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Abstract

This thesis explores how to represent image texture in order to obtain information about the
geometry and structure of surfaces, with particular emphasis on locating surface discontinuities.
Theoretical and psychophysical results lead to the following conclusions for the representation of image

texture:

(1) A texture edge primitive is needed to identify texture change contours, which are formed
by an abrupt change in the 2-D organization of similar items in an image. The texture edge
can be used for locating discontinuities in surface structure and surface geometry and for
establishing motion correspondence. '

(2) Abrupt changes in attributes that vary with changing surface geometry -- oricntation,
density, length, and width -- should be used to identify discontinuties in surface geometry and
surface structure,

(3) Texture tokens are nceded to separate the effects of different physical processes operating
on a surface. They represent the local structure of the image texture. Their spatial variation
can be used in the detection of texture discontinuitics and texture gradients, and their
temporal variation may be used for establishing motion correspondence. What precisely

- constitutes the texture tokens is unknown; it appears, however, that the intensity changes
alone will not suffice, but local groupings of them may.

.(4) The above primitives need to be assigned rapidly over a large range in an image.
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1. Introduction

This paper explores how to réprescm image texture in order to extract information about the
physical surfaces. Recent work by Marr [1977] suggests that the description of viewed surfaces plays a
fundamental role in early visual processing and that determining the form of the descriptions given to the
image and to the viewed surfaces should be one of the first steps taken toward understanding early visual
processing. This paper analyzes texture in terms of these surface considerations and this representational
viewpoint, investigating what aspects of texture should be made explicit in an image to obtain
information of the geometry and structure of surfaces, with particular emphasis on locating surface
discontinuities. This sets apart this study of texture from many others, which emphasize texture
discrimination, a task that probably serves different goals.

In thi_s introduction,i \'f.lC shall first expand on the aforcmentioned role of surfaces and
representations in early visual processing, and on the use of texture to obtain surface information. Some
methodological issues will then be discussed that reflect on the current level of understanding about the

representation of texture.

The role of surfaces in visual processing

The visual world is composed mostly of surfaces. An image can thus be attributed to four
physical factors: the sdrface geometry (how the surfaces lie in space), the surface reflectance, the.
illumination, and the viewpoint [Horn 1977]. For a sequence of images separated in time an additional
attributing factor is needed: the surface correspondence between successive images (which will be
non-trivial if the surfaces are in motion relative to the viewer). It would be of great value if these factors
could be détcrmined from an image or sequence of images since this would provide information directly

of the physical world that is present only indircctly in their combination in an image. The human visual
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processor’s facility at ﬁﬁding the shape and arrangement of visual surfaces, their lightness and color, the
location of discontinuities in surface orientation, depth, and reflectance indicates that this information can

indeed be determined to a considerable degree. But how is it done?

Using image fexturé to infer su;;ﬁice information

Tﬁe major sources of information about visual surfaces in an image include shading, stereo,
motion, texture gradients and edges. The first several make direct use of the intensity changes present in
an image. Shading obviously does so. Marr & Poggio [1978] have shown that the intensity changes
present at several scales (the zero-crossings) are effective correspor.ldence tokens for sterco matching.
These intensity changes can also be used to obtain directionally sensitive motion information [Marr &
Ullman 1981]. The intensity changes in an image thus seem to provide sufficient constraint to exploit
these sources, and an understanding of the intensity change description was evidently crucial to the
success so far [Marr & Poggio 1978, Marr & Hildreth 1980).

A pfecise undérstanding of how to distinguish among discontinuities in surface orientation,
depth, reflectance, and illumination, of how to find m(;tion correspondence over a large range in an
image, and of how to obtain surface orientation and depth from texture gradients has proved more
elusive. In part, this may be because the intensity changes in an image alone do not provide sufficient
constraint to solve these problems easily, but that other aspects of the 2-D information in an image such
as texture must also be made explicit and used. Let us bricfly examine, in turn, each of these latter
sources c;f surface information.

The location of a discontinuity in surface oricntation, depth, reflectance, or illumination in an
image often coincides with an intensity edge. But can the physical type of discontinuity (c.g. depth

change, oricntation change, illumination change) be determined from the intensities directly? By look'ing

at the intensity gradient at an edge, Ullman’s light source detection operator can, in principle, distinguish
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a pure reflectance change from other discontinuity types (e.g. illumination change) [Ullman 1976]. .By
examining the edge profiles, other édge parsings may be possible [Horn 1977]. It is.not presently known
how well edges can be parsed into thci; physical correlates directly from intensity information in real
images. A discontinyity in image texture originates at a discontinuity in surface structure or in surface
geometry, and can therefore be used to locate these two kinds of physical discontinuity. The location of
surface discontinuities provides information that is useful, for instance, to processes that must decide
where smooth éurfacg assumptions are no longer valid, as in the in‘tcrpolation of a surfa;:e across points
derived from stereo matching. Considerable emphasis will be given to locating surface discontinuities in
this paper.

Motion correspondence across several degrees of visual angle in successive images (at which
human’s are quite adept the well-known apparent motion effect) is considerably more difﬁcult problem
than stereo ;orrespondence since it involves increased range, unknown direction of. motion, and the
possibility of surface transformation over time. Given the profusion of intensity changes present in a real
image, motion correspoﬁdence driven solely on the intensity changes rcsults in many candidate matches
for each motion token (e.g. edge fragment). Ullman [1979] approached this problem by assigning a
likelihood to each possible match between images assuming nearby matches were more likely, and
computing the maximum likelihood solution for that pair of images. An alternate approach would be to
use larger scale tokens such as texture discontinuities and collincgr groupings, which should have fewer
candidate matches over a given range than the raw intensity chanécs, to bring the longer range motions
into correspondence. Ullman noted that tokens that were more abstract than the raw intensity changes
could be used to establish motion correspoﬁdence i.n humans, and called them group tokens.

Determining surface depth from texture gradients requires cxtract'ing a mcasure that shows no

foreshortening in an image; this is necessary to factor out the effects of changing surface orientation from




- 8 -

those due to perspective [Stevens 1981a]. In Figure 1.1, surface depth cannot be obtained from the height
of the ellipses since this measure is’parallel to the texture gradient and will vary both with surface surface
and depth. Thus, this distribution of h_eighfs could be due to either a cylinder (changing height due
mostly to changing surface orientation) or a receding plane (changing height due entirely to changing
depth). However, if the width of the ellipses is used and provided that the ellipses are congruent across
the surface, then surface depth can be obtained, since this measure is perpendicular to the texture
gradient and will not show foreshortening. Thus, the variation in ellipse widths will be duc entirely to
changing depth. Steven’s method for finding this measure with no (or least) foreshortening essentially
assumes that a description of image texture is available. In particular, such information as the position
and dimensions of smail blobs in an image would be useful, while the location of the intensity changes
alone is probably too primitive a aescription of an image from which to extract an unforeshortened
measure directly.

In su;nmary, distinguishing among discontinuities in surface orientation, depth, reflectance, and
illumination, finding long-range motion correspondence, and obtaining surface orientation and depth
from texture gradients may prove difficult if only the intensity changes are examined directly, while if the
information in image texture is used, these problems may prove tractable. This makes it imperative to

_understand what aspects of image texture should be identified in an image. Without knowing what
relevant data will be avéilable, it is impossible to precisely define, say, a motion correspondence process.
or a depth from textur-e process, with the best that can be determined are these processes’ abstract
computational needs. ﬁus, we could say that a motion correspondence process requires image tokens
that remain in correspondence with the same physical feature in successive views and for which there are
typically a small number of possible matches over the desired range. For depth from texture gradients, an

unforeshortened measure in the image is needed. But to be much more specific requires knowing the
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Figure 1.1 Surface depth cannot be obtained from the height of the ellipses, since this measure is parallel
to the texture gradient and will vary both with surface orientation and depth. Surface depth can be
obtained from the width of the ellipses, however, since this measure is perpendicular to the texture
gradient and will not show foreshortening. Provided the ellipses are congruent across the surface, their
width will be inversely proportional to their distance from the viewer. [Figure courtesy of K. Stevens]
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form of the input data, in particular, knowing what aspects of image texture to detect in an image and

how they should be represented in the visual system.

Representational Emphasis

We seek to‘determine the early visual representation of image texfure, since the form of the
description of image texture must be specified before its computatioh can be specified. If the broad goals
of the computation are not well understood, but instead some image computation is defined prematurely,
the results are likely to be of little value in the long term to the theory of vision. This representati(_)n’s
primitives -- the basic assertions that can be made about image texture -- need to bev specified, in
particular. Other hnpo&ant representational issues to be determined include the range and resolution
over which these primitives can be assigned in an image, and the referencing system for retrieving these
primitives (sce Marr and Nishihara [1978] for a discussion of visual representations).. Marr [1976] has
called the early represe.ntation of the intensity changes and 2-D geometric structure in an image the (full)
primal sketch (the raw primal sketch represents just thé intensity changes).

| The primal sketch is the first of several representations that Marr [1977] sces as having a céntral

role in the computatjona] theory of vision. The primal sketch is used to construct the 2%-D sketch, a
viewer-centered repres.entation of the visible surfaces in a scene. It is in the 2%-D sketch that the various
factors that produce an image are separated -- the surface geometry, surface reflectance, the illuminati;)n;
and the viewpoint. Many processes that provide surface information from images, such as depth from
texture; can be viewed as reading from the primal skctch and writing to the 2%-D sketch.

The term early texture representation is used to indicate that we are interested here in the
description of texture that is produced early in the visual processing, and is used for extracting global

surface information (the creation of the 2%-D sketch), and not a much richer description produced by

local scrutiny that we might expect exists for the purposes of recognition, and is much more limited in
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speed and image range than the early texture representation.

Informal definition of image texture must precede its precise computational deﬁnition

It is inevitable that the definition of image texture will be imprecise initially; we have to rely
upon an intuitive definition. This has been the case with other aspeéts of visual processing. An intensity
edge, for instance, is informally defined as a place in an image where the intensity changes abruptly, with
a surface correlate of a discontinuity in surface orientation, depth, reflectance, or illumination. Recently,
Marr & Hildreth [1980] have formally defined an edge in terms of the spatial coincidence of ir}tensity
changes at two nearby scales found by a convolution operation that will be described later. Their method
defines a precise computation on an image for detecting edges. The informal definition, however, existed
first, specifying roughly what is to be represented, and what significance it has with respect to physical
surfaces. The formal deﬁnitibn' then specifies how it is to be detected from an image. The idea of
detecting abrupt intensity changes is very intuitive and was an important precursor to détermining their
precise computation. The aspects of image texture that should be detected is not as intuitively obvious.
Thus, we must begin by understanding roughly what aspects of image texture should be represented in an
image and what are their physical corrclates. Once we have approximate definitions of what we want, we
can then examine exactly how to compute them from an image. Such informal definitions can also be

used to test for their psychophysical existence.

This paper is d'ivided into two parts. Part I develops the theory of the representation of texture,
and compriscs Sections. 2 through 5. 1In Scction 2, physical constraints on surface structure are
formulated. In Section 3 and 4, two kinds of image texture primitives, the texture edge and the fexture
tokens respectively, are introduced along with the rationale for their utility to the visual system. Section 5

summarizes Part 1.
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Part 11 of this paper is devoted to demonstrations of the human visual system’s early
representation of texture, serving as a check on the utility of these primitives to a successful vfsual
processor. Section 6 describes demonstrations supporting the existence of a texture edge primitive in this
representation, and Section 7'd§scribes demonstrations that restrict the range of what constitutes the

texture tokens in this representation. Section 8 summarizes Part II.
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2. Physical Constraints on Surface Structure

An image is a two-dimensional projection of the three-dimensional world. An important goal of
early visual processing is, in a sense, to invert this mapping. If the point in space corresponding to each
image point could ha‘ve arbitrary position and brightness, this task would be .impossible. Our abilities to
perceive the 3-D world visually indicate, of course, that this is not. the case. The visual world must be
otherwise constrained. These physical constraints on the visible world and on the projected image must
be identified in order to understand how to infer backward from an image. Three.physical conétrajnts
wili be identified that are relevant to surface structure. These constraints in their original form are due to

Marr [1981].

The predominance of surfaces

In t_he introduction, the visible world was considered composed mostly of .surfaces that are
smooth ehough that their local surface orientation could be discussed. For instance, a leaf defines such a
smooth surface. A hedée containing this leaf will itself define a smooth surface when viewed from
sufficiently far away. Even at distances where its leaves can be resolved but the variation in the distance
to them is small relative to their absolute distance from the viewer, the hedge can be considered an
approximatély smooth surface. Thus, only in a physical situation such as a snowstorm would suitable
surfaces be hard to define.

- A leafs reflectance function would be fairly constant over its surface if it were uniformly
pigmented. For a hedge, however, its composite structure and the effects of mutual illumination and
occlusion would make the spatial variation of its reflectance function very complex. This illustrates our
first constraint: the wisible world can be regarded as being composed of smoo;h surfaces having reflectance

Sunctions whose spatial variation may be complex.
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There are two consequences of this constraint in an image. First, image points typically
originate from surface points. Seco;ld, it may be very difficult to determine analytically the geometry of a
surface such as a hedge from the intensity values directly (i.e. by treating it as a shading problem) even if
the location of the light sources is known, because of the complex nature of its reflectance function.

While an analytic statement of the spatial variation of the hedge’s reflectance function may beb
complex, defining its spatial structure with respect to items that constitute it could be less so. The leaves
that form the ﬁedge’s surface may be of uniform size and density. The leaves themselves may have
markings with their own characteristic attributes. Explicit descriptions of each of these kinds of surface
item present in the hedge will capture information that is otherwisc buried in its analytic reflectance

function. Two additional constraints formalize this notion.

Different processes form differéni‘ kinds of surface items

A leaf and a leaf marking are different not only to our senses, but they are intrihsically different
in terms of their physical nature and origin. In order to formalize this intuitively simple idea, we can
think of leaves as being generated by some physical process operating on a surface at a given scale, while
leaf markings are generated by some different processes operating at a smaller scale. This provides the
second constraint: physically different processes operate on a surface lo form different kinds of items there.
-One set of processes operating at a given scale, thus, determines the size and shape of the leaves in a
hedge. Another forms the markings on those leaves. One set of processes determines the spatiali
arrangement of the hairs on an animal’s coat. Others form the spots and markings on that coat. This
constraint is important because it permits a physical distinction to be made between those aspects of
surface structure that are essentially the same kinds of items (such as two lcaves in a hedge), being due to
the same physical processes, from thosc that arc different kinds of items (such as a lcaf and a leaf

marking, or a lcaf and a brick), being due to very different processes.
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Items generated by the same processes are similar

The third constraint is: s'urﬁzce items generated by the same physical processes tend to be rﬁore
similar to one another in their size, shape, lightness, color, and spatial arrangement than lo surface items
generated by other processes. This states that with respect to these attributes, a leaf is more likely similar to
another leaf than, say, to a brick.

In an image, the projection of the surface items generated by the same processes will tend to be
more similar td one another in size, shape, contrast, color, orientation, and spacing, than to the projection
of other surface items that are generated by different processes. Note, however, that the similarity may be
preserved only locally in an image. Changing surface geometry and perspective projection can destroy

global similarity since size, contrast, orientation, and spacing can all vary with changing surface geometry.




-16 -

3. The Texture Edge

As stated in the introduction, an important goal of early visual processing is determining the
different physical factors that producé an image. In particular, this involves decoupling surface
orientation, depth, aﬁd the location of discontinuities in these from surface réﬂectance and illumination.
In this sectioh, we shall focus on surface discontinuities. We shéll sec that one consequence of the
previous section’s constraints is that abrupt changes in texture in an image can be used to identify

discontinuities in surface geometry and surface structure.

The location of surface discontinuities is not explicit in the intensity changes

The location of discontinuities in surface structure or surface geometry are not yet explicit in the
intensity changes. Therel may be a myriad of contours present in the intensity changes, énly a few of
which coincic_ie with a discontinuity in surface geometry or surface structurc. Others v;/ill be due to the
internal structure of a surface or to shadows and highlights. For example, in Figure 3.1 the bottom-most
horizontal line, which éoincides with the texture boundary, may indeed be present in the intensity
changes but nothing there distinguishes it from the other horizontal lines, also present in the intensity
changes, as the location of a texture change in the image, and thus the likely location of changing surface
structure or ;surface geometry (e.g. a brick wall abutting a grass lawn). There may evén be no significant
intensity change coinciding with the image of a surface discontinuity, while contours defined by the
image structuré may still be present there. It is the image structure contours that hold the key to

identifying discontinuities in surface geometry and surface structure.

Two types of image structure contours

Not every contour in an image is defined solely by intensity changes coincident with the

contour. A contour can also be defined by image structure and in at least two different ways. One kind
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Figure 3.1 There arc many contours in this figure that are explicit in the intensity changes; for instance,
the bottom-most horizontal line at the texture boundary is present there. Nevertheless, this line has not
yet been distinguished from the other horizontal lines, which are also present in the intensity changes, as
the location of a texture discontinuity in the image. Locating such abrupt texture changes in an image is
important, since they identify the likely location of discontinuities in surface structure or surface
geometry.
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can be created by an abfupt change in some 2-D organization in an image. In Figure 3.2, for example, the
45° change in the orientation of ﬁae line segments defines a contour that corresponds to the bounéary
between the two oriented regions. A sudden change in local density of the line segments in this figure
also defines such a contour, which corresponds to the external boundary of the two regions, with the line
segment density vanishing outside these regions. We shall refer to such contours as texture change

contours. A second kind of contour can be defined by the local alignment of various image features. For

example, the local aiignment of the terminations of the lines in Figure 3.3 defines such a contour. We

shall call these alignment contours. .

‘We explore texture change contours and their use in identifying discontinuities in surface
geometry and surface structure in this seétion. Alignment contours will, for the most part, not be treated
in this paper. Let us examine next the relationship between texture change contours and surface

discontinuities.

Discontinuities due solely to changing surface structure
First, consider a discontinuity in surface geometry where the surface reflectance function is
constant across the discontinuity. Examples of this are two surface fragments that are adjacent in an

image and have the same surface structure and coloration but have different surface orientation, depth, or

rotation. For instanée, Figure 3.2 could be the image of a creased surface as shown in Figure 3.4a or,

instead, it could be the image of two surfaceé, one rotated 45° with respect to the other as shown in
Figure 3:4b. Figure 3.5 could be the image of two similarly textured surfaces differing in depth (one v/ 2
farther away than the other), or again it could be a creased surface (with, say one side parallel to the
image planc and the other side at a 60° slant).

" From the constraints of the previous section, the image of a local patch of a structured surface

where the surface geometry does not change much will likely contain, at particular scales, items that are
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Figure 3.2 An image contour can be formed by a 45° change in the orientation of sma'l line segments.
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Figure 3.3 An image contour can also be formed by the alignment of line segment terminations.
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(b)

Figure 3.4 Two of several possible physical origins for Figure 3.2: (a) a creased surface, and (b) a surface
rotated relative to another surface with the same surface structure.
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Figure 3.5 An image contour can be formed by a 2:1 density (number/ arca) change of small dots.
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similar to one another in orientation, spacing, color, contrast, size, and shape. But where the surface
geometry changes, geometric attributes such as orientation, density, and length of the image of the surface
items will change. (Intensity, contrast, and color can also vary with changing surface geometry, although
large contrast and color changes are unlikely since these would require perverse illumination or
reflectance functions.) Thus, at a discontinuity due solely to changing surface gcometry, there will often
be an abrupt change in these geometric attributes of the image of similar surface items, forming a texture

change contour.

Discontinuities due to changing surface structure

There is another physiﬁal source of texture change contours in an image, and this represents the
other basic type of surface discontinuity -- one due to changing surface structure. For instance, Figure 3.5
could be the image of two adjaéent surfaces lying in the same plane that have different dot densities.
When surface structure changes, the similarity constraint of Section 2 indicates that items at given scales
on one surface will likely be more similar to one another in orientation, color, contrast, size, and shape
than to items on the other surface, resulting in abrupt changes in the items at each scale at the image
location of the surface discontinuity, and giving rise to a texture change contour. In this case, however,
any surface attribute can change, not just geomgtric attributes, the surface structure can change arbitrarily

across this kind of surface discontinuity.

Texture change contours. need to be made explicit

We have seen e;bove that a tcxture change contour can be formed by a discontinuity in surface
geometry or surface structure. A texture change contour can be due finally to some combination of these
factors. Thus, a texture change contour identifies the likely location of a surface discontinuity of some

form. This alone makes the representation of texture change contours valuable since, as we saw above,
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the location of surface discontinuities may not be present explicitly in the intensity changes. This
represents the first major implicati(.)n for the early texture representation: tfexture change contours sht;uld
be made explicit in the image since they identify the likely location of discontinuities in surface geometry or

surface structure, information that may not be explicit in the intensity changes alone.

Sepamting.the physical factors that produce texture change contours

Is it possible from an image to distiﬁguish among those texture change contours due solely to
changing surface geometry, those due solely to changing surface structure, and those due to some
combination of these two factors? Unfortunately, the answer is that t.his cannot always be achieved from
image texture information alone. When the surface structure changes completely, forming a texture
change cbntour, there is no information in the image texture about whether the surface geometry changes
there also. A structural change can also mimic a geometric change as, for example, when Figure 3.5 is due
to a change in surface dot density, and not to a change in depth. However, it is possible to distinguish
between thosé texture cﬁange contours that could be due solely to change in surface gecometry, and those
that must involve some surface structure change. The forxﬁer contain only geometric changes in the imagé
of the surface items across the texture change contour: it would be possible with suitable 3-D
configurations of two surfaces having the same surface structure to project in the image as each of these
texture changes. The latter contain non-geometric changes, as in Figure 3.6. No change in surface
geometry can cause the squares in this figure to be Uansfémcd into dots having the same density as the

squares. Instcad, the surface structure must have changed. At the end of this section, we shall explore

how to distinguish between geometric and non-geometric texture changes.

The texture edge primitive and its uses

The representation of an intensity change contour begins with intensity edge and bar primitives,
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Figure 3.6 No 3-D configuration of two identically structured surfaces could produce this figure; no
surface can appear composed of squares from one viewpoint, and of dots of the same density from a
different viewpoint.
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which are local assertions assigned at many points along the contour that make explicit the position, local
orientation, contrast, and width [Marr 1976, Marr & Hildreth 1980]. Analogous to this, points along a
texture change contour in an image can _be répresented in our early texture representation by a texture
edge primitive, which makes explicit local contour position and orientation at the very least.

We have already seen above that the representation of texture change contours is important for
detecting surface discontinuities and can be used to distinguish between those discontinuities that
possibly could 5e due solely to a change in surface geometry and those that cannot. In addition to this,
the texture edge primitive could be useful for establishing motion correspondence. Given the many
possible candidate matches of edge and bar fragments for motion correspondence over several degrees of

visual angle, the larger scale and rarer texture edges give fewer possible matches over a given range.

Range of the representation

An issue of particular importance is the range in an image over which this texture edge primitive
can be assigned, since this determines, in part, the computational burden of forming the early texture
representation. One extreme of this range would be a representation that encompasses only a very small
portion ofan image (e.g. the fovea) at one time, or that allows only a very few primitives to be assigﬁed at
one time. At the other extreme would be a rgprescntation that encompasses the entire image and can
allow as many primitive assignments as image resolution permits. While it is difficult at this point to say
precisely where in this range our early representation of texture should lie, it can be said that it must liel
closer to a full image range representation than to a very restricted but economical one that can represent
only a smél] fraction of the texture edges found in an image. Very limited range or resolution may have
be appropriate for somc visual representations, but such limitations arc undesirable for the early
representation of image texture considering the uses to which this reprcscntation will be put.

As previously outlined, the full primal sketch, which represents both the intensity changes and
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image structure, serves as the basic description of an image from which the 2%-D sketch, a
viewer-centered representation of the viewed surfaces in space, is formed. In this framework, the e;rly
texture representation is considered a part of the full primal sketch. Further, the formation of the 2%-D
sketch’s description of the ~vi§wed surfaces -- their orientation, depth, reflectance, location of
discontinuities -- is a fundamental goal of early visual processing. If, as has been argued above, the
texture edge primitive makes explicit aspects of image s@cture that are useful for creating a
representation of surfaces present throughout an image, then it follows that texture edges must be’
detected rapidly throughout the image. This is an expensive step, since it requires that considerable
computational resources be brought to bear if an entire image is to be processed in a fraction of a second.
Next, as texture edges are detected throuéhout an image, they need to be stored away somewhere, and the
most direct way to do this is in a representational memory encompassing the entire image. This is
particularly important for éstablishing large range motion correspondence using texture edges, since ‘thgre
is a wide image range over which | a particular token cbuld move. This approach may seem
computationally expensive compared to the use of a scrutinizing processor for local analysis of surface
structure that is directed more leisurely across the image. But such a local scrutinizing processor would

be inherently too slow to rapidly cover large portions of an image and feed as input to the 2'2-DD sketch.

Detecting texture edges

Conceptu;fdly, the detection of texture edges can be divided into two major steps. First, the basic
structurai elements that will be used to represent the image texture locally must be made explicit. We
shall call these primitive elements the fexture tokens. Second, the spatial variation of these tokens are
used to locate texture cdgés. It is not presently known what constitutes the texture tokens; this could
conceivably range from grey-level values to primitives that represent individual texture elements and

their attributes such as orientation, length, width, contrast, shape, and color (c.g. cach line segment in
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Figure 3.2). In Section 4, we shall see tﬁat the range in which the texture tokens lie can be restricted, But
their precise form has yet to be resolved. Until it is, it will be difficult to say much about methods for
detecting texture edges.

One issue that can be discussed at this time, however, is the desirable dimensions for the texture
token attributes. We saw above that at a discontinuity due solely to changing surface geometry (constant
surface structure across the discontinuity), it will be geometric dimensions such as orientation, length, and
width that will vary with the changing surface geometry. It would ;hcrcfore be desirable- to have texture
tokens that have attributes that change when the surface geometry changes, if discontinuitics due solely to
changing surface geometry are to be detected.

Discontinuities ih surface structure can be detected in two ways. One way utilizes geometric
attributes. When the sur‘face structure changes, everything is likely to change including tﬁe geometric
attributes giyen above: For example, the change in size of the items in Figure 3.6 ;:ould be used to
identify the boundary between the two regions. A second way to detect discontinuities in surface
structure would use chaﬁges in structural attributes. For example, the number of corners per item in
Figure 3.6 could be used to identify the texturc boundary between the two regions, since in the left-hand
region therc are four corners per item (squarc), while in the right-hand region there are zero per item
(dot). This -second method would be useful when all geometric attributes happen to match across the
texture boundary causing the first method to fail. Whether this is likely to occur in natural images is
uncertain however; a point that we shall return to in Section 6. |

We have not yet discussed how to distinguish between discontinuties due solely to changing
surface geometry from those that contain structur‘al changes, but only how to detect either kind when
present. For instance, we saw above that the changing size of the image of sxln'facc items could be used in

some cases to detect cither kind of discontinuity, but it would not distinguish between them. lLet us turn
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to this issue next.

Distinguishing geometric and non-geométric texture change contours

How can texture changes contours that possibly are due solely to a change in surface geometry
be distinguished from those that must involve some non-geometric, structural change? When the surface
geometry changes but surface structure does not at a texture change contour, many image properties
usually remain invariant: the number of different scales at which surface items occur on a surface, the
approximate contrast, color, and packing factor (how tightly packed) of tﬁe items at each scale, and
whether or not they are oriented. When surface structure changes at a texture change contour, everything
is likely to change including the above geovmetric invariants. A procedure that utilizes such geometric

invariants would thus seldom err in distinguishing geometric from non-geometric contours.
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4. The Texture Tokens

Using image texture to infer surface information involves two broad sfages. In the first stage,
the basic elgments that are to represent ihe local structure of the texture, which we shall call the fexzure
tokens, are made explicit. In the second stage, the spatial variation of these tokens can be used to infer
local surfaée orientation, surface depth, and the location of surface discontinuities, and their temporal
variation may be used to infer motion corresf)ondence. It is not presently known what constitutes the
texture tokens of the first stage; this could conceivably range from grey-level values to intensity changes
to primitives that represent individual texture elements and their attributes such as small blobs of a

particular orientation, contrast, and size. This section explores the nature of the texture tokens and

attempts to restrict this range.

Separating the effects of di]ferent surface processes

.A major function the texture tbkens must serve is separating the effects of different surface
processes in an image. As Section 2 stated, surface structure is oftén due to different physical processes
operating on a surface, each at it own scale. Items generated by a given process on that surface will often
be similar to one another in attributes such as size, shape, orientation, color, and contrast. The spatial
variation of the projection of these items in an image can provide information about the structure and-
3-D geometry of the surface on which the items reside; for instance, a discontinuity in the orientation of
similar items in an image can signal a discontinuity in surface geometry or surface structure (see Section
3). To utilize‘this information, however, it is necessary to separate the effects of different processes, for
otherwise any useful information carried by items gencrated by a given physical process will be obscured
in an image by the cffects of other processes also operating there. For example, if the common

orientation of bricks in a wall is to be appreciated, then it is preferable that neither markings on those
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bricks nor large spots encompassing several bricks interfere with the description of the organization of the

bricks themselves.

The role of scale in separating the effects of different processes

Since differént physical processes often operate at different scales .on a surface, the particular
scale at which an image of such a surface is examined should be a useful factor for separating the effects
of the different processes operating there. For example, if Figure 4.1 is examined at very small scales,
then neither a change in the distribution of grey-level values nor a change in the orientation distributjon
of tﬁe intensity changes can identify the boundary between the two regions that are composed of w’s of
differing orientation, sinée the amount of ink per unit area is the same on cach side of this boundary, and
the orientation distribution of the component line segments is the also same on each side of the boundary
-- 50% are horizontal and 50% are vertical. The orientation information needed to identify the béundary
between the two regiorlls is carried at ‘a larger scale in the orientation of each w as a whole, and not at a
smaller scale in the orientation distribution of its combonent line segments.

The intensity changes at a particular scale can be made explicit using a method developéd by
Marr & Hildreth [1?80]. In their theory of edge detection, they propose that an intensity change in an
image I(x,y) at a partic;ular scale can be found by (in effect) first smoothing the image with a Gaussian
filter G of the desired bandwidth, and then applying the Laplacian operator V2 to the smoothed imé'ge'.
The loci of zero-crossings in VZ(G *I) = V2G * 1 define the location of intensity changes at that scale.
Figure ‘4.2 shows the zero-crossings in the convolution of Figure 4.1 with a V3G operator having an
excitatory region of width about the same as the width of the w’s. Note that at this scale, the approximate
boundarics defined by the individual w’s comprise the zero-crossings. Thus, the predominant local

orientation of the zero-crossings is the same as the local orientation of the w’s, and the significant change

in their orientation at the boundary between the two regions in Figure 4.1 could be used to make that




Figure 4.1 The orientation distribution of the component line segments is the same in both the left and
right regions of this figure -- 50% of the line segments are horizontal and 50% are vertical. It is the
changing orientation of the individual w’s and not their component line segments that defines the texture
boundary.

Figure 4.2 The zero-crossings of Figure 4.1 when convolved with a V2G operator having an excitatory
region with width about the same as the width of the w’s. Since the zero-crossings at this scale make
explicit the rough boundary defined by cach w, the local predominant orientation of the zero-crossings
will match the orientation defined by the individual w’s, and will change significantly at the texture
boundary.
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boundary explicit. Thus, we see that if this image is examined at the appropriate scale, the effects of the
process that determines the orientaﬂtion of each w can be separated from those smaller scale processes ﬁmt
determine its component line segment structure, and in this case the intensity changes at that larger scale
are sufficient to separate the apprpximate boundaries of the w’s from their internal structure.

The VG operator can also be used in certain cases to find intensity changes that are coincident
with the texture boundary itself. Figure 6.8, consisting of convglutions of a90° change in orientation of
small line segments' shows, however, that there need not be any significant intensity changes present’
there. In fact, we should not expect any to be there unless the average intensity changes between the

textured regions on each side of the texture boundary.

The raw fntensity changes are not always sufficient for separating the effects of different processes

In view of Figure 4.2, it would be tempting to think that the VG zero-crossings at various
scales may be sufficient as the set of texture tokens. There are, however, physical reasons that we should
not expect this to be so.‘ The intensity changes at a given scale will not solely correspond to structural
items at a particular scale, but will be affected to some dcgrce by items at all scales and their affect will
vary with the contrast of"these items. In the brick wall example, high contrast markings on the bricks
could noticeably influence the zero-crossing description at the scale of the bricks the;nselves -- something
that was earlier considered undesirable for the description produced by the texture tokens. To show that’
“this affect indeed occurs, a technique devised by Stevens [i981b] was used to create Figure 4.3. This
figure is 'composed many small 2x2 black and white checkerboards. Stevens reasoned that if such small
checkerboards appeared on a background of grey that is the psychophysical average of the black and
white, then the output -of any smooth convolution operator that encompasses scveral of these
checkerboards will not differ significantly from that operator’s output when encompassing just the gi'cy

background. The idea behind this particular figure is that although cach collinear triple defines an
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Figure 4.3 The texture elements in this figure consist of collinear triples of 2x2 checkerboards, which
oriented horizontally in Ieft region and vertically in the right region. When this figure is provided with
the matching grey background, there is no scale at which a significant change occurs in the orientation
distribution of the VG zero-crossings at the texture boundary between the two regions, as there was for
Figure 4.1.
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oriented elément and the 90° change in orientation of the triples defines a texture boundary, there will be
no scale at which the disfribution of the intensity changes can be used to identify this texture boundary,
when this figure is provided with the matchiné grey background. Figure 4.4 gives the V3G Zero-crossings
for Figure 4.3 near the texture boupdary. At the smallest scales of the VG operator, the edges of the
component squares of checkerboards are tracked by the zero-crossings. At the largest scales, as expected,
the zero-crossings are of low amplitude (amplitude is not depicted in these figures) and seem to meander
randomly. At intermediate scales, parts of the rough boundary defined by each collinear triple appear in
the zero-crossings, but many zero-crossings corresponding to the each triple’s internal structure also
appear. But at no scale. is the boundary of the triples made explicit and their internal structure filtered
out as was possible for the w’s above, making extraction of the triples’ orientation and the texture
boundary non-trivial. In Section 7, we shall see that the human observer can rapidly detect a boundary
crpated by an orientation change of such checkerboard triples.

To rc;inforce this idea that the raw intensity changes cannot always separate the effects of
different processes, a second example will be given. The previous example showed that the substructure
of an item can influence the intensity changes at llarge enough scales to leave that item only implicit in the
intensity changes. The second example again uses items at two different scales, but this time, the smaller
-items are not components of the larger items, bl'.lt instead are independent of them. Figure 4.5 consists of
line segments of two diffcrent lengths. The shorter line scgments are oriented at 45° on the left-hand side
of the figure and at -45? on the right-hand side, while the longer line segments are randomly oriented
across the figure. Without the longer line segments, there would be a sharp orientation change in the
zero-crossings at the scales that capture the smaller line segments. The randomly oriented, longer line
segments, by adding noise to the local orientation distributions, weaken this sharp change in the

zero-crossings. Thus, we again have an example where items from one process interfere with the intensity
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Figure 4.4 The zero-crossings of portions of Figure 4.3 (when given the matching grey background) near
the texture boundary when convolved with v2G operators of various sizes. The left-most figure of each
row depicts the area of Figure 4.3 used to produce the zero-crossings in that row. The number adjacent to
each figure gives the diameter of the excitatory region of the V3G operator used to produce the
zero-crossings in that figure, where each 2x2 checkerboard is 2x2 units in size. At no scale is the boundary
of each checkerboard triple explicit in the zero-crossings and its internal structure filtered out. " Further,
there is no scale at which the boundary between the two regions of different checkerboard triple
orientation is demarked cxplicitly by a zero-crossing contour, nor is there a significant change in the local
orientation distribution of the zero-crossings at the texture boundary.
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Figure 4.5 The shorter line segments in this figure are oriented at 45° on the left-hand side and at -45° on
the right-hand side, while the longer line segments are randomly oriented across the figure. Without the
longer line segments, there would be a sharp orientation change in the zero-crossings at the scales that
capture the smaller line segments. The longer linc segments weaken this change in the zero crossings.
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changes that best capture those items from a different process. The information necessary to separate
these two kinds of items is clearly present in this image, however; it is contained in the differing lengths of

the individual line segments themselves.

What are the texture tokens?

We have seen above that the raw intensity changes appear to be too primitive a description of
image texture to suffice as the sole texture tokens. In the above two examples, it is groupings, not
individual points, of the intensity changes that correspond to the items that produce the texture bqundary
-- the oriented triples in the first example and the short line segments in the second example. This
suggests that some form of local grouping of the intensity changes that results in tokens that roughly
correspond to individual line segments, small blobs, local clusters and collinear groupings of these could
provide a description of the loéai structure of image texture that better separates the items produced by
different physical processes. Marr [1976] has proposed that much local image structure can be made
explicit by assigning place tokens to such items as terminations, small blobs and line segments, which are
presumably found from the intensity changes, and then by grouping these tokens to find collinear
groupings and local clusters, which are then also assigned places tokens. These tokens would corrcsbond
to small markings, scratches, surface elements a_nd local groupings of these on physical surfaces. It is not
4present1y clear whether the early representation of texture requires tokens that faithfully and precisely
rcpresent‘ these kinds of items everywhere in an image. Perhaps some computationally less expensive.
processing that roughly identifies a sizable fraction of such items would suffice at this stage, with a more
precise description available with scrutiny if needed.

Exactly what the texture tokens arc thus remains an open question. It solution is important not
only for understanding how to detect texture boundaries, which has been emphasized here, but also for

depth from texture and motion correspondence. The texture tokens could provide the unforeshortened
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measure needed to obtain depth from texture, as discussed in the introduction. Further, the texture
tokens, like the texture edge, would represent larger scale and rarer primitives for motion correspondence
that have fewer candidate matches over a given range than the intensity changes. But being more precise
about these processes must awai_t the determination of the texture tokens, and not much can be said
definitely about the form of the texture tokens at this point other than it appears that the intensity

changes alone will not suffice.




5. Summary of the Theory
Three physical constraints on surface structure...

(1) The visible. world can be regarded as being composed of smooth surfaces having reflectance

JSunctions whose spatial variation may be complex.
(2) Physically different processes operate on a surface to form different kinds of items there.

(3) Surface items generated by the same processes tend to be more similar to one another in their size,

shape, lightness, color, and spatial arrangement than to surface items generated by other processes.”

..combined with the goal of producing the 2%%-D sketch, a viewer-centered representation of the visible
surfaces where the factors that produce an image -- surface geometry, surface reflectance, illumination,
and viewpoint -- are separated, lead to the following conclusions for the representation of the image

texture:

(1) A texture edge primitive is needed to identify texture change contours, which are formed by an
abrupt change in the 2-D organization of similar items in an image. The texture edge can be used
for locating discontinuities in surface structure and surface geometry and for establishing motion

correspondence.-

(2) Abrupt changes in attributes that vary with changing surface geometry -- orientation, density,
length, and width -- should be used to identify discontinutics in surface geometry and surface

structure.

(3) Texture tokens are nceded to separate the effects of diffcrent physical processes operating on a
surface. They represent the local stru'cturc of the image texture. Their spatial variation can be used
in the detection of texture discontinuitics and texture gradients, and their temporal variation may
be used for eis*tablishing motion correspondence. What precisely constitutes the texture tokens is

unknown; it appears, however, that the intensity changes alone will not suffice, but local groupings
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of them may.

(4) The above primitives need to be assigned rapidly over a large range in an image.
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6. Texture Edge Demonstrations

The primary purpose of this section is to present psychophysical evidence that texture edges are
detected by the human visual system and that they are represented over a large range in an image.
The secondary purpose is to characterize those types of texture changes that can give rise to

perceived texture edges.

Texture discriﬁzination and texture edges

Most previous psychophysical studies of visual texture have concentfated on their
discrimination (e.g. Julesz [1973,1981] and Beck [1966]). For example, in Figure 6.1 we can
immediately see without scrutiny ﬁat the lower left region of the textured pattern is different from
the rest of the pattern; we can discriminate the regions. In Figure 6.2, the textured pattern looks
homogeneous wit’hoﬁt scrutiny even though the upper right corner is composed of backward R’s,
while the remainder of the pattern is composed of forward R’s [Julesz 1973]. In this case, we cannot
discriminate the regions. Several theories have been advanced to explain why some texturcs are
discriminable while others are not, with Julesz’s second-order statistic conjecture probably the best
known [Julesz 1973].

The problem with applying texture discrimination to the texture edge prbblem is that texture:
discrimination is an "anything goes" task; the viewer may use any means at his disposal to try to
discriminate the textures within the allotted time. Suppose a viewer is asked which one of four
quadraﬂts of a texture pattern is different from the others (as in Figure 6.1) and suppose that he
correctly identifies that quadrant. Did he find the correct quadrant by first finding the texture
boundary between the different regions, or did he instcad sample four elements, one from each

guadrant, and comparc them? Because it is conceivable that texture discrimination can occur at
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Figure 6.1 A discriminable texture. The lower left region can be seen immediately to have a different
texture from the rest of the figure.
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Figure 6.2 An indiscriminable texture. The figure initially appears homogeneous. Close inspection

reveals that upper right region is composed of backward R’s, while the remainder of figure is composed of
forward R’s [Julesz 1973).
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least in some cases without the texture boundaries being explicitly represented, such texture
discrimination studies cann(;t be used as evidence that texture edges are detected by the human
visual system. For our purposes, these studies can only show that there are some texture differences
(e.g. Figure 6.2) for which texture edges are not detected, since if they were detected, we could
presumably discriminate them. But given the "anything goes" nature of the discrimination task, it
can not be assumed that all discriminable textures have their boundaries explicitly represented.

This means that different paradigms to study texture edges must be utilized.

The apparent motion paradigm

It was suggested earlier that texture boundaries could be used to establish motion
correspondence. We can test this hypothesis and test the human ability to perceive texture edges by
using an apparent motioﬁ paradigm. It is well known that if a display sequence such as Figure 6.3a
followed, by Figure 6.3b is presented to a viewer with a short (say 30 msec) interstimulus interval
(ISI), the viewer will perceive apparent motion -- in this case a single square will be seen to move to
the right and rotate 459. Interestingly, if the straight line sides of the square are replaced by texture
cdges, the correspondence can still be achieved. When the sequence in Figure 6.4 is presented, the
whole pattern is seen to move to the righ§ with the embedded square appearing to both move to the
right and rotate 45°. Here the texture boundary is formed by a 90° orientation difference in the
sma;ll line scgments. Typically, an embedded square of about S° visual angle and a presentation.
sequence of 300 msecs was used for each frarne with an ISI of 30 msecs, but the correspondence can
be achieved over a wide range of visual angle and does not depend critically on the ISI. It will be
shown below that there is no intensity edge at any scale present at the boundary between the two
textured regions so the correspondence must be established from the texture difference.

Ramachandran, et al [1973] have reported establishing apparent motion using a texture
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(a)

(b)

Figure 6.3 An apparent motion scquence. Display (a) is presented for 300*msec:, a blank display follows
for 30 msec, and then Display (b) is presented for 300msec. The viewer perceives a single square moving
to the right and rotating.
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Figure 6.4 Apparent motion that uses texture edges. As in Figure 6.3, Display (a) is presented for 300
msec, a blank display follows for 30 msece, and then Display (b) is presented for 300 msec. The viewer
perceives the whole pattern moving to the right with the embedded square appearing both to move to the
right and rotate. This apparent motion paradigm can be used to test for those texture changes that
produce clearly perceived texture boundarics.
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boundary with a second-order statistical difference (with equal first-order statistics). In their
paradigm, an embedded square is translated but not rotated. This latter format has the
disadvantage for our uses that the.dire{:tion in which the embedded square of different texture is
moved can be perceived even when its boundary is only weakly, if at all, perceived. By adding the
rotational component to the embedded square’s motion, only a clearly perceived boundary gives
rise to a square that appears to both translate and rotate. The key point here is that unlike the
texture discrimination tasks, it is difficult to imagine how a viewer successfully can complete this
motion task without his visual system making explicit the boundary between the two regions of

differing texture.

The static shape recognition paradigm

A second paradigm tﬁét involves static shape recognition can also provide evidence of human
ability to, perceive texture edges. If an embedded figure in a texture pattern is sufficiently complex
in shape and can still be recognized without scrutiny, then it seems likely that that shape’s boundary
is detected by the visual system. In Figure 6.5, which uses the same texture change as in the motion
exémple, there is little difficulty in rccognizing which letter of the alphabet correspbnds tb the
embedded shape. Thus, this gives evigience from two independent techniques -- the apparent
motion paradigm and the static shape recognition paradigm -- that a particular kind of texture
boundary (one formed by a 90° difference in small line segments) is detected by the visual system.'
Kidd, Frisby and Mayhew [1979] have found that texture boundaries can initiate vergence
movements for stercopsis. This could serve as a basis for a third paradigm for studying texture
boundan’es, but this has not been investigated here.

An orientation difference of line segments is not the only sort of texture boundary that is

successful in the apparent motion and shape recognition paradigms. Figure 6.6 shows a difference
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Figure 6.5 The shape of the embedded region with line segments of differing orientation can be
recognized easily as the letter Z. This shape recognition paradigm provides a second test for those texture
changes that produce clearly perceived texture boundaries.
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in the dot density (4:1) that res;ults in immediate shape recognition. In the apparent mofion
paradigm, the same texture éhange results in thev embedded square being pefceived as moving to
the right and rotating. There are many sorts of texture changes that fail in both the shape
recognition and motion paradigms. Figure 6.7 show several types of texture changes f;0r which
static shape recognition is difficult without scrutiny. These same texture changes do not result in
the correspondence of the embedded square in the apparent motion paradigm; no embedded
square is seen moving to the right and rotating. In particular_, Figure 6.7¢c, which ﬁils the tests for
perceived texture edges, passés the Julesz-style test for texture discrimination (Figure 6.1). While
some texture boundaries result in motion correspondence and shape recognition and others do not,
in all the texture boundaries that have been tried, motion correspondence is established if and only
if shape recognitior; is immediate. This strengthens the hypothesis that texture edges 'are explicitly

represented by the visual system.

- Texture edges are not alway;v explicitly present i}z the zero-crossings

It was claimed that in Figure 6.5 there is no average intensity change at the texture boundafy at
any scale, anq thus this boundary is not explicit in the intensity changes. This claim can be
substantiated by' convolving the figure with scveral sizes of the V2G mask of Marr and Hildreth
[1980], and examining the zero-crossings in the output. As described earlier in Section 4, the
zero-crossings of a v2G operator, which is the composition of a Gaussian and the Laplacian,
identify the locations of the intensity changes at the scale determined by the bandwidth of the
Gaussian. Figure 6.8 shows the zero-crossings in the convolutions of a portion of the texture
boundary in Figure 6.5 with VG masks of various sizes. Note at the smallest scale, the individual

line segments are capturcd, and at the largest scale the the external boundary is captured, but at no

scale is the boundary between the two regions present in the zero-crossings.

et e O,
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Figure 6.6 A 4:1 dot density difference can also give rise to shape recognition. The viewer can recognize
immediately the shape of the embedded region of greater density as the letter T. In the density case,
however, it is difficult to separale experimentally the relative influences of large scale intensity changes
and changes in token density at the perceived boundary.
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Figure 6.7 Several texture changes for which immediate shape recognition is difficult. Close examination
of each pattern reveals that the embedded shape is (a) the letter H, (b) the fetter V| and (c) the letter Z.
Note that the texture change in (c) is the same as in the "discriminable” Figure 6.1.




-52-

— TS V2. O
7007 /\\t\\‘\" @’O%Q\\%QQ

,//'/////\i\\\\\ ) Ofo QQ%Q%Q

,///////\\\\\\, fy/ o QQQQ(

£ s IO NN
7 /\\\ 0

S
%%%\ﬁ‘“%f

T

7
5

25 AN

A\

N | ?ﬁ?ﬁ»&&%&‘

V4
r7
7’
7’
777

s srls
-
1y
,/,/ z s,
pe
.70
e e

N
AN
N
V4 Yy
777
27
7/

N
7z

N

40.

48.

 fmage 32.

Figure 6.8 The zero-crossings for the texture change in Figure 6.5 using viG operators of various sizes.
The leftmost figure of each row depicts the image used to produce the zero-crossings in that row. The
number adjacent to each figure gives the diameter of the excitatory region of the v operator used to
produce the zero-crossings in that figure, where each linc segment is 9 units long. At no scale is the
boundary between the two regions of different line segment orientation cxplicitly demarked by a

7€TO-Crossing contour.
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In Figure 6.6, there is a large scale intensity change that could be used to identify the embedded
region’s boundary (this easil'y is seen to be true by viewing the figure from far enough away that the
individual dots are not resolvable -- the embedded shape can still be perceived due to the large scale
intensity change). The fact that a texture boundary that is due to changing texture element density,
length or width is often accompanied by a large scale intensity that coincides with the texture
boundary makes it difficult to access experimentally if these texture changes result in perceived
texture edges in the absence of these large scale intensity changes; further work is needed in this
area. Orientation changes have been emphasized in this paper, since they are free of this

complication.

Image range of the texture edge primitive

Mot,_ipn, correspondeﬁcé and shape recognition can be achieved with these figures as large as
30-40° in visﬁal angle; at this size, local scrutiny could reveal only a small portion of the boundary
at a given time. But the motion correspondence is immediate, and shape recognition can still occur
when a figure is brieﬂy flashed (300 msec). This supports the hypothesis that many texture edges

are being simultaneously found over a large portion of the image.

Characterizing those texture changes that produce perceived texture edges

A complete characterization of those texture changes that produce perceived texture edges and .
those that do not ({:IS evidenced by the above apparent motion and shape recognition paradigms) has
yet to emerge. A cﬁmplete phenomenological characterization is difficult to obtain because there
may be many attributes (e.g. contrast, color, orientation, density, length) that the visual system can
use to detect texture edges, and new attributes can always be proposcd that have yet to be tested

psychophysically. Further, it is difficult to separate some attributes experimentally, such as texture
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element density from average local intensity, as discussed above. Nevertheless, two rules seem to
characterize many of those te.xture changes that can and cannot produce perceived texture edges:

The first rule is that significant, abrupt changes in attributes that vary with changing surface
geometry produce perceivedl texture edges. This has already been shown to be the case above with
the orientation of texture elements. Intensity, density, and size changes of texture elements can also
produce perceived texture boundaries, but further wor'k is needed to decouple the large scale
intensity ?:hanées from the density and size changes to access each attribute’s individual effect. -
Conversely, the textures in Figure 6.7 were generated by holding constant avera;ge local texture
element density, orientation, length and width, but otherwise using different shaped texture
elements across the texture boundary. Even though there are significant structural differences in
the texture elements across the boundary, such as the number of terminations and corners, these
changes alone do not produce perceived texture edges. In fact, texture element color and contrast
are the only attributes that do not (usually) vary appreciably with changing surface geometry that
have been found so far to produce perceived texture edges. This contrasts with Julesz’s results for
texture discrimination which indicate that changes in the number of terminations can apparently be
used to discriminate textured regions [Julesz 1981]. As mentioned earlier, texture discriminability
does not insure that a clear texture boundary will be perceived. . ' SR

This first rule is not surprising in light of the discpssion in Section 3 on the uses of texture edges.
Reiterating what was said there, texture edges can identify discontinuities in surface geometry and
surface étructure. At a texture discontinuity where surface geometry changes but surface structure
does not, it will be those image attributes that vary with surface geometry -- e.g. orientation,
density, length, width -- that can be used to identify the discontinuity in the image. At a

discontinuity where surface structure changes, everything is likely to change -- orientation, density
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color, contrast, size. Further, thé presence or absence of geometric invariants such as similérly
oriented items at a given scale that remain oriented across a texture boundary can be used to
distinguish between these two kinds of discontinuities. Thus, while structural attributes such as
number of tenﬁinations and corners could help detect changes in surface structure when éeometn'c
attributes such as orientation, density, and size, all happen to be constant across a texture
discontinuity, the visual system could consider such an occurrence too unlikely in natural images to
justify its detection.

The second rule is that tl;e comparison of distributions of a given attribute of otherwise similar
texture elements is .képt simple. This rule is detailed here only for the orientation attribute. Figure
6.9 shows that the oriented line segments at two fixed orientations (45° and -45°) found inside the
embedded Z-shape.d region are sufficient to match the randomly oriented line seémcnts found

_ outside‘ the embedded region -- the embedded letter is difficult to recognize quickly. Likewise, the
same texture change does not produce motion correspondence in the apparent motion paradigm.
This suggests that ﬁ1e visual system may assume that the orientation distribution of items at a given
scale either clusters around a single value or is, for all intents and purposes, random. A process that
naturally produces, say, é distinct, two-peaked orientation distribution (as 45° and -45°) of
omerWise identical items would be deemed too rare to be worth distinguishing from a random
distribution. Inéidentally, this contrasts with previous work by the author using texture
discrimination instead, for which three orientations were. found necessary to match random

orientations [Riley 1977).
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Figure 6.9 Two fixed orientations (45° and -45°) of the line segments inside the embedded region match
the random orientations of the line segments outside the embedded region; the embedded shape is
difficult to recognize initially as the letter H.
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7.Texture Token Demonstrations

In this section, psychophysical demonstrations are presented that the elémentary tokens that thg
humap visual system uses to représent the local structure in image texture do not consist solely of
the ravx" intensity changes at a variety of scales in an image. Specifically, demonstrations will be
giver; that there are no significant changes in the orientation distribution of the V3G Zero-crossings
at any scale that can be used to detect éome texture boundaries that humans can readily perceive.‘

Two different approaches are taken to create these demonstrations.

The Checkerboard Paradigm

-The first approach utilizes the ci'xeckerboard technique described in Section 4. The general idea
is to use small black and white checkerboards as component items in larger scale groupings so that
the larger scale groilpings will not be explicit in the larger scale intensity changes due to the
integrating effects-of the v2G convolution operator. In particular, each dot in Figure 7.1 can be
replaced by a small 2x2 black and white checkerboard and the entire ﬁgurc given the matching grey
background that is the psychophysical average of the black and white (see Figure 4.3). This match is
achieved by viewing the checkerboards from sufficiently far away and adjusting the background
grey until the checkerboards disappear. Under these conditions, the embed}lcd letter, which can
easily be perceived in the unmodified Figure 7.1, can still be immediately recognized in the so
modified figure, provided the figure is viewed from sufficiently close in (otherwise, if the viewer
moves Back from the figure, the checkerboards eventually begin to disappear, with those toward the
periphery being affected first).

The previous section argues that the above is evidence that a texture change consisting of a large

change in the orientation of collincar triples of tiny 2x2 checkerboards can be identified by the
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Figure 7.1 When the dots in this figure are replaced by small 2x2 black and white checkerboards and the

entire figure is given the matching grey background that is the psychophysical average of the black and
zero-crossing contour, nor is there a significant change in the local oricentation distribution of the

boundary between the two regions of different checkerboard triple orientation cxplicitly demarked by a
Zero-crossings at the texture be undary.

white, the embedded shape can still be recognized as the letter T. Figure 3.4 showed that at no scale is the
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human visual system. Since any smooth spatial operator that encompasses several of these
checkerboards will fespond with the same output that is given to the grey background, there is no
intensity change at any scale at the boundary between the two textured regions. Of crucial
importance here is the fact that the orientation defined by checkerboard triples is not explicit in the
intensity changes either. As shown in Section 4, the vG zero-crossings at no scale make explicit the
. boundarie; of individual triples while filtering out their internal structure, and thus the changing
orientation of the triples at the texture boundary cannot be found by looking for a significant
change there in the local orientation distributions of zero-crossings of v2G operators at some scale

(see Figure 4.4).

Mixed lengths paradigm

The second approacﬁ taken to demonstrate that the raw intensity changes are not sufficient as
the sole texture tokens utilizes texture elements of two different lengths. The general idea is that if
one set of texture elements of a given length has, say, some oriented structure in a texture, then this
oriented structure willl be easier to detect in the presence of other texture elementsAof a very
different length than in the presence of other texture elements of a similar length provided the
texture elements are first separated on th(; basis of their length. Figure 7.2a shows a texture pattern
composed of line segments of two different lengths. The shorter line segments are oriented at 65°
inside the embedded H-shaped region and at 25° outside this region. The larger line segments are.
nine times as long as the shorter line segments and are oriented at 45° throughout the texture
pattern. Figure 7.2c shows, for reference, just the shorter lines found in Figure 7.2a. Figﬁre 1.2b
contains an identical copy of the shorter line segments found in Figure 7.2a, but the larger line
segments have been shrunk 1/9th in length (to the same length as the chcr linc scgments) with a

corresponding nine fold increase in their density (i.e. number/arca), thus keeping the total amount
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Figure 7.2 The creation of texture patterns (a) and (b) both begin with underlying pattern (c), which has
line segments at 65° inside the embedded region and at 25° outside this region. Masking 45° line
segments nine times as long as those in pattern (c) and with one ninth the density (number/area) are
added to complete pattern (a). Masking 45° line segments of the same length and with the same density
as pattern (c) arc added to complete pattern (b). The embedded H in patern (a) is casier to recognize
than that in pattern (b); an effect that is accentuated at oblique or distant viewpoints. This result is
difficult to explain if the raw intensity changes at various scales are the sole texture tokens.




-61-
of 45° contour over a given area constant. Thus, measuring the amount of contour at a given
orientation pe; unit area taken from very local deécriptions of the intensity changes found in an
image of these figures would not show significant differences between Figure 7.2a and Figure 7.2b.
Figure 7.3 and Figure 7.4 contain vG zero-crossings at various scales near the embedded texture
boundary of Figure 7.2a and of Figure 7.2b, respectively. They were generated to show that for no
scale (operator size) is there a significant difference between the local orientation distributions of
zerd—crossings for Figure 7.3 and Figure 7.4 that would result in a noticeable difference between the
detectability of the embedded region in Figure 7.2a and Figure 7.2b. At the smaller scales, the
Zero-crossings whercl the line segments of different orientations cross are very similar for Figure 7.2a
and Figure 7.2b, and since the local amount of contour ét cach orientation is the same in both
figures by design, the local zero-crossing distributions of the two figures at these smaller scales are
_quite similar. At the larger scales, the smaller line segments are not resolved; since the smaller line
segments carry the- orientation change that produces the texture boundary, differences in the local
zero-crossing distributions of the two figures at larger scales are not relevant to the detectability of
the texture boundafy. Thus, if texture boundary detection were based on identifying significant
changes in the .distribution‘ of zero-crossings at the boundary, the texture boundaries in Figure 7.2a
and Figure 7.2b should have similar detectability. Note, however, that in Figure 7.2a, the
embedded letter is easier to recognize than in Figure 7.2b, an effect that is accentuated at distant or
oblique viewpoints. This suggests that the line segments are somehow first separated on the basis
of their length.
This result may seem at odds with those due to Treisman [1977,1980]. She found, using a variety
(_)f techniques, that human observers were very poor at the pre-attcntive selection of items having

the conjunction of two or more attribute values (e.g. shape:H and color:red) in a ficld of distractors.
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Figure 7.3 Zero-crossings for the texture change in Figure 7.2a using V3G operators of various sizes.
Again, the leftmost figure of each row depicts the image used to produce the zero-crossings in that row,
and the number adjacent to each figure gives the diameter of the excitatory region of the V3G operator
used to produce the zero-crossings in that figure, where the shorter line segments are 9 units long.
Comparison with Figure 7.4 reveals that at the smaller scales, there is no significant difference in the local
orientation distribution of the zero-crossings between the two figures, while at the larger scales the smaller
line segments, which contain the boundary-forming oricntation change, arc not resolved. Thus, the
results in Figure 7.2 cannot be explained if the texture boundary is detected solely on the basis of
significant changes in the local zero-crossing distribution across the boundary.




Figure 7.4 Zero-crossings for the texture change in Figure 7.2b using v3G operators of various sizes,
with the same format as Figure 7.3.




&4
In Figure 7.2, the selected attribﬁtes are orientation and scale (length of line segment). A poséible
explanation is that scale is iI;deed special as suggested earlier -- large differenées in size may not be
treated like other variations in attribute values, since they strongly suggest that different processes

are responsible for the respective items.
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8. Summary of Demonstrations

(1) Two different experimental paradigms -- one based on static shape recognition of a textured
region embedded in a textured surround and one based on motion correspondence of texture
boundaries -- support the hypothesis that some kinds of texture boundaries are detected by the

visual system and are made explicit in a representation that covers a large range in an image.

2 V3G zero-crossing results indicate that there are no significant intensity changes at any scale
coincident with the texture boundaries in the above figures and thus the detection of these

boundaries must be based on more abstract texture measures.

(3) Two rules characterize many of the texture changes that can and cannot produce perceived
texture edges as evidenced by the experimental paradigms in (1):

(a) Significant, abrupt changes in texture element attribuies that vary with changing surface geometry
-- orientation, length, density, width -- produce perceived texture edges.
(b) The comparison of distributions of a given attribute of otherwise similar texture elements is kept
simple -- e.g. two fixed orientations are sufficient to match random orientations in the texture
boundary paradigms.
(4) Two different experimental paradigms -- one using oriented groupings of 2x2 checkerboards and one
using line segments of two different lengths combined with VG zero-crossing results cast doubt that the
raw intensity changes at various scales would suffice as the sole texture tokens; there are no significant

changes in the distribution of the \Z¢] zero-crossings at any scale at the texture boundaries found in these

demonstrations.




References
Beck, J. 1966. Effect of orientation and of shape similarity on perceptual grouping. Perception and
Psychophysics, 1, 300-302.
Horn, B. 1977. Understanding image intensities. Artificial Intelligence, 8, 201-231.

Julesz, B. 1973. Inability of humans to discriminate between visual textures that agree in second-order
statistics -- revisited. Perception, 2, 391-405.

Julesz, B. 1981. A theory of preattentive texture discrimination based on first-order statistics of textons.
Biol. Cybern., 41, 131-138.

Kidd, A., Frisby, J., & Mayhew, J. 1979. Texture contours can facilitate stereopsis by mmatmg
appropriate vergence eye movements. Nature, 280, 829-832.

Marr, D. 1976. Early processing of visual information. Phil. Trans. Roy. Soc. B., 275, 483-524 .

Marr, D. 1977. Representing visual information. A4AS 143rd Annual Meeting, Symposium on Some
Mathematical Questions in Biology, February. Also available as M.L.T. A.I. Lab. Memo 415.

Marr, D. 1981. Vision: a computational investigation into the human representation and processing of visual
information. San Francisco: Freeman (in press).

Marr, D. & Hildreth, E. 1980. Theory of edge detection. Proc. Roy. Soc. Lond. B, 207, 187-217.

Marr, D. & Nishihara, K. 1978. Representation and recognition of the spatial organization of
three-dimensional shapes. Phil Trans. Roy. Soc. B., 200, 269-294.

Marr, D. & Poggio, T. 1978. A theory of human stereo vision. Proc. Roy. Soc. Lond. B., 204, 301-328.
Also available as M.I.T. A.L. Lab. Memo 451.

Marr, D. & Ullman, S. 1981. Directional selectivity and its use in early visual processing. Proc. R. Soc.
Lond. B, 211, 151-180.

Ramachandran, V., Madhusudhan, V., & Vidyasagar, T. 1973. Apparent movement with subjective
contours. Vision Research, 13, 1399-1401.

Riley, M. 1977. Discrimination of bar textures with differing orientation and length distributions. M.1.T.
B.S. Thesis, Dept. of Elect. Eng. and Comp. Sci., June.

Stevens, K. 1981a. Information content of texture gradients. Biol. Cybern., (in press). Also available as
M.LT. A.L. Lab. Technical Report 512,

Stevens, K. 1981b. Personal communication.




-67 -

Treisman, A. 1977. Focused attention in the perception and retrieval of multidimensional stimuli.
Perception and Psychophysics, 22, 1-11.

Treisman, A. & Gelade, G. 1980. A feature-integration theory of attention. Cognitive Psychology, 12
97-136.

'y

Ullman, S. 1976. On the visual detection of light sources. Biol. Cybern., 21, 205-212.

Ullman, §S. 1979. The interpretation of visual motion. Cambridge, Ma.: M.LT. Press.




