

Tius blank page was inserted to preserve pagination.

A Simple Model of Circuit Design

by

Gerald Lafael Roylance

Copyright Massachusetts Institute of Tc;dmolm 1983

gRevised version of a Master of Scieace Thesis submitted to
in May 1980,

1h:srepmdcscnbesreseatchdomatdlehm&ﬂm
lmmdemmﬂm mﬁx
uwhmmsmammmx; ded in :

Office of Naval Rescarch contracts mmm-&mmc«n

......

I'd like to thank Johan de Kleer for his perspective on life and rescarch at MIT. He kept me sanc in bedlam.
Gerald Sussman, my advisor, for his suggestions -- both good and bad. Johan, again, for telling me which
were good and which were bad. Dick Waters and Dave McAllester provided helpful criticism.

I stole the rulc interpreter from Jon Doyle and Howard Shrobe.

Several programs helped prepare this report: Richard Stallman’s EMACS did the text editing, the program R
(written and maintained by Alan Snyder and Elliot Moss) did the typesetting. and SH. and PRESSEDIT
(running on a Xcrox Alto computer) prepared and merged the illustrations. The result was printed on a
Xerox Dover printer. Xerox Corporation graciously donated the Alto computers and the Dover printer to
MIT.

And 1 like to thank Susan Burkhardt for helping me through some difficult times.

A Simple Model of Circuit Design

by

Gerald Lafael Roylance

Abstract

A simple analog circuit designer has been implemented as a rule based system. The system can
design voltage followers, Miller integrators, and bootstrap ramp generators from functional descriptions of
what these circuits do. While the designer works in a simple domain where all components are ideal, it
demonstrates the abilities of skilled designers. While the domain is electronics, the design idcas are useful in
many other engincering domains, such as mechanical engineering, chemical engineering, and numerical
programming.

Most circuit design systems are given the circuit schematic and use arithmetic constraints to select
components values. This circuit designer is different because it designs the schematic. The designer uses a
unidirectional CONTROL relation to find the schematic. The circuit designs are built around this relation; it
restricts the search space, assigns purposes to components, and finds design bugs.

This empty page was substituted for a
blank page in the original document.

TABLE OI' CONTENTS

CONTENTS
1. Designing Circuits 6
L1 TNEFOAUCLION .ottt e s s s s b et st s s s s s easnsssaaas 6
L2 DICSIEN SITALCEY ..oovvvreireriirercrerrerensasssnserenesssserssssistsnsssssssessassssesessesasesesssssosesssssssssessons 7
1.3 WHAUS ARCAA ...ttt neerrseserenerssesesesessssssssssssssesebssssebosssssssssessanssnsnsasanes 9
2. A Ramp Generator 10
2.1 BASIC RUICS ettt eceren st sesssassesessssessassssssessssssssssssbesssesesessaesesessassesenes 10
2.2 DICSIZN RUICS .ottt reeees st seaesas s ssens s st et st sssansasssssnsnsneboserssnsnens 16
2.3 Design 0f @ Ramp GERETALOTvvcveeievecrrerieirmenisesseesssasssssssrsssssssssssssssesssessssssnsoss 17
2.4 1L00SE ENAS .oucvrieeiecrrceerecsinrsssseisnssstesesesesssessssssssssssesssssssssesssosenssssssssesasssseressensase 24
3. KCL and Feedback 25
3.1 A DESIBN BUE oottt sreaere s sesesessesessasasssessassessssssensssensrsasasssesesssssans 25
3.2 A CIOSET LLOOK L KCL ..ot ceeree s sesessnssessssssonssssosnsssssssssssesnassnen 26
3.3 The Fecdback RUIEieecerresnreeereneeseseseesesssnessssssssessssssssessssssssseesssosssses 30
3.4 ANOTHCT DICSIZN .ottt st see s seeeresesvs s essnsess s osstrssessssssaresen 34
3.5 SUIE MOTE GENETALOLScvvvcrerreereresniersnsesesssssserssersssssessserasanesssssrssasssssnsrssssssenses 37
3.6 SUIMIMNETY .cooeececteersneeseseaeserersassrsnsssasssnssrsassssssssossssssosssesssensanssasssssssssssssssssssrasssssns 42
4. Discrete State 43
4.1 INITOAUCHIONovvrreerrrrieivereasrsseensesssisssmserssssssssssinsosssesesssossssssssssssssosssssssesssesnssracas 43
4.2 Design of INAEPendEnt SLALEScovvecvrecrveeiirenneiirerenerssssressseresessessresasssssasssonsses 43
4.3 Design of Dependent SIALESererecceereesenesnresssesssssesssssonsssssssesosssssssasssessss 50
A4 SUMIMATY ...ocreerrrrerieaincriersnserssnesessessrasessssissasssssssessinsssssssssessasasssssesssssessssasensassosesoses 56
5. Literature £ 57
6. Conclusions 60
6.1 The IMPErfeCt PaStcvcecereeeereeeecreece et eersnes s ressesns s sesansessnsssanasens 60
6.2 The Insufficicnt Present ... reerensenssresatrsbeseressasesareness 61
6.3 The ADBSOIULClY PCIfCCt FULUTEvvveerierereicnerinersessssessasssssssessaossssssssossassssssnsasns 62

I DESIGNING CIRCUITS 6

1. Designing Circuits
1.1 Introduction

Many people have made mechanical experts that solve difficult problems. Some of these expert
programs are mathcmaticians who discover mathematical ideas <l.enat>, programmers who write code
<Manna> <Barstow>, physicists who solve mecchanics problems <de Kleer-1>, chemists who synthesize organic
molecules <Sridharan>, consultants who diagnose medical problems <Shortliffe>, and clectrical engineers who
design circuits <McDermott-2>.

This thesis is also about circuit design and describes a simple rule based circuit designer for
operational amplifier circuits. [t starts with a few circuit design idcas that mimic the bchavior of human
designers. These idcas are encoded in a computer program, and several classic circuit designs come out. The
resulting circuit design system is different from most other circuit design programs because it designs circuits:
it chooses the components and how to connect them together. Most other programs start with the connected

components and solve for component values using arithmetic constraints. Finding a circuit topology is a

more creative task.

Creating an automated circuit designer is beneficial for several reasons: (1) human experts are scare
-- we'd like to replace them with more available computer experts <Gorry>. (2) Automated experts are
economical. Expert circuit designers are scarce and specialized. Every circuit designer does not know how to
design every circuit. Only a few designers, for example, can design high speed analog switches. If an
expertisc can be incorporated into a widely-distributed automated expert, then human designers could make
usc of the expertise without learning its details. (3) If we can teach a computer to do a task, then we should be
much better at tcaching people to do the same task.

Another benefit of an automated circuit designer is duc to the disparity between what we can afford
to build and what we can afford to design. Today’s electronics technology makes it possible to cheaply build
many circuits. Microprocessors, for exampie, cost under $10. Unfortunately there is a barrier to this cheap
technology: the cost of designing a circuit far outweighs the cost of its components. Several ycars and
hundreds of thousands of dollars can be spent designing a circuit that costs less than a thousand dollars, This
problem is the hardware analog of Winograd's complexity barrier in software engincering <Winograd>.

To dcmonstrage*that it is possible to build an automated designer, some simple rules have been
developed that capture some of what an analog circuit designer knows. These rules design circuits from
problem descriptions about what the circuits do and not about what parts to use or how to connect them
together. Some of these rules have run in an interpreter and have designed voltage followers, current sources,
Mitler ramp generators, and bootstrap ramp generators. The thesis will describe these rules and discuss some
aspects of their implementation. The program fragments and rules given in the text are somewhat different
from the actual program because the distinction between causality and constraint was not clear in the original

1. <McDermott-2> is a notable exception.

LTINTRODUCTION 7

implementation. The section on switches was not completely implemented. More will be said about this
later.

This work address only simple design issues and ignores many others. My rules do not attempt to
producc a "best” design. When my program must decide among alternatives, it asks the user to choose one.
If the program detects a mistake, then the user is told to select onc of the other alternatives. This method was
chosen because it is simple and allowed me to cxplore different solutions. The system shows how a machine
can generate plausible designs. An cxpert designer will sit down at his desk and in the course of an hour or so
will make several rough schematics. It is the knowledge involved in the development of these schematics,
made without lengthy calculation, that these rules are intended to capture.

1.2 Design Strategy

Design problems can be simple or difficult. Simple problems can be solved directly (figure 1).
More complicated problems must be decomposed into simpler parts that can be solved individually and then
the partial solutions composed into a total solution. This strategy (and its recursive generalization) is not new:
it travels under names such as divide and conquer or linear decomposition. The central problem in building
an expert design system is understanding how experts break problems up and compose solutions.

Fig. 1. Design Strategy

ORIGINAL PROBLEM - » CIRCUIT DESIGN
direct path
decompose
compose
indirect path
SIMPLER PROBLEM P » SIMPLE CIRCUIT DESIGN
v
TEK1201
—

F

Some of the si;nplc problems that designers can solve easily are listed below. Some problems are
low level -- such as turning a current into a voltage by forcing it through a resistor -- and others are more
general stratcgies == such as using feedback to make two voltages equal. These design rules are used
unidirectionally -- the current through the resistor CONTROLs the voltage across the resistor. The
CONTROL relation is transitive and acyclic. The designer uses the rules unidirectionally to create
mcchanisms where the inputs control the outputs. Some example rules, expressed in English, are:

To make onc terminal current control another, conncct the two terminals together. KCL will
insure the currents are equal.

1.2 DESIGN STRATEGY 8

‘T'wo terminal voltages can be made equal by wiring the terminals together.

Negative feedback will copy one node voltage (phase angle, current, time) to another node
voltage (phase angle, current, time).

Resistors convert voltages into currents or currents into voltages.
Capacitors take derivatives and integrals.
Switches let two different things CONTROML the same thing at different times.

Circuit goals in diffcrent discrete states can be achieved independently except for the
continuous state information stored in capacitors.

An initial condition in one state is a final condition of the immediately preceding state.

These design rules and some more detailed analysis rules are organized into a compulsive debugging
system. The system is compulsive because it tries to do as much as it can based on local information. The
analysis rules keep the system honest, however, by checking up on what has been done. When mistakes in the
design are found, they are removed. Dcbugging is a classic technique in the Al literature <Sussman-1> and
has advantages over systems that don’t produce bugs. Debugging systems are easier to write because the rules
are local -- they do not have to anticipate all the consequences of their actions. Debugging systems, for similar
reasons, arc also modular. The simplicity of the local rules makes them less likely to have mistakes. Bugs also
serve as a focus for design problems: the circuit designer described here expects to see design bugs in several
situations. The designer effectively says, "Let’s see if I can get away with using a wire here -- if I can’t, then
the analyzer will point out a design bug and I'll use a more complex method.” Some components -- switches --
are only introduced to fix design bugs. Debugging is also a reasonable model of how people solve problems.
These advantages do not mean, however, that debugging systems will compensate for poor organization or

stupid rules.

1.3 WHAT'S AHEAD 9

1.3 What's Ahead

The following chapters describe some clectronic design skills in a rule based system. [assume the
reader is familiar with such systems (sce {Winston)) and has a modest knowledge of electronics. Chapter 2
designs a simple ramp gencrator using design rules based upon the simple nctwork theory concepts of device
voltage and current constraints (VICs), Kirchoff's voltage law (KV1.), and Kirchoff's current law: (KCL).
Chapter 3 uses a feedback design rule to design a coupic variations on the simple ramp generator circuit
Chapter 4 introduces discrete states and switches. The final chapters discuss the literature and conchusions.

2 A RAMP GIENERATOR 10

2. A Ramp Generator
2.1 Basic Rules

A designer is skilled in the use of various devices and design strategies. My automatic design system
encodes these design skills as a collection of facts and rules. A rule interpreter applics this knowledge to the
design of particular circuits. This chapter describes some simple design and analysis rules and shows how
they result in the design of circuits.

The design rules must not only capture the purcly mathematical constraints given by VICs, KVL,
and KCL, but also how those constraints can implement mechanism. Mathematical constraints tell us an
amplificr’s input and output voltages are related. Designers also nced a notion of mechanism or control that
says the amplifier’s input controls its output. The design rules use CONTROL extensively to organize the
search for a circuit topology. More will be said about CONTROL later.

The design system uses Shrobe'’s rule interpreter <SHROBED. It is derived from the original
AMORD <Doyle> <de Kleer-3> but has slightly different conventions for defining rules. In addition, Shrobe
has implemented a skeletal task agenda. Both interpreters are built upon belief maintenance systems that
provide backtracking and maintain justifications for assertions in the database. These justifications are useful
not only for "dependency directed backtracking” <Stallman>, but also for explaining deductions and
debugging bad rules.

This chapter uses a ramp generator as a design example. A ramp generator is a circuit with no inputs
and one output that produces a rising voltage as shown in figure 2. A ramp gencrator’s output voltage has
constant slope. The rules given in this chapter will design the simple circuit that is also shown in the figure.
Here is a brief description of how the circuit works: the constant current generator (GEN-1) forces a constant
current through the capacitor (CAP-1); the constant current forces the voltage across the capacitor to increase
linearly with time, thus producing a constant slope at the output. The VICs (voltage and current constraints)
for a capacitor, KVL, and KCL are central clements in the understanding of this circuit, and therefore will be
given in detail. The capacitor will be covered first.

The VIC for a capacitor is

d i
-—— Y & === 7

&
dt [o «
where v is the branch voltage across the capacitor, i is the branch current through the capacitor, and C is the

capacitance. This equality is expressed in the design system as
(= (D-DT (BRV CAP-1)) (// (BRI CAP-1) (CAPACITANCE CAP-1))) .

Though this cquation is correct, it does not capture how a designer uscs a capacitor because an equation docs
not capturc the notion of mechanism. While the absence of mechanism is a feature of network theory, it is a
weakness in design where designers use cqualitics unilaterally to sct values <de Kleer-5>.

2.1 BASIC RULES 11

Fig. 2. A Ramp Generator

ocutput output
Ramp Generator voltage
time
GEN-1
output

can
1

ground

TEK2111

Control is an important distinction: cither the current sets the branch voltage or the branch voltage
sets the current, but they are not simultaneously constrained. A designer uses control because he wants the
inputs to detcrmine the outputs, not vice versa. A unity gain amplifier, a circuit whose output voltage should
equal its input voltage, should not enforce that equality by controlling its input voltage to be equal to its
output. The dircction of control is expressed using the CONTROLS relation:

(CONTROLS (D-DT (BRV CAP-1)) (BRI CAP-1))
(CONTROLS (BRI CAP-1) (D-DT (BRV CAP-1)))

Only one of these assertions can be active at one time. The first relation says that the derivative of v controls
the current i. The second relation says the current i controls the derivative. These are ways a capacitor can be
uscd in a circuit. The arguments of CONTROLS are signals -- voltages and currents. The capacitance C does
not appear in the CON']:ROLS rclation because the capacitance is just a parameter; it is not set by any voltage
or current in the circuit but is set when the capacitor is manufactured.

The CONTROLS relation is transitive, that is, if A controls B and B controls C, then A controls C.
This transitivity is presented in the first rule:

(DEFRULE CONTROL-TRANSITIVITY
((7F1 (CONTROLS ?7X 7Y))
(?F2 (CONTROLS ?Y 7Z)))
(ASSERT *'(CONTROLS 7X ?Z) '(CONTROL-TRANSITIVITY 7F1 7F2)))

DEFRULE defines a rule. In this case, the rule name is "control-transitivity”. The sccond argument of

2.1 BASIC RULES 12

DEFRUILE is a list of patterns; cach pattern has the form (<factnamed> <fact>). The "7" prefix denotes a
pattern variable. This particular rule looks for an assertion of the form (CONTROLS 7X ?Y); when it finds
one, the rule binds 7X and 7Y to the corresponding ficlds of the assertion and 7K1 to the unique factname of
that assertion. ‘The rule then looks for an assertion (CONTROLS 7Y 77) and if it finds onc will bind 7Z to the
appropriate value and ?F2 to the unique name for that assertion. If both matches are found, the body of the
rule is exccuted: in this case a new assertion, (CONTROLS 7X 77Z), is made. The second argument to
ASSERT records the assertion’s support that is used in backtracking. The new assertion depends on facts 7F1
and ?F2. If cither fact is not believed at some later time, then the new assertion will be withdrawn. The
database maintains this consistency. For more information about the rule interpreter, sce SSHROBE>

The capacitor rule (figure 3.) is more complicated than the transitivity rule because some
bookkeeping has to be done.

Fig. 3. Capacitor-VIC-1

terminal current
NODE-1 = (TC (T1 CAP-1))

-
CAP-1 branch voltage
= (BRV NODE-1 NODE-2)
NODE-2

TEK2112

(DEFRULE CAPACITOR-VIC-1
((?F1 (CIRCUIT-PART CAPACITOR 7CAP))
(7F2 (CONTROLS ?X (BRV [(CONNECT (T1 7CAP) *)]
[(CONNECT (T2 ?CAP) *)1))))
(IF (... non-circularity test ...)
(ASSERT *(CONTROLS (D-DT (BRV [(CONNECT (T1 ?CAP) *)]
[(CONNECT (T2 ?7CAP) *)1]))
(TC (T1 7CAP)))
"(CAPACITOR-VIC 7F1 7F2))))

+

The first pattern looks for a capacitor ("(CIRCUIT-PART CAPACITOR ?CAP)") and binds the
name of the capacitor to 7CAP (all circuit components are given a reference name). The CIRCUIT-PART
assertion associates parts such as resistors, capacitors, and amplifiers with reference names. The next pattern
finds some 7X that controls the branch voltage (“(BRV <node> <node>)") across the capacitor; the syntax of
the bracket expressions ("[]") will be discussed shortly. When the rule finds an ?X, it asserts that the
derivative of the branch voltage controls the capacitor's terminal current ("(TC (T12CAP))"). TC refers to
terminal current; T1 and T2 refer to the two terminals of a capacitor. The idea behind CAPACITOR-VIC-1

2.1 BASIC RULES 13

is that if some external thing controls a capacitor’s branch voltage, then the causality in the capacitor will be
from the branch voltage to the terminal current, not the other way around.

The IF statement is there to watch out for a circular CONTROLS loop (we don’t want to loose the
distinction between CONTROLS and =). It prevents the system from thinking both

(CONTROLS (BRV NODE-1 NODE-2) (TC (T1 CAP-1)))
(CONTROLS (TC (T1 CAP-1)) (BRV NODE-1 NODE-2))

In fact, a good idca would be to look for circular CONTROLS loops because they mean something is wrong
(figurec 4.).

Fig. 4. Circular CONTROLS Bug

(DEFRULE CIRCULAR-CONTROLS-LOOP
((7F1 (CONTROLS ?X 7X)))
(ASSERT *(BUG CIRCULAR-CONTROLS-LOOP) ' (CIRCULAR-LOOP-CHECK 7F1)))

The expressions in square brackets ("[]") refer to the nodes to which the capacitor is connected. The
assertion (CONNECT (11 CAP-1) NODE-1) means terminal T1 of component CAP-1 is connected to node
NODE-1, and the bracket expression [[CONNECT (T1 CAP-1) *)] would then refer to NODE-1. In general,
if (PXY), then [(PX *)]=Y.

If there is no (CONNECT (T1 CAP-1) NODE-1), then the reference expression creates an
anonymous node. Later this node may be identificd with another node, in which case

(ID <node-namel> <node-name2>)

is asserted. This assertion causes one of the two node names to be chosen and all asscrtions that use the other
name are reasserted using the selected name. The assertions using the old name will no longer trigger any
rules. This naming mechanism is also in Shrobe’s interpreter.

A short digression on naming conventions is in order. Instances of generators, resistors, capacitors,
and nodes are given names such as GEN-1, RES-1, CAP-1, and NODE-1. Some instances of nodes are given
more descriptive names ‘such as INPUT and OUTPUT. Variable names (names inside of rulcs) refer to these
parts as GEN, RES, CAP, and NODE (or sometimes NI)). When more than one variable is nceded, names
such as NODEL and NODE2 (no hyphen) are used. A name cnding with a hyphen followed by a number is
an instance, not a variable.

Device terminals arc denoted by functions on an instance (which might be represented by a
variable): (1'l CAP-1) is one terminal of capacitor CAP-1 and (12 CAP-1) is the other. ‘T1 and 'I2 are uscd
for all 2 terminal devices. Amplifiers have terminal designators 14, [-, and OUT. Values of device
parameters such as resistance and capacitance arc referred to by (RESISTANCE RES-1) or

2.1 BASIC RULES 14

(CAPACITANCE CAP-1). Currents flowing into terminals are called terminal currents and are designated
(TC <terminal>). Voltages are represented by functions on nodes: (BRV NODE-1 NODE-2) is the branch
voltage from NODE-1 to NODE-2 and (NDV NODE-1) is the node vol age of NODE-1.

The capacitor-VIC-1 rule only considers the case when «n imposed branch voltage sets the
capacitor’s branch current. Capacitor-VIC-2, shown in figure S, covers the other case of the branch current
controlling the branch voltage.

Fig. 5. Capacitor-VIC-2

(DEFRULE CAPACITOR-VIC-2
((?F1 (CIRCUIT-PART CAPACITOR ?CAP))
(7F2 (CONTROLS ?X (TC (T1 ?CAP)))))
(IF (... non-circularity test ...)
(ASSERT *(CONTROLS (TC (T1 7CAP))
(D-DT (BRV [(CONNECT (T1 7CAP) *)]
[(CONNECT (T2 ?CAP) *)])))
*(CAPACITOR-VIC ?F1 7F2)})))

Figure 6 shows some rules that relate terminal currents, VICs, and wiring.

In addition to the CONTROLS constraint, there are also arithmetic constraints (=) that do not have
the restrictions of causality that CONTROLS has. These arithmetic constraints not only refer to branch
voltages and terminal currents, but also to parameter values such as resistance and capacitance. CONTROLS
constraints are included to find mechanism; arithmetic constraints are included to find values for different
component paramecters. This discussion will focus on CONTROLS and largely ignore the arithmetic
constraints except to write down some important constraints from time to time. CONTROLS is important for
finding the topology of a circuit; others (<de Kleer-4> <Sussman-4>) have discussed how to use arithmetic
constraints. My program does not actually use the form of the constraints shown here; instead it put
descriptive markers on the CONTROLS assertions. That approach is limited; the ideas of constraint and

control are independent and should be scparate deductions.
—
[S

2.1 BASIC RULES

Fig. 6. Terminal Currents

(DEFRULE CAP-VIC-3
((?F1 (CIRCUIT-PART CAPACITOR ?CAP))
(7F2 (CONNECT (T1 7CAP) 7ND1))
(7F3 (CONNECT (T2 ?CAP) ?7ND2)))
(ASSERT '(= (TC (T1 ?CAP))
(* (CAPACITANCE ?CAP) (D-DT (BRV 7ND1 ?ND2))))
_ *(CAPACITOR-VIC ?F1 ?F2 7F3))
(ASSERT *(= (TC (T1 ?CAP)) (- (TC (T2 ?7CAP))))
"(CAPACITOR-VIC ?F1 ?F2 ?7F3)))

(DEFRULE TERMINAL-CURRENT-0
((?F1 (CIRCUIT-PART ?TYPE ?7COMP)))
(ASSERT *(= (TC (T1 ?7COMP)) (- (TC (T2 7COMP))))
" (TERMINAL-CURRENT ?7F1)))

(DEFRULE TERMINAL-CURRENTS-1
((?F1 (CONTROLS 7X (TC (T1 7COMP)))))
(IF (... non-circularity-test ...)
(ASSERT '(CONTROLS (TC (T1 7COMP))
(TC (T2 ?COMP)))
"(KCL 7F1))}))

(DEFRULE TERMINAL-CURRENTS-2
((7F1 (CONTROLS ?X (TC (T2 ?COMP)))))
(IF (... non-circularity-test ...)
(ASSERT ' (CONTROLS (TC (T2 ?COMP))
(TC (T1 7COMP)))
'(KCL ?7F1))))

15

2.2 DISSIGN RULES 16

2.2 Design Rules

All of the rules given so far are analysis rules. They notice the CIRCUIT-PARTs and
CONNECTions of a circuit and deduce the controlled currents and voltages. To design, there should be
design rules that start with goals for controlling current and voltages and deduce the appropriate
CIRCUIT-PARTs and CONNECTions needed to achicve those goals. A design rule is gencrally the inverse
of an analysis rule: the design rule adds the CIRCUIT-PARTs and CONNECTions that will cause the
analysis rule to deduce the goal.

Figure 7 shows the first design rule: it is the inverse of an analysis rule given carlicr (rules usually
come in design-analysis pairs).

Fig. 7. Capacitor-Design-1

(DEFRULE CAPACITOR-DESIGN-1
((?F1 (GOAL (CONTROLS ?X (D-DT ?Y)))))
(PROPOSE-METHOD (?F1) ?F2
(LET ((CAP (GENPREFIX ’'CAP)))
(ASSERT '(CIRCUIT-PART CAPACITOR ,CAP)
"(CAP-DESIGN ?F2))
"(CONTROLS 7X (TC (T1 ,CAP)))
"(CAP-DESIGN ?7F2))
*(CONTROLS (BRV [(CONNECT (T1 ,CAP) *)]
[(CONNECT (T2 ,CAP) *)])

(GOAL-ASSERT
(GOAL-ASSERT

7Y)
"(CAP-DESIGN 7F2)))))

This rule looks for the GOAL of something (?X) controlling the derivative of something else (?Y). The body
of the LET creates a capacitor (giving it a unique name with the GENPREFIX function) and then asserts two
subgoals with GOAL-ASSERT. The method associates 7X with the capacitor’s terminal current and 7Y with
the capacitor’s branch voltage because of the possibility of using the capacitor VIC to establish the required
behavior between the tdfminal current controlling the derivative of the capacitor branch voltage and 7X
controtling the derivativé of 7Y. The rule uses the capacitor's VICs to take a derivative. The subgoals try to
make causal links between ?X and the branch current and between the branch voltage and ?Y. This design
rule may not be the only design rule that can achieve the goal; there may be many others.

PROPOSE-METHOD suggests a method to achieve the goal. In general, several methods may be
proposed for onc goal; the task controller will select onc and execute its body. . PROPOSE-METHOD has the
form

2.2 DESIGN RULES 17

(PROPOSE-METHOD <list of factnames justifying proposing the method>
<factname justifying seltection of the method>
. <body>)

The list of factnames labels the support for proposing the method. The task controller. however, decides if
the mcthod will be used; the second argument of PROPOSE-METHOD is the reason for proposing the
method. The body is a list of expressions to execute when the method is sclected.

A design rule proposes one or more methods to achiceve a goal. A task controller sclects one of the
proposed methods and runs it. The method may add circuitry or spawn subgoals. If the desired goal is
achieved, then the method was successful and some other goal can be pursued. If the desired goal is not
achieved, then the method failed and all the circuitry and deductions it made are retracted (by virtue of the
truth maintenance system) and a different method of achieving the goal is tried. If all the methods fail, then
the designer fails to achieve the goal; it must discard that goal and work on another. This backtracking is
under the control of task agenda portion of Shrobe’s interpreter.

2.3 Design of a Ramp Generator

It's time to jump in and design that ramp generator mentioned in the first part of this chapter. The
ramp generator is a circuit with an output that has a constant slope; this goal is shown in figure 8. Also shown
in the figure are the deductions that the capacitor design rule makes when it is triggered by the goal.

The GOAL-ASSERT and ASSERT specify the design goal. The ramp gencrator has no inputs, so
nothing (NII.) CONTROLSs the output. The capacitor design rule notices the goal and, when the task
controller lets it, runs. It makes capacitor CAP-1 whose two terminals are connected to NODE-1 and
NODE-2 and establishes two subgoals to fill in the design. The first is to set the current through the capacitor
and the sccond is to make the capacitor branch voltage appear between OUTPUT and GROUND.

To achieve the first subgoal, some method of setting the capacitor’é terminal current must be found.
It shouldn’t matter which terminal of the capacitor is controlled but right now the only goal is to control T1 of
CAP-1. The rules shown in figure 9 correct this situation. They say if there is a goal to control T1 (12), then
propose achieving that goal by controlling the T2 (T1), the other terminal. These rules arc the design versions
of the earlier terminal cu'r_rfem analysis rules.

In the case of tile ramp generator design, TC-DESIGN-1 proposes solving

(GOAL (CONTROLS NIL (TC (T1 CAP-1))))
by achieving

(GOAL (CONTROLS NIL (TC (T2 CAP-1))))

2.3 DESIGN OF A RAMP GI'NERATOR 18

Fig. 8. Ramp Generator Deductions

terminal current
NODE-1 = (TC (T1 CAP-1))

-—
CAP-1 branch voitage
-« = (BRVNODE-1 NODE-2)
NODE-2

TEK2317

(goal-assert ’(controls NIL (d-dt (ndv output)))
*(premise))

(assert (= (d-dt (ndv output)) m)
"(premise))

(GOAL (CONTROLS NIL (D-DT (NDV OUTPUT))))
(= (D-DT (NDV OUTPUT)) M)

(CIRCUIT-PART CAPACITOR CAP-1)
(CONNECT (T1 CAP-1) NODE-1)

(CONNECT (T2 CAP-1) NODE-2)

(GOAL (CONTROLS NIL (TC (T1 CAP-1))))

(GOAL (CONTROLS (BRV NODE-1 NODE-2) (NDV OUTPUT))

(= (TC (T1 CAP-1)) (* (CAPACITANCE CAP-1) (D-DT (BRV NODE-1 NODE-2))))

Fig. 9. Terminal Current Design Rules

(DEFRULE TC-DESIGN-1
((?F1 (GOAL (CONTROLS 7X (TC (T1 ?COMP))))))°
(IF (... circularity test ...)
(PROPOSE-METHOD (?F1) ?F2
(GOAL-ASSERT ' (CONTROLS ?X (TC (T2 ?COMP))) '(TC-DESIGN ?7F2)))))

(DEFRULE TC-DESIGN-2
((?F1 (GOAL (CONTROLS ?X (TC (T2 ?COMP))))))
(IF (... cifcularity test ...) .
(PROPOSE-METHOD (?F1) 7F2
(GOAL-ASSERT *(CONTROLS ?X (TC (T1 ?COMP))) '(TC-DESIGN ?F2)))))

2.3 DESIGN OF A RAMP GENERATOR 19

This is, however, only a proposal that the task controller would have t¢ accept. Since both the goal and the
subgoal are similar, we (not the program) will ignore the subgoal whil: other methods of setting a terminal
current goal arc considered. Later, in the next chapter, we will return to this proposal and examine the
designs that stem from it.

KCL can be used to set the terminal current of (TT CAP-1). Simple versions of the KCL. design and
analysis rules are shown in figure 10: the next chapter discusses these rules more thoroughly. KCL. requires
the current flowing into a node cqual the current flowing out of the node, so if some other terminal forces
some current into (T1 CAP-1)'s node, then that current must flow out of the node and into (T'1 CAP-1). The
KCI. design rule proposes to sct a terminal current by setting the current flowing into a node. This current
flowing into or out of a node is denoted (NC <node>). The KCL rule assumes there are no other terminals
connected to the node that might siphon off some current that is supposed to go to (I'l CAP-1). If that
assumption is false, then there is a design bug; that bug, how to fix it, and how to use it to advantage, will be
taken up in the next chapter.

Fig. 10. KCL Rules

(DEFRULE KCL-ANALYSIS-0
((7F1 (CONTROLS ?X (TC ?TERM)))
(?F2 (CONNECT ?TERM ?NODE)))
(IF (... circularity test ...)
(ASSERT ' (CONTROLS (TC ?TERM) (NC ?NODE))
"(KCL ?F1))))

(DEFRULE KCL-ANALYSIS-1
((?F1 (CONTROLS (TC ?TERM1) (NC ?NODE)))
(7F2 (CONNECT ?TERM1 7NODE))
(7F3 (CONNECT ?TERM2 7NODE)))
(IF (NOT (EQUAL ?TERM1 ?TERM2))
(PROGN (ASSERT '(CONTROLS (NC ?NODE) (TC ?TERM2))
"(KCL ?F1 ?F2 7F3))
(ASSERT *(= (TC ?TERM1) (- (TC ?TERM2)))

"(KCL 7F1 7F2 7F3)))))

(DEFRULE KCL-BESIGN
((7F% (GOAL (CONTROLS ?X (TC ?TERMINAL))))
(?F2 (CONNECT ?TERMINAL ?NODE)))
(PROPOSE-METHOD (?F1 ?F2) 7F3
(GOAL-ASSERT *(CONTROLS ?7X (NC ?NODE))
*(KCL-DESIGN ?F2 ?F3))))

The idea of a node current (NC) is based on causality and is indcpendent of assigning arbitrary
reference directions for currents and voltages. A node current says that some branch sets the current being

23 DESIGN OFF A RAMP GENERATOR 20

pushed into or pulled out of a node and the remaining branches reccive that current. That current is called
the node current. The branches that set the node current causally control the branches that receive it.
Applying the KCL-DESIGN rule to

(GOAL (CONTROLS NIL (TC (T1 CAP-1))))
leaves our last subgoal on this branch of the goal tree,
(GOAL (CONTROLS NIL (NC NODE-1)))

This goal is achieved by the constant current generator rule shown in figure 11.

Fig. 11. Current Generator
terminal current
NODE-1 = (TC (T1 GEN-1))
GEN-1

NODE-2

TEXK2320

(DEFRULE CURRENT-GENERATOR-ANALYSIS
((?F1 (CIRCUIT-PART CURRENT-GENERATOR 7GEN)))
(ASSERT ' (CONTROLS NIL (TC (T1 7GEN)))
" (CURRENT-GENERATOR 7F1))
(ASSERT (= (STRENGTH ?GEN) (TC (T1 ?GEN)))
*(CURRENT-GENERATOR ?F1)))

(DEFRULE CURRENT-GENERATOR-DESIGN
((7F1 (GOAL (CONTROLS NIL (NC ?NODE)))))
(PROPOSE-METHOD (?F1) ?7F2
(LET ((GEN (GENPREFIX 'GEN)))
(ASSERT ' (CONNECT (T1 ,GEN) ?NODE)
«— ~ (CURRENT-GENERATOR 7F2))
(ASSERT ' (CONNECT (T2 ,GEN) [(CONNECT (T2 ,GEN) *)])
" (CURRENT-GENERATOR 7F2))
(ASSERT *(CIRCUIT-PART CURRENT-GENERATOR ,GEN)
* (CURRENT-GENERATOR 7F2)))))

The current generator satisfies the above goal and allows the goal stack to unwind as analysis rules
fire and deduce the achicvement of the goals (figure 12).
The only remaining subgoal is making capacitor CAP-1's branch voltage control the ramp

23 DESIGN OFF A RAMP GENIERATOR . 21

Fig. 12. Current Generator Deductions

(GOAL (CONTROLS NIL (TC (T1 CAP-1)))) ;Capacitor Design
(GOAL (CONTROLS NIL (NC NODE-1))) ;KCL Design
(CONNECT (T1 GEN-1) NODE-1) ;Current Generator

(CIRCUIT-PART CURRENT-GENERATOR GEN-1)

(CONTROLS NIL (TC (T1 GEN-1))) ;KCL Analysis
(CONTROLS (TC (T1 GEN-1)) (NC NODE-1))

(CONTROLS NIL (NC NODE-1)) ;satisfies goal
(CONTROLS (NC NODE-1) (TC (T1 CAP-1)))

(CONTROLS NIL (TC (T1 CAP-1))) ;satisfies goal

(= (STRENGTH GEN-1) (TC (T1 GEN-1))) ;Current generator
(= (TC (T1 GEN-1)) (- (TC (T2 GEN-1)}))) ;Terminal Current
(= (TC (T1 GEN-1)) (- (TC (T1 CAP-1)))) ;KCL

(= (STRENGTH GEN-1) (- (TC (T1 CAP-1)))) ;math

gencrator’s output node voltage. A node voltage is just a branch voltage between the node and ground, so
converting a branch voltage into a node voltage involves referencing one of the nodes of the branch to ground
and having the other node of the branch be the node voltage. The conversion rule is shown in figure 13. It
creates two subgoals, one to reference one side of the branch voltage to ground and the other to get the other
side of the branch voltage controlling the node voltage. Another rule is nceded to tell how to achieve these
subgoals.

Fig. 13. BRY to NDV Conversion

(DEFRULE BRV-TO-NDV-DESIGN
((7F1 (GOAL (CONTROLS (BRV 7NODE1 ?NODE2) (NDV ?NODE3)))))
(PROPOSE-METHOD (?F1) 7F2
(GOAL-ASSERT *(CONTROLS (NDV GROUND) (NDV ?NODE2)) ’(BRV-TO-NDV ?F2))
(GOAL-ASSERT *(CONTROLS (NDV ?NODE1) (NDV ?NODE3)) ' (BRV-TO-NOV ?F2))))

&

(DEFRULE BRV-§0-NDV-ANALYSIS
((?F1 (CONTROLS (NDV GROUND) (NDV ?NODE2)))
(7F2 (CONTROLS (NDV 7NODE1) (NDV ?NODE3))))
(ASSERT *(CONTROLS (BRV ?NODE1 ?NODE2) (NDV 7NODE3))
'(BRV-TO-NDV 7F1 ?7F2)))

2.3 DESIGN OF A RAMP GENERATOR 22

The wire rule. shown in figure 14, is the simplest method of making one node voltage equal to
another. It works by making the nodes identical with an 11D assertion. The (SATISFIED ?F1) tells the task
controller that the goal was achicved without asserting a troublesome

(CONTROLS (NDV ?NODE1) (NDV 7NODE2))
which the [D assertion would turn into
(CONTROLS (NDV ?NODE1) (NDV 7NODE1))

which is a circular CONTROL.S bug (something cannot CONTROL itself).

Fig. 14. Wire Rule

(DEFRULE WIRE-RULE-ANALYSIS
((?F1 (GOAL (CONTROLS (NDV ?NODE1) (NDV ?NODE2))))
(7F2 (ID ?NODE1 ?NODE2)))
(ASSERT ' (SATISFIED ?F1) '(WIRE ?F2)))

(DEFRULE WIRE-RULE
((?7F1 (GOAL (CONTROLS (NDV ?NODE1) (NOV ?NODE2)))))
(PROPOSE-METHOD (?F1) 7F2
(ASSERT '(ID ?NODE1 ?NODE2)
*(WIRE-RULE 7F2))))

The result of the wire rule is shown in the next figure. This circuit is the one mentioned at the
beginning of the chapter. The arithmetic constraints relate the strength of the current generator GEN1, the
capacitance of CAP-1, and the desired slope of the ramp M.

23 DESIGN OF A RAMP GENERATOR 23

Fig. 15. Simple Sweep Circuit

GEN-1
NODE-1 Output
CAP-1
ground
TEK2322
(GOAL (CONTROLS (BRV NODE-1 NODE-2) (NDV OUTPUT))) ;original subgoal

(GOAL (CONTROLS (NDV GROUND) (NDV NODE-2)})
(1D GROUND NODE-2) ;satisfies goal

(GOAL (CONTROLS (NDV NODE-1) (NDV OUTPUT)))

(ID NODE-1 OQUTPUT) ;satisfies goal
(CONTROLS (BRV NODE-1 NODE-2) (NDV OUTPUT)) ;satisfies goal
(CONTROLS (BRV OUTPUT GROUND) (NDV OUTPUT)) ;because IDs

(CONTROLS (TC (T1 CAP-1)) (D-DT (BRV OUTPUT GROUND)))

(= (STRENGTH GEN-1) (- (TC (T1 CAP-1}))) ;previous deduction
(= (TC (T1 CAP-1)) (* (CAPACITANCE CAP-1) ;capacitor
(D-DT (BRV OUTPUT GROUND))))
(= (BRV OUTPUT GROUND) {(NDV OUTPUT)) ;definition
(= M (D-DT (NDV OUTPUT))) ;original specification

(= (STRENGTH GEN-1) (- (* (CAPACITANCE CAP-1) :math
M)))

24 1.00SE ENDS - ' y]]

2.4 lLoose Ends

Designs are not unique becausc there are scveral methods to achieve the same goal and those
methods produce different circuits. This variety should not be surprising. The system described here does
not assume onc design is any better than any other. It can be told to produce scveral designs -- and in the next
chapter more designs will be covered. The system does not, however, try sépmduce a best design.

The ramp gencrator designed in this chapter is the simplest of many possible circuit designs. The
next chapter introduces the feedback rule and uses it to mm mh:r ramp generators. This next
chapter also takes up the discussion of the KCL cxpert that wis put off in this chapter. '

JKCL AND FEEDBACK 25

3. KCL and Feedback
3.1 A Design Bug

The ramp gencerator of the last chapter doesn’t work with a resistor (or some other load) connected
to its output. This chapter shows that the addition of the resistor violates an assumption of the KCI. design
rule. The chapter also shows how to design with feedback without violating the KCL design rule
assumptions,

Figure 16 shows the simple generator designed in the last chapter with a load resistor connected to
its output. The circuit’'s output voltage is not the desired ramp but a rising exponential as shown in the figure.

Fig. 16. Probhlems with a Load

GEN-1 Qutput
Output Voltage
‘J_ i KCL Bug e
CAP-1 —|- RL caused by TC / ,
Ground time

TEK3110

The output is different because the load resistor violates an assumption that the designer used to set
the current flowing through the capacitor. The designer assumed that all of the current from the current
source GEN-1 would flow through capacitor CAP-1, but the load resistor RL steals some of this current.
When a component steals another’s current, then the design has a KCL bug.

KCL. bugs mugt‘be"ﬁxcd or the design won’t work. There arc four ways to remove KCL bugs: (1)
tolerate the connection, €2) cancel the adverse effect, (3) switch out the connection, or (4) abandon the present
design and find another. Some connections can be tolerated -- that is they can be left connccted because their
effect on the design is insignificant. If, for example, the load resistor never stole more than one percent of the
constant current generator’s current, then the capacitor current would only be in error by one percent. If such
an crror is acceptable, then the resistor could be left connected.! If the error has a significant cffect, it may be

1. Some external constraint would have to bound the output voltage of the ramp generator. As specified. the ramp gencrator's
output would grow until the current through the resistor became arbitrarily large. Practically speaking, though, something would be
resetting the ramp before the voltage gets too large.

3.1 A DESIGN BUG 26

possible to cancel out the error with another connection that supplies the same amount of current that the
resistor steals. If a connection cannot be tolerated or canceled, it may be possible to temporarily remove the
connection without affecting the operation of the circuit. The chapter on switches will say more about this
method of resolving the bug. Finally, the KCL bug may not be fixable and the present design should be
abandoned. For example. some resistors cannot be canceled out because their resistance is not known or may
change.

3.2 A Closer Look at KCL

What is a KCL bug? How is it found? How is it fixed? A KCI. bug occurs when a KCL. constraint
is used to set a terminal current but another terminal steals some of that current. KCI. bugs are found by
rules that explicitly look for them. The last section listed four ways that the bug might be resolved; this
chapter considers three of them: tolerating connections, canceling connections, and abandoning designs.
Another chapter considers switching the connection out. This section will examine KCL more closely.

To answer the question about what a KCL bug is, we first have to examine how KCL is used. KCL
is used to set a terminal current of a device. The model that the KCL rule has is that it can set a terminal
current by forcing a current into a node; that current will then flow out of the node and into the the desired
terminal (figure 17).

Fig. 17. Setting a Terminal Current
(make nodes line up)

GOAL: l device setting node currenf
NODE
l l TC NODE
—
! ‘ l device receiving node current

TEK3210

The current flowing out of the node is called the node current or NC. Some other device must
supply the node current; in the sweep gencrator this device was a current generator, but it could have been a
resistor or some other component. The design rule assumes that there are only two important tcrminals

32 A CLOSER LOOK AT KCL 27

connected to the node where KCI. is being used -- the one that supplics the node current and the one that
receives it. Other terminals that are connected to the node may cause KCL bugs. Frequently a design will
have more than two terminals connected to a node, but the extra terminals can be tolerated because they draw
so little current. Operational amplifier inputs, for example, are always tolerated at a node (figure 18).

Fig. 18. A Terminal can be Tolerated

l device setting node current

terminal can be
‘ignored

NODE

l device receiving node current

TEK3220

Sometimes there are two extra conncctions to a node but because one adds the same amount of
current that the other takes away, there is no net effect on the node’s KCL. The pair of terminals cancel each
other out. This circumstancc is shown in figure 19.

Fig. 19. Two Terminal Currents Can Cancel Out

I |

l device setting node current l
NODE el .device currents
« cancel each other
l device receiving node current l

TEK3225

I'he terminal that scts the node current and the terminal that receives the node current are important

32 ACLOSLER 1OOK AT KCL 28

terminals to know. The new KCI. analysis and design rules are shown in figure 20. These rules are similar to
the ones given in the previous chapter except they know about other connections to a node. These other

conncections are not tolerated until proven otherwise.

Fig. 20. KCI. Rules

(DEFRULE KCL-ANALYSIS-0
((?F1 (CONTROLS 7?X (TC ?TERM)))
(?F2 (CONNECT ?TERM ?NODE)))
(IF (... circularity test ...)
(LET ((F3 (ASSUME *(NOT (TOLERATED ?TERM))
"(PREMISE))))

(ASSERT *(CONTROLS (TC ?TERM) (NC ?NODE))
"(KCL ?F1 ?F2 ,F3))

)))

(DEFRULE KCL~-ANALYSIS-1
((?F1 (CONTROLS (TC 7TERM1) (NC ?NODE)))
(?F2 (CONNECT ?TERM1 ?NODE))
(?F3 (CONNECT ?TERM2 7NODE)))
(IF (NOT (EQUAL ?TERM1 ?TERM2))
(LET ((F4 (ASSUME *(NOT (TOLERATED 7TERM2))
" (PREMISE))))
(ASSERT '(CONTROLS (NC ?NODE) (TC ?TERM2))
“(KCL ?F1 7F2 7F3 ,F4))
(ASSERT '(= (TC ?TERM1) (- (TC ?TERM2)))
“(KCL 7F1 ?F2 7F3 ,F4)))))

(DEFRULE KCL-DESIGN
((?F1 (GOAL (CONTROLS ?X (TC ?TERMINAL))))
(?F2 (CONNECT ?TERMINAL 7NODE)))
(PROPOSE-METHOD (7F1 ?F2) ?7F3
(GOAL-ASSERT ' (CONTROLS ?X (NC 7NODE))
"(KCL-DESIGN 7F2 ?F3))))

—

>

The previous njlcs assume that KCL. used properly -- one terminal controls the node current and
onc terminal is controlled by the node current. There are monitors that check whether KCI. is used properly
and issue a BUG report when it isn’t. There arc three kinds of KCL. bugs: (1) 2 or more terminals
CONTROL ling a node current; (2) 2 or more terminal currents being CONTROLIed by a node current; and
(3) a zero impedance terminal connected to a KCL design rule node. The third bug says that KCI. cannot be
used to control any terminal currents when the node is connected to a power supply. The monitors are shown
in figurc 21. These KCI. bugs don’t mean that the circuit violates KCL -- it certainly doesn't. They mean that
the designer cannot use KCL to sct terminal currents at that node.

32 A CLOSER LOOK AT KCL

Fig. 21. KCL Monitors

(DEFRULE KCL-MONITOR-1
((?F2 (CONNECT ?TERM1 ?NODE))
(?F3 (CONTROLS (TC ?TERM1) (NC ?NODE)))
(?7F4 (CONNECT ?7TERM2 ?NODE))
(?7F5 (CONTROLS (TC ?TERMZ) (NC ?NODE))))
(IF (NOT (EQUAL ?TERM1 ?TERM2))
(ASSERT ' (BUG KCL ?NODE ?TERM1 ?TERM2)
'(KCL-MONITOR ?F2 ?F3 7F4 7F5))))

(DEFRULE KCL-MONITOR-2

((?F2 (CONNECT ?TERM1 7NODE))

(7F3 (CONTROLS (NC ?NODE) (TC ?TERM1)))
(?F4 (CONNECT ?7TERM2 ?NODE))

(?F5 (CONTROLS (NC ?NODE) (TC ?TERM2))))

(IF (NOT (EQUAL ?TERM1 ?TERMZ2))
(ASSERT '(BUG KCL ?NODE ?TERM1 ?TERM2)
"(KCL-MONITOR ?F2 ?F3 7F4 7F5))))

(DEFRULE KCL-MONITOR-3

((?F2 (ZERO-IMPEDANCE ?7TERM1))

(?F3 (CONNECT ?TERM1 7NODE))

(?F4 (CONNECT ?TERM2 ?NODE))

(?F5 (CONTROLS (NC ?NODE) (TC ?TERMZ2))))

(IF (NOT (EQUAL ?TERM1 ?TERMZ2))
(ASSERT *(BUG KCL ?NODE ?TERM1 ?TERM2)
"(KCL-MONITOR ?F2 ?F3 ?F4 7F5))))

29

33 THE FEEDBACK RULE 30

3.3 The Feedback Rule

If the KCL bug cannot be resolved, then the designer must remove the connection and find some
other method to achieve the design goal. In the case of the ramp gencrator with the load resistor, the WIRE
rule was trying to achieve the goal:

(GOAL (CONTROLS (NDV NODE-1) (NDV OUTPUT)))

The WIRE rule fails to achieve this goal because of the KCI. bug. Backtracking from the failure of the WIRE
rule leaves the design problem as shown in figure 22,

Fig. 22. Old Problem :
(GOAL (CONTROLS (NDV NODE-1)(NDV OUTPUT)))

GEN-1
Output

NODE-1

CAP-1 RL

Ground

TEK3310

The WIRE rule failed because the load resistor stole current that was supposcd to go to the
capacitor. Somehow the load resistor must be prevented from stealing the current. A human circuit designer
would say that NODE-1 must be isolated from OUTPUT and would suggest using a buffer amplifier (figure
23). While the buffer amplifier also makes a connection to NODE-1 and thus causes a KCL bug, that bug can
be resolved easily because an ideat amplifier input draws no input current and therefore does not disturb the
KCL constraint at NODE-1. The amplificr also supplies the load resistor with all the current it needs. The
design system makes these deductions with 2 rules, one for ncgative feedback and the other for operational
amplifiers. The two steps allow additional flexibility that will be used in later designs. The feedback rule is
shown in figure 24.

The feedback rule solves the same problem as the WIRE rule, but it isolates the two nodes involved.
Feedback looks at the voltage difference between the two nodes (that is, the branch voltage) and then adjusts

33 THE FEEDBACK RULE 3

Fig. 23. Ramp Generator with Buffer Amplifier

GEN-1

\ Output
NODE-1 /
AMP-1

CAP-1 :_l_- RL
ground ground
TEK3320
Fig. 24. Feedback Rule
nd1 nd2
]
Compare
& Change
TEK3330

(DEFRULE FEEDBACK-DESIGN
((?F1 (GOAL (CONTROLS (NDV ?ND1) (NDV 7ND2)))))
(PROPOSE-METHOD (7F1) ?7f2
(GOAL-ASSERT '(CONTROLS (BRV 7ND1 ?ND2) (NDV ?ND2))
'(FEEDBACK 7F2))))

(DEFRULE FEEDBACK-ANALYSIS
((?F1 (CONTROLS (BRV ?ND1 ?ND2) (NDV 7ND2))))
(ASSERT '(CONTROLS (NDV ?ND1) (NDV 7ND2))
*(FEEDBACK 7F1)))
—

&
£

the second node voltage to drive the voltage difference to zero.l
The feedback rule produces a goal for a branch voltage to control a node voltage; another

1. The feedback rule assumes an infinite feedback loop gain. An extended FEEDBACK-ANALYSIS rule should calculate the loop
gain and check that it is large enough to kecp the crrors small. Such a check is difficult because the loop gain is frequency dependent. In
the interest of simplicity this test has been ignored. A simple but not complete test would check if the CONTROLS relation depended
upon an operational amplifier.

33THE FEEDBACK RULE 32

component, an operational amplifier, is needed to achicve that goal. The operational amplifier rules (figure
25) provide the match for this CONTROLS goal.

Fig. 25. Operational Amplifier Rules

(DEFRULE

(ASSERT

(ASSERT

(ASSERT

(ASSERT

(ASSERT

(DEFRULE

(PROPOS
(LET

OPERATIONAL-AMPLIFIER-ANALYSIS
((?F1 (CIRCUIT-PART OP-AMP ?7AMP))
(?F2 (CONNECT (I+ 7AMP) 7ND1))
(?F3 (CONNECT (I- ?AMP) 7ND2))
(?F4 (CONNECT (OUT ?7AMP) ?ND3)))
"(CONTROLS (BRV ?ND1 ?ND2) (NDV ?ND3))
'(OP-AMP-VIC ?F1 ?F2 ?F3 7F4))
(= (NDV ?ND3) (* INF (BRV ?ND1 ?ND2)))
'(OP-AMP-VIC ?F1 ?F2 7F3 ?7F4))
"(= (TC (I+ ?PAMP)) 0)
" (OP-AMP-VIC 7F1))
(= (TC (I- 7AMP)) 0)
' (OP-AMP-VIC ?7F1))
'(ZERO-IMPEDANCE (OUT ?7AMP))
" (OP-AMP-VIC ?F1)))

OPERATIONAL-AMPLIFIER-DESIGN

((7F1 (GOAL (CONTROLS (BRV ?ND1 ?ND2) (NDV 7ND3)))))
E-METHOD (?F1) ?F2

((AMP (GENPREFIX *AMP)))

(ASSERT *(CIRCUIT-PART OP-AMP ,AMP) '(OP-AMP 7F2))
(ASSERT '(CONNECT (I+ ,AMP) ?ND1) ' (OP-AMP ?7F2))
(ASSERT "(CONNECT (I- ,AMP) ?ND2) ' (OP-AMP 7F2))
(ASSERT *(CONNECT (OUT ,AMP) ?ND3) ' (OP-AMP ?7F2)))))

Figure 26
goal shown in the

shows what happens when the feedback and operational amplifier rules work on the first
figure. The feedback rule first transforms the goal into another one. The operational

amplifier design rule th'e,r; runs; the pattern variables and circuit nodes are paired as (?ND1, NODE-1),

(’ND2, OUTPUT),

and I?ND3, OUTPUT). In this case the operational amplificr rule is more general than it

nceds to be because IND2 and IND3 are paired with the same node. With this special pairing, the rule will
make a voltage follower.! The design rule also pairs nodes with terminals: (NODE-1, 1+), (OUTPUT, I-),
and (OUTPUT, OUT). After all the connections are made, the circuit looks as in figure 26. The operational
amplifier satisfies the subgoal for feedback, feedback satisfics the goal for controlling a node voltage, and
together they satisfy the goal for making the capacitor’s branch voltage control the output node voltage. This

new design isolates

NODE-1 (wherc KCL sets the capacitor CAP-1’s current) from the output node (where

1. It is a feature

of the representation that several special case circuits fall out general purpose ideas.

33THE FEEDBACK RULE

the load resistor draws some current) and therefore doesn’t violate the protect-KCIL. monitor.

33

Fig. 26. Sweep with Follower Amplifier

GEN-1

\ Output
NODE-1 :>////
AMP-1

CAP-1 RL
ground ground
(GOAL (CONTROLS (NDV NODE-1) ;subgoal wire couldn’'t do
(NDV OUTPUT)))
(GOAL (CONTROLS (BRV NODE-1 OUTPUT) ;feedback reformulation

(NDV QUTPUT)))

(CIRCUIT-PART OP-AMP AMP-1) ;op-amp design
(CONNECT (I+ AMP-1) NODE-1)
(CONNECT (I- AMP-1) OUTPUT)
(CONNECT (OUT AMP-1) OUTPUT)
(= (NDV QUTPUT) (* INF (BRV NODE-1 QUTPUT)))
(= (TC (I+ ?7AMP)) 0)
(= (TC (I- ?AMP)) 0)
(ZERO-IMPEDANCE (OUT AMP-1))
;op-amp analyze
(CONTROLS (BRV NODE-1 OUTPUT) ;satisfies goal
(NDV QUTPUT))
;feedback analyze
(CONTROLS (NDV NODE-1} (NDV QUTPUT)) ;satisfies goal

<

TEK3335

34 ANOTHER DESIGN 34

3.4 Another Design

Figure 27 shows the two ways that a current generator can he connected to control the capacitor
current of a ramp generator. The sccond configuration is a conseque ice of an carlier terminal current rule
stating that (TC (T1 ?X)) could be controlled by controlling (1'C (T2 ?X)). Other circuit designs come from
the second configuration; these designs will usc the feedback rule.

Fig. 27. Setting Capacitor Current

GEN-1 CAP-1 J—

NODE-2 NODE-2

CAP-1 GEN-1

TEK3436

Setting the current through the capacitor is only one of the design goals of making a ramp generator.
The second is turning the capacitor's branch voltage into a node voltage. In the previous ramp generators that
was done with the BRV-TO-NDV rule that created two subgoals:

(GOAL (CONTROLS (BRV NODE-1 NODE-2) (NDV QUTPUT)))
leads to ...
(GOAL (CONTROLS (NDV NODE-1) (NDV QUTPUT)))
(GOAL (CONTROLS (NDV GROUND) (NDV NODE-2)))

In the first ramp generator (the one without an amplifier) both of these subgoals were accomplished by wiring
the nodes together. While this technique works for the subgoal to control the output node voltage when the
current generator is corfficcted to (T2 CAP-1), it doesn’t work for the node that ground is to control (figure
28). The problem is andther instance of the KCL bug -- the connection upsets KCL. at the node and prevents
the current generator from controlling the capacitor current. There is no way to fix this bug, so the wire rule
must be discarded.

The feedback rule can be used instead. A direct application of the FEEDBACK rule creates a new
CONTROL.S goal:

(GOAL (CONTROLS (BRV GROUND NODE-2) (NDV NODE-2)))

Unlike the last application of the FEEDBACK rule, an operational amplificr cannot achicve this goal dircctly
because it also suffers from the KCL bug (figure 29). ‘The output of the operational amplificr would steal

34 ANOTHER DESIGN 35

Fig. 28. Wire causes KCL Bug

CAP-1 —I—

Qutput

KCL bug
GEN-1
75:;Lnd
TEK3437
current from the current generator and prevent it from controlling the capacitor current.
Fig. 29. Using an Amplifier Fails
7 output
oo L >
KCL bug
NODE-2
GEN-1 AMP-1
Ground
TEK3438

Though the operational amplifier cannot be used directly, the FEEDBACK rule is not abandoned

because there is another method of achieving

« .
(GOAL (CONTROLS (BRV GROUND NODE-2) (NDV NODE-2))) .

This other method uses the transitivity of the CONTROLS relation to turn the present goal into an cquivalent
goal. The idea is that there might be another way to control (NDV NODE-2) without connecting directly to
NODE-2. The rule is shown in figure 30.

This rule needs an intermediate signal (?Y) to control. A human designer knows that changing the
voltage on one ¢nd of a capacitor will probably change the voltage on the other end. <de Kleer-5) called this
property the KVL-Heuristic. If this property is assumed for the moment, then there would be an assertion:

34 ANOTIHER DESIGN 36

Fig. 30. Transitivity Design

(DEFRULE TRANSITIVITY-DESIGN
((7F1 (GOAL (CONTROLS ?7X 71)))
(?F2 (CONTROLS 7Y ?2)))
(IF (... circularity test ...)
(PROPOSE-METHOD (?F1 ?F2) ?F3
(GOAL-ASSERT *(CONTROLS ?X ?Y) ’(TRANSITIVITY ?7F3)))))

(CONTROLS (NDV OUTPUT) (NDV NODE-2))

This assertion in conjunction with the transitivity design rule produce the goal in figure 31. An operational
amplifier will satisfy this goal; the resulting circuit is also shown in the figure.

A key step in the design of this circuit is noticing that the node voltage of OUTPUT controls that of
NODE-2. The rule in figure 32 is responsible for noticing this relation. If there is a goal to control the node

Fig. 31. Miller Integrator

CAP-1 -I—

NODE-2 -

output
+
GEN-1 AMP-1
Ground
TEK3440

(GOAL (CONTROLS (NDV GROUND) (NDV NODE-2))) ;wire fails on this goal
(GOAL (CONTRO}S{BRV GROUND NODE-2) (NDV NODE-2))) :feedback design
(CONTROLS (Nog OUTPUT) (NDV NODE-2)) ;brv-to-ndv
(GOAL (CONTROLS (BRV GROUND NODE-2) (NDV OUTPUT))) ;KVL heuristic
(CIRCUIT-PART OP-AMP AMP-1) ;op-amp
(CONNECT (I+ AMP-1) GROUND)
(CONNECT (I- AMP-1) NODE-2)
(CONNECT (OUT AMP-1) OUTPUT)
(CONTROLS (BRV GROUND NODE-2) (NDV OUTPUT)) ;0p-amp
(GOAL (CONTROLS (BRV GROUND NODE-2) (NDV NODE-2))) itransitivity

(GOAL (CONTROLS (NDV GROUND) (NDV NODE-2))) ;feedback succeeds

34 ANOTHER DESIGN 37

voltage at one end of a capacitor, then this rule suggests controlling the other end.

Fig. 32. Johan's Heuristic

(DEFRULE JOHANS-HEURISTIC-2
((?F1 (CIRCUIT-PART CAPACITOR ?CCMP-NAME))
(?F2 (CONNECT (T1 ?COMP-NAME) ?NODE1))
(?F3 (CONNECT (T2 ?7COMP-NAME) ?NODE2))
(7F4 (GOAL (CONTROLS 7X (NDV ?7NODE2)))))
(IF (... circularity test ...)
(ASSUME * (CONTROLS (NDV ?NODE1) (NDV ?NODE2))
*(JOHANS-HEURISTIC ?F1 ?F2 ?F3 7F4))))

3.5 Still More Generators

The previous ramp generators used a constant current source to set the current flowing through the
capacitor. A resistor can be used instead. The resistor rule, which is similar to the current gencrator rule, is
shown in figure 33.

The resistor rule creates the partial ramp generator design shown in figure 34. To make the resistor’s
branch current (BRI) constant, the design must impose a constant branch voltage across the resistor. A
battery can be used: the following figure show the battery rules.

Using the WIRE rule twice would connect the battery directly across the resistor but also causes a
KCL bug at the junction of the resistor and capacitor (figure 36). The fix to this bug is not to usc the wire rule
but to use feedback instead -- as we’ve done twice before. The bootstrap ramp generator is the resulting
circuit. '

An interesting point about the ramp circuit is that now there are three different nodes that satisfy the
design goal -- the voltage at the capacitor, the voltage at the operational amplifier, and the voltage at the other
end of the battery. While any one of these three voltages meets the goal, there should be some preference
placed on the last two because they are low impedance outputs and are immune to the loading problems

previously discussed. Nbthing has been done to consider this preference.
[¢

3.5 STILL MORE GENERATORS

Fig. 33. Resistor Rules

(DEFRULE RESTSTOR-ANALYSIS-0
((?F1 (CIRCUIT-PART RESISTOR 7RES))
(?F2 (CONNECT (T1 ?RES) 7NODE1))
(7F3 (CONNECT (T2 ?RES) ?NODE2)))
(ASSERT (= (TC (T1 ?RES)) (// (BRV 7NODE1 ?NODE2)
(RESISTANCE ?RES)))
"(RESISTOR ?F1 ?F2 7F3)))

(DEFRULE RESISTOR-ANALYSIS-1

((?F1 (CIRCUIT-PART RESISTOR ?RES))

(7F2 (CONNECT (T1 ?RES) 7NODE1))

(?F3 (CONNECT (T2 ?RES) 7NODE2))

(7F4 (CONTROLS ?X (BRV ?NODE1 ?NODE2))))
(IF (... circularity test ...)
(ASSERT ' (CONTROLS (BRV ?7NODE1 ?NODE2) (TC (T1 ?RES)))

"(RESISTOR 7F1 ?F2 ?7F3 7F4))))

(DEFRULE RESISTOR-DESIGN-1
((7F1 (GOAL (CONTROLS ?X (NC ?NODE)))))
(PROPOSE-METHOD (?F1) 7F2
(LET ((RES (GENPREFIX 'RES)))

(ASSERT ‘(CONNECT (T1 ,RES) ?NODE)
"(RESISTOR 7F2))

(ASSERT ' (CONNECT (T2 ,RES) [(CONNECT (T2 ,RES) *)7])
"(RESISTOR ?7F2))

(ASSERT ' (CIRCUIT-PART RESISTOR ,RES)
"(RESISTOR ?7F2))

(GOAL-ASSERT *(CONTROLS ?X (BRV ?NODE [(CONNECT (T2 ,RES) *)7))

*(RESISTOR ?7F2)))))

38

3.5 STILL MORE GENERATORS

Fig, 3. Resistor Current Source

NODE-3
3 < want constant BRV
RES-1 to supply constant TC
<
, Output

CAP.1 ==

Ground

(CONNECT (T1 RES-1) NODE-1)

(CONNECT (T2 RES-1) MQRE-3)
(CIRCUIT-PART RESISTON AES-1)

(GOAL (CONTAOLS NIL (SRV MOOE-1 NOBE-3)))

(* (TC (T1 RES-1)) (47 (SAV WORE-1 m-s;mm "3-1)))

TEK3810

3.5 STILL MORE GENERATORS

Fig. 35. Battery Rules

T1 < node1
BRV
T2 < node2

(DEFRULE BATTERY-ANALYSIS
((?7F1 (CIRCUIT-PART BATTERY 7BAT))
(?F2 (CONNECT (T1 7BAT) 7NODE1))
(?F3 (CONNECT (T2 ?BAT) ?NODEZ)))
(ASSERT "(CONTROLS NIL (BRV ?NODE1 7NODE2))
"(BATTERY ?F1 7F2 7F3))
(ASSERT '(= (BRV ?NODE1 ?NODE2) (STRENGTH ?BAT))
"(BATTERY ?7F1 7F2 7F3)))

(DEFRULE BATTERY-DESIGN
((7F1 (GOAL (CONTROLS NIL (BRV ?NODE1 ?NODE2)))))
(PROPOSE-METHOD (?F1) ?7F2
(LET ((BAT (GENPREFIX 'BAT)))

(GOAL-ASSERT '(CONTROLS (NDV ?NODEZ) (NDV [(CONNECT (T2 ,BAT) *)]))
*(BATTERY ?F2))

(GOAL-ASSERT *(CONTROLS (NDV [(CONNECT (T1 ,BAT) *)]) (NDV ?NODE1))
"(BATTERY 7F2)))))

40

TEK3520

35 STILL MORE GENERATORS

Fig. 36. Bootstrap Circuit

NODE-3

RES-1 % BAT-1
KCL Bu I
9 Output

(:AJ)-i—j]:l

Ground

4]

NODE-5

NODE-3

RES-1 \
NODE-1 /
l AMP-1

CAP-1

BAT-1
NODE-6

output

Ground

(GOAL (CONTROLS NIL (BRV NODE-3 NODE-1)))
(CIRCUIT-PART BATTERY BAT-1)

(GOAL (CONTROLS (NDV NODE-1) (NDV NODE-6)))
(GOAL (CONTROLS (NDV NODE-5) (NDV NODE-3)))
(1D NODE-3 NODE-5)

(GOAL (CONTROLS (BRV NODE-1 NODE-6) (NDV NODE-6)))

(CIRCUIT-PART OP-AMP AMP-1)
(CONTROLS (BRV NODE-1 NODE-6) (NDV NODE-6))
(CONTROLS (NDV NODE-1) (NDV NODE-6))
(CONTROLS NIL (BRV NODE-3 NODE-1))

—

&

[¢

TEK3530

;from resistor rule
ibattery design

iwire
ifeedback design
;op-amp

;feedback analysis

36 SULMMARY 42

3.6 Summary

This chapter presented several common ramp generators that are known to human designers by
names such as Miller integrators and bootstrap gencrators. cach started with the fundamental idea of forcing
a constant current through a capacitor, but used different methods of providing that current and transforming
the capacitor's branch voltage into an output node voltage. The current was supplied o t1 or 2 of the
capacitor by cither a current generator or by a resistor. Wires and feedback set node voltages. The choice of
these different methods is often dictated by design bugs that are uncovered as the design progresses. Wires,
for example, were acceptable if there was no load, but feedback had to be used if a load was present.

‘The system gencerates many designs; it is not selective about these designs -- as long as they conform
to the design specifications. The circuits that have been discussed are not designs that have been stored and
will be called up when needed. but instead result from the application of fundamental rules about capacitors,
resistors, operational amplifiers, and feedback. Using rules rather than specific designs allows the system to
design not only these common circuits but also variations on them. These rules and others will design some
variations in the next chapter.

4 DISCRETE STATE 43

4. Discrete State
4.1 Introduction

Some circuits have several distinct modes or behaviors. A practical ramp gencrator, for example,
might have a switch that sclects two different output slopes. These different modes are the circuit’s discrete
states. A circuit may also possess continuous state, for cxample, in the voltage on a capacitor. The methods of
the past couple chapters design circuits with continuous state. This chapter considers some mcthods that are
needed to design circuits with discrete state. In general, discrete state designs need switches and the design
rules will discover where and why a switch is needed by finding KCL and KVL bugs.

To keep the design of circuits with discrete state as simple as possible, the different discrete states are
assumed to be independent. 'This assumption lets the designer use the design rules of the previous chapters to
design a circuit for each of the discrete states. If the assumption holds, the complete circuit is just the
combination of these individual designs plus a few switches to keep the different designs from disturbing each
other. Unfortunately, the assumption of state independence is not always valid because capacitors carry
continuous state information across discrete state boundaries. This chapter shows cxamples of both
independent and dependent discrete state designs.

4.2 Design of Independent States

This first scction will consider independent discrete states; the next section will consider dependent
oncs. Independence means that each state does not affect any other state. A dual rate ramp gencrator will be
used as an example. It has two discrete states, (FAST) and (SLOW); the generator’s output slope is different
during each state. A block diagram and the specifications for this circuit are shown in figure 37. The
specifications for the dual rate ramp generator are different from the single rate generator in two respects;
both of these differences concern discrete state. The first difference is a COND statement in the specifications
to denote conditional values. The sccond difference is the appearance of situation tags <McCarthy> on
assertions to signify when they are valid.

The COND statement is similar to the ordinary LISP COND with the cxception of how the
condition tests are interi'r/etéd. Here they are not evaluated but just refer to the state (or situation). The goal
assertion means that du‘ring the (FAST) state, NIL controls the slope of the output and during the (SLOW)
state, NIL controls the slope of the output. The reason for this strange construction is that the state of the
circuit is changed (hence the COND), but in each state no signal controls the output slope (hence the NILs).

The situation tag describes in what situation an assertion holds. A situation is almost the same as a
discrete state except that situations sometimes refer to finer divisions of states. In the next section there will
be a situation (INITIAL SWEEPING) that refers to the initial instant of the (SWEEPING) state. Rules must
be aware of situation tags and only make their deductions if the situation tags of the antecedents are
compatible. Situation tags were not shown in the previous rules because only one situation was relevant then.

4.2 DISSIGN OF INDEPENDENT STATES 44

Fig. 37. Dual Rate Ramp Generator

BLACK output fast/slow
BOX

fast/slow output / /

time

TEK4210

(GOAL ((CONTROLS (COND ((FAST) NIL)
((SLOW) NILY)
(D-DT (NDV OUTPUT)))

NIL)) ;situation tag

({(= (COND ((FAST) M1)
((5LOW) M2))

(D-DT (NDV OUTPUT)))
NIL) ;situation tag

COND statements and situation tags are related. A COND statement can be specialized to a
particular situation by replacing the COND with the consequent clause for the particular situation.
Alternatively, some assertions true in different situations can be gencralized to one COND statement. This
property will be used in the SPLIT-STATES design rule to simplify goals that involve more than one
situation. ‘

Doing this specialization at different stages in the design of a circuit can give rise to different circuits.
Two simple designs of the dual rate ramp gencrator are shown in figure 38. The first design is developed by
immediately specializing the COND and the second by specializing the COND later in the design. Each of
these designs will be discussed.

For the first dEsign the SPLIT-STATES rule notices the COND in the design specification and
specializes the original goal containing the COND into two subgoals, onc for cach clause (see figure 39).
These subgoals are made by literally substituting the conscquent of a clause for the original COND. The
situation tags of these new subgoals specify that they only apply during particular situations and not in
general. The most general situation tag is NIL (the assertion is true all the time); when a COND is
specialized, the situation tag of the component is made by appending the condition to the front of the
situation tag for the assertion containing the COND.

‘The new subgoals that are created by SPLIT-STATES, which are identical to previous goals for
designing ramp generators except for the situation tags, arc then achicved using the previous methods for

4.2 DESIGN OF INDEPENDENT STATES 45
Fig. 38. T'wo Ramp Generator Designs
Qutput
NODE-7 -|- NODE-13_I_
Slow
CAP-5 Fast CAP-6 R
T SW-1 SW-2
NODE.-8 - NODE-14 S)
+
GEN-5 é | AMP-5 GEN-6 AMP-6
Ground Ground
f CAP-8 _L
i Fast % Slow
- Out
O NODE=22 utput
+
AMP-8
Ground
GEN-8
TEK4220

&
&

42 DESIGN OF INDEPENDENT STATES 46

Fig. 39. Result of SPLIT-STATES

(GOAL ((CONTROLS (COND ((FAST) NIL)
({SLOW) NIL))
(D-DT (NDV OUTPUT)))
NIL)) ;original situation tag

((= (COND ((FAST) M1)
((SLOW) M2))
(D-DT (NDV OUTPUT)))
NIL)

become

(GOAL ((CONTROLS NIL {(D-DT (NDV OQUTPUT)))
(FAST))) :specialized situation tag

(GOAL ((CONTROLS NIL (D-DT (NDV QUTPUT)))
(SLOW))) :specialized situation tag

((= M1 (D-DT (NDV OUTPUT)))
(FAST))
((= M2 (D-DT (NDV OUTPUT)))
(SLOW))

designing ramp generators. Any of the circuits considered so far could be used -- the constant current, Miller
integrator, or the bootstrap. Let’s use the Miller integrator. The designs for the (FAST) and (SLOW) states
and some important assertions about the designs are shown in the next two figures. Situation tags have been
included in the figures because they will be important when the two designs are merged. Some assertions,
such as CIRCUIT-PART, are not given situation tags because they arc not affected by state changes.
Capacitor CAP-5 doesn’t become somcthing different when the state changes from (FAST) to (SLOW).
Though the deductions could be different for the two states (one state could use a Miller circuit and the other
a bootstrap circuit), here they are chosen to use the same circuit.

The designs for the (FAST) and (SLOW) states will work in isolation from cach other; they must
now be merged to achicyethe design goal. The simple approach assumes that all the connections are actually
present during both statés; this brash assumption implies that the complete circuit looks as in figure 42.

This combined circuit is almost right except for a KVL. bug caused by two operational amplifier
outputs trying to control the same output node voltage. The KVL bug is analogous to the KCI. bug but
instead of two signals trying to control a node current, there are two signals trying to control a node voltage.
The guiity partics are:

((CONTROLS (BRV OUTPUT NODE-8) (NDV OUTPUT)) (FAST))
((CONTROLS (BRV OUTPUT NODE-14) (NDV OUTPUT)) (SLOW))

Switches can fix KVL bugs when the CONTROLS constraints causing the bugs don’t have to be true during

4.2 DESIGN OFF INDEPENDENT STATES

Fig. 40. Fast Generator

NODE-7
CAP-5 == Fast
NODE-8 - output
+
GEN-5 AMP-5
Ground
(CIRCUIT-PART CAPACITOR CAP-5)

(CIRCUIT-PART CURRENT-GENERATOR GEN-5)

(CIRCUIT-PART OP-AMP

((ID NODE-7 OUTPUT)

((CONTROLS (BRV GROUND NODE-8) (NDV NODE-8))
(NDV NODE-8))
((CONTROLS (BRV NODE-7 NODE-8) (NDV OUTPUT))

((CONTROLS (NDV GROUND)

((CONNECT (T1 CAP-5) OUTPUT)
((CONNECT (T2 CAP-5) NODE-8)
((CONNECT (I+ AMP-5) GROUND)
((CONNECT (I- AMP-5) NODE-8)
((CONNECT (OUT AMP-5) OUTPUT)
((CONNECT (T1 GEN-5) NODE-8)

AMP-5)

(FAST))
(FAST))
(FAST))
(FAST))
(FAST))
(FAST))

((= (TC (T1 GEN-5)) (TC (T1 CAP-5)))
((= (STRENGTH GEN-5) (* (CAPACITANCE CAP-5) M1)) (FAST))

47

TEK4230

(FAST)) ;wire
(FAST)) :feedback
(FAST)) ;brv-to-ndv
(FAST)) ;capacitor

(FAST))

the same state. For the two CONTROLS constraints above, one must be true in the (FAST) state and one
must be true in the (SL@W) state, but they don’t both have to be true in either state.
A KVL bug signals trouble at a node; the first thing to do is find all the components connected to

the node. These connections are:

((CONNECT (OUT AMP-5) OUTPUT)
((CONNECT (T1 CAP-5) OUTPUT)
((CONNECT (OUT AMP-6) OUTPUT)
((CONNECT (T1 CAP-6) OUTPUT)

(FAST))
(FAST))
(SLOW))
(SLOW))

To remove the bug, cach of these connections are considered from the view point of each state.

During the (FAST) state, those connection with the (FAST) situation tag must be present. The output of

4.2 DESIGN OF INDEPENDENT STATES 48

Fig. 41. Slow Generator

NODE-13
CAP-6 Slow
+
Ground
TEK4240
(CIRCUIT-PART CAPACITOR CAP-6)
(CIRCUIT-PART CURRENT-GENERATOR GEN-6)
(CIRCUIT-PART OP-AMP AMP-6)
((ID NODE-13 OUTPUT) (FAST)) ;wire
((CONTROLS (BRV GROUND NODE-14) (NDV NODE-14)) (FAST)) ;feedback
((CONTROLS (NDV GROUND) (NDV NODE-14)) (FAST)) :brv-to-ndv

((CONTROLS (BRV NODE-13 NODE-14) (NDV OUTPUT)) (FAST)) ;capacitor

((CONNECT (T1 CAP-6) OUTPUT) (FAST))
((CONNECT (T2 CAP-6) NODE-14) (FAST))
((CONNECT (I+ AMP-6) GROUND) (FAST))
((CONNECT (I- AMP-6) NODE-14) (FAST))
((CONNECT (OUT AMP-6) OUTPUT) (FAST))
((CONNECT (T1 GEN-6) NODE-14) (FAST))

((= (TC (T1 GEN-6)) (TC (T1 CAP-6))) (FAST))
((= (STRENGTH GEN-6) (* (CAPACITANCE CAP-6) M1)) (FAST))

AMP-6 cannot be connected, though, because it causes a KVL bug. A switch will prevent the bug; all those
conncections that must ;bc’made during the (FAST) state are left connected to the OUTPUT. All the
connections that are nceded only when AMP-6 controls the output arc then grouped together and put on the
far side of a switch (SW-2 in the figure). Then all the connections are considered from the (SLLOW) state.
Switch SW-2 isolates those connections to the QUTPUT that only had to be made during the (FAST) state.
Switches don't have to be used all the time; shortly there will be an example where a switch is needed for one
state, but the connection can be tolerated in the other. '

Another design (figure 44) for the dual ramp gencrator switches components instead of complete
sweep circuits. The switches in this design come about because conditional values are calculated for devices
that can only have one value. If the SPLIT-STATES rule is not applicd immediately to the dual ramp design
problem, then the a complete ramp generator could be deduced; the deductions would be similar to those for

4.2 DESIGN OF INDEPENDENT STATES 49

Fig. 42. Output KVL Bug

Output
- KVL B JG >
NODE-7 _L NODE-13_|_
Sio
CAP-5 Fast CAP-6 v
+
GEN-5
AMP-5 GEN-6 ? AMP-6
Ground Ground
TEK4250
Fig. 43. Fixing a KVL Bug with a Switch
Output
NODE-7 -|_ NODE-13_L
Slow
CAP.5 Fast CAP-6
SW-1 SwW-2
NODE.-8 NODE-14 -
+
GEN-5 C
AMP-5 GEN-6 ? AMP-6
Ground Ground
TEK4260

the (SLOW) gencrator shown previously except that the COND statements are carried around in some of the
expressions. .

Once the basic Miller circuit has been designed, then SPLIT-STATES is used to simplify the
CONDs. Not until values of currents and capacitance are deduced is there any trouble. Once the COND:s are
removed, then the following deductions could be made.

((= (STRENGTH GEN-8) (* (CAPACITANCE CAP-8) M1)) (FAST))
((= (STRENGTH GEN-8) (* (CAPACITANCE CAP-8) M2)) (SLOW))

The trouble here is the STRENGTH and the CAPACITANCE cannot both be constants if M1 is different
from M2. Currents and capacitors cannot have conditional values and so trying to assign them conditional

4.2 DESIGN OF INDEPENDENT STATES 50

Fig. 44. Switched Dual Ramp Generator

:

Fast Slow

- Qutput

NODE-22
AMP-8

Ground

O GEN-8

TEK4270

values causcs a bug. This bug is easily remedied, however, by using two different current generators and two
different capacitors and switching them in during the appropriate state of the conditional, as shown in the
figure.

4.3 Design of Dependent States

Capacitors can destroy the idea of independent discrete states because capacitors carry continuous
state across discrete state boundaries. A capacitor’s voltage does not change instantancously and so does not
change when there is a discrete state change. Consequently constraints on the initial values of a capacitor
branch voltages must be achieved in the preceding state. The dependence of one state upon another implies
that states cannot be designed in isolation from each other.

This section uges an oscilloscope sweep circuit as a design example. The triggered sweep problem,
which was outlined in tlflc first chapter, is to design a circuit with two states, sweeping and waiting, that has
two completely different behaviors during those states (sce figure 45.). When the circuit is in the sweeping
state, it produces a ramp output just as the ramp generators discusscd previously do. During the waiting state,
the output voltage should follow the input voltage. The crucial additional constraint is that the output voltage
should be continuous during the transition between the waiting state and the sweeping state, or, equivalently,
the initial output voltage during the sweeping state cquals the input voltage. The specifications of the sweep
circuit arc also shown in figure 45. The situation tag (INITIAL SWEEPING) specifies the initial instant of
the (SWEEPING) state,

4.3 DESIGN OF DEPENDENT STATES 51

Fig. 45. Triggcred Sweep Problem

input BLACK output
BOX

sweeping/waiting

sweeping/waiting

YAVAVAUAUAUAN

input

JAVAN RAVAN
output NS\ —" S \—" 'RAVAN

time

TEK4310

(GOAL ((CONTROLS NIL (D-DT (NDV OUTPUT))) (SWEEPING)))
(GOAL ((CONTROLS (NDV INPUT) (NOV OUTPUT)) (INITIAL SWEEPING)))
(GOAL ((CONTROLS (NDV INPUT) (NDV OUTPUT)) (WAITING)))

((= M (D-DT (NDV OUTPUT))) (SWEEPING))
((= (NDV OUTPUT) (NDV INPUT)) (INITIAL SWEEPING))
((= (NDV OUTPUT) (NDV INPUT)) (WAITING))

If the continuity requirement is ignored for the moment, then the goal during the waiting state is a
simple one,
(GOAL ((CONTRGLS (NDV INPUT) (NDV OUTPUT)) (WAITING)))

£

The direct way of achicving this goal is to usc the WIRE rule, although FEEDBACK could be used instead.
The goal during the sweeping state is the familiar ramp generator problem:

(GOAL ((CONTROLS NIL (D-DT (NDV OUTPUT))) (SWEEPING)))

Figure 46 shows the circuit made from a wire and a Miller ramp generator, one of the possible circuits for a
ramp generator. When the wire and Miller circuits are merged, a KVI. bug introduces a switch at the output
as it docs in one of the dual rate ramp generators. The KVI. bug occurs because both

4.3 DESIGN OI' DEPENDLENT STATES 52

((CONTROLS (NDV INPUT) (NDV OUTPUT)) (WAITING))
((CONTROLS NIL (NDV OUTPUT)) (SWEEPING))

try to control the output node voltage. Because these assertions have different situation tags, switches can be
used to isolate the bugs.1

The trouble with this design is that there is no constraint on the initial voltage of the ramp generator.
The ramp is always ramping and the switch just samples its output every once in a while. Some changes must
be made to the ramp gencrator to set the initial voltage of the ramp in the (SWEEPING) state. That is the
purpose of the goal regarding the (INITIAL SWEEPING) situation. The next rules describe ways to
accomplish this goal.

The general strategy for achieving an initial condition is to convert it into a final condition in the
immediately preceding state. Achicving the final condition also achieves the initiat condition.

The INITIAL-CONDITION analyze and design rules shown in figure 47 carry the initial condition
constraint between ncighboring states. The assertion

(NEXT-STATE ?STATEQ ?STATE1)

says that 7STATE] immediately follows ?STATEQ. An initial condition in ?2STATEL] is translated to a final
condition in ?STATEO. The final instant of ?STATEQ is the same as the initial instant of 7STATE1
(remember capacitor voltages do not change instantancously). If anything controls the final value of a
capacitor’s branch voltage in ?STATEQ, then it controls the initial branch voltage in 7STATEL

To set an initial condition in 2STATE], the capacitor that controls the initial condition must be
found because it will carry the continuous state information between neighboring states. In the case of the
sweep generator, we want

(GOAL ((CONTROLS (NDV INPUT) (NDV OUTPUT)) (INITIAL SWEEPING)))

That is. an initial condition is placed on (NDV OUTPUT). The initial condition is really a constraint on the
capacitor branch voltage that controls the output node. The deductions based on this initial condition are
shown in figure 48.

Now we have a goal to achieve a final condition of a state. One method to achieve the final
condition is to gcnerahze the final condition goal for the entire state. If something is true for the entire state,
it is certainly true for Lhe last instant. The rules in figure 49 change a final condition goal into a goal for the
entire state.2 The analyze rule says that if something controls a capacitor branch voltage for an entire state,
then it also controls the final value. The design rule does the inverse.

L The bug must be handled differently than before, though, because the assertion
(CONTROLS (NDV INPUT)(NDV QUTPUT)) is never made by the wire rule. The problem i$ that terminals are casily connected to
nodes. but connecting nodes together requires making an equivalence class.

2. Another method is to have the state transition occur when the final condition is met. If for cxample. the state changes when
the output of a ramp generator is equal to some input voltage, then the input voltage controls the final valuc of the state without it being
necessary for the input voliage to control the output valu of the state. This approach to setting the final condition of a state is frequently
uscd in oscillators.

4.3 DISIGN OF DFPENDENT STATES

Fig. 46. Naive Sweep Design

Output
A\
SW-8 SW-7
0
input
NODE-21_|-
CAP-21
NODE-22 -
+
GEN-21 AMP-21
Ground

sweeping/waiting

input

YRAVAN
output I\ \— J\J\

time

53

TEK4320

4.3 DISIGN OF DIEPENDENT STATES

Fig. 47. Initial Conditions

(DEFRULE INITIAL-CONDITION-ANALYZE

(ASSERT

(DEFRULE

((?F1 (CIRCUIT-PART CAPACITOR ?CAP))
(?F2 ((CONNECT (T1 ?7CAP) ?7ND1)
(7F3 ((CONNECT (T2 ?7CAP) ?ND2)
(?F4 ((CONTROLS ?X (BRV ?7ND1 7ND2))
(7F5 (NEXT-STATE ?STATEO ?7STATE1))
(?F6 ((CONNECT (T1 ?CAP) ?7ND3)
(?F7 ((CONNECT (T2 ?7CAP) ?ND4)
"((CONTROLS ?X (BRV 7ND3 ?ND4))

54

?7STATED))
7STATED))
(FINAL ?STATEQ)))

PSTATE1))
?STATE1)))
(INITIAL ?STATE1))

"(INITIAL-CONDITION ?F1 7F2 ?F3 ?F4 ?F5 7F6 ?F7)))

INITIAL-CONDITION-DESIGN

((?F1 (GOAL ((CONTROLS ?X ?7Y)

(7F2 (CIRCUIT-PART CAPACITOR 7CAP))
(?F3 ((CONNECT (T1 ?7CAP) ?ND1)

(7F4 ((CONNECT (T2 ?CAP) 7ND2)

(?F5 ((CONTROLS (BRV ?ND1 ?ND2) ?Y)
(?F6 (NEXT-STATE ?STATEO ?7STATE1))
(?F7 ((CONNECT (T1 ?CAP) ?ND3)

(7F8 ((CONNECT (T2 ?CAP) ?7ND4)

(INITIAL ?7STATE1))))

?STATE1))
?STATE1))
?7STATE1))

?STATED))
7STATEOD)))

(PROPOSE-METHOD (?F1 ?F2 ?F3 ?F4 ?7F5 ?F6 ?F7 ?F8) ?F9
(GOAL-ASSERT *'({CONTROLS ?X (BRV ?ND1 ?ND2)) (FINAL ?STATED))
"(INITIAL-CONDITION ?F2 ?F3 ?F4 ?F5 7F6 ?F7 7F8 ?F9))))

Fig. 48. Initial Conditions of Sweep Circuit

(GOAL ((CONTROLS (NDV INPUT) (NDV OUTPUT))

((CONNECT (T1 (CAP-21)) NODE-21)
((CONNECT (T2 (CAP-21)) NODE-22)

((CONTROLS (BRV NODE-21 NODE-22) (NDV OUTPUT))

(NEXT-STATE (WAITING) (SWEEPING))

(GOAL ((CONTROLS ?X (BRV NODE-21 NODE-22))

(INITIAL SWEEPING)))
(SWEEPING))
(SWEEPING))
(SWEEPING))

(FINAL WAITING)))

4.3 DESIGN OF DEPENDINT STATES 55

Fig. 49. Final Condition Rules

(DEFRULE FINAL-CONDITION-ANALYZE
((?F2 (CIRCUIT-PART CAPACITOR ?CAP))
(?F3 ((CONNECT (T1 ?CAP) ?ND1) ?STATE))
(?F4 ((CONNECT (T2 7CAP) 7ND2) ?7STATE))
(?F5 ((CONTROLS ?X (BRV ?ND1 ?ND2)) 7STATE)))
(IF (NOT (MEMQ (CAR ?STATE) '(INITIAL FINAL)))
(ASSERT '((CONTROLS ?X (BRV 7ND1 ?ND2)) (FINAL ?STATE))
"(FINAL-CONDITION ?F2 ?F3 7F4 ?7F5))))

(DEFRULE FINAL-CONDITION-DESIGN

((7F1 (GOAL ((CONTROLS 7X ?Y) (FINAL ?STATE))))
(?F2 (CIRCUIT-PART CAPACITOR ?CAP))

(?F3 ((CONNECT (T1 ?CAP) 7ND1) 7STATE))

(?F4 ((CONNECT (T2 7CAP) ?7ND2) 2STATE))

(?7F5 ((CONTROLS (BRV ?ND1 7ND2) ?Y) 7STATE)))
(PROPOSE-METHOD (?F1 ?F2 ?F3 ?F4 7F5) 7F6
(GOAL-ASSERT *((CONTROLS ?X (BRV ?ND1 ?ND2)) 7STATE)
"(FINAL-CONDITION ?F2 ?F3 7F4 ?F5 7F6))))

The final condition rules transform the goal

(GOAL ((CONTROLS (NDV INPUT) (BRV OUTPUT NODE-22)) (FINAL WAITING)))
into

(GOAL ((CONTROLS (NDV INPUT) (BRV OUTPUT NODE-22)) (WAITING)))

This goal is entircly within one state and design ideas of the previous chapters can be used to design the
circuit.

The next figure gives some of the deductions in the design of the sweep circuit. The basic goal is to
set the branch voltage of the capacitor from the input node voltage. Two subgoals are undertaken to do that.
The first pegs one terminal of the capacitor at ground; this goal is alrcady satisfied because the Miller sweep
circuit did that in the (SWEEPING) state and, if the connections are carried over into the (WAITING) state,
it will still be true. <

The second subgoal is to use the input node voltage to set the output node voltage. The wire rule
would be a candidate for this job, but it will cause a KVI. bug. Feedback is another way to do the job.
Connccting the output of an operational amplifier to the output node will also cause a KVL bug, so we have
to be clever about controlling the capacitor branch voltage. We arc trying to control the node voltage of one
terminal of the capacitor; the other terminal of the capacitor is at ground, so the node voltage could be set by
setting the capacitor branch voltage. The capacitor branch voltage is controlled by the its terminal current, so
the KCL. rules propose setting the node current into cither T1 or T2 of the capacitor; T1 cannot be used
because of an irresolvable KCL. bug. T2 can be used. ‘The problem is to find a componcent whose output

4.3 DESIGN OF DEPENDENT STATES 56

current is controlled by a branch voltage; an operational transconductance amplifier is one possibility;
another would be a resistor with a branch voltage imposed across it. The operational transconductance
solution is shown in the figure and all of the goals follow from using it.

Fig. 50. Sweep Generator Deductions

(GOAL (CONTROLS (NDV INPUT) ;goal for initial condition
(BRV NODE-21 NODE-22))))

(GOAL (CONTROLS (NDV GROUND) (NDV NODE-22))) ;true by prior work
(GOAL (CONTROLS (NDV INPUT) (NDV OUTPUT)))

;wire rule wont work
(GOAL (CONTROLS (BRV INPUT NODE-21) (NDV NODE-21))) ; but feedback will
(GOAL (CONTROLS (BRV INPUT NODE-21) (BRV NODE-21 NODE-22))):a KVL law
(GOAL (CONTROLS (BRV INPUT NODE-21) (TC (T2 CAP-21))) ;capacitor VIC
(GOAL (CONTROLS (BRV INPUT NODE-21) (NC NODE-22))) 1KCL
(CIRCUIT-PART OTA 0TA-21)

4.4 Summary

This chapter discussed discrete state design. Sometimes the discrete states of a circuit are
independent of one another: in that case the design for each state can be done without worrying about the
other states. When the discrete states are not independent, then attention is paid to the transitions between
the states. The initial conditions in a state must be present at the state transition and that implies setting them
up in the previous state. Whether the states are independent or not, the designs for the individual states must
combined to make a complete circuit. Switches are often needed to isolate different parts of a circuit. The
designer deduces where these switches belong from KVL and KCL bugs.

5 LITERATURE 57

5. Literature

The literature on clectronic design can be crudely broken into the numeric and the symbolic
approaches. Each of these approaches can be further broken down according to its emphasis being either
analysis or synthesis. In gencral. more work has been done on analysis. In almost all work the computer is
given a fixed circuit topology; my work is different because the computer develops the circuit topology.

The numerical approach to analysis is a straight forward application of nctwork theory. These
programs take a circuit, write the numerical equations of VICs, KCL, and KVL, and solve the cquations
numerically using matrix methods and numerical integration techniques <Chuad>. These programs use
sophisticated numerical techniques to produce accurate simulations or frequency analyses of real circuits. A
human designer uses these programs to check his design without building it.

Some synthesis programs have been built on top of numerical analysis procedures <Director>. Such
programs start with a circuit topology, initial component values for that topology, and an objcctive function
that "grades” the output of the circuit. An analysis program finds the output of the circuit, the objective
function grades that output, and then the synthesizer adjusts component values to improve the grade. This
design methodology starts with a given topology; it does not create one. During the above optimization
procedure, though, some components may "disappear™ because their values go to zero (eg, for a capacitance)
or to infinity (cg, for a resistor). One could argue that a topology could be found by optimizing a set of nodes
that is fully connected with all possible components, but such an argument is not a satisfying explanation of
how humans design circuits. An expert circuit designer must create the circuit in a reasonable and intelligent
manner,

There are procedures that do some form of topological design. Lin and Chua <Lin> noticed some
interesting properties of voltage n-tuplers and used those properties to enumerate a class of n-tupler circuits.
Their design algorithm is specific for n-tuplers and could not be used for operational amplifier circuits.

Some procedures do topological design by examining the specified admittance matrix for the desired
circuit <Daniels> <Yanagisawa> <Stevenson>. Thesc procedures look for patterns of terms in the matrix and
infer particular components based on those terms; the goal is to change the admittance matrix into one that
can be made from simple admittances (resistors, capacitors, and inductors). The matrix is changed with some
simple row and column operations that imply the use "norators” and "nullators” in the final circuit design. A
nullator-norator pair can{be made with an idcal operational amplifier, though at the cnd of the procedure it is
not obvious which nullators go with which norators or whether the amplifier gain should be plus infinity or
minus in f'mity.1 This design procedure is more appealing than the optimization strategy because it introduces
new nodes and components only when there is reason to do so. The procedure can design circuits with an
arbitrary linear admittance matrices for any number of inputs and outputs, but cannot handle independent
sources and switches.

1 This ambiguity exists because the procedure deals only with arithmetic constraints and does not have an idea of causality. It
assumes the inputs of an operational amplifier are al equal polentials (the nullator constraint) but docsn't know which norator
(opcrational amplificr output) enforces that cquality.

5 LITERATURE 58

The symbolic approach to circuit analysis tries to mimic the problem solving behavior of a person.
These systems also have the desirable property that the deductions can be made from local information and
thercfore the rules are simple to write down. Examples of these programs are in <Stallmand and
<dc Kleer-4>. Some advantages of these programs are that they solve as much of a problem as they can as
information becomes available, they allow parameters to be changed and will remove all the deductions based
on the old values, and provide simple explanations of how parameter values were deduced. An offshoot of
the development of these analysis programs is the development of truth maintenance systems (TMS)
<Stallman> <Doyle> <de Kleer-3> <McAllester> that make the incremental addition and retraction of facts
easy to do. My research used Doyle's TMS.

The use of symbolic expressions allows these analysis programs to do synthesis under the guiding
hand of a human designer. The systems do not care if they know the current and the resistance and solve for
the voltage or know the voltage and current and solve for the resistance. Thus by specifying desired voltages
and currents these programs will calculate the component values needed for a particular circuit. (Some care is
needed because the system may find ridiculous values in some cases, but if the designer notices a mistake, he
can retract the bad values.) This approach is powerful. For example, Sussman's EESYS <Sussman-4> can
easily find the transfer function implemented by a particular filter circuit. If the desired transfer function is
then specified, EESYS (when augmented with polynomial coefficient matching and root finding routines)!
will calculate the needed values of resistance and capacitance to make the circuit implement that particular
transfer function.

These analysis programs do not view the circuit through a fixed pair of glasses as the classical
analysis program does. Instead there are several aspects that the programs consider -- the DC and AC models,
for example. These different models interact with cach other by passing information between them. The DC
model, for example, is used to calculate the transconductance that is used in the AC model. Sometimes
equivalent models of a circuit fragment can pool their information to solve an analysis problem that neither
could do individually <Sussman-3>. The answers are not necessarily exact, but engineers use the same
techniques.

These analysis programs, though they do make use of several modecling aspects, rely heavily on
algebraic manipulation to provide their answers. This manipulation, while needed to get particular answers, is
not an essential part of design knowledge. De Kleer's NEWTON <de Kleer-1> shows how qualitative
knowledge can be usedto set up later algebraic computations. His Ph.D. thesis <de Kleer-5> shows that
circuit mechanisms can be described with a simple qualitative algebra that does not include numbers. These
results are reassuring because it is difficult to believe that people understand circuits by reducing them to
algebraic expressions.

Brown’s thesis <Brown> on debugging circuits doesn’t fit into the classification of analysis or design
but it is interesting because it mimics human behavior. His program uscs debugging strategics such as signal
tracing and a detailed description of a radio to fix receivers that do not work. His system zeros in on a fault by

L I did this.

5 LITERATURE 59

making hypotheses about the source of trouble and checking those hypotheses with measurements of the
faulty radio. The program intelligently proposes only hypotheses consistent with the symptoms of the fault
and the measurements that have already been made,

These symbolic programs all deal with a given topology. McDermott <McDermott-2> is one of the
few who design circuit topology. McDermott, while working fundamentally on the organization of a general
purpose problem solver, undertook the design of electronic circuits as his microworld. His approach to
designing filters and transistor amplifiers uses qualitative descriptions to suggest particular circuit fragments
and then glues the fragments together. His system is promising and has several good idcas, but unfortunately
it works in a difficult design domain without the aid of simplifying abstractions. The system falls into the trap
of simultaneously trying to design a transistor amplifier and a bandpass filter. A human designer would
divide the tasks into first designing an acceptable filter transfer function, then a filter circuit with ideal
amplifiers, and then the transistor versions of the idcal amplifiers. My present work stays in one of thesc tasks
-- using idcal components. Future work should manage all three tasks.

In addition to the above work, some basic works on problem solving and on automatic programming
have influenced me. The idca of debugging originates in HACKER, Sussman’s Blocks World planner
<Sussman-1> <Sacerdoti-1-2-3>. The idea of debugging lets problem solving (or design) rules be simpler than
they would be if they had to anticipate the interactions with other rules.

Modifying the behavior of clectronic circuits with the aid of switches is not discussed in the
literature of circuit design. The problem is, however, similar to the problem of putting conditional code in
programs and so the literature on automatic programming is relevant. The ideas behind introducing switches
in a circuit design have been borrowed from Manna and Waldinger's <Manna> "Conditional Formation” rule
that their programming system uses to introduce conditional clauses. Circuit design and computer
programming share a lot of common problems. Manna and Waldinger’s other rules about recursion
formation, well founded orderings, procedure formation, generalization, and simultaneous goals have also
affected my views about how circuits should be designed.

6 CONCLUSIONS 60

6. Conclusions
6.1 The Imperfect Past

Katz Maxim No. 8.1

Try 10 find the real tense of the report you are reading: Was it done. is it being done. or is it something to be done? Reports
are now writlen 1n four tenses: past tense, present tense, future tense, and pretense. Watch for novel uses of CONGRAM
(CONtractor GRAMmar), defined by the imperfect past. the insufficient present, and the absolutely perfect future.

This work trics not only to design circuits but also to mimic the way humans design them. The focus
of the circuit design is on circuit topology: finding suitable components and discovering how to connect them
together. Design systems that start from a known topology and only compute component values bypass the
question of how the circuit originated in the first place. To mimic human designers, the system must do
topological design.

There are alternatives to the topological design of circuits. One possibility is an extensive library of
practical circuits that can be used for a varicty of problems. Certainly a human circuit designer uses such a
library: when a designer needs an electrical filter with a particular transfer function, for example, he will look
in a catalog of filter circuits and choose an appropriate one. The catalog provides design equations so the
engineer’s task is little more than selecting a circuit and plugging numbers into equations. The chief
drawback of this alternative to topological design is its lack of flexibility: if the problem is not listed in the
catalog, then it cannot be solved. Contrast this drawback with the design of the triggered sweep circuit where,
through a modification of the circuit topology, a new circuit performs both as a ramp generator and as an
amplifier. Itis unlikely that such a circuit would exist in a library.

The use of a library or catalog of circuits is not a satisfying model of human circuit designers. While
people do know several circuits that perform a particular function -- such as constant current, bootstrap, and
Miller ramp generators -- 1 doubt they depend on these stercotypical circuits in real design. I do not
remember the formulas for even simple circuits like the inverting amplifier; instead 1 deduce the formulas
from ideas about virtual grounds, flowing currents, and Ohm’s law. The advantage of this mode of thinking is
that it not only provides the design formulas for a circuit, but it also clearly outlines how the circuit works:
knowing how a circuit works implies that modifying it is just a fow steps away. Circuit designers give names
to circuits so they can talk about them and the ideas behind their design, but the names are not indices to
specific circuit designs. éWhen a human designer stumbles across a new circuit, he does not try to remember
that circuit component for component and node for node. Instead he looks for how the circuit works so he
can use the idea in other circuits even though the original circuit would be useless. The best example of this
kind of idea is feedback: once one has learned how a feedback amplifier works, he can apply the idea to such
diverse circuits as ramp generators or phase locked loops.

L. Amrom Katz, "A Guide for the Perplexed, or a Minimal/Maxim-al Handbook for Tourists in a Classified Bureaucracy”, Air
Force/Space Digest, November 1967. Quoted in ‘the Official Rules, Paul Dickson, Dell Publishing Co., New York, 1978.

61

6.2 The Insufficient Present

The circuit design techniques discussed in this paper are restrictive. The techniques are suited to
designing circuits that have only unity gain, have no DC bias, and are direct coupled. Feedback is assumed to
always work. Circuits with simultaneous constraints such as gyrators and impedances are not handled. The
techniques are generally suitable for circuits such as sweep generators, function generators, and multiplexers.
These restrictions are not viewed as difficult to surmount: the ability to achieve simultancous constraints
needs rules that know how to deal with superposition. Such an additional rule would not be a radical change
from the methods presented here. It is sometimes surprising to realize how close the rules are to designing
another kind of circuit. The triggered sweep circuit is actually a sample hold circuit if the slope of the ramp is
set to zero.

How much of the system is coded and works? The design system described here, as mentioned
earlier, separates the arithmetic constraints from the control constraints. The actual program kept them
together as a control constraint and a qualitative descriptor of the sign and magnitude of the arithmetic
constraint. This was done to guarantce large loop gains and the appropriate sign when feedback loops were
used. The program designed voltage followers, scveral ramp generators, and specialized COND clauses, but it
did not introduce switches after the KVI. and KCL bugs were found. The approach was cumbersome and
limited; the separate propagation of control and arithmetic constraints described here is better.

The rules have no information about which rule would be best to apply next because there is no idea
of the cost of certain design choices. It appears, though, that the simple idea of doing that which is easiest
would work well. The wire rule and the feedback rule, for example, both achieve the same goal. While the
system has no bias for either one, the wire rule, because it is cheaper, is almost always the rule to try first; if it
fails then feedback can be used. This path of least resistance approach is effective and probably should be
included in the interpreter.

For further work a better problem solving language needs to be developed. The current rules used
AMORD because AMORD was available. A better language would understand simple mathematical
expressions and compute upper and lower bounds; a full algebra system should not be necessary. The
required mathematics is similar to problems in linear programming. The rules should also be embedded in
some form of hierarchy: circuit design usually occurs at several levels. During one level an amplifier might be
an atomic object; latcrrwhen a scheme using an amplifier has proved successful, the amplifier can be
designed using transistors and resistors. During this second level of design, most of the rules and assertions
from the first level are irrelevant and should not be considered in the design. Presently the design is done
depth first: onc path being completely explored before any other method is considered.

6.3 THE ABSOLUTELY PERFECT FUTURE 62

6.3 The Absolutely Perfect Future

Circuit design, which comprises several different skills, might be broken down into 3 broad areas:
(1) analog design, (2) finite state machine design, and (3) signal processing. There is a lot that can be done in
all three of these arcas. Analog design, the subject of this paper, involves building circuits from electronic
components such as amplifiers, capacitors, and switches. The rules of this paper are simplistic and incomplete
and could be improved and expanded. Devices such as transistors, comparators, and diodes (which have not
been considered here) have a wealth of design problems and design procedures that beg to be put into rules.
There are constraints on voltage and current limits that must be obeyed. Some simple rules that relate
gain-bandwidth and frequency response or gain and collector current could decide when operational
amplifiers are inadequate and discrete transistor amplifiers nced to be used. Some transconductance
calculations can show that one stage provides inadequate gain and thus demand that two or more states be
used. There are scveral possibilities. I've studied the design of the Tektronix 465 oscilloscope sweep
generator and found that rules like those described above can design most of its transistor amplifiers and
transistor switches.

The second broad area is finite state machine (FSM) design. Little has been done in this area (but
see <Grinberg>). The basic task in FSM design is to take a problem description, say the measurement of a
time interval, and find an appropriate FSM to solve the problem. The finite state machine has to insure
scveral constraints that are not explicitly stated in the original problem. A time interval, for example, is just a
number that the FSM must find a way to compute. The finite state machine will need several states --
perhaps one to clear a counter, another to wait for the start of the interval, another to wait for the end of the
interval, and a state to signal that the number is valid. Finding these different states and deciding how they
should be implemented is the task of a FSM designer. Such a system would be a simple logic designer.
Classic logic design has not focused on specifying an initial machine. Furthermore, classic synthesis
techniques don't utilize the variety of parts available and thus produce inferior designs.

The third arca is signal processing. There are some fields of circuit design that are so specialized that
they need their own models that are independent of component VICs, KVL, and KCL. FSM design is one
such field; another is signal processing. Frequency compensation of amplifier and specifying the poles and
zeros of filters are tasks that need models in the time and frequency domains. Expert design rules are needed
in this area before a prag&cal-circuit could be designed. Unfortunately, this area is the most difficult of the
three because the the mathematics can be complex.

There are interesting problems in each of these areas and some progress can be made in each. The
best area for future work is undoubtably finite state machines because new integrated circuit technology
strains a human designer’s ability to make quick, crror-free, designs. An automated designer is better suited
for the tedium of these designs but it must be involved in the design stage if it is to understand the purpose of
the different circuits and cffectively apply its potential. If it knows that a counter is being used to measure an
interval then it can insure that the clear and count commands occur at the proper times; if it does not know
the purpose of the counter, then the signals arec meaningless and nothing can be checked.

7 BIBLIOGRAPHY 63

7. Bibliography

Brown Brown, A., Jr., Qualitative Knowledge, Causal Reasoning, and the Localization of Failure,
MIT AI-TR-362, 1977.

Barstow Barstow, D., Automatic Construction of Algorithms and Data Structures Using a Knowledge
Base of Programming Rules, Stanford Artificial Intelligence Laboratory Memo AIM-308,
Nov. 1977.

Bundy Bundy, A., "Analyzing Mathematical Proofs,”" Advance Papers of the 4th International Joint
Conference on Artificial Intelligence, pp 22-28.

Chua Chua, L., and P. Lin, Computer-Aided Analysis of Flectronic Circuits: Algorithms and
Computational Techniques, Prentice-Hall, Englewood Cliffs, New Jersey, 1975.

Daniels Daniels, R, "A Nullator-Norator Synthesis Procedure Applied to Gyrators,” Procecdings of
the IEEE 12th Midwest Symposium on Circuit Theory, Texas, April 1969, pp. X.3.1-1X.3.8.

de Kleer-1 de Kleer, J., Qualitative and Quantitative Knowledge in Classical Mechanics, MIT
AI-TR-352, 1975.

de Kieer-2 de Kleer, J., "Local Methods for Localizing Faults in Electronic Circuits,” MIT AI Memo
394, 1976.

de Kleer-3 de Kleer, J., J. Doyle, C. Rich, G. Steele, G. Sussman, "AMORD = A Deductive Procedure
System,” MIT Al Memo 435, Jan. 1978.

de Kleer-4 de Kleer, J. and G. Sussman, "Propagation of Constraints Applied to Circuit Synthesis,”
MIT AI Memo 485, September. 1978,

de Kleer-5 de Kleer, J., Causal and Teleological Reasoning in Circuit Recognition, MIT AI-TR-529,

1979.

Director Director, S., "Towards Automatic Design of Integrated Circuits,” in Basic Questions of
Design Theory, W. Spillers, ed., American Elsevier, New York, 1974, p 303.

Doyle Doyle, J., Truth Maintenance Systems for Problem Solving, MIT AI-TR-419, January 1978.

Gorry Gorry, G. Anthony, "Rescarch on Expert Systems,” Project MAC Technical Memo 56,
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA,
December 1974,

Graeme-1 Graemg, J., et al, Operational Amplifiers, McGraw-Hill, New York, 1971.

Graeme-2 Graeme, J., Applications of Operational Amplifiers, McGraw-Hill, New York, 1973.

Gray Gray, P., and C. Searle, Electronic Principles: Physics, Models, and Circuits, John Wiley &
Sons, New York, 1969.

Grinberg Grinberg, M., "Semi-Automatic Digital Designer Systern,” Ph. D. proposal, TR-685,

Computer Science Center, University of Maryland, College Park, Maryland, June 1978.

7 BIBLIOGRAPHY

Lenat

Lin

Manna

McAllester

McCarthy

MeDermott-1

McDermott-2

Refai

Rich

Roberge

Sacerdoti-1

Sacerdoti-2

Sacerdoti-3

Shrobe

Shortliffe

Lenat, D., AM: an Artificial Intelligence Approach to Discovery in Mathematics as
Heuristic Search, Stanford University Artificial Intelligence Laboratory Memo AIM-286,
1976.

Lin, P, and .. Chua, "Topological Gencration an Aralysis of Voltage Multiplier Circuits,”
IFEE Transactions on Circuits and Systems, Vol CAS-24, No 10, October 1977, pp 517-530.

Manna, Z., and R. Waldinger, Synthesis: Dreams => Programs, Stanford University
Artificial Intelligence Laboratory Memo AIM-302, Stanford, California, November 1977.
Also "Synthesis: Dreams => Programs”, IEEE Transactions on Software Enginecring,
Volume SE-5 Number 4, July 1979, pp. 294-328.

McAllester, D., The Use of Equality in Deduction and Knowledge Representation, MIT
AI-TR-550, January 1980.

McCarthy, J., and P. Hayes, "Some Philosophical Problems from the Standpoint of Artificial
Intelligence” in Machine Intelligence, Volume 4, pp 463-502, ed. by B. Meltzer and D.
Michie, Amcrican Elsevier, New York, 1969,

McDermott, D., and G. Sussman, "The Conniver Reference Manual,” MIT AI Memo 259a,
Jan. 1974.

McDermott, D, Flexibility and Efficiency in a Computer Program for Designing Circuits,
MIT AI-TR-402, December 1976.

Refai, S., "Application of Mason-Coates Graph in Linear Active Network Synthesis,”
Procecedings of the IEEE 22nd Midwest Symposium on Circuits and Systems, Philadelphia,
June 1979, pp 284-88.

Rich, C., and H. Shrobe, Initial Report on a LISP Programmer’s Apprentice, MIT
AI-TR-354, December 1976.

Roberge, J. K., Operation Amplifiers: Theory and Practice, John Wiley, New York, 1975.

Sacerdoti, E., "Planning in a Hierarchy of Abstraction Spaces,” Proceedings of the Third
International Joint Conference on Artificial Intelligence, pp 412-422, August, 1973.

Sacerdoti, E., "The Nonlinear Nature of Plans,” Advance Papers of the Fourth International
Joint Conference on Artificial Intelligence, pp 206-214, Thilisi, Georgia, USSR, September
1975.

Sacerdet, E., A Structure for Plans and Behavior, Stanford Research Institute Artificial
Intelligence Group Technical Note 109, Menlo Park, California. Also American Elsevier,
New York, 1977,

Shrobe, H., Dependency Directed Reasoning for Complex Program Understanding, MIT
AI-TR-503, April 1979.

Shortliffe, E., et al, "A Computer-Based Approach to the Promotion of Rational Clinical Use
of Antimicrobials,” in Clinical Pharmacy and Clinical Pharmacology, Goveia et al, editors,
Elsevier/North Holland, 1976. pp 259-273.

7 BIBLIOGRAPHY

Sridharan
Stallman
Steele
Stevenson
Sussman-1
Sussman-2

Sussman-3

Sussman-4
Tektronix-1
Tektronix-2
Wakerly

Winograd

Winston

Yanagisawa

65

Sridharan, et al, "A Heuristic Program to Discover Synthescs for Complex Organic
Molecules,” Stanford Al Memo AIM-205, June 1973.

Stallman, R., and G. Sussman, "Forward Reasoning and Dependency-Directed Backtracking
in a System for Computer-Aided Circuit Analysis”, MIT AI Memo 380, September 1976.

Steele, G. L., Jr., and G. Sussman, "Constraints”, MIT Al Memo 502, Nov. 1978.

Stevenson, J., "Network Synthesis by Admittance Matrix Expansion,” Colloquium on
Electronic Filters, Institution of Electrical Engineers Conference Publication Number 167,
London, June 1978.

Sussman, G., A Computer Model of Skill Acquisition, American Flsevicr, New York, 1975.

Sussman, G., and R. Stallman, "Heuristic Techniques in Computer Aided Circuit Analysis,"”
MIT Al Memo 328, Mar. 1975,

Sussman, G., "SLICES: At the Boundary between Analysis and Synthesis," MIT Al Memo
433, July, 1977.

Sussman, G., EESYS is a collection of programs written for a course at MIT.
465 Oscilloscope Service Instruction Manual, Tektronix, Inc., Beaverton, Oregon.
475A Oscilloscope Service Instruction Manual, Tektronix, Inc., Beaverton, Oregon, 1976.

Wakerly, J. F. LOGIC DESIGN PROJECTS Using Standard Integrated Circuits, John
Wiley, New York, 1976. :

Winograd, T., "Breaking the Complexity Barrier (Again)," ACM SIGPLAN Notices, 1975,
10, pp 13-30.

Winston, P., Artificial Intclligence, Addison-Wesley, Reading, Massachusetts, 1977.

Yanagisawa, T., and N. Kanbayashi, "Realization of Arbitrary Conductance Matrix Using
Operational Amplifiers," Procecdings of the IEEE International Symposium on Circuits and
Systems, Munich, West Germany, April 1976, pp 532-35.

CS-TR Scanning Project - —
Document Control Form Date: A/)S /1L

Report#_A|-TR-707

Each of the following should be identified by a checkmark:
Originating Department:

ﬁ\Artiﬂcial Intellegence Laboratory (Al)
[0 Laboratory for Computer Science (LCS)

Document Type:

4 Technical Report TR) [Technical Memo (TM)
O other:

Document Information Number of pages: £6 (73-imnees)

* Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: ‘ Intended to be printed as :
“X(Single-sided or O Single-sided or
O Double-sided)X(Double-sided
Print type:
O Typewriter [offsetPress [[] Laser Print
] InkdetPrinter [] Unknown Other:

Check each if included with document:

ﬁ\ DoD Fom(&) [Funding Agent Form X Cover Page

] spine [0 Printers Notes O Photo negatives
O Other:

Page Data:

Blank Pagesiy see nmsen;_f 0 H0WS ABSTRATT PAGH

Photographs/Tonal Material ey sage numben:

Other {note descripion/page number):
Description : Page Number:

LA MAaP!{ ([G4)h,NiFR"OTTL(fﬂ@(DK‘D;CM‘MN

AGSTRAT, BLAMK | 3.4 6-65
(67 73) quNomml\jCo \,/FR DODC‘D TM{)

Scanning Agent Signoff: -
Date Received: J~/_I5/ 94 Date Scanned: 9\/&1’/?{ Date Returned: _?_Z_Ie_l_?_‘_l_ﬁ

Scanning Agent Signature: ij\ % ! QO'L

Rev 984 DSALCS Document Control Form cstrform.vad

i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1.

REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIFNT'R CATAI NG NIIMBER

TR-703

AD-A128631

TITLE (and Subtitle)

A Simple Model of Circuit Design

Technical Report

5. TYPE OF REPORT & FERIVUO COVERED

€. PERFORMING ORG. REPORT NUMBER

AUTHOR(s)

Gerald Roylance

8. CONTRACT OR GRANT NUMBER(s)

N00014-80~-C-0505

N00014-80-C-0622

PERFORMING ORGANIZATION NAME AND ADDRESS
Artificial Intelligence Laboratory
545 Technology Square

Cambridge, Massachusetts 02139

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

. CONTROLLING OFFICE NAME AND ADDRESS

Advanced Research Projects Agency
1400 Wilson Blvd
Arlington, Virginia 22209

12. REPORT DATE
May 1980

13. NUMBER OF PAGES
Pages 65

. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oftice)

Office of Naval Research
Information Systems
Arlington, Virginia 22217

15. SECURITY CLASS. (of this report)

UNCLASSIFIED

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

DISTRIBUTION STATEMENT (of this Report)

[

Distribution of this document is unlimited.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Distribution is unlimited.

. SUPPLEMENTARY NOTES

None

. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

Expert Systems
Design Automation

20.

the abilities of skilled designers.

ABSTRACT (Continue on reverse aide if necessary and identify by block number)

A Simple analog circuit designer has been implemented as a rule based system.
The system can design voltage followers, Miller integrators, and bootstrap ramy
generators from functional descriptions of what
designers works in a simple domain where all components are ideal, it demonstraf
Whilethe domain is electronics, the design
ideas are useful in many other engineering domains, such as mechanical engineer]
chemical engineering, and numerical programming.

these circuits do. While the

CON'T

es

ng

DD ,7SR", 1473 EDITIoN OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

S/N 0:02-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Most circuit design systems are given the circuit echematic and use arithmetic
constraints to select components values. Mseireuit designer is different
because it designs the schematic. The desigmem pacunidirectional CONTROL

relation to ugd the schemasds .. Fher: bufke sround this weiksution

] T L5 v ri ts

e .
LEREAN DL Smeer) Seenare o

daoasl TenkminaT

RS- e “ 5 Loadiig
&% g i b=
winvyoded eunepi Hledal fod

s1euEe Yoo o .
sriseudneeesk ,sgbi‘

U S e) e - -

RIOA Givk 3MAG BRI Dy g b -
AT .
edos{otd davesead ba
pviB onaliu
; EinipTiv
ol S e W HIRESRO0A B SRAN TOWES ad

novesend iovell 1o
& nolss

T4y siniv1iv ,no

2mat oy

S R s e s e — J— S— . e
P ot ot Y IR AT AT WV i .
LTS i me .«i I poiy s byt T N
P Foammunoh 2ol g o etugliéni N
o o et s+ ok s e oo e rrseen
st
3§y 0¥
P
| SO . » . O Y S [P
Leedemnra w0 sk wd ey eenl b rswa ey b -; LT AT LS snnufmu‘g
amolaye Jrsaxd
notIamoluh matent
oo mapm vt i i ae e o et st sk n i et o .)
[CEET . T BRI IE oabis euiavas pG SOnbine™) YDA Y254 ORE

.modave beesd olux 5 as Dodpemsloml nond as vsmytasb $tusxzis golens slqmi?2 A
gmex gs13elood np .eTodntosdsk vollil ex9wallo} agsdlov ngiesbh nso wsiave sl
o053 olkdd .ni 23tuoalo sesd?r Zniv Yo enoidqiysesh Ismoidonu? moTl erolsnTansy
293s5138Mbmeb 3+ .Isabl o sinegoaqumos [is sysdw mismob sigmlz s ni ediow exsastash
Jinaglash o3 t?S*LﬂIJDQIQ el aismob sfdioli:N’ .zueaniedb belliie Yo =sl3ilids or3
gnfreentgns [solasi som rre sove (ealsme’ ~rmitcsnbnme vaddo vasm ni Lulsey sts »rsbi
T'#0D wigotq Leoliscup bas nuaiyssakane Lesimsds %

RO .45 S Bl 58S A 51 s i R 80T i 1 S L AN : a5

T
TELER sow ® . T LA S S ¢ Te

Scanning Agent Identification - Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

