

Tius blank page was inserted to preserve pagination.

Revised vemdadmmmmaﬂmh!;ﬁ mwmmmamw
--Engmeenng and Computer Science of the Mas sotis Instinute: i L
mwm:wmmmmwmafmmﬁ Clenct

This empty page was substituted for a
blank page in the original document.

ABSTRACT

Though one is led to believe that program transformation systems which perform source-to-
source transformations enable the user to understand and appreciate the resulting source program,
this is not always the case. Transformations are capable of behaving and/or interacting in unex-
pected ways. The user who is interested in understanding the whats, whys, wheres, and hows of the
transformation process is left without tools for discovering them.

I provide an initial step towards the solution of this problem in the form of an accountable
source-to-source transformation system. It carefully records the information necessary to answer
such questions, and provides mechanisms for the retrieval of this information. It is observed that
though this accountable system allows the user access to relevant facts from which he may draw
conclusions, further study is necessary to make the system capable of analyzing these facts itself.

Thesis Suvpervisor: Howard E. Shrobe .

This empty page was substituted for a
blank page in the original document.

Acknowledgements

My sincere thanks to:

Dr. Howard E. Shrobe, my thesis advisor, who was always willing to assure me that I was
progressing well,

Professor Gerald J. Sussman, who first suggested I develop an accountable system.

Cordon R. Kerns, my father, who taught me more mathematics and science than any teacher I
“ever had, and then made me teach him math when I got beyond what he knew.

Professor Galen R. Peters, who worked hard to provide me with the education I wanted, and
pointed me to the right places to get it.

Kent M. Pitman, who read an initial draft of the dissertation and offered numerous sugges-
tions for its improvement,

James B. Tate, who introduced me to computer science.

Robert G. Jacobsen, who introduced me to LISP.

Dr. James M. Boyle, who introduced me to program transformations.

" Ruth J. Kerns, my mother, who managed to keep me a reasonably well-rounded mdmdual
despite my growing interest in the world of technology.

The Reverend Doctor Guy L. Steele Sr. and Nalora Steele, my other parents, who followed
my progress with interest, and shared both my frustrations and excitement over various develop-
ments in the work. :
~ And finally, to Guy L. Stecle Jr., my husband, who during the past year dropped anything and
everything without fail and without hesitation whenever I needed advice. He patiently answered
hundreds of questions and engaged in dozens of conversations with me about my work, though he
was in the midst of writing his own dissertation. 1 owe him much; happily, 1 have the rest of our
lifetime together in which to repay him.

This empty page was substituted for a
blank page in the original document.

Contents

Chapter One: Source-To-Source Transformation Systems 11
11 Introduction & v v v v e e e e e e e e e e e e e e e 11
1.11. Statementofthesis v v v v o v i e e e e e e 12

1.1.2. Organizationofdissertation oo oo 12

1.2. Motivation And Uses For Transformation Systems o oo ot 13
12.]. Optimization v v v v v b e e e e e e e 14

12.1.1. Opens the Way For Interactive Optimization 14

12.1.2. Simplifies the CompilationTask« oo 14

122, Realization v o v v v e e e e e e e e e e e e e e 15

123, Translation v v v v v e e e e e e e e e e e e e e e e e 15

 13. Inadequacies of Transformation Systemso 16
Chapter Two: Design of An Accountable System« oo oo 19
21, ADeEfiNtion v v e e e e e e e e e e e e e e e e e e 19
2.2. Motivation and Uses for an Accountable System« o oo 20
2.2.1. Interactive transformationo oo e 20

222, Debugging L e e e e 20

23, Related WorK . . . o 0 vt e e e e et e e e e e e e e e e e 21
24. Understandingthe User’sNeeds o oo v v v oo v o v s 21
25, TheDesign . . .« v v v i it e e e e e e e e e e 22
2.5.1. Therecordingelement ot it e e 23

252, Thequeryelement v v oo b e 25

Contents 5

2521, PointingtotheSubject e 25

2.5.22. Specifyingthe Actiono e oo 27

2523. AnExample 0 e 28

Chapter Three: The Transformational Component 31
3.1, InformationHiding 0 v i e e 31
32. InternalForm o e e e e e e e e e e 33
33, Controlo e 34
3.3.1. Transformationordering o v i i o e e e e 34
3.3.1.1. Transformations WithinaSet« 35

33.1.2. SubtreesoftheParseTree 37

3.3.1.3. Methods of Applicationo 38

3.3.2. Informationgathering o o b oo 41
332.1. ClarifyingtheNeed oo 41

3322, TheEnvironmenlo v onnonnon 43

33.23. Thelndexof Bindings« oo oo 48

34, TheTransformations v . v v o v v v v v i v e e e e et e e e 50
341, FOIML . . . v o e e e e i e e e e e e e e e e e e e e e e e e 50
3.4.2. Selecting a transformationseto oo 53
3.4.3. Interfacing to the control functions 54
344, SlavetransfOrMers v v v v vt e e e e e e e e e e e e 55

35, SUMMATY . v v v o v e .. 56
- Chapter Four: The Accountable Component PR 1)
4.1. Acquisitionof Information oo 58
41.1. Justifications [60

42. StorageoflInformation o oo e e 62
421, Bycode e e e e e e e e e e e e e e s 62
422, Bytransformer i e e e e e e e e e e e 63
423, Byversion . . . v v v v it e e e e e e e e e e e e e e e 63

. 424. Thefinalversionof xform o e e 64
43, ALookatCells v i i e e e e e e e e e e e e 65
43.1. Conversiontotheinternalform oo 65
4311, CellTypes . . .« v v o v o i e e e e e e e e e e e 66

4312. CeliCreation o v v v i v v v v v v ie oo o 68

432, Thetransformationofcells o oo 70

4321, Transformers Which Call Slaves 70

43.2.3 Tnmﬁmem e
4324 W%f{f e e Y ;
4.3.25. TW%#M N SO &

53.. W‘“u} i e eF e B R0 gl rﬁm}'aﬁ
' ‘ et e e

R SN
-

sttt A5 rormidpmAt 2864
L wrorifon ; D) .f‘~§"»'“ﬁ.,,f,;§

TABLE 3-1.
TABLE 3-2,
TABLE 3-3.
TABLE 3-4.
TABLE 3-7.
TABLE 3-7.
TABLE 3-6.
TABLE 3-8.

TABLE 3-10,
TABLE 3-10.
. TABLE 3-11.
TABLE 3-12.
TABLE 3-13.
TABLE 3-14,
TABLE 3-15.

TABLE 4-1.
TABLE 4-2.
TABLE 4-3.
TABLE 4-4.
TABLE 4-5.
TABLE 4-6.
TABLE 4-7.
TABLE 4-8,
TABLE 4-9.

Tables

Selector functions for the Function Call structuretype 32
Operations for the Argument Liststructuretype 33
Markov algorithm ordering rulesdemonstrated 36
Main control function for the transformational component 38
Structuretypes e 39
Transformation sets for some structure types < . v v v h v o e . 39
Control functions for some structuretypes o0 e 40
Propagation of predicate position information TR X]
Propagation of information within a conditional expressionM
Controlling function for conditionalclauses. 45
Providing forassertions 0ot e e e e 46
Recording information on the environment 47
Control function for the Function Call structuretype 49
Implementation of (CAR (CONS <X> <¥>)) =><KX> PR 51
A transformer may implement several transformations 52
Transformations must return justifications 59
New definitionof RESPOND i i v v v 59
The environment must now maintain justifications foritsentries 61
Functions which record information by transformername 63
Definitions of functions which record informationby version 64
Final definitionof XFORM« o i it i e 64
Functions for converting o the internalform 65
Functions for converting from the internalform. 67
The functions which create.cellsandmonks. 68

8

*. 8 & o ¢ 2 o o |

9
VQ».,...........?S e
' % o

TABLE 4-10.. Stave transformations allow the i
TABLE4-11. Fm*k' oem '

& e s 8 & & & 8 v e s s @

al
‘|
I
oo el v ‘iﬁﬁﬁmﬁ%ﬁ’fﬁm}if il
B ‘s}ﬁ&m;&%n@wwz&mmm}

- bormwenomsh vl gatibe fedifogls s@:ﬁhﬁﬁ'
e it bgaod mma’:wﬁmﬁ?%ﬁ&mm fertn;
CLI : T v s RGN DTN
' ’ ke o %{z&zé' ‘%.é% fioismciensy|
SIS S170E 16 2l

R ,am;,,fm’immmﬁs b Yo anises !
b S B “:rzs‘s?a&uwafmaﬂ%fﬁ@gmm%aw “
o m@aiﬁﬁmwwﬁ%ﬁ @ anitlonnnD]

C e e 28 i gatbverd

L SRS ;i?i‘f éﬁﬁ}ﬁﬁ m}”}fﬂﬂféaiz'

* -
8 i
L - P B PR
ey

okern

iy
IECp Y

5 sistbial
SN &:wwﬁgﬁ:m ;sﬁs“%ma“ @t S

L0 f?’mﬁé&:{mﬂ?ﬁ&‘ﬁ?i

zmﬁga:smm i‘ ' f&suam

\‘: ¥ - ‘f Ve &}ﬁ.}-ﬁyi*?ku{ ;?’2{‘:‘;}.:‘;320“ A .
. P gr%msnm}mbwmg_ .

Séﬁﬁ?ﬂaﬁﬂﬁﬁsﬁ?ﬁ mwcinie™ i
m&a&x&v ,maw.mmsﬁ"=§ AB A - RS

10 Tables

ac-count-a-ble adj. 1 : subject to giving an account
2 : capable of being accounted for

ac-count vb. vt 1 : to give a report on
vi 1 : to furnish a justifying analysis or explanation —~ used with for

—Webster’s Seventh New Collegiate Dictionary

We might suppose that by the combined action of appropriate forces
any material form could be transformed into any other: just as out of
a ’shapeless’ mass of clay the poiter or the sculptor models his artistic
product; or just as we attribute to Nature herself the power to effect
the gradual and successive transformation of the simple germ into the
complex organism. ... So the living and the dead, things animate and
inanimate, we dwellers in the world and this world in which we dwell

.. are bound alike by physical and mathematical law.

—D’Arcy Thompson

This empty page was substituted for a
blank page in the original document.

-

Chapter One

Source-To-Source Transformation Systems

_ROGRAM TRANSFORMATION SYSTEMS have been produced which claim to ameliorate the

> problems of inefficicnt programs caused by modular programming strategics, initial lack of
attention to efficiency (for indeed, during the programming process, construction and verification
should come first), or perhaps just bad programming style. These transformation systems may
be implemented automatically or manually, and may do their work at compile time or before.
For example, an optimizing compiler is an automatic transformation system which performs its
work at compile time. In contrast, a source-to-source transformation system is an automatic pre-
processor whose output may then be compiled on the desired machine. Alternatively, the program-
mer himself may be responsible for producing efficient code, and, following the construction and
verification of his program, must rewrite any part which does not meet its operational standards. In
this chapter I offer my opinions and suggestions regarding the current state of program transforma-
tion. '

1.1. Introduction

Program transformation should be a process which is independent of compilation, and which,
though performed automatically, can be guided by the programmer. A source-to-source transfor-
mation system provides a programmer with canncd scts of transformations which he may invoke
and afterwards observe the effect of, 1 am interested in a more interactive approach in which the
programmer is able to intclligently sclect those transformations which are relevant and effective

11

12 CHAPTER ONE . SOURCE-TO-SOURCE TRANSFORMATION SYSTEMS

for the particular situation he presents. Furthermore, the programmer may designate only certain
parts of the program for transformation (for example, he may choose to apply optimizing transfor-
mations to code which forms a bottlencck at execution time). In order to intelligently make these
decisions, the programmer must have the freedom to experiment with various scts of transforma-
tions to his program, be able to obsecrve their outcomes, and verify that indeed they do the job he
requires. ‘The advantages of this approach are discussed in [Loveman 1977).

Although source-to-source transformation systems allow programmers to perform an analysis
of the results, they provide no mechanisms for such analyses; the programmer must study the
output himself to discover what transformations, if any, occurred. Furthermore, the effort needed
to understand why a transformation applied (or morc often, why one did not) is significant and
prohibitive. Without mechanisms to aid the programmer in his study of the result of the transfor-
mation process, many of the advantages of a source-to-source transformation system are lost.

Since I had to develop a source-to-source transformation system onc summer without the aid
of any sort of mechanism for cvaluating the effectiveness of transformations, [have a great many
suggestions to offer as to what sorts of tools would be valuable for doing so. It was often necessary
first to lcarn if there had been any change in the argument program at all, that is, if any transforma-
tion had succecded in applying. A transformation system which would report whether or not it has
done anything would be capable of providing this information, Then, once it had been determined
that something had happencd, it was nccessary to discover what. Then where, then when, then why.
And there was always why not? I wished 1 had a transformation system which would automatically
account for its decisions: an accountable source-10-source transformation system.

1.1.1. Statement of Thesis

e Source-to-source transformation systems which produce changes in the user’s program without
any explanation or justification of these changes in some sense “violate” the user’s code.
To verify that the transformations performed were those expected or desired, the user must
manually examine the resultant code. Furthermore, understanding why such transformations
were or were not performed requires manual examination of the transformation system itself,

* A source-to-source transformation system which can be queried as to what, where, when, and
why it did whatever it did can aid the interactive transformation of a program.

e The development of such a tool is feasible.

1.1.2. Organization of Dissertation

So far in this chapter I have given an overview of the prbblcm I wish to address, and only
a hint of the proposcd solution. In the remainder of this chapter I will discuss the uses for and

§1.2 " Motivation And Uses For Transformation Systems . 13

advantages of source-to-source transformation systems, then go over again in some dctail (and
with examples) why many of those advantages are not realized. Chapter Two describes a method
for regaining these advantages: imaking the system accountable for its actions. In that chapter I
will define cxactly what I mean by an accountable transformation system, then present the design
of such a system. Chapter Three begins our discussion of the implementation of the system by
introducing the source-to-source transformation system which will be made accountable. Finally,
Chapter Four follows the decisions and revisions involved in implementing an accountable source-
to-source transformation system. The bulk of the thesis lies in this chapter, since only in attempt-
ing to implement an accountable system did many of the subtle difficulties in doing so present
themselves.

In this dissertation I am particularly interested in discussing source-to-source transformation
systems, although | admit that if someonc wished to argue the point, I would have a hard time
convincing him there was any difference in transformation systems which arc source-to-source and
those that are not. What is object code to one compiler may be source code to another; however, I
will assume the popular definition of source code as a high-level language, and make no claims as
to whether or not it is object code as well. In this discussion, then, it will be assumed that when 1
speak of transformation systems, I mean source-to-source transformation systems, unless explicitly
stated otherwise.

1.2. Motivation And Uses Fbr Transformation Systems

Transformations allow one to automate almost any kind of systematic change to a program.
While some systems are written with a particular transformation sct “built-in” because they are
meant to perform a specific task, others are written more modularly and may be used with any
of a number of different canned transformation sets. General-purpose transformation systems
exist as well; these come with a special language in which the programmer himself can write the
transformations he wishes to be applied to his program.

Source-to-source transformation systems provide access to the resultant code in a way that
other transformation systems do not. The output from such systems may be studied, modified,
or run through the transformation system again before any compilation is done. Thus, whether
the programmer uses a set of canned transformations or “rolls his own,” he is able to afterwards
observe the effects of cach on the input code.

- Source-to-source transformations may be applied to a program independently of the machine
the program is going to be compiled on. Since the system takes source code and produces source
code, transforming the program precedes any compiler activity. Thus the programmer has the
security of knowing that he can produce a more cfficicnt program for any machine. Of course,
certain transformations may be more or less cffective depending on the target machine. The pro-

14 CHAPTER ONE v SOURCE-T0-SOURCE TRANSFORMATION SYSTEMS

grammer who is aware of these differences may tailor his program to the appropriate machine, or to
several by generating all of the various versions that are required.

Currently available source-to-source transformation systems are capable of performing op-
timization, rcalization, and translation. .

1.2.1. Optimization

By far the most common usc of transformation systems is for the optimization of code.
A number of papers which describe standard optimizing transformations have becn published
[Standish, ct al 1976] [Allen and Cocke 1972], and some successful systems are in use [Kerns 1977]
[Boyle and Matz 1977] [Atkinson 1976]. No onc will question the nced for program optimization,
but what are the advantages of performing optimizations by means of a transformation system?

1.2.1.1. Opens the Way For Interactive Optimization

Code gencerated by a source-to-source transformation system may be analyzed by the pro-
grammer in order to determine what optimizations were performed. He is therefore able to un-
derstand to some extent exactly what transformations to the code are causing any difference in
exccution time. He can sce which parts of the code are being modified, and which are not. On
the basis of these observations, he may write or use other transformations, or choose other pieces
of code to optimize. Because he has a better understanding of the optimization process, he can
therefore better control that process.

1.2.1.2. Simplifies the Compilation Task

By moving the optimization process out of the compilation process, a compiler writer is free
to concentrate on code gencration. In modularizing the entire program development process and
allowing compilation to be independent of optimization, we move closer to the possibility of
automatic generation of compilers.

As transformation systems evolve, one can imagine canned scts of transformations becoming
available which arc guaranteed to cure all programming ills. Each set of transformations may
be keyed for use with a particular language, depending on the target machine. For cxample, all
Fortran programs to be run on an IBM 370/165 may use transformation set “1EH370FIXIT”, while
Lisp code to be run on a DEC-10 system will use tranformation sct “BAZOILA”. Each set would
know about the quirks specific to its target machine, and be prepared to put the source code into
the form best suited for efficicnt compilation on that machine.

§1.22 ' Motivation And Uses For Transformation Systems 15

Or, better yet, let there be only one transformation set for cach language. The Fortran sct is
responsible for optimizing Fortran code, the Lisp set for Lisp code, et cetera. Each set of transfor-
mations puts its source code into a form suitable for efficient compilation. That is, there should be
a canonical sct of transformations that every compiler expects to have already been performed by
the time the compiler gets the source code. Since every high-level language is not equally capable
of expressing all the possible optimizations of a piece of code, 1 will instead say: for each high-level
language, there should be a canonical set of transformations that every compiler for that language
expects to have already been performed. Then, it is the responsibility of the compiler to know the
quirks and idiosyncrasies of its machine, and to generate cfficient object code for that machine. The
compiler may assume that the source code it receives has been optimized into the canonical form
agreed upon beforchand.

1.2.2. Realization

Although transformations which perform optimizations toa program have received more at-
tention than those which do not, other uses for transformation systems should not be overlooked.
One transformation system currently in use at Argonne National Laboratory [Boylc and Matz 1977)
has a library of transformation sets which gencrate different versions or “realizations™ of a single
prototype program. For example, given a Fortran program to perform some algorithm upon com-
plex numbers in single precision, it can generate an analogous program which performs the same
algorithm on real numbers in double precision. This is done by first applying a set of complex-to-
real transformations to the program, and then, using the output of that run as input to the next,
applying a set of single-to-double precision transformations.

This method may be uscd to generate realizations of a program which are geared. to run more
efficiently (or perhaps corrcctly!) on a particular machine. The notion of providing portability and
reliability by program transformation is discussed in [Boyle 1976]. A particular realization can be
thought of as a refinement of the prototype program: transformations may be written to refine
high-level programs into underlying representations [Standish, et al 1976].

1.2.3. Translation

Transformations sets may also be written to translate code from one source language to
another [Pitman 1979]. These transformations are clearly non-trivial, and the set of programs to
which they can successfully apply may be very restricted if the languages arc not similar. Syntax
transformations, however, should be simple and fairly straightforward.

16 ClLIAPTER ONE ‘ SOURCE-TO-SOURCE TRANSFORMATION SYSTEMS

1.3. Inadequacies of Transformation Systems

Although in theory a source-to-source transformation system provides all the advantages given
above, in practice things turn out a little differently. Consider the following example:

A sct of optimizing transformations was applicd to a simple LISP program to compute two
lists and append them,

(APPEND (MYMAPCAR (FUNCTION FOO) (A B C)) (BAZ Z 7))

The optimized code returned by the transformations was:

(CONS (FUNCALL (FUNCTION FOO) ’A) (MAPCAR (FUNCTION F00) ’(B C)))

Understanding why this code replaced the input code takes a bit of study. First off, the programmer
would nced to remind himself of the definition of MYMAPCAR and BAZ. He goes to his file and
looks them up:

(DEFUN MYMAPCAR (FUNARG ARG)
(COND ((NULL ARG) NIL)
((ATOM ARG) (FUNCALL FUNARG ARG))
(T (CONS (FUNCALL FUNARG (CAR ARG))
(MAPCAR FUNARG (CDR ARG))))))

(DEFUN BAZ (X Y) .
(COND ((EQ X Y) NIL)
(T (LIST X Y))))

To figure out how these definitions together with the transformations in the set he applied worked
together to form the replacement code, his analysis might proceed like this:

*Oh no, I've been QUUXEDN! What happened to the call to APPEND? It's turned into a call to
CONS! How can that be?

“Hmmm. Well, procedure integration has occurred, I guess. The definition of MYMAPCAR has
been expanded in-line, but since the sccond argument is known to be a list, the tests for nuliness
and atomicity were climinated, leaving only the CONS. But what happened to my BAZ function? |
certainly didn’t give it any constants, so what makes it think it can go away? Let’s sec. .. If I expand
its definition in-line, I get a conditional whosc first test is (EQ Z Z). Oh, of course! That must
be true, so it returns NIL. Then APPEND of something and NIL leaves that something, which
cxplains why only the CONS is left. Whew!”

That was only a simple example. Imaginc trying to verify output from a transformation system
in which there arc several levels of procedure integration, hairy function definitions, obscure test
climinations, and nested lambda expressions that produce several layers of bindings onc can’t pos-
sibly remember and translate between all at once. If one must go through that sort of analysis for

§13 , Inadequacies of Transformation Systems 17

each piece of code in order to follow the activities of a source-to-source transformation system,
. the advantages of being able to do so lose some of their appeal. The transformations applied to
the input program “do violence™ to the user’s code; it is often difficult or even impossible to under-
stand why a transformation did or did not apply, and how the various transformations interacted to
produce the output program.

To understand what occurred during the transformation process requires a grcat deal of effort
on the part of the user. He must compare the input source with the output source to sec where
changes were made. He must look up function dcfinitions to see how procedure integration took
place. To understand which transformations applied, he must have a good idea of the transforma-
tions attempted and what their prerequisites for application were. It may be impossible for him to
discover what transformations, if any, a/most applied, and why they didn’t. Furthermore, without
careful study of the system itself, he has no clue as to the order in which the transformations
applied, and how this may have affected the final result.

In case the reader is not convinced, I include one last example (without exposition) for him to
ponder over. The original program function..

(DEFUN EXAMPLE (FOO BAR BAZ)
(COND ((ATOM FOO) NIL)
((ISINDEXED FOO) (PROCESS-INDEX FOO BAR BAZ))
(... (GET-PART FOO) ...)

(T o)
The resulting code: .

(DEFUN EXAMPLE (FOO BAR BAZ)
(COND ((ATOM FOO) NIL)
((AND (ATOM (CAR F00))
(NUMBERP (CAR F00)))
(PROCESS-INDEX FOO BAR BAZ))
(... (CARFOO) ...)

(7 con)))
Relevant function definitions:

(DEFUN ISINDEXED (X)
(AND (NOT (ATOM X))
(ATOM (CAR X))
(NUMBERP (CAR X))))

(DEFUN GET-PART (Y)
(COND ((ATOM Y) NIL)
((AND (ATOM (CAR Y))
(NUMBERP (CAR Y)))
(CADR Y))

18 CHAPTER TWO , DISIGN OF AN ACCOUNTABLE SYSTEM
(T (CAR Y))))

With some study and comparison of the two definitions of EXAMPLE given here, we can eventually
see that they arc equivalent, and determine what transformations were applied to get the resulting
code. However, this can be a tedious process for the entire set of program functions, and one that
could be automated. T proposc to aid the uscr in understanding the transformations performed
above (for example) by having available to him information about the changes made. The user
might ask where the (CAR FOO) in the resulting program came from, and the system would
answer that it came from the simplification of (COND (T (CAR F00))), which was the result of
test climination from the call to GET-PART which was expanded in-line.

Chapter Two

Design of An Accountable System

' UST WHAT IS an “accountable” transformation system? We need to undcrstand what is
meant by the term and how the characteristic of accountability might be used to solve the
problems presented in the previous chapter. Then we may design and build such a system.

2.1. A Definition

An accountable source-to-source transformation system is onc which records in some acces-
sible fashion the circumstances of application of any transformations it performs. That is, not
only does such a system return a transformed program, but it lcaves behind a history of the trans-
formation process as well. Mcchanisms are provided which will allow the user to easily obtain
information from this history. Thus, a programmer might well receive direct answers to such
questions as: A
e “What initial transformation (if any) occurred to start the chain of transformations performed

on this section of code?”
e “What did this picce of code look like right before this transformation applied?”
e “What would this picce of code look like if this transformation had been turned off?”
e “Which transformations applicd at this point in the program? Why?”
o “What transforinations did not apply? Why not?”’
e “Which transformations always applicd?”

19

20 CHAPTER TWO v DESIGN OF AN ACCOUNTABLE SYSTEM

One might wonder if this ability is possible only in a source-to-source transformation system,
or whether optimizing compilers and other transformation systems could be made accountable as
well. The point of an accountable system is that it aids the user in understanding why certain
decisions were made, where they were made, and what those decisions were. If we assume that such
information is uscful, it is natural to then assumc that the user is interested in studying the code of
the resultant program as well. [wish to make no claims about the amount of interest the typical
programmer has in object code, but 1 will admit that in theory, any transformation system can be
made accountable. In practice, however, a source-to-source transformation system seems to be the
best candidate for such an improvement.

2.2. Motivation and Uses for an Accountable System

An accountable source-to-source transformation system makes all the advantages of a transfor-
mation system listed in Chapter One realistic. The output of an accountable system is not only
accessible but manageable, and the transformation process is rendered truly interactive.

2.2.1. Interactive Transformation

As mentioned in the section on source-to-source transformation systems, although such sys-
tems provide the programmer with access to the transformed code, for him to understand cxactly
what took place requires that he invest a significant amount of time and effort. He must not only
compare input and output, but have a good understanding of the transformation system itsclf. By
automatically recording and providing access to the information that a programmer nceds to decide
if the transformation process accomplished all that he desired, we supply yet another tool for the
program development process. With the knowledge that such a tool is available, a programmer is
more apt to concentrate on construction and verification of a program first, and leave the problem
of cfficiency until later. When its time comes, the user is able with the usc of an accountable system
to direct the transformation process. It is the accumulation of such tools which smooths the way for
development of automatic program synthcsis systems.

22.2. Debugging

An accountable system is a debugging aid in the sensc that where a transformation may not
have had the intended effect, or the previous application of some other transformation caused this
one to fail to apply, the system could be queried as to why a given transformation did not apply, or
what the state of the program was at the point the user expected the transformation to apply. The

§24 ' ‘ Related Work 21

answers would help the programmer to locate errors in the transformation set.

2.3. Related Work

Other systems have done some work in the line of accountability [Davis 1978}, but most of
them consist of little more than a simple trace-back of the computations performed in the program.
A full or even partial trace of what happened has limited usefulness, however, and the thought
of having to wade through one is cnough to deter all but the most desperate. What is really
necded is a mechanism whercby the available information about a computation is sifted through
and sorted, and then only the information which is relevant is passed on to the user. But even a
'fancy trace system may do that much. I know of no extant transformation system which makes
any scrious attempt at understanding its own process and accounting for that process to the user.
Instead, developers of current transformation systems have concentrated their efforts on ordering
the application of transformations, proving their transformations to be equivalence preserving, and
experimenting with various types of control for the systems [L.oveman and Faneuf 1975] [Wegbreit
1976] [Gerhart 1975] [Nievergelt 1965] [Schwartz 1974] [Scheifler 1977}

2.4. Understanding the User’s Needs

What information does a user nced to understand the transformation process? We alrcady
have some idea from working through the two examples in Chapter One. Certainly the information
necded to answer the questions listed at the beginning of this chapter would be useful. Notice that
some of the questions asked information about a phnicular piece of code, while othérs requested
information about a transformation. That is, one might ask “What are all the transformations that
applicd to this piece of code?” or “Where are all the places in the code that this transformation
applied?” (or “was attempted”, or “didn’t apply”). The types of questions a person would ask
depend on that person’s goals and reasons for using the accountable system in the first place.

Let us then consider possible goals: Someone who was developing the transformational com-
ponent of this system might wish to dctermine the effectiveness of a particular transformation or
be interested in following the interaction of various transformations. That person would tend to
have more questions regarding particular transformations. For example, the type of information
that would have been helpful to me in debugging would have been the ability to ask what trans-
formations did not apply, or perhaps, which transformations always applied. On the other hand,
a programmer using this system to optimize his program would be more likely to ask questions
relative to specific picces of code. For example, he might ask if a certain function was changed at
all, or why a certain transformation was able to apply to the picce of code of interest.

22 CHAPTER TwO ' DESIGN OF AN ACCOUNTABLE SYSTEM

Either of thesc are valid approaches, and cach of them was listed as a rcason for using an
accountable system. Thus, we will attempt to record information which can be used to answer
questions that any of these potential users might have. In fact, [claim that the same information is
* necessary to answer any of them, and that only their viewpoint differs. The information nceded is:
(a) that a transformation was attempted at some point in the code, and whether or not it success-
fully applied;

(b) what any piece of code looked like following any transformation;

(c) things known to be true (or false) at any given location in code; '

(d) how the information in (c) came to be known;

(¢) for each individual transformation: what must be true to enable successful application
(prercquisites), and what is true following a successful application.

From this information, 1 claim we can derive the answers to any of the questions that a user
might ask (which have been suggested so far).

2.5. The Design

I believe that any mechanisms for recording what goes on during the transformation process
should be independent of those mechanisms which perform the transformations. That is, an ac-
countable transformation system can be viewed as two separate processes: one behaves just as cur-
rent transformation systems do in that it decides when and where to perform the transformations,
then does so; the other process stands by and quietly watches, taking note of all such decisions. The
advantage of this approach is that alrcady extant transformation systems can be made accountable
with less hassle, and furthermore, the division of labor simplifies the task of constructing an ac-
countable system. I will occasionally refer to the first process as the “transformational component”,
and to the second as the “accountable component”. As we will see in more detail later on, the
accountable component will be further divided into two sub-components: a recording element and
aquery clement.

The two processes viewed together appear to the user as a transformation system that is aware
of its own actions, and which can then report to the user what it did, step by step. An interesting
variation of this approach might be a system that reported what it did as it did it, rather than
waiting until the end to provide the user with information. Although this method has some merit
and deserves to be studied, its one clear disadvantage is that it gives the user less choice about what
information to receive. Though he might have the option before the process began to specify what
types of decisions to be told about, it would be difficult for him to ask for other information based
on what he saw during the process. Furthermore, if the program to be transformed is very large,
or the accountable system is very slow, the user may not wish to “wait around” for the information

§25.1 _ The Design 23

he requested to be displayed. Instead, while the transformation system is cooking, the programmer
- can go off and have a cup of tea. Upon their mutual return, he may ask for whatever information
he desires, decide on the basis of that information what else he wishes to see, then immediately
study that information as well. One reason to favor having a “real-time” report would be jif on the
basis of information reported, the user could then opt to change the course of the transformation
process. This feature is beyond the scope of our discussion of an accountable system, though T will
venture to suggest that such decisions perhaps should be automated; that is, they should be part of
the transformation system itself,

For a system to account for its actions (and those actions are the transformations it does or
does not successfully perform), it must keep some sort of record of what it is doing as it executes,
and be able to later access that record in a meaningful way. We must therefore
(1) collect and record the relevant information in some rcasonable fashion, and
(2) access, process, and return that information to the user.

These tasks will be performed respectively by the recording and query elements of the accountable
component. :

25.1. The Recording Element

Let’s again go over the information we decided in section 2.4 to collect;
(a) We must record that a transformation was attempted at some pomt in the code, and whether or
not it successfully applied.

The time to collect this information is clearly at the time of transformation application. 1
have not yet discussed exactly what constitutes a transformation, nor what its inputs and out-
puts are. It seems reasonable to suggest, however, that one thing a transformation might be
responsible for returning is a flag as to whether or not it applied. This information can then be
recorded by the recording element.

(b) We must record what any piece of code looked like following any transformation.

This simply means we must keep track of all the intermediate results of transformation. We
can’t “let go” of an old cxpression when a transformation applies which replaces that expres-
sion with some equivalent one. The time to update this information is, again, at the time of
transformation application, but only when a transformation applies successfully, since only at
such times will expressions change. We will assume that each successful transformation returns
not only a flag signifying that it applicd, but the results of its application as well.

(c) We must record things known to be true (or false) at any given location in code.

By this I mean information relating to context. For cxample, code which is exccuted follow-
ing the true branch of a test for x=0 may assume that x=0 is truc. Recording this information
is complicated by the fact that, for any given point in code (and there are many!), what is true

24 CHAPTER TWO) DESIGN 01° AN ACCOUNTABLE SYSTEM

at one time may not be true at another, because the results of transformation application may
change the context of an expression. We will discuss this issue in more detail in Chapter Three.
For now, suffice it to say that there will be an initial context to record, and then some updating
necessary as each transformation applies.

(d) We must record how the information in (c) came to be known.

This consitutes a justification. Let us say some transformation t applies to a picce of code.
Its application depends on some truth p. Although upon being quericd as to why t applied,
the system might return p, we might also wish to understand why p is true. Thus cach truth
must also have a justification. Recalling the example given above in which x=0 was true, a
transformation using that information would be responsible for reporting that it did. [f we then
needed to be reminded why x=0 was true, we should be able somehow to obtain the reply
“This code is part of the true branch following a test for x=0", and
then perhaps even a pointer to that test. The time to collect this information is at the time that
pis recorded. That is, every truth must carry with it a justification; one can not be recorded
without the other.

(c) For each individual transformation we must record (1) what must be true to enable successful
application (prerequisites), and (2) what is true following a successful application.

This is static information and only necds to be recorded once. It is associated with a transfor-
mation (as opposed to a section of code), and should be accessible given only the name of a
transformation. It is in some sense part of the description of a tranformation, though discussion
of how the information is represented will be postponed until Chapters Three and Four.

We may now summarize the task of the recording clement of the accountable system.
Transformations must include in their description a set of input and output assertions, available
upon request. Before any transformations apply, a set of truths for each picce of code (dependent
on its context) must be collected and recorded along with their justifications. After each transfor-
mation is attempted, it must provide to the recording clement the following information:

(1) what code it attempted to transform;

(2) whether or not it was successful;

(3) if it was successful, the resultant code.

The recording clement must represent this information in an efficient and accessible manner.

Notice that, in all our discussion, no mention has been made of how a transformation comes to
apply. Obviously onc succeeds if and only if all of its input prerequisites are met, but cven before
that can occur a transformation must be attempted in the first place. The mechanism which controls
this process is independent not only of the recording clement, but of the accountable component
as a whole. It constitutes the tranformational component of the system, and need not be aware at -
all that its actions are being monitored. Similarly, recall that [consider the accountable component
mercly a passive observer of the transformation process implemented by the transformational com-

§25.2 ' The Design . 25

ponent; it is not concerned with nor responsible for decisions made by that component. This is not
the contradiction it appears to be. For although, when viewed as two components, one works and the
other only blindly records, when they are viewed as one system, as far as the user is concerned that
system accounts for its actions.

25.2. The Query Element

As a result of recording all of the above information, we have the ability to provide not just
a fancy trace of all the transformations performed, but an historical “slice” of information about
any subtree of the program. That is, if we imagine the set of intermediate program trees which
represent the cntire program after each transformation has applied, the accountable component
(via the query clement) can “cut across time” (so to speak) and rcturn only the information relevant
to changes made in a particular subtree of the program. For example, suppose a programmer
expected a certain function call to be replaced by its argument. He should be able to somchow
“point” to the spot in code and inquire as to whether this substitution occurred and why or why
not.

From grammar school days, we remember that all complete sentences must have both a sub-
ject and a verb. The subject may be implied, as in the command “Go” which expands to “You go”.
Or the verb may be implied, as “I”” in answer to the question “Who did it?”, which expands to “I
did it”. Similarly, when one asks a qixestion, both a subject and a verb must be present, expressed,
or implied. In the query element, we need a mechanism for “pointing” to the subject of our query,
and a mechanism for specifying the action or verb we wish to invoke.

25.2.1. Pointing to the Subject

If the subject is a transformation, we may refer to that transformation by its name. A transfor-
mation never changes (if it does, it is no longer the same transformation) and is therefore casy to
point to.

But now consider the problem if the subject is a piece of code. We have no easy way to point
to it, unless the code is a function definition, in which case we can refer to it by name. To point to
a picce of a function definition, we must describe that piece: “The first predicate of the conditional
clause which is the body of the function definition FO0™ or “The second argument to the function
call BAR where-that call-eccurs in the call to BAZ in the value returned from the second clause
of the conditional expression which is bound to the dummy variable TREE in the LET statement
which forms the body of the function definition of QUUX.” That sounds pretty awful; would you
like to sce it? '

(DEFUN QUUX (A B C)

2 CHAPTER TWO , DESIGN OF AN ACCOUNTABLE SYSTEM

(LET ((TREE (COND ((NULL A) NIL)
(T (BAZ (BAR B (CAR A)))))))
(COND ((NULL TREE) (LIST A B C))
(T (CONS C TREE)))))

That’s really not so bad, is it? The problem is that even to point to the code (CAR A) in the trivial
definition above requires a lot of blabbering. Another method might be simply to say “The first (or
hth’) occurrence of the call (CAR A) in the definition of QUUX™, but there are cases when having
to count the occurrences of the desired expression (or even giving the desired expression) would be
more complicated than referring to the structure of the context. For example, consider a lengthy
function definition in which you wished to point to a certain conditional expression. There very
well might be a dozen conditional expressions in the definition, and you would have to look for and
find them all until you came to the one you wanted in order to know the valuc of n. Not that the
first way is easier; both methods are painful. A simple solution to the problem of pointing would be
to use a graphics terminal equipped with a mouse; however, 1 don’t want this system to have to rely
on those.

Another complicating factor arises if we decide to ask about some piece of code that only
occurs in an intermediate version of the program. That means that to specify the code we wish to
use as the subject of our query, we must not only describe the context of the parse tree it occurs
in, but specify the time at which that tree occurred. What constitutes fime in our transformation
system? _ ~

Since the passage of time around some object can only be detected by the observation of
change in that object, we must consider what might bring forth changes in the argument program.
The successful application of a transformation ccrtainly does, though an unsuccessful attempt does
not change the argument program. Assuming that the system will operate on a sequential machine
(as opposed to the complexities involved in dealing with parallel processes or paralicl machines),
then defining a unit of ime to be the application of a transformation seems appropriate. Later
we will see whether this definition is appropriate when dealing with unsuccessful transformation
attempts.

We can now label each unit of time. The input program is labelled version 0, and if there were
n successful transformation applications, then the resultant output program is version n. For any k
such that 0 < k < n, version k is the program produced by the first k transformation applications.
Or, said another way, version k of the program is the result of applying the kth transformation to
version k — 1 of the program.

This description of time is useful not only in the the query element, but in the recording
clement as well. That element will need a means of distinguishing the record of one version from
the rccord of another.

But now back to the problem at hand: pointing to a particular picce of code. We know we

§2.5.2.2 ' , The Design 27

can specify the version of the tree we wish used as a search domain by giving the correct numerical
label. That can be a big problem if we don't know at what time(s) the tree was extant!

To limit the possibilities, Iet's constrain them. First, we will assume that the programmer is
most familiar with the version of the program he wrote. Thus, if at any time he wishes to ask about
a particular piecc of code, most likely he mentally sees the subject code as it occurs in version 0 of
the program and is able to describe the location of the code he wishes to ask about as it apbcars
in that version. Therefore we state that the initial search for a piece of code to point at will be
made using version 0 of the program. Secondly, given the tree to use as 4 search domain, in order
to specify that subtree of it to which one wishes to point, one first specifies the relevant function
definition name (QUUX in the cxample above). Then the programmer must somehow direct the
query clement to the desired picce. Since LISP lends itself so readily to the use of tree structures, 1
have decided (for now) that the most painless way of referring to a picce of code is to say “down”,
“over”, or “up” until the correct picce is pointed at. Thus, to point at (CAR A) in the example
above, I would give the function name QUUX, then the string of commands “down, over, over,
over (now it’s pointing to the LET statement), down, over, down, down, over (now it’s pointing -
to the first conditional expression), down, over, over, down, over (now it’s pointing to the call to
BAZ), down, over, down, over, over (and now it’s pointing to the call (CAR A)).” Now that also
sounds painful, but if a cursor responds immediately to each command by jumping in front of the
currently pointed to expression as displayed on the terminal screen, then it’s not so bad. Once we
discuss the implementation of our system, things may get casier, but for now we will scttle for this
method of code specification.

25.2.2. Specifying the Action

Specifying the action to perform or some piece of information to return about the subject is
considerably easicr than pointing to the code. If we imagine a menu of available information, all
one must do is sclect an item from that menu, and the desired dish of information should be served
immediately. Designing the menu to meet the needs of the user is, however, an important and non-
trivial task. I have discussed already (in section 2.4) the information we have decided to provide the
user. Let's now categorize this information further into some sort of draft menu. Whether or not
providing this information is actually feasible will be discussed in Chapter Four.
Given a transformation as the subject of a query, we can ask the following:
¢ (n) number of times attempted — Returns a number which represents the number of times this
transformation was attempted.

e (+) positive attempts — Returns a number which represents the number of times this transfor-
mation successfully applied. '

¢ (-) negative attempts — Returns a number which represents the number of times this transfor-

28 CHAPTER TWO ' DISIGN OF AN ACCOUNTABLE SYSTEM

mation failed to apply.

¢ (<a number>) some number n — Prompts for either a + or a -, then returns the picce of code
which was the argument to the transformation the nth time it succeeded or failed, respectively.,

e (i) input assertions — Returns those truths which are prerequisites for application of this trans-
formation.

¢ (0) output assertions — Returns those truths which will be changed as a consequence of the
successful application of this transformation.

Given a piece of code as the subject of a query, we may ask the following questions:

¢ (+) next change to subject tree — Returns the piece of code as it appears following the transfor-
mation which next applied to it at the current level (as opposed to one of its subtrecs). If no
transformation applied at that level, it says so and returns the same picce of code.

e (-) previous change to subject tree — Returns the piece of code as it appears previous to the
transformation which last applied to it at the current level. If no transformation has applied at
that level, it says so and returns the same piece of code.

¢ (n) next version of subject tree — Returns the same tree as it appears following the transforma-
tion which next applied to any subtrec of the subject tree. If there is no change, it says so and
returns the same piece of code.

e (p) previous version of subject tree — Returns the same tree as it appears previous to the trans-
formation which last applicd to any subtrec of the subject tree. If there was no change, it says so
and returns the same piece of code.

e (1) last version of subject tree — Returns the final version of the subject tree, as it appears in the
output of the transformational component.

¢ (v)current version of subject tree — Returns a number.

o (x) transformation which created current version of subject tree — Returns the name of the
transformation.

¢ (t) truths known — Returns a list of the things known to be true for subject tree at the current
point in time, and for each truth, its justification.

e (s) sct version — Prompts for some number n and returns the subject tree as it appears in
version n,

2523, An Example

Given this menu of information, let’s dredge up the function call used back in Chapter One
and sce if our new accountable component with its recording and query clements gets us anywhere.
Our input to the transformation system (used with some canned set of optimizing transformations)
is the following function call:

§2523 _ The Design 29

(APPEND (MYMAPCAR (FUNCTION FQO) ‘(A B C)) (BAZ Z Z))

For now we will assume that the system already knows the definitions of MYMAPCAR and BAZ. We
set the query clement to point to version 0 of the call to APPEND. Now what? We can ask to see
what this tree looked like at any point in time (version 0 through version n where there were n
total transformations applied). The system when it is through transforming will tell us how many
transformations applied, that is, the “time” at the end of the run, if we enter the “1” command.
Let’s say there were 10 applications. Then we ask to see version 10. The fully optimized code
returned by the system looks like:

(CONS (MYFUNCALL (FUNCTION FOO) ‘A)
(MYMAPCAR (FUNCTION FO0) ’(B C)))

Now we start scratching our respective heads. First, we are curious to learn where the CONS came
from, so we enter “~” to see what was here before.

(APPEND (CONS (MYFUNCALL (FUNCTION F00) ‘A)
(MYMAPCAR (FUNCTION FOO) ‘(B C)))
NIL)

“Ahhh...” we say, “the call to APPEND was simplified; it’s second argument was NIL, so the first
argument was returned.” And in fact, we can get just that answer if we ask for the name of the
transformation that applicd, and then, using that as our subject, inquire as to its input assertions.

We're pretty sure we understand how the first argument to APPEND came to be, but we can’t
figure out the NIL. So we give the correct combination of “downs” and “overs” to arrive at the
NIL, which in this case would be “down, over, over.”

NIL

Now we enter “~" to learn what this tree was before it was NIL.

(COND (T NIL))

“

That wasn’t incredibly helpful; let’s try entering *“~” again.

(COND (T NIL)
(T (LIST Z Z)))

The code begins to look familiar, but obviously what we want is to discover how it comes to believe
the first test will always return T. Let’s “down, over, down™ our way to the first predicate and enter

% __”"”
-
.

(EQ Z 2)

30 CHAPTER TWO) DESIGN OF AN ACCOUNTABLE SYSTEM

Now it's all clear! Since we called BAZ with the arguments Z and Z, the first test in its definition
will always be true. But let’s say we didn’t remember the call to BAZ (maybe you don’t!). We can
back up to the conditional expression (“up, up”) and ask to sce what it wasin version 0.

(BAZ 7 1)

Now we cnter “n” to sec what happened to this tree next.

((LAMBDA (X-0 Y-0)
(COND -((EQ X-0 Y-0) NIL)
(T (LIST X-0 Y-0))))
Z1)

If we ask for the transformation which produced that, it would say Procedure integration.
We can live with that. The strange dummy argument names were created (that's “gensymed” for
LISP hackers) to avoid variable name conflicts. So now what? [f the programmer still doesn’t
understand, he can continue to ask for information until he does. We can sce at this point, however,
that when the actual arguments are substituted for the dummy arguments (Z for X-0, and Z for
Y-0), that the equality test will change to (EQ Z Z), which explains the NIL we had way back
up there.

Although I wish to concentrate on the issues involved in implementing an accountable source-
to-source transformation system, we must first discuss the transformation system it will work with,
As you may recall from section 2.5, the transformational component and the accountable com-
ponent are to be independent of each other; the transformational component is not aware of the
existence of the accountable component, and though the accountable component is aware of the
transformational component, it is not responsible for the decisions that the transformational com-
ponent makes. If I werc interested in discussing issues of the implementation of transformation
systems, then I could ignore the issue of accountability (and indecd, so far everyone clsc has
ignored it). However, since the accountable component both obscrves the actions of the other
and cxpects certain information to be made available by the transformations, before describing its
implementation 1 will first discuss the transformational component of the accountable system.

Chapter Three

The Transformational Component

HE TRANSFORMATIONAL COMPONENT of the system will be implemented as simply and
. straightforwardly as possible so that we may concentrate on the more interesting issue of
accountability. Though source-to-source transformation systems conceptually operate on the text
of a high-level language source program, internally they typically manipulate a non-textual repre-
sentation, similar to (or often identical to) a parse tree of the program. The use of this internal form
makes the system’s.access to pieces of the structure more efficient (as opposed to having to re-parse
. the program every time the system needs to refer to a part-of it). In order to avoid having to deal
with parsing and internal representation, I made several decisions. First, I chose to transform LISP
programs only. Since the LISP parser is made available to the user via READ, I didn’t have to write
my own. Second, I chose to implement the transformation system in LISP. And third, I decided to
hide decision number one from decision number two. Which leads us to the subject of information
hiding.

3.1. Information Hiding

Information hiding is the separation of data definition from program definition. In the case
of the transformation system, it means not lctting the implementation realize that it is transforming
LISP code. Instead, whenever it wishes to access a picce of data, rather than obtaining that piece
directly it calls a procedure to do it. That is, there are specific data selection and data constructing
procedures which are called whenever data is manipulated. For example, suppose that we have

31

32 CHAPTER THREE THE TRANSFORMATIONAL COMPONENT

(DEFUN FCALL!FUNC (FUNCTION-CALL)
(CAR FUNCTION-CALL))

(DEFUN FCALL!ARGLIST (FUNCTION-CALL)
(CDR FUNCTION-CALL))

(DEFUN FCALL!FIRST-ARG (FUNCTION-CALL)
(ARGS!ARG (FCALL!ARGLIST FUNCTION-CALL)))

(DEFUN FCALL!SECOND-ARG (FUNCTION-CALL)
(ARGS!ARG (ARGS!RESTARGS (FCALL!ARGLIST FUNCTION-CALL))))

TABLE 3-1. Selector functions for the Function Call structure type.

a function call which is bound to the atom FCALL, and that we wish to select its first argument.
In LISP, a function call is represented as a list, with the operator being the first element and the
operands following. Thus, the first argument of a function call would be the CADR of the list.
However, instead of writing (CADR FCALL) to obtain the first argument though, we call the
procedure FCALL!FIRST-ARG, defined as:

(DEFUN FCALLIFIRST-ARG (FCALL)
(CADR FCALL))

If the representation of a function call ever changes, we only need to rewrite the relevant data
sclecting and constructing functions. The program itself should remain unaffected. We can think
of a function call as a particular data type, and require that no dircct reference be made to any
instance of that type except via specific operations defined for that type only. Similarly, we define
a list of arguments to be a separate type also, hiding the representation of argument lists from
the system. We write the function FCALL!ARGLIST which takes a function call and returns the
list of arguments, and the function ARGS ! ARG, which takes an argument list and returns the first
argument. The definition of FCALL!FIRST-ARG which uses these two new functions is given in
Table 3-1. In addition, we can define predicates on these data types which test their state. For
example. by calling the function ARGS I NULL?, we can ask whether a list of arguments is empty or
not. An extended version of ARGS ARG (shown in Table 3-2) uses this predicate to make sure that
no argument list is empty.

The advantages of information hiding are that it:
e allows'greater flexibility in choice of data representation,
e cnhances sclf-documentation,
e cncourages one to consider the data at an abstract level, apart from program specification, and

o facilitates proving program correctness.

§33 ' Internal Form 33

;i3 Selectors
(DEFUN ARGS!ARG (ARGLIST)
(COND ((ARGS!NULL? ARGLIST)
(ERROR /|Arglist is null -- ARGS!ARG| ARGLIST))
(T (CAR ARGLIST))))
(DEFUN ARGS!RESTARGS (ARGLIST)
(COND ((ARGS!NULL? ARGLIST)
(ERROR |Arglist is null -- ARGSIRESTARGS| ARGLIST))
(T (CDR ARGLIST)))) '
;3; Predicates
(DEFUN ARGSINULL? (ARGLIST) (NULL ARGLIST))
s3; Comnstructors
(DEFUN ARGS!ADD-ARG (ARG ARGLIST) (CONS ARG ARGLIST))

(DEFUN ARGS!ADD-ARGS (ARGS ARGLIST) (APPEND ARGS ARGLIST))

TABLE 3-2. Operations for the Argument List structure type.

The disadvantage of this strategy is that there is extensive overhead in the additional
procedure calls, causing exccution time to shoot way up (by about 300 per cent in one of my
programs). However, this can be overcome through use of a set of optimizing transformations.
Transformations can be written which search for calls to the selector and constructor functions and
replace these calls by the appropriate code. We can have our tca and drink it too. In addition, trans-
formations can be written to climinate duplicate tests that may arise as a result of such procedure
integration. What if the.call (FCALL!FIRST-ARG FCALL) was made at a point in code where
it was already known that the argument list of FCALL was not empty? The call to ARGSINULL?
in the bod); of the FCALL ! FIRST-ARG would be redundant; a set of optimizing transformations
could realize this and eliminate the redundant test. Clearly, information hiding (data abstraction)
and program transformation go hand in hand. For more of my views on the subject of information
hiding, sce [Kerns 1977} and [Steele 1980].

3.2. Internal Form

By using this information hiding technique, I have essentially hidden the internal form of the
argument program from the transformation system. This will be important later, when I augment
the internal form of the argument program, using it to storc more than just picces of program text.
At that point having special functions to access pieces of it will simplify the task. For now, however,

34 CHAPTER THREE THE TRANSFORMATIONAL COMPONENT

it is safe to think of the internal form of the LISP program as the LISP program itsclf. Some sample
accessing and constructing functions are shown in Table 3-1 and Table 3-2.

3.3. Control

The “control” of the transformational component is that process which models a human pro-
grammer attempting to optimize his code. He may have a catalog of transformations at his side,
but without the knowledge of how to apply them they do him no good. He must recognize that
a transformation is applicable to his code, understand the possible interactions between multiple
transformations to a single piece of code, and be able to verify that a transformation is valid. Two
of the most difficult problems in automating this process are (1) transformation ordering and (2)
information gathering [Loveman 1977]. By “transformation ordering,” 1 mean the decision of when
to apply which transformation where. "Information gathering” refers to the ascertaining of various
truths about pieces of code.

3.3.1. Transformation Ordering

Given the parse tree of an argument program and a set of transformations to apply to that pro-
gram, the order in which those transformations are applied may determine the resultant program
tree. For example, suppose I have the following set of two transformations:

(1) (APPEND <X> (APPEND <Y> <Z>)) => (APPEND <X> <Y> <2>)
(2) (APPEND NIL <X>) => <X>
"I wish to transform the program;

(APPEND FOO (APPEND NIL BAR))

If T apply transformation (1) first, the resultant program is:

(APPEND FOO NIL BAR)

Then transformation (2) will fail to apply. If, however, I apply transformation (2) first, the result
is:

(APPEND FOO BAR)

Then transformation (1) fails to apply. In the first case (APPEND FOO NIL BAR) is the result,
and in the other, (APPEND FOO BAR). Hence, the order of transformation affects not only which
transformations will apply, but the resultant code as well.

§33.1.1 ~ Control 35

A previous system of mine dealt with this problem by tightly coupling the transformations
with the control. The system knew exactly when a transformation was likely to apply because the
successful application of one transformation would suggest others that were lii(ely to apply next.
The transformation system made only one pass over the program tree; it took the tree apart on
the way down, gathering information as it went, then put it back together “better” on the way up.
One could not really point to any piece of system code and say “This is a transformation”; the
so-called transformations had lost their identity by being so tightly bound up in the system. The
consequences of this approach were that transformations could not be added, deleted, changed, or
temporarily turned on or off, without much difficulty and groveling around in the system. Indced,
there is some question as to whether this sort of system could correctly be labelled a transformation
system. It was rather merely an “optimizing pre-processor.”

The transformations in our system must be identifiable; in order to record the information
discussed in section 2.4, we have to know when a transformation is attempted, what its prerequisites
for application are, and whether it fails or succeeds. Therefore, the current system instead separates
the control structure from the transformations. Furthermore, the notion of interactive optimization
involves giving the programmer the ability to turn certain transformations on or off and to choose
the set or sets of transformations he wishes applied in the first place. Ideally, he should be able
even to write his own transformations. Clearly he can do this only if this separation of control and
transformation is maintained. Hence, we must severely limit the knowledge the control structure
has of the transformations it will use.

Given a set of identifiable transformations, independent of the control structure, how are we
then to control their application? We must order not only the transformations to be applied, but the
subtrees to which they will apply as well. For those two orderings, we must then choose a method
of application. We will discuss each of these three decisions in order.

3.3.1.1. Transformations Within a Set

Obviously we want to choose an ordering for the transformations within the transformation set
which will produce the most desirable result, Consider applying the transformation set

(1) (<arithmetic op> <args—1> 0 <args-2>) =>
(<arithmetic op> 0 <args-1> <args-2>)

(2) (= 0 <args>) => 0

(3) (+ 0 <argsd) => (+ <args>)

@) (+ <arg>) => <arg>

to the program:

(+7 (s 530))

36 CHAPTER THREE THE TRANSFORMATIONAL COMPONENT

Input Transformation Result
(+7(*530)) 8] (+7 (*035))
(+7(*035)) 1)) fails '
(+7 (*035)) (2 (+70)
(+ 7 0) Q) (+ 07)
(+ 07) 1) fails
(+ 07) (2) fails
(+ 07) 3) (+7)
(+7) 1) fails
(+7)) fails
(+7) 3) fails
(+7) 4 7
7 1) fails
7 2) fails
7 A3) fails
7 4) fails
FINISH
TABLE 3-3. Markov algorithm ordering rules demonstrated.

Then neither (2) nor (3) will apply until (1) does, but if (1) applies followed by (2), (3) will not
apply unless (1) applies again. ! One way to ensure that every transformation is applied as often as
necessary is to use the ordering rules of Markov algorithms. If these rules are used in the above
example, we obtain the results given in Table 3-3. The number of attempts can be increased
by changing the order of the transformations in the set, but for this example, the end results
would be the same. We of course want to minimize the attempts for reasons of efficiency, but
we can derive some comfort from the fact that iterating over the transformations solves some of
our problems. Markov algorithm rules are only one method of iteration. We could specify that a
transformation is to be applicd over and over until it fails, without returning to the top of the list
of transformations between. For example, the program (+ 3 0 4 0 5 0) would be changed
to(+ 00 0 3 4 5) after three successive applications of (1), then to (+ 3 4 5) after three
successive applications of (3). Or, instcad of requiring the control structure to direct the iteration
of transformation application, we could place the burden on the transformations themselves. That
is, thosc transformations which need to be iterated would be responsible for iterating within them-
selves.

1. Note that arithmetic optimization like this is very tricky. Round-off error or even overilow may be affected by
order of evaluation and/or association. Furthermore, in FORTRAN, I 4+ 0.0 may be used to change the type of I,
Similarly, in MaclISP. (PLUS (FIXNUM-IDENTITY 1) 0.0) is the same as (FLOAT I).

§33.1.2 : Control 37

Iteration of transformations solves the problem of the application of a transformation resulting
in code which can be changed by a transformation that has alrcady applied. There is still the
problem in which the successful application of one transformation prevents the successful applica-
tion of another, as was illustrated in the APPEND example given ecarlier. One solution to this
problem is to supply enough transformations to cover all the cases which might arise as a result of
previous transformation applications. That is, we would supply a third transformation:

(APPEND <X> NIL <Y>) => (APPEND <X> <Y>)

This solution can be carried to extreme though, supplying many special purpose transformations
with no general utility at all. (Why not simply write the one transformation which will apply to the
entire program and produce the desired result?) Clearly, some care needs to be taken when order-
ing transformations within a set; there is no system of application that is guaranteed to compensate
for thoughtless ordering on the part of the programmer.

Let me just comment briefly on one other ordering strategy, where the transformation which
applies is responsible for suggesting the transformation(s) to try next. That is, the order of applica-
tion is determined dynamically. There certainly is much to be said for this method, but unless it
is done in such a way as to guarantee that all those transformations which should be applied are
reachable, it should only supplement the methods we have discusscd above. Whether one specifies
the transformation which is to be tried next by ordering them within a set or by linking them within
themsclves, human thought must be used. In this system, I have chosen to simplify the control
structure by making the transformations responsible for their own iteration, and ordcrihg them by
means of their placement in a transformation set.

3.3.1.2. Subtrees of the Parse Tree

As well as ordering the transformations within the set, we must choose an order in which to
transform pieces of the argument program. Several possible orderings are: the lexical order of
the input text, the order of evaluation of the input program, or a left-most, depth-first tree order
[Geschke 1972). The lexical order of the input text is not a good choice. In LISP, the order of
evaluation is with minor exceptions, a left-most, depth-first tree order. There are a number of

good reasons to select the order of evaluation of the program as the order of transformation of the
 program: ’ |
¢ Optimizing a program can be thought of as partial e¢valuation of the program.
o Ifit can be determined that a particular subtree would never be evaluated then similarly there is
no need to transform it. . '
o Since LISP recursively evaluates the arguments of an expression before applying the operator
to those arguments, a tranformation which applies to some subtree can assume that its subtrees

38 CHAPTER THREE THE TRANSFORMATIONAL COMPONENT

(DEFUN SEXPRIEXPAND (SEXPR ENVIRON FTLIST)
(COND ((ATOM? SEXPR) SEXPR)

((COND? SEXPR) (COND!EXPAND SEXPR ENVIRON FTLIST))
((DEFETTE? SEXPR) (DEFETTE!EXPAND SEXPR ENVIRON FTLIST))
({(FCALL? SEXPR) (FCALL!EXPAND SEXPR ENVIRON FTLIST))
((ANDEXPR? SEXPR) (AND!EXPAND SEXPR ENVIRON FTLIST))
((OREXPR? SEXPR) (GR!EXPAND SEXPR ENVIRON FTLIST))
((QUOTE? SEXPR) SEXPR)
(T (ERROR ‘|Unparsable s-expression - EXPAND| SEXPR))))

TABLE 3-4. Main control function for the transformational component.

have already been transformed.

“To better illustrate this last point, consider again the APPEND cxample. If we transform subtrees

in the order in which they will be evaluated, then the transformations will apply to the outer
APPEND only after they have applied to the inner one, So regardless of the order in which those
transformations occur within the transformation set, the transformation which simplifies the inner
call, (APPEND NIL BAR), will always apply before the transformation which simplifics the outer
call, (APPEND FOO (APPEND NIL BAR)).

3.3.1.3. Methods of Application

Though we have discussed the ordering of transformations within a set and selected an order
for application to subtrees of the parse tree, we must still decide on one of the following two
methods of application:

(1) Given a set of transformations and a program tree, apply each transformation in its turn to
all the subtrees in the tree. First apply one transformation everywhere, then eliminate it,
then apply the second transformation everywhere, climinate it, and continue until the set of
transformations is empty.

(2) Given a set of transformations and a program tree, apply all the transformations to each sub-
tree of the tree in its turn. First apply all the transformations to the first subtree in the tree,
then move on to the next subtree and apply all the transformations possible there, and continue
until every subtree has been transformed. '

Our transformation system uscs method (2), for the following reasons:

Since we have decided to apply the transformations to the subtrees of the program’s parse
tree in the order that those subtrees will be evaluated, we can model the control structure after the
design of a LISP interpreter. Given some s-cxpression to evaluate, the interpreter will first deter-
mine the type of structure it has hold of. LISP has a number of special forms [Pitman 1980], and
all of the arguments in these forms are not necessarily evaluated. For example, the arguments to
a conditional expression arc evaluated in a special way, as arc the arguments to AND, OR, QUOTE,

§33.13 . ' , : Control 39

ATOM an atom
COND a conditiona) expression
CLAUSE “argument” to a conditional expression

*DEFETTE® a function definition

(may be an internal lambda expression, or a MacLISP DEFUN , or whatever)
FCALL® a function call

(may be built-in or user defined)
FUNCNAME the name of a function

AND a conjunct.
OR a disjunct
QUOTE® a quoted expression

TABLE3-S. Structure types.

(DEFUN AND!XFORM (ANDCELL ENVIRON FTLIST)
(XFORM ‘AND!TRIM ANDCELL (LIST))
(XFORM /AND!SIMPLIFY ANDCELL (LIST))
(XFORM 'SEXPR!FORM-BVAL ANDCELL (LIST ENVIRON FTLIST)))

(DEFUN ATOM!XFORM (ATOMIC-EXPR ENVIRON FTLIST)
(XFORM /SEXPR!FORM-BVAL ATOMIC-EXPR (LIST ENVIRON FTLIST)))

(DEFUN COND!XFORM (CONDCELL ENVIRON FTLIST)
(XFORM /COND!TRIM CONDCELL (LIST ENVIRON FTLIST))
(XFORM /COND!SIMPLIFY CONDCELL (LIST))
(XFORM /SEXPR!FORM-BVAL CONDCELL (LIST ENVIRON FTLIST)))

(DEFUN DEFETTE!XFORM (DEFETTE ENVIRON FTLIST)
(XFORM /SEXPR!FORM-BVAL DEFETTE (LIST ENVIRON FTLIST)))

TABLE 3-7. Transformation sets for some structure types.

.

etc. Just as the interpreter checks the type of expression it is to evaluate, the transformation system
looks at the type of the subtree it is to transform. Based on that type, the system will see that the
arguments are correctly transformed (that is, the subtrees of the subtree it is dealing with), then
will call those transformations which can apply to the type of the current subtree. 1 have categorized
the possible s-expressions into different structure types, and divided the transformations into a
separate set for each LISP structure type. That way, once the subtrees of an expression have been
transformed. the expression itself is transformed by the sct of tranformations which apply to its
type. The control mechanism for the transformational component has limited knowledge of the
tranformations it applics: it only knows that for cach structure type there is a different set of
tranformations, and will apply the correct set. The main control mechanism is implemented by the
function SEXPR!EXPAND, listed in Table 3-4.

40 CHAPTER THREE THE TRANSIFORMATIONAL COMPONENT

(DEFUN AND!EXPAND (ANDCELL ENVIRON FTLIST)
(AND!PREDICATE ANDCELL)
{ANDARGS!EXPAND (AND!ARGLIST ANDCELL) ENVIRON FTLIST)
{AND!XFORM ANDCELL ENVIRON FTLIST))

(DEFUN ANDARGS!EXPAND (LOGARGS ENVIRON FTLIST) ; Slave function to AND!EXPAND
(COND
((ARGS!NULL? LOGARGS) NIL)
(T (LET ((FIRST-ARG (ARGS!ARG LOGARGS)))
(SEXPRIEXPAND FIRST-ARG ENVIRON FTLIST)
(COND
((TRUE? FIRST-ARG)
(ANDARGS ! EXPAND (ARGS!RESTARGS LOGARGS) ENVIRON FTLIST))
((NULL? FIRST-ARG)
NIL) ;Rest logargs not expanded since won’t ever evaluate
(T (ANDARGS!EXPAND (ARGS!RESTARGS LOGARGS)
(ENVIRECORD-TEST ENVIRON FIRST-ARG T FTLIST)

FTLIST))))))

(DEFUN ATOM!EXPAND (ATOMIC-EXPR ENVIRON FTLIST)
(ATOMIXFORM ATOMIC-EXPR ENVIRON FTLIST))

(DEFUN COND!EXPAND (CONDCELL ENVIRON FTLIST)
(CLAUSES!EXPAND (COND!CLAUSES CONDCELL) ENVIRON FTLIST)
{COND!XFORM CONDCELL ENVIRON FTLIST))

(DEFUN DEFETTE!EXPAND (DEFETTE ENVIRON FTLIST)
(DEFETTE!PREDICATE DEFETTE)
(SEXPR!EXPAND (DEFETTE!BODY DEFETTE) ENVIRON FTLIST)
(DEFETTE!XFORM DEFCTTE ENVIRON FTLIST))

TABLE 3-6. Control functions for some structure types.

Every LISP structure that might be transformed must be given a transformation set and an
_opportunity to apply it. Though it is possible that someone might write a transformation meant to
apply to the clause of a conditional expression, for example, one usually thinks of such a clause as
part of the larger «COND# structure. rather than a structure type itself. Rather than put an limita-
tions on transformations, however, I chose to give all such “substructures” structure types of their
own. The structure types I have defined can be seen in Table 3-5. Not all of them are recognized
by SEXPR!EXPAND, since some of them are not evaluable independently of their superstructure.
Each structure type has its own control function. Some of these control functions simply call the
appropriate control function for its structure’s subtree, followed by a call to the transformation
sct (see Table 3-6 and Table 3-7), but a few types need slightly more processing. The «FCALL=*
structure type, for example, consists of a function and an argument list. The function may be either
be the name of a function (and thus a special atom of type *FUNCNAME), in which case it is a
candidate for procedure integration, or it may be an internal lambda definition. Controlling the
transformation of internal lambda definitions can be a bit tricky, especially when it comes to keep-
ing the information which has been gathered straight concerning the changes in variable names
brought about by lambda binding. But that is a subject for the next section.

§332 Control 41

33.2. Information Gathering

Information gathering refers to the ascertaining of those truths about a piece of code which
form its context. Local transformations such as the rules (CAR (CONS <X> <Y>)) => KX
and (EQUAL <X> <X>) => T don’t need to know anything about the context of the code they
are transforming [Bagwell 1970]. But global transformations do; their validity depends on the
nature of the surrounding code [Schaefer 1973]. Since we have decided to transform expressions in
the order in which they are evaluated, the transformation system will have walked down the parse
tree as far as the expression it is currently transforming. That means it can be aware of the context

~of an expression by the time it gets to the expression, and merely needs a method for recording that
context.

3321, Clarifying the Need

The substitution rule (OR <X> T)- => T is not always correct. In MacLISP, at least, OR
returns the value of the first argument which is true. Thus, (OR 3 T) returns 3, not T. However,
if this test occurs in a predicate position, such as the predicate of a conditional clause, only the
boolean value of the expression is needed and the transformation of (OR 3 T) to T would be
correct. Knowing whether or not an expression is in predicate position is a type of what [call
“special” contextual information, as opposed to “common” contextual information. Special contex-
tual information is true only of a particular instance of an expression. Just because (OR <X> T)
occurs in predicate position at one point in code, doesn’t imply that other instances of that expres-
sion do also. Common contextual information refers to truths pertaining to every occurrence.of a
particular expression. Consider optimizing the code:

(DEFUN EXAMPLE (FOO BAR BAZ)
(COND ((ATOM FOO) NIL)
((ISINDEXED FOO) (PROCESS-INDEX FOO BAR BAZ))
(... (GET-PART FOO) ...)

(7).

(DEFUN ISINDEXED (X)
(AND (NOT (ATOM X))
(ATOM (CAR X))
(NUMBERP (CAR X))))

(DEFUN GET-PART (Y)
(COND ((ATOM Y) NIL)
((AND (ATOM (CAR Y))
(NUMBERP (CAR Y))) -

42 CHAPTER THREE THE TRANSFORMATIONAL COMPONENT

(CADR Y))
(T (CAR Y))))

When ISINDEXED is expanded in-line, the definition of EXAMPLE will appear as:

(DEFUN EXAMPLE-PROGRAM (FOO BAR BAZ)
(COND ((ATOM FOO) NIL)
{(AND (NOT (ATOM F00))
(ATOM (CAR FO00))
(NUMBERP (CAR F00)))
(PROCESS-INDEX-PROGRAM FOO BAR BAZ))
(... (GET-PART F00) cee)

(7 e)))

The test (ATOM FOO) unnecessarily appears twice. The second clause of the conditional ex-
pression can only be evaluated if the predicate of the first clause returned NIL. Thus, at the
point where ISINDEXED is expanded, it is known that (ATOM FOO) is NIL. Similarly, at the
time that PROCESS-INDEX-PROGRAM is evaluated, it will be known that FOO is not an atom,
(CAR FOO) is an atom, and (CAR FOO) is a number. And, when (GET-PART F00) is ex-
panded, it is known that FOO is not an atom, and that (CAR FQOQ) is not both an atom and a
number. If at any time a test is performed whose outcome is already known, we would like to have
the ability to climinate that duplicate test. Thus, after transformation, EXAMPLE should be:

(DEFUN EXAMPLE-PROGRAM (FOO BAR BAZ)
(COND ((ATOM FOO) NIL)
((AND (ATOM (CAR F00))
(NUMBERP (CAR F00)))
(PROCESS-INDEX-PROGRAM FOO BAR BAZ))
(... (CAR FOO) e)

(7 e M)

I should mention here quickly one caution about global transformations. Most high-level
languages are impotent without the use of side-effects. But side-effects wreak havoc for global
transformations, which must then constantly be on the lookout for changes in the values of current
variables. Just because FOO is not an atom at one point in the code doesn't guarantee that it is
later, since (SETQ FOO <whatever>) (or something similar) could occur in the meantime, I
have currently made no provisions for the transformation of code which may contain side-effects.
The transformational component of this system assumes that the LISP code it opcrates on is totally
applicative. I can defend this seeming lack of power on two counts;
¢ LISP is one high-level language that manages to accomplish a great deal even when limited to

non-side-cffecting functions. So it is not completely unreasonable to limit the transformation
system in this way.

§3.322 Control 43

(DEFUN AND!PREDICATE (ANDCELL)
(SEXPRIMAPCAR (FUNCTION PREDIFY) (AND!ARGLIST ANDCELL))
(COND ((NOT (PRED? ANDCELL)) _
(DEPREDIFY (ARGS!LAST-ARG (AND!ARGLIST ANDCELL))))))

(DEFUN DEFETTE!PREDICATE (DEFETTE)
(COND ((PRED? DEFETTE) (PREDIFY (DEFETTE!BODY DEFETTE)))))

TABLE 3-8. Propagation of predicate position information.

o The accountable component of our system is in no way dependent on this constraint. It merely
records the transformations made by the transformational component, and couldn’t care less
about the restrictions on or justification for those transformations. The emphasis of this thesis
is on the accountable component; the transformational component I am describing has been
implemented merely to demonstrate the use of the other. '

3.3.2.2. The Environment

In order to allow global transformations in our system, we record both special and common
contextual information. Special contextual information does not present much of a problem;
we simply augment the internal form of the program by storing properties of expressions along
with the expression itself. When a conditional expression is encountered, the predicate position

_property may be added to all the predicate expressions within the conditional. If an AND expres-
sion is in predicate position, than all its arguments are also. If not, all but its last argument
is in predicate position, and so on. The code in Table 3-6 contains function calls of the form
<{type>!PREDICATE; their definitions are given in Table 3-8. Common contextual information,
on the other hand, needs to be recorded in such a way that code lower in the tree can access it. We
will do this by maintaining an environment, much like a LISP interpreter does. Then whenever a
transformation requests information about some piece of code, the environment is queried.

Each member of the environment consists of some LISP cxpression whose truth value is
known, ifs truth value, and a justification for that value. The environment acquires more knowledge
every time it encounters:;

e aconditional expression,
¢ an AND expression,
e an OR expression, or

e explicit assertions in the code.

44 CHAPTER THREE THE TRANSFORMATI_ ONAL COMPONENT

A conditional of the form:

(cond (<pred-i> <exi.form-1>)
(<{pred-2> <exitform-2>)
(<pred-3> <exitform-3>)

can assume at each location the truths given:

(cond (? Kpred-1> true])
(Kpred-1> false] [Kpred-2> true, <pred-1> false})
([Kpred-1> false, <pred-2> false] [<pred-3> true, <pred-2> false, <pred-1> false])

TABLE 3-9. Propagation of information within a conditional expression.

As we saw in the above section, tests performed within a conditional expression result in
information which can then be distributed within that expression. Table 3-9 illustrates the infor-
mation which can be distributed. CLAUSES !BRANCH is the function which knows how to trans-
form conditional expressions. Conditionals are a special form in LISP because their “arguments”
arc not necessarily all evaluated. Thus, instead of transforming all the clauses right away,
CLAUSES!BRANCH transforms only the first predicate of the first clause in the list of clauses. If
that predicate is dctermined to be true, CLAUSES !BRANCH transforms the rest of the clause and
quits, just like the LISP interpreter would do. If the predicate is false, it ignores the rest of the
clause and calls itself on the remainder of the clauses. If the predicate can not be determined true
or false, then it must transform both the rest of the clause and the remaining clauses, but it does
this with an updated environment. Table 3-10 contains a listing of CLAUSES!BRANCH. Notice
the two calls to ENV!RECORD-TEST in the definition of CLAUSES ! BRANCH which occur when
the current predicate cannot be determinced to be true or false. In that case, the environment used
for the transformation of the rest of the clause should contain the information that the current
predicate is true, and the environment used by the rest of the clauscs in the conditional expres-
sion should know that the current predicate is false. ENV!RECORD-TEST takes an environment,
the predicate expression. and the predicate’s outcome, and returns a new environment with the
additional information recorded.

§3.3.22 . Control 45

(DEFUN CLAUSES!EXPAND (CONDLIST «CLAUSES-ENVIRONs *CLAUSES-FTLISTs)
(DECLARE (SPECIAL *CLAUSES-ENVIRONs «CLAUSES-FTLISTs))
(COND
((CLAUSES!NULL? CONDLIST) NIL)
(T (LET ((XTST (CLAUSE!PRED (CLAUSES!CLAUSE CONDLIST))))
(PREDIFY XTST)
(SEXPRIEXPAND XTST sCLAUSES-ENVIRONe sCLAUSES-FTLISTs)
(COND
((TRUE? XTST)
;; Rest of clauses not expanded since evaluation stops here.
(SEXPRIMAPCAR (FUNCTION
(LAMBDA (SEXPR)
(SEXPRIEXPAND SEXPR
*CLAUSES-ENVIRONe
sCLAUSES-FTLISTs)))
- (CLAUSE!EXITFORM (CLAUSES!CLAUSE CONDLIST))))
((NULL? XTST)
;; Rest of clause not expanded since it will never be returned
(CLAUSESYEXPAND (CLAUSES!CLAUSES CONDLIST)
«CLAUSES-ENVIRONe
sCLAUSES-FTLIST»))
(T (LET
((sLET-TLIST»
(ENV!RECORD-TEST *CLAUSES-ENVIRONs XTST T »CLAUSES-FTLISTe)))
(DECLARE ({SPECIAL sLET-TLIST»))
(SEXPRIMAPCAR (FUNCTION
(LAMBDA (SEXPR)
(SEXPRIEXPAND SEXPR
sLET-TLIST»
*CLAUSES~FTLISTs)))
(CLAUSE!EXITFORM (CLAUSES!CLAUSE CONDLIST))))
{CLAUSES!EXPAND (CLAUSES!CLAUSES CONDLIST)
(ENVIRECORD-TEST CLAUSES-ENVIRONs
XTST
NIL
sCLAUSES-FTLISTs)
«CLAUSES-FTLIST=)))))))

TaBLE 3-10. Controlling function for conditional clauses.

After transforming any argument of an AND expression, transformation of the remaining ar-
guments takes place with the assumption that the preceding argument is true. Similarly for an OR
expression, the transformation of any argument may assume that all preceding arguments are false.
The environment used for the transformation of these arguments is updated and maintained using
the same functions described above. _ '

Assertions consist of an s-expression and a list of truths to be assumed by that expression. An
assertion may be hand coded by the programmer or generated automatically by a transformation.
When an assertion is encountered by the main control function, SEXPR{EXPAND, it records the
truths on the current enviroment and procccds to transform the enveloped text. Thus an assertion
constitutes a new structure type; we must provide for it by redefining SEXPR{EXPAND, as seen in
Table 3-11.

46 CHAPTER THREE THE TRANSFORMATIONAL COMPONENT

(DEFUN SEXPR!EXPAND (SEXPR ENVIRON FTLIST)
(COND ((ATOM? SEXPR) SEXPR)

((COND? SEXPR) (COND!EXPAND SEXPR ENVIRON FTLIST))
((DEFETTE? SEXPR) (DEFETTE!EXPAND SEXPR ENVIRON FTLIST))
((FCALL? SEXPR) (FCALL!EXPAND SEXPR ENVIRON FTLIST))
((ANDEXPR? SEXPR) (AND!EXPAND SEXPR ENVIRON FTLIST))
((OREXPR? SEXPR) (OR!EXPAND SEXPR ENVIRON FTLIST))
((QUOTE? SEXPR) SEXPR)

* ((ASSERT? SEXPR) (ASSERT!EXPAND SEXPR ENVIRON FTLIST))
(T (ERROR ‘|Unparsable s-expression - EXPAND| SEXPR))))

(DEFUN ASSERT!EXPAND (ASSERTION ENVIRON FTLIST)
(SEXPRIEXPAND (ASSERT!SEXPR ASSERTION)

(ENV!RECORD-TEST
ENVIRON
(SEXPR!EXPAND (ASSERT!TRUTHS ASSERTION) ENVIRON FTLIST)
T
FTLIST)

FTLIST))

TABLE 3-11. Providing for assertions.

The function ENV!RECORD-TEST has the responsibility of recording a test on the environ-
ment. Rather than blindly recording the test given it, the function attempts to break the test down
into as many of iis parts as possible. For example, if ENV! RECORD-TEST is told to record as true
the test (AND P Q R), it will instead construct and record the individual entries: P is true,
Q is true, and R is true. If it is told to record the fact that (AND A B C) is false, it
first looks on the current environment to see if any of A, B, or C are known to be true. If so,
ENVIRECORD-TEST can simplify the given test and record that. Suppose it sces that B is true.

“Then either A or C must have made (AND A B C) false. Thus it records as false the expression
(AND A C). A predicate of the form (NULL <x>) or (NOT <x>) is stripped of its ncgation
and the outcome toggled before the expression is recorded on the environment. Hence, if it is
known that (NOT FOOQ) is true, the entry FOO is false is made on the environment.

‘These rules for recording information enforce a canonical form for entries in the environment
that most cfficiently provides information. Suppose we wished to determine whether or not
(AND Q R) was true. We can search the environment and lcarn that Q is true and that R is
true, thus (AND Q R) must be true. If, when (AND P Q R) was recorded as true above, we
had simply entered the entire predicate, we would have had a harder time verifying (AND Q R).
Instead of having to perform the logic every time something is looked up, we record the smallest
picces possible in the first place. A listing of ENV!RECORD-TST is given in Table 3-12.

I should mention one thing more about recording information on the environment: occasion-
ally therc are predicates recorded whose truth or falsity may imply other truths. For example, if a
certain expression is known to be false (that is, null), then it is necessarily an atom, and converscly

§3.3.23 Control 47

(DEFUN ENV!RECORD-TEST (ENVIRON TST OUTCOME FTLIST)
(COND)
((NULL TST) ENVIRON)
((ATOM? TST)
(ENV!ADD-TEST ENVIRON
(ENV-EL!CREATE (FALIST!SUBLIS FTLIST TST) OUTCOME NIL)))
((ANDEXPR? TST)
(COND (OUTCOME ; recording a true AND test
(ENVIRECORD-TESTS ENVIRON (AND!ARGLIST TST) QUTCOME FTLIST))
(T (ENVIADD-TEST ; recording a false AND test
ENVIRON
(ENV-EL!CREATE
(FALIST!SUBLIS
FTLIST
(LET
((REFINED
(ARGS!REFINE (AND!ARGLIST TST) OUTCOME ENVIRON FTLIST)))
(COND ((ARGS!ONE? REFINED) (ARGS!ARG REFINED))
(T (AND!CREATE REFINED)))))
OUTCOME
NIL)))))
((OREXPR? TST)
(COND (OUTCOME ; recording a true OR test
(ENV!IADD-TEST
ENVIRON
(ENV-EL!CREATE
(FALIST!SUBLIST
FTLIST
(LET
((REFINED
(ARGS!REFINE (OR!'ARGLIST TST) OUTCOME ENVIRON FTLIST)))
(COND ((ARGS!'ONE? REFINED) (ARGS!ARG REFINED))
(T (OR!CREATE REFINED)))))
OUTCOME
NIL)))
; recording a false OR test
(ENVIRECORD-TESTS ENVIRON (ORYARGLIST TST) OUTCOME FTLIST))))
((NOTEXPR? TST) ; strip off NOT and toggle outcome
(ENV!RECORD-TEST ENVIRON
(ARGS!ARG (FCALL!ARGLIST TST))
{NOT OUTCOME)
FTLIST))
(7 (ENV!ADD-TEST ENVIRON
(ENV-EL!CREATE (FALIST!SUBLIS FTLIST TST) OUTCOME NIL)))))

TABLE 3-12. Recording information on the environment.

.

so. Thus, whenever such a predicate is recorded, any implications are recorded as well. This is done
by the function ENV!ADD-TEST.

48 CHAPTER THREE THE TRANSFORMAT'ONAL COMPONENT

3.3.2.3. The Index of Bindings

The current index of bindings is maintained in the variable FTLIST. This index associates
with each current internal lambda variable its value in terms of top level variables. More
informally, it is an association list of dummy arguments and actual arguments. It provides for the
virtual substitution of actual arguments for formal arguments within any number of nested lambda
expressions, so that information recorded at one level is accessible by transformations performed at
deeper levels. Let’s look at an example.

(DEFUN MYSEARCH (ENV TST)
(COND ((EMPTY? ENV) NIL)
((EQUAL TST (GET-TST (GET-ENTRY ENV))) (GET-ENTRY ENV))
(T (MYSEARCH (GET-REST ENV) TST))))

(DEFUN EMPTY? (ENVIRON)
(NULL ENVIRON))

(DEFUN GET-ENTRY (ENVIRONMENT)
(COND ((NULL ENVIRONMENT)
(ERROR ‘|Can’t ask for element of empty environment|))
(T (CAR ENVIRONMENT))))

Supposc that a sct of optimizing transformations is applied to the code above. When MYSEARCH is
optimized, procedure integration of EMPTY? will occur in the first clause of the conditional. While
transforming the remaining clauses, then, it is known that (NULL ENV) is false. (We always
record the transformed version of the predicate, not the untransformed version, as the former may
be simpler; if it is, no information will be lost by recording the simpler version since that version
will have been derived from information already on the environment.) During transformation
of the sccond clause, procedure ihtcgration of GET-ENTRY will take place. The definition of
MY SEARCH. will then look like:

(DEFUN MYSEARCH (ENV TST)
(COND
((NULL ENV) NIL)
((EQUAL
TST
(GET-TST
((LAMBDA (ENVIRONMENT)
(ConD
((NULL ENVIRONMENT)
{ ERROR
“]Can’t ask for element of empty environment]))
(T (CAR ENVIRONMENT))))
ENV)))
(GET-ENTRY ENV))

§33.23 Control 49

(DEFUN FCALL!EXPAND (FCALL ENVIRON FTLIST)

(FCALL!PREDICATE FCALL)
(ARGLIST!EXPAND (FCALL!ARGLIST FCALL) ENVIRON FTLIST) ; Expand the arguments
(COND ((FUNCNAME? (FCALL!FUNC FCALL))

(FUNCNAME | XFORM (FCALL!FUNC FCALL) ENVIRON FTLIST)))
;; note that because the above transformer side-effects, a given fcall
;; may pass both the previous and following tests. (i.e. FUNCNAME!SUB-DEF
;; may make a defcell out of the funchead of the fcall.)
(COND ((DEFETTE? (FCALL!FUNC FCALL))

(DEFETTE!EXPAND (FCALL!FUNC FCALL)

ENVIRON
(FALISTIADD-PAIRS ; the new ftlist
(FALIST!CREATE
(BINDING I DARGLIST
(DEFETTE!BINDING (FCALL!FUNC FCALL)))
(FALISTISUBLIS FTLIST (FCALL!ARGLIST FCALL)))
FTLIST))

(DEFCALL!XFORM FCALL ENVIRON FTLIST)))
(COND ((NOT (FCALL? FCALL)) FCALL) ; FCALL may no longer be type ¢FCALLs

(T (FCALL!XFORM FCALL ENVIRON FTLIST))))

TABLE 3-13. Control function for the Function Call structure type.

(T (MYSEARCH (GET-REST ENV) TST))))

While tranformation of the body of the internal lambda expression is taking place, information
about the variable ENVIRONMENT may be gathered or requested. But only expressions within the
~ lambda function can contribute to or benefit from that information, since ENVIRONMENT is a local
variable. We need some means of communicating with variables outside the lambda function. That
" is, some means of translating betwecn ENVIRONMENT and ENV. The index of bindings provides
that for us. Before anything is recorded or searched for in the environment, it is translated into
the equivalent expression using top level variable names, by means of the index of bindings. This
index is updated whenever an internal lambda function is entered. Thus, for example, the index
is empty during transformation of the outer conditional above, but associates the dummy variable

ENVIRONMENT with the actual argument ENV during transformation of the inner conditional

(which occurs inside the lambda function).

When an internal lambda expression is encountered, the index of bindings is updated as
follows:

(1) Using the current index of bindings, translate the actual arguments of the new lambda cxpres-
sion into strictly top level variable references (since they may contain references to earlier
internal lambda expression variables).

(2) Create an association list of the dummy arguments uscd in the new lJambda expression, and the
translated actual arguments from (1).. : ’

50 CHAPTER THREE THE TRANSFORMATIONAL COMPONENT

(3) Append the association list created in (2) onto the front of the current index of bindings, to
create the new index of bindings. (The association list from (2) must go on the front so that
if any lambda variable names are reused, the new definitions will shadow the old ones on the
index of bindings.)

The code which performs these steps is part of the definition of FCALL!EXPAND, which can be

scen in Table 3-13.

Why are we limited to the virual substitution made possible by the index of bindings, as
opposed to just always substituting actual arguments for formals and therefore avoiding the com-
munication problem? Because only transformations have the prerogative of performing substitu-
tions in the code. The environment and its index is a compendium of information provided as a
service to those transformations which require global knowledge of the expression they are operat-
ing on. A transformation may or may not perform a substitution, but that’s none of the business of
the control mechanism.

3.4. The Transformations

To complete our discussion of the transformational component, I need to discuss several
aspects of transformations. In order for somcone to write their own transformation for the system,
they must know
(a) the syntactic form in which the system expects to get the transformation,

(b) in which transformation set to put the transformation, and
(c) the expected inputs and outputs of the transformation.

341. Form

What constitutes a transformation? In previous sections I have used a substitution rule form
for transformations, such as (NULL NIL) => T. While it is possible to devise a system in
which transformations are actually given in that form, it involves some complex pattern matching
capabilitics. Consider the software necessary to find an application of the transformation:

(COND <clauses-1> (NIL <exitform>) {clauses-2>)
=> (COND <clauses-1> <clauses-2>)

where <clauses-1> and <clauses-2> can match any number of (or zero) clauses. While
such pattern matching is possible and certainly has been done before [Boyle 1970], it requires
sophisticated control mechanisms (and we’re trying to keep our control simple, remember?).
Furthermore, not all transformations are casily expressed as substitutions. In particular, global

§34.1 : The Trans,ormations 51

(DEFUN FCALL!SIMPLIFY (FCALL)
(COND ((AND (CAREXPR? FCALL)
(CONSEXPR? (FCALL!FIRST-ARG FCALL)))
(RESPOND T (FCALL!FIRST-ARG (FCALLIFIRST-ARG FCALL))))
(T (RESPOND NIL FCALL)))) .

TABLE 3-14. Implementation of (CAR (CONS <X> <Y>)) =><X>.

transformations cannot be expressed in that way since their applicability conditions may be more
complex than a simple pattern match.

One might consider beefing up a substitution rule form to include other information necessary
to describe the transformation. Pre- and post- assertions could be tacked on, as well as predicates
to determine whether or not this transformation will really buy anything (an evaluation of its
“goodness” in this situation, called “win” predicates in [Loveman 1977}), and perhaps even a list of
transformations to try next. There are all sorts of possibilities. However, for my current purposes
I want to concentrate on accountability and keep the control for the transformational component
very simple. Therefore, I have opted for transformations that know how to apply themselves
(otherwise known as procedures),

In our system, once a transformation has been called it is responsible for figuring out whether
it applies or fails, and for returning a result to the control function which called it. In this thesis,
I refer to the code which implements a transformation as a “transformer”. Table 3-14 shows
the transformer which implements the transformation (CAR (CONS <X> <Y>)) => <X>. The
control function passes to the transformer the expression to be transformed, and the transformer

"responds with either T or NIL, indicating whether or not it succeeded, followed by the resultant
expression. ’

One of the benefits of implementing transformations as procedures is that a single transformer
may implement more than one transformation rule. If similar rules are grouped together in one
transformer they can share some of the work needed to determine if they apply. The transformer
FCALL!SIMPLIFY given in Table 3-14 is expanded in Table 3-15 to include the following trans-
formation rules: ‘

(CAR (CONS <A>)) => <A>
(CAR (LIST <A> ...)) => <A>

(COR (CONS <A>)) =>

(COR (LIST <A> ...)) => (LIST ...)
(APPEND NIL <X>) => <X>

(APPEND <X> NIL) => <X>

52 CHAPTER THREE THE TRANSFORMAT.ONAL COMPONENT

(DEFUN FCALL!SIMPLIFY (FCALL)
(COND _
7+ (CAR (CONS <A>)Y -> <A>
i3 (CAR (LIST <A> ...)) => <A>
((AND (CAREXPR? FCALL)
(NOT (ATOM? (FCALL!FIRST-ARG FCALL))))
(COND ((CONSEXPR? (FCALL!FIRST-ARG FCALL))
(RESPOND T .
(FCALL!FIRST-ARG (FCALL!FIRST-ARG FCALL))
(JUST!CREATE /|(CAR (CONS <A>)) -> <A>| NIL)))
((LISTEXPR? (FCALL!FIRST-ARG FCALL))
(RESPOND T
(FCALL!FIRST-ARG (FCALL!FIRST-ARG FCALL}))
(JUSTICREATE /J(CAR (LIST <A> ...)) =-> <A>] NIL)))
(T (RESPOND NIL
FCALL
(JUST!CREATE ’|it isn’t CAR of CONS or LIST.| NIL}))))
:: (COR (CONS <A>)) =->
;s (CDR (LIST <A> ...)) -> (LIST ...)
((AND (CDREXPR? FCALL)
(NOT (ATOM? (FCALL!FIRST-ARG FCALL))))
(COND ((CONSEXPR? (FCALL!FIRST-ARG FCALL))
(RESPOND T
(FCALL!SECOND-ARG (FCALL!FIRST-ARG FCALL))
(JUST!CREATE ' |(CDR (CONS <A>)) -> | NIL}))
((LISTEXPR? (FCALL!FIRST-ARG FCALL))
(XFORM-SLAVE ’'SEXPR!NOTHING
(FCALL!FIRST-ARG (FCALL!FIRST-ARG FCALL))
(LIST (JUSTICREATE ’|it was CDR’d over.| NIL))
FCALL)
(RESPOND
T
(FCALL!FIRST-ARG FCALL)
(JUST!CREATE /|(CDR (LIST <A> ...)) =-> (LIST ...)| NIL)))
(T (RESPOND NIL
FCALL
(JUST!CREATE /|it isn’t CDR of CONS or LIST.| NIL)))))
i3 (APPEND NIL <X>) -> <X>
((AND (APPENDEXPR? FCALL)
(NULL? (FCALL!FIRST-ARG FCALL)))
(RESPOND T
(FCALL!SECOND-ARG FCALL)
(JUST!CREATE /|(APPEND NIL <X>) => <X>| NIL)))
i3 (APPEND <X> NIL) -> <X>
((AND (APPENDEXPR? FCALL)
(NULL? (FCALLISECOND-ARG FCALL)))
(RESPOND T -
(FCALL!FIRST-ARG FCALL})
(JUST!CREATE /|(APPEND <X> NIL) -> <X>| NIL)))
(T (RESPOND NIL FCALL (JUST!CREATE ’|no patterns matched.| NIL)))))

TABLE 3-15. A transformer may implement several transformations.

Transformers are not allowed to call other transformers. Each transformer is expected to be
independent of any other. The reason for this is that confusion would reign if a user removed a

§34.2 The Transformations 53

transformer from a transformation set (as he should be free to do) which was called by another he
left in. Furthermore, the function XFORM, which calls a transformer and receives its response, is
dependent on the fact that no other transformer is called in the meantime.

34.2. Selecting a Transformation Set

For the most part, selecting the proper transformation set in which to put a transformer
should be a simple task. A transformer which replaces an AND expression of no arguments with
the atom T should of course be put in the sAND= set, a transformer to simplify the expression
(APPEND FOO NIL) clearly belongsin the s FCALLs# set.

There are a few subtleties in the decision brought on by the fact that some structures betray
their context by their type. The type name *CLAUSE«, for example, gives away the fact that it
represents a subtree found only as an argument to a *COND+. A «CLAUSE » structure will always
have a «COND+ structure as a father. Should we allow transformations to determine the context of
a structure by checking its type? Consider the following transformation rule:

(1) (COND <clauses-1> (T (COND <clauses-2>)))
=> (COND <clauses-1> <clauses-2>)

The final clause of the outer COND is being replaced by the clauses of the inner COND. That is,
one =CLAUSE » subtree is being replaced by many. Should the transformer which implements this
rule be a member of the «COND« transformation set, or could we include the transformer in the
«CLAUSE* set by rewriting it?

(T (COND <clauses>)) => <clauses>

Before I answer the question, consider another similar example:'
(2) (APPEND <X> (APPEND <Y> <Z>)) => (APPEND <X> <Y> <2))

If we put the first transformer in the sCLAUSE= transformation set, shouldn’t we also rewrite this
transformer as:

(APPEND <Y> <2>) => <KY> <>

and put it in the »FCALL+ transformation set? Obviously we can’t, since the fact that
(APPEND <Y> <2>) isof type «FCALL+ does not tell us its context; we have no way of know-
ing whether it appears as the argument to another APPEND or not.

A second reason for keeping the first transformer (and others like it) in the higher level
«COND+ transformation sct is for the sake of the person who writes the transformations. Why
should that person need to be aware that non-evaluable structure types exist? 1 have therefore
decided that transformations which require a specific context should appear in the set correspond-
ing to that level of context.

54 CHAPTER THREE THE TRANSFORMATIONAL COMPONENT

3.4.3. Interfacing to the Control Functions

Transformers hook into the control functions by means of transformation sets. Recall from
section 3.3.1.3 that we have a different set of transformations for each structure type. Though
it would have been simple to have each set be a LISP list of the names of the appropriate trans-
formers (and then map over that list), I saw no reason why I shouldn’t just implement each set
as an implied PROGN. Thus, the function definitions shown in Table 3-7 are actually transforma-
tion sets. A transformer may be added or removed simply by inserting or deleting the call from
the set, remembering that the order in which the calls occur in a set is the order in which those
transformers will be applied.

Notice that all transformers are called via the function XFORM, and all return information via
the function RESPOND. Currently these two functions do nothing more than a FUNCALL and
return a LIST of their arguments, respectively (and then upon receipt of the response, XFORM
causes the result to be substituted for the original code by side-effecting the internal form), but
in the future we will cause more complex things to happen. In any case, 1 here establish the
convention that:

(1) No transformer may be called directly, but via XFORM only.
(2) No transformer may respond directly, but via RESPOND only.

The significance of this is that a transformation which iterates within itself must break one of
two rules. If it calls itself again via XFORM, it is breaking the rule that no transformer may call
- another (remember that XFORM is dependent on the fact that no transformer is called between the
time XFORM calls onc and receives its response). But if it calls itsclf without the use of XFORM, it
breaks the rule stated above. The solution is in the way we view the problem. I shall define a trans-
formation which is implemented via an iterating transformer to be incomplete until the iteration
ends. Thus, while a transformer may call itself dircctly, it does so only with the understanding that
when it finishes, one transformation has been applied, regardless of the number of itcrations the
transformer made.

To call a tranformer which requires global information, the programmer simply includes in
the call as additional arguments the environment and the index of bindings. These are usually
bound to ENVIRON and FTLIST, respectively, within each transformation set. Compare the calls
to AND!TRIM and AND!SIMPLIFY in the transformation set for the *AND=* expression structure
type given in Table 3-7.

§344 The Trar:sformations 55

344. Slave Transformers

There are a number of cases which arise when writing transformations in which changes must
be made only to a subtree of the input expression, even though the entire expression was needed in
order to determine whether the transformation should apply. Consider the transformation in which
actual arguments are substituted for dummy arguments in a lambda expression. The code to be
transformed might look like:

((LAMBDA (FOO BAR)
(COND ((NULL FOO) BAR)

(T (CONS FOO BAR))))
(QUUX S) §)

_The transformer decides after looking at the complexity of the actual arguments ((QUUX S) and
S) and the use of the dummy arguments in the lambda expression, that S should be substituted for
every occurrence of BAR. The resultant expression to be returned will appear as:

((LAMBDA (F00)
(COND ((NULL F00) S)

- (T (CONS FOO S))))
(Quux s))

Only the following expressions are affected:

e the'top Icvel «FCALL# expression which now calls a function of only one argument.

e cach of the «ATOMs structures representing an occurrence of BAR, both in the dummy argu-
ment list of the lambda expression and in its body. '

o the »ATOMs structure representing the original occurrence of S as one of the arguments to the
top level «FCALLs.

We wish to localize the transformation so that only those sub-expressions affected by the transfor-

mation are transformed. Thus, I have invented the notion of slave transformations, which may

be called by a transformer to change some subtree of the input expression. Slave transformers

have their own XFORM-SLAVE and SLAVE-RESPOND functions which operate much the same

as their counterparts, with the exception that the successful application of a slave transformer does

not increment the clock. This allows the above described transformation to appear to happen all at

~ once as far as transformation time is concerned; that s, it constitutes one transformation.

Another use for slave transformers is for the recording of success or failure for transformers
which iterate. Recall from section 3.4.3 that the application of an iterating transformer is said to
constitute only one transformation. That means that regardless of the number of iterations, only
one history may be updated with success or failure. Slave transformers allow success or failure to
be recorded for each iteration. This use (and perhaps other uses as well) of slave transformers may
result in no change being made to the input expression other than transformations upon its sub-
expressions.

56 CHAPTER THREE THE TRANSFORMATIONAL COMPONENT

A slave transformer should be used to perform the following transformation:

(COND <clauses-1> (T (COND <clauses-2>)))
=> (COND <clauses-1> <{clauses-2>)

The final clause of the outer conditional is being replaced by the clauses of the inner conditional.
That is, one sCLAUSE s structure is being replaced by many. As discussed in section 3.4.2, this
transformer appears in the *COND# transformation set. Rather than create and return a new list of
the correct clauses, the transformer should call a slave transformer on the final clause of the outer
conditional above which returns the list of sCLAUSE» structures <clauses-2>. This strategy
assures that transformations occur as locally as possible, so that expressions which are not changed
remain untouched by the system (a principle we shall understand better in the next chapter).
As another example of the locality of transformations, consider the rule:

(COND <clauses-1> (NIL <exitform>) <clauses-2>)
=> (COND <clauses-1> <{clauses-2>)

This transformation deletes a clause which will never be evaluated, because its predicate is known
to be false. No other clause is affected by the transformation. The transformer which imple-
ments this transformation should appear in the *COND+ transformation set because it requires
the specific context of a conditional expression to apply. In order to preserve the locality of the
transformation, the transformer calls a slave transformer on the clause with the false predicate. Fhe
slave transformer returns a “nothing” flag, causing the deletion of the clause from the parse tree of
the conditional expression, '

3.5. Summary

T'have kept the transformational component of the system as simple as possible. It is written in
LISP, and is able to control the transformation of applicative LISP code only. SEXPR!EXPAND is
the driver control function for the system, and will accept as input any evaluable LISP expression,
along with the current environment and list of bindings (both of which are usually empty at the
‘very beginning). This function parses the expression and hands it over to the specific control
function for its structure type. The expression is then transformed in the same order as it would
be evaluated by a LISP interpreter: an ordered set of transformations is applied to the top level of
the expression only after its parts have been transformed. Whenever a conditional expression, AND,
OR, or an ASSERT is encountered, the environment is updated; whenever an internal lambda
function is encountered, the index of bindings is updated. These two sources of information are
maintained as a service to allow global transformations to apply. All transformation occurs via the

- function XFORM only, and transformations return information via thc function RESPOND only.
Slave transformations should be used to maintain the local transformation of LISP structures.

Chapter Four

The Accountable Component

g i AVING A COMPLETE IMPLEMENTATION of the transformational component we can now
implement an accountable component to accompany it. I purposely discussed the design
of%an accountable system before the implementation of the transformational component so that I
could not be accused of limiting my plans for the system. Many of the implementation decisions
made in the last chapter in the name of simplicity were made not to avoid issues in the implemen-
tation of an accompanying accountable component, but to save time and effort in implementing:
the transformational component. As will be demonstrated, the accountable component is largely
* independent of the implementation of the transformational component.
The issues we must resolve in the remainder of the thesis include: -
° écquisition of information,
e storage of information, and
e retrieval of information.

The first two points fall under the jurisdiction of the recording element. In particular, after
reviewing the nature of the information we have decided to collect as discussed in section 2.4, we
must rewrite the definitions of the functions XFORM and RESPOND to obtain the information.

“Then we will discuss a means of storing this information by augmenting the internal form of the
© argument program.

The last item on the agenda is the responsibility of the query element. Here we must finally
retrieve the information at the command of the user. We will see that merely offering to “replay”
specificd sections of the transformation process can be fairly useful. though trying to outguess the
user by providing the answers to more gencral questions might be more interesting.

57

58

CHAPTER FOUR THE ACCOUNTABLE COMPONENT

4.1. Acquisition of Information

Recall from section 2.5.1 our summarization of the recording clement’s task:

Transformations must include in their description a set of input and 6utput assertions, available
upon request.

The motivation for this requirement was to couple this information with the truths for a
particular piece of code in order to determine why a transformation failed or succeeded. For
example, if a transformation T requires properties a, b, and ¢, butonly a and b are true at
some point, we may assume that T failed because either ¢ was false or unknown.

Since we have chosen to implement transformations as procedures, they can be made to
return the reason they failed or succeeded themselves. We will therefore let the procedure
definition stand as the description of input and output assertions for a transformation, and
require that transformers return justifications for their actions.

Before any transformations apply, a set of truths for each piece of code (dependent on its
context) must be collected and recorded along with their justifications. That is, before any
transformation applies to a particular piece of code, truths for that code must be recorded.

This is the environment, and we have discussed it in the last chapter. We do need to add the
justifications; we will require that ENV!IRECORD-TEST be given a justification for the truth it
is to record, and record that justification along with the test. If ENV!RECORD-TEST docs any
fancy logic, it should augment the justification it is given with a note to that effect. Similarly,
ENV!IADD-TEST should justify any truth it adds to the environment.

Though the environment and its index of bindings could have been stored as part of the
internal form of the program during the implementation of the transformational component,
they were instead created and maintained as separate variables which were passed from control
function to control function. and finally to the transformation set to be used by the transformers.
The accountable component, however, must record the environment and index used for the
transformation of each expression so that its information is not lost once the transformation set
is exited, as is the case now. It will do this immediately after a transformation set is entered.
Alter cach transformation is attempted, it must provide to the recording element the following
information:

(1) what code it attempted to transform;
(2) whether or not it was successful;
(3) if it was successful, the resultant code.

Since all transformations are called via the function XFORM, and XFORM is responded to via
RESPOND. XFORM must aircady know (1), since XFORM obviously passes the transformation the

§4.1.1 Acquisition of Information

59

;s Transformer
(DEFUN OR!SIMPLIFY (ORTST)
(COND ((ARGS!NULL? (OR!ARGLIST ORTST))
(RESPOND T (SEXPRICOPY FALSE) (JUSTICREATE /|(OR) => NIL| NIL)))
((ARGS!ONE? (OR!ARGLIST ORTST))
(RESPOND T
(ARGS!ARG (OR!ARGLIST ORTST))
(JUSTICREATE /| (OR <x>) => <x>}| NIL)))
(T (RESPOND NIL ORTST (JUST!CREATE /|no patterns match.| NIL)))))

;s:Transformer
(DEFUN FCALL!SIMP-NOT (NULLTST)
(COND ((NOTEXPR? NULLTST)
(LET ((LOGARG (ARGS!ARG (FCALL!ARGLIST NULLTST))))
(COND ((NULL? LOGARG)
(RESPOND T
(SEXPRICOPY TRUE)
(JUSTICREATE /|(MOT NIL) => T| LOGARG)))
((TRUE? LOGARG)
(RESPOND T
(SEXPRICOPY FALSE)
(JUST!CREATE /[(NOT T) => NIL| LOGARG)))
(T (RESPOND NIL
NULLTST
(JUST!CREATE
‘jthe arg to NOT or NULL is unknown. |

NIL)}))))
(T (RESPOND NIL NULLTST (JUST!CREATE /|no patterns match.| NIL)))))

TABLE 4-1. Transformations must return justifications.

(DEFUN RESPOND (APPLIED? OBJECT JUST)
(COND ((NOT APPLIED?) (LIST s«RESPONSEss »sFAILEDss JUST))
(T (LIST =+RESPONSE=s OBJECT JUST))))

TABLE4-2. New definition of RESPOND.

code to transform. So there is no nced for a transformation to explicitly return that information.
Currently a transformer already supplies the information required by (2) and (3): if it fails it
exccutes the form (RESPOND NIL <input expressiond), and if it succeeds, it executes the

form (RESPOND T <resultant expression>),

Transformations are required to return a three-valued response, then: a flag signifying
whether or not they succeeded (T or NIL, respectively), the resultant expression, and a justification

for the success or failure. The new definition of RESPOND may be scen in Table 4-2.

60 CHAPTER FOUR THE ACCOUNT..BLE COMPONENT

4.1.1. Justifications

A justification consists of an explanation, and optionally, an expression. It may either justify
a transformer which succeeds or fails, or justify the addition of a picce of common contextual
information to the environment. In the first case, its explanation is a brief phrase which completes
the sentence “This expression was transformed because...” or the sentence “The transformer
<transformer> failed to transform this expression because. ..”. In the second case, its explanation
should complete the sentence “This expression’s value is <value> because...”. If the explanation
refers to some other expression (such as “. . .it is in the true branch of the conditional clause:”),
then that expression may be included in the justification and will be printed when the justification
is displayed.

The expression component of a justification may also serve as a link to previous justifications.
Suppose ENV!RECORD-TEST is asked to record the fact that (AND S T) is true because the
system is about to transform expressions which are “within the true branch of the conditional
clause” whose predicate is that expression. Then ENVIRECORD-TEST will make two separate
entries: that S is true and that T is true, because each of them is “an argument to a true AND
expression.” Later, if a transformation succeeds because S is true, it may return the justification
associated with $ as its justification. The justification of S as recorded by ENVIRECORD-TEST is
“an argument to a true AND expression”; there is no clue left as to why the AND expression is true!
1 solved this problem in the following manner: »

e ENV!IRECORD-TEST will now record the predicate and justification exactly as it receives them
in addition to recording any pieces of the predicate. This leaves a record as to why the AND
expression is true in the above example. '

e When pieces of a predicate are recorded, they are given a justification which consists of an

" explanation specifying the nature of the predicate picce (“argument of a true NOT expression”,
“argument of a false OR expression”, etc), and the expression representing the predicate the
piece came from.

This will allow the query element to perform some simple dependency “backlooking”™: When a

user wishes to know why S is true, it can print the explanation component of the justification

of S, followed by the expression component, then the justification recorded on the environment
for that, and so on, until the originally asserted expression is found. The new definition of

ENV!RECORD-TEST is shown in Table 4-3.

The function XFORM now has all the information relating to the transformation of an expres-
sion, and only needs to store that information so that (1) future transformations will sec the correct
expression, and (2) the query element can obtain any intermediate version of the expression it
desires. At the same time, the recording element must represent this information “in an ecfficient
and accessible manner.”

§4.1.1 Acquisition of Iaformation 61

(DEFUN ENV!RECORD-TEST (ENVIRON TST QUTCOME JUST FTLIST)
(COND

((NULL TST) ENVIRON)

((ATOM? TST)

(ENV!IADD-TEST ENVIRON

(ENV-ELICREATE (FALIST!SUBLIS FTLIST TST) OUTCOME JUST)))
{ (ANDEXPR? TST)
(COND (OUTCOME ; recording a true AND test
(ENVIRECORD-TESTS
* (ENV!ADD-TEST ENVIRON
s (ENV-EL!CREATE (FALIST!SUBLIS FTLIST TST) T JUST))
(AND!ARGLIST TST)

. (JUST!CREATE /|Argument to a true AND expr.| TST)
FTLIST))
(T (ENVIADD-TEST ; recording a false AND test
ENVIRON
(ENV-ELICREATE
(FALIST!SUBLIS
FTLIST
(LET ,
{ (REFINED
(ARGSIREFINE (AND!ARGLIST TST) OUTCOME ENVIRON FTLIST)))
(COND ((ARGS!ONE? REFINED) (ARGS!ARG REFINED))
(T (AND!CREATE REFINED)))))
OUTCOME
. JUST)))))
((OREXPR? TST)
(COND (OUTCOME ; recording a true OR test
(ENVIADD-TEST
ENVIRON
(ENV-EL!CREATE
(FALIST!SUBLIS
FTLIST
(LET
((REFINED
(ARGS!REFINE (OR!ARGLIST TST) OUTCOME ENVIRON FTLIST)))
(COND ((ARGS!ONE? REFINED) (ARGS!ARG REFINED))
(T (OR!CREATE REFINED)))))
OUTCOME
. JUST)))
T © ; recording a false OR test
(ENVIRECORD-TESTS

. (ENVIADD-TEST ENVIRON
. (ENV-ELICREATE (FALIST!SUBLIS FTLIST TST) NIL JUST))
(OR!ARGLIST TST) .
OUTCOME
. (JUST!CREATE /|Argument to a false OR expr.| TST)
FTLIST)))) ‘
((NOTEXPR? TST) ; strip off MOT and toggle outcome
(ENV!IRECORD-TEST ‘
. . (ENVIADD-TEST ENVIRON
. (ENV-EL!CREATE (FALIST!SUBLIS FTLIST TST) OUTCOME JUST))

(ARGS!ARG (FCALL!ARGLIST TST))
(NOT OUTCOME) '
. (JUSTICREATE /|Argument to a NOT expression] TST)
FTLIST))
(T (ENV!ADD-TEST ENVIRON (ENV-EL!CREATE
(FALIST!SUBLIS FTLIST TST) OUTCOME JUST)))))

TABLE4-3. The environment must now maintain justifications for its entries.

62 CHAPTER FOUR THE ACCOUNTABLE COMPONENT

4.2. Storage of Information

Before we consider a means of storage for the information in hand, let’s think quickly about
the nature of its retrieval. A programmer who submits his code to the accountable system will be
interested in observing its effect on his program. Thus, he will ask questions about specific sections
of code. One who has written a new transformation may test it with a random program, and then
ask questions pertaining to the actions of that transformation. And someone who is concerned
with the order of transformation application will ask questions about what happened at what time.
There are then three possible indicies: the code transformed, the name of the transformer, or the
time of transformation. We will use them all.

4.2.1. By Code

If the transformational component of the system were to be run without any accountable
capabilities, it could simply replace any subtree of the parse tree with the new one whenever a
transformation applied. But the accountable component will remember every intermediate version
of the program. If there are fifty different versions (because there were fifty successful transforma-
tion applications), storing fifty different parse trees is clearly not efficient, whether the program is
large or small. Instead, I have chosen to augment the internal form of the parse tree by allowing
multiple versions of each subtree. When a transformation applics, the resulting subtree is added to
the parse tree as version n + 1. We can write a special printer which, given the entire tree and a
version number, will print the appropriate subtree when it arrives at a node in the parse tree which
has more than one. This printer really constitutes a translator or conversion routine between the
internal form and the exccutable source code.

At each node of the parse tree is a structure called a CELL. Cells contain (as well as other
information which we will mention later) a list of the diffcrent subtrees for this node; initially this
list contains only one subtree. Each subtree is represented by a structure called a MONK. Every
successful transformation causes a MONK to be created. Because we want to record unsuccessful
transformations as well, we will create a structure called a HERMIT whenever one fails. Besides the
subtree it represents, each MONK contains a version number, the name of the transformer which
created it, and the justification for that transformation. Each HERMIT contains the version number
of the subtrce which wasn't transformed, the name of the transformer which didn’t transform it,
and a justification for the failure,

§4.23 Storage of I.formation 63

(DEFUN XFORMER!RECORD (XFORMER CELL VERSION)
(PUTPROP XFORMER (CONS (CONS VERSION CELL)
(GET XFORMER ’APPLIED)) ’APPLIED))

(DEFUN XFORMER!RECORDF (XFORMER CELL VERSION)
(LET ((FAILS (GET XFORMER 'FAILED)))
(COND ((NULL FAILS)
(PUTPROP XFORMER (LIST (CONS VERSION CELL)) ‘FAILED))
((> (CAAR FAILS) VERSION)
(ERROR ’|Fails out of order.| XFORMER))
((< (CAAR FAILS) VERSION)
(PUTPROP XFORMER (CONS (CONS VERSION CELL) FAILS) ’FAILED))
((MEMQ CELL (CDAR FAILS)) NIL)
(T (PUTPROP XFORMER
(CONS (CONS VERSION (CONS CELL (CDAR FAILS)))
(CDR FAILS))
‘FAILED)))))

TABLE4-4. Functions which record information by transformer name.

42.2. By Transformer

If someone were interested in the activities of transformer T, pointing them to each CELL
transformed by T and giving them the time of each transformation would be enough to allow
them to then ask for any other information that might be stored in the cells. XFORMER ! RECORD
takes the name of a transformer, the argument cell, and the current time, and records the fact that
that transformer affected the said cell at the given time. XFORMER ! RECORDF records the same
information for transformations that fail. (The definitions of these two functions are given in Table
4-4.) Note that this is a record of whether or not a transformer succceds. Recall that a transformer

_can implement more than one transformation rule. If any rule succeeds, the transformer is said to
succeed. Only if all the rules implemented by a transformer fail does the transformer fail.

4.23. By Version

We can index the information by version! in much the same way as by transformer.
CLOAKRACK ! HANG-UP maintains an association list of transformation times and cells transformed
at those times (called the “cloakrack”, because a monk hangs up its cloak before entering the
cell). RAGRACK ! HANG-UP maintains a similar association list for transformations which fail. Its
dcfinition differs in that many transformations may fail during the same transformation time since
the clock is not incremented until a transformation succeeds. 1 claim that it is relatively unimpor-
tant to keep track of which transformation fails before another, because no subtree changes. If

1. T will use the terms “version” and “transformation time” interchangeably, since version n of a program is that
parse tree of the program which was created at transformalion time 7, with one exception: version 0 is created not
by transformation but by conversion to the internal form.,

64 CHAPTER FOUR THEACCOUN)ABLECOMPONENT

(DEFUN CLOAKRACK!'HANG-UP (CELL VERSION)
(SETQ CLOAKRACK (CONS (LIST VERSION CELL) CLOAKRACK)))

(DEFUN RAGRACK!HANG-UP (CELL VERSION)
(COND ((NULL RAGRACK) (SETQ RAGRACK (LIST (CONS VERSION CELL))))
(T (LET ((V (CAAR RAGRACK)))
(COND
((> V VERSION)
(ERROR /|Ragrack out of order.|))
({< V VERSION)
(SETQ RAGRACK (CONS (LIST VERSION CELL) RAGRACK)))
((MEMQ CELL (CDAR RAGRACK)) NIL)
(T (SETQ RAGRACK (CONS (CONS V (CONS CELL (CDAR RAGRACK)))
(CDR RAGRACK)))))))))

TABLE 4-5. Definitions of functions which record information by version.

(DEFUN XFORM (XFORMER CELL ARGS)
(LET ((RESPONSE (APPLY XFORMER (CONS CELL ARGS))))
(COND ((APPLIED? RESPONSE)

(CELL!STORE-MONK CELL (RESPONSE!HACK RESPONSE CELL XFORMER))

(XFORMERIRECORD XFORMER CELL XFORMTIME)

(CLOAKRACK 'HANG-UP CELL XFORMTIME)

(XFORMT IME { INCR))

(T (CELL!STORE-HERMIT CELL (RESPONSE!HACKF RESPONSE XFORMER))
(XFORMER!RECORDF XFORMER CELL XFORMTIME)
(RAGRACK 'HANG-UP CELL XFORMTIME)))))

TABLE 4-6. Final definition of XFORM.

transformers 7-1 and T-2 both attempt to transform expression E and both fail, it is immaterial
which failed first. Expression E remains the same before, after, and during both attempts. The
definitions of CLOAKRACK! HANG-UP and RAGRACK ! HANG-UP are shown in Table 4-5.

4.2.4. The Final Version of XFORM

We can now complete our definition of XFORM by adding calls to functions which will store
the coilected information. Look at Table 4-6. RESPONSE ! HACK takes the response, the cell which
was transformed. and the name of the transformer, and creates a MONK which is then stored in
the transformed cell. After creating cross-references to this information by transformer and trans-
formation time, the “clock” is incremented in order to be ready to provide the time (version)
for the next transformation. If a transformation fails, first RESPONSE 'HACKF crcates a HERMIT
with information pertaining to the attempt, and returns the HERMIT for storage in the cell. Then
the information is again cross-referenced by transformer and transformation time, but the clock is
not incremented. ‘The definitions of RESPONSE 'HACK and RESPONSE HACKF will be discussed
later.

§43 ' A Look at Cells 65

(DEFUN SEXPR!CONVERT-TO-X (SEXPR)
(COND ((CELL? SEXPR) SEXPR)

((ATOM? SEXPR) (ATOM!CONVERT-TO-X SEXPR))
((DEFETTE? SEXPR) (DEFETTE!CONVERT-TO-X SEXPR))
((QUOTE? SEXPR) (QUOTE!CONVERT-TO-X SEXPR))
((COND? SEXPR) (COND!CONVERT-TO-X SEXPR))
((ANDEXPR? SEXPR) (AND!CONVERT-TO-X SEXPR))
((OREXPR? SEXPR) (OR!CONVERT-TO-X SEXPR))
(T (FCALLICONVERT-TO-X SEXPR))))

(DEFUN ARGS!CONVERT-TO-X (ARGLIST)
(COND ((NULL ARGLIST) (LIST (NOTHING!CREATE)))
((CELL? (ARGS!ARG ARGLIST)) ARGLIST)
(T (MAPCAR (FUNCTION SEXPRICONVERT-TO-X) ARGLIST))))

(DEFUN ATOM!CONVERT-TO-X (AT)
(COND ((CELL? AT) AT)
(T (CELLICREATE AT ssATOMss ’ATOMICONVERT-T0-X))))

(DEFUN BINDING!CONVERT-TO-X (DARGS)
(COND ((CELL? DARGS) DARGS)
(T (BINDING!CREATE (ARGS!CONVERT-TO-X DARGS)))))

(DEFUN DEFETTE!CONVERT-TO-X (DEF)
(COND ((CELL? DEF) DEF)
(T (DEFETTE!CREATE (ATOM!CONVERT-TO-X (DEFETTE!NAME DEF))
(BINDING!CONVERT-TO-X (DEFETTE!BINDING DEF))
(SEXPR!CONVERT-TO-X (DEFETTE!BODY DEF))))))

TaBLE4-7. Functions for converting {0 the internal form.

4.3. A Look at Cells

A cell contains the “history” of a subtree of a parse tree. It charts the transformation of that
subtree via its list of monks, each of which points to a different version. The subtree itself con-
stitutes a parse tree though, so each of ifs subtrees are kept track of by cells and monks. The use of
cells as the internal form of the argument program raises a number of issucs regarding conversion
to and the transformation of that form.

4.3.1. Conversion to the Internal Form

Transformations may operate only on cells, since XFORM expects to get a cell into which it
can store a new monk. Thus, every subtree which might be a candidate for transformation must be
converted to a cell. We have already decided which LISP structures to provide with transformation
sets (in section 3.3.1.3). We will represent cach of the structures whose types are defined by the

66 CHAPTER FOUR THE ACCOUNTABLE COMPONENT

[*FeaLL:]

| ‘FUNCNAME*] [*FCALL"] “FCALL*]
|

cons I
FUNCNAME | [*ATOM* | [*FUNCNAME*] [*FcALL*] [*ATOM"]

I | 1 |

car X append y

|
|"FUNCNAME*| [*aTOM*]

cdr _ X

FIGURE4-1. Cell representation of (CONS (CAR X) (APPEND (CDR X) Y)).

transformational component (and given in Table 3-5 (page 39)) as cells of the same type. Cells are
used not only to represent LISP code, but to contain some useful information about that code as
well, '

-4.3.1.1. Cell Types

The cell representation of the expression (CONS (CAR X) (APPEND (CDR X) Y)) is
illustrated in Figure 4-1. Each atomic symbol of the expression is a leaf of the tree, and may be
either of type *ATOMs or »FUNCNAME .

What about the few remaining picces of LISP code which are not typed? Consider the dummy
argument list of a function definition, or the special form hcaders COND, AND, OR, QUOTE, etc. My
decisions on these issucs were made as follows:

(1) The dummy argument list will be represented as a cell of type *BINDING# even though trans-
formations arc unlikely to apply to the cell. Representing the list as a cell will cause a function
definition (a *DEFETTE= ccll) to consist of a list of three cells: «FUNCNAME =, *BINDINGs,
and a body which may be any evaluable structure type, and thus a cell itself.

(2) Spccial forms cach have their own cell type, and thus the header itself need not be made a
cell. Instead. cach cell’s monk contains a list of the arguments to the special form. Thus, a
*COND=# cell's monk contains a list of *CLAUSE=* cclls, an «AND+ cell's monk contains a list

§4.3.1.1 A4 Look at Cells 67

(DEFUN SEXPR!CONVERT~FROM-X (SEXPR &optional VERSION)

(COND ‘

((NOT (CELL? SEXPR)) SFXPR)

(T (LET ((TYPE (SEXPRITYPE SEXPR VERSION)))

(COND

((EQ »+ATOMes TYPE) (ATOM!CONVERT-FROM-X SEXPR VERSION))
((EQ ++FUNCNAMEss TYPE) (FUNCNAME!CONVERT-FROM-X SEXPR VERSION))
((EQ =«BINDINGss TYPE) (BINDING!CONVERT-FROM-X SEXPR VERSION))
((EQ *»+DEFETTEss TYPE) (DEFETTE!CONVERT-FROM-X SEXPR VERSION))
((EQ *+QUOTE«s TYPE) (QUOTE!CONVERT-FROM-X SEXPR VERSION))
((EQ s+CONDes TYPE) (COND!CONVERT-FROM-X SEXPR VERSION))
((EQ #*CLAUSEss TYPE) (CLAUSE!CONVERT-FROM-X SEXPR VERSION))
((EQ s+ANDss TYPE) (AND!CONVERT-FROM-X SEXPR VERSION))
((EQ s=ORss TYPE) (OR!CONVERT-FROM-X SEXPR VERSION))
((EQ s+FCALLss TYPE) (FCALLICONVERT-FROM-X SEXPR VERSION))
(T (ERROR ’|Unknown type -- SEXPRICONVERT-FROM-X| SEXPR)))))))

‘| (DEFUN ARGS!CONVERT-FROM-X (ARGLIST «ARGLISTVERSIONs)
(DECLARE (SPECIAL eARGLISTVERSIONs))
(COND ((ARGS!NULL? ARGLIST sARGLISTVERSIONe) NIL)
((CELL? (ARGS!ARG ARGLIST sARGLISTVERSIONs))
(SEXPRIMAPCAR
(FUNCTION (LAMBDA (EXPR)
(SEXPRICONVERT-FROM-X EXPR sARGLISTVERSIONs)))
ARGLIST
+ARGLISTVERSIONs))
(T ARGLIST)))

(DEFUN ATOM!CONVERT-FROM-X (AT VERSION)
(COND ((CELL? AT) (SEXPRITREE AT VERSION))
(T AT)))

(DEFUN BINDING!CONVERT-FROM-X (BINDING VERSION)
© (COND ((NOT (CELL? BINDING)) BINDING)
(T (BINDING!CREATE
(ARGS ! CONVERT-FROM-X
(BINDING!DARGLIST BINDING VERSION) VERSION)))))

(DEFUN DEFETTE!CONVERT-FROM-X (DEF VERSION)
(COND ((CELL? DEF)
(DEFETTE I CREATE
(ATOM!CONVERT-FROM-X (DEFETTE!NAME DEF VERSION) VERSION)
(BINDING!CONVERT-FROM-X (DEFETTE!BINDING DEF VERSION) VERSION)
(SEXPR!CONVERT-FROM-X (DEFETTE!BODY DEF VERSION) VERSION)))
(T DEF)))

TaBLE4-8. Functions for converting from the internal form.

of evaluable cells, etc. We are therefore allowing cell types to take the place of actual code.
That is, COND, AND, OR, ctc, will never appear as leaves of the parse tree.

The rather pleasant results of these two decisions is that the subtrec contained in any cell’s |
monk is either an atom, a cell, or a list of cells, with the cxception of the «QUOTEs cell,
whose monk may contain any bare s-expression. Whatever that s-expression is, the conversion

68 CHAPTER FOUR THE ACCOUNTABLE COMPONENT

(DEFUN CELL!CREATE (SEXPR TYPE VERSION CREATOR)
(LET ((ID (INTERN (MYGENSYM ‘CELL))))
(LET ((NEWCELL
(LIST ssCELLes
ID
(LIST (BPLIST!CREATE)
(RANGE!CREATE VERSION VERSION)
(BVAL!CREATE NIL NIL NIL)
NIL ; slot for environment
NIL) ; slot for index of bindings
(MONK!CREATE TYPE VERSION SEXPR CREATOR
(JUST!CREATE /{First monk| NIL) NIL))))
(SET ID NEWCELL)
(CELL!INSTALL-BACKPOINTEES NEWCELL))))

(DEFUN MONK!CREATE (TYPE VERSION SEXPR XFORMER JUSTIFICATION PTCPOINTER)
(LIST »+MONKss TYPE VERSION SEXPR XFORMER JUSTIFICATION PTCPOINTER))

TABLE 4-9. The functions which create cells and monks.

routines won’t touch it. Table 4-7 and Table 4-8 show some of the conversion functions.
SEXPR!CONVERT-TO-X and SEXPR!CONVERT-FROM-X are driver functions which convert
any s-expression to or from the internal form, respectively.

The type of a cell is stored in the monk which represents it, since transformation of
a subtree may result in its being of a different type than before. For example, the rule
(COND (T <X>)) => <X> changes the parse trec of (COND (T (CAR F00))) from type
COND to type FCALL. The type of a cell is defined to be the type of the most recent monk.

43.1.2. Cell Creation

The function CELL!CREATE creates a cell. It requests the subtrce and type to be installed
in the first monk, and the name of the function requesting the creation. The first monk of each
cell is the one given at crecation, and always has version 0, whether it was created during the trans-
formation process or during the initial conversion of the LISP program to the internal form. This
will not raise ambiguities when converting back to exccutable LISP code, since even though a cell
may have a 0 version monk, it can not be reached if its parent cell doesn’t point to it at time 0.
Consider, for example, the transformation that replaces a function call by its definition. Suppose
*FUNCNAME » cell CELL-33 is FOO at time 3, and at time 4 is replaced by the lambda expression
(LAMBDA (X) (CAR X)). Then cvery subcell containing a subtree of the lambda expression
will be at version 0 since the expression is newly copied before replacement. Printing CE LL-33
at time 3 will produce FOO though, not the lambda expression, because the version 3 monk of
CELL-33 pointsto FO0O.

§4.312 A Lcok at Cells 69

It is useful to be able to “back-up” to the father of a cell, and to the father of that cell, and so
on, if desired. Since which cell is the father of another cell changes as transformations apply, it is
not sufficient to maintain a single static back-pointer for each cell. Instead, when a cell is created
it is given a back-pointer list, initially NIL. However, the back-pointer list of each subcell is made
to point to the newly created cell. A back-pointer consists of a cell and a version number. To
obtain the back-pointer of a cell we use the function CELL !BP, which takes a cell and a version
number and returns the back-pointer of the cell for that point in time. Suppose, for example, that
CELL-45 has the back-pointer list:

((23 . CELL-88) (14 . CELL-23) (11 . CELL-23) (10 . CELL-4))

Then (CELL!BP CELL-45 15) will return the back-pointer (14 .. CELL-23). The function
BP!CELL will return the cell of a back-pointer. Then (BP!CELL (CELL!BP CELL-45 10))
will return CELL-4. If the back-pointer of CELL-45 is requested for some version less than 10,
CELLIBP will return NIL, indicating that CELL-45 had no father at that time.

Recording the back-pointers of a cell will allow us to easily implement the function
CELL!FATHERS. This function takes a cell and a version number and returns a list of the cell’s
current ancestors; that is, a list of all the cells currently on the direct path from the given cell to the
root cell of the parse tree.

At creation, each cell is given a “range”, which allows us to determine the times at which it
or any of its subcells underwent transformation. A range consists of a minumum and maximum
version, both of which are 0 at creation. If a transformation applies to CELL-45 at time 5, the
range’s maximum is changed to 5, and every range of the transformed cell’s current ancestors is
updated as well. Hence, if in the end CELL-45 has a range with minimum 5 and maximum 49,

"we know that every transformation which occurred from time 5 to time 49 applied to CELL-45 or
one of its subcells. '

Though the initial monk of a cell always has version 0, 0 is not included in the range. This
is because the LISP program tree which is input to the transformation system is converted to the
cell internal form representation all at once, immediately giving every cell a monk of version 0. But
transformation only begins at one subtree of the parse tree, and brothers of that subtree are not
transformed until later. To maintain the continuity of the range indicated, we define the minimum
of a cell’s range to be only the time of the first actual transformation to reach that cell or one of its
subcells.

Two slots are left open in a cell at its creation for the eventual storage of its environment

- and index of bindings. These will be installed immcdiately before transformation of the cell is
attempted. The function SEXPRIRECORD-ENVDEX is called within cach transformation set, and
will cause the two structures to be stored in the input cell. Although the transformers do not
access this common contextual information via the cell they transform, they could if they knew

70 CHAPTER FOUR THE ACCOUNTABLE COMPONENT

how. However, it seems cleaner to keep them uninformed about the temporary duplication of
information. Later, when the transformation process ends and a user wishes to obtain common
contextual information about an expression, it will be provided him from the cdpy retained in that
expression’s cell.

4.3.2. The Transformation of Cells

How is it possible to necatly package the history of cach subtree of a program into its own
cell, given that any number of unspecified transformations will be engaged in collapsing code or
moving pieces of the program from place to place? In an attempt to avoid having more than one
cell to represent a particular node of the parse tree, yet at the same time maintain the integrity of a

“node’s history, I have developed special monks which keep cells clean and tidy. These monks are
created as necded by RESPONSE ! HACK; the transformers need not concern themselves with such
low level details. Indeed, the transformers know nothing at all of the internal representation of the
argument program.

When a transformer is called via XFORM, it is passed the cell to be transformed, and, if the
transformer performs a global transformation, the environment and index of bindings as well. The
transformer’s response consists of a success/fail flag, the resultant expression, and a justification. If
the transformation fails, it rcturns the samc ccll as was input. Otherwise the returned object must
be either: ‘

(1) the same cell given to the transformer (the “input” cell),

(2) acell which is a “subcell” of the input cell,

(3) anewly made cell, perhaps copied from elsewhere in the tree,

(4) alist of cells, or

(5) nothing.

I will treat each of these cases in turn, after which we will discuss the completion of histories.

43.2.1. Transformers Which Call Slaves

If the cell returned from a transformer is the same as the input cell, the transformer must have
called slave transformers to perform a local transformation. In this case, a new monk of the same
type as before will be created and instalied in the input cell. Though the subtree pointed to by the
new monk is the same one the last monk pointed to, the new monk carries with it the new version
number, transformation name, and justification, signifying that a transformer did apply to the cell.

Any transformation performed by slave transformers will have been recorded in the cells
which were input to thosc slave transformers, thereby updating only the histories of the relavent
subcells, and leaving other subcells of the parent transformation cell both unchanged and

§43.2.2 ' . A Look at Cells 71

(DEFUN XFORM-SLAVE (XFORMER CELL ARGS PTCPOINTER)
(LET ((RESPONSE (APPLY XFORMER (CONS CELL ARGS))))
(COND ((WAS-CHANGED? RESPONSE)
(CELL1STORE-MONK
CELL
(RESPONSE | SLAVE-HACK RESPONSE CELL XFORMER PTCPOINTER))
(CLOAKRACK ! HANG-SLAVE CELL XFORMTIME)
(XFORMER{RECORD XFORMER CELL XFORMTIME))
(T (CELLISTORE-HERMIT
CELL
(RESPONSE ! SLAVE-HACKF RESPONSE XFORMER PTCPONTER))
(RAGRACK | HANG-SLAVE CELL XFORMTIME)
(XFORMERIRECORDF XFORMER CELL XFORMTIME)))))

(DEFUN SLAVE-RESPOND (APPLIED? OBJECT JUST)
(COND ((NOT APPLIED?) (LIST s«SLAVE-RESPONSEss sFAILEDs JUST))
(T (LIST ssSLAVE-RESPONSEss OBJECT JUST))))

TABLE4-10. Slave transformations allow the histories of subcells to be updated.

uncopied. The pointers in the parse tree which connect the subcells to the parent cell remain
intact. The use of slave transformers in the transformational component permits the accountable
component to maintain the locality of transformation.

Slave transformers are expected to return success/fail flags, resultant cells, and justifications,
just as their masters do. XFORM=-SLAVE installs these in the history of the slave transformer’s input
cell, along with a pointer to the parent transformation cell. Every monk has such a “PTC” pointer;
A non-nil PTC pointer indicates that the transformer which caused the monk’s creation was a slave
transformer. In particular, it was a slave to the transformer which created the monk of the same
version contained in the parent cell pointed to. Thus, for example, if CELL-14 contains a version
5 monk with a PTC pointer to CELL-59, we know that CELL-59 contains a version 5 monk as
well; and the transformer indicated in that monk was the master of the transformer indicated in
CELL-14’s version 5 monk. The definition of XFORM-SLAVE is given in Table 4-10.

4.3.22. Transformers Which Simplify

A transformer which returns a subcell of the input cell was able to simplify the expression by
“bypassing™ some part of its structure, as in the rule (APPEND <x> NIL) => <x>. (I use the
function CELL!FATHERS to determine if the cell returned by a transformation is a subcell of the
input cell.1f the input cell is a member of the fathers of the returned cell, then the returned cell is a
subcell.) '

How can this returned subcell be incorporated into the input cell? If we install the most recent
monk of the returned subcell as the new monk of the input cell, we confuse the histories of the two
pieces of code. Somconc interested only in following the progress of the cxpression <x> would

72 CHAPTER FOUR THE ACCOUNTABLE COMPONENT

suddenly be left hanging at the point when the transformation occurred, unless some complicated
method of backpointers and justifications was concocted. My decision was to instead create a
special type of monk called a *POINTERs. The cell which represents <x> is left unchanged,
just as the expression itself was untouched by the transformer. The new monk is installed in the
input cell along with the normally recorded information. The subtree of this «POINTER» monk,
however, is the <x> cell. The type of the resultant input cell is defincd to be the type of the object
of the *POINTER* monk, and somcone interested in following the history of the input cell, upon
confronting the *POINTER=, continues his study by picking up the history of the <x> cell at the
time the transformation occurred. The history of the <x> cell, however, remains totally contained
in that cell (unless it, too, is simplified to point to a subcell), and is oblivious to the effects of
transformations performed on cells above it in the parse tree.

4.3.2.3. Transformers Which Replace

A transformer which returns a new cell, perhaps copied from an expression elsewhere in the
parse tree or newly created, intends for the subtrce of that new cell to completely replace the
subtree of the input cell. This might occur in situations when an expression is being replaced by
its truth value, when a procedure definition is substituted for a call, or when actual arguments are
being substituted for formal arguments, for example. In all cases, the new cell should be “deeply”
copied (that is, copied at all levels) from its source so that future transformations which apply to
it or its subcells in the new context will not affect the original copy. Transformers which perform
such replacements or substitutions are responsible for providing the new copy of the returned cell
(note the calls to the function SEXPR!COPY in Table 4-1). Copied cells in some sense begin
their existence at the time of their substitution, and thus are not responsible for the history of the
original cell. Thus, the latest monk of the copied cell is installed as the new monk in the input‘cell,
and the copied cell itself is thrown away. The justification for the transformation should provide the
information necessary to determine the source of the new cell should the user desire it.

4.3.2.4. Transformers Which Listify .

The object returned from a transformer may be a list of cells, indicating that one cell is to be
replaced by many. Under what circumstances might this occur? A transformer which returns a list
of cells is ncarly always a slave transformer, but since slaves are treated almost exactly as regular
transformers, it will not enter into the discussion here. Recall the example given in scctions 3 4.2
and 3.4.4 where this occurred with conditional clauses:

(COND <clauses-1> (T (COND <clauses-2>)))
=> (COND <clauses-1> <clauses-2>)

§4325 o " ALookatCells T3

A transformer to do this would be placed in the «COND= transformation set, and after verifying
that the input expression is of the correct form, calls a slave transformer on the final clause K of
the input conditional expression. The slave transformer returns the list of clauses <clauses-2>.
Clause K should have a special monk installed in its history to show that it now points to the list
<clauses-2>. To allow a cell to point to a list of subtrees, I have created another special monk
calleda «POINTER-LISTs,

Another case in which a slave transformer is used to return a list of expressions is in im-
plementation of the transformation rule:

(PLUS (PLUS <Y> <Z>) <X>) => (PLUS <X> <Y> <2>)

A transformer to perform this transformation would appear in the «FCALL» transformation set
and apply to the outer function call, but would call a slave transformer on the inner function call
that returns a list of its arguments.

The use of *POINTER-LISTs monks complicates accessing and conversion functions which
now must be able to suddenly handle a list of subtrees when they were only expecting a single tree.
A special MAPCAR function was written which checks for «POINTER-LIST« cells before passing
them as arguments to the stated function. Because such system functions must be able to detect
and deal with sPOINTER-LIST= cells, the type of such cells is defined to be «POINTER-LISTs,
rather than the type of the first subtree in the list of subtrees pointed to. A user of the accountable
component, however, need not know of their existence, and will receive expected type information
in answer to the same query.

43.2.5. Transformers Which Delete

A transformer which returns nothing must do so by returning a “nothing” flag, which occurs
in this systém as the special variable «#NOTHINGss. Such transformers currently must be slaves,
but again, that will not enter into our discussion.

When a nothing flag is returned, a special *NOTHING+ monk is created and installed in the
input cell, complete with version number, transformer name, etc, just as though nothing unusual
had happened. The subtrec pointed to by a «NOTHINGs monk is NIL, and the type of cells which
contain «NOTHINGs monks is defined to be *NOTHING«. No transformer can ever apply to such
a cell again since the ccll will never be detected; it no longer exists as far as the transformational
component is concerned.

The use of «NOTHING monks is currently restricted to the case in which the deleted expres-
sion occurred as an clement.of a list in the program. That is, as an clement of an argument list
to a function call, a dummy argument list, a list of conditional clauscs, ctc. This allows system
functions which manipulate cells to correctly ignore the nothing cell, which is actually still very

74 CHAPTER FOUR THE ACCOUNT.1BLE COMPONENT

much a something. This restriction should not hamper the transformation implementor, since any
transformation which deletes an object not in a list can be implemented as a transformer which
simplifies (the expressions such transformers bypass are essentially deleted).

4.3.2.6. Completing Histories

We have discussed the maintenance of cell histories by installing monks with information
regarding the success or failure of transformations to those cells. However, there is another pos-
sibility which 1 have not yet provided for. It may be the case that a CELL-17 is eliminated
from the parse tree by a transformation. When the resulting parse tree is converted back to ex-
ecutable LISP code, CELL-17 will properly be omitted, since it is not pointed to by any of the
current monks of cells above it. However, someone interested in following only the history of
CELL-17 will not be aware of the point at which some cell higher in the parse tree ceases to
reference CELL-17. Reaching the last monk in the cell, that person will assume (and rightly so)
that CELL-17 occurs'in the final parse tree as the subtree recorded by that monk.

For example, if the «ANDes cell which represents the expression (AND T (CONS X Y))
is replaced by T (assuming that the expression is in predicate position), then the «ATOMs» T,
the *FCALL» expression (CONS X Y), thc »FUNCNAMEs CONS, and the «ATOMss X and Y
should all have their histories brought to an end. To do this, I have created a special monk of type-
«REPLACED=, The subtree of this monk is empty, and when installed in a cell simply signifies that
some transformation occurred which caused this cell to be replaced. Whenever a transformation
returns a new cell or a nothing flag, the histories of all the subcells of the input cell are completed
by installing the «REPLACED» monk.

. Now consider the transformation (APPEND NIL <x>) => <x>. This transformation
bypasses cells to return a subcell of the input cell, as in section 4.3.2.2. In order to bring the
histories of the * FUNCNAME+ cell containing APPEND and the *ATOM= cell containing NIL to
a close, 1 have created another special monk called a #+BYPASSs monk. Again, the *BYPASSe
monk has an empty subtree, and when installed in a cell signifies that this cell was bypassed by a
simplifying transformer and thereforc does not remain in the resultant program.

In gencral, the history of any cell which becomes invisible to future transformations should
be “completed” with onc of the special monks. The transformers themselves are not respon-
sible for this; they need know nothing of the existence of cells at all, since the transformational
component should be oblivious to the existence of the accountable component. Instead, all
such housckecping -(cell-keeping!) is performed by the function CELL!TERMINATE, which is
called by RESPONSE I HACK and RESPONSE ! SLAVE-HACK. These latter two are able to deter-
mine which types of the possible special monks sPOINTERs, sREPLACED«, «BYPASSEDs,
«POINTER-LISTs, or «NOTHING+ to crcate, simply by determining in which of the five

§4.3.26 A Look at Cells 75

(DEFUN RESPONSE |HACK (RESPONSE INPUTCELL XFORMER PTCPOINTER)
" (LET
((OBJECT (RESPONSE!0BJECT RESPONSE))
(JUST (RESPONSE!JUST KESPONSE)))
(COND
{(EQ OBJECT INPUTCELL) ; must have been a master transformer
(COND ((RESPONSE!SLAVE? RESPONSE)
(ERROR ’|Slaves can’t return same cell -- RESPONSE ' HACK|)))
(MONK ! CREATE
(SEXPRITYPE OBJECT)
XFORMTIME
(SEXPR!TREE OBJECT)
XFORMER
JUST
«*MASTERs»))
((CELL!SUBTREE? INPUTCELL OBJECT) ; sign of a s+POINTERss
(CELL!STORE-BP OBJECT (CELL!BP INPUTCELL))
(CELLITERMINATE INPUTCELL (LIST 0BJECT) PTCPOINTER)
(MONK ! CREATE »sPOINTERss XFORMTIME OBJECT XFORMER JUST PTCPOINTER))
((CELL? OBJECT) ; must be a new cell
(CELL!TERMINATE INPUTCELL NIL PTCPOINTER)
(MONKICREATE (SEXPR!TYPE OBJECT)
XFORMTIME
(SEXPR!TREE OBJECT)
XFORMER
JUST
PTCPOINTER))
- ((CELLIST? OBJECT) ; sign of a sPOINTER-LISTs
(MAPC (FUNCTION (LAMBDA (POINTEE) :
. (CELLISTORE-BP POINTEE
(CELL!BP INPUTCELL))))
O0BJECT)
(CELL!TERMINATE INPUTCELL OBJECT PTCPOINTER)
(MONK1CREATE +#POINTER-LISTe» XFORMTIME OBJECT XFORMER JUST PTCPOINTER))
(T (ERROR ’|Unknown response object -- RESPONSE!HACK| OBJECT)))))

(DEFUN RESPONSE | SLAVE-HACK (RESPONSE INPUTCELL XFORMER PTCPOINTER)
(LET ((OBJECT (RESPONSE!OBJECT RESPONSE))
(JuST (RESPONSE!JUST RESPONSE)))

{COND ((EQ OBJECT »+BYPASSss) :
(MONK ! CREATE »eBYPASSss XFORMTIME NIL XFORMER JUST PTCPOINTER))

((OR (EQ OBJECT «sNOTHINGee) (EQ OBJECT ssREPLACEDss))
(CELLITERMINATE INPUTCELL NIL PTCPOINTER) ,
(MONK!CREATE OBJECT XFORMTIME NIL XFORMER JUST PTCPOINTER))
(T (RESPONSE!HACK RESPONSE INPUTCELL XFORMER PTCPOINTER)))))

TaBLE4-11. Functions which perform “cell-keeping”.

categories the returned object falls.

The definitions of the functions RESPONSE ! HACK and RESPONSE ! SLAVE-HACK are given
in Table 4-11. After determining the type of responsc object returned by the transformer (same
cell, subcell, new cell, list of cells, etc.), up to threc things happen:

76 CHAPTER FOUR THE ACCOUNTABLE COMPONENT

(DEFUN CELL!TERMINATE (CELL sTERM-0BJLISTs «TERM-PTCPOINTERs)
(DECLARE (SPECIAL *TERM-OBJLIST+ *TERM-PTCPOINTERs))
(COND '

({NULL sTERM-0BJLISTs)
(SEXPRIMAPCAR
(FUNCTION
(LAMBDA (SON)
(XFORM-SLAVE /SEXPR!REPLACED
SON
(LIST)
+TERM-PTCPOINTERs)))
(CELL!CSONS CELL)))
(T (SEXPRIMAPCAR
(FUNCTION
(LAMBDA (SON)
(COND ((MEMQ SON «TERM-0BJLISTs) NIL)
(T (XFORM-SLAVE /SEXPR!BYPASS
SON
(LIST)
+TERM-PTCPOINTER+)
(CELL!TERMINATE SON
*TERM-0BJLISTs
«TERM-PTCPOINTER=)))))
(CELLICSONS CELL)))))

TABLE4-12. Cell histories are completed using CELL ! TERMINATE.

e back-pointers are updated. The back-pointer list of the rcturned object is updated to include
references to the input cell, since the object’s subtree is about to be installed in the input cell via
a new monk.

o the relavent old subtrees of the input cell are terminated. CELL! TERMINATE takes a cell
whose current subcells are to be terminated, a list of subcells of the input cell which are not
to be terminated (it checks each of the former against the latter before terminating), and the
input cell which acts as the parent transformation cell for the termination process. The special
termination monks *BYPASS+ and *REPLACE+ arc installed via system: dcfined slave trans-
formers which use the PTC pointer information. The definition of CELL ! TERMINATE is given
in Table 4-12.

o the new monk is created and returned to XFORM (or XFORM-SLAVE), which will then install it
in the input cell. ‘

4.4. Retrieval of Information

At the start of the rescarch for this thesis, I had grand idcas of a system in which the user
had only to hint at what he didn’t understand about the transformation process. The accountable
component would immediately understand the source of his confusion and provide him with the

§44.1 ’ : Retrieval of I.iformation 77

information he needed. This, I thought, would be a reasonable goal; very Al-ish, and much
easier than the even more idealistic goal in which the system could detect “unusual” transformation
situations and explain them without any prompting by the user.

Such goals may yet be attained, however, for the present I have accepted the fact that provid-
ing simple functions for accessing the information stored in cells and monks will have to be
sufficient. Given a cell and a transformation time, for example, the function DISP-JUST will
display the justification for the transformation which occurred to that cell at that time. Or, given a
transformation time, the function LOCATE-NEWCELL will return the cell which was transformed
at that time. There are a many such functions for retrieving information; their usefulness, however,
is limited to those people who know which ones to call to get the desired information. The user
should be able to request information with the least amount of hassle. Obviously then, the retrieval
functions should be packaged up and presented via a menu of some sort.

44.1. The Menus

Following the transformation of a list of evaluable s-expressions (the input accepted by the
driver function TRANSFORM), the resulting list of cells (one for each s-expression) is bound to the
atom XSEXPR. The transformed cells are cross-referenced by transformation time in CLOAKRACK,
and cells to which transformers applied but failed are cross-referenced by transformation time in
RAGRACK. In addition, a list of the cells and times for which each transformer succeeded or failed
to apply has been recorded in the property list associated with the name of that transformer. To
give the user access to the information stored in these structures, the query elcment presents the
user with a number of choices via the Menu Menu.

' The Menu Menu allows the user to selcct either the Code Menu, the Transformer Menu,
or the Version Menu. Each of these present the user with his choice of code, transformer, or
transformation time, respectively, to be the subject of his query. If he selects the Code Menu,
he may then specify any one of the expressions from the list of those he gave to the function
TRANSFORM. Thus, for example, if he transformed a list of five expressions, he may enter “3” to
point to the third expression. The Transformer Menu gives the user access to statistics concerning
the number of transformers given to the system, the number that were applied, and how many
always failed or always applicd. The user may ask to see a list of the names of the transformers that
fall into any of these categories, or enter one transformer name and study its activities. The Version
Menu will tell the user what the final transformation time was, then request a version number as

* input. The expression transformed at that time will be displayed, and the user may continue to ask

questions about that cxpression, or return to the menu to inquire about a ncw transformation time.

A diagram of the menus is given in Figure 4-2.

The functions used to support the menu system are simple and straightforward. I defined a°

78 CHAPTER FOUR THE ACCOUNTABLE COMPONENT

ATS Menu Menu
0. Quit
1. Code Menu
2. Transformer Menu
3. Version Menu
Selection?
Code Menu Transformer Menu Version Menu
0. Return to Menu Menu. 0. Return to Menu Menu. ‘ There are 24 versions.
1. FOO 1. All transformers given.
2. BAR 2. Those attempted. 0. Return to Menu Menu.
3. BAZ 3. Those which failed. Q. Quit
Enter Q to quit. 4. Those which applied. or, enter version number.
Selection? Enter Q to quit. Selection?
Enter transformer name to view.
Selection? CONDISIMPLIFY

Transformer Activities Menu

0. Return to Transformer Menu.

1. View all § attempts of COND!SIMPLIFY.
2. Only the 2 attempts that applied.

3. Only the 3 attempts that failed.

Enter Q to quit.
Selection?

FIGURE4-2. The menu system.

general menu display function, DISP-MENU, which takes a title, a list of selections, and a list of
messages to be displayed after the sclections. This function is used by each of the menu functions
MENU-MENU, CODE-MENU, TRANSFORMER-MENU, and VERSION-MENU. If the user selects an
expression from the Code Menu, that expression will be passed to the function WALK. This func-
tion will allow the user to obtain a variety of information stored in the ccll which represents that
expression. If the user selects a transformer from the Transformer Menu, he will be given a number
of statistics on the activitics of that transformer, and then will be allowed to “walk” any of the

§4.4.2 Retrieval of Information 79

expressions transformed by that transformer. And finally, if the user selects a transformation time
from the Version Menu, he will- walk the cell which was transformed at that time.

44.2. Walking

The function WALK takes any cell and optionally, a version. If no version is given, he will
begin walking at version 0. The expression will be displayed along with the version number,
the expression’s structure type, and the name of the transformer which created it. The user may
then enter any of the commands described in Chapter Two (and some others besides) to obtain
additional information.

The simplest method of retrieving information from the cells is for the user simply to enter
“+” at each prompt, which will display the expression as it occurred in the next version. This has
the effect of simulating the transformation process as it applied to the expression. If, as the user
walks through this process, step by step, he wishes to stop along the way and inquire in more detail
about some transformation , he may easily do so. Entering “w” (for “why”), for example, will cause
the justification for the current transformation to be displayed. Entering “f” (for “failed™) will
cause the names of the transformers which were attempted but failed at this point in the process
to be displayed along with their justifications. Entering “?” will display the menu of commands
availabie to the user. ‘

If the user has a pretty good idea of what he wants to look at, he may go directly to piece of
code he is intercsted in by using the “up”, “down”, “over”, and “set version” commands described
in Chapter Two. These allow him to pick up his walk anywhere in time (transformation time) or
space (point in code). If at any time during his walk he wishes to jump down to the sub-expression
which was just transformed, the user may enter the command “j” (for “jump”), rather than the
correct sequence of downs and overs. After exploring around all he wants, he may enter “r”’ (for
return) to return to the original expression. And, as a special added feature, the mechanism used
to remember the cxpression jumped from (a stack!) was generalized and made available to the user
via the command “m” (for memorize). This adds the current expression and version number to the
stack (stored in CELL-ENVIRONMENT) without jumping anywhere. The user may walk anywhere -
he likes, and then enter “r” to return the last expression and version which were either jumped
from or “memorized”. '

4.5. An Example

The driver function of the system is TRANSFORM. I call that here on the list;

" ((DEFUN TEST (X Y)

80 CHAPTER FOUR THE ACCOUNTABLE COMPONENT

(COND ((NULL Y) Y)
(T (FOO (CAT Y)))))
(DEFUN FOO (X)
(CONS X X))
(DEFUN BAR (FROB)
(COND ((ATOM FROB) (TEST FROB FROB))
((OR FROB (CDR FROB)) (CAR FROB))
(T (CAR (FOO FRO0B))))))

which is bound to the atom DAFS.
(transform dafs)

Transformation completed.

When the transformation process is complete, the user may enter the menu system, invoking the
query element.

Enter Menu System? (enter y or n)y
THE MENU MENU

- Quit

- Code Menu

- Transformer Menu

~ Version Menu

election? (end with CR): 1

N WN =

Upon cntering the code menu, the name of each function definition transformed (or an expression
“type if the the expression transformed is not a function definition) will be displayed so the user may
select one of them to examine.

CODE MENU
0 - Return to Menu Menu
1 - TEST
2 - FOO
3 - BAR

Enter Q to quit, :
Selection? (end with CR): 3

The sclected expression is first displayed as it was input to the transformation system.

(DEFUN BAR (FROB)
(COND ((ATOM FROB) (TEST FROB FROB))
((OR FROB (CDR FROB)) (CAR FROB))
(T (CAR (FOO FROB)))))

§4.5 An Example 81

Version: 0 Expression type: sDEFETTEs Transformer: DEFETTE!CREATE
:? . ' . _

The user may type “?” at any time to see a list of possible commands.

d - down to first sub-expression of this cell

u - up to parent expression

o - over to brother expression

j - jump jump to sub-expression just changed.

r - return return to expression last jumped from or memorized

+ - add increment version by one and print

- - subtract decrement version by one and print

s - set set version to number prompted for

n - next go to next version of this cell and print

p - previous go to previous version of this cell and print

1 - last go to last version of this cell and print

m - memorize remember this cell and this version

a - again print current version of expression

h - how many display version numbers for this expression

t - type? what is type of top level expression

v - version? what 1is version of top level exprssion?

w - why? get justification of current transformation
".x - xformer? what transformer produced this cell’s current monk.

e - evaluate display the boolean value of this expression

f - fails look at the transformers which failed '

b - break break to LISP

q - quit quit to top level

? - huh? prints this info

HE

The user may re-enact the transformation process by entering a “4+" at each prompt.

(DEFUN BAR (FROB)
(COND ((ATOM FROB)
((LAMBDA (X-2 Y-1)
(COND ((NULL Y-1) Y-1)
A o (T (FOO (CAT Y-1))))) FROB FROB))
((OR FROB (CDR FROB)) (CAR FROB))
(T (CAR (FOO FROB)))))

Version: 3 Expression type: «DEFETTEe Transformer: FUNCNAME 1 SUB-DEF
1 i ‘ .

82 CHAPTER FOUR . THE ACCOUNTABLE COMPONENT

(DEFUN BAR (FROB)
(COND ((ATOM FROB)
((LAMBDA (X-2 Y-1)
(COND ((NULL Y-1) NIL)
(T (FOO (CAT Y-1))))) FROB FROB))
((OR FROB (CDR FROB)) (CAR FROB))
(T (CAR (FOO FROB)))))

Version: 4 Expression type: *ATOMs Transformer: SEXPR!FORM-BVAL
t+

(DEFUN BAR (FROB)
(COND ((ATOM FROB)
((LAMBDA (X-2 Y-1)
(COND ((NULL Y-1) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT Y-1)))))
FROB
FROB))
((OR FROB (CDR FROB)) (CAR FROB))
(T (CAR (FOO FR0B)))))

Version: 5 Expression type: «DEFETTEs Transformer: FUNCNAME !SUB-DEF
H

(DEFUN BAR (FROB)
(COND ((ATOM FROB)
((LAMBDA NIL
(COND ((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FR0B)))))))
((OR FROB (CDR FROB)) (CAR FROB))
(T (CAR (FOO FROB)))))

Version: 6 Expression type: sFCALLs Transformer: DEFCALLITRIM
i+

(DEFUN BAR (FROB)
(COND ((ATOM FROB)
(COND ((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))
((OR FROB (CDR FROB)) (CAR FROB))
(T (CAR (FOO FROB)))))

Version: 7 Expression type: *COND» Transformer: DEFCALLISIMPLIFY
+

§4.5 A1 Example 83

(DEFUN BAR (FROB) _
(COND ((ATOM FROB)
(COND ((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))
((OR T (CDR FROB)) (CAR FROB))
(T (CAR (FOO FROB)))))

Version: 8 Expression type: «ATOMs Transformer: SEXPR!FORM-BVAL
'+

(DEFUN BAR (FROB)
(COND ((ATOM FROB)
(COND ((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))
((OR T) (CAR FROB))
(T (CAR (FOO FROB)))))

Version: 9 Expression type: sOR» Transformer: OR!TRIM
4

(DEFUN BAR (FROB)
(COND ((ATOM FROB)
(COND ((NULL FROB) NIL) o
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))
(T (CAR FROB))
(T (CAR (FOO FR0B)))))

Version: 10 Expression type: *ATOMs Transformer: ORISIMPLIFY
t+

(DEFUN BAR (FROB)
(COND ((ATOM FROB)
(COND ((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FRO0B)))))
(T (CAR FROB)))) :

Version: 11 Expression type: «COND» Transformer: COND!TRIM
HE
No more transformations occurred. This is the final version.

(DEFUN BAR (FROB)
(COND ((ATOM FROB)

84 CHAPTER FOUR THE ACCOUNTABLE COMPONENT

(COND ((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))
(T (CAR FROB))}) :

Version: 11 Expression type: sCOND=» Transformer: CONDITRIM
q

If the user requests a non-existent version of the expression, he is warned as shown above, and the
expression is redisplayed. When he is through walking throught the transformation process, the

€6 99

user quits by entering “q” and is returned to the code menu.

CODE MENU
0 - Return to Menu Menu
1 - TEST
2 - FOO
3 - BAR

Enter Q¢ to quit.
Selection? (end with CR): 0

THE MENU MENU

- Quit
- Code Menu
- Transformer Menu
- Version Menu
election? (end with CR): 3

VWM =

VERSION MENU

There are 11 versions.

0 - Return to Menu Menu

Q - quit

or, enter version number,
Selection? (end with CR): 7

The version menu allows the user to begin walking the code at a particular point in time and space:
the expression transformed at time 7, in this case. After the code is displayed. the user may cnter
any of the usual walking commands. For example, he might enter “u” to see more of the context of
the expression which was transformed.

(COND ((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB))))

§45 ' ‘ . An Example 85

Version: 7 Expression type: -CONbc Transformer: DEFCALLISIMPLIFY
']

((ATOM FROB)
(COND ((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))

Version: 7 Expression typse: +CONDs Transformer: DEFCALL!SIMPLIFY
q'] '

(COND ((ATOM FROB)
(COND ((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FR0B)))))
((OR FROB (COR FROB))- (CAR FROB))
(T (CAR (FOO FROB))))

Version: 7 Expression type: sCONDs Transformer: DEFCALL!SIMPLIFY

e
.

To see what the code looked like immediatly before the transformation, the user enters “—”,
(COND ((ATOM FROB)
((LAMBDA NIL
(COND
((NULL FROB) NIL) _ _
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))))
((OR FROB (CDR FROB)) (CAR FROB))
(T (CAR (FOO FROB))))

' Version: 6 Expression type: «FCALLs Transformer: DEFCALLITRIM
q .

The user may explore as much as he desires, and when he quits he will be returned to the menu he
came from.

VERSION MENU

There are 11 versions.

0 - Return to Menu Menu

Q - quit ’

or, enter version number.
Selection? (end with CR): 0

86

N = O

3

Selection? (end with CR): 2

W N =0

CHAPTER FOUR

THE MENU MENU

- Quit

- Code Menu

- Transformer Menu
- Version Menu

TRANSFORMER MENU

- Return to Menu Menu

THE ACCOUNT.3:BLE COMPONENT

- Transformers given in transformation sets

- Transformers attempted
- Transformers which always failed

4 -

Transformers which always succeeded

Enter transformer name to view.
Selection? (end with CR): 2

The transformer menu gives the user access to a variety of statistics. Each of the categories listed
above will display the number of transformers in that category and give their names.

14 transformers attempted:

(OR!SIMPLIFY OR!TRIM

Enter any character to continue:

SEXPRIREPLACED
SEXPR!IBYPASS
ATOM!SUB-ACTARG
SEXPRINOTHING
CONDISIMPLIFY
COND!TRIM
DEFCALL!ISIMPLIFY
DEFCALL!TRIM
FCALL!SIMPLIFY
FCALLISIMP-NOT
FUNCNAME | SUB-DEF
SEXPR!FORM-BVAL)

§4.5 /n Example 87
TRANSFORMER MENU

- Return to Menu Meni

- Transformers given in transformation sets
- Transformers attempted

Transformers which failed

4 - Transformers which succeeded

Enter Q to quit.

Enter transformer name to view.

Selection? (end with CR): 4

W N = O

11 transformers succeeded:

(OR!SIMPLIFY ORITRIM
SEXPR!REPLACED
SEXPR!BYPASS
ATOM!SUB-ACTARG
SEXPRINOTHING
COND!TRIM
DEFCALLISIMPLIFY
DEFCALLITRIM
FUNCNAME | SUB-DEF
SEXPRIFORM-BVAL)

6 transformers always succeeded:

(ORISIMPLIFY ORITRIM
SEXPRIREPLACED
SEXPR!BYPASS
ATOM!ISUB-ACTARG
SEXPRINOTHING)

Enter any character to continue: x

TRANSFORMER MENU

- Return to Menu Menu

- Transformers given in transformation sets
- Transformers attempted

3 - Transformers which failed

4 - Transformers which succeeded

Enter Q to quit.

Enter transformer name to view.

Selection? (end with CR): orltrim

N =0

88 CHAPTER FOUR TiE ACCOUNTABLE COMPONENT

If the user enters the name of a transformer, he is taken to the transformer activities menu and
given some statistics on the performance of that transformer.

TRANSFORMER ACTIVITIES MENU

- Return to Transformer Menu

- Observe all 1 attempts of transformer ORITRIM
-~ Only its 1 successful applications

3 - Only its 0 unsuccessful applications

Enter Q to quit.

Selection? (end with CR): 2

N =R o

The user may study both successful and unsuccessful applications of the transformer.

The transformer OR!TRIM applied at time 9.
Would you like to study the expression? (enter y or n)y

(OR T)

Version: 11 Expression type: *ORs Transformer: OR!TRIM

(OR T (CDR FROB))

Version: 10 Expression type: =ATOM» Transformer: SEXPR!FORM-BVAL
W

While walking, entering the command “w” (for “why?”) will produce a set of justifications for the
transformation.

Expression was transformed becagse {not (atom x)) => (not (null x)) => x
(ATOM FROB)

Vatue is NIL because it is within false branch of the cond clause

((ATOM FROB)

(COND ((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))

§4.5 A1 Example 89
((OR T (CDR FROB)) (CAR FROB))
Version: 10 Expréssion type: sATOM« Transformer: SEXPR!FORM-BVAL
:u

(COND ((ATOM FROB)
(COND ((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FR0B)))))
((OR T (CDR FROB)) (CAR FROB))
(T (CAR (FOO FROB))))

Version: 10 Expression type: *ATOMs Transformer: SEXPR!FORM-BVAL
4+

(COND ((ATOM FROB)
(COND ((NULL FROB) NIL) ,
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))
((OR T) (CAR FROB))
(T (CAR (FOO FROB))))

Version: 11 Expression type: »ORe Transformer: ORITRIM
q

After walking, the user is returned to the transformer activities menu. From there he may either
inquire more about the same transformer, or return to the transformer menu.

TRANSFORMER ACTIVITIES MENU

0 - Return to Transformer Menu

1 - Observe all 1 attempts of transformer OR!TRIM
2 - Only its 1 successful applications

3 - Only its 0 unsuccessful applications

Enter Q to quit.

Selection? (end with CR): 0

TRANSFORMER MENU

- Return to Menu Menu

- Transformers given in transformation sets
- Transformers attempted

- Transformers which failed

- Transformars which succeeded

BwWw M=o

90 CHAPTER FOUR THE ACCOUNTABLE COMPONENT

Enter Q to quit.
Enter transformer name to view.
Selection? (end with C1): cond!simplify

TRANSFORMER ACTIVITIES MENU

0 - Return to Transformer Menu

1 - Observe all 3 attempts of transformer CONDISIMPLIFY
2 - Only its 0 successful applications

3 - Only its 3 unsuccessful applications

Enter Q to quit.

Selection? (end with CR): 3

The transformer COND!SIMPLIFY failed 1 times during transformation time 3.
Would you 1ike to see the expressions? (enter y or n)y

If the user chooses to view an expression to which a transformer was applied but failed, after
displaying the expression, the names of all transformers which were attempted (but failed) at that
time are displayed along with their justifications.

'Expression 1 of 1. Continue? (enter y or n)y
(COND ((NULL Y) NIL) (T ((LAMBDA (X-1) (CONS X-1 X-1))} (CAT Y))))

Version: 3 Expression type: «COND# Transformer: COND!CREATE
Transformation time: 3 Expression type: sCONDs

COND!TRIM failed to transform the expression because
no predicates were known (maybe last).

COND!SIMPLIFY failed to transform the expression becauss
patterns didn’t match.

SEXPR!FORM-BVAL failed to transform the expression because
the boolean value is unknown.

Done.

Enter any character to continue: x

The transformer CONDISIMPLIFY failed 1 times during transformation time 6.
Would you like to see the expressions? (enter y or n)n
The transformer COND!SIMPLIFY failed 1 times during transformation time 12.
Would you like to see the expressions? (enter y or n)y

§4.5 An Example 9

Expression 1 of 1. Continue? (enter y or n)y

(COND ((ATOM FROB)
(COND ((NULL FROB) NIL)
(T ((LAMBDA (X-3) (CONS X-3 X-3)) (CAT FROB)))))
(T (CAR FROB)))

Version: 14 Expression type: «COND» Transformer: COND!TRIM
Transformation time: 12 Expression type: »COND=»

COND!SIMPLIFY failed to transform the expression because
patterns didn’t match.

SEXPR!FORM-BVAL failed to transform the expression because
the boolean value is unknown.

Done.

Enter any character to continue: x

If the user quits from any menu, he leaves the menu system and is returned to the driver function,
which allows him to write out the transformed expressions.

TRANSFORMER ACTIVITIES MENU

- Return to Transformer Menu
- Observe all 3 attempts of transformer COND!SIMPLIFY
- Only its 0 successful applications
3 - Only its 3 unsuccessful applications
Enter Q to quit.
- Selection? (end with CR): ¢q

N - O

Write final output to a file? (enter y or n)y
Enter file name: bkerns;xformd>

Written.
T

The file bkerns;xformd > now contains:
(DEFUN TEST (X Y)
(COND ((NULL Y) NIL)
(T ((LAMBDA (X-1) (CONS X-1 X-1)) (CAT Y)))))
(DEFUN FOO (X) (CONS X X))

(DEFUN BAR (FROB)

8% impliiey

gg;#sﬁa mss.h? “

SR ety

jai’g ﬁﬁ‘i}" LANAES

araﬁ
. i&& rqéﬁj

LT AN e G DRI

gral o

§ yfed %

,‘"é#'ﬁ natui

¥ Smofineled -

e TEAFT et
\ 'j?;z it

'];ﬁsfséﬁﬁ
o “‘i

¥oATE e e RS

AU 3&&} fg%ﬁft e:

’;zw‘w- s ulfedT

%f313§}:~%gaaﬁ}j-
Vi lames

(X} bR wuRany

3} FRE MITH

Chapter Five

Conclusions

T WORKS. The code has run successfully with the applicable LISP programs given it, and the

set of optimizing transformers I have written to demonstrate the system have even managed
to significantly improve the execution time of those programs. That is not to say that the system was
all I envisioned, or that it cannot be more . ..

5.1. Looking Back

It was my intention from the beginning that the transformational component be able to run
independently of the accountable component (which in my mind meant independently of the cell
representation), simply by rewriting the definitions of XFORM and RESPOND. Clearly, the func-
tions which access picces of the internal form must be aware of the representation of that form, but
these functions can be written to accept any of a finite number of different representations at any
time, so long as they are able to figure out what that representation is by means of checking type
flags.

I still believe this is possible; however, it is clear that the system as currently implemented
is not able to run with an internal form as simple as just the LISP parse tree. Certain contextual
information is necessary for correct transformation. Without the predicate position information
currently stored in the internal form of the parsc tree, transformers dependent on that informa-
tion cannot apply. Without back-pointer information, for example, it is impossible for a slave
transformer to delete its input expression; it has no access to the father expression from which

93

94 CHAPTER FIVE CONCLUSIONS

to unhook it. Although all such information might have been created and maintained in vari-
ables separate form the -internal form and passed from control function to control function (as
the environment and index of bindings were), some of it was more easily stored directly along
with the LISP code to which it pertained. Thus, some sort of augmented parse tree is necessary.
Furthermore, the current system is dependent on the fact that XFORM will install the returned
expression in the internal form (whatever it is) by side-effecting that form, since many system
functions do not “hold on™ to their values. This means that the transformation system in its present
implementation cannot transform itself, a fact I truly regret.

It was my further intention that the accountable system be implementable regardless of the
nature of the implementation of the transformational component. While this is true to some degree,
there are nevertheless dependencies I saw no simple way of avoiding. Some of them have been
stated already in Chapter Three: the independence of transformations from the control structure,
the restriction that transformations are called via XFORM and return via RESPOND, etc. In addi-
tion, in order for cell histories to be properly maintained, slave transformers must be used to keep
transformations as localized as possible. Consider the result of consing up a.new list of clauses to be
returned by the transformation:

(COND <clauses-1> (T (COND <clauses-2>)))
=> (COND <clauses-1> <clauses-2>)

First of all, since optimizing transformations are required to return equivalent expressions, the
transformer would have to return a conditional expression. Thus, after constructing the new list of
clauses (perhaps by appending <clauses-1> and <clauses-2)), it creates a new conditional
expression via COND!CREATE, which takes a list of clauses and returns a conditional expression.
This' function will result in the creation of a new +CONDs= cell; when XFORM realizes that the
returned expression is neither the same nor a subcell of the input cell, it will correctly assume that
the returncd cell is new. The new cell’s subtree (the list of clauses) will be installed as the input
cell's new monk, but only afier the subcells of the input conditional have been terminated. Since
these same subcells are contained in the newly consed list of clauses, the resulting «CONDs cell
consists of an empty clause list.

This example illustrates some of the dependencies of the accountable component on the trans-
- formation implementor. The implementor nceds to be aware of the five different cases into which
returned objects may fall, and write his transformers accordingly. Correctly maintaining the cell
histories is tricky business, and I have not yet succeeded in making the mechanism robust enough
to survive even the good intentions of uninformed transformation implementors.

§53 The Present 95
5.2. Looking Ahead

I spent the bulk of my effort for this thesis in gathering information and developing
mechanisms for recording it, rather than using that information. I believe that future work on this
system should emphasize the analysis of the transformation process using the information gathered
by the recording element. I dream of an accountable system, for example, that could reply to
the question “Why didn’t this simplifying transformer apply?” with an answer something like
“Hmmm, if only I could have shown the predicate <predicate to be false, I could have completely
eliminated the computation <hairy expression>”. Or to the question “Why did this transformer
apply?”, reply “if it hadn’t been for this assertion you coded in by hand, none of this whole reduc-
tion would have happened.” That is, the query element could not only report the facts, but perform
some sort of analysis using those facts. It involves more carefully itemizing the prerequisites of a
transformation and understanding exactly which of them were met (and why), and which were not.
The “why” needs to be slightly more sophisticated than the justifications of the present system; if
a prerequisite is met, the system should understand the source of the information which satisfied
that prerequisite. Was it an assertion, deduced from context, or always true, and then, what is the
significance of that source?

If a transformation did not apply, then how close did it come? To answer this question the
system must know not only which prerequisites failed, but be able to suggest ways of satisfying
them. Would an assertion solve the problem, or would such an assertion be a contradiction to cur-
rent information. 1f a transformation failed because it tried to simplify an OR expression with one
argument, for example, but was applied to an OR expression with two arguments, simply asserting
that the expression had only one arguments would raise a contradiction. '

And finally, though I would enjoy providing a super slick user interface for the accountable
transformation system, such improvements are not as dependent on the implemcntatibn of this
system so much as they are on the capabilities of the user’s terminal and its host system. Just the
same, | dream of display hacks which use multiple cursors and can remember where a particular
s-expression is on the screen. Then instead of having to redisplay an expression to refer to it,
the cursor simply jumps to the correct s-expression already displayed. When the user asks to see
the next version of the displayed expression, the cursor jumps to the sub-expression about to be
transformed, waits for a signal, then pops in the new sub-expression. A status line on the bottom
of the screen keeps the user informed as to the current version, expression type, and transformer
name. Then of course, menus pop up on the screen and a mouse is available to control the cursor.
However, 1 will leave the implementation of such features to hackers equipped with the necessary
terminals.

96 CHAPTER FIVE ' CONCLUSIONS

5.3. The Present

As is always the case, | have not accomplished all I had set out to do in this thesis. Though
I believe the present implementation qualifies as an accountable system, it is not what I proposed
that it be originally: a responsible system. To be responsible for its actions, it must have a clearer
understanding of those actions and be able to analyze a situation to the extent that it can propose
to the user the course of action necessary to correct any problems in the transformation process. An
accountable system, however, is a step forward, and does provide a hitherto undeveloped service.
It allows the user to observe the sequence of transformations applied and study their interactions
with each other, it allows him to select any portion of code in any point in time, and it allows him to
control the flow of information returned to him at his request.

References

[Allen and Cocke 1972]
Allen, F.E.,, and Cocke, J. “A catalogue of optimizing transformations.” Design and
Optimization of Compilers, R. Rustin, Ed. Englewood Cliffs, NJ, Prentice-Hall, 1972, pp 1-
30

[Atkinson 1976)
)\tkinson, R.R. Optimization techniques for a structured programming language. S.M. Thesis.,
MIT, Cambridge, MA. 1976.

[Bagwell 1970]
Bagwell, J.T. “Local Optimizations.” SIGPLAN Proceedings, Vol 5, No 7, (July 1970), pp
52-66

[Boyle 1970]
Boyle, James M. A Transformational Component for Programming Language Grammar.
Argonne National Laboratory Report ANL-7690, Argonne, Illinois, July 1970.

[Boyle 1976]
Boyle, James M. “Mathematical Software Transportability Systems — Have the Variations a
Theme?” Procecedings of Workshop on Portability of Numerical Software, June 1976."

[Boyle and Matz 1977]
Boyle, James M. and Matz, Marilyn. “Automating Multiple Program Realizations.” Proc.
of the M.R.I. International Symposium XXIV: Computer Software Engineering. Polytechnic
Press, Brooklyn, N.Y., 1977.

[Davis 1978])
Davis, Randall Interactive Transfer of Fxpertise: Acquisition of New Inference Rules.
Computer Science Dept, Stanford Univ., Stanford, CA, December 1978.

97

98 References

[Gerhart 1975]
Gerhart, S. L. “Correctness-preserving program transformations.” Conf. Rec. Second ACM
Symp. on Princples of Programming Languages, January 1975, pp 54-66

[Geschke 1972]
Geschke, CM. Global Program Optimizations. PhD. Th., Computer Science Department,
Carnegie-Mellon University, 1972

[Kerns 1977)
Kerns, Barbara S. An Experiment in Information Hiding. Bachelor’s Thesis Greenville
College, Greenville, Illinois, (May 1977)

[Loveman 1977}
Loveman, David B. “Program Improvement by Source-to-Source Transformation.” Journal
of the ACM, Vol 24, No.1, January 1977, pp 121-145

[Loveman and Faneuf 1975]

Loveman, D. and Faneuf, R. “Program Optimization - theory and practice.” Proc. of Conf.
on Programming Languages and Compilers for Parallel and Vector Machines., SIGPLAN
Notices (ACM) 10, 3 (March 1975), pp 97-102

[Nievergelt 1965]

Nievergelt, J. “On the automatic simplification of computer programs.” Comm ACM, Vol 8,
No 6 (June 1965), pp 366-370
[Pitman 1979]

Pitman, Kent M. “A Fortran->Lisp Translator.” Proc. of Macsyma Users Conference, June
20-22, 1979, Washington, D.C., pp 200-214.

[Pitman 1980]
Pitman, Kent M. “Special Forms in LISP.” to appear in procecdings of the Lisp Conference,
August 24-27, 1980, Stanford, California.

[Schacfer 1973]

Schaefer, M. A Mathematical Theory of Global Progrdm Optimization. Prentice-Hall,
Englewood Cliffs, NJ, 1973.

[Scheifer 1977]

Scheifler, R. W. “An analysis of inline substitution for a structured programming language.”
Comm. ACM, Vol 20, No 9 (September 1977), pp 647-654

[Standish, et al 1976}

Standish, T., Harriman, D., Kibler, D., and Neighbors, J. M. The Irvine Program
Transformation Catalogue. Computer Science Dept, U.C. Irvine, Irvine, CA (January 1976).

[Standish, et al 1976]

References o 9

Standish, T., Harriman, D,, Kibler, D., and Neighbork J. M. “Improving and refining pro-
_grams by program manipulation.” Proc. IB’IGA&!
516 |

[Steele 1980}
Steele, Barbara K. “Strategies for Data Abstraction in LISP.” to appear in Proc. of LISP
Conference, August 24-27, 1980, Stanﬁxﬂ,CA

[Schwartz 1974)
Schwartz, J.T. “Automatic and semiautomatic optimization of SETL.” Proc. ACM Symp.
 Very High Level Languages, SIGPLAN Nm Vol 9, No4, Apxil 1974

[Wegbreit 1976}

" Wegbreit, B. “Goal-directed program transformation.” IEEE Trans. on Software anineemg.

SE-2, 2 (June 1976), pp 69-80 -

it Canf., Oct. 20-22,1976, pp S09-

This empty page was substituted for a
blank page in the original document.

CS-TR Scanning Project
Document Control Form Date : /AT 19¢

Report # AL TR-636

Each of the following should be identified by a checkmark:
Originating Department:

)& Artificial Intellegence Laboratory (Al)
O Laboratory for Computer Science (LCS)

Document Type:

j& Technical Report TR) [Technical Memo (TM)
O other:

Document Information Number of pages: lO‘f(}12~] MAGES)

* Netto include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or [0 Single-sided or
JX(Double-sided JX(Double-sided
Print type:
O Typewriter XOﬁsetPress [] Laser Print
] inkJet Printer [___l‘ Unknown [other:

Check each if included with document:

kf DOD Form (J)K Funding Agent Form ﬁ Cover Page

O spine [0 Printers Notes [J Photo negatives
O Other:
Page Data:

Blank Pageswy page numbes:

Photographs/Tonal Material wy page numben:

Other (nots descriptonipage numben:
Description : Page Number:

TGy MAR? / |- 19f Junst'zo THTLE PAGE, URBLONK 2 LWIBBLE
UW?FBLK ¢ - io w\)#eLkJH 7? wﬁmwk
(1o5- Il&)SmNru»JTmL CoUsR Punding ACENT. pob(ag'ms'"(3)

Scanning Agent Signoff: i
Date Received: ol /91 /96 Date Scanned: _? 1/ 194 Date Returned: 7 /7 194

Scanning Agent Signature: QMA DX&X [Z/U : QJL

Rev /84 DSALCS Document Control Form cstform.ved

UNCLASSIFIED
SECURITY CLASSIF!CATIQN OF THIS PAGE (When Dats Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

AI-TR-636

2. GOVT ACCESSION NO.

RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

An Accountable Source-to—SourCe Transformation

System

TYPE OF REPORT & PERIOD COVERED

Technical Report

PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a)

‘Barbara Sue:Kérhs Steele

. CONTRACT OR GRANT NUMBER(e)~ ~ ~—

NO0014-80-C-0505

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Artificial Intelligence Laboratory.
545 -Technology Square '
Cambr idge, Massachusetts 02139

10.

PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

: t1. CONTROLLING OFFICE NAME AND ADDRESS
Advanced Research Projects Agency

1400 Wilsom Bivd . - -~

_Arlington, Virginia 22209 - .

. REPORT DATE .

“June 1981

13.

NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESS_(M dilferent from Controlling Oflice)
Office of Naval Research - ' '
Information Systems ~ e
Ariington, Virginia 22217

SECURITY CLASS. {of thls report)

UNCLASSIFIED .

t5a, DECL ASSIEF!CA'NON/DOWNGRAD!NG

SCHEDUL

16. DISTRIBUTION STATEMENT (of fthis Report)

-

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (ol the abstract mtorpd in Block 20, il diflsrent from Report)
18. SUPPLEMENTARY NCTES .
19.” KEY WORQS (Continue on reverse alde Il necessary and identify by block number)
Transformation System . Symbolic Execution
- Code Optimization - Programmers Assistant SR
. Interactive Programming Program Analysis. . e
o o Snapshots : L

20. ABSTRACT (Continue on reverse elde If neceseary and identity dy block number) - .

Though one is led to believe that program transformation systems which-perform
source-to=sdurce transformations enable the user to understand-and. appreciate
the resulting source program, this is not always the case. 'Transformatiops are
capable-of behaving and/or interacting in unexpected ways. “The user who is
interested in understanding the whats, whys, wheres, and hows of the trans-
formation process is left without tools for discovering them. I provide an

initial step towards the solution of this. problem” in the form of an accountable

FORM
DD T JAN 73

EDITION OF 1 NOV 63 1S OBSOLETE
S/N 0302-034-6601 | ' T

UNCLASSIF‘ED

1473

ST RENEP AP

L. 20,

3

S I B

OGS it ‘.»w«ra.u. [Ir e
i
3
i

D A T

i

S o oA i

e A el = N s v

“seiirce-to-source transfo
necessary..ip answer .such
of this information.
atiows the usﬁ*ftcéess‘to pﬂmt facts ﬁ'u &i& e ny draw cornclusions,

S A

tion systeu’
stions, and provides mechanisms for the retrieval
‘It i$ obSirved o

e o s B

S S

L»‘érﬁ L wnsiane fasiade en‘ S

It carefuny ‘records the infomt‘im

el

tiEte accountable system

mtlxs.im

ifo al ZFrasoant

B

g i M RN D82 2 ks

AT Nig

Vi sy, e iy

o S vﬁmﬁfﬁ eBbis et in e we e B

PR B TR A R S SNSRI APRNT < T R T N T A

LOEGE T RM i F O s e

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

