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Abstract

This thesis explores how to represent image texture in order to obtain information about the

geometry and structure of surfaces, with particular emphasis on locating surface discontinuities.

Theoretical and psychophysical results lead to the following conclusions for the representation of image

texture:

(1 A texture edge primitive is needed to identify texture cange contours, which are formed
by an abrupt change in the 2-D organization of similar items in an image. The texture edge
can -be used for locating discontinuities in surface stnicture and surface geometry and for
establishing motion correspondence.

(2) Abrupt changes in attributes that vary with changing surface geometry -- orientation,
density, length, and width -- should be used to identify discontinuties in surface geometry and
surface structure.

(3) Texture tokens are needed to separate the effects of different physical processes operating
on a surface. hey represent the local stnicturte of the iage texture. Their spatial variation
can be used in the detection of texture discontinuities and texture gradients, and their
temporal variation may be used for establishing motion correspondence. What precisely
constitutes the texture tokens is unknown; it appears, however, that the intensity changes
alone will not suffice, but local groupings of them may.

(4) The above pimitives need to be assigned rapidly over a large range in an image.
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1. Introduction

This paper explores how to rpresent image texture in order to extract information about the

physical surfaces. Recent work by Marr 1977] suggests that the description of viewed surfaces plays a

fundamental role in early visual processing andthat determining the form of the descriptions given to the

image and to the viewed surfaces should be one of the first steps taken toward understanding early visual

processing. This paper analyzes texture in terms of these surface considerations and this representational

viewpoint, investigating what aspects of texture should be made explicit in an image to obtain

information of te geometry and structure of surfaces, with particular emphasis on locating surface

discontinuities. This sets apart this study of texture from many others, which emphasize texture

discrimination, a task that probably serves different goals.

In this introduction, we shall first expand on the aforementioned role of surfaces and

representations in early visual processing, and on the use of texture to obtain surface information. Some

methodological issues will then be discussed that reflect on the current level of understanding about the

representation of txture.

The role of surfiaces in visualprocessing

The visual world is composed mostly of surfaces. An image can thus be attributed to four

physical 'factors: the surface geometry (how the'surfaces lie in space), the surface reflectance, the

illumination, and the viewpoint [Hom 1977]. For a sequence of images separated in time a additional

attributing factor is needed: the surface correspondence between successive iages (which will be

non-trivial if the surfaces are in otion relative to the viewer). It would be of great value if these factors

could be determined from an iage or sequence of iages snce this would rovide information directly

of the physical] world flirt is present only indirectly in their combination in a imige. The hurnan ViSUal
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processor's facility at finding the sape and arrangement of visual surfaces, their lightness and color, the

location of discontinuities in surface orientation, depth, and reflectance indicates that this information can

indeed be determined to a considerable degree. But how is it done?

Using image texture to infer surface infonnation

The major sources of information about visual surfaces in an image include shading, stereo,

motion, texture gradients and edges. The first several make direct use of the intensity changes present in

an image. Sading obviously does so. Marr & Poggio 19781 have shown that the intensity changes

present at several scales (the zero-crossings) are effective correspondence tokens for stereo matching.

These intensity changes can also be used to obtain directionally sensitive motion information [Marr &

U11man 1981]. The intensity changes in an image thus seem to provide sufficient constraint to exploit

these sources, and an understanding of the intensity change description was evidently crucial to te

success so far Marr & Poggio 1978, Marr & Hildreth 1980].

A precise understanding of how to distinguish among discontinuities in surface orientation,

depth, rflectance, and illumination, of how to find motion correspondence over a large range in an

image, and of how to obtain surface orientation and depth from txture gradients has proved more

elusive. In part, this may be because the intensity changes in an iage alone do not provide sufficient

constraint to solve these problems easily, but that other aspects of the 2-D information in an iage such

as texture mst also be made explicit and used. Let us briefly examine, in turn, each of these latter

sources of surface information.

,rhe location of a discontinuity in surface orientation, depth, reflectance, or illumination in an

image often coincides with an intensity edge. But can the pysical type of discontinuity (e.g. depth

chcinge,,orientation change, ilumination change) be dtermined front die intensities directly? fly looking

at th itensity radient at n edric U1ildn'S lightSOL11-CC detectiot) operitor cn, i principle, distinguish
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a pure reflectance change from other discontinuity types (e.g. illumination change) [Ullman 1976] By

examining the edge profiles, other edge parsings may be possible [Horn 1977]. It is not presently known

how well edges can be parsed into their physical correlates directly from intensity information in real

images. A discontinuity in image texture oginates at a discontinuity in surface structure or in surface

geometry, and can therefore be used to locate these two kinds of physical discontinuity. The location of

surface discontinuities provides information that is useful, for instance, to processes that must decide

where smooth surface assumptions are no longer valid, as in the interpolation of a surface across points

derived from stereo matching. Considerable emphasis will be given to locating surface discontinuitie's in

this paper.

Motion correspondence across several degrees of visual angle in successive images (at which

human's are quite adept the well-known apparent motion effect) is considerably more difficult problem

than stereo correspondence since it involves increased range, unknown direction of motion, and the

possibility of surface transformation over time. Given the profusion of intensity changes present in a real

image, motion correspondence driven solely on the intensity changes rsults in many candidate matches

for each motion token (e.g. edge fragment). Ullman 19791 approached this problem by assigning a

likelihood to each 'ossible match between images assuming nearby matches were more likely, and

computing the maximum likelihood solution for that pair of images. An alternate approach would be to

use larger scale tokens such as texture discontinuities and collinear groupings which should have fewer

candidate matches over a given range than the raw intensity changes, to bring the longer range motions

into correspondence. Ullman noted that tokens that were more abstract than the raw intensity changes

could be sed to establish motion correspondence in humans, and called them group tokens.

Determining surface depth from texture gradients requires extracting a measure thcat shows no

foreshortening in an iinage-, tis is necessary to factorOLIt thCeffects of changing srface orientation from
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those due to perspective [Stevens. 1981a]. In Figure 1.1, surface -depth cannot be obtained from the height

of the ellipses since this measure is parallel to the texture gradient and will vary both with surface surface

and depth. Thus, this distribution of heights could be due to either a cylinder (changing height due

mostly to changing surface orientation) or a receding plane (changing height due entirely to changing

depth). However, if the width of the ellipses is used and provided that the ellipses are congruent across

the surface, then surface dpth can be obtained, since this measure is perpendicular to the texture

gradient and will not show foreshortening. Thus, the variation in ellipse widths will be due entirely to

changing depth. Steven's method for finding this measure with no (or least) foreshortening essentially

assumes that a description of image texture is available. In particular, such information as the position

and dimensions of small blobs in an image would be useful, while the location of the intensity changes

alone is probably too primitive a description of an image from which to extract an unforeshortened

measure directly.

In summary, distinguishing among discontinuities in surface orientation, depth, reflectance, and

illumination, finding long-range motion correspondence, and obtaining surface orientation and depth

from tex.ture gradients may prove difficult if only the intensity changes are examined directly, while if the

information in image texture is used, these problems may prove tactable. This makes it iperative to

.understand what aspects of image texture should be identified in an iage. Without knowing what

relevant data will be available, it is impossible to precisely define, say, a motion correspondence process.

or a depth from texture process, with the best that can be determined are these processes' abstract

computational needs. Thus, we could say that a motion correspondence process requires image tokens

that remain in correspondence with the same physical feature in successive views and for which there are

typically a small number of possible matches over die desired range. For depth from texture gradients, an

Linforeshortened masure in te image is neded. But to be much more spo'Cific rquires knowing the
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Figure 1.1 Surface depth cannot be obtained from the heiaht of die ellipses, since this measure is parallel
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obtained from the width of the ellipses, however, since this measure is perpendicular to the texture
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form of the input data, in particular, knowing what aspects of image texture to detect in an image and

how they should be represented in the visual system.

Representational Emphasis

We seek to determine the early visual representation of image texture, since the form of te

description of image texture must be specified before its computation can be specified. If the broad goals

of the computation are not well understood, but instead some image computation is defined prematurely,

the results are likely to be of little value in the long term to the theory of vision. This representation 9 S

primitives -- the basic assertions that can be made about image texture -- need to be specified in

particular. Other iportant representational issues to be determined include the range and resolution

over which these primitives can be assigned in an image, and the referencing system for rtrieving these

primitives see Marr and Nishihara 19781 for a discussion of visual representations). Marr 19761 has

called the early representation of the intensity changes and 2-D geometric structure in an image the (full)

primal sketch (the raw primal sketch represents just t itensity changes).

The primal sketch is the first of several representations that Marr 19771 sees as having a central

role in the computational theory of vision. The primal sketch is used to construct the 2h-D sketch, a

viewer-centered representation of the visible surfaces in a scene. It is in the 2/2-D sketch that the various

factors that produce an iage are separated -- the surface geometry, surface reflectance, the illumination,

and the viewpoint. Many processes that provide surface infon-nation from images, such as depth from

texture, can be viewed as reading from the primal sketch and writing to the 2h-D sketch.

The term early texture representation is used to indicate that we are interested here in the

description of texture that is produced early in the visual processing, and -is used for extracting global

surface information (the creation of die 22-1) sketch), and not a much richer description produced by

local scrLitiny that we mght -expect exists 0C LU-POSeS Ofl-CCOgnition, and is rich ore limited in



speed and iage range than the early texture representation.

Infomtal definition of inwge texture must precede its precise conWutational definition

It is inevitable that the definition of image texture will be imprecise initially; we have to rely

upon an intuitive definition. This has been the case with other aspects of visual processing. An intensity

edge, for instance, is informally defined as a place in an image where the intensity changes abruptly, with

a surface correlate of a discontinuity in surface orientation, depth, reflectance, or illumination. Recently,

Marr & Hildreth 19801 have formally defined an edge in trms of the spatial coincidence of intensity

changes at two nearby scales found by a convolution operation that will be described later. Teir method

defines a precise computation on an image for detecting edges. The informal definition, however, existed

first, specifying roughly what is to be represented, and what significance it has with respect to pysical

surfaces. The formal definition then specifies-how it is to be detected from an image. The idea of

detecting abrupt intensity changes is very intuitive and was an portant precursor to determining their

precise computation. The aspects of iage texture that should be detected is not as intuitively obvious.

'I'hus, we must begin by understanding roughly what aspects of image texture should be represented in an

image and what are their physical correlates. Once we have approximate definitions of what we want, we

can then examine exactly how to compute them from an image. Such inforinal definitions can also be

used to test for their psychophysical existence.

This paper is divided into two parts. Part I develops the theory of the representation of texture,

and comprises Sections 2 through S. In Section 2 physical constraints on surface stnicture are

formulated. In Section 3 and 4 two kinds of image texture primitives, the texture edge and the texture

lokens respectively, are itroduced along with the rationale for their tility to the isual system. Section 

sutnmadzes Part .
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Part II of this paper is devoted to demonstrations of the human visual systems early

representation of texture, serving as a check on the utility of these primitives to a successful visual

processor. Section 6 describes demonstrations supporting the existence of a texture edge primitive in thi�

representation, and Section Tdescribes demonstrations that restrict the range of what constitutes the

texture tokens in this representation. Section summarizes Part 11.
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2 Pysical Constraints on Surface Structure

An iage is a two-dimensional projection of the three-dimensional world. An important goal of

early visual processing is, in a sense, to invert this mapping. If the point in space corresponding to each

image point could have arbitrary position and brightness, this task would be impossible. Our abilities to

perceive the 3-D world visually indicate, of course, that this is not the case. The visual world must be

otherwise-constrained. These physical constraints on the visible world and on the projected iage must

be identified in order to understand how to infer backward from an mage. Three physical constraints

will be identified that are relevant to surface structure. These constraints in their original form are due to

Marr 19811.

The predondnance of surfaces

In the introduction, the visible world was considered composed mostly of surfaces that are

smooth enough that their local surface orientation could be discussed. For instance, a leaf defines such a

smooth surface. A hedge containing this leaf will itself define a smooth srface when viewed from

sufficiently far away. Even at distances where its leaves can be resolved but the variation in te distance

to them is small relative to their absolute distance from the viewer, the hedge can be considered an

approximately smooth surface. Thus, only in a physical situation such as a snowstorm would suitable

surfaces b hard to define.

A leaf s reflectance function would be fairly constant over its surface if it were uniformly

pigmented. For a hedge, however, its composite structure and the effects of mutual illumination and

occlusion would make the spatial variation of its reflectance function vry complex. This illustrates our

first constraint: iheilisible world can be regarded as being cooked f smooth surfaces haiing reflectance

funcfions n4iosespatial varialimi ma), be complex.
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There are two consequences of this constraint in an image. First, image points typically

originate from surface points. Second, it may be very difficult to determine analytically the geometry of a

surface such as a hedge from the intensity values directly (i.e. by treating it as a sading problem) even if

the location of the light sources is known, because of the complex nature of its reflectance function.

While an analytic statement of the spatial variation of the hedge's reflectance function may be

complex, defining its spatial structure with respect to items that constitute it could be less so. The leaves

that fon-n the hedge's surface may be of uniform size and density. The leaves themselves may have

markings with their own characteristic attributes. Explicit descriptions of each of these kinds of'surface

item present in the hedge will capture information that is otherwise buried in its analytic reflectance

function. Two additional constraints formalize this notion.

Differentprocessesfomi different kinds of surface items

A leaf and a leaf marking are different not only to our senses, but they are intrinsically different

in terms of their physical nature and origin. In order to formalize this intuitively simple idea,, we can

think of leaves as being generated by some physical process operating on a surface at a given scale, while

leaf markings arc generated by some different processes operating at a smaller scale. This provides the

second constraint: pysically different processes operate on a surface to fonn different kinds of items there.

One set of processes operating at a given scale, thus, determines the size and shape of the leaves in a

hedge. Another forms he markings on those leaves. One set of processes determines the spatial

arrangement of the hairs on an animalls coat. Others form the spots and markings on that coat. This

constraint is important because it permits a physical distinction to be made between thos apects of

surface tructure that are essentially the same kinds of items (such as two leaves in a hedge), being due to

the same physical processes, from those that are different kinds of items (such as a leaf and a leaf

marking, or a laf and a brick), bing due to very different rocesses.
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Items generated by the same processes are similar

The third constraint is: surface items generated by the saine physical processes tend to be more

similar to one another in their size, shape, lightness, color, and spatial arrangement than to surface item�

generated by other processes. This states that with respect to these attributes, a leaf is more likely similar to

another leaf than, say, to a brick.

In an image, the projection of the surface items generated by the same processes will tend to be

more similar to one another in size, shape, contrast, color, orientation, and spacing, than to the projection

of other surface items that are generated by different processes. Note., however, that the similarity may be

preserved only locally in an image. Changing surface geometry and perspective projection can destroy

global similarity since size, contrast, orientation, and spacing can all vary with changing surface geometry.
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3. The Texture Edge

As stated in the introduction, an important goal of early visual processing is determining the

different physical factors that produce an image. In particular, this involves decoupling surface

orientation, depth, and the location of discontinuities in these from surface reflectance and illumination.

In this section, we shall focus on surface discontinuities. We shall see that one consequence of the

previous sections s constraints is that abrupt changes in texture in an image can be used to identify

discontinuities in surface geometry and surface structure.

The location of surface discontinuities is not explicit in the intensity changes

The location of discontinuities in surface structure or surface geometry are not yet explicit in the

intensity changes. There may be a myriad of contours present in the intensity changes, only a few of

which coincide with a discontinuity in surface geometry or surface structure. Others will be due to the

internal structure of a surface or to shadows and highlights. For example, in Figure 31 the bottom-most

horizontal line, which coincides with the texture boundary, may indeed be present in the intensity

changes but nothing there distinguishes it from the other orizontal lines, also present in the intensity

changes, as the location of a texture change in the image, and thus the likely location of changing surface

structure or surface geometry (e.g. a brick wall abutting a grass lawn). There may even be no significant

intensity change coinciding with the image of a surface discontinuity, while contours defined by the

image structure may sll be present. there. It is the image structure contours that hold the key to

identifying discontinuities in surface geometry and surface structure.

Two types of intage structure contours

Not every contOUr in an image is dfined solely by intensity-changes cincident with the

contour. ACOMOUr can aso'be defined by in-i,ige Structure and in at least two ditkrent wys. One kind
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Figure 31 There are many contours in this figure that are explicit in the intensity changes; for instance,
the bottom-most horizontal line at te texture boundary is present there. Nevertheless, this line has not
yet been distinguished from the other horizontal lines, which are also pesent i t intensity changes, as
the location of a texture discontinuity in die image. Locating Sch abrupt texture changes in an image is
important, since they identify, the likely location of discontinuities in surface structure or surface
geometry.
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can be created by an abrupt change in some 2-D organization in an image. In Figure 32, for example, the

450 change in the orientation of the line segments defines a contour that corresponds to the boundary

between the two oriented regions. A sudden change in local density of the line segments in this figur�

also defines'such a contour, which corresponds to the external boundary of the two regions, with the line

segment density vanishing outside these regions. We shall refer to such contours as exture change

contours. A second kind of contour can be defined by the local alignment of various image features. For

example, the local alignment of the terminations of the lines in Figure 33 defines such a contour. We

shall call these alignment contours.

We explore texture change contours and their use in identifying discontinuities in surface

geometry and surface structure in this section. Alignment contours will, for the most part, not be treated

in this paper. Let us examine next the relationship between texture change contours and surface

discontinuities.

Discontinuities due solely to changing surface structure

First, consider a discontinuity in surface geometry where the srface reflectance function is

constant across the discontinuity. Examples of this are two surface fragments that are adjacent in an

image and havc the same surface structure and coloration but have different surface orientation, depth, or

rotation. For instance, Figure 32 could be the image of a creased surface as shown in Figure 3.4a or,

instead, it could be the image of two surfaces, one rotated 450 with respect to the other as shown in

Figure 3.4b. Figure 35 could be the image of two similarly textured surfaces differing i depth (one 2

farther away than the other), or again it could be a creased surface (with, say, one side parallel to the

image plane and the other side at a 600 slant).

From the constraints of the previous section, the image of a local patch of a structUred sur�ace

where the sui-hice geometry does t chaqc much ill likely contaiii, at pai-ticular scales, items, that are
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Figure 33 An image contOUr can also be formed by the alignment of line scament termin,,itions.'C�
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Figure 35 An image contour can be formed by a 21 density (nUmber/area) change f small dots.
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similar to one another in orientation, spacing, color, contrast- size, and shape. But where the surface

geometry changes, geometric attributes such as orientation, density, and length of the iage of the surface

items will change. (Intensity, contrast, qnd co lor can also vary with changing surface geometry, although

large contrast and color changes are unlikely since these would require perverse illumination or

reflectance functions.) Mus, at a discontinuity due solely to changing surface geometry, there will often

be an abrupt change in these geometric attributes of the iage of similar surface items, forming a texture

change contour.

Discontinuities due to changing surface structure

There is another physical source of texture change contours in a image, and this represents the

other basic type of surface discontinuity -- one due to changing surface structure. For instance, Figure 35

could be the fi-na(ye of two adjacent surfaces lying in the same plane that have different dot densities.

When surface structure changes, the similarity constraint of Section 2 indicates that item s at given scales

on one surface will likely be more similar to one another in orientation, color, contrast, size, and shape

than to items on the other surface, resulting in abrupt changes i the items at each scale at the image

location of the surface discontinuity, and giving rise to a texture change contour. In this case, however,

any surface attribute can change, not just geometric attributes, the surface structure can change arbitrarily

across this kind of surface discontinuity.

Texture change contours need to he iade explicit

We have seen above that a texture change contour can be formed by a discontinuity in surface

geometry or surface structure. A texture cange contour can be due finally to some combination of these

factors. Thus a txture change contour identifies the likely location of a surface discontinuity of some

farm. This. aone rnakes the representation OF WXtUre ch�inge contours. vaILIAIC since, as w saw above,
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the location of surface discontinuities may not be present explicitly in the intensity changes. This

represents the first major implication for the early texture representation: texture change contours should

be made explicit in the image since they identify the likely location of discontinuities in surface geometry o�I

surface structure, information that may not be explicit in the intensity changes alone

Separating the physicalfactors thatproduce texture change contours

Is it possible from an image to distinguish among those texture change contours due solely to

changing surface geometry, those due solely to changing surface structure, and those due to some

combination of these two factors? Unfortunately, the answer is that this cannot always be achieved from

image texture information alone. When the surface structure changes completely, forming a texture

change contour, there is no information in the iage texture about whether the surface geometry changes

there also. A structural change can also mimic a geometric change as, for example, when Figure 35 is due

to a change in surface dot density, and not to a change in depth. However, it is possible to distinguish

between those texture change contours that could be due solely to change in srface geometry, and those

that must involve some surface structure change. The former contain only geometric changes in the iage

of the surface items across the texture change contour: it would be possible with suitable 3-D

configurations of two surfaces having the same surface structure to project in the image as each of these

texture changes. The latter contain non-geometric changes, as in Figure 36. No change in surface

geometry can cause the squares in this figure to be transformed into dots having the same density as the

squares. Instead, te surface structure must have changed. At the end of this section, we shall explore

how to distinguish between geometric and non-gcometric texture changes.

The texture edge primitive and its uses

The represeiition of Cin itensity ch,'tnge cntotir begins wit itensity dge and bar primitives,
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Figure 36 No 3-D configuration of two identically strLICtu red SUrfaces culd prodUCC thiS figure; no
Surface can appear composed (.-)f sqUares rom on vwpoint, Laid of dOtS Of LIIC same dnsity rom a
dillerem vic�vpoint-
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which are local assertions assigned at many points along the contour that make explicit the position, local

orientation, contrast, and width [Marr 1976, Marr & Hildreth 1980]. Analogous to this, points along a

texture change contour in an iage can be represented in our early texture representation by a exture

edge primitive, which makes explicit local contour position and orientation at the very least.

We have already seen above that the representation of texture change contours is important for

detecting surface discontinuities and can be used to distinguish between those discontinuities that

possibly could be due solely to a change in surface geometry and those that cannot. In addition to this,

the texture edge primitive could be useful for establishing motion correspondence. Given th� many

possible candidate matches of edge and bar fragments for motion correspondence over several degrees of

visual angle, the larger scale and rarer texture edges give fewer possible matches over a given range.

Range of the representation

An issue of particular iportance is the range in an image over which this texture edge primitive

can be assigned, since this determines, in part, the computational burden of forming the early texture

representation. One extreme of this range would be a representation that ncompasses only a very small

portion of an image (e.g. die fovea) at one time, or that allows only a very few primitives to be assigned at

one time. At te other extreme would be a representation that encompasses the entire image and can

allow as many primitive assignments as image resolution permits. While it is difficult at this point to say

precisely where in this range our early representation of texture should lie, it can be said that it must lie

closer to a MI age range representation than to a very restricted but economical one that can represent

only a small fraction of te texture edg-s found i an image. Very firnited range or resolution may have

be appropriate for some visual representations, but sch limitations are undesirable for the early

representation of image texture considering te uses to wliich this rpresentation will-be put.

As peviously otlined, die fll primal sketch, w1iich represents bd de itensity changes and
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image structure, serves as the basic description of an image from which the 2/2-D sketch, a

viewer-centered representation of the viewed surfaces in space, is formed. In this framework, the early

texture rpresentation is considered a art of the full primal sketch. Further, the formation of the 2/2-D

sketch's description of the viewed surfaces -- their orientation, depth, reflectance, location of

discontinuities -- is a fundamental goal of early visual processing. If, as has been argued above, the

texture edge rimitive makes explicit aspects of image structure that are useful for creating a

representation of surfaces present throughout an image, then it follows that texture edges must be,

detected rapidly throughout the image. This is an expensive step; since it requires that considerable

computational resources be brought to bear if an entire image is to be processed in a fraction of a second.

Next, as txture edges are detected throughout an image, they need to be stored away somewhere, and the

most direct way to do this is in a representational memory encompassing die entire image. This is

particularly iportant for establishing large range motion correspondence using texture edges, since.there

is a wide image range over which a particular token could move. This approach may seem

computationally expensive compared to the use of a scrutinizing processor for local analysis of surface

structure that is directed more leisurely across the image. But such a local scrutinizing processor would

be inherently too slow to rapidly cover large portions of an image and feed as input to the 21/2-D sketch.

Detecting texture edges

Conceptually, the detection of texture edges can be divided into two major steps. First, the basic

structural elements that will be used to represent the image texture locally must be made explicit. We

shall call these primitive elements the texture okens. Second, the spatial variation of these tokens'are

used to locate texture edg es. It is not presently known what constitutes the texture tokens; tis could

conceivably range from grey-level values to primitives that represent individual texture lements and

dicir attribUtCS SUCh as oricntation, engt1i, width, ctnitrast, sh�ipe, and color (e.g. catch line seanient in
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Figure 32). In Section 4 we shall see that the range in which the texture tokens lie can be restricted, but

their precise form has yet to be resolved. Until it is, it will be difficult to say much about methods for

detecting texture edges.

One issue that can be discussed at this time, however, is the desirable dimensions for the texture

token attributes. We saw above that at a discontinuity due solely to changing surface geometry (constant

surface structure across the discontinuity), it will be geometric dimensions such as orientation, length, and

width that will vary with the changing surface geometry. It would therefore be desirable to have texture

tokens that have attributes that change when the surface geometry changes, if discontinuities due solely to

changing surface geometry are to be detected.

Discontinuities in surface structure can be detected in two ways. One way utilizes geometric

attributes. When the surface structure changes, everything is likely to change including the geometric

attributes given above; For example, the change in size of the items in Figure 36 could b used to

identify the boundary ctween the two regions. A second way to detect discontinuities in surface

structure would use changes in structural attributes. For example, the number of corners per item in

Figure 36 could be used to identify te texture boundary between the two regions, since in the left-hand

region there are fou� corners per item (square), while in the right-hand region there arc zero per item

(dot). This second method would be useful when all geometric attributes appen to match acrossthe

texture boundary causing the first ethod to fail. Whether this is likely to occur in natural iages is

uncertain howoer a point that we shall return to in Section 6.

We have not yet discussed how to distinguish between disconfinuties due solely to changing

surface geometry from those that contain structural changes, but only how to detect either kind when

pre sent. For inst�ancc, we saw above diat te changing size of te image of surface items could be used in

some cses to detect either kind of discontinuity, but it would not distinguish between thein. Let us turn



�� �,

- 29 -

to this issue next.

Distinguishing geometHc and non-geometfic texture change contoun

How can texture changes contours that possibly are due solely to a change in surface geometry

be distinguished from those that must involve some non-gcometric, structural change? When the surface

geometry changes but surface structure does not at a texture change contour, many image properties

usually remain-invariant: the number of different scales at which surface items occur on a surface, the

approximate contrast, color, and packing factor (how tightly packed) of the items at each scale, and

whether or not they are oriented. When surface structure changes at a texture change contour, evervthiniz

is likely to change including the above geo metric invariants. A procedure that utilizes such geometric

invariants would thus seldom err in distinguishing geometric from non-geometric contours.
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4. The Texture Tokens

Using image texture to infer surface information involves two broad stages. In the first stage,

the basic elements that are to represent the local structure of the texture, which we shall call the texture

tokens, are made explicit. In the'second stage, the spatial variation of these tokens can be used to infer

local surface orientation, surface depth, and the location of surface discontinuities, and their temporal

variation may be uspd to infer motion correspondence. It is not presently known what constitutes the

texture tokens of the first stage; this could conceivably range from grey-level values to intensity changes

to primitives that represent individual texture elements and their attributes such as small blobs of a

particular orientation, contrast, and size. This section explores the nature of the texture tokens and

attempts to restrict this range.

Separating the effects of different surface processes

A major function the texture tokens must serve is separating the effects of different surface

processes in an image. As Section 2 stated, surface structure is often due to different physical processes

operating on a surface, each at it own scale. Items gnerated by a given process on that surface will often

be similar to one another in attributes such as size, shape, orientation, color, and contrast. The spatial

variation of the projection of these items in an iage can provide information about the structure and,

3-D geometry of the surface on which the items reside; for instance, a discontinuity in the orientation of

similar items in an image can signal a discontinuity in surface geometry or surface structure (see Section

3). To utilize this infon-nation, however, it is ncessary to separate te effects of different processes, for

otherwise any useful information carried by items generated by a given physical process will be obscured

in an image by the effects of other processes also operating there. For example, if the common

orienuttion of bricks in a wiii] is to be apprc%--iated, then it. is pieferible fliat neither mat'kings o those
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bricks nor large spots encompassing several bricks interfere with te description of the organization of the

bricks themselves.

The role of scale in separating the effects of differentprocesses

Since different physical processes often operate at different scales on a surface, the particular

scale at which an image of such a surface is examined should be a useful factor for separating the effects

of te different processes operating there. For example, if Figure 41 is examined at very small scales,

then neither a change in the distribution of grey-level values nor a 'Change in the orientation distribution

of the intensity changes can identify the boundary between the two regions that are composed of Ws of

differing orientation, since the amount of ink per unit area is the same on each side of this boundary, and

the orientation distribution of the component line segments is the also same on each side of the boundary

-- 50% are horizontal and 50% are vertical. The orientation information needed to identify the boundary

between the two regions is carried at a larger scale in the orientation of each w as a whole, and not at a

smaller scale in the orientation distribution of its component line segments.

The intensity changes at a particular scale can be made explicit sing a method developed by

Marr & Hildreth 19801. In their teory of dge detection, they propose that an intensity change in an

image I(xy),at a particular scale can be found by (in effect) first smoothing the iage with a Gaussian

v2filter 0 of the desired bandwidth, and then applying the Laplacian operator to the smoothed image.

The loci of zero-crossings in 2(G * 1 = V2G I deflne the location of intensity changes at that scale.

2Figure 42 shows the zero-crossings in the convolution of Figure 41 with a G perator having an

excitatory region of width about the same ais the width of the w 's. Note that at this scale, the approximate

boundaries defined by te individual s comprise the zero-crossings. Thus, die predominant local

orientation of the zero-crossings is the same as the local orientation of the s, and the significant change

in their oentation � te boundary between the oho rgions in 1igUre 41 could be used to ake tat
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Figure 41 The orientation distribution of the component line segments is the same in both the left and
right regions of this figure -- 50% of the line segments are horizontal and 50% are vertical. It is the
changing orientation of the individual w's and not their component line sgments that defines the texture
boundary.

<

<�2

Figure 42 The zero-crossings of Figure 41 when convolved with a72 G operator having an excitatory
region with width about the same as the width of the s. Since the zero-crossings at this scale make
explicit the rough boundary dfined by ach w, the local predominant oientation ofthe zero-crossings
will match the orientation defined by the individual w's ad will change significantly at the texture
boundary.
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boundary explicit. Thus, we see that if this image is examined at the appropriate scale, the effects of the

process that determines the orientation of each w can be separated from those smaller scale processes that

determine its component fine segment structure, and in this case the intensity changes at that larger scal.6I

are sufficient to separate the approximate boundaries of the Ws from their internal structure.

The V2G operator can also be used in certain cases to find intensity changes that are coincident

with the texture boundary itself. Figure 68, consisting of convolutions of a 900 change in orientation of

small line segments shows, however, that there need not be any significant intensity changes present'

there. In fact, we should not expect any to be there unless the average intensity changes between the

textured regions on each side of the texture boundary.

The raw intensity changes are not alwa sufficientfor separating the effects of differentprocesses

In view of Figure 42, it would be tempting to think that the 2G zero-crossings at various

scales may be sufficient as he set of texture tokens. here are, however, physical reasons that we shou'ld

not expect this to be so. The intensity changes at a given scale will not solely correspond to structural

items at a particular scale, but will be affected to some degree by items at'all scales and their affect will

vary with the contrast of-these items. In the brick wall example, igh contrast markings on the bricks

could noticeably influence the zero-crossing description at the scale of die bricks themselves -- something

that was earlier considered undesirable for the description produced by the texture tokens. To show that

this affect indeed occurs, a technique devised by Steven's [1981b] was used to create Figure 43. This

figure is composed many small 2x2 black and white checkerboards. Stevens reasoned that if such small

checkerboards appeared on a background of grey that is die psychophysical average of the black and

white, ien the output of any smooth convolution operator tat encompasses sveral of these

checkerboards will not differ significantly from that operator'sOUtpUtwlien encompassing just the g rey

background. Thc ideal beliind tis partiC Ular figLl re is tat atliough catch collinear triple dfines an
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Figure 43 The texture elements in this figure consist of collinear triples of 2x2 checkerboards, which
oriented horizontally in lft region and vertically in the right region. When tis figure is provided with
the matching grey background, therc is no scale at which a significant cange occurs in the orientation
distribution of the 2G zero-crossings at te texture boundary between the two regions, as there was for
Figure 41.
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oriented element and the 900 change in orientation of the triple's defines a texture boundary, there will be

no scale at which the distribution of the intensity changes can be used to identify this texture boundary,

when this figure is provided with the matching grey background. Figure 44 gives the 72G zero-crossings

for Figure 43 near the texture boundary. At the smallest scales of the 72G operator, the edges of the

component squares of checkerboards are tracked by the zero-crossings. At the largest scales, as expected,

the zero-crossings are of low amplitude (amplitude is not depicted in these figures) and seem to meander

randomly. At intermediate scales, parts of the rough boundary defined by ach collinear triple appear in

the zero-crossings, but many zero-crossings corresponding to the each triple's internal sucture also

appear. But at no scale is the boundary of the triples made explicit and their internal structure filtered

out as was possible for the s above, making extraction of the triples' orientation and the texture

boundary non-trivial. In Section 7 we shall see that the human observer can rapidly detect a boundary

created by an orientation change of such checkerboard triples.

To reinforce this idea that the raw intensity changes cannot always separate the effects of

different processes a second example will be given. The previous xample showed that the substructure

of an item can influence the intensity changes at large enough scales to leave that item only implicit in the

intensity changes. he second example again uses items at two different scales, but this time, the smaller

-items are not components of the larger items, but instead are independent of them. Figure 45 consists of

line segments of two different lengths. The shorter line segments are oriented at 450 on the left-hand side

of the figure and at 450 on the right-hand side, while the longer line segments are randomly oriented

across the figure. Without the longer line segments, there would be a sharp orientation cange in the

zero-crossings at the scales that capture the smaller line segments. The randomly oriented, longer line

segments, by adding noise to the local orientation distributions, weaken this sharp change in the

zero-crossings. ThLIS, WC Agdin have an example where items front one process inteffere ith (lie intensity
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Figure 4A The zero-crossings of portions of Figure 43 (when given the matching grey background) near
the texture boundary when convolved with 2G operators of various sizes. The left-most figure of each
row depilcts the area of Figure 43 sed to produce the zero-crossings in that row. The number adjacent to
each figure gives te diameter of the excitatory region of the V2G operator used to produce the
zero-crossincys in that figure, where each 2x2 ceckerboard is 2x2 units in size. At no scale is the boundarytn
of each ceckerboard triple explicit in the zero-crossings and its internal stiticture filtered out. Further,
there is o scale at which the boundary between the two regions of different ceckerboard triple
orientation is dbarked explicitly by a zero-crossing, contour, nor is there a significant cange i die local
orientation distribution of te zero-crossings at the tCXtUre boundary.
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Figure 45 The shorter line segments in this figure are oriented at 45c' on the left-hand side and at 450 on
the right-hand side, while the longer line segments are randomly oriented across the figure. Without the
longer line sgments, thei-eWOLI]d be a sarp orientation cange i t zero-crossinis at the scales that
capture the saller line segments. The longer line segments weaken this change in Lhe zero crossings.
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changes that best capture those items from a different process. The information necessary to separate

these two kinds of items is clearly present in this image, however; it is contained in the differing lengths of

the individual line segments themselves.

What are the texture tokens?

We have seen above that the raw intensity changes appear to be too primitive a description of

image texture -to suffice as the sole texture tokens. In the above two examples, it is groupings, not

individual points, of the intensity changes that correspond to the items that produce the texture boundary

-- te oriented triples in the first example ad the short line segments in the second example. This

suggests that some form of local grouping of the intensity changes that results in tokens that roughly

correspond to individual line sgments, small blobs, local clusters and collinear groupings of these could

provide a description of the local structure of iage texture that better separates the items produced by

different physical processes. Marr 1976] has proposed that much local image structure can be made

explicit by assigning place tokens to such items as terminations, small blobs and line segments, which are

presumably found from the intensity changes, and then by grouping these tokens to find collinear

groupings and local clusters, which are then also assigned places tokens. Tese tokens would correspond

to small arkings, scratches, surface elements and local groupings of these o physical surfaces. It is not

presently clear whaher.the early representation of texture requires tokens that faithfully ad precisely

represent these kinds of items everywhere in an image. Perhaps some cornputationally less expensive

processing that roughly dentifies a sizable fraction of such items would suffice at this stage, with a more

precise description available with scrutiny if neded.

Exactly what the texture tokens are thus remains an open question. It solution is important not

only for understanding hw to detect texture boundaries wich has been emphasized here, but also for

depth from texture and mtion correspondence. The texture tokensCOUld povide die unforeshortened
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measure needed to obtain depth from texture, as discussed in the introduction. Further, the texture

tokens, like the texture edge, would represent larger scale and rarer primitives for motion correspondence

that have fewer candidate matches over a given range than the intensity changes. But being more precis&

about these'processes must await the determination of the texture tokens, and not much can be said

definitely about the form of the texture tokens at this point other than it appears that the intensity

changes alone will not suffice.
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5. Summary of the Theory

Three physical constraints on surface structure...

(1) The visible. world can be regarded as being composed of sooth -surfaces having reflectance

functions whose spatial variation may be complex.

(2) Physically different processes operate on a surface toform different kinds of items there.

(3) Surface items generated by the same processes tend to be ore similar to one another in their size,

shape, lightness, color, and spatial arrangemen t than to surface items generated by oher processes.

...combined with the goA of producing the 22-D sketch, a viewer-centered representation of the visible

surfaces where the factors that produce an image surface geometry, surface reflectance, illumination,

and viewpoint -- are separated, lead to the following conclusions for the representation of the image

texture'.

(1 A texture edge primitive is needed to identify texture cange contours, which are formed by an

abrupt change in the 2-D organization of similar items in an iage. The texture edge can be used

for locating discontinuities in surface structure and surface geometry and for establishing motion

correspondenc'e.-

(2) Abrupt changes in attributes that vary with changing srface geometry -- orientation, denMty,

length, and width -- should be used to identify discontinuties. in surface geometry and surface

structure.

(3) Texture tokens are needed to separate the effects of different physical processes operating on a

surface. They represent the local structure of the image texture. Their spatial variation can be used

in the detection of txture discontinuities and texture gradients, ad teir temporal variation may

be sed for establishing motion correspondence. What precisely constitutes the tX tLI -C tokens is

unbown-, it appears hwever, tat te intensity cain Iges a)ne will not- suffice, bUt. ocal groupings
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of them may.

(4) The above primitives need to be assigned rapidly over a large range in an iage.
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6. Texture Edge Demonstrations

The primary purpose of this section is to present psychophysical evidence that texture edges are

detected by the human visual system and that they are represented over a large range in an image.

The secondary purpose is'to characterize those types of texture changes that can give rise to

perceived texture edges.

Texture discHnuWation and texture edges

Most previous psychophysical studies of visual texture have concentrated on their

discrimination (e.g. Julesz 1973,19811 and Beck 19661). For example, in Figure 61 we can

immediately see without scrutiny that the lower left region of the textured pattern is different from

the rest of the pattern; we can discriminate the regions. In Figure 62, the textured pattern looks

homogeneous without scrutiny even though the upper right corner is composed of backward R's,

while the remainder of the pattern is composed of forward R's [Julesz 1973]. In this case, we cannot

discriminate the regions. Several theories have been advanced to explain why some textures are

discriminable while others are not, with Julesz's second-order statistic conjecture probably the best

known [Julesz 19731.

The problem with applying texture discrimination to the texture edge problem is that tekture,

discrimination is an "anything goes" task; the viewer may use any means at his disposal to try to

discriminate the textures within the allotted time. Suppose a viewer is asked which one of four

quadrants of a texture pattern is different from the others (as in Figure 6.1) and suppose that he

correctly identifies that quadrant. Did he find the correct quadrant by first finding the texture

boundary between die different regions, or did he instead sample four elements, one from each

quadrant, nd compare them? BecaLISC it is conceivable that tCXtUre discrimination can ocur at
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Figure 61 A discriminable texture.
texture from the rest of the figure.

The lower left region can be seen immediately to have a different

Figure 62 An indiscriminable texture. The figure initially appears homogeneous, Close inspection
reveals that upper right rep-ion is composed of backward R's, while die rea)ainder of'fij,,urc is composed of
for-ward Rs [I uIcsz 1973'1.
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least in some cases without the texture boundaries being explicitly represented, such texture

discrimination studies cannot be.used as evidence that texture edges are detected by the human

visual system. For our purposes, these studies can only show that there are some texture differences

(e.g. Figure 62) for which texture edges are not detected, since if they were detected, we could

presumably discriminate them. But given the "anything goes" nature of the discrimination task, it

can not be assumed that all discriminable textures have their boundaries explicitly represented.

This means that different paradigms to study texture edges must be utilized.

The apparent motion pam&gm

It was suggested earlier that txture boundaries could be used to establish motion

correspondence. We can test this hypothesis and test the uman ability to perceive texture edges by

using an apparent motion paradigm. It is well known tat if a display sequence such as Figure 6.3a

followed. by Figure 6.3b is presented to a viewer with a short (say 30 rnsec) interstimulus interval

(ISI), the viewer will perceive apparent motion -- in this case a single square will be sen to move to

the right and rotate 450. Interestingly, if the straight line sides of the square are replaced by texture

edges, the correspondence can sll be achieved. When the sequence in Figure 64 is presented, die

whole pattern is seen to move to the right with the embedded square appearing to both move to the

right and rotate 450. Here the texture boundary is formed by a 900 orientation difference in the

small line segments. Typically, an embedded square of about 50 visual angle and a presentation

sequence of 300 msecs was used for each frame with an ISI of 30 insecs, but the correspondence can

be achieved over a wide range of visual angle and does not depend critically on the ISL It will be

shown below that there is no intensity edge at any scale present at the boundary between the two

textured regions so the correspondence must be esuiblished from the texture difference.

Rarnachandran, ct al 11973] have reported establisliing apparent Motion usinj a texture
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(a)
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(b)

Figure 63 An apparent motion sequence. Display (a) is presented for 300"msec a blank display follows
for 30 insec ad their Display (b) is presented for 3Omsec. The viewer perceives a sinole square moving
to the right and rotating.
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(a)

(b)

Figure 64 Apparent motion that uses texture edges. As in Figure 63, Display (a) i presented for 300
nisec a blank display follows for 30 mscc ad then Display (b) is presented for 300 msec. The viewer
perceives die hole pattern moving to te right with the embedded square appearing oth to move to die
right and rotate. This pparent, motion paradiam can be sed to test for those texture changes that
prodLICC CICi-irlyperceived texture boundaries,
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boundary with a second-order statistical difference (with equal first-order statistics). In their

paradigm, an embedded square is translated but not rotated. This latter format has the

disadvantage for our uses that the direction in which the embedded square of different texture is

moved can be perceived even when its boundary is only weak.1y, if at all, perceived. By adding the

rotational component to the embedded square's motion, only a clearly perceived boundary gives

rise to a square that appears to both translate and rotate. The key point here is that unlike the

texture discrimination tasks, it is difficult to imagine how a viewer successfully can complete this

motion task without his visual system making explicit the boundary between the two regions of

differing texture.

The static shape recognition paradigm

A second paradigm that involves static shape recognition can also provide evidence of human

ability to. perceive texture edges. If an embedded figure in a texture pattern is sufficiently complex

in shape and can still be recognized without scrutiny, then it seems likely that that shape's boundary

is detected by the visual system. In Figure 65, which uses the same texture change as in the motion

example, there is little difficulty in recognizing which letter of the alphabet corresponds to the

embedded shape. Thus, tis gives evidence from two independent techniques -- die apparent

motion paradigm 'and the static shape rcognition paradigm -- that a particular kind of texture

boundary (one formed by a 900 difference in small line segments) is detected by the visual system.

Kidd, Frisby and Mayhew 119791 have found that texture boundaries can initiate vergence

movements for stereopsis. This could serve as a basis for a third paradigm for studying texture

boundaries, but this has not been investigated here.

An orientation difference of line, segments is not die only sort Of tCXtLire boundary that is

successful in the apparent motion and shape recognition par�idigi-ns. I-igUrc 66 shows :t difference
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Figure 65 The sliape of the embedded region with line segments of differing orientation can be
recognized easily as the ltter Z. This sape recognition paradigm provides a second test for those texture
change tat prodUCCclearl prceived txture boundaries.
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in the dot density 4 ) that results in immediate shape recognition. In the apparent motion

paradigm, the same texture change results in the embedded square being perceived as moving to

the right and rotating. There are many sorts of texture changes that fail in both the shape

recognition and motion paradigms. Figure 67 show several types of texture changes for which

static shape recognition is difficult without scrutiny. These same texture changes do not result in

the correspondence of te embedded square in te apparent motion paradigm; no embedded

square is seen moving to the right and rotating. In particular, Figure 6.7c, which fails the tests for

perceived texture edges, passes the Julesz-style test for texture discrimination (Figure 61). While

some texture boundaries result in motion correspondence and shape recognition and others do not

in all the texture boundaries that have been tried, motion correspondence is established if and only

if shape recognition is immediate. This strengthens the hypothesis that texture edges are explicitly

represented by the visual system.

Texture edges are not always explicitlypresent in the zero-crossings

It was claimed that in Figure 65 there is no average intensity change at the texture boundary at

any scale, and thus this boundary is not explicit in the intensity changes. Tliis claim can be

substantiated by convolving the figure with sveral sizes of the 2G mask of Marr and Hildreth

[19801, and examining the zero-crossings in the output. As described earlier 'in Section 4 the

zero-crossings of a V2G operator, which is the composition of a Gaussian and the Laplacian,

identify the locations of the intensity changes at the scale determined by the bandwidth of the

Gaussian. Figure 68 shows the zero-crossings in the convolutions of a portion of the txture

boundary in Figure 65 with 2G masks of various sizes. Note at the smallest scale, te individual

line segments are captured, and at the largest scale die the external boundary is captured, but at no

sca'le is the bUndary between te two rgions present in te zero-crossings.
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0 0

0

Figure 66 A 41 dt density difference can also give rise to shape recognition. The viewer can recognize
immediately the shape ol" the embedded rection of greater ensity as he let-ter T. In the density case,
however, it is difficult to sparate experimentally the rlative influences of arge scale intensity changes
cInd canges in token density at te perceived boundary,
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(a) (b)

(C)
Figure 67 Several texture changes for which immediate shape recognition difficult. Close examination
of each pattern reveals that te embedded shape is (a) die ltter H, (b) the letter V ad (c) die letter Z.
Note that the texture change in (c) is the same as i die "discrifi-ninable" Figure 61.
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Figure 68 The zero-crossings for the texture chanae in Fiaure 65 using 2G operators of various sizes.
The leftmost figure of each row depicts th iage used to produce the zero-crossings in that row. The
number adjacent to each figure gives the diameter of the excitatory region of the V2C; operator used to
produce the zero-crossings in that figure, where each line segment is 9 units long. At o scale is the
boundarv btween die two rgions of different line segnient orientation explicitly dernarked by a
zero-crossing contour.
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In Figure 66, there is a large scale intensity change that could be used to identify the embedded

region's boundary (this easily is seen to be true by viewing the figure from far enough away that the

individual dots are not resolvable the embedded shape can still be perceived due to the large scale

intensity change). The fact that a texture boundary that is due. to changing texture element density,,

length or width is often accompanied by a large scale intensity that coincides with the texture

�boundary makes it difficult to access experimentally if these texture changes result in perceived

texture edges in die absence of tese large scale intensity changes; further work is needed in this

area. Orientation changes have been emphasized in this paper, since they are free 'of this

complication.

Inwge mnge of the texture edge pfimitive

Motion correspondence and shape recognition can be achieved with these figures as large as

30-400 in visual angle; at this size, local scrutiny could reveal only a small portion of the boundary

at a given time. But the motion correspondence is immediate, and shape recognition can still occur

when a figure is briefly flashed 300 msec). This supports the hypothesis that many txture edges

are bing simultaneously found over a large portion of the image.

Chamaefizing those texture changes thatproduceperceived texture edges

A complete characterization of those texture changes that produce perceived texture edges and.

those that do not (as evidenced by the above apparent motion and shape recognition paradigms) has

yet to emerge. A complete phenomenological characterization is difflcult to obtain because there

may be many attributes (e.g. contrast, color, orientation, density, length) tat the visual system can

use to detect texture edges, and new attributes can always be proposed that have yt to be tested

psychophysically. Further, it is difficult to separate some attribUteSexpe Iru-nentally, sch as texture
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element density from average local intensity, as discussed above. Nevertheless, two rules seem to

characterize many of those texture changes that can and cannot produce perceived texture edges.

The first rule is that significant, abrupt changes in attributes that vary with changing surfac�

geometry produce perceived texture edges. This has already been shown to be the case above with

the orientation of texture elements. Intensity, density, and size changes of texture elements can also

produce perceived texture boundaries,,but further work is needed to decouple the large scale

intensity changes from the density and size changes to access each attribute's individual ffect.

Conversely, the textures in Figure 67 were generated by holding constant average local texture

element density, orientation, length and width, but otherwise using different shaped texture

elements across the texture boundary. Even though there are significant structural differences 'in

the texture elements across the boundary, such as the number of terminations and corners, these

changes alone do'not produce perceived texture edges. In fact, texture element color and contrast

are the only attributes that do not (usually) vary appreciably with changing surface geometry that

have been found so far to produce perceived texture edges. This contrasts with Julesz's results for

texture discrimination which indicate that changes in the number of trminations can apparently be

used to discriminate textured regions [Julesz 1981]. As mentioned earlier, texture discriminability

does not insure that a clear txture boundary will be perceived.

This first rule is not surprising in light of the discussion in Section 3 on the uses of texture edges.

Reiterating what was said there, texture edges can identify discontinuities in surface geometry and

surface structure. At a texture discontinuity where surface geometry changes but surface structure

does not, it will be. those iage attributes that vary with surface geometry e.g. orientation,

density, length, width -- that can be used to identify die discontinuity in the image. At a

discontinuity where surfitce smicture changes, everything is likely to change -- orientation, density
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color, contrast� size. Further, the presence or absence of gometric invariants such as similarly

oriented items at a given scale that remain oriented across a texture boundary can be used to

distinguish between these two kinds of discontinuities. Thus, while structural attributes such as

number of terminations and corners could help detect changes in surface structure when geometric

attributes such as orientation, density, and size, all happ�n to be constant across a texture

discontinuity, the visual system could consider such an occurrence too unlikely in natural iages to

justify its detection.

The second rule 'is that the comparison of distributions of a given attribute of otherwise smilar

texture elements iskept simple. This rule is detailed here only for the orientation attribute. Figure

6.9 shows that the oriented line segments at to fixed orientations 450 and 450) found inside the

embedded Z-shaped rgion are sufficient to match the randomly oriented line segments found

outside the embedded region -- the embedded letter is difficult to recognize quickly. Likewise, the

same texture change does not produce modon.correspondence in the apparent motion paradigm.

This suggests that the visual system may assume that the orientation distribution of items at a given

scale either clusters around a single value or is, for all intents and purposes, random. A process that

naturally produces, say, a distinct, two-peaked orientation distribution (as 450 and 450 of

otherwise identical items would be deemed too rare to be worth distinguishing from a random

distribution. Incidentally, this contrasts with previous work by the author using texture

discrimination instead, for which three orientations were found necessary to match random

orientations [Riley 1977].
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Figure 69 Two fixed orientations 450 and 450) of the line segments inside the embedded region match
the random orientations of the line segments outside the embedded reaion; die embedded shape is
difficult to recognize initially as the letter H.
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7.Textu re To -ken Demonstrations

In this section, psychophysical demonstrations are presented that the elementary tokens that the

human visual system uses to represent the local structure in iage texture do not consist solely of

the raw intensity changes at a variety of scales in an image. Specifically, demonstrations will be

given that there are no significant changes in the orientation distribution of the V20 zero-crossings

at any scale that can be used to detect some texture boundaries that humans can readily perceive.

Two different approaches are taken to create these demonstrations.

The Checkerboard Pmdigm

The first approach utilizes the checkerboard technique described in Section 4 The general idea

is to use small black and white checkerboards as component items in larger scale groupings so that

the larger scale 'roupings, will not be 6xplicit in the larger scale intensity changes due to the

integrating effects-of the 2G convolution operator. In particular, each dot in Figure 71 can be

replaced by a small W black and white checkerboard and the entire figure given the matching grey

background that is the psychophysical average of the black and white (see Figure 43). his match is

achieved by viewing the checkerboards from sufficiently far away and adjusting the bckground

grey until the.checkerboards disappear. Under these conditions, the embedded letter, which can,

easily be perceived in the unmodified Figure 71, can sll be immediately recognized in the so

modified figure, provided the figure is viewed from sufficiently close in (otherwise, if the viewer

moves back from the figure, the checkerboards eventually begin to disappear, with those toward the

periphery being affected first).

The previous section argues that the above is evidence that a texture change consisting of a large

chailue in the orientation of collinear triples of tiny W checkerboards can be identified by the
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Figure 71 When the dots in this figure are replaced by small 2x2 black and white checkerboards and the
entire figure is given the matching grey background that is the psychophysical averalle of the black and
white, the embedded shape can still be recognized as the letter T. Figure 34 showed tat at no scale is the
bOUndary between the two regions of different checkerboard triple orientation explicitly demarked by a
zero-crossing contour, nor is there a significant change in. the ocal orientation Jistribution. of the
zero-crossings at the texttire b -indary.
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human visual system. Since any smooth spatial operator that encompasses several of these

checkerboards will respond with the same output that is given to the grey background, there is no

intensity change at any scale at the boundary between the two textured regions. Of crucial

importance here is the fact that the orientation defined by checkerboard triples is not explicit in the

intensity changes either. As shown in Section 4 the V2G zero-crossings at no scale make explicit the

boundaries of individual triples while filtering out their internal structure, and thus the changing

orientation of the triples at the texture boundary cannot be found by looking for a significant

change there in the local orientation distributions of zero-crossings of V2G operators at sodie scale

(see Figure 44).

Mixed lengths pamdigm

The second approach taken to demonstrate that the raw intensity changes are not sufficient as

the sole texture tokens utilizes texture elements of two different lengths. The general idea is that if

one set of texture elements of a given length has, say, some oriented structure in a texture, ten this

oriented structure will be easier to detect in the presence of other texture elements of a very

different length than in the presence of other texture lements of a similar length provided the

texture elements are first sparated on the basis of their length. Figure 7.2a shows a texture pattern

composed of line segments of two different lengths. The shorter line segments are oriented at 650

inside the embedded H-shaped region and at 250 outside this region. The larger line segments are

nine times as long as the shorter line segments and are oriented at 450 throughout the texture

pattern. Figure 7.2c shows, for reference, just the shorter lines found in Figure 7.2a. Figure 7.2b

contains an identical copy of the shorter line sgments found in Figure 7.2a, but the. larger line

segments have been shrunk 1/9th in length (to die same length as the other line segments) with a

corresponding ine fold increase in their density (i.e. nuniber/area), tlius keeping the ti)tal aount
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Figure 72 The creation of texture patterns (a) and (b) both begin with underlying pattern (c), which has

line segments at 650 inside the embedded region and at 150 outside this region. Masking 450 line
segments nine thnes as long as those in pattern () and with oe ninth die density (number/area) are
added to complete pattOrn (a). Masking 450 line segments of the same length and with the same density
as pattern (c) arc added to complete plattern N. The embedded H in pattern (a) is easier to recognize
than that in pattern (b); an effect that is accentuated t olique or distant v his r su t is
diffICLI]t to explain if the raw intensit�,- changes at various scales are die cr txture tokens.
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of 450 contour over a given area constant. Thus, measuring the amount of contour at a given

orientation per unit area taken from very local descriptions of the intensity changes found in an

image of these figures would not show significant differences between Figure 7.2a and Figure 7.2b.

Figure 73 and Figure 74 contain V2G zero-crossings at various scales- near the embedded texture

boundary of Figure 7.2a. and of Figure 7.2b, respectively. They were generated to sow that for no

scale (operator size) is there a significant difference between the local orientation distributions of

zero-crossings for Figure 73 and Figure 74 that would result in a noticeable difference between the

delectability of the embedded region in Figure 7.2a and Figure 7.2b. At the smaller scales, the

zero-crossings wherc the line segments of different orientations cross arc very similar for Figure 7.2a

and Figure 7.2b, and since the local amount of contour at ach orientation is the same in both

figures by design, the local zero-crossing distributions of the two figures at these smaller stales are

quite similar. Afthe larger scales, the smaller line segments are not resolved; since the smaller line

segments carry the� orientation change that produces the texture boundary, differences in the local

zero-crossing distributions of the two figures at larger scales are not relevant to the delectability of

the texture boundary. Thus, if texture boundary detection were based on identifying significant

changes in the distribution of zero-crossings at the boundary, the texture boundaries in Figure 7.2a

and Figure 7.2b should have similar delectability. Note, however, that in Figure 7.2a, -the.

embedded letter is easier to recognize than in Figure 7.2b, an effect that is accentuated at distant or

oblique viewpoints. This suggests that the line segments are somehow first separated on the basis

of their length.

This result may seem at odds with those due to Treisman 1977,19801. She found, using a variety

of techniques,'that human observers were vry poor at the pre-attentive selection of items having

the conjunction of two or more attribute valties (e.g. shape:H nd color:red) ii a Field of distractors.
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Figure 73 Zero-crossings for the texture change in Figure 7.2a using 72G operators of various sizes.
Again, the leftmost fgure of each row depicts the image used to produce the zero-crossings in that row,
and the number adjacent to ach figure gives the diameter of the excitatory region of the V2G operator
used to produce the zero-crossings in that figure, where the shorter line segments are 9 units long.
Comparison with Figure 74 reveals that at the smaller scales, there is no significant difference in the local
orientation distribution of the zero-crossings between the two figures, while at the larger scales the smaller
line segments, which contain the boundary-forming orientation change, are not resolved. Tus, the
results in Figure 72 cannot be explained if the texture boundary is detected solely on the basis of

significant canges in the local zcro-crossing distribution across the boundary.
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Figure 74 Zero-crossings for the texture change in Figure 7.2b using 2G operators of various sizes',

with die same fonnat as Hp re 73.
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In Figure 72, the selected attributes are orientation and scale (length of line segment). A possible

explanation is that scale is indeed special as suggested earlier large differences in size may not be

treated like other variations in attribute values, since they strongly suggest that different processes

are responsiblefor the respective items.



-- --- - IN Im, III

- 65 -

8. Summary of Demonstrations

(1) Two different experimental paradigms -- one based on static shape recognition of a textured

region embedded in a textured surround and one based on motion correspondence of texture

boundaries -- support the hypothesis that some kinds of texture boundaries are detected by the

visual system and are made explicit in a representation that covers a large range in an iage.

2) v2G zero-crossing results indicate that there are no significant intensity changes at any scale

coincident with the texture boundaries in the above figures and thus the detection of these

boundaries must be based on more abstract texture measures.

(3) Two rules characterize many of the texture changes that can and cannot produce perceived

texture edges as evidenced by the experimental paradigms in (I):

(a) Significant, abrupt changes in texture element attributes that vary with changing surface geometry

orientation length, density, width -- produce perceived texture edge&

(b) The comparison of distributions of a given atribute of otherivisw similar texture elements is kept

simple eg. two fixed orientations are sufficient to match random orientatiO17S in he texture

boundary paradigm&

(4) Two different experimental paradigms -- one using oriented groupings of 2x2 checkerboards and one

using line segments of two different lengths combined with 172G zero-crossing results cast doubt that tile

raw intensity changes at various scales would suffice as the sole texture tokens; there are no significant
2G zero-crossings at any scale at the texture boundaries found n these

changes in the distribution of the 17 1

demonstrations.
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