example
correspond to the wait times allowed by finite delay.?” Secondly, an infinite branch does not neces-
sarily indicate a nonterminating computation, since the path may violate the requirement of finite
delay and thus not have a limit. Recall the fair merge of an infinite sequence of zeroes and an infinite
sequence of ones. Every finite sequence of zeroes is a possible initial segment of a fair merge but the
3ibid.

35Nissim Francez, C A R Hoare, Daniel J Lehmann, and Willem P de Rocver, “Semantics of nondeterminism, concurrency,
and communication”, J Computer and System Sciences 19, 1979, pages 290-308.

3G D Plotkin, “A powerdomain construction”, SIAM J Computing 5, 3, September 1976, pages 452-487.
3TNancy A Lynch and Michael | Fischer, “On describing the behavior and implementation of distributed systems”, in

Semantics of Concurrent Computation, Springer-Verlag Lecture Notes in Computer Science 70, 1979. See also R J Back,
“Semantics of unbounded nondeterminism”, Mathematisch Centrum Report IW 135/80, April 1980.

84

limit, an infinite sequence of zeroes, is impossible.

Apparently the designer of CSP stopped short of requiring fairness because at the time languages
with unbounded nondeterminism were widely regarded as unimplementable3® Additionally un-
bounded nondeterminism would have precluded giving a conventional power domain semantics for
CSP.

Another important proposal, based like CSP on message passing but more abstract than a
programming language, is Concurrent Processes.3® The semantics of Concurrent Processes also uses
conventional power domains, so there is no unbounded nondeterminism and a fair merge cannot be
specified. |

It appears that a fair merge cannot be written as a nondeterministic data flow program operating

on streams.*? The reason is that for any monotonic function
merge: S X S — P|S]
from pairs of input streams to sets of possible output streams it must be that
merge(_L, 1*) = merge (0, 1¢)

where _|_ is the empty stream. Since the only fair merge of _|_ and 1¢ is 1¢, 1* should be an element
of merge(_L, 1), but that would mean 1 must be an clement of merge (0, 1«) also.

The coroutine proposal of Kahn and McQueen avoids nondeterminism altogether and thus can-
not provide a fair merge. The “fair merge”™ that they present must assume for its correctness that both
of its input streams are infinite.*!
38«Communicating sequential processes”:
39George Milne and Robin Milner, “Concurrent processes and their syntax™, JACM 26, 2, April 1979, pages 302-321.
4°Despite a claim to the contrary in Paul Roman Kosinski, “Denotational semantics of determinate and non-determinate
data flow programs”, MIT LCS Technical Report 220, May 1979. The proof of Theorem 52 in that paper mistakenly
assumes trichotomy for partial orders. In fact the domain of tagged-stream-sets is incomplete, and the fixed points being

manipulated in the remainder of that paper do not exist.

A1Gilles Kahn and David McQueen, “Coroutines and networks of parallel processes”, IFIP-77, Montreal, August 1977,
pages 993-998.

85

Itis possible to-write a CSP program that acts as a fair two-way merge so long as neither process
transmits infinitely many messages to it. Since CSP’s semantics identifies all nonterminating computa-
tions, it is impossible to tell directly from the semantics whether the program is unfair in the infinite
case. Since no CSP program has unbounded nondeterminism, however, one can conclude that writing
a fair merge in CSP is impossible. In this way unbounded nondeterminism provides an indirect
answer to the question of fairness even though the question cannot be formulated directly.

Notice in the context of loose nondeterminism that even though writing a fair merge in a given
language may be impossible it may still be possible to write merge programs in the language that will
in practice be implemented fairly. Indeed, the author of CSP has set forth the informal requirement
that “an efficient implementation should try to be reasonably fair”.42 In practice implementations can
be extremely fair. The fact that examination of a programming language’s semantics shows that a fair
merge cannot be written in the language reveals a deficiency not of the language but of the current
theory of prograinming language semantics.

'To sum up, the problem with choice points as a model of nondeterministic concurrency is that
they cannot be uscd to write a fair merge. In terms of what programs can cxpress about their

implementations, merge programs using choice points can allow fair merge but they cannot require it.

How important is fairness? Every finite initial sequence of values produced by an unfair merge
can also be produced by a fair merge. Fair and unfair merges differ only at infinity. It can be argued
that fairness is therefore unimportant, since as finite beings our horizon of interest seldom extends
beyond a few score billion years. This argument should appeal to those who for the same reason find

silly the question of whether a program terminates or not.

42“Communicating sequential processes”.

86

Chapter IV

Actor Semantics

This chapter sets forth a power domain semantics for actor-based languages. The semantics
given here is a power domain formulation of the behavioral semantics invented by Irene Greif.! The
semantics has an operational flavor because it gives as the meaning of a program a set of generalized

exccution sequences, which are essentially the actor event diagrams of Chapter II.

IV.1. Primitive Serializers

A primitive serializer is a spccial kind of actor. Conceptually a primitive serializer consists of
an arbiter, a queue, and a processor. A primitive scrializer is the target of an event when a message
arrives at the scrializer’s arbiter and is placed in the serializer’s queue to await processing. When
two messages arrive at about the same time, the arbiter decides which onc gocs first in the queue.
The arbiter must be reliable and place every incoming message in the queue. In other words, the
arbiter performs a fair merge on incoming messages. The processor of the primitive serializer accepts

messages scrially from the queue and processes them according to some deterministic and terminating

Yrene Greif, “Semantics of communicating parallel processes”, MIT Project MAC Technical Report 154, September
1975.

87

(stack = elements initially []
inside
accept [continuation op x]
if equal [op "push"] 3
then change elements to [x elements] ;
send "pushed" to continuation

else
if equal [op "pop"]
then
(if equal [elements []]
then send "error -- stack empty" to continuation
else change elements to second(elements) ;
send "popped" to continuation)
else
if equal [op "top"]
then
(if equal [etements []]
then send "error ~-- stack empty" to continuation
else send first(elements) to continuation)
else

if equal [op "empty?"]
then send equal [elements []] to continuation
else
send "error -- undefined operation on stack" to continuation)

Figure 1. An implementation of a single stack in the toy programming language Atolia.

algorithm. When the processor accepts a message from the qucue, it locks and accepts no more
messages from the queue until it finishes with that message.

Messages arc accepted and processed in the same order that they arrive at the primitive serializer,
that is, in the same order as the arrival ordering of their corresponding events. Processing a message
may involve (1) changing the local state of the primitive serializer’s processor; (2) sending out a finite
set of messages; (3) creating a finite set of new primitive scrializers; this last possibility resembles
process creation. When the processor finishes processing a message, it unlocks and accepts the next
message in the queue. If there are none, it waits until there are.

Primitive serializers have been proposed as a basis for programming concurrent and distributed
systems. Figure 1, for example, shows one way to implement a stack as a primitive serializer. There
is one state variable, elements, which is the empty sequence initially. stack takes messages of the
form

2Carl Hewitt, Giuseppe Attardi, and Henry Licberman, “Specifying and proving properties of guardians for distributed
systems”, in Semantics of Concurrent Computation, Springer-Verlag lecture Notes in Computer Science 70, 1979.

88

[continuation op z]

where continuation is an actor that should reccive the result or notification, op is one of the four
stack operations (push, pop, top, and empty?), and z is a value to be pushed. When the operation
is pop, top, or empty?, z may be omitted. The messages sent and the changes made to the local
state variable should be apparent from the code. stack never creates any actors.

Programming languages based on primitive serializers, such as Act13 and Atolia,4 will be called
actor-based languages. Programs in such languages are often written in the object oriented, continua-

tion passing style illustrated by stack.

IV.2. Actor Behaviors

For simplicity, this chapter will ignore actor creation. Chapter V will outline the small changes to

the semantics given here that are necessary when actors can be created in the course of computation.

Let A be the set of actors, and M the set of messages.

An actor is completely described by its name and by its behavior, which specifies what the actor
does whenever it receives a message. An actor’s name is a necessary part of its description because two
different actors may have the same behavior. An actor’s behavior is a necessary part of its description
because the same actor may have different behaviors at different times.

When a primitive serializer receives a message, it may change state, may send out a finite number
of messages to other actors, and may create other actors. Ignoring the possibility of creating other

actors, this suggests that the behavior of a primitive serializer a should be a function

ba: Eu - [M - (Ea X (A X M)*)],

where X¢ is the set of local states of a, and an clement of (A X M)* represents a finite set of messages
sent out to specilic targets. Since the only purpose of local states is to index the next behavior, though,
3ibid,

See §V.5.

89

itis better to definc the behavior domain F via the reflexive domain equation®
F~[M- (F X (AXM)?).

F may be thought of as the set of trees of height w, with an unlabelled root node, non-root nodes
labelled by finite sequencesin A X M, and such that each node has exactly one outgoing arc labelled
by m for each message m &€ M.

Behaviors are normally specified using a programming language. Using informal mathematical

notation, the initial behavior of stack might be written

by [c push 2]~ (b [, {(c, pushed))
[c pop] (b}, ({c,error -- stack empty)))
[c top]m (b}, {{c,error -- stack empty)))
Lc empty?] = (b}, ((c, true)))

where by, 4 is the behavior defined by

biz y): [c push 2] = (b [+), {(c, pushed)))
[c pop]— (by, ((c, popped))
[c top] = (b y), ({c, 7))
[c empty?] = (b y), ({c, false)))
(The mathematical notation here is less precise than the programming language since it does not indi-
cate the values of the behaviors on messages that do not match the patterns.) As a simpler example,

the Atolia script

accept [] dummy

significs the constantly passive behavior

p:m = (p, ().

It is the purpose of a programming language semantics to define a mapping from syntactic ob-

jects such as the code for stack to mathematical objects such as the behavior b)- The goal of this
5That this cquation has a solution is assured by the standard theory of programming language semantics. See Dana

Scott, “Data types as lattices”, SIAM J Computing 5, 3, September 1976, pages 522-587, or the books by Stoy or Milne
and Strachey.

90

chapter is to define a mapping from computer programs written in an actor-based language to sets of
actor cvent diagrams representing possible outcomes. The mapping is defined in two stages. In the
first stage, the standard denotational theory of sequental programming language semantics is used to

define for each program @ in the language a function
P@Q):A—F

giving the initial behavior of each actor. In the second stage that function is used to define the set of
possible outcomes of the program Q.
The second stage is largely independent of the programming language. For the purposes of the

second stage an actor-based programming language is simply a pair
(L,?)
where £ is a description language (set of programs) and % is a map
P L —(A—F).

Appendix IV presents £ and % for a toy language illustrating actors.® L and ® have previously been

specificd for a version of the Actl language.”

IV.3. The Actor Event Diagram Domain

An clement of the actor event diagram domain is an actor event diagram as in Chapter II aug-
mented by a (possibly empty) set of pending cvents. Sec Figure 2. As before, each vertical line
represents an arrival ordering, with time flowing downward so that carly events lic above later events,
As before, the arrows represent links of the activation ordering. As before, the target and message of

an cvent are written beside the event’s dot.

®In Appendix 1V L is the set of actor script declarations Act. ‘the behavior domain F given in Appendix 1V is
complicated by actor creation. For programs that do not create actors, the differences between the behavior domain of
Appendix 1V and the behavior domain of this section may be ignored.

"Carl lewitt and Giuseppe Attardi, unpublishable.

91

pending:
sieve «— [filtery reply 3] activated by: (filtery, 2)
integers — [filter, request] activated by: (filtery, 2)

& print-primes — []

sieve +— [print-primes request o\
/0 integers +— [sieve request]

sieve «— [integers reply2/]o

print-primes — [sieve reply 2] ¢ integers — [filtery, request]

steve + [print-primes request] filtery — [integers reply 3] ™4,

filtery — [steve request]

filtery « [integers reply 3] ¢

Figure 2. An actor event diagram with pending events.

Each pending event represents a message on its way to a target. The activator of a pending
event is the event that caused the message to be sent. When the pending event becomes realized (in
a greater element of D) its activator will be the activator of the realized event. In order to refer to
arbitrary eveats, let {a, n) be the (n + 1)th event in the arrival ordering of a if such exists. In other

words, if @ is an actor then the successive events in the arrival ordering of a are

(a) 0)) <a) 1): <a'7 2)) (a: 3): (a’ 4); s

The clements of the actor cvent diagram domain D will be required to have initial events and to

92

obey a law of finite activation. Finite activation corresponds to the restriction on primitive serializers
that they send out only finitely many messages before they unlock. Simplicity is the only reason for

requiring initial events®

The formal definition of the actor event diagram domain will use the concept of multisets. A
multiset is a sct with repetitions. For example, {1} and { 1,1} arc distinct multisets. A ser with
elements from a universe U may be considered a function: U — 2. In like manner a multiset with
(finite repetitions of) elements from U may be considered a function: U — w.? The cardinality of a

multiset s is defined as

> 8w

ucU

if the sum exists and is finite, and as w otherwise since the universe U will always be countable in

actor semantics. If s; and s, are multisets, then their multiset (disjoint) union s; b s, is defined by

Vu € U (s E—J 8) (u) = s1(u) + s(u).

Similarly their multiset difference s) — s, is defined by

0 if s1(u) < sy(u);
VUEU(Sl—SQ)(U)’;)
si(u) —s(u) ifsi(u) > s(u).
Ifs;: Uy — wand s: Uy — w are multisets, their multiset product sy X &: (Uy X Uz) — w is defined
by

V{up,up) €U X Uz (81 X 82) ({u, ua2)) = s1(u1) X s2(ug).

Let the set of actors, A, and the set of messages, M, be countable sets.

Definition. The sef of augmented actor event diagrams is the set D of structures

(E, M, —act—, P)

8Aside from complicating the discussion of completed elements of the domain, dropping the requirement of an initial
event would cause ino problems. Finite activation, however, is nceded to ensure that the domain has only countably
many isolated elements. Fxtending the essential theorems of Chapter III to domains with uncountably many isolated
elements apparently requires the axiom of choice.

9This suffices for the semantics given here. Other applications may require a2 more sophisticated treatment of multisets.

93

where

o Elisthe set of (realized) events.

o M is the message function.

® —act— is the activation ordering.

o P isthe multiset of pending events.
and the following hold.

® E'is asubset of A X w such that ifi < n and(a,n) € E then (a,7) EE.

o M isa function: E — M.

o —act— is an irreflexive partial order on E such that no event has more than one immediate
predecessor.

e P is a multiset (with finite repetitions) of elements from (A X M) X E. Thatis, P isa Sfunction:
(AXM) XE)— w.

o inite Delay. If E is infinite, then P is empty.
Let the target function T: E — A be defined by T((a, n)) = a.

Fora € A, let the arrival ordering ofa, —arr,—, be defined on E by
(a,3) —arra— (d,j) = a=4d andi <j.
Let the combined ordering on E, —, be defined as the transitive closure of

—act— U(U{ —arra—| a € A}).

o Law of Strict Causality. For noe € E doese — e.

o Law of Countability. E is countable.,'©

e Law of I'inite Predecession. Z'or all eventse; the set {ele— e} isfinite

o Initial Event. Either E and P are both empty or there exists an event €o such that
Ve € E ¢y = ¢ orey —act— e.

o Finite Activation. I'or each e € E the set of events activated by e is finite. That is,

{¢ €EE|e—act— ¢ and ~3¢" e —act— ¢ —act— ¢ } is finite.

1% his law is redundant here since A is countable and £ is a subset of A X w.

94

pending:
pending: f+ 3 activated by: {add, 0)
add — 34 activated by: {f, 0) f+ 7 activated by: (add, 1)
f+ 3 activated by: (add, 0)

< fe1234

fe—1234 + \
\ add — 12
‘ add «— 12
add «— 3 4
Figure 3. An example of the initial history ordering.
pending: pending:
. f + T activated by: (add, 1
add «— 3 4 activated by: (f, 0) f =T activated by: {add, 1)

f — 3 activated by: (add, 0)

£ f—1234
fe1234 } \ add — 12
\L add — 12

add — 3 4

Figure 4. A non-example of the initial history ordering.

o Finite Activation. For each e € E, the multiset of pending events activated by e is finite. That is,
{{a,m),e) € P|a € A,m € MY} is afinite multiset'!
(End of definition.)

The partial order to be placed on D coincides with the notion of an initial history of a computa-
tion. For z, y € D, z < y mcans that z is a possible stage a computation could go through on its way
to y. That is, << y means y could be obtained from z by a process of expanding pending events. A

1y view of the requircment of Finite Delay, a simpler way to state this is to say that P is a finite multiset. In the
completion, however, where Iinite Delay does not hold, /> can be infinite.

95

pending:

user — 3 activated by: (add, 0)
f 3 activated by: {(add, 0)

f T activated by: {add, 1)

pending:
add +— 34 activated by: (f,0)
f 3 activated by: (add, 0)

fe-1234

+\
\+ add — 12 add «— 12

add +— 3 4

fe-1234 4

" Figure 5. Another non-example of the initial history ordering.

pending event is expanded by making it into an actual (realized) event and adding any pending events
that it may activate. Normally the new pending events would be determined by the current behavior
of the target of the newly realized event. Since < is defined without reference to behaviors, though,
z < y means that for some assignment of behaviors to actors y can be obtained from z through some
sequence of event expansions.

The best way to understand the initial history ordering < on D is by way of examples and
near misses. Figure 3 is an example of <. Figure 4 is not an example because one of the pending
cvents disappears without being realized. Figure 5 is not an example because a pending event whose

activator had already been realized appears out of nowhere.

Definition. Let z = (E,, M, —act—,, P;) € Dandy = (Ey, My, —act—y, P)) ED.z isan
initial history of y, writtenz < y, if and only if

o, CE,

o Ve € E, M(e) = M,y(e).

oeVe,d EE, e—act—,€ & e—act—y é.

e Fach pending event in x is accounted for exactly once iny, either as a pending event in Py or as
a realized event in E,,. Furthermore all the pending events of y activated by events already in T must be

accounted for in this way. More formally, using { -} to indicate multiset abstraction in which repelitions

96

(These diagrams use the notation (e) to indicate the activator ¢ of a pending event. Also the
arrival ordering of a is labelled at its top, so only messages are written beside event dots.)

pending:
user +— 0 ((a,0))
a — 3 ((a, 2))

pending:
user — 0 ({(a, 0))
a—2((a 1))

pending:
user — 0 ((a, 0))
a — 1 ({(a, 0))

. = a
a 0
0 4
0 si !
t 1 d;
L pending: pending:

pending: user + 0 ((a, 0)) user « 0 ((a, 0))
user +— 0 ((a, 0)) a5 ((a,4) a + 6 ((a,5))

a — 4({a,3})

a a
< a < 0 < 0 <

0 q; 1

1 9 2

2 3 3

3 4 4
5

Figure 6. An increasing sequence with no least upper bound.

are counted,

P, = {{{a,m),e) EP,| e € E;}
L—_I—J {(T, (), My(e), €} | € € E, — E;, e = activator (¢}, ande € E, }

where activator (€¢) is the unique immediate predecessor of € in the activation ordering of y.
Definition. (D, <C) is the actor cvent diagram domain.

The actor cvent diagram domain is a domain by the definition of Chapter IIL The isolated cle-
ments are those with a finite number of reatized events. The least element has no cvents at all, realized
or pending. The domain is not w-complete, because there exist increasing scquences having no least

upper bound. Figure 6 gives such a sequence in which an event remains pending forever. Though this

97

0 0
user user
0
o} o 3
! 1
2 2
3 3
; g
7 <,
8 i

Figure 7. Two upper bounds for the sequence of Figure 6.

sequence has no least upper bound, it has many incomparable minimal upper bounds, and Figure 7
shows two of them.

The least upper bound of a directed set X C D will be written \/ X if it exists. In view of
the following theorem, \/ X exists if and only if either (1) the union of the sets of rcalized cvents of
elements of X is finite; or (2) for every element = of X, for every pending event p of z, there exists

2’ € X such that p is realized in 2/,

Theorem 1. If X C D andu = \/ X, then for every event e of u there existsx € X withe an
event of z.

Proof. Suppose u is an upper bound for X in D and that e is an event of u. If there does not
exist z € X with e an event of z, then it is possible to alter « so as to obtain another upper bound for
X incomparable with u. Simply remove from w all activation successors of e and all pending events
activated by e or its activation successors, and then rename the remaining realized events. Call the
resulting augmented event diagram «’. Since no event following e in the combined ordering of u can
be an cvent of any z € X, o/ is also an upper bound for X. Either u and u are incomparable, or

u = /. In the latter case, obtain u” from u = o’ by inserting a new cvent in the arrival ordering of

98

T(e) immediately after e, letting € be its activator. u” is then an upper bound for X incomparable with

u.

In the case of Figure 6 any least upper bound would have to have both infinitely many realized
events and a pending event. The requirement of Finite Delay thus rules out a least upper bound for
the sequence.

The w-completion of the actor event diagram domain is easily characterized up to isomorphism.

Just drop the requirement of Finite Delay from the definition of D to obtain its w-completion D.

As noted in §IIL5, the event diagrams coriesponding to sequential computations have linear
activation orderings. In other words, no event activates more than one event. Such cvent diagrams

form an w-complete subdomain of D.

Aside from the least element _|_, which represents a computation not yet started, those clements
of D having no pending events represent computations that have terminated or that have run on to
infinity, as distinguished from computations with pending events which represent computations still
in progress. Excluding the least element _L, those clements of D with no pending events will therefore
be called the completed elements of D. The completed elements may also be characterized as the

maximal elements of D.

IV.4. Meanings as Fixed Points

Since D is a domain, its power domain, P[D], exists. P[D] is the semantic domain in which
programs written in actor-bascd languages will be given meanings.

Let @ be a program, with

P(Q):A—F

the function giving the initial behavior of cach actor as determined by the program Q. These be-
haviors will be used to define a continuous function /i on P[D] whose least fixed point will serve as

the mecaning of the program Q.

99

For z an ordered pair, let z | 1 bé the first and z 1 2 be the second element of the pair. Let
nezt: (F X (A X M)*) = F

and

pend: (F X (A X M)*) = ((A X M) — w)

be defined as follows. nezt (z) = z | 1 is the behavior part of the pair. pend (z) is the multiset with
elements from A X M such that pend (z) ((a, m)) is the number of times that (a, my) appears in the
sequence z | 2. If ¢ is the behavior of an actor when it accepts the message m of an event e, then
nezt (¢ m) is the next behavior of the actor, and pend (#m) X { e} is the multiset of pending events

activated by e.

it P[D] — P[D] will be defined pointwise from a function J: D — P[D], which will in turn
be defined from a function g: D — P[D]. Forz € D, g (z) is essentially the set of augmented event
diagrams that result from expanding exactly one pending event of in accord with the actor behaviors
specified by the program Q. In fact g9(z) is a little more, because g(z) has to satisfy the closure

requirements that hold for elements of the power domain.

The first step in defining g is to define g(_L), which amounts to deciding how program execution
should be initiated, which in turn amounts to deciding on an initial event. It is an arbitrary decision,
but suppose that execution begins when a special message my arrives at a particular actor ag singled
out by the language. (For the toy language described in the appendixes, my is the empty sequence ()
and the target of the initial event is (program, 0).)

Therefore let

9(L)={(E,M, —act—, Py}

where ©is the closure operation defined in §111.3 and

E = {{ao,0)}
M ({ag, 0)) = myg
—act— = @)

P = pend (% (Q) agmo) X {{ap, 0) }.

100

Now to define g on z == (E, M, —act—,P) € D, wherc z 7% | . Let behavior (a) be the
current behavior of actor a in z, that is, the behavior of actor a after it has accepted the messages of all
the events in its arrival ordering. More formally, define the successive behaviors of a by

b(a,0) =P(Q)a
b(a, n + 1) = nezt (b(a, n) (M({a, n))))
and let behavior (a) = b(a, n) where n is the least integer such that (a, n) & E. If there are infinitely
many events in the arrival ordering of a, so that no such n exists, then the current behavior of a is

undefined.

If P is empty, there are no pending events to expand and so let

9(z) ={=z}

where € is the closure operation defined in §111.3. Otherwise for each p = ({(a, m), €) € P, or more
properly for each p € ((A X M) X E) such that P(p) £ 0, let z(a, m, ¢) be the element of D
obtained by (1) adding a new event to z with target a, message m, and activator e; (2) subtracting the
pending cvent p from the pending cvents of z; and (3) adding the pending events activated by the
new cvent. Then define

9(2) = {z(a,m,€) | {(a,m),€) € P}".

l'o define z (a, m, €) more precisely, let n be the least integer such that (a, n) & E. Such an n

must exist because the existence of pending events implies that the set of events is finite. Then
z(a,m,e) = (E', M’, —act—', P')

where
- E'=E|J{(a,n)}

oy JM(e) ife€E
A/[(e)—{ m ife = (a, n)

er —act—' ey = (e}, 2 € E and e; —act— ey)

or (e2 = (a,n) and (e; = e or ¢; —act— e))

P'=(P—{{a,m),e)}) L{-J (pend (behavior (a) m) X {(a,n)})

101

This completes the definition of g: D — P[D]. Define f: D — P[D] by

f)=] 9@
<z

Some observations:

o If{{a, m), €) is a pending event of z, then z < z(a, m, e).

o Ifz < ythenz € g(y). In particular z € f(z).

e Ifz is isolated, then g (z) contains only isolated elements. This follows from the property of
D that if y € D is isolated, and z < y, then z is also isolated.

e Ifz is not isolated, then g (z) contains exactly one element that is not isolated, namely z. This

follows from the fact that elements of D that are not isolated are maximal in D.

Theorem 1. f: D — P[D] is w-continuous.

Proof Letz < y. Then

so f is monotonic.
To show f w-continuous, let {z; };-, be an increasing sequence in D having a least upper

boundz = V¢, zi. Letz < z. Ifz is isolated, then there exists z; with z < z;, whence

9 C [96)=r@=)C | 7 (=)

2<lz; €W

On the other hand, if z is not isolated then z = z and g (2) = {Aa: ¥.z; € f(z;) forcach ¢, so

Hence

102

Thus

and applying the closure operation to both sides yields
f@C] /=)
1ICw
Monotonicity implies the reverse direction, so f is w-continuous. [

Define f,: P[D] — P[D] by

M) = Jr@zeay=({ 7G)"

TEA

f(A) thus consists of the augmented event diagrams in A together with all the event diagrams that can
be had by taking an element of A and expanding one of its pending events.

The following gencral theorem shows that f, is w-continuous.

Theorem 2. Let D be a domain, and let f: D — P|D] be w-continuous. Then f.: P|D] — P[D]
defined by

MA)Y = |])

ZEA
is w-continuous.
Proof. Monotonicity is obvious. Hence it suffices to show
ML Aa)c L A
=) IEw
for increasing sequences

A AACATCAT. .-

Let
cefll]a) =K@ =€]}
1Cw Cw
=Ur@1zelJary-
iEw

103

Let W C U{f(2) | z € (U;c,A:))°} be a directed set withc = VW. Forw € W let Z,, C

;e Ai be adirected set with

wef\Vz)=|] r&a=(U @)

2EZy 2EZy

Let Y, © U,ez, f (2) be a directed set of isolated elements with w = V Yy, Let Y = U,ew Yo

Then
e=\Vw=V(U ru=Vv
weEW
and
Y= %
wew
c U Ure
weW 22,
cyy Ur@
ICEW2EA;
C | A4

€W
Furthermore, Y is directed: if y; € Yy, and 1o € Y, then let w; be an upper bound for wy

and wy in W. Since y; and g, are isolated, Y, is directed, and
Y % S w3 = VYwa}

there exists ¥}, ¥y € Yu, with yp < ¢ and yo < 95. Let g3 be an upper bound for ¢/} and ¢}, in Y.,
3 is then an upper bound for y; and y in Y,

Therefore

ce (U £a)r = | A

i€w IEw
Being continuous, f,: P[D] — P[D] has a lcast fixed point

Ao =[] fi(L).

1ICw

104

Define the meaning of the program @ to be that least fixed point Ag. The theorems below show that
Ag is the set of initial histories of the actor event diagrams that correspond to completed computa-

tions of @.

They also show that this power domain semantics is compatible with Greif's behavioral seman-
tics.!? Behavioral semantics does not use pending events or fixed points. Instead it uses causal axioms
to go directly from behaviors to the set of completed computations. Essentially these causal axioms
state that a completed computation is an actor event diagram that is complete with respect to the

initial behaviors.

Definition. An augmented actor event diagram z = (E, M, —act—, P) € D is consistent with
respect to the initial behaviors given by

P(Q):A—F

iff for each evente = {(a,n) € E
pend (b(a, n) (M(e))) = { (@, m) | ((a/,m),e) € P}
L—ﬂ{ (T(e), M(€)) | € € E and e = activator (¢) }
(where { - } indicates multiset abstraction in which repetitions are counted). In other words, the pending
and realized events activated by e are as they should be according to the behavior of a = T/(e) at the

time of the evente.

Definition. An augmented actor event diagram z = (E, M, —act—, P) € D is complete with
respect to the initial behaviors given by

P(@Q):A—F

iffz # L, P isempty, and for each evente = (a,n) € E
pend (b(a, n) (M(e))) = {(T(¢), M(¢)) | € € E and e = activator (¢)}

(where { - } indicates multiset abstraction in which repetitions are counted). In other words, = has at

least one event, x has no pending events, and x is consistent with respect to the iniiial behaviors given by

?(Q).

I2frene Greif, “Semantics of communicating parallel processes”, MIT Project MAC Technical Report 154, Scptember
1975.

105

The following theorems prove that the actor event diagrams that are complete with respect to the
initial behaviors given by P (Q) are precisely the completed elements of the least fixed point. (Recall

that the completed elements of D are just the maximal elements of D.)

Theorem 3. Every element of the least fixed point Ag is consistent with respect to the initial
behaviors given by P (Q).

Proof. Refer to the definition of the initial history ordering < and the theorem following it in
§3. If z < y, and y is consistent with respect to the initial behaviors, then z is also. If X C D is
directed, each clement of X is consistent with respect to the initial behaviors, and \/ X exists, then
V X is consistent with respect to the initial behaviors. Thus if every element of Y C D is consistent
with respect to the initial behaviors, then so is every element of Y¢, It follows that if for a € I each

clement of A, € P[D] is consistent, then each element of || - ; A, is consistent.

ael
Hence most of the operations involved in the construction of Ag = | J;c,, fi(L) preserve
consistency. _L_ is consistent with respect to any initial behaviors. There remains only to show that if
z € D is consistent, then the elements of g (z) are consistent.
Both elements of g (_L) are consistent. If < is consistent and has no pending cvents, then g (z) =
{z }° so the elements of g (z) are consistent. If z is consistent and has ((a, m), €) as a pending event,

then z (a, m, €) is consistent. Thus g () contains only consistent clements.

Therefore every element of Ag is consistent with the initial behaviors given by 2(Q). Il

Theorem 4.

Ag = {z € D | z is consistent with respect to the initial behaviors given by % (Q) }.

Proof. The preceding theorem takes care of the forward inclusion.
Let z = (E,M, —act—, P) € D be consistent with respect to the initial behaviors given
by ¥ (Q). By Theorem 1 of §11.5 there exists a one-to-one mapping g: E — w that preserves the

combined ordering —. For ¢ € w, let z; be the unique clement of D such that z; < « and z; has

{eEE|g(e) =7 forsomej <1}

106

as its set of realized events. Then for each ¢ € w
zi € fi(L)
andsoz = V;,2i € L;c, /1 (L). 1
Definition. IfA € P[D], then

completed (A) = {z € A | z is maximal inD }.

Corollary 5.

completed (Ag) = { = € D | z is complete with respect to the initial behaviors given by P (Q) }.

§8 describes a power domain isomorphic to (P[D], =) in which the least fixed point of f,

contains only thc completed elements.

The following theorem confirms a claim made in §II1.5.

Theorem 6. Every element of the least fixed point Ag is an initial history of a completed element of
Ag.

Proof. Letz € Ag = | |;¢,, /% (). Either z is itsclf completed or z € f7(_L) for some n € w.
In the first case there is nothing to prove.

In the second case it is possible to construct an increasing sequence in Ag beginning with z that
has a completed least upper bound. Let the pending events of z be py = ({ag, mo), €o), - - - , Pk,- Let
Ty = 2.

Let 2 = z9(ap, mo, e0) and let py,..., Py ---, Pk, be the pending events of z;, where
D1, - . ., Pr, arc the same as before.

The induction hypothesis for ¢ is that for all § < 1 z; < zj44, and for all j < ¢ T; €

f719 (L) and cither ; is completed or the pending events of z; are pj,, py,. If z; is completed,

107

define Tit1 = Ty Otherwise define :ti—{—] =z (a,-, m;, ei) where v = ((ai, mi), ei). IfIH_l is not
completed then let the pending events of z;) be p;1,. .., Pr;y -+ -, Py, Where pipy, ..., py, are
the same as before.

The least upper bound of the sequence { z; },, exists and is a completed element of Ag. 1l

What has been accomplished?

Augmented by pending events, the actor event diagrams form a domain under the initial history
ordering. Although the actor event diagram domain is incomplete, its power domain exists and
provides a fixed point semantics for actor-based languages. This power domain semantics, which is
denotational, is compatible with behavioral semantics.

The actor power domain shows that a power domain whose underlying domain is incomplete can

dcal with finite delay and the unbounded nondeterminism that results.

IV.5. Example: Infinite Loop

This section calculates the fixed point for a program that loops forever. It is interesting to
compare this example with that of the next section.

As in the examples of the next two sections, there are only two actors to consider. One of the
actors is the user, which simply accepts messages. The other actor is aq, the target of the initial event.

Its behavior is defined by an Atolia program.' In this instance, the program is

(1oop = accept []
send "add1" to loop ;
become i initially 0
inside
accept [msg]
if equal [msg "addl"]
then change i to plus [i 1] ;
send "addl" to loop
else
if equal [msg "halt"]
then send i to user ; become accept [] dummy
else dummy).

135¢e §V.5.

108

add1
addi1
addl

ag
[]
addi
add1
add1
.) add1
Uieufi (lL)= (Uzwai(—L))U< add1 $

Figure 9. The least fixed point Llie“ fi(L) for 1oop.

This program says that when ag receives the go message mg (which will be written [] in event
diagrams) it initializes itself to a statc 0 and sends itself an increment instruction. When it accepts an
increment instruction in state ¢, it enters state ¢ 4+ 1 and scnds itself another increment instruction,
Were it ever to accept a halt instruction, it would tell the user its current state. Its initial behavior is
b: M — (F X (A X M)* given by

b: mo +— (b, ([ao « add1]))
bi (1 € w): addl +— (b1, {[ao — add1]))
halt — (passive, ([user — i]})
passive: m +— (passive, ())
where [t « m] indicates the ordered pair (¢, m) signifying that the message m is sent to the target ¢.
Messages that do nét match one of the cases given arc just ignored.

It is easy to calculate the Icast upper bound of the function f,: P[D] — P[D] associated with
this very simple program. The stages fﬁ (_L) arc shown in Figure 8. The least fixed point is shown in
Figurc 9, and the lone complcted clement of the least fixed point is shown in Figure 10.

The event diagrams in these figures are drawn compactly, with cach actor’s arrival ordering

109

ALW={L} ‘
pending:
ay +— addl ((00, 0)) }

7L = 2D}
G

b

pending:

ap + add1 ({ao, 1))

AL =WUS 6 >

[]
add1l y

\

(pending:)

ap — add1 ({ap, 2))

AL)=72(1L)Uy %

[]
4 agar
\ add1)

(.)
pending:

ag + add1 ({ao, 3))

ALW=2WU Y1
addl
add1
\ add1)

'pcnding:)

ap — add1 ({ap, 4))

ap
£3(L) = L)y L] s
add1l
add1l
add1
. add1 }

and so on.

Figure 8. fi(_L) for 1oop.

110

[1]
add1l

addl
addil
' addl
completed (| e, /£ (L) = ¢ addl
addl
add1
add1l

Figure 10. completed (| |, fi(.L)) for 1oop.

fabelled at its top by the name of the actor so only messages need be written beside events. The
activator of a pending event appears in parentheses after the pending cvent. Recall that (a, n) is the

(n+1)th event in the arrival ordering of a.

FmaﬂpmymmﬂmswgSﬁ(ijammmﬁmmHMMHmmﬁwomM[Hsmeh%ummxbmmd
operation |] that puts elements representing nonterminating computations into the least fixed point.
The least upper bound of { fi(L) | ¢ € w} consists of the union U, /% (L) together with all
existing least upper bounds in D of strictly increasing!® sequences of clements from the union. In this
example all strictly increasing sequences of elements from the union have the same least upper bound,
so the least fixed point of f, contains only one event diagram that does not appear in any f}; (L)

In the next example the strictly increasing sequences of elements from UiEw fi (L) have no

lcast upper bound, so the Icast fixed point is the same as the union.

IV.6. Example: Terminating Unbounded Choice

The following program has unbounded nondeterminism.

YA strictly increasing sequence { @i }; e, has i < iy and @ £ ip for all § € w.

111

(choose = accept []
send "addl" to choose ;
send "halt" to choose ;
become i initially 0
inside
accept [msg]
if equal [msg "addl"]
then change i to plus [i 17 ;
send "addl" to choose
else
if equal [msg "halt"]
then send i to user ; become accept [] dummy
else dummy)

This program is almost the same as the Toop program given in the last section. When actor ag accepts
the go message my, it initializes itself to a state 0 and sends itself both an increment instruction and a
halt instruction. Since all messages must eventually arrive at their targets, ap will eventually accept this
halt instruction and terminate. Unlike the Toop program, then, the choose program must terminate.

The initial behavior of ag is b given by

b: mg — {by, {[ap — add1], [agp +— halt]))
bi (¢ Ew): addl - (b1, (a0 +— add1]))

halt — (passive, ([user + i]}))
passive: m +— (passive, ()).

Again it is easy to calculate the least upper bound of the function f,: P[D] — P[D)]. The stages

/% (_L) are shown in Figure 11. The lcast fixed point is

U i),

€W

that is, the union of the stages in Figure 11, and the sct of completed elements of the least fixed
point is shown in Figure 12. There are no clements representing nonterminating computations in

the least fixed point because the strictly increasing sequences of clements from (J;<, /3 (L), such

112

) = rH(L)US

(pending:
ay + add1 ({a, 0))
ap + halt ({ag, 0))

ap
W
pending:

ap — add1 ({ag, 1))
ap — halt ({ap, 0))

K

L]

L
ad

]
d1

AL)=r2Au

(pending:
ap — add1 ({ag, 2))
ap — halt ({ag, 0))

ap % ;
ao ’ ao [’ p [1]
[] [] hait halt
add1l addl add1 \user
\ add1 halt po)
A=Wy
'pending: pending: ending: pending:)
ap — add1 ((ao,3)) ao — add1 ((an, 2)) fwer f‘l (00 2) ® 2001 (a0, 1) g
ap + halt ({ag, 0)) user — 2 ((ag, 3)) 0 4 ,) [1
W 0 : . [1] ! [] ! .{]@;er>
[] [] add1 add1 ‘o
add1 addl halt halt a1
addil addl1 \user
L add1 halt addl 1)

pending:
ap + add1 ({ap, 1))
user «— 1 ({ao, 2))

(Continued on next page.)

\

A

H

pending:)

ap +— add1 ({ao, 0))
user +— 0 ((ao, 1))

a0

[1]
halt

pending:

pendmg: ap +— add1 ((a\'): 0))

user +— 0 ({ag, 1))

Figure 11. fi(L) for choose.

113

3

A)=ru
(pending: pending: pending: pending:
ap + addl ({ap, 4)) ao — addl ({ao, 3))) ap — add1l ({(ap,2)) g
user +— 2 ({ao, 3))
ap — halt ({ap, 0)) wuser «— 3 ({ag, 4)) % []
a " ap []) addl
< [] ’ [J) gd(]j]_ ’ add1l) ha]t.
add1 add1 add1 add1 \;“":’
add1l add1l halt halt add1
add1 add1l add1 \user
add1 halt b2
A=W
(pending: pending: pending: pending:
ap — add1 ((ag, 5)) ao — add1 ({(ao, 4)) user ‘_'3 (a0, 4)) ap + addl ((ap, 3)) qq
ag — halt ((ap, 0)) user — 4 ({(ap, 5)) ! 4% []
% a0 a0 [] add1l
< 1, o L) 8 e
addil add1l add1 add1l \
add1 add1 addi add1 i‘s;'
addil addil halt halt 2dd1
addt add1 add1 \user
\ add1 halt $3
) =1wWwu
pending: pending: pending: pending:
ay +— add1 ({ag, 6)) ao — add1 ({(ag, 5)) ' ao — addl ((ag, 4)) g
user — 4 ((ao, 5))
ap + halt ((ag,0)) wuser — 5 ({(ag, 6)) % []
a0 . aQ) [] add1
[] [] [1] add1 add1
\ add1) add1) :331 , add1 ,) addl
add1 add1 Cdd1 add1 halt
add1 add1 addl add1 \rs;r
addi addil halt halt 2dd1
add1 add1 add1 \user a
\ add1 halt $ 4
and so on.

Figure 11. (Continued from previous page.) fi(_L) for choose.

114

completed (] ;< fi(L)) =

L]

ay
0 [] [] add1l
[1] add1
[] add1 add1
addil addl
¢’ halt addil add1l
\ ; halt , , addl , ,
user halt add1l
+0 user halt

+1 user user halt
b addl $2 user
add1 2dat $3 v
addl +
\ add1l
ap \
ag
ag - (]
[] L] addl
[] - add1
add1 add1
add1 add1
add1 add1
add1 add1
addi1 add1l
add1 add1
addil add1l
add1l , addi ,) -
add1l addl
add1l add1
add1l addl
halt add1l
halt add1
user halt
user halt
+5 +6 user
add1 A b7 r‘:’
add1
add1l y

Figure 12. completed (| |, fi (L)) for choose.

as the sequence in Figure 13, do not have least upper bounds in D. Had the power domain been
formed from the w-completion D, the least fixed point would contain an element of D representing a
nonterminating computation in which an event remains pending forever.

In the existing implementations of Atolia cn scqucntiz.ﬂ machines, the choose program always

produces 0, 1, or 2 when run all by itsclf. This is allowed by loose nondeterminism: implementations

115

pending:
ap + add1l ({(ao,2))
ag +— halt ((ap, 0))

pending:
ap + add1 ({ag, 1))
ag — halt ((a(), 0))

pending:
ap +— add1 ((ag, 0))
1L < a+—halt((w0) <

< % hi ag
r) [[]
[1] , add1
1
add add1
. pending:
pending; pending: ; ap ~— add1 ((ao, 5))
ap +— add1 (\aOa 4))
ap — addl ({ao, 3)) ap — halt ((ao, 0)) ao + halt ((a, 0))
ap + halt ({ap, 0)) ' a0
’ ap
< a0 < [] < L] <
[] addil
add1 :ggi add1
add1 add1 addl
add1 add1 addl
addl

Figure 13. A strictly increasing sequence in UiEw fi(_L) with no least upper bound.

are not required to preserve all the nondeterminism present in the semantics.
Even in the existing implementations, however, choose can return a result greater than 2 when
other programs run pseudo-concurrently. Every bound that might be placed on the result can be

exceeded by placing a sufficiently heavy burden on the Atolia processor.

IV.7. Example: Possibly Nonterminating Choice

Scquential programs with choice points are sometimes uscd in attempts to model nondeterminis-
tic concurrency. Such attempts arc bound to fail since choice nondeterminism is bounded. This
scction shows how arrival nondeterminism can successfully modecl choice nondeterminism.

The program below uses an “arrives-first” choice. Its nondeterminism is bounded.

116

(choice-loop = accept []
send "addl" to choice-loop ;
send "stop" to choice-loop ;
become i initially 0 ;
waiting initially false
inside
accept [msg]
if waiting
then if equal [msg "stop"]
then change i to plus [i1] ;
change waiting to false ;
send "addl" to choice~loop ;
send "stop" to choice-loop
else dummy
else if equal [msg "addl"]
then change waiting to true
else
if equal [msg "stop"]
then send i to user ;
become accept [] dummy
else dummy)

Wmnmmumwwmmmmomww@nmHmmmmdeHowmwOMdeBMdﬂmhw
increment instruction and a stop instruction. It obeys whichever instruction arrives first. That is, if
aq 18 in state ¢ and the stop instruction arrives first, then agy sends ¢ to the user and terminates. If the
increment instruction arrives first, though, then ag waits until the stop instruction arrives. When the
stop instruction arrives, instead of stopping ag enters state 2 + 1 and begins the cycle again by sending

itself both an increment instruction and a stop instruction. The initial behavior of ag is b where
b: my +— (by, ({a0 — add1], [ap ~ stop]))

b;: addl — (watt;, ())
stop — (passive, ([user +— i]))
wait; (i € w): stop — (b4, ([ap « add1], [ag +— stop)))

passive: m +— (passive, ())

The stages f* (_L) for the function fi associated with this program are shown in Figure 14. The

least fixed point is shown in Figurc 15, and the set of complcted elements of the Icast fixed point

117

£ =r2(L)Us

RN HERIVE

(

\

(

\

(

\

(

\

pending;

ap — add1 ({a,0))

ap — stop ((a,0))
ap
$]

pending:

ap — stop ((a0))

a0

L]
add1

pending:

ap — add1 ((a2))

ap — stop ({a,2))
ap

!

pending:
ap — stop ((a2))
ap

L]
add1l

stop

[1]
add1

stop
add1

(Continued on next page.)

A

-

b

)

?

pending;)

ap — addl ((a0))
user +— 0 ({(ag, 1))
a0

[]
stop

\~

b

pending:
ap +— add1 ((a,0))
ao

[]
stop
\user

o0

pending:

ap +— addl ({(a 2))

user +— 1 {{ap, 3))

%

L] ’
add1
stop
stop

\

pending:

user — 0 ({(aq, 1))
a0

)
[]
stop
addl
J

Figure 14. fi(_) for choice-1cop.

118

£)= f1)Us

L) = rI(L)US

Fi(L) = rL)Us

(pending:
ap — add1 ({a 4))
ap +— stop ({(a4))

:

(

[]
add1

stop
add1
stop

pending;:
ap — stop ({(a4))

;

pending:
ap — add1 ({a6))
ag +— stop ({a,6))

[1]

addl
stop
add1
stop
addl

[]
add1

stop
add1l
stop
add1l
stop

and so on.

Figure 14. (Continued from

%

pending:
ap — addi ((a2))
ao

pending:

ap +— addl ({a 4)

user + 2 ({ap, 5))
ap

—

[1]
addl

stop
add1l
stop
stop

pending:
ag — add1 ((a,4))
agp

[1]
add1l

stop
add1l
stop
stop

119

peading:
user — 1 ({(ag, 3))
a0

1]
add1

stop
stop
addi1

pending:
user — 2 ({(ao, 5))
a0
{ L1

add1
stop
addl
stop

stop
add1l

previous page.) fi(1.) for choice-loop.

)

(

ap
[]

add1l

stop

add1l

' stop

. . dd1
Uraw=UrwU] I aiosf

1Ew 1Cw add1l

] stop

add1

stop

Figure 15. The least fixed point | |, fi(.L) for choice-1oop.

is shown in Figure 16. There is onc element in the least fixed point representing a nonterminating
computation. Therefore the nondeterminism of the choice-100p program is bounded.

One might argue in defense of choice nondeterminism that if choice probabilities are positive,
and choices arc independent, then programs such as choice-1o0p sﬁould terminate with probabil-
ity 1. Equivalently there should be merge programs that almost always performed a fair merge, in
the sense that the probability of an unfair merge would be zero. Such a program would be good
cnough for enginecring purposes. This argument fails because the nondcterminism that appears in
a programming language semantics is loosc nondeterminism. Implementations are not required to
preserve all the nondcterminism that is present in the semantics. In particular, implcmentations are
free to choose the same alternative in every case, so that in some implementations choice-1oop is

certain not to halt.

IV.8. Relation to Standard Power Domains.

Usually in a power domain semantics the least fixed point consists only of completed clements,

so applying an opcration such as “completed” to the lcast fixed point is unnccessary. It is tempting

120

completed (| |;e,, f2 (L)) =

ap
[]
addil
stop a
add1 ao [1]
stop [] add1
add1 stop stop
stop’ \user’ stop ’
add1l * 0 \user
stop add1 $1

(

add1 add1l
stop

s

Figure 16. completed (| |. - fi(_L)) for choice-loop.

1Ew

121

to sec this as a defect of the actor power domain, but the quibble can be met on its own terms by
the same sort of mathematical sleight of hand that causes least fixed points in other power domains to

contain only completed elements. For (D, <) a domain, define the frontier of A € P[D] to be
frontier(A) ={zE€EA|VyEAz<y=z=y}

Define the frontier closure'® of A C D to be
A {frontier (A) if A° = (frontier (A));
A otherwise.

Then define another power domain (P'[D], L) by
PD}j={A'| LEACD}

and for all B,C € P'|D]
BC/'C = B CC-

(P'(D], I=') is clearly isomorphic to (P[D],) via A” ++ A°.
Consistently replacing references to P[D], L. ||, and ¢ in §4 by references to P/ D], =, L, and
! defines £, as a continuous function from P'[D] to P'[D]. Its least fixed point is precisely the set of

clements of D that are complete with respect to the initial behaviors.

What then is the relationship between standard power domains and the power domains used
here? When D is w-complete, P[D] is just the standard power domain of D. Chapter III simply
extends the standard power domain construction to apply to incomplete domains. This chapter
illustrates the value of that extension.

For every domain D the power domain P[D] is isomorphic to the power domain P[D] of its
w-completion D. Nonetheless for some domains PID) can represent unbounded nondeterminism
while P[D] cannot. The key to this sceming paradox is that the concrete interpretation placed upon
clements of the power domain is important. The purposc of taking fixed points in the power domain

is not to select a member of an abstract algebraic structure but to define a subset of D.

151he frontier closure is a closure operation on the power set of) with respect to the preorders [’ and L=, but not
with respect to C.

122

Chapter V

Locality Laws

The locality laws postulated by Hewitt and Baker enforce the idea that all information fow
between actors is by means of message passing. As a practical matter, the locality laws rule out side
effects to shared environments. Furthermore the information contained in a newly created actor’s
environment must be a subsct of the information in the environment of the actor that created it. 'The
locality laws state these restrictions in a fairly abstract way. They are independent of the ordering laws
inasmuch as they further restrict the set of actor event diagrams.

This chapter extends the semantics of Chapter 1V to deal with actor creation. It gives an example
of a programming language semantics that violates the locality laws. The chapter closes by suggesting

that the locality Jaws ought to be verifiable for the formal scmantics of true actor-based languages.

V.i. Actor Acquaintances

In the terminology of programming languages, a procedural object created by associating values
with the free variables of a syntactic representation of the procedure is called a closure. Closures are

implemented as a pair of pointers, one pointing to the code to be excecuted when the closure is invoked

123

and the other pointing to the environment in which the procedure was closed. The environment
supplies values for the free variables.

Actors are analogous to closures. A difference between actors and the objects usually called
closures is that closures can share environments, causing side effects when one closure changes the
environment of another closure. An actor amounts to a clbsure whose environment is protected from
such side effects.

Just as a closure consists of code and an environment, an actor consists of a scripf and a vector
of acquaintances. The script is simply the code for the actbr. The vector of acquaintances provides an
environment in which the script is evaluated when the actor accepts a message. An actor’s vector of
acquaintances can be altered only by that actor.

The vector of acquaintances may contain pointers to other actors. While the pointers themselves
cannot be side effected, the behaviors of the actors pointed to can change when those actors process
messages sent to them. The vector of acquaintances therefore provides only one level of protection
against side effects.

An actor’s vector of acquaintances may contain values other than pointers to other actors, or it
may consist solely of pointers. In either case the actors that it points to are called acquaintances of
the actor. An actor may alter its vector of acquaintances while processing a message, so its set of

acquaintances may change over time.

V.2. Actor Creation

In statically scoped languages such as Algol and Scheme! closures are created by evaluating a
procedure abstraction. The environment in effect when the abstraction is cvaluated becomes the
cnvironment associated with the closure. In actor-based languages actors are created by evaluating a
behavior abstraction. The identificr bindings in effect when the abstraction is evaluated are gathered
together into a vector of acquaintances. If need be, bindings are copicd to protect them against side

cffects.

'Guy Lewis Steele Jr and Cerald Jay Sussman, “The revised report on Scheme: a dialect of Lisp”, MIT Artificial
Intelligence Memo 452, January 1978.

124

factorial ay a a3
¢ [user 4]
(0 [a) 3]
C" a2 2]

"[Q}L

'

24

lwT;”_,,__———*~“"““"‘"6
Figure 1. Recursive computation of 4!.

Consider the following subprogram, which computes the factorial function.

(factorial = accept [continuation n]

if or [(lessp [n 1]) (equal [n 11])]
then send 1 to continuation

else (create ((multiply-by-n
= accept [x]
send times [n x] to continuation))
send [multiply-by-n (minus [n 1])]
to factorial))

TMmemwmﬂnMMhmmmmm%mmmwﬁmnw%dmymhomﬂemmeMMnmmMLH

this subprogram is sent the message

[user 4]

125

it will create three new actors, ay, a9, and ag, before the result, 24, arrives at the user actor. Actor
a; is created as a result of the first event in the arrival ordering of factorial, ay is created as a
result of the second event, and ag is created as a result of the third event. The event diagram for the
computation is shown in Figure 1.

The three created actors share the script

accept [x]
send times [n x] to continuation

This script has two free identifiers, n and continuation. When factorial accepts the
message [user 4 1], it binds continuation to user and n to 4, and those are the bindings in

effect when the create command is first encountered, so the vector of acquaintances for a; is

identifier value
n 4
continuation ——3 Uuser

factorial thensends itself the message [a; 3 1], so the vector of acquaintances for ag is

identifier value
n 3
continuation — v a

The last actor to be created is created while n is bound to 2 and continuation is bound to as,

so the vector of acquaintances for a3 is

identifier value
n 2
continuation 3 a9

These vectors of acquaintances may be kept on a stack in a scquential implementation. They are

part of the actor conceptually, however.

126

The distinction between iterative and recursive programs can be easily expressed in the actor
model: iterative programs do not create any new actors.? The following tail-recursive program, for

example, is iterative.

(factorial = accept [continuation n]
send [continuation n 1] to loop)

(loop = accept [continuation n product]
if or [(lessp [n117) (equal [n 1 17])]
then send product to continuation
else send [continuation
(minus [n 1 1)
(times [n product])]
to loop)

The actors created by the recursive version of factorial never change their vectors of ac-
quaintances. For an cxample of an actor that changes its vector of acquaintances, consider the 1oop

program of §1V.5:

(1oop = accept []
send "add1l" to Tloop ;
become i initially 0
inside
accept [msg]
if equal [msg "addl"]
then change i to plus [i 1] ;
send "addl" to loop
else
if equal [msg "halt"]
then send i to user ; become accept [] dummy
else dummy).

Its vector of acquaintances starts out with two entries, one of which points to Toop itself.

2Carl Hewitt, “Viewing control structure as patterns of passing messages”, Arvificial Intelligence 8, 1977, pages 323-363.

127

identifier value
Toop — loop
user ——> user

Upon accepting its first message 100op adopts a new behavior, differing in both the script and in the

vector of acquaintances:

identifier value

i 0
Toop o—— loop
user 2 user

It then proceeds to increase the value of ¢ each time it accepts an add1 message.

V.3. Locality Laws Add Power

Hewitt and Baker® have proposed locality laws stating reasonable restrictions on the set of ac-
quaintances of an actor and relating acquaintances to actor event diagrams. This scction gives a
variant of the locality laws and shows that adding the locality laws to the ordering laws considered in
Chapter II gives a more powerful theory. |

To the structure

(E, A, T, —act—, Arr)

considered in Chapter II and consisting of the sct of events, the set of actors, the target function, the
activation ordering, and the set of arrival orderings, add three new objects acq, Ao, and creation to
obtain a structure

(E, A, T, —act—, Arr, acq, Ao, creation).

acq is a function: E — subsets(A) giving for cach cvent e the set of acquaintances of T (e) at the

time of the cvent e. Intuitively acg (e) is the set of actors that the target of e already knew about
3“Laws for communicating parallel processes”. 1FIP-77, Toronto, August 1977, pages 987-992, and “Actors and continuous

functionals”, 1FIP Working Conference on IFormal Description of Programming Concepts, St Andrews, New Brunswick,
Canada, August 1977, 16.1-16.21.

128

when it accepted the message of e. Ag is the set of primeval actors, the set of actors that exist when
computation begins. Thus Ag is a finite subset of A. creation is a function: (A — Ag) — E giving for
each actor created in the course of computation the event that caused its creation.

Hewitt and Baker stated the locality laws in terms of a fourth new object, the participants in an
event. The participants in an event are those actors that the target of the event knows about while
processing the message of the event. The participants are thus the acquaintances of the target together
with the actors mentioned by the message.

For an external event, the message can mention an arbitrary finite set of actors, so there is no
restriction on the participants of an external event except that they form a finite set.* For events that
are not external, though, the participants must come from among the acquaintances of the target of
the event, the actors created by the event, and the participants in the activator of the event.

Rather than introduce the participants function into the structure, this section treats it like
global time and simply asscrts the existence of a function with the required properties. The locality

laws then become
Law of Finite Acquaintances. acq (€) is finite for everye € E.

Existence of Participants Function. There exists a function partictpants: E — subsets(A)

satisfying the following laws.
Finite Interaction Law. participants (e) is finite for every e € E.
Letcreated (e) = {a € A — Ag | creation(a) = e}.

Original Acquaintances Law. Ifa is a created actor, that is, o & Ao, and e is the first event in the
arrival ordering of a, then

acq (¢) C participants (creation (a)) U created (creation (a)).

perhaps there should be a restriction that the message of an external event can mention only primeval actors.

129

Arrival Precursor Acquaintances Law. [fa = T (e) and e has an immediate predecessor € in the

arrival ordering of a, that is, € —arr,— e and~3e" € —arr,— €' —arr,— e, then

acq (e) C participants (¢') U created (¢).

Ife € E is not external, then let activator (e) be the activator of e, that is, the unique immediate

predecessor of e in the activation ordering —act—.

Activator Acquaintances Law. Ife € E is not external then

T (e) € participants (activator (€)) U created (activator (e))

participants (e) C acq (€) U participants (activator (€)) U created (activator (e)).

The second half of the last law differs somewhat from Hewitt and Baker’s formulation.

The first half of the Activator Acquaintances Law relates the locality laws to the actor event
diagrams. Adding the locality laws to the ordering laws produces a more powerful theory, as shown by
the following actor event diagram which satisfies all the ordering laws of Chapter IT but is ruled out by
the locality laws.

The actor event diagram is shown in Figure 2. The idea is that two actors a and &’ never com-
municate with each other, so they can have only a finite amount of information in common, but each
sends messages to the same infinite set of actors. That cannot be, because there is no way the same
infinite set of pointers to actors can pass through both of a and o’

Formally the actor event diagram of Figure 2 is described by the structure

(E, A, T, —act—, Arr)

130

Figure 2. An actor event diagram that violates the locality laws.

where '
E= {e,e’}U{e,- |2 Ew}U{e’, l[iEw}
A= {a,a’}U{a.,; |tEw}
T(e)=a
T()=4d
ei —arr,,— €, foralli Ew
e, € are cxternal events
e —act—e; foralli Cw

¢ —act— €, forali € w
This structure satisfics the ordering laws of Chapter 11, yet there is no way to extend it to a structure

(E, A, T, —act—, Arr, acq, Ao, creation)

satisfying the locality laws. Proof: supposc there were such an cxtension, with a given participants

function satisfying the locality laws. Then participants(e) and participants(¢’) arc both finite,

131

so their union is also finite. Let n € w be such that a,, is not in their union. e and ¢ are the
only external events, so the Activator Acquaintances Law applies at both e,, and €. Furthermore
e = activator (e,) and € = activator (¢],). Hence creation (a,) = e and creation (a,) = ¢, a
contradiction.

This actor event diagram can be modified so that there is only one external cvent and no event

activates infinitely many events, and a similar proof will still go through.

§I1.7 showed that the ordering laws were independent of the locality laws. This section has

returned the favor by showing that the locality laws are independent of the ordering laws.

V.4. Semantics with Actor Creation

Chapter IV gave a power domain semantics for actor-bascd languages without actor creation.
This section extends the semantics of Chapter IV to permit actors to be created during the course of

computation,

The concept of programming language semantics that has the most to do with the technical
adjustments in this section is the concept of a store. Usually a store is a mapping from locations
to stored values. Here it will be a mapping from actor names, or network addresses, to behaviors.
Usually updated versions of the store are passed from semantic function to semantic function. Here
and in Chapter IV the original store is passed together with enough history to reconstruct the updated
store. Usually the question of exactly which unused location is pressed into service when a new object
is created is left unanswered by programming language scmanticists. On this question, and often on
this question only, semanticists usually resort to axioms rather than give a concrete denotation.” Here
a concrete answer will be given to the question of which unused actor name should be allocated to
a new actor. However, the set of actor names will not bear any resemblance to the space of network
addresses for real machines. The correspondence between actor names and network addresses is to be
determined by the storage management module in real implementations.

5Sce for example the discussion of new in §1.4.2 of Milne and Strachey, 4 Theory of Programming Language Semantics,
Chapman and Hall, London, 1976.

132

The semantics given in §1V.4 begins by assuming a function
P(Q):A — F

giving the initial behavior of each actor. The obvious way to extend the semantics to deal with actor
creation is to let P (Q) specify only the behaviors of primeval actors and to let the semantics keep
track of the behavior of a created actor beginning with the time of its creation. This approach is
sound, would work, and is the approach usually taken, but it would require significant revisions to the
power domain semantics of Chapter IV. The revisions would be necessary because of a shortcut that
was taken to simplify the semantics. The semantics in Chapter IV does not associate a mapping from
actors to current behaviors with each event diagram. Rather it computes current behaviors from the
initial behaviors and the initial history provided by an event diagram.

This section instead makes P (Q): A — F give the initial behavior of every actor, primeval
and created alike, that could possibly exist during a computation. That is accomplished through the
inelegant technical trick of coding within the name of cach created actor a pointer to its creation
event. Indeed a created actor’s name will include the entire local history of the actor that created it,
up to and including its creation event. To be specific, the set of actor names is defined by the reflexive

domain equation
A = {user} + ({program} x N) + ((A x M*) x N)

where user and program arc distinct atomic symbols, N is the flat domain of natural numbers, and
M* is the domain of nonempty sequences of messages. The interpretation of the actor names is as
follows.

user is one of the primeval actors. It is meant to denote a terminal, file, or operating system
through which programs can communicate results to their user.

{(program, 0) is the first actor declared in a program, so it too is a primeval actor. In general
(program,v) is the (v + 1)th of the primeval actors declared in a program. All actors of the form
(program, v) arc primeval if they exist.

({(a, p*), V) is the name of the (v - 1)th actor created as a result of the nth event in the arrival

ordering of a, where n is the Iength of the sequence p*. The ith clement of p* is the message of the

133

ith event in the arrival ordering of a. Thus u* codes the local history of a that led to the creation of
{{a, u*), V). Note that if a is itself a created actor then the name ‘a’ points to its creation event, and so
on. In this way every actor name traces history all the way back to a primeval actor, making possible

an inductive definition of P (Q) with the primeval actors as the basis for the induction.

Recall that in §1V.2 the behavior domain was defined via the equation
F =M= (Fx (AxM*

so a behavior was a function from messages to pairs consisting of a new behavior and a finite sequence
of messages sent to target actors. Allowing actors to create a finite number of new actors upon

accepting a message causes the behavior domain to become
F=M—=G— (Fx (Ax M*xF*)

where an element of F* is a finite sequence of behaviors—the initial behaviors of the created actors.
An element of G is an actor name generator producing the names to be given to the actors created in
an event. The domain G is defined by

G = A x G

The only changes that need to be made to §1V.4 to accomodate actor creation are caused by
the addition of actor name generators to the behavior domain equation. The semantics must supply
behaviors with both a message and the correct actor name generator.

The definition in §IV.4 of the successive behaviors of an actor a must be changed to

b(a,0) =P (Q)a
b(a,n + 1) = nezt (b(a, n) (M ((a, n})) Ynt1)

where 7,41 is the actor name generator producing the ncw actor names

((a, 1), 0), (o, 1*), 1), (a,p), 2, -

Here p* is a list of the first n 4 1 messages to arrive at a. Thus

Y1 = gamma ((a, history (a, n 4 1)))

134

where gamma is as defined in the appendix and history is defined by

history (a,0) = ()
history (a, n + 1) = (history (a, n)) § (M ((a, n}))

where § indicates concatenation of sequences.

In the definition of g (L) in §1V.4 the pending events P must be changed to

P = pend (¥ (Q) ao moy) X {{ao, 0)},
where
N = gamma ((00, ("10»)

while in the definition of z (a, m, €) the pending events P/ must be changed to

P/ = (P — { (e, m), ¢) })) (pend (behavior (a)m) x {{a,n)})
where
v = gamma ({a, (history (a, n)) § (m)))).

In the definitions of augmented actor event diagrams consistent with respect to the initial behaviors

and complete with respect to the initial behaviors the left hand side of the main equation must be

changed from
pend (b(a, n) (M (€)))
to
pend (b(a, n) (M (€))7)
where

~ = gamma ((a, history (a, n + 1))).

The theorems of §1V.4 are unaffected by these technical changes. The changes make possible
a definition of P (Q): A — F giving an initial behavior for all actors that could possibly be created

during computation. The appendix contains the details.

135

By way of apology I would like to quote Milne and Strachey:®

In situations where any one of a large number of models is equally satisfac-
tory it might well seem better to give a sct of axioms which all the models
need to satisfy and to refrain from making the extra and arbitrary choices any
particular model involves. We shall not adopt this course, because the use of
a particular model allows us to give our results a more concrete form and, we
think, improves the intelligibility of an already complex subject.

Readers who feel that the treatment of actor names in this section is a counterexample to that argu-

ment have my sympathy.

V.5. A Toy Language

A dissertation on defining the semantics of actor-based programming languages ought to define
the semantics of an actor-based programming language. The appendix presents the semantics of a toy

language illustrating actors, culminating in a function
P:Act — (A — F)

giving for cach program in Act an assignment of initial behaviors to actors. At that point the power
domain semantics of Chapter IV takes over.

The toy language presented in the appendix, dubbed Atolia for ease of refcrence, was designed
expressly to illustrate this dissertation. It is a horrid programming language, as the sample programs in
the appendix demonstrate. The one thing Atolia does well is reflect the semantics of message passing
and actor creation.

An interpreter for Atolia programs has been written in Lisp for the DEC PDP-10 and the Lisp
Machines at the MIT Artificial Intelligence Laboratory. The interpreter normally runs programs
pscudo-concurrently and is nondeterministic. Efficiency was not a concern when the interpreter was
built. Comparisons made on the PDP-10 show that Atolia programs run three to seven times slower

8ibid

136

than comparable Scheme’ programs. Tmplementation and testing of the interpreter took ten person-

days. The Atolia programs contained in this dissertation were tested using the interpreter.

V.6. The Locality Laws may not Hold

Do the locality laws hold for Atolia? The semantic definition of Atolia given in the appendix does

not answer that question because the definition is incomplete. The semantic function

0:0pr - Vo V

giving the meaning of primitive operators is not defined. If Atolia has sufficiently strange primitive
operators, then the locality laws do not hold. Let ag, a1, ag, ... be distinct actors, and consider the

function strange: V. — V dcfined by

ag in V ife = truein V;
strange(e) = Ca; 1 in V. ife =a;inV;
€ otherwise

where (a in V) is the injection of a into the domain V. If Atolia contains a primitive operator

strange such that

O[strange] = strange

then the locality laws do not hold. 'The reason is the primitive operator strange makes it possible
for an actor to send messages to an infinite set of actors without ever creating an actor or accepting a

message from any actor other than itself. Consider the program

TGuy Lewis Steele Jr and Gerald Jay Sussman, “The revised report on Scheme: a dialect of Lisp”, MIT Artificial
Intelligence Memo 452, January 1978.

137

(startup = accept []
send strange(true) to A ;
send strange(true) to B)

(A = accept [actor]
send "greetings" to actor ;
send strange(actor) to A)
(B = accept [actor]

send "greetings" to actor ;
send strange(actor) to B)

This program does not heed the locality laws. The actor event diagrams that correspond to its com-
putations resemble the actor event diagram proved in §3 to violate the locality laws.

The effect of the locality laws is to rule out such strange primitive operators. To put it differently,
the locality laws call on a semantics to account for such operators in terms of message passing and
actor creation so that they no longer appear as primitives. The point is that the locality laws do not
automatically hold for a programming language semantics. A semantics for which the locality laws fail

may be perfectly acceptable for some purposes, but it is not a true actor semantics.

V.7. The Locality Laws may be Provable

The previous section showed that if the primitive operators of Atolia are ill behaved, then the
locality laws do not hold. If on the other hand the primitive operators are well behaved, then the
locality laws do hold for Atolia.

This claim has the status of a conjecture rather than a proved theorem. Its proof would involve
a structural induction encompassing every semantic cquation in the appendix, and that structural
induction has not been carricd out. Nonctheless a compelling plausibility arguement can be based on
a simple inspection of thosc equations,

The value domain of Atolia is

V=T+N+R+H + A+ V*

138

where A is the domain of actors, V* is the domain of sequences of values, and the other domains are

basic domains not involving actors.® Define the set of actors embedded in a value € € V as s (¢) where

) ifeET;

) ife EN;

) ife ER;

] ife = H*;

a} ifeEAande |A =a;

9 ifeEV*ande | V' = ();
(Uizos(e) ifeEV*ande|V* = (e, ..., ¢€n).

(Here ¢ | D is the projection of ¢ to the domain D.) A primitive operator O € Opr is well behaved iff
foralle € V
s(0[O]e) € s(e)

so that applying the operator to a value produces a result value embedding only actors that were
already present in the argument value. If every Atolia operator is well behaved in this sense, then the
locality laws hold.

Idea of proof: it should be clear how to define the primeval actors Ag and the creation function
creatton for a computation performed by an Atolia program. There are several ways to define the

acquaintances function acq. The simplest way is to define

acg(e) = |J s(pll)
IcIde
where p is the environment giving the values of identifiers appearing in the script of 7' (e) at the time
of the cvent e. An altcrnative is to take the union only over those identifiers appearing free in the
script of T (e). Both definitions serve the purpose. From either one a participants function can be

dcfined by

participants () {acq (© if e is external;

acq (€) |J participants (¢) | created (¢/) if € = activator (e).
8In Actl the value domain is V = A because everything is an actor. Actl does not have primitive operators, but has

primitive actors, which Atolia does not have. With a few changes mandated by those diflerences the remarks of this
section would apply cqually to proving the locality laws for Actl.

139

participants (e) is thus the sct of all actor names that could possibly be accessible to the target of e
while it is processing the mcessage of e. Defining participants (e) = acq (e) for external events works
only because the single external event of an Atolia computation mentions no actors. If the message
of an external event could mention actors, then those actors would have to be included among the
participants.

The second half of the Activator Acquaintances L.aw is immediate from the definition of
participants.

Since only finitely many identifiers are bound in the initial environment, the identifier binding
mechanisms of Atolia bind only finitely many identifiers at a time, and Atolia scripts always terminate,
only finitely many identifiers can become bound as the result of an event. Furthermore created (e) is |
always finite. An induction on the number of predecessors of an event in the combined ordering thus
proves both the Law of Finite Acquaintances and the Finite Interaction Law.

Yet to be established arc the Original Acquaintances Law, the Arrival Precursors Acquaintances
Law, and the first half of the Activator Acquaintances Law. These are the nontrivial locality laws.
They all depend upon the idea that the only way an actor name can become known to an actor a is by
being present in the environment prevailing when a is created, by being part of a message sent to a, or
by being the name of an actor created by a. Proving the locality laws for Atolia amounts to verifying
this idea from the semantic equations given in the appendix.

Inspection reveals that the only possible problem is the primitive operators. So long as they are
well behaved, though, an actor cannot use them to come up with any new actor names that the actor
doesn’t alrcady know about. If the primitive operators are well behaved, thercfore, the locality laws

hold.

140

Chapter VI

Conclusion

This thesis has set forth the foundations of a theory of scmantics for nondeterministic program-
ming languages based on the actor model of concurrent computation. To that end, the thesis has given
a precise account of the actor model. It has justified the ordering laws using a notion of global time
realizability. It has demonstrated a constraining effect of the locality laws. It has analyzed notions of
concurrency and nondeterminism. It has extended a standard power domain construction to apply to
incomplete domains, and has used that extension to define a power domain semantics for actor-based

languages.

The actor semantics presented in this thesis is not very abstract because the event diagrams

contain far too much operational information for most purposes. For example, the Atolia program

(f = accept [] send [] to g)
(g = accept [] send 0 to user)
(h = accept [] dummy)

docs not have the same meaning as

141

(f = accept [] send [] to g)
(h = accept [] dummy)
(g = accept [] send 0 to user)

because the second actor to be declared receives a message in the first program but not in the second.
This is analogous to a problem that arises in standard semantics when two programs that are intui-
tively equivalent turn out to have different meanings because they use storage in slightly different
ways.! In standard semantics the problem is made muc_h less severe by concentrating on the final
output of a program. In actor semantics it is not clear what should be considered the final output,
though often the only thing of importance is the arrival ordering of a particular actor such as user.
This matter deserves further attention.

The semantics presented in this thesis needs to be extended to other kinds of actors besides
primitive serializers. One goal of this extension should be to make it possible to rcgard a complex

system of actors as a single actor.

The technique of building power domains from incomplete domains is not limited to actor
semantics. A fair power domain semantics for dual processors communicating via shared memory
can also be constructed using this technique. I conjecture that an incomplete history domain could
be used to construct a fair power domain semantics for the language of Communicating Sequential
Processes.

The power domains with incomplete underlying domains that have so far occurred to me seem

unpleasantly operational, but the real limitations of the idea are not yet known.

The category of (possibly incomplete) domains and w-continuous maps as defined in Chapter I1I
is closed with respect to the usual domain constructors +, x, *, —, and the power domain construc-
tion P[-] of Chapter I11. A theorem stating conditions under which reflexive domain cquations have

solutions in that category would be very useful.

tSee §4.1.1 of Robert Milne and Christopher Strachey, 4 Theory of Programming Language Semantics, Chapman and
Hall, London, 1976.

142

Appendix I

Atolia: Informal Description

This appendix describes the abstract syntax and informal semantics of a toy language illustrating

actors.

143

Atolia

(a toy language illustrating actors)

Version 0

Syntactic domains

1€ Ide identifiers

B € Bas bases

Oe€ Opr operators

E € Exp expressions

I'& Com commands

d € Abs abstractions (scripts)
A € Dec local declarations

Y€ Act actor script declarations
Productions

E::=B | OE | 1 | [Eo-E,]
| if By then E; else Ey | (E)

I' ::= dummy | change I to E | become ® | send Ey to E
| create (Z) ' | Tg; I'y | if E then I'p else I'y | (T)

e
n

accept [lp---I,J T | A inside ® | if E then &y eise & | ()

g

[initially E | T=E | A¢: A | (A)

o= (1=d) | S5

144

Expressions

Bases

The bases are the constants and literals, such as the booleans true and false, the numerals
representing integers such as 0 and 1, representations for whatever other number types are needed,
and character strings such as "this is a string". They evaluate to the basic values of the

machine.

Operator applications
OE
An operator application consists of an operator followed by an cxpression. To simplify the
language, all opcrators take exactly one argument, but the effect of two or more arguments can be
obtained by using a sequence as the argument. The expression is evaluated and fed to the operator,
which returns a single result value. As is the case for all Atolia expressions, there are no side effects.
Among the operators are predicates and functions such as equal, actorp, plus, and times.

The operators of Atolia are fixed by the language; users cannot define additional operators.

Identifiers
I

An identifier denotes a basic value, an actor, or a sequence of denoted values. In other words, an
identifier can denote the result of any Atolia expression. Identifiers are bound by local declarations,

by the patterns of accept statements, and by actor script declarations.

145

Sequences
A list of expressions in brackets indicates a sequence of values. Since sequences are themselves

expressions, sequences may be nested.

Conditional expressions
if Ey then E; else E

The expression in the predicate position must cvaluate to a boolean value. If it evaluates to frue,
the expression following the then is evaluated and becomes the value of the conditional expression;
otherwise the expression following the e1se is evaluated and becomes the value of the expression. As

with all expressions in Atolia, the predicate expression has no side effects.

Parenthesized expressions

(E)
Parentheses are ignored by the semantic equations. They appear in the abstract syntax to allow

syntactically unambiguous programs to be written.

146

Commands

Dummy commands
dummy

The dummy command has no effect.

Assignments
change I to E

The change command causes the identifier to denote a new value. The identifier being
changed must be mutable; in other words, it must have been declared by a declaration of the form I

initially E.

New behaviors
become @

The become command specifies a new behavior for the actor, to become effective when the
actor unlocks. Only a subsequent become command can override the newly specified behavior. The
free identifiers of ® are bound to the values they denote when the become command is executed.
Identifiers that are mutable at the time of the become command remain mutable in ® unless

redeclarcd or bound.

Transmissions
send Eo to E;
The send command cvaluates cxpression Eg and sends the result as a message to the actor

specified by E;. E; must evaluate to an actor, of course.

Actor creations
create (X) I’

The create command is similar to the Tetrec expression of ISWIM and the 1abels expres-

sion of Scheme. [t permits the creation of mutually recursive actors. First the identifiers denoting

147

the newly created actors are bound to their newly allocated network addresses. Then the behaviors
of the new actors are fixed by binding the free variables of their scripts in the resulting environment.
The new actors are not permitted to change the state variables of their creating actor, however, nor do
subsequent changes by their creating actor affect the values of identifiers in the new actors. Then the
creating actor executes a command before discarding the renvironmcnt that contains the addresses of
the new actors. The command may send messages to the new actors or may change a state variable to
remember some of them as new acquaintances; there is no point to a create command of the form

(create (¥X) dummy).

Sequencing
To; Ty
Ty is executed, followed by I'y. Atolia has no gotos or other sequencers that could alter the

scquential order of execution.

Conditional commands
if E then Ty else I’}
The expression must evaluate to a boolean. If the result is true, I'g is exccuted; otherwise I'y is

cxccuted. The evaluation of the predicate expression has no side cffects.

Parenthesized commands

()

Parentheses are ignored.

148

Abstractions (Scripts)

Accept statements
accept [lp---1,] T

The accept statement specifies a behavior. In Lisp terms, it is a lambda expression that
evaluates to a closure when it is encountered as part of an actor script declaration or become state-
ment. When the actor whose behavior it specifies first receives a message, it locks, binds identifiers Ip
through I,, to components of the message, executes the command I', and then unlocks. The command
T" may cause messages to be sent and/or actors to be created. I' also determines a new bchavior for
the actor. If executing ' does not result in executing any become or change commands, the new
behavior is the same as the old. If become commands are encountered, the last one determines the
new behavior of the actor. change commands can alter the behavior of an actor by changing the
values of mutable identifiers.

The identifiers bind to message components as follows. Usually the message is a sequence, in
which casc the elements of the message pair one-for-one with the corresponding identifiers, proceed-
ing from left to right. If the message sequence is longer than the list o_f identifiers, the extra message
components are ignored. If the list of identifiers is longer, the extra identifiers bind to the empty
sequence. If the message is not a sequence, every identifier in the identifier list binds to the value
of the message. If the identifier list is empty, no identifiers are bound and the message acts only to
initiate execution of the command I". The exact manner in which the identifiers are bound to the
message components is to a great extent arbitrary, of course. The language Actl, on which Atolia is

based, uses a considerably more sophisticated matcher.

Abstractions governed by local declarations
A inside @

The purposc of a local declaration is to bind identifiers referred to inside an abstraction.

149

Conditional abstractions
if E then ®; else ®;

The expression must evaluate to a boolean. If the result is true, then @ is the abstraction to be

used. Otherwise @ is used.

Parenthesized abstractions
(®)

Parentheses are ignored.

150

Local Declarations

Mutable declarations
I initially E

The expression is evaluated and bound as the value of the identifier.

Identifiers declared using initially are similar to “own” variables bound at declaration time.
They are state variables of the actor whose abstraction comains their declaration. Only that actor can
alter them by change commands. When new actors are created, the new actors’ scripts may refer to
state variables of the creating actor, but the value denoted by those references is fixed as the value
of the state variables at the time of the created actors’ declarations. Not only can the created actor
not change them, but subsequent changes by the creating actor do not affect the value seen by the

created actor.

Immutable declarations
I =E
Identifiers declared in this way cannot be altered except by being bound in a subsequent local

declaration, accept statement, or actor script declaration.

Sequencing of declarations
Ag; Ay

Ay is evaluated, followed by Aj.

Parenthesized declarations
(A)

Parentheses are ignored.

151

Actor Script Declarations

Script declaration
(I =9)
The purpose of a script declaration is to bind an identifier I to a new actor whose initial behavior

is given by ®. See the create command.

Sequences of script declarations
Yo X1
The order of script declarations is irrelevant (except when the same identifier is used twice, in

which case the compiler ought to warn the programmer). See the create command.

Programs

An Atolia program is an actor script declaration. The program will be started by sending an
empty message to the first actor declared in the program. The program may request input from and
send output to a special actor denoted by user in the initial environment. The actor denoted by

user may be a terminal, a file, or an operating system.

152

Appendix II

Atolia: Sample Programs

Iterative (tail recursive) factorial subprogram:

(factorial = accept [continuation n]
send [continuation n 1] to loop)

(loop = accept [continuation n product]
if or [(lessp [n1]) (equal [n11])]
then send product to continuation
else send [continuation
(minus [n 1 1])
(times [n product])]
to loop)

Recursive factorial subprogram:

(factorial = accept [continuation n]
if or [(lessp [n 1]) (equal [n13)]
then send 1 to continuation
else (create ((multiply-by-n
= accept [x]
send times [n x] to continuation))
send [multiply-by-n (minus [n 1 7)]
to factorial))

153

A subprogram that creates instances of queues:

(create-queue
= accept [continuation]
create ((queue
= q initially []
inside
accept [¢ op x]
if equal [op "empty?"]
then send equal [g [] J toc
else
if equal [op "length"]
then send length(qgq) to ¢
else
if equal [op "head"]
then send if equal [q []]
then "error -- empty queue has no head"
else first(q)
to ¢
else
if equal [op "enque"]
then change q to append [q [x 1 1]
send "ok" to ¢
else
if equal [op "deque"]
then if equal [q []]
then send "error -- can't deque an empty queue"
to ¢
else change q to rest(q)
send "ok" to ¢
else
send "error -- unrecognized operation on queue" to c))
send queue to continuation)

154

A program to calculate and print the prime numbers
using a parallel version of the Sieve of Eratosthenes:

(print-primes = accept [go]
send [print-primes "request"] to sieve ;
become
accept [¢ r prime]
if print (prime)
then send [print-primes "request"] to sieve
else dummy)

(integers = n initially 2
inside
accept [¢ request]
send [integers "reply" n] to ¢ ;
change n to plus [n 1 1])

(sieve =
generator initially integers ;
waiting-consumer initially []
inside '
accept [¢ r prime]
if equal [r "request"]
then change waiting-consumer to c ;
send [sieve "request"] to generator
else
if equal [r "reply"]
then send [sieve "reply" prime] to waiting-consumer ;
(create ((filter =
waiting-consumer initially []
candidate initially 0 ;
multiple initially prime
inside
accept [crn}
if equal [r "reply"]
then if lessp [multiple n]
then change muitiple
to pilus [multiple prime] ;
send [¢crn] to filter
else
if equal [multiple n]
then send [filter "request"] to generator
eise
if lessp [n multiple]
then if equal [waiting-consumer []]}
then change candidate to n
else send [filter "reply" n]
to waiting-consumer ;
change waiting-consumer to []
send [filter "request"]
to generator
else dummy
else
if equal [r "request"]
then if equal [candidate 0]
then change waiting-consumer to ¢
else send [filter "reply" candidate] to ¢ ;
change candidate to 0 ;
send [fiiter "request"] to generator
else dummy))
send [filter "request"] to generator H
change generator to filter)
else dummy)

155

A subprogram that acts as a stack:

(stack = elements initially []
inside
accept [continuation op x]
if equal [op "push"]
then change elements to [x elements] ;
send "pushed" to continuation

else
if equal [op "pop"]
then
(if equal [elements []]
then send "error -- stack empty" to continuation
else change elements to second(elements) ;
send "popped" to continuation)
else
if equal [op "top"]
then
(if equal [elements []]
then send "error -- stack empty" to continuation
else send first(elements) to continuation)
else

if equal [op "empty?"]
then send equal [elements []] to continuation
else
send "error -- undefined operation on stack” to continuation)

156

The LOOP program of Chapter IV:

(loop = accept []
send "add1" to Toop ;
become i initially 0
inside
accept [msg]
if equal [msg "add1"]
then change 1 to plus [i 1] ;
send "add1" to loop
else
if equal [msg "halt"]
then send i to user ; become accept [] dummy
else dummy)

The unboundedly nondeterministic CHOOSE program of Chapter IV:

(choose = accept []
send "addl" to choose ;
send "halt" to choose ;
become i initially O
inside
accept [msg]
if equal [msg "addl"]
then change i to plus [1 1] ;
send "addl" to choose
else
if equal [msg "halt"]}
then send 1 to user ; become accept [] dummy
else dummy)

The possibly nonterminating CHOICE-LOOP program of Chapter IV:

(choice-loop = accept []
send "addl" to choice-loop ;
send "stop" to choice-locp ;
become i initially 0 ;
waiting initially false
inside
accept [msg]
if waiting
then if equal [msg "stop"]
then change i to plus [11] ;
change waiting to false ;
send "addl" to choice-loop ;
send "stop" to choice-loop
else dummy
else if equal! [msg "addl"]
then change waiting to true
else
if equal [msg "stop"]
then send i to user ;
become accept [] dummy
else dummy)

157

Appendix I11

Atolia: Comparison with Act1 and CSP

Atolia is a toy language designed to illustrate actors. In most respects Atolia is merely a simplified
form of the experimental language Actl.! A multiprocessing version of a small dialect of Actl has
been implemented on the MIT Lisp Machines using the Chaosnet for interprocessor communication.
Nondeterministic single processor implementations with simulated concurrency exist for Atolia on the
MIT Lisp Machines and on the MI'T" Al Lab’s PDP-10.

Actl has a number of syntactic features not found in Atolia. Whereas in Atolia continuations
must be passed as explicit message components, Actl has conventions that allow most continuations
to be suppressed. Whereas an Atolia program can create actors only through the create command,
Actl programs create many actors implicitly. These features of Actl make programming casier, but
the large doses of syntactic sugar obscure what is really going on in terms of actor semantics. Since
illustrating actor semantics is the whole purpose of Atolia, its syntax is less refined than Actl’s.

The only major semantic difference between Atolia and Actl is that cverything in Actl is con-
sidered to be an actor. For example, the behavior of an actor in Actl is another actor; an actor’s state
variables arc also actors. This must not be taken too seriously becausc it leads to an infinite regress of
message passing, as an actor consults its behavior to see what to do, and its behavior then consults its
behavior, and so on. It is also hard to understand how a primitive serializer that has asked its behavior

TCarl Hewitt, Giuseppe Attardi, and Ilenry Lieberman, “Specifying and proving propertics of guardiars for distributed
systems,” Semantics of Concurrent Computation, Springer-Verlag Tecture Notes in Comiputer Science 70, 1979, pages
316-336.

158

how to act on a message it has accepted can accept the behavior’s reply while remaining locked from
the original message.2

In Atolia, however, actors correspond to network addresses identifying code segments. The be-
havior of an actor is not itself an actor, but is instcad a mathematical function defined by the actor’s
code via a conventional programming language semantics. The behavior of an actor bears the same
relation to the actor that the a priori meaning of a process bears to the process in the semantics of
Communicating Sequential Processes.?

Actors in Atolia are similar in other ways to the processes of Communicating Sequential
Processes (CSP). (So are the actors of Actl, but Atolia is more like CSP than is Actl.) Like CSP
processes, actors cannot access each other’s local variables, and aside from actors acting as data struc-
tures there are no global variables. As with CSP processes, all interaction between actors takes place
through message passing.

CSP processes whose repetitive commands have only input guards and whose alternative com-
mands have as guards either all input guards or all boolean guards are roughly comparable to actors
whose command body contains no create commands. Atolia has no counterpart to the automatic
termination of a repetitive command with input guards, however, so an actor requires some sort of
condition to become true before it proceeds to the rest of its text (using be come).

CSP input commands must name the outputting process, while an actor can accept messages
from actors it does not know about. CSP output commands cause the outputting process to wait untit
the target process accepts the message; an actor starts a message on its way and the actor procecds, no
permission or acknowledgement being required from the target actor. Each message sent in Atolia is
eventually accepted by its target actor; a CSP output command may never finish execution because
the target process ncver accepts the message.

CSP has nothing resembling the create command of Atolia. A CSP program consists of a fixed

number of processes, and the intercommunication topology of those processes is static. The process
2The most recent version of Actl has, in fact, backed away from some of these views.

INissim Francez, C A R Hoare, Danicl J Lehmann, and Willem P deRoever, “Semantics of nondeterminisin, concurrency,
and communication”, J Computer and System Sciences 19, 1979, pages 290-308.

4C A R Hoare, "Communicating scquential processes”, CACM 21, 8, August 1978, pages 666-677.

159

identifiers of input and output commands are constants, so that the set of processes a given process
can send to or receive from is apparent from its text. Atolia, in contrast, permits actors to be created
dynamically. Actor names may be passed freely in messages, and may be bound as the value of
identifiers. Indeed Atolia’s syntax allows arbitrary expressions to appear in the target position of send
commands. 7

The fact that actors can be created does not imply that Atolia is unsuitable for implementation
on a fixed network of processors. Many actors are created only to serve as explicit continuations for
recursive programs; actor creation of this sort can be as inexpensive as recursive function calls in
Lisp. In other instances actor creation corresponds to process creation. The questions of which actor
creations should be implemented as local function calls and which should be implemented as concur-
rent processes can be decided by a compiler based on its knowledge of the target machine. While
therc may be good reasons for retaining the conventional syntactic distinctions between function calls
(gencrating implicit continuations) and process creation, it is an achievement of the actor model that

process creation and continuation creation appear the same semantically.

160

Appendix IV

Atolia: Formal Semantics

This appendix presents the semantics of a toy language illustrating actors, culminating in the
definition of a function

P:Act — (A — F)

giving for each program an assignment of initial behaviors to actors. This function is the starting point
for the power domain semantics of Chapter IV, modified for actor creation by the changes outlined in
§V4.

The notation in this appendix is based on that of Robert Milne and Christopher Strachey, A4
Theory of Programming Language Semantics.> A one page summary appears at the end of this appen-

dix. Similar notation is used by Tennent, Gordon, and Stoy (see bibliography).

5Chapman and Hall, London, 1976.

161

Atolia

(a toy language illustrating actors)

Version 0

Syntactic domains

1€ Ide identifiers

B € Bas bases
o€ opr operators

E € Exp expressions

I' e Com commands
® € Abs abstractions (scripts)
A € Dec local declarations
Y€ Act actor script declarations
Productions

E::=B | OE | | | [Eo-En]
| if Eo then E; else E; | (E)

I' ::= dummy | change I to E | become ® | send Fy to E;
| create (X) T | To; Iy | if E then Tp else T’y | (T)

S
n

accept [lp---[,] ' | A inside ® | if E then &y else & | (P)

A ::=1T1dnitially E | 1T =E | Ae; Ay | (4)

™
1]

(I=0) | o X

162

Value domains

a€A = {user} + ({program} x N) + ((A x MY) x N) actors
YEG = A x G actor name generators
LEM =V : messages
¢c€F =M —> G — F x (A x M)* x F* behaviors
T ‘ truth values
ven : integers
R numbers
H ‘ characters
B=T+N+R+ H basic values
ceEV=T+N+R+H +A+V denoted values
pEU = (Ide — (V + {unbound})) x Ide* environments
XEX=U-—F behavior continuations

163

Semantic functions -

a

@ S o=

Bas
Opr
Exp
Com
Com
Com
Com
Com
Abs

Dec

: Act

Act

Act

: Act

c C©c < ©w

o O O O o0 < <

-

[er B <P I =

F*

X — X
(A x M)*
F*

164

8: Exp - U =V

8[B] = Np.B[B] inV

8[OK] = Mo O[0] (S[F]/)

gl =N (p L 1)1

8[[Eo - -En1] = o (8[Eollp, - - ., 8[En]p)

8[if Ey then E; else E]

=Np.(Ae.e ET — ((¢ | T) — 8[Ei]p, 8[E2]p), error)

(8[Eo]l)

81(E)] = €[F]

N: Com—= U — G —= X — X

N[dummy]] = Noyx . x
N{change I to E] = Npvx.x
N[become ®] = Noyx.(N . F[P]p)
N[send Ey to Ei] = Novx . X
Nlcreate () I'l = Noyx. N[T] (5[Z] o) (HIZ]) x
N[To; T1] = Nevx . N1 (W[To]l o) (GIT o]l p7) (N [Tl vx)
N[if E then Ty else Ty]
= Myx.(Ae.¢ ET = ((¢ | T) = N[Tollpyx, N[T1]evx), error)

(B[E]e)
N(T)] = xN[r]

165

J: Com — U — G — (A x M)*

I [dummy]] = Npy. ()
Jchange I to E] = Npy.()
I [become ®] = Npy.()
Isend Eyp to Ei] = Npy.(Ne.e EA — {{(¢ | A), 8[Eo]pin M), error) (E[Ei] p)
T[create (E) Il = Noy.T[TT([E]ev) (HIZT)
I'[To; T1] = Aoy (F'[To]l) § (T[T1] (U[To] 7) (§[To] o))
J[if E then Ty else Ty]
=Apy.(Ae.€ ET = ((¢ | T) = T[Tollp, T[]), error)
(E[E]»)
I =T[r]

C: Com— U—>G — F*

Cldummy] = Npy. ()
Clchange 1 to E]J = Npy.()
Clbecome @] = Npy.()
Clsend Eg to E;] =Apv.()
Clcreate (X) T = Npy.($[Z](3[Z]p)) § (CIT] (3[Z]) (RIET))
CTo; T4 = Ny (C[Tolley) § (CIT1] (U[To]) (G[To] o))
C[if E then Ty else TI']
= Npy.(\e.€ ET = ((¢] T) = CToloy, CIT1 o), error)
(E[E]p)
C(M] = ¢[r]

166

U: Com - U -G — U

U[dummy]] = Npy. p
U[change 1 to E] =Apy.1E€ (p | 2) — p[8[E]p/1], error
U[become & = Npy.p
Ufsend Eg to E;] =Npy.p
Ufcreate (X) T = Npy.updates p(U[T] (3[Z]#7) ($[Z]))
U[To; T'1]) = Aoy UL 1] (U[To]p7) (G[Talpv)
U[if E then Ty else T'y]
=Npy.(Ne. e ET — ((¢ | T) = U[Tollpy, UT'1]), error)
(8[E]»)
UM = ufr]

G: Com - U —- G — G

Gldummy] = Apv. v
Gllchange I to E] = Npy.v
Glbecome @] = Npy.v
Gllsend Ey to E] =Npy.7y
Glcreate (X) T = Nov. G[TT(S[E] o) (HIZ])
GITo; T'1] = Moy GIT] (UTo] o) (S[To0]l)
G[if E then Ty else I'(]
=Npv.(Ne. € ET -+ ((¢ | T) = G[To]py, G[T1]p7), error)
(B1E]0)
§I(m] = ¢lr]

167

F: Abs - U — F

Flaccept [lo---1,] T]

= fiz(Ax . Moy . (N ANCRovx (U[TT A7), T[T, CITTe)

((divert p(match (lo, ..., L) (1 | V))) | 1, removes (I,

F[A inside ®] = Np.F[P] (F[A]p)
F[if E then &y else @]

=M. (Ne.cET = ((¢ | T) = F[Do]lp, F[®1]lp), error)

(8[E]p)

F[(2)] = F[®]

%G: Dec — U — U

I[1 initially E] = Np.((o[8[E]p/1) | L, (p | 2)§{D))
B = E] = Mo {(p[8[E]p/1]) | 1, removel(p | 2))
I[Aos A1) = Np. 3[A] (3[A0]p)

a[(A)] = 9[A]

168

I} (01 2))

J: Act - U —- G — U

I = @)] = Ao ((pl(v L 1)/1) | 1, removel(p | 2))
IS0 1] = Nov. I[Z1] (3[Zo]l o) ($1Z0]7)

$: Act - G — G

HO =) =M.712
HZo Zi] = Nov. HZ1] (31Z0]l)

f: Act - U — F*

UL =)] =Np(F[2](p L L(N)
F[Zo 1] = o ($[Z0]p) § (F[Z4]P)

169

$P: Act =+ A —F

PIE] = deh (S[E] GIZ] pinitiat Vinitial))

where
pinitial = ((A\. (I = user) — user, unbound), ())

Ninitial = gamma program
and

beh: F* — A — F

is defined by

beh ¢* user = fiz(Ap. Muy. (¢, (), ()
beh ¢* (program,v) = ¢* | (v + 1)
beh ¢* ({a, u*),v) = (((behav a (beh ¢*a) (droplast u*))
(lastp*) (gamma(a,u*))) L 3) | (v + 1)

lastp* = u* | fp*
droplast u* is the sequence j4; such that g § (u* | fu*) = u*.

170

Auxiliary functions

ple/T=(N'=T—=¢(p L)1) 0| 2)
arid = ((\I. unbound), ())

divert: U — U
divertpopr = ((NL. (p1 | 1) 1] 5 unbound — (o1 L 1)[1], (0 L 1) [11), (o0 | 2) § (o1 | 2))

remove: Ide — Ide* — Ide*
removelz = (0 = §z) — (),(I=(z] 1) — removel(z } 1),

{(z 1 1)) § removel(z t 1))

removes: Ide* — Ide* — Ide*
removes I* z = (0 = }I*) — z, removes (I* 1 1)

(remove (1* | 1) z)

updates: U — U — U
updates popr = (N*. (0 = #(p1 | 2)) — po, (AL. updates (po[(py | 1) [1]/1])
(e L 1), (I" T 1))
(*11)
(P 12)

171

match: Ide* — V — U
match*e
= (0 = §I*) — arid,
eEV* — (0 == §(e | V*) — divert (arid[{)/1]) (match (I* 1 1)¢),
divert (arid|(¢ | 1)/1]) (match (I* $ 1) (¢ t 1)),
divert (arid[e/1]) (match (I* t 1) €)

gamma: ({program} + (A x MY)) — G
gammaz = (fiz(Nf . Nzv. ({z,v), fz (v + 1)}))

z0

behav: A —- F — M* — F
behav agu*
= (fiz(Mf . Nadpgu} - (0 = fug) — ¢, fa
(¢ (ug L 1) (gammaa, ui § (ug L 1)) L 1)
(w5 11)
(11 § (g L 1N))
agu*()

172

Notation

All domains in this appendix are complete lattices.

The separated sum of lattices Dy, . .., D,, is defined in Milne and Strachey, and is written D =
Dy + .-+ + D,. If z belongs to the sum D, then z E D; tells whether z is in the summand D;.
z | D; is the projection of z to D;, while y in D indicates the injection of y into D for y a member
of a summand of D. While some of the semantic equations may omit some injections and projections,
injections and projections into and from the domains A, G, and M will always be given explicitly. These
domains must be treated with care because it is easy to confuse some of their clements with elements
of V. For example, an element ¢ € V can never be an element of M although ¢ in M is always an
element of M. Similarly no element of A is an element of V*.

The product of lattices is written Dy x --- x D,. Elements of the product are written
(zo, . . ., Tn), and the projections are indicated by (zo, ..., zn) L 1 + 1 = z;.

D* is the lattice of finite sequences from D, including the empty sequence (). If § is a metavari-
able used to range over the domain D, then §* indicates an arbitrary element of D*. The length
of a sequence 8* is indicated by #6*, so that #() = 0 and #(&,...,6,) = n -+ 1 whenn > 0.
Projections are indicated by (&, . .., 6,) | ©+1 =0;. 63§07 is the concatenation of 65 and 67. 6* tn
indicates the finite sequence obtained by dropping the first n clements of the sequence §*. When 6* is
ascquence, z € §* tells whether there exists an integer ¢ such that §* | ¢ = z.

Dy — Dy is the lattice of continuous functions from Dy to D). Unlike sums and products,
function lattices are always formed from exactly two domains. Dy — D; — D, is taken to mean
Dy — (Dy — Dy).

Function application is indicated by juxtaposition, associating to the left unless parentheses in-
struct otherwise. Lambda abstraction is written Az . y.

fiz is the usual fixed point operator.

T — Yo, Y1 1S wo if z is true, y; if z is false, undefined if z is undefined, and error if z = error.
Fach domain is assumed to have a special element error that is to be preserved under all the semantic
cquations, though the special tests for error have been left out of the equations in the interest of

informal clarity.

173

References

R J Back, “Semantics of unbounded nondeterminism”, Mathematisch Centrum Report TW 135780,
April 1980.

Henry Baker, “Actor systems for real-time computation”, MIT L.CS Technical Report 197, March
1978.

Valdis Berzins, “An independence result for actor laws”, MIT L.CS Computation Structures Group
Note 34, December 1977.

Stephen L Bloom, “Varicties of ordered algebras”, J Computer and System Sciences 13, 2, October
1976, pages 200-212.

JM Cadiou and J J Levy, “Mcchanizable proofs about parallel processes”, Proccedings 14th Annual
Symposium on Switching and Automata Theory, October 1973, pages 34-48.

Edsger Dijkstra, A Discipline of Programming, Prentice Hall, 1976.

Nissim Francez, C A R Hoare, Daniel J I.ehmann, and Willem P de Roever, “Semantics of nondcter-
minism, concurrency, and communication”, J Computer and System Sciences 19, December
1979, pages 290-308.

W R Frantz, “Simula language summary”, presented at the ACM SIGPLAN History of Programming
Languages Conference, Los Angeles CA, June 1978, preprint in SIGPLAN Notices 13, 8,
August 1978, pages 243-244,

Danicl P Friedman and David S Wise, “Aspects of applicative programming for parallel processing”,
ILEE Transactions on Computers C-27, 4, April 1978, pages 289-296.

Michael J C Gordon, The Denotational Description of Programming Languages, Springer-Verlag,
New York, 1979.

174

Irene Greif, “Semantics of communicating paralle! processes”, MIT Project MAC Technical Report
154, September 1975.

M C B Hennessy and G D Plotkin, “Full abstraction for a simple parallel programming language”,
FOCS-79, Springer-Verlag Lecture Notes in Computer Science 74, 1979.

Carl Hewitt, “Planner: a language for manipulating models and proving theorems in a robot”,
Proceedings of the First International Joint Conference on Artificial Intelligence, Washington
DC, 1969.

Carl Hewitt, “Viewing control structures as patterns of passing messages”, Artificial Intelligence
8, 1977, pages 323-363. Also in Winston and Brown [ed], Artificial Intelligence: an MIT
Perspective, MIT Press, 1979.

Carl Hewitt, Giuseppe Attardi, and Henry Lieberman, “Specifying and proving properties of guar-
dians for distributed systems”, in Semantics of Concurrent Computation, Springer-Verlag
Notes in Computer Science 70, 1979.

Carl Hewitt and Henry Baker, “Actors and continuous functionals”, IFIP Working Conference on
Formal Description of Programming Concepts, St Andrews, New Brunswick, Canada, August
1977, 16.1-16.21.

Carl Hewitt and Henry Baker, “Laws for communicating parallel processes”, IFIP-77, Toronto,
August 1977, pages 987-992.

C A R Hoare, “Communicating sequential processes”, CACM 21, 8, August 1978, pages 666-677.

Micha HofTi, “Disk scheduling: FCFS vs. SSTF revisited”, CACM 23, 11, November 1980, pages
645-653.

Daniel H H Ingals, “The Smalltalk-76 programming system: design and implementation”, Conference
Record of the Fifth Annual Symposium on Principles of Programming Languages, Tucson AZ,
January 1978, pages 9-16.

Gilles Kahn and David McQuecen, “Coroutines and networks of parallel processes”, IFIP-77, Montreal,
August 1977, pages 993-998.

Kenneth M Kahn, “An actor-based animation language”, Creative Computing 6, 11, November 1980,
pages 75-84.

Bill Kornfeld, “ETHER —a parallel problem solving system”, IJCAI-79, pages 490-492.

Paul Reman Kosinski, “Denotational semantics of determinate and non-determinate data flow pro-
grams”, MIT LCS Technical Report 220, May 1979.

175

Richard H Lathwell, “Some implications of APL order-of-execution rules”, APL79, APL Quote Quad
9, 4-Part 1, June 1979, pages 329-332.

Daniel L.ehmann, “On the algebra of order”, J Computer and System Sciences 21, 1, August 1980,
pages 1-23.

Nancy A Lynch and Michael J Fischer, “On describing the behavior and implementation of dis-
tributed systems”, in Semantics of Concurrent Computation, Springer-Verlag Lecture Notes in
Computer Science 70, 1979.

Saunders Maclane, Categories for the Working Mathematician, Springer-Verlag, New York, 1971.

G Markowsky and B K Rosen, “Bases for chain-complete posets”, /BM J Research and Development
20, 2, March 1976, pages 138-147.

George Milne and Robin Milner, “Concurrent processes and their syntax”, JACM 26, 2, April 1979,
pages 302-321.

Robert Milne and Christopher Strachey, 4 Theory of Programming language Semantics, Chapman
and Hall, London, 1976.

Ted Nclson [editor], “Symposium on actor languages”, Creative Computing 6, 10, October 1980, pages
61-86, continued in Creative Computing 6, 11, November 1980, pages 74-94.

Mogens Nielsen, Gordon Plotkin, and Glynn Winskel, “Petri nets, event structures and domains”, in
Semantics of Concurrent Commputation, Springer-Verlag Lecture Notes in Computer Science
70, 1979, pages 266-284.

Kristen Nygaard and Ole-Johan Dahl, “The development of the Simula language”, presented at
the ACM SIGPLAN History of Programming Languages Conference, Los Angeles CA, June
1978, preprint in SIGPLAN Notices 13, 8, August 1978, pages 245-272.

David Park, “On the semantics of fair parallelism”, University of Warwick Theory of Computation
Report 31, October 1979.

G D Plotkin, “A powerdomain construction”, SIAM J Computing S, 3, Scptember 1976, pages 452—
487.

Jerald S Schwarz, “Denotational semantics of parallelism”, in Semantics of Concurrent Computation,
Springer-Verlag Lecture Notes in Computer Science 70, 1979,

Dana Scott, “What is Denotational Semantics?”, MIT Laboratory for Computer Science Distinguished
Lecture Series, 17 April 1980,

Dana Scott, “Data types as lattices”, STAM J Computing 5, 3, Scptember 1976, pages 522-587.

176

Raymond Smullyan, First Order Logic, Springer-Verlag, New York, 1968.
M B Smyth, “Power domains™, J Computer and System Sciences 16, 1978, pages 23-36.

M B Smyth and G D Plotkin, “The category-theoretic solution of recursive domain equations”,
Proceedings 181 Annual IEEE Symposium on Foundations of Computer Science, 1977,
pages 13-17.

Guy Lewis Steele Jr and Gerald Jay Sussman, “Scheme: an interpreter for cxtended lambda
calculus”, MIT Al Memo 349, December 1975.

Guy Lewis Steele Jr and Gerald Jay Sussman, “The revised report on Scheme: a dialect of Lisp”,
MIT Artificial Intelligence Memo 452, January 1978.

Joseph E Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language
Semantics, MIT Press, Cambiidge MA, 1977.

R D Tennent, “The denotational semantics of programming languages”, CACM 19, 8, August 1976,
pages 437-453.

Willian W Wadge, “An extensional treatment of dataflow deadlock”, in Semantics of Concurrent
Computation, Springer-Verlag Lecture Notes in Computer Science 70, 1979.

177

