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Abstract

This repurt adeseribves research aliowt fHow yragehs Jabeled, divectod, neyelic
graphs which abstract reprosentations used in a variety of Artiticial Tintelli-
B :'l[l]'l-]iﬂl.“ﬂllr-- IFlavar F:I‘:|'||]1:t 1Ly Tre eleraves] fron _II'Imr:- HETRTTIT 5 trach
ag strings may be derived from string granmmars; this derivation process
formis a uscefiul moede] for e stepwise refinement processes uzed in program-
ming awd otler engineering domains.

The centreal resnlt of this report i o parsing algorithm for fow graphs.
Given a How gramnar and a How graph, the algorithm determines whether
the grammar generates the graph and, i so, finds all possible derivations for
it. The author has iupleweat ed tle alzoritlon in LISPE,

The intent of this report 15 to make Bow-grapl parsing available aa an
analytic tool for rescarchers in Artificial Iutelligence. The report explores
the intwitions belund the parsing algorithoy, contains pnmerous, extensive
examples of its bebavior, and provides senw gnidanee for those who wish to
custommize the alorithm to their own uses,
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Chapter 1.

Introduction

This report swmmarizes rescarch about flow graphs. a graph-based repre-
sentation abstracted from those used in a variety of Artificial Intelligence
applications. A flow graph is a labeled. directed. acyelie graph whose nodes
are annctated with perts—positions ar which edges enter or leave the node,
Here is an example of a flow graph:

We can generate complex flow graphs from simple ones by replacing single
nodes with multi-node subgraphs. The obwvious analogy between this process
and that of string derivation from a context-free grammar gives mise to the
notion of a flow gremmar: a st of rewriting rules which specify how to
replace given nodes with pre-specified subgraphs. Here is an example of a
ride from a Bow srammar:
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The central result of this report s a parsing algorithm for Aow graphs.
Given a flow grammar and a Bow graph. the algorithm determines whether
the grammar generates the graph and. if so. finds all possible derivations for
it. The alzorithin runs in time polynomial in the number of nodes in the

input graph. with an exponent and constant of proportionality determined
by the input grammar. The anthor has implemented the algorithm in LISP,

1.1. Motivation

The work deseribed here g;zw out of the author's research into antomated
program analysis [Brotsky 1081], done as part of the Programmer’s Appren-
tice project at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology [Rich and Waters 1081]. In the work of that group,
programs are represented as annotated graphs, called plans, whose nodes
stand for operations and whose arcs indicate control and data Bow between
the nodes. [Plans are additionally annotated with a great deal of other
information about the program they represent. but the details of these an-
notations do not concern us here. Interested readers should consult [Rich
1950].]

The anthor's idea was that the stepwise-refinement process, Wiiere'm-]:ﬁgh-
level program operations are implemented as groups of lower-level opera-
tions, conld naturally be modeled as a plan-rewriting process. Thus, Aow
graphs were developod as abstractions of plan structure. flow grammars were
developesd to encode allowable derivation steps. flow-graph derivations were
developed as models of plan derivations, and structural program analysis
eould be effected through parsing.

This program-analysis work is continning, but docs not concern us here.
Flow graphe, while developed as ad hor abstractions of plans, are general
enougl to serve as abstractions of the graphical reprezeutations of other
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domains. The intent of this report s to make Bow graph parsing availahle
as an analytic tool for AD researchers in these other donaius.

1.2. Background

The strncture of Row graphs and Bow srammars has been infueneed by early
work on web grammars [Plaltz and Rosenfeld 1969; Montanari 1970: Pavlidis
1972]. but none of this work was concerned witl parsing, The steveture of
anr parsing algorithun arose from careful study of Barley s algorithm |[Earley
1969 and Dunald E, Kuuth's semninal work on LIt[k) =t ring grammars (1963,

1.3. Structure of this Report

Chapter 1 of this report is this introduction. Chapter 2 describes flow
graphs. flow grammars. and flow-graph derivations in detail, Chapter 3
presents a derivation of Earley’s algorithm whicl differs considerably from
these found in standard sources. This derivations is given as background
for the very similar derivation of the graphs parsing algorithm presented
in chapter 4. Finally, chapter § discusses flow graphs, grammars, and the
parsing algorithm. This discussion includes a brief complexity analysis of
the algorithm, and suggestions for related research.
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Chapter 2.

Definitions

In this chapter we define flow graphs and flow gramumiars, and give the
mechanism by which a grammar derives & graph.

2.1. Flow Graphs

A flow graph is a labeled, acyclie, directed graph whose nodes and edges are
restricted in & variety of ways: .

s The label of cach node is called its type.

* Dach pode has a set of énput ports and a sot of outpul ports. These two
sets are digjoint. All nodes with the same type have the same input and
output port sets.

* The mput and output port sets of How graph nodes are never empty.
That is, all nodes have at least one input and one output port,

¢ Edges in flow graphs do not run merely from one node to another, but
from a partienlar output port of one node to a particular input port of
another. No two edges may enter or exit from the same port, 20 a node
can be adjoined by only as many edges as it has ports,

Intuitively, a flow graph looks like this:
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Notice that ports (which are identified by numeric annetations on the nodes)
need not have edges adjoining them. Any input {or output)] port in a fow
graph that does not have an edge running into {or out of ] it is called an
input {or outpuf) of that graph.

MNotation

We will always dirert our fow-graph diagrams from left to right. We will
often subscript node types so as to make them into unique labels. (This
avoids awlkward constructions such as “the third a from the bottom-left.” )
When we do not care which port an edge adjoins, or if this is made clear
from context. we will ciit port annotations. If we omit all the ports an-
notations on a node, we will often omit the circe drawn arcund the node’s
label. Finally, we will always cmphasize the inputs and outputs of graphs
by adjuining them with edge stubs, called the leading and frailing edges of
the graph.

Here is the graph we saw above written using the conventions just de-
seribed:
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We will use this form whenever possible.

Terminology

The linkage information for a node in a graph is a set of {port, edge) pairs
detailing which edge adjoins eacl port on that node. For example, figure 2.1
shows a graph whose cdges have been labeled for easy reference. The linkage
information for nodes a; and 2 in this graph is;

L 3
l:l,-tj} -',:l: Eﬂ.:l
{Irfi} {21 E'TJI'
{3, e4) {3, eg)

In keeping with our left-to-right conventions, that portion of a node’s linkage
information which involves only input [resp. output | cdges is called its left-
inkage (resp. right-linkage) information.

2.2. Flow Gr_am IMAars

Flow grammars are a generalization of context-free string grammars. Essen-
tially. a flow grammar iz a set of rewriting rules. where cach rule explaina
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Figure 2.1. A flow graph. The edges of this graph have been labeled for easy
reference,

how to replace a node in a graph with a particular sub-graph. Just as a
string grammar gradually rewrites a single-clement siring 2z a longer and
longer string, a flow grammar gradually rewrites a single-node graph as a
larger and larger graph.

Mare precisely, a flow grammar G consists of 4 parts: a set P of produc-
tions, two disjoint sets of types N—the non-ferminals—and T—the terme-
nals, and a distinguished non-terminal type 5 —the staré type of G. Each
production in P consists of three parts: two flow graphs and a list of port
correspendences.  The first of the two Row graphs—the production's lefi-
hand side—consists of a single node whose type must be from N. The
second of the flow graphs—the right-hand side—econsists of nodes whose
types are from N UT. The left and right-hand sides must have the same
mumber of inputs and outputs, and the list of port correspondences is a 1-1
correspondence between inputs and outputs of the two sides,

A flow grammar is shown in figure 2.2 Each rule maps a single node to
a graph. The left-hand side node of each mile must be a non-terminal, that
ia, of a non-terminal type, while the right-hand side graph can mix types at
will. (We will indicate non-terminal types with capital letters, and terminal
types with lower case letters, )

The inputs of the left-hand side of a rule correspond ene-to-one with the
inputs of the dght-hand side. as do the outputs. Where clarity i needed,
we will indicated this relationship by drawing lines between the cdge stubs
adjoining corresponding ports, as was done above. Where it's clear, however,
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v will dnsdicate the rn;':rr.:-ﬁrrruu_'li*]u':' si.!up!].' '|'|]." 1u:i:|'.|:'l.l-:I'iJI:.'I bl auligganescast of
left-hand side edge stubs with thoese of the dght-had side. For exaople,
the second wale in the above grasumar condd have boeen written s follows:

Notice that there is no flow-grammar equivalent of an “c-rule” in a string
grammar: that is, there are no flow grammar rules whose right-hand sides
are empty. This is because it 95 meaningless to replace a node in a graph
with nothing: the cdges that were adjoined to that node must go somewhere.

2.3. Flow Grammar Derivations

Flow graphs are derived from flow grammars in the expected way. We
start with a graph consisting of a single §-node and then rewrite it with an
applicable rule from the grammar. This gives us a flow graph. If there are
no non-terminals in the derived graph. the derivation stops. Otherwise, we
pick & non-terminal and a rule that derives it, and replace the non-terminal
by the right-hand side of the rule. This gives ua another graph, and the
whole process iterates,

Of course, when we replace a non-terminal by & right-hand side that
derives it, we have to do sowething with the edges that adjoined that non-
terminal, This is what the port correspondences in rules are for: i p was
a port on the replaced non-terminal. then the edge that adjoined p (if any)
is made to adjein p's corresponding port in the replacement graph. The
restrictions on rule formation insure that there is never any question as to
how a right-hand side should replace a left-hand side, For example, fgure 2.3
shows the derivation of a graph from the grammar given in the last section.
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Figure 2.3, Sample Flow Graph Derivation
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Chapter 3.

Motivation for the Algorithm

Earley's algorithm is a well-known string parsing algorithm [Earley 1969].
It takes a string grammar and a string as mput, and determines all possible
derivations of that string from that gramemar. The cutput of the algorithm
is a list of representations known as items: the aceeptability and derivations
of the input string are encoded in this list.

This section presents a derivation of Earley’s algorithm that differs sig-
nificantly from those found in standard sources. For s given input grammar
and string, we first construct & non-deterministie stack-based parser for the
grammar. We then deterministically simulate the behavior of that parser
when run on the input string; the representations of the parser’s config-
urations generated in this simulation will be homomorphic to the items
produced by Earley's algorithm when run on the same input.

The derivation given here is presented as background for the very similar
derivation of our flow graph parsing algorithm given in the next chapter.
Much of the complexity inherent in both algorithms arises from optimiza-
tions that are employed in the sinnulation process: since the intuitions under-
lying these optimizations are the same in both the string and praph cases,
we belicve that presenting them in the relatively familiar context ‘of string
parsing will make their use in grapl parsing more comprelbensible.

3.1. Non-Deterministic String Parsers

Given a rontext free grammar & with productions Py, ... P, and start
gymbal 5, the following construction yields a non-deterministic stack-based
parscr for (7

13
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1. Construct a state-machine peeognizer for the right-hand side of each B
A state e the recopmzer I votistrneted for rale Iy will consiat of COpy
of P,s right-hand side with a dot placed just to the keft or dght of one of
its symhaols: the state st of R will consist of all the states formed in this
way. The state transition function of B will map (state, symhbol} pairs
bo atatos: cach state with a dot to the left of some syibol 5 will have a
bransition on s to the state whose dot is just to the rght of . The initial
state of J; will be the state with a dot to the left of the leftmost symbol
in P.'s right-hand side: its final (accepting) state will be the state whose
dot is to the right of the dghitmoest symbol in F's right-hand #ade.

For example, if P, is the production A — 22 Ay, then the recognizer for
P, will have the following five states: '

|A—-zBAy|
|A — z- BAy|
[A = zB- Ay|
|4~ zBA -y
|A = zBAy-|

and the transition diagram for F’s recognizer would look as follows:

mitial alale finsl siada

2 (Cpeate a state-based machine P whose state space and transition funetion
is the union of all thoze of the recognizers for the Py, The initial and final
gtates of P are the initial and fnal states of the recognizer for §.

3. Convert P te a non-deterministic stack machine by adding a stack and
instruction: az follows: For each state s which has a transition on & non-
terminal fnput. associated instructions to that state which (i) push the
state onto the stack and (i) put P into the start state of the recognizer for
some production which derives that non-terminal. (If the non-terminal
on which a state has a transition has n possible derivations, then this
step will associate n instructions with that state. )

4. Complete P by adding instrnctions as follows: To each accepting state af
a recoguizer for a F%5, add an instruction which (i} pops a state off the top
of the stack and (i) put P into the state which is led to by the popped
state’s transtion on the non-terminal derived by B
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The wachine I Luilt iy this way i5 a top-down nou-deterinistic parser
for sentenees derived from 6.0 Tt operales by reading symilols ope at a
tisee feoan thie input sl Iaking appropriate state transitions as it docs o,
Whenever it entors a state which his assowinted stack st Enetions, it cliooees
ome of those imstenetions and exeentes it {The choice involved bere iz wha
makes the parser nou=deterministic ) We first consider an example of such
a parser. and then disenss sope miplications of the construction teelimicgque.

3.1.1. An Example

Consider the following grammar -

8 —Aa
A—c
A—cd

@ derives all strings consisting of one or more ¢'s followed by an a. We will
carry out the construction described above sg as to produce a parser for (7,
and then run this parser on the input eca.

First. we construct state machines which recognize each of the produc-
tions in . These are as follows:

" Actually. this machine b merely a0 acceptor for such sentences. However, d we hare
each push instraction in P satpat the oometerngaal which gave rise to the push, apd we
onitput enels iopat syrabol as it is rend, s each accepling path through P will output
& beltnsmt derivntion for the sentence accepted. Thus, we view P as 2 passer,
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Now we create the upion machine and replace non-terminal transitions with
pushies:
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This comuplete= our parscr. We will represent o given coufignreation of the
JMATSCT fs

fuput position)  [{state): ({stack top);. . (stack hottom}]]

where the states are represetited vsing the dot pepresentation shown above,
[Recall that stack entrics are just states.] For example. when mnuing this
parser on the string cea. it starts jn the following configuration:

Ofc) [§ — - Aa.{)]

The state [§ — - Aa has two transitions on push instroctions. The parser
st choose one of the two, leading it into one of these two configurations:

Ofe) [A = g, [§ = - Aa]|
|A — rcd, (8 — - Aa]|

At this point. no more state transitions are possible without reading an
input symbol. Thus, the parser will read the first ¢, leading it into one of
these configurations;
He) [A—e (8 —-Aa]]
[A—e A (8 — - Aa|

The firet of these two ronfigurations is an accepting state for the rule 4 — ¢,
and allows a pop into the following configuration:

1e) [§—A-a()

while the second configuration is in a state containing push transitions to
the these confisurations:

e} [A—-e(A—ec A5 — - Aa)|
[A = -eAd (A —c A5 — - Aa]|

Onee again, ue more state transitions are possible without reading another
input symbal.

We can summarize all the possible computations so far in the following
tabular fazhion:

ofc) |§ — A-a, ()]
[A e (8~ - Aa)]
[4 = 1A [§ — - Aa]]
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el [A < (8 = - Aa)
[8 = A-a ()]
|A — - A (8 — - Aa]|
A= efd = A8 — - Aa)|
A= ed (A = - A8 — - 4a)|

We will use this form extensively to summarize artions of these parsers; for
example. the remainder of the run of this parser on the string cen goes as
follows:

Hee) [A—e(A—=c 485 —-da)
14— ed- (8§ = Ag)]
[§ — A-a, ()]
[A—c A [A—ec- A5 = + Aa)]
[A—= e (d—e A= A5 — - Aa))
A= A (A—ec-did—=c A5 = « Aa)]

3(eca) [$ = Aa-,()

3.1.2, Discuasion

From one point of view, this construction technigue produces elagsic recursive-
descent parsers, such as those presented in undergraduate compiler classes,
Where a recursive-descent parser would have a subroutine dedicated to the
recognition of each rile's right-hand side. these parsers have state-machine
recognizers, and these recoznizers are linked together via a “subroutine-
call” mechanism based on a stack. In what follows. we will often deseribe
the actions of these parsers uging terminology suzprated by this metaphor.

From another point of view. this construction techinique produces clas-
gic push-down automatata, The state-based machines constructed for erch
grammar rule are finite-state recognizers for the right-hand sides of those
rules. and the dots i their states indicate the expected position of a read
head in the parser's input. In this context. the stack puzh and pop instrue-
tions Act as c-transitions between the various recoguizers. and the parser
appears as a non-deterministic push-down antomaton whose nite state con-
trol compares substrings of the input against the right-hand side of gram-
mar miles and whose stack menitors the eenter-embeddeduese of the input
as & whole. In what fullows, we will also gse terminelugy suggested by this
tiie-Laphor.
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3.2. Simulating the State-based Parser

In order to sinmlate a parser constructed as above, we mmst perform all
the actions which follow froan all possilde pon-determomstie choteres, The
revnraivesideseent metaplior suggiests that we do this with a sequential ap-
proach that employs hacktracking, while the antomaton metaphor suggests
a parallel approach in which one sielator state represents a number of
reachable parser states, We ghall adopt this latter approach. and keep track
of all the (state. stack) pairs reachable by a parser at cach step of the in-
put. The result of the simmlation will be a sequence of lzts of reachable
confignrations, mnch like those nsed in the sample parse above,

3.2.1. Preliminaries

We use here a slightly different representation for the stack segment of a
configuration than we did in the sample parse above. In line with our
subroutine-call point of view on push operations. we will not keep the whole
stack with eacrh configuration. Rather, each time we make a transition to
the initial state of a recognizer. we will keep a refurn pointer which indicates
the configuration we were in before entering that state.

For example, we presented above the configuration sequenee for the parse
of cen. If we make the representational changes just deseribed, we obtain
the following, more compact representation, in which we have subscripted
the configurations for use in return pointers:

0f«) [§ =« Aa, [y
[A— e, 1]z wexpand A from item 1
[A—-cd, 1]a

1e) [A—e- 1)
|§ — A-a, |s return to 1bem 1
A —ec-Als
[A — -, 6]
[A — -cA, 6la

2ce) [A—c-bg
[A = cA- 1]1g
[§ = A-a, |u
[A — ¢ A,6]52
[A = ¢, 1213
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i.." —* s F-"... |.2|;|.|
Hrea)  [§ < da-, | Arcept

We call the [{state). {rotury pointer)] pairs used here dtems. to distingnish
them from eonfignration representations that show the coauplete stack.?

4.2.2. Multiple-Call Collapsing

It i convenient to think of this method as simulating, uot one, but many
not-deterministic parsers at the same time. As theso parsers run, they
make different decisions at vach choice puoint. and the simulation keeps track
of all the different configurations they get into. At any position in the
input. the current state of any given parser is contained in soine item on the
current item list, and the contents of that parser's stack may be computed
by following return pointers from that item upwards.

It may happen, however. that two parsers whose stacks differ enter the
same state at the same position in the input. For example, consider the
following grammar 7

=8
& — 5"
g g
5 = Aa
A=
A= ed

G' derives the sume strings as the grammar (3 given above. However, if &
derives a string via derivation tree T, then &' derives it via the following
two trees;

Their relationship with Earley itemms is exnmined breloaw,
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Tree 2: SI
g"

T

The parallel structure of these trees can be seen elearly in the following
simulation of a parse of cea under G

0(e)

1(c)

2lex)

|§ — -8, |1
|8 — - Aa, 1)1
|A — -, 2y
|A = A, 2]y

|§ —-8" Js .
|8" — -5 5a
|8" — - Aa, 8]
[..rl - =, T]:

[A = -cA, T]o

[.:". -+, E]]ﬂ
[.5.1'F — A-a, 1y
[A—=ec-A 212
[A—-e1213
[A = -cA, 12]14

[A—*-:',Tllg,
[5' —*.4-ﬂ.ﬁ|1u.
[A = e+ A, T
E..'l —P'E,I?]“
11'1 —*"E'A, 17]||;|

(A = ¢+, 12]m
[A — eA -, 22
|8 — A-a.l]n
A = - A, 12|z

wcompare with item 2

;rompare items 15-19 with items 10-14
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[A = -r. 23)5
[A — oA 20 gy

|A = e 17|28
|A = ed-. Ty
|5 — A-a.Glag
A=A 1T
[-‘1- — Eﬂhﬂ
[A — A 20|y

Meea)  [8" = Aa-, 1]z

The possible configurations obtained upon reading each of the input tokens
break cleanly into two groups whose state transitions are identical but whose
stack environment is different. Each group can be thowght of as containing
the configurations of a different parser—one predicting the derivation that
starts § — 5" and the other predicting the derivation that starts § — §* —
§'. The similarity between the two groups is a corollary of the fact that our
grammar is context-free. In both cases we are seving the transitions involved
in the leftmost derivation of eca from §'; these transitions must remain the
same regardless of the context of 5° in the derivation,

The key observation here is that, when the recognizer for a given rule
i# called, the starting position of that recognizer in the mpul completely de-
termines tfa behawior. A particular recognizer may be called from PEFSETS
with a variety of stack configurations. but if all the calls ocenr at the same
input position, we need only simulate the state transitions made by that
recognizer once: the results can then be used in all the parsers that made
the simultaneous calls, '

With our representation. this optimization is casily made by turning
nmltiple calls to the same recoguizer at the same fnput puosition into a single
call with multiple returns. This leads to the following parse list for cea under
(' {each item now contains a set of return pointers instead of just a single
one): ’

0fe)  [§—-8{}
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[§ - - 8" {}]a

[8% = -8 {2}]a

(8% — - An {1.3))y  eompare with ftems 2 il T above
(A —-rA {4}]o

le) (A — e {d}]s
[ — A-a {1.3}]s
A — e A {d}]e
|4 — e, {9} 0
|..||l — A, {'EHJJ

2ec]  |A— e {92
[A — cA- {4}]1s
I_Sr . {113}{11
[A = - A {9}
[A = -c.{1,5}18
[A = -cA {1,517

3cea) [.‘5" — Aa '-.{1.3_]‘]13

|5 =+ &+ {}He sreturn to item 1, accept
(8" = & -, {2} return to item 3, ...
18— 5" {Hn i ... accept

A nzeful way to conceptualize the optimization performed here is to visnalize
the parse trecs “buill” by the pushes and pops of the various parsers being
simmlated. Dofore the optimization, the siilator built both of the correct
derivation trees:
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S

g
7\ )

E/A\A a c/Aé \a

L |

c

After the eptimization, it builds the following hybrid structure:

S S
7

\S,./S
N\
/ \T

The latter structure containg the saie information

about the parse as the
two previons trees together.
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3.2.3. Left-recursion

An iportant snlecase in which pnltiple-call collapsing i= applicabde s that
of left-reeursive grastoar mides. Those rules present well-kooewn difficalbies
for deterministic recnrsive-deseent parsers. hecanse the parser can oot know
Tiowe 1ALy tropees Bov jpvoke e recarspve L"!|5||J'|.I|:ljl::ll:| of & non-terminal withoont
looking alwad in the input. For cxample, consider the following grammar:

5'—-!..-'15
A =
A= Ar

This grammar derives exactly the same strings as the right-recursive gram-
mar & given above. but congider the following “parse” of the input string
cea [we have not used multiple-call rollapsing):

Ole) [§ —-Aa, |3

[A—-ellz expand A from item 1

I . o ditto

[A— el expand A from itemn 3 (ub oh)
[A — - Ac, 3l -

[A— e bla .and 20 on

(A — - e, 5ly

[A—-e,Ta and soon ...

1e)  [A— e st

[§ = A8, oot -return to item 1

[..-1 — e, aged

[A— A-¢,1]a0sa return to item 3§

[.-‘1 — e By

[A— A-6,3 s wreturn to item 5 (ub oh)
E.."; — 2 L*‘Elﬂ"-T

[A—A-6,5 ez and sooon ...

2ex) i-"l' — Ae-, 1!w+=v+l
|§ = A-a, Jeotoat2
[A = Ac+, ¥oosoo+s
|A—A-6,1]acsonse
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|A = Ae- Blog oo 5
|.i‘ _"A"l-.:.tlu i T ||

Jrea) [§ — Au-, |

If we perforin multiple-call collapsing, however, something very interesting
Lhappens:
) |5 — -Aa, {}
|A—-c.{L3}|s expand item from items 1 and 3
(A4 = - de {1,3}s  mote the self -recursion here
1) [A—e- {1,3}
[§ —= A-a.{}s sreturn to dtem 1 ..
[A = A-e,{1,3})s ;and again to item 1!
2ee) [A— Ae- {1,3);
1§ = A-a.{}s
[A4 = A-c {13}
3cea) [ — Aa- {}in

The subtlety here involves item 3, which serves the same purpose as items 3,
3 T, 0. ..., in the previous simulation. We are in fact simulating an infinite
number of parsers here, one predicting cach of the following parse trecs:

!/Iil. 11 1]

At any given point past the first ¢ in the input, however, they have all invoked
the same recognizer (for 4 — Aa) at the same point, so the simulation koeops
just one representation for all of them.

3.2.4. Duplicate-Item Merging

Multiple-call collapsing optimizes the case where different parsers invoke
the same recognizer at the same point in the input. If we consider enly
unamhbiguous grammar, this is the only case in which recognizers invoked by
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different parscrs are guarantesd to perform wdentical aetions. Dut congider
the following amibigwons granmar fragmcnt:

g= A ..
A= B
B—h
B — bb
O = be
O =

This fragment produces the following two derivations of the string fragment

\ - /\
J{ I A

c

These derivations are recovered in the following parse:

Ofe] |4 —-BC {}
|8 — -, {1}]2
|B — -8, {1}]s

1{6)  [B— & {1}
[..'l. — B+, {}]5
[I::I — b, '[E]']l!
[C = e {5}]s
[H =t beb, {”‘]E

2(bb) |C —b-c. {5}
|B — b, {1}]10
|4 = B-C.{}1n ;compare with item 5
| = +be. {11}]42
|C = e, {11}]1

J{bbe) O — e {5} 14
[.fl - B ‘-{]‘liﬁ
(€= e {11}]1a
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|A — B {Hir ccompare with ite 15

Note that items 15 and 17 are identical. The situation euconntered bere
i uite siailar te that in wlich we iwvoke smltiple-call collapsing. in that
revognizers for the sane mile ovoked swmltamconsly by differont [HLFRETS
havee peachied the sate state at the same point i the tupmt. o this vase that
state is mot the recognizers” initial state, but the same reasoning shows that
bath recognizers will perform identical actions until their respoctive parsers
make differing derivation decisions. Thus, as with multiple-call collapsing.
we necd only keep one item to represent the atate of both recognizers.

3.2.5. The String Algorithm

We are now ready to state our string parsing algorithm. The algorithm
takez a2 imput a grammar G'amd a string o, and determines whether &
generates 8. The outpat of the algorithm is a sequence of item lists—one
for each symbaol in a-—which represent all the configurations reachable by a
non-deterministic string parser for (¢ operating on 5. The algorithm does
not construct a parse tree for the input, but we show below how it can easily
be modified to construct all possible ones.

The algorithm operates by using a list of items [ to keep track of all
the configurations a parser might be in after reading the i-th mput symhbal.
Given lists Ty, ..., Ly, the algorithm constructs list [, by using three
operations:’ a scanner operation, a predictor operation, and a completer
operation. We first describe the nature of these operations, and then how
the algorithm uses them to construct the lists Jo, Iy, ..., In.

The Scanner

The scanner operation takes as input an item ¢ from list [;_; and the j-th
input symhaol a;. Let s be the state part of ¢ and rits 20t of return pointers.
If s has no transition on e, then the scanner does nothing. Otherwise, a
has a transition en e; to some state s'. and the scanner creates an item §
on list J; whose state part is 5' and whose list of return pointers is r.

We can abbreviate the scanner operation as follows: Let [A — a-i3.7]
be an item from [yop. IT ¢ is the j-th symbol of the input string. then the
scanner adds the item |4 — af-8,r] to I, .

"The names of these operations are taken from [Earley 1080].
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The MPredictor

The prodictor operation takes ns dnpnt an item 1 from Bst 7,0 07 the state
part s of 1 does not Bave o transition on & pou-terminal wode. then the
predictor operation docs nothing. Otherwize. let A be the non-terminal on
which # hns a transition., amd It =), =2, . ... 8 be the witial states of all the
recognizers for rules which derive A, For cach s, the prodictor operation
checks to see if there is an item with state part s on list I, I so0, the
predictor adds @ to the return set of that item. If not. the predictor creates
an item with state part & and return set {1} and adds it to I,

We ran abbreviate the predictor operation as follows: Let |4 — a- By, rl;
be an item on {;. For all rules B — 8 in (7, the predictor operation searches
I; for an item of the form [B — -A.r]. If it finds one, it adds ¢ to r.
Otherwise, it adds an item [B — - 3, {i}] to I;.

The Completer

The completer operation takes as input an item ¢ on list ;. If the state
part of 1 1s not the accepting state of & recognizer for some rule of &, the
cowpleter operation does nothing. Otherwise, let A be the non-terminal
derived by the accepted mle, and let iy, ..., tm be the mombers of the
return set of ¢, The state part of each 1; must have a transition on A: let 5,
... 8 be the states led to by those transitions. For cach 1, the completer
locks for an item on I whose state part is 8; and whose return set is that
of ¢;. If it finds one, it does nothing, otherwise it adds such an item to I;.

The completer operation may be abbreviated as follows: Let [A = 5+, ry]
be an item in [;. For each item [B — o~ AB, rg); such that £ € ry, add
[B = aA-f8.ry] to I; i it is not already there.

The Algorithm

First, we conatruct fy as follows:

1. Let sy, ..., #m be the initial states of recognizers for the rules in &
which derive 5. For cach s, add an item to Iy whose state is s, and
whose return set 15 empty.

2. Complete Iy by running the predictor on every item in it. If new items
are added to it, run the predictor on them, and repeat this until no new
items are added,
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Next. we successively construet L., [ Given Tyo - Iy powe construet
Iy s follows:

4. Run the scanmer over every item in Iy

4. Dtnn the completor over overy item i J5. I this adds wew itews to I;, run
the completer over them. and repeat this until no new items are added.

3. Run the predictor over every item in I, If this adds new items to I..mn
the predictor over thems, and repeat this wntil no new items are added.

A little thought will convinee the reader that this is indecd the algorithm
used to produce the lists shown above, A string is accepted by this algorithm
if I, contains an item whose return set is empty and whose state part is the
accepting state of & recognizer for a rule deriving 5.

3.2.6. Why is this Earley's Algorithm

The algorithm described above does not appear, prima facin, to be Earley's
algorithm. The apparcnt difference is due to a couple of factors, both of
which we examine here.

Abbreviation of Return Pointers

Our algorithm uses items of the form [A = a-8,r], where r is & set of
return pointers. Earley's items have the form [A — a8, {], where I, is the
number of input symbols read when the A recognizer was first invoked. (Of
course, at that time, the recognizer was represented by an item of the form
|4~ - ag, .

These represcutations seem unrelated: however, some thought reveals
that we can encode our representation in Earley's form. An item of the
form [A — . r], whon added to list i, represents a call on one of A's
recognizers at point ¢ in the input. Thus. the callers of such an item- -the
members of r—umst be all the items for recognizers which cxpect to see an
A at point 1 in the wput. But these jtems are exactly all those on I; which
have an A to the right of their dot. Thus. if an item of Hhe form (4 — o, r]
appears on L, r nuust consist of exactly those items on I; that have an 4 to
the right of their dot, so0 we can encode r with the integer 1.
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Handling of /-rules

Earley's algorithm handles grammmars with productions of the form A — ¢4

This involves runnmg the completer on Ly, aml alternating the pepeated
application of steps 4 and § {instead of applying oue repeatedly amd then
the other).

If these stops were added to our algorithm, and if the representation were
changed as mentioned above, our algorithm deseription wonld agree exactly
with the description given by Earley in [Alo and Tlman 1972].

3.2.7. Using the Algorithm to produce Parse Trees

The algorithm we have presented here is actnally an acceptor, not A parser.
That is. while its output indicates immediately whether or not the inpat
string s in the language of the input grammar, it does not provide a parse
tree,

Algorithms are available from a variety of sources (e.g., [Aho and -
man 1972]) which produce ‘a parse tree from the parse lists output by our
algorithm. In addition, consider the following definitions of the scanner and
completer operations:

The Completer

The completer operation takes as input an item ¢ on list I;. If the state
part of 1 is not the accepting state of a recognizer for some rule of G, the
completer operation does nothing. Otherwise, let A be the non-terminal
derived by the accepted rule, and let 1y, ..., iy be the members of the
return set of {. The state part of each f; st have a transition on A; let sy,
.... 8m be the states led to by those transitions. For cach i, the predictor
looks for an item on [; whose state part is s; and whose return set is that of
i,. If it finde one, it adds to it a pointer to + and a pointer to §;, otherwise
it adds such an item [including these pointers) to I;.

The Scanner

The scanner operation takes as input an item ¢ from Hst I, _; and the j-th

e algorithon need not handle these prodductioes, sinoe we are tmterested only in genes-
alizing it to |;r.1.]:-]|. [Legif I FHE L :i:'l wliich such |1I"D-E[1I-'l'tiDI!l! oo mot ﬂtl-'lll']
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mput sywlnd ay, Let s be the state part of § aod r its st of retarn proinsters,
If & b mo framsition on £ then thee seanmer s nothing, Otherwise, =
hine & tramsition on £ to some state s ol the seanner croates an item 5 on
list J; whose state part is & whose st of eoturn pointers is v, amd whick
containg the same comploter-adided poiuters as ¢ (if any).

IF the algorithm uses these definitions. each item of the form [A = -, 7
in the eonstructed lLsts will be the root of a pointer structure giving all
the derivatiou trees for that instance of 4 in the input. In particular. if a
sentence is accepted by the algorithm. the items of the form [§ — a-, {}]
on [ will be the roots of all the Jerivation trees for that sentenee,
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Chapter 4.

The Algorithm

In this chapter we present our flow graph parsing algorithm. The inpits to
the algorithm are a How grammar and Bow graph; its output is a sequence
of lists similar to the item lists produced by Earley's algorithm.

Az in the last chapter, we will produce the algorithm by doveloping a
non-deterministic parser and then simulating its behavior deterministically.
Both the parser and the sifiulation technigue generalize those we used for
strings: the resulting algorithm is a generalization in that, when it is mn on
a string graph, it performs a superset of the actions performed by our string
algorithm.

4.1. Non-Deterministic Graph Parsers

The method we used to construct a parser for a string grammar consisted
essentially of two steps:

1. Construct recognizers for the right-hand sides of each of the grammar's
productions.

2. Construct a stack-based machine out of these recognizers by replacing
their non-terminal recognition steps with ~subroutine calls™ on other rec-
DENLZCTE,

We will apply this same method to flow granunars in order to construct
How graph parsers. The nature of this construetion is determined by our
generalizations of (i) the mechanism nsed to read the parser's input, (ii)
the recognizers used for the rght-hand sides of grammar mules, and (i{i] the
linkage werchanism used to intereonnect recognizers. Each of these general-
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izations prescrves mtnitions that arise in the string case, ot phroses these
frtnitions so as to mwake them applicalbe to graphs a= well as strings.

4.1.1. Reading a Flow Graph

{Jur string parser consteacted a parse for its inpat while reading it once [rom
left to right. and so will our graph parser. *Onee’ means that the parser will
look at each node in the input only one time. “From left to right’ means
that the parser will consider nodes in the partial order tmposed by the input
grapli: that is, a node in the input will be Jooked at by the parser only when
it has already looked at all that node’s predecessars.

As mentioned in the last chapter, it is natural to think of our string
parser as an automaton using a read head to examine its input. This head
moves fromn left to right over the input, passing the symbols read on to the
state-transition funetions of the parser’'s active recognizers.

Cur graph parsers will examine their input graphs as if they, too, had
read heads. These heads should be thought of as “multi-track™ heads which
ran be pesitioned over more than one node at a time. They start at the
left edge of the input, read nodes one at a time from left to right, and pass
information about these nodes on to the state transition functions of the

parser’s recognizers.

For example, consider the following graph:

{)—(

A parser reading this graph would start off with its read head positioned to
the left of the graph’s two minimal nodes. like this:
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@O
©

(o)

It would then select one of the two minimal nodes to be read next —we don't
care which, Let us say it chooses the upper one: this would leave its read
head in the following position:

_

Here the parser must again choose which node to read; let va say it again
chooges the upper ope. The read head wonld move over this node to give
the following position:
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At this point, there is only ome node the lower one available for realding.
Intuitively. the read Jead is not “just to the left™ of the prapli s il
node: there ie 4l A preceding node which nmst be read first, Thos. the
pet prasd Bieou] posiiion 1= as follows:

Finally, after the last node is read, we have:

(v)

and the read head stops.

We have indicated the position of the read head at each stage by denoting
the unique sct of edges (possibly leading or trailing edges) all of which follow
all the nodes already read and preeode all the nodes yet to be read. We call
these edge sets head postiions, and we precisely characterize the order in
which graph parsers examine the nodes of their input as follows:

1. Each parser is considered to have a read head. The initial head position
of the read head in the input congists of all the input’s leading cdges.
The parser can examine any node all of whoese incomnng edges are n the
eurrent hoad position. (Such a nede is said to be in the right fringe of
the head position.)

[ -]
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d. When a parser whose road headd is I position pexamines amode n. its
redd e snoves to a new position o calenlabed by taking p and replacing
n'# incowing edges by its onfgoing oues. (We eall o the n-suecessor of
P The meale m, all of whiose ontgoing edges are now i p'. 15 sadd to be in

the left fringe of p'.)

4. The parser rxamines nodes owe at a thioe until i reaches 2 head position
with no nodes in its rght fringe.

The reader can verify that the example given above meets the above con-
ditions. Sowe thought will alse show that (1) a node is never read until all
its predecessors have been read. and (i) this method, when applied to any
fiow graph. eventually reads all the nodes in that graph.

It is worth noting that this method, while phrased so as to apply to all
flow graphe, deseribes exactly the motion of our string parser’s read head
through its input “string graph.” The string case simply makes no use of
the non-determinism inherent in step (2).

Each time a graph parser examines a node, it passes three pieces of in-
formation to the state transition finctions of its active recognizers: the type
of the node read, its left-linkage information (a set of port-edge pairs), and
its right-linkage information [another set). As with our read-head motion
rules, it is worth neting that this list describes in a general manner the exact
information read by the head of a string parser. In the string case, however,
the left-linkage and rght-linkage information are both trivial: it is always
the case that the only edge in the old head pesition went ints the node's
only input port, and the only odge in the new head position came out of the
node’s only output port.

4.1.2. Flow Graph Recognizers

The right-hand sides of ow-grammar rules are flow graphs; thus, the recog-
nizers from which we build our parser will be Aow graph recognizers. These
recognizers will reccive type and linkage information about the input from
the parser, and compare this information with that found in their fargei
graph—the nght-haid side they are recopnizing. Their structure and fune-
tion will be generalizations of those of their string counterparts: that is, they
will be state machines which make trangitions baged on the input read.
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Figure 4.1. A grammar.

Figure 4.2, A graph generated by the grammar of figure 4.1.

4.1.3. States

A state in a Aow-graph recognizer consists of pairs matching edges in the
recopnizer’s target graph with edges i the parser’s eurrent head position.
For example, consider the grammar of figure 4.1, and the graph gencrated
by that gramumar shown in figure 4.2, At some point in the parse of this
graph, the recognizer for the right-land side of the A-rule might reach the
following state:
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We have indicated the parser’s head position as in the last scetion: the labels
ot the input-graph and target-graph eidges indicate the pairing which is the
state. The target-graph edge paired with a given mput edge iz ealled the
target smage of that cdge; the latter is the input triage of the formmer.

It is convenient (albeit redundant) to think of a state as Laving two
parts: (i} a set of edges from the target grapl, and (i1} a 1-] correspondence
between that set and some of the edges in the parser’s head position. In
this view. it becomes clearer that the states of our string pecognizers had
the same compesition: their edge set was the edge denoted by their Earley
dot, and their correspondence was always the trivial one seniding that edge
into the single edge in the parser™s current head poaition, The triviality of
this correspondence allowed ug to ignore it and “pretend” that the states
of our string recognizers were completely determined by their dot position.
We do not have this hooary in the graph case: for example. cxamine the two
states shown in figure 4.3, and consider which of these statos should begin
a transition sequence leading to an accopting state,

4.1.4. State Transition Functions

The state transition functions of our graph rerognizers take as inputs a
recognizer state and the type and linkage information of an mput node;
they produce a new recognizer state as output. Recognizers operate in the
expected manner: they apply their state transition functions to their current
state and the information returned by the parsct’s read head. and then make
a transition to the new state returned by the transition function (if any).
The state transition function of 4 graph recognizer is best thought of as an
algorithm that proceeds in two steps: it first determines whether a transition
exigts from the given state on the given input: if se. it then determines
the state that the transition leads to. In other words, $he algoritlim frst
determines the aceeptability of the imput, and then it determines the correet
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Figure 4.1.

4 Tl Algorithie

Two states which differ anly in their correspondence part.
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(k)

(c)

_—ﬂ-
ramies bywa s deeplobig

Figare 4.4. Some acceptable (state, input) palrs.

next state for its recognizer,

Acceptability is determined by comparing the type and left-linkage in-
formation of the input nede read with that of the target graph node which
corresponds to it. More precisely, let s be the the eurrent state, lot n be the
mput node read, let L be the set of input edges of n. and let. L' be the set
of target images of L under 5. If L' consistz of all the input cdges of some
target graph node n', if the type of n' is the same as the type of n, and if
the port adjoined on 7' by each edge in L' is the same as the port adjoined
by 1t= input image (in L}, then n is sadd to be aceeptable and n' is zaid to be
its fargef smage. Figure 4.4 shows cxamples of accoptable input situations;
figure 4.3 shows some unacceptable ones.

Onee the acceprability of an input node has been determined, the new
state to move to i3 computed by matching it« Aght-linkage information
against that of ita target image. More precisely, let s, n, n'. L. and L'
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Fignre 4.5. Some unacceptable {state. input} pairs.
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(=)

(k)

(<)

Figure 48, New (state, input) pairs computed by the state-transition algorithm
from the pairs of Rgure 4.4,

be as above. let R be the output edges of n, and let R' be the output cdges
of n'. The new state s* is computed by (i) deleting from s all pairs involving
edges in E, and (ii] adding a new pair for each edge in B. In step (i), the
pair added for an edge e which leaves n from a port p pairs it with the target
graph edge €' in R' which leaves n' from p. [Since n and n' have the same
type and thus the same port sets, this operation 1= well-defined.] Figure 4.6
shows the (new-state. new-input) pairs computed from the pairs of figure 4.4
by this procedure. Notice that state pairs pot involving input edges to the
input node read are unaffected.

As the reader may have noticed, this procedure agrees with that used to
determine the state transition functions of our string recognizer. In fact, if
we take into account butly the edge mapping implicit in cur string recognizer
states, and the linkage information implicitly read by the string parser read
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Figure 4.8. The initial state of the sub-recognizer invoked from the state of fg-
ure 4.7,

head, thiz is the procedure used to compute the state transition functions
in our string parser.

4.1.5. Linkage Mechanism

Whenever a recognizer moves into a state whose edge set containe inputs to a
non-terminal. the parser will invoke a sub-recognizer for that non-terminal.
For example. consisder the grammar and state shown in figure 4.7. Two of
the target-graph edges in the state of the S-recogmizer are inputs to the
non-terminal B, so the parser calls a recognizer for B, gving it the initial
state shown in figure 4.8,

The initial state of the B recognizer has followed by “transitivity™ from
the purt-correspondence information in the grammar rule for B. In general,
suppose recognizer state s contains target edges E;-—target images of edges
e;—which are inputs to & nun-terminal node o', The parser delefes any edge
pairs from s which imvolve the ¢, chooses a production PP which derives the
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L. e
B> >by N
€3

Fignre 4.9.  An accepting state for the recognizer invoked in figure 4.8, This rule
sliomld be redaced.

Figure 4.10. The result of the reduction invoked in fgure 4.9,

type of n', and invokes & recognizer for the right-hand side of P. The initial
state s’ of this recognizer will contain one pair for each edge ¢ as follows:
Suppose :‘; enters n' at port pl, and suppose port p; is mapped by P to port
p; on port n {in P's right-hand side). Then &' will pair the leading (target)
edge entering n with £; (the input image u-fP;] The reader is encouraged
to verify that this procedure produces the state of figure 4.8.

The operation dual to invocation of a sub-recognizer is the return of that
sub-recognizer. In the example given above, the state of the B-recognizer
after the parser reads node n will be that given in figure 4.9, The edge set of
this state contains a trailing edge. so the parser will reduce the recognized
rile and move the calling §-recognizer into the state shown in fimure 4.10. In
grneral, whenever a state containg a target-graph trading edge, the parser
will perform a reduction by adding edge pairs to the ealler’s state in a
procedure which roverses that used at invocation time.

The reader must by now he expecting the following claim: this linkage
mechanism is a general phirasing of the exact mechani=m used by the string
parser. It simply make explicit the manipulations of the target-graph input-
graph edge correspondence that were left implicit in the string case.
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4.1.6. Flow Graph Parsers

W lueee now introduced the three luwie compoment= of onr ucser con-
strnetion techuigue: o mechani=m for reauling the mpnt. the recoguizers for
alividual mles. and the linkage mechanism mssd to intereonnect recognizers
for different mles. Rather than state a complete constrction mechanism
[as we did in the proviouns chapter). we will insteaid comsider two examples of
grammmar/graph pairs and the behavior of the parser ronstructed for them.
These examples will expose some details of the construction and behavior
of the resulting parsers that have not been considered thus far: in addition.
they will introduce a representation that forms the basi= for that used by
our simlation algorithm.

A Simple Example .

Let us start by considering the behavior of a parser constructed for the
following simple grammar:

P N
S %' HE},.H‘

—A— = —b—
—p— = —b—

when run on the following graph:

/"“‘x
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This parser starts off by calling the recognizer for the eight-land smde of
the rule deriving 8. The parser stack s cmpty. and its read head is over
the leading edge of the ipat. Since there is only one sich odae. the [RLFROT
has 1o choice i determining the S-recognizer’s initial state: that is, there
iz anly one possible correspomlence between the leading edges of the inpat
amd those of the S-recoguizer’'s target graph, [We consider below how to
make this choice in general. )

The initial configuration of the parser iz as follows:

At this point, only one node in the input is readable. As the parser’s read
head reads and moves over it, its type and linkage information is used to
make a state transition in the S-recognizer. Of course, if the state-transition
algorithm determined the input to be unacceptable, the parser would stop
and reject the input. In this case, however, the parser moves into the fol-

lowing configuration:

& h“\\

—a L o—

This state contains target odges which are inputs to the non-terminals A
and f. The parser thus invokes sub-recognizers for these nodes, moving
into the following configuration:
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The following points are worth noting:

s We are no longer using a simple stack to keep track of sub-recognizer calls.
Because multiple calls may be made from a single state, we use a “tree-
shaped stack”™ that keeps track, for each call made, of both the calling
state and the particular node being recognized in the caller's target graph.

s This hehavior appears different frons that of the string recognizer, which
left an “Barley dot™ in front of the node being derived. In fact, this dot
servenl to identify the node being derived—a function now handled by
information kept on the stack--not as a state marker,

The parser is now ready to read another node, Let us 5-I1-!|f it reads o; this
leaves it in the following configuration:
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The recognizer for A has now moved into an accepting state, so the parser
reduces the production involved by moving into this confignration:

Note that the S-recognizer has changed atate while its call to the B-recognizer
is outstanding. This could never happen in the string parser. To emphasize
this mutability of the state information stored in & graph parser’s stack, we
think of the stored information as state ebjerts rather than states.

Next, the bnode is read, and the B-recognizer changes state accordingly:
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by B
-
—a [
“Hbfﬁr

The B-recognizer has now moved into an accepting state, so the parser
reduces its rule and moves into the following configuration:

Notice that the S-recognizer state-pairs derived from the reduction proce-
dure are added to those of its prior state, This additivity, together with the
tree-shaped stack, allows multiple simultaneous calls to sub-recognizers.

Finally, the parser read the m-node and moves into the following config-

Uration:

The parser’s input has been completely read, and its trailing odges are in
corresponidence with all the trailing edges of the S-recognizer’s target graph.
The parser accepts.
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A Complex Example

The following exauple degwmstrates the hebavior of a parser wlise gram-
e s resul-head motion combine to produee “stagrered inveeations ad
reductions.” Consider the llowimg srammar:

_ __,.-"‘"ﬂ.-.f
-5 = ...-h"""ﬂ“‘*--—-_
A = AN

which derives the following ‘graph:

"'-.._“"E .
~ "
4
- N T~

]

—_

Unlike the grammar considered in the last example, the start symbaol for
this grammar has two inputs, so the parser constructed from it must make
some defermination as to which of the mput graph’s imputs correspond to
which of the start symbol's inputs. In general, there is no way (short of
trying each possibility) that a parser ean determine whicli choiee of corre-
spondences, if any, allows a parse. Thus, in our deseription of this parser
(and in our sinulation algorithm), we will assume that the input itself con-
tains a specification of one such correspondence, and the coustructed parser
will use that one.!

'Since the sinmlation algorithin takes both grasmmar and graph as foprat. the termns foe
such o specification ase readily at hand.
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Lot n1s asswme, thon. that the ST fur thie plwiene STATLIAE starts m the
fllowing confignration on the above graph:

L]

A, o1
™
ne" A=

-

The S-pecoguizer’s state contains an input edge of the non-terminal A, so
the parser activates a recognizer for A and moves into the following config-
uration:

L
.-E\‘_' ;—-ﬂ"'—-‘
i “‘-.1__
£

The following points are worth noting:

s The parser has started the A-recognizer before it can determine an input-
edge correspondence for all of A's inputs. When node ny is read, and the
parser determines a correspondence for A's other input, the new input
will be added to the recognizer's (then-current) state. This process is
called stagyered mvocation.

s Ounly those pairs invelving input edges of A have been deleted from 57s
atate. This “subtractivity” iz dual to the additivity of the reduction
process.

e Configurations whicl involve partial states. such as this one, will always
result from situations in which the head image of a recognizer’s state con-
tains some but not all of a non-terminal’s input edges. In these situations,
the parser will invoke a sub-recognizer for the non-terminal invelved even
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if the inpnt odpges corresponding to the mon-teridnal s inpnts are g fn-

puats o aonode in e right fringe of the parser s reid sl position, For
example, iu this coufiguration:

R

a parser would inveke a recognizer for B even though the node b is not
yet eligible for reading,

The parser is now ready to read a node; let us say it reads the [ node. It
would move into the following configuration:

H“_.-E = f_.ﬁ..-—'
L
1'1"'-" ““".{-—-

" e L=
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The other inpnt to the previensly-invoked A-recoguizer has arnved, so the
parscr adids 10 b that perognizer's stite:

e,
A o
m’
oy TA—

A carcful reader may have noticed that we have drawn a fwo-way arrow be-
tween the A-recognizer and the node it was called for. This is to remind s
that the parser, in order to do this staggered invocation. must keep track not
only of which node a recognizer was called for, but also any recognizer that
has already heen called for a given node. That is. in addition to keeping “re-
turn pointers” with active recognizers. the parser must keep “call pointers”
with non-terminal nodes that have sub-recognizers active for them.

The parser now read the m node, leading to the following configuration:

This sitnation is the converse of one encountered carlier: instead of one
(but not all) of the A-recognizer’s inputs having been reached, one [but not
all) of its ontputs have. The parser performs a stagyered reduction similar
to the staggered invoeation 1t performed earlier. and reaches the following

configuration:
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The parser is now ready to read cither the n- or the -node. Let us =ay it
chooses n, this leads to the following configuration:

This ronfiguration allows the completion of the staggered reduction started

earlier, so the parser terminates the A recognizer and adds to the state of
the S-recognizer:
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£
| "
“*-..m,:_
n=" L

)

-
This is an accepting configuration.

4.2. The Parsing Algorithm

We are now ready to present our Aow graph parsing algorithm. The algo-
rithm simulates the behavior of a non-deterministic graph parser. exploring
simmultancously all the parser’s reachalile configurations. As with the string
almorithm of the last chapter, it will be useful to think of the algorithm as
simultanecusly simulating a large number of graph parsers, each of which
eventually makes different guesses as to the derivation trec of the input,

4.2.1. Preliminaries

We introduce here an item-based notation for the configurations of a graph
parscr. We will simulate a given graph parser by constructing item lists,
similar to those of the last chapter, which show the parser’s configuration
at each step of the input.

The basic unit of the notation is a representation of a state object called
a state item (or just ftem), Items are composed of three parts: a state of a
graph recognizer, a list of pending ealls to other items, and a list of items
to return to. In addition, items will sometimes be annotated as dead, and
they will sometimes be marked with an F-fag. [We say more abont these
annotations below.) As before, we represent the pointers in call lists and
return sets with integers, and we subscript items with integers, yielding a
representation like this:

[{state), {call list), (return pointer)];q

Using this representation, we can represent the configuration of & graph
parser by showing its read head position in the mput and items for the
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stato IF]IJH'TJ of all its recogsnigers. Tl l.'l:!lI'l'l:'H-]'.I-u-lnil:'||r|_' part af varly state
representation will be indicaled by labeling the target and npnt edges in-
volvisl, For example. in the rst sionple mn shown abawe, the configaration
ubtained Just affer the iwvoeation of the A- aul B-recoguizers ean be given

s Follows:
a2, h
™~
_ i{ o
b

A
L= —al >, (e 2)s 30, 6],
[Aé?' :';"b_"; MJ {‘LTI]z

€z ~
(8= Fb—  nit, 117 ]3

[The subscripts used here are, of course, arbitrary. )

We say that the parser's active recognizers (or active ttems) are those
whose states are non-empty. In the example above. only the A and B
recoguizers are active; the § recognizer is said to be suspended.

When we wish to show the entire run of & grapl parser on a given input,
we can compress the space uscd by showing. after each read operation, only
those items are active or which made a state transition. For example, the
rin of a graph parser on the grammar and input graph shown above is shown
in figure 4.11.

While this depiction of a parse mn looks a lot like the parse lists of
Earley’s algorithm, there are some important differences, First, not all active
items in a given list change state when the next noede i read. Second, more
than one active item in a given list can represent reeognizers invoked by a
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Figure 4.11. Run of grapl parser done in frst example.
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single parser. In Earley's algorithm. each active item represented the only
revognizer currently active for at loast one parser.

4.2.2. Optimizations

As we did with Earley’s algorithm, wo will coalesce the items reprosenting
recoguizers for the same rule which were started at the same input position
and are in the same state; one item will be used to represent the state object
of all such recognizers. In order to accomplish thie. we will be using the
two optimizations—multiple-call collapsing and duplicate-item merging—
that were introduced ju the last chapter.

Becanse the linkage mechanisms of graph parsers are more complex than
those of string parsers, we must be more careful in applying optimizations,
In particular, the presence of staggered invoeations and reductions, and the
fact that calling items can change state while their callees are still active,
lead to cases that require a very good understanding of the intent of the
optimizations. Thus, rather than proceed directly with the statement of our
parsing algorithm, we will first consider some examples of its behavior.

4.2.3. Examples

In this section we run the parsing algorithm on five diferent grmnm.i.r..l'graph
pairs. Each sample min exposes a different facet of the algorithm’s behavior:
between them these examples cover all the cases that the algorithm handles
specially. Having once understood all five of these examples, readers should
have little difficulty understanding the complete statement of the algorithm
which follows them.

For ecach example, we show all of the item lists constructed by the al-
gorithm. Each such list iz followed by a some explanation of how it was
construcied,
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Sy
g —b b— {.ﬂﬂ#rm..{”ﬂm:}
(5= —‘J—mi: Se— it ¢ ]

Example 1, st 0.
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Example 1.

This example considers the effects of state change in the caller while 2 calloe
s still active. Tt infroduecs the e-split operation. an aperation invoked at
comphetion e which split= a gngle calling itew uto twe.

The previous page shows a gramoar, the inpuat graph derived by that
grammar. and the item list constructed by the simulation before any nodes
have been read. No non-terminals have been predicted at this point, so only
one iLem i% necessary.
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PPN
S= ﬂ-""‘-.l,ﬁ".--‘""

B
= n” N 2 EJ
A= ﬂ-ﬁ“"‘*ﬁ’_‘,‘-—-"";cr —a ‘\\ _

L=

ﬂlj"l:' ._-DEH'\. ‘_,-r"'"
B= —b— ~, #_,,..--'

1 L
ﬁ i
[s= *ﬂ—zf?}— 523w 8]

(6> b—, e, 117],

5> $b-b—, ax, £13],

[Fx=‘}* 'J'af:sl::c na, {13 ]*

Example 1. list 1.
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Here is the list after reading node ay. Ttem 1 was active on the node remwd,
that is, its state contained ingputs of that gode, The node was acreptalbile (as
pr sertion 4. L4} and the resalting transition has led to a state rotitaining
gt fo the wa-torminals B asd A, (The 17 spaluds arcnnd the velges o)
and ez item 1 indicate that these edges were present 1n that item’s state
numediately after the inpnt node was scanned, but were then deleted as 2
result of the sub-recognizer call wechanism. )

Only one derivation decision i= possible for the A-pede, but two are
possible for the B-node, tuitively. item 1 represents the Serecornizer for
two parsers. Each has made a different derivation decision for B. but both
remain in the same state and were started at the same input position. Thus,
we represent both with a single item and use the call list for B in that item
to keep track of both outstanding calls,



] 4 The Alzoriilim

(52 Fo—, me, 1411,
(6= ¥o—bo— e, 3],
(6= ¥o—, nz, $43]
(6= Fbo—b—, nt, 113
(52 £b-, na, 121],

(8= Fo—b— ne, {11l

Example 1, list 2,
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New we read node ag, Trem 4 was the ouly one active on this node, so
it makes an appropriate transition.  Ite new state pecessbates pridicting
the two B-peales by involing appropriatc sub-recognizers: this happens in a
process exactly like that seen o the last list. Itemns 5. 6. 7. and 8 are the
reanlt: notice that although the recoguizers for the wpper anl lower B-nodes
are being started on the same list. they are not started at the saoe input
puosition for the purposes of multiple-call collapsing,

Items 2 and 3 are on this list because. while they were not aetive on
the node read. they are active on a node eligible to be read. This copying-
forward of active items insurca that, each time a node is read. all the items
active on that node will be present on the previous list. Thus. we never have
to search back through prior lists for active itema.
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Lﬂ.s‘a-ﬁ-,.hﬂf-n- | ﬁiﬁ,‘?ﬂ:ﬂlJ {111'
(82 —bFb—, nat, 193]
(6= Fh— ~x, 14,471,

(52 Fb—b— m2, $443]

[5-‘? .:L:f_::: , (82 3 (x4 4Ny, J]
= =:-ll.=—-1.n-l_ 1137,
(62 $b-b—,nt, (3]

Example 1. list 3.
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Now the fun beging, We read node by and itens § meves into an arcepting
state. We can wow complete node ) of item 4 by letting item 5 retorn.
But recall that item 4 represents fwo recoghizers: one which predicted )
Vi itene 5 and one which predicted By via itews 6. 16 we made (e state
transition i item 4 called for by the retuen of item 5, we will have made a
spuriis state transition in the recoguizer which ealled item 6.

The solution is to e-aplt tbem 4 into item 9. This process separates into
fwis items the representation of the two recognizers where were merged in

itern 4. It works by

1. Copying item 4 to the new item 9. [This gives us two items cach of which

represent both of the recognisers merged in item 4.)

Remaoving the call to item 5 from item 9, removing the call to item 6

from item 4. and removing the return to item 4 by item 8. [This makes

each of item 4 and item 9 represent only one of the two recognizers that

were merged in item 4.)

3. Going through all the callees of item 9 and informing them about their
new caller. [This keeps the call list of item O and the return sets of its
eallees consistent. )

4. Going through all the callers of item 9 and informing them of their new
callee. (This keeps the return set of item 9 and the call lists of its callers
consistent. |

The effects of the c-split operation can be seen in items 1, 4, 6, 7, 8, and 9
of the current list; once the c-split is complete, itemn 5 returns to item 4 as
described in section 4.1.5.

Note that items 2 and 3, which have been brought forward to this list
because they are active, are unaffected by the c-split. In general, none of
the ‘siblings’ of a c-split item are affected by that split; only its ‘parents’
{callers) and “children’ (callees) are affected.

(3]
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(5= —o® | 1 13 ]

[a= ‘_ﬂf';#a— (s, 8, 137
[Aﬁ’—ﬂfﬁ' df-rr-*.'.-ij EIEL

[,qfa ._af':'fﬂ_ ({5 65, 8Y), fﬂ
[a=_ fﬁl‘m s, & 513],1
[5-3;-5+1:.-' E"“‘"’I]

(= —bFo— ~z, 19,17],

[3 —:L’"E e= f{ﬁlﬂfﬂ-'-rﬁ o ul), ﬂ‘jr

[Ei‘ -}--'u—-Jn:.,al Ly ]a
[6= f—‘b—&.~-L L 'EL":‘L

Example 1, list 4.
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Reading node by puts itew 7 inan accopting state, This cosplits item 4
o itene 10 amd item 9 into item 11 for the saone reasons as jlem § o
split item 4 in the last list. only this tiwe it is the By nodle that has other
dorivations pouding.
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B
N o7&
A= a"“ﬂs,_f”’ _ﬂ/”/!eg\,:_
) ] 'x%sz‘g'i’;tlf “
> e
= —b—hbh— _ (ade. resdd b, )
(55 —b me, 123 ]
'-:@.ag:“i':, I f HE3T:—".H‘TrDI-":l:'r}£’__][|
:jﬂ -—d.:Ej_‘:t-—- ((a w4 ), ¢ ]1

(6= —b+b— nlL fml]j

(4= -ﬂiiEf" (o, 8%, T1,123]
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[52 —o -, nx, f0,03],
Example 1, list 5.
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Now we reaud node By, Itets 2 amd 3 change state. and item ' return
coafelits ilewn 1into dtenn 120 Thetas 4, 9, 10, amd 11 are afeetod hy this aplit.
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B, h
A _'%""rg'/“:iﬁ }E’- . / ‘“%TD —
i 'E:I‘-In.,‘\‘ ,‘,fb:._-'—'b'; (]

e
B= —b— a‘""--h,‘b* “
6= —b—b— | I'_Irqﬂmr.dsbs_]'
Ldcad 1,
[t ],

[Eﬂ ,5,,4_.,[:'.]'.,.;11 !“i,n".'.]L
(w0 -G, w1,
:J.u, = -gf‘_i;‘;‘;;- (6, B, fr,lﬂ:[“

(=2 —b¥b— mt, Lo}

:.E:"":';' '_bi't_?h_-] II“lrl'tr EFEE]E

(59 =a{3Dem Lo s a0, 4]

Exnmple 1, list 6.
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We readd by, el the shakeont of sPIFiony pardes hesins. ems 4 aod 10
are active on the node rend bt it is not aceeptabile, so theie POEIIECTS Fus
Ject. Wo medicate this by marking these items asx dead. o step whichh was not
tecessary in the string ease, Tl point bere i that, althumigh the recogniz-
ers represenited by these ftews have rejected. they may have pending ealls
tor wtlier recornizers. IF those ofher recognizers wire allowed fo refurn to
their dead callers, these returgs might canse state transitions which lead to
spurions parses. By marking the items for rejecting recognizers with dead,
we will know to suppress future returns to those items.

Reading by also puts itewn © inte an actepting state. but its return to
items @ and 11 does not canse them to c-split heeanse they have no other
recogmizers pending for the B) node that item 6 completed.

Items 1, 5. and B are copied unchanged from the provions list because
they are artive. Note that itom &, although it contains item 10 in its return
list, is unchanged by the fact that item 10 has died. If item & were ever to
move into an accepting state, its return to item 10 wonld simply be ignored.
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Example 1, list 7.
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We reaad e e, Thems 8 sl 11 die. Ttemn 9 moves into an aceepting
state, cansing items 1 oand 12 to cesplit into items 13 ool 14, Tlas split
bakes plaee owens tlongh mome of e |:|i=||-;ii:|:|1_: el for 1 A-nivile: r1:|||||:|[-|_'-t|_'\-|_|_
by itews O are to live items; the decision whether or not to c-split 38 wade
solely om the basiz of number of pending calls. On the other haml. beeanse
iteins 4. 10, and 11 are deadd. the apdating of their return sets pormally done
by the cesplits of items 1 and 12 are suppressed.
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Example 1, list 8.



4.2 The Parsing Alsorithm 70

We read node ea, Ttem 1 which is a top-level Wews. meoves irito an ne-
cepting state that mehudes all of its trailing cdecs: e mpnt is accepted.
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Example 2, list 0.
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Example 2

This example explores the interaction of mnktiple-call collapsing and stag-
gered invocation. Tt introduces the p-split operation, in which an item is
split inte two items as the result of & prediction opeTation,

Wo start off with just two itews, one for cach derivation of 5.
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Example 2, list L
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e realingg node g, hoth S-recognizera make transitions into a state
vontaming an input of A, Sinee the twe reCOgUieTs agree as to which inpat
edgge is inpmt to which port of A, wnltiple-call collapsing takes place and the
A-recognizers mvoked will eaels eeturn to both S-recoguizers.
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We read node by, aned both A-rerognizers make appropriate traositions,
The itesus for the S-revcognizers are active anl unchanged.,
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When we read mde by, the Sorevopnizer of itein 1 moves into o state
comtaining the other input of A, This reeoguizer nst pass this new inpat
i to the A-recoguizers of items 3 ad 4, bt these boms also represent
recogiizers invoked by item 2owhicls decs ot want to pass down this second
mpt,

This situation is complementary to that i which we c-eplit a caller,
and the solution s alse complementary: we p-split the callee. By this we
mean we split the representations of the twoe recognizers merged in item 3
among twoe items, and we do the same with item 4. Each of these p-splits is
accomplished similarly, for item 3 we do it by:

1. Copying item 3 to item 5. (This gives us two items. each representing a
recopuizer invoked by two parsers.)

2. Removing item 3's return ta item 2, item 5's return to item 1, and item 2's
call of item 3. {This makes each of the items represent a recognizer
invoked by just one of the two parsers.)

In the general case, ftems 3 and 4 might have had outstanding calls, in
which case we would have made their callees return to both them and their
p-aplits.

The result of the p-split is that we can now pass down the new input
from item 1 to items 3 and 4 without hurting the recognizers invoked by
item 2. Thus, we are ready to read the next mode,
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Wo reiud nodde ba. Tten 3 dies exprecting a e and item 4 makes 2 normal
state transition. Ttemn 2 nawes into a ate conbaiming s A-node’s other
input: thi= input ean be passed down to items 5 and 6 witlont pesplitting
them becanse they have we other callers.
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We read the final e Item 0 dies expecting a b, wlile itemis 4 and 5 move

iito arcepting states, They then return to items 1 oawd 2. both of whick
arcept.
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4.2 The Parsing Alvorithm a3

Example 3.

This example demonstrates staggered rednction. No new operations are
mtroddueed.

Tlee first list starts witly iteins for two alternate Herecogrnizers, Doth
of these recognizers expeet an A at the samwe point in the input, o0 two
A-recognizers are invoked amd both will return 1o both H-recoguizers.
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Maonale ay is peaad. lesuding itern 4 into an accopting =tate for the eulge o).
Itz rotwrn canges iteos 1 oand 2 to c-split into items 5 and 6. Notiee that.
althongh itew 4 has setvrned one of its entb st =, it rewnsins in the call lises
of its eallers. It will e remowved ouly when it returns all of ies ot pts.
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4.2 The Parsing Alvorithm g7

Nowde By s read. leading item 3 juto an accepling state of the edge e,
Itews § awl & peed not be cosplit sinee they have no other calls pruding for
their A-node. Ttem 4 i active aod i fianged.
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Nonle By b resul. killing item | which was expecting a o Ttems 205, al 6
all make state transitions=: items 3 and 4 are nochanged.
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Nole by i= read. leadding botl items 3 and 4 into accepting stabes. Thedr
retirns are uneventol.
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Node ey is rescd. The resalts are straiglhtforsard.

10
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Example 4

This example explores an internction between stagmered pediction and dpe-
licate-item merging whiclh the reader way hive anticipated after soving the
previons example. No new operations are introdseed,

We start by predicting the A-node in the S-recognizer i all possible
ways,
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UTpan repding node ay . both the a-recugnizers are ready o accept sdge e,
Tl return of itewn 2 canses iten 1 to c-split into itens 4. but then the return
of itear 3 msowves fteoe 4 dota the sane @ate as item 1, =0 30 iz gerged into
that item.

A point wortl noting here is that only items which weee originally c-splits
of cach other can ever be merged. This is beeause c-splitting is the only way
to get two items which represent the same recognizer started at the same
mput position.
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Reading node by woves item 2 (bat not itew 3) inte a state accepting es.
Tlis canses item 1 to be ceaplit onee again. this time into item 5.
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Nuvle by is resul. The results are straightforwand.
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Example 5

Our last example is our most complex one. It demonstrates Teft reeursion,

ad iutroduees the e-aplit operation. Staggered mvocations anil reductionsg
are thrown in for good measire.

Things start out simply cuongh, as we invoke a recoguizer for s



114

4 The Alporithm

Example §, List 1.

w23 l;ﬁ'f

A5 _,_b'_‘“_‘~.1_ | §133 ],

A=3AZCS )
A2 FATSAT (2, 113



4.2 The Parsing Algarithn 115

Teauling node ) moves the S-eecoguizer into o state where it munst predict
ome of the S-node's inputs. Muoltiple-eall eollapsing bappens az it did in the
string case, with botl itemes | and 3 ealling item 2 for the non-recursive
expansion of A. Unlike the string case, however, itemn 3 does not explicitly
call itsell recursively; stead, it is marked with the B-fleg.

Here are the intuitions bebind this marker: If we encode by '8 an 8-
recognizer, by A, a non-recursive A-recogunizer. and by A, a recursive A-
recognizer, then the simulation is eurrently representing an infinite number
of parsers. each with one of the following call structures:

5= A,

5 = A, = A,
S_"-J*‘!_"Ar_"d-

5o A — . — A — A,

The simulation does this by keeping just the two structures

§— A,

(and it shares the A and A, between the two). The the R-flag on item 3
indicates that it is the recursive A-recognizer which is being used to encode
the infinite sequence of such recognizers present in the unoptimized case.
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Menedee By 32 reaul. cansing the son-recnraive A-revogmizer oo make o state
trausition,
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This is a ente one. Node by i read. allowing itemn 1 to pass down the
other input of its A-node to items 2 amd 3. This first pesplits item 2 into
it 4. hoeanse item 2 32 also callisd i"!u" iter 3 adnd e devision fo Er-si.]l]jr 1=
marele solely an the basis of nuber of callers, wot on whether they agree as
o udidesd fnpmts. Dut wlhen itens | passes the new input to itemn 2 and item 3
gues Lo pass it on to item 4, sach an action would wake e 4 and item 2
calls on the same recognizer at the same point, so mnltiple-call collapsing
arts by redirecting item 37 call to item 2 mstead of itern 4. This in turn
removes the last return pointer from itemn 4. so it i marked ns dead, The
net effoct is to [eorrectly) keep ttem 1 and item 3 both calling item 2 for the
non-recursive expansion of their A-nodes,
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Reading node oy moves the non-cecursive recoguizer for A (item 2) into
anawrepting state. Tlos canses tteus ©to c-split as nswal ito item 5, Ttem 3.
Iiovwereer, does an r-ﬂ'full!l.: imta itesm G whicls ineans i does a mormaml r-spli_t
Lat thaens bosess it r-Hag annd picks up its split iage as a caller.

Onece agadn, et us look at the wbmtion underlying thi= action, IF we
flag a recognizer that has returned with an asterisk, and a recognizer that
has made a state transition as the result of a return with a prime, then the
paracrs being simulated now have one of the following call structures:

§' — A
§ — AL — A
5§ = A, — AL — AL

) —rﬂf—*...—t.i.-—rj:—-:l;.

The simulator now represents these structures using the following three
structures

5 — Ay

§ — A, — A,

§ — A, — Al — A,

where item 1 is 5", item 2 is A7, item 5§ is 5, item 3 is A}, and item 6—the
r-split of item 3—is the A, recognizer Aagged as the representative of the
infinite chain, A simple c-split of item 3 would have been insufficient to
build this pew structure because it would have made items 3 and 6 sablings,
mstead of child and parent. In addition, it would not have correctly marked
item 6 as the A; recognizer instead of item 3.
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After reauling the next e-poade, thie whobe r-split process happeus again.
The simmlation i= now kecping the following steacture:

S'-—-t-..il.;

8" A AL

§ = A, = A — A7

8 = A — AL = A" — A4;.

The reader shonld be sure he understands bhow this stevcture was attained)
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With the reading of node gs. the bottom finally bepins to comwe off the
stack. The sivnmlation now contains the following steacture

SJ_.A;l
5 — A, — AT
§ = A4, — A= A"

which: differs from that of the last list in that all the non-recursive A-
recognizers have gone away. The reader should consider what the structure
would have been if we had read another ¢ node and started another level of
TeErahon.
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The A7 recoguizer on the bottom of the stack makes a transition on by
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The stack nowinds ancther bevel. The fnal confignration kept by the
sitnmlator js:

Eli
8 — A fitem T — itemn G)
§ —d, = oA {itcm T =+ itemn B = item 6).
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4.2.4. Algorithm Description

We are now ready to state our flow graph parsing algoritho. The algorithm
takes as imput a How prammar and a How geaph: it determines whether
the graph is gencrated by the grammar. As with onr version of Barley's
algorithmu. the eutput of the algonthm is a sequence of item liste—one for
each node in the inpnt—which represent all the possible confignrations of
a non-deterministic graph parser when run on that input. The algorithm
does not output a parse tree for the input, although it can be modified to
do %0 in-A manner similar to that presented in the last chapter.

The algorithm operates by using a list of items I; to keep track of all
the configurations a parscr might be in after reading the first ¢ nodes it
chooses to read. Given lists Iy, .... [y, the algorithm constracts list 0§
by using three operations: a écanner operalion, a predictor operation, and
a completer operation. These operations in turn use three sub-operations:
the p-split. the c-split, and the r-spiit. We first describe the nature of all
these operations, and then how the algorithm uses them to comstruct the
lists Io, Iy, ..., In.

The P-Split Operation

The p-split operation takes as input an item f, a non-terminal node n which
i is deriving, & item ¢ which has called ¢, and a lst I;. It performa the
following actions:

1. It creates a new item ' whose state part is that of ¢, whose call list is
that of ¢, and whose return set is that of ¢ except that ¢ is removed.

2. It adds ¢ to J;.

3. It goes through the live callees of ¢ and adde ¢ to each of their return
peta,

4. It goes through all the live callers of 1 except ¢ and replaces their calls
to 5 by calls to 1",

5. It changes ©'s return set to be the singleton {c}.

Ttems { and ¢ are said to be p;-splits of cach other. This relation is transitive—

any other py-splits of 1 are pj-splits of ¢ (aud vice versa)]—but docs not
persist across lists: a p-split of 1 is not a pe-split of 1 for 4 # 7.
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The C-Split Operation

The c-split operation takes ns mput an item ¢ a non-terminal node 7 in
t# targel graph. an item e whicls € has called to denve a0 and a list I, It
prrforms the following actions:

L. It rreates a new item f whose state part ia that of 1. whose return list is
that of ¢, and whosc call list that of 1 except that ¢ is removed from the
callees for n.

2. It adds ' to J;.

3. It goes thromgh the live callers of § and adds ¢ to any eall list on which
t AppCArs,

4. It goes through all the live callees that ¢ has pending for nodes other
than n and adds " to each of their return sets.

5. It goes through all the live eallees other than ¢ that i has pending for n
and replaces ¢ by 1 in their return sets,

6. It makes ¢ the only callee for n in 1.

The items ¢ and ¢' are said to be c-gplits of each other. This relation is
transitive—any other c-splits of ¢ are c-splita of ' and vice versa—and it
persists acrose liste: a c-split of « created on a list [; a cesplit of all those
created on other lists,

The R-Split Operation

The r-split operation takes the same inputs i, n, ¢, I; as the c-split. It first
performs a c-split operation to produce an item ¢ on list I;, and then takes
the following actions:

1. It marks " with the R-flag.
2. It removes the R-flag from 1.
4. It adds 1 to the call list of n in ', and adds ' to the return set of 4.

The Scanner Operation

The scanner operation takes as input an item 1 from list [;_; and the j-th
input node to be read ny. Let & be the state part of ¢, I 5 is coapty (4 is
suspended ). the scanner does nothing. If 5 is non-empty, but none of its pairs
coutain edges which are inputs of ny, then the scauner adds § unchanged to
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list [ If & duoes contain inputs of ng, bt 1y i determined to be unacceptable
s deseribied i section 4,14, the scanner marks §oas dead and adds it o List
{;. Fiually. if n; is acceptable to s the scanmer (i) computes a new state o
as deseribed o section 4,14, changes the state part of £ to A, el awids 1 to
list 1.

The Predictor

The predictor operation takes as imput an item ¢ from list [y, Let s be the
state part of i. If none of the target edges of & are inputs to non-terminals,
the predictor does nothing, Otherwise, for each non-terminal node n which
has one or more input edges in 5, the predictor distingnishes two cases:

Case (i) The item 1 already has calls pending for n.
Let €4, ...0m be the live items ¢ has called for n. Then for each 1, the
predictor doos the fellowing:

1. If i, has callers besides 1. the predictor invokes the p-split operation
on i, n, i, and f;.

2. Let 3, be the state gotten by augmenting f;'s current state in accor-

dance with the calling conventions of section 4.1.5. If the predictor
has already added a p,-split i of 1; with state-part s, to Iy, then the
predictor adds § to the call list of ' and replaces ¢, by ' on the call
list for m in i. Otherwise, the predictor changes the state of 1) to be
s and adds it to lst I;.
(N.B. The item ¢ referred to above may not still be in state s, when
its roturn list is modified, sinee predictions occurring between this one
and the one that added ¢ may have modified the state of ¢'. In such
a case, the predictor still reuses ¢ rather than create a new item.)

Case (ii) The item 1 has no calls pending for n.
Let N be the type of n, lot B RS.... R be all the recognisers for
grammar rules which derive ¥, and let 7, 53, ..., 55, be the mitial states
of those recognizers computed as per section 4.1.5. For each af, if the
predictor has already added a new item «f with state part s to list Iy,
the predictor adds ¢ to the call list for n in § and adds { to the return set
of i'. Otherwise, the predictor ereates an item with state part s, empty
call list, and return set {i}; if this item is for a left-recursive rule the
predictor marks it with the R-flag. The predictor then adds this item to
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{; and to the call list for n in 1.
(NI The point made above abunit possible changes in the state of the
itews ¢ also applics in this cpse.)

The Completer

The comipleter operation takes as input an item ¢ on list I;. Let s be the state
part of 1. If none of the target edges in # are trailing edges. the completer
operation does nothing. Othorwise, let 1y, ...,y be the live members of s
return set. Lot ng be the non-terminal in /p whose call list contains ¢, and
let oy be that call list. Finally, ket 2 be the state of 1 induced by '3 return
as per section 4.1.5. The completer performs the following actions for each
Ty

1. If1; is marked with the R-flag, the completer invokes the r-aplit operation
on i, 1, 6, and J;.

2. If 14 has calls other than the one to { pending for node n, the completer
invokes the c-split operation on 1, n, 1, and I;.

3. If the completer has already added to [y a c-split ¢ of i whose state part
is #; and who has calls outstanding for the same nodes as 1, does,? the
completer marks i as dead (from a merge) and adds it to I;. Otherwise,
the completer changes the state of iy to be s, and adds it to I;.

(N.B. As in the predictor, the item ' mentioned above may not still be in
state s, at the time of the current completion. Intervening completions
may have changed "'s state, but the completer still marks ¢, as dead.)

The Algorithm

First, we construct Iy as follows:

1. For each mle Py in the grammar which derives 5, let s be the initial state
of a recognizer for that rule computed in aceordance with section 4.1.5
and the initial linkage information specified in the input. Add an item

This restriction on calls merely reflects the fact that, unlike the state of string items, the

stoate of praph items does oot reflect which nun-terminnls aee heing derived. Thus, when
copsidering whether to merge grapl items, this part of their ‘siste’ nm=t be checked
acparately. Mote that ooly which oodes have outstanding ealls matiers bere, pot the
items to which those calls were made. '
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to [ whose state part is s, whose call list is conpty, and whose return
st 18 emply.

2, Run the predictor on every item i By, I this aulids new itewss to fy, rn
thee predictor on them. amd repeat this process unpkil uo wew itemns are
added.

Noext, we successively constraet fy, ..., Io. Given Ty, .., Iy, we construct

I; as follows:

5. Choose an input node n; to read next. (This node must be in the right
fringe of the current read head.)

4. Ttun the scanner over every item in I,

5. Run the completer over every item in [;. If this adds new items to [;, run
the completer over them, and repeat this until ne new items are added.

6, Tun the predictor over every item in ;. If this adds new items to [}, run

the predictor over them, and repeat this until no new items are added.

A little thought will convince the reader that this algorithm produces the
lists given in the examples above. A graph is accepted by this algorithm
if I,, contains an item whose call lists and return set are empty and whose
state part i# an accepting state of a recognizer for a rule deriving 5.

This algorithm can be converted to produce a parse using technigues

exactly like those presented in the last chapter.



Chapter 5.

Discussion

In thiz chapter, we discuss a variety of issues related to flow graphs, Aow
gramumars, and our parsing algorithm. We include a complexity analysis of
the algorithm and some suggestions for related research.

8.1. Flow Graphs and Grammars

As was mentioned in the introduction, Aow graphs were abstracted from pro-
gram descriptions called plans. The goal of the abstraction was to preserve
two structural features of plans: (i} the partial ordering of operations, and
(ii) the naming of inputs and outputs. There were a number of stroctural
features of plans that were left out of flow graphs, most notably “fan out™—
the use of an operation’s single output as the input of more than one other
operation. The criteria used to determine which features of plans would be
preserved in How graphs grew eut of the author's work in program analysis
and are not germane here; however, we say more below about how graphic
representations which include other features may be usefully manipulated
by our parsing algorithm.

It should be quite clear from the above that the stracture of flow graphs
and flow grammars were developed without much regard for graph-theoretic
concerns, ‘This does not necessarily mean, however, that they are devaid of
theoretical interest. If we view low gramonars as generalizations of string
grammars which generate partially- as oppused to totally-ordered sentences,
then the foellowing sorts of questions naturally arise:

o Iz there a natural definition of a “finite-state fow-graph automaton™?
I# it possible to develop a hierarchy of such automata analogous to the
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string-antomata hicrarcly? What is the relationship between this hier-
archy amd the string hicrarcly?

e Is ix possible to develop a kivrarchy of Row granomars analogons to
Clhomsky's type 0 3 string-grannuar bierarchy” Iu particular, are there
eanonical-form results for How graomars, and do the sets of langnages
genoerated by such granenars satisfy auy interesting closure properties?

e If the answers to the above questions are affirmative, can we relate the
automaton and grammar hierarclies in a manner reminiscent of the string
case?

Our research into fow-graph parsing, as might be surmised from the refer-
ences mentioned in chapter 1, was initially concerned with questions such
as these. We hoped initially that Aow-graph parsing might be reducible to
context-free string parsing, While we eventually gave up on achieving such
a direct ronnection between the two—we now believe that fow grammars
have a strictly greater generative capacity than string grammars—the intu-
itions we developed in the course of this research seem to indicated strongly
that the answera to the questions given above are generally affirmative.

5.2. Applicability of the Algorithm

(ine of the most interesting features of our parsing algorithm is its amenabil-
ity to ‘advice’ from outside sources of knowledge. Since the algorithm’s con-
trol mechanism works by consulting and updating and explicit agenda—the
current item list—it is a relatively casy matter for external agents to control
or influenee the algorithm’s behavior: they need only make alterations in
this list.

For example, let us consider the fan-out problem mentioned above, Fig-
ure 5.1 shows a grammar fragment and a pseudo-flow graph which contains
fan-out, This figure represents the result of a typical program optimization
and may be read as follows:

A and B are lhigh-lewel operations. A may be mnplemented
by operation o followed by operation b, while I may be im-
plemented by operation a followed by operation ¢ If I have
s program which performs both A and B, T can optimize this
program by performing a just once and then using its output
uth:in;:uid'hnﬂl b amd &,
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A= —a—b— -b—
B = —a—c¢—

Figure 5.1.  Flow grammar fragment and psendo-Bow graph, The graph displays
fan-omt and can be considered an optimization of the two fow graphs geserated by
the grammar fragment.

We canuot recover this analysis simply by parsing, because the flow graph
which represents the optimized program can not be read all the way through
by our read-lead mechanism. But consider the state of the parser at the
point where its read head encounters the fan-out. The grammar fragment
shown in figure 5.1 will have given fse to the following two item skeletons:

{‘q-.-_‘-p a—=:1:1'—b—- e :’ iy

o Etas
{5#' --m.—lt-'--‘.-*,u-] s B

A fan-out handler invoked at this peint, basing its actions on a theory of
program optimization through shared operations, might (i) replace ¢; in the
parser's head position by €3 and e, and (ii) change these item fragments to
read:

[H'-“-? "‘ﬂ"f"l_h-r "'.]'
i —all
[Bq —--ﬂ-"’-':-_-l g ]

These actions would allow the parser, using the rules of figure 5.1, to recover
both the desired analyses for the input.
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Ttesuders may be dismayed by the sceming informality of sueli a solution, !

The point here is that vur parsing algorithn cmbeds a notion of inpot stroe-
ture which does not take into sccount asomalies due to sharing. A domain
exprort which nderstands such structural avomalies can sliow the parser how
to proceed in these cases by altering its state in the aforementioned way; the
operations themselves may seem low-level but the theory underlying them
is mot.

To put it another way. it is important here not to confuse “representation-
level” with “low-level”. Because the alporithm’s representations fairly di-
rectly reflect the state of the parsers being simulated, a wide range of
grammar- and grapl-theoretic operations can be implemented directly via
simple representation-level operations. In fact, it is precisely this closeness
between the theoretic and rppreﬂ:utahuual levels that makes this algorithm
g easy to advise,

5.3. Correctness

We have done no substantive work on a correctness proof for our parsing al-
gorithm. For one thing, such a proof would ideally require definitions of Bow
graphs, flow grammars, and the graph-derivation process which are a great
deal more rigorous than those presented here. For anuther, the algorithm
itsclf would have to be stated quite a bit more precisely than we have stated
it. To readers who might be interested in constructing a correctness proof,
we recommend the proof of correctness of Earley’s algorithm contained in
[Aho and Ullman 1972]. The structure of that proof would probably serve
as a good model for a correctness proof in this case.

5.4. Complexity Analysis

We conclude by considering the running time of our simulation algorithm.
In our analysis, we will be concerned entirely with obtaining a loose wpper
bound on worst-case time complexity as a function of the number of nodes
and edpes in the input graph, paying only cursory attention to space com-
plexity or time/space complexity as a fanction of the input grammar. The

Vin fact, we expect that readers are sereaming “Ouch! What & back!™
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point of this forus = twofold: i) we are interestod primarily in cxposing
infuitions abont the relative cost of the algorithm’s operations. and (2] we
will b satisficd to show that the algorithm displays polynomial eathes than
exponential tivne growth with the sz of the inpuat.

The algorithn spends all its time, except for a constant amount at the
beginning, running the scammer, predictor, and eowpleter over each con-
structed item. Thus. the total running time of the algorithm is the product
of the number of constructed items and the sum of the times needed to
run each of these three operations on an item. We will cousider cach factor
separately.?

In what follows, we will be using the following definitions:

p = the number of rules in the grammar,
w = the maximum number of inputs to a grammar rule,
= the maxinmm number of pairs in the state of a recognizer, _
= the maximum number of edges in a head position,
the number of edges in the input graph, and
the number of nodes in the input graph.

t
h
[
n

I

In addition, we will often be making an ordered choice of k items from among
m items. There are

mxm—lx,-.xm-[h—1}=er(':)

ways of making such a choice; we will denote this number by [¥],

The algorithm constructs s + 1 lists. On each list, any two items must
differ in one of i} the rule they were invoked for, (i} where in the input they
were invoked, or (iii} their state, Each start position is an ordered choice of
at most w edges from the e in the input, and cach state is determined by an
ordered choice of at most { edges from the current head position; thus, the
number of items a single Lst 12 bounded above by

o[

Thi= annlyuis is patterned directly after that given by Earley in [10a0].




140 5 Discussion

Doth the predictor amd the completer need to know whether they have
already added a partienlar itow 1o the current lst I we are concerned
only with rinning time (and not space requircments), we can optinize this
operation to take constant time by keeping a table of all sch items which
i indexed by the the three factors mentioned above? We will assume that
such an optimization is nsed in the following analysia.

Now we wish to bound the time it takes to mn each of the three basic
operations on a given item 1 from list [;. In this analysis. we will use an
angmented predictor operation that also attaches to each created item a
unique integer identificr. When the c-eplit operation splits such an item,
this identifier will be copied to the split item, allowing the predictor to tell
in constant time whether two items are c-splits of each other.

The scanner either copies ¢ or simulates a state transition for the recog-
nizer represented by ¢ This takes constant time. In addition, the scanner
has to check each of up to ¢ pairs in the item's state part to determine
whether the item is active on the node read. This also requires time inde-
pendent of the size of the imput graph.

When the predictor considers an item i on [; whose state contains inputs
to target non-terminal(s), it tries to add to I; up to fp items: one for each
rule which derives each of the non-terminals whose inputs have been reached.
In addition, it may p-split the up to [;_;:] members of it call list: a figure
derived below. Given the optimization described above, checking whether
each of the resulting items has already been added to the list takes constant
time, eo the predictor takes up to [:;i] time on each item.

When the completer congiders an item § on I; whose state part contains
trailing edges of its target graph, it must process every item in i's return
set. Thusg, the amount of time taken by the completer is the product of the
maximum number of items in a return set and the amount of time it takes
to process each such item.

Return pointers in an item arise from two sources. Originally, an item
has one return pointer for each of its calling items. However, as the parser
runs and its callers split, an item may contain several return pointers to
different splits of one original caller. We consider first how many original
callers an item can have, and then how many splits each ean turn inte.

I9uch a table. of eousse, will tend to be very sparse: the author's actosl implementation
af the algorithm used a more compact, time-consuming representation.



§.4 Complexity Analysis _ 141

A given sab-recognizer i can only have heen originally called from ree-
ognizers at one of w head positions (one for each of its inputs). This, its
original calling recognizers wnst have been in one of at most [“'.,'J statrs, ao

there ean have been at most
t |
wurh ¢
original calling itemns. -

Suppose an instanee of a recognizer r (which was called at some specific
input position) calls an item t to derive a node n. Every state tramsition
on a node other than n that the calling recognizer takes while ¢ i# running
might aplit the caller and add up to p return pointers to 1. Since at least
one input of n can not appear, in the state led to by such a transition, there

are at moat [':1] possible states which contribute splits, leading to a total
return set membership of

(L <D~ [2))

When a calling item ¢ c- or r-splits as the result of a callee’s return, we
must add the split-off item to the call lists of i's callers and the return lists
of t's callees. This will take as much time as there are callers and callees.
We saw above that how may callers there are; a similar argument (utilizing
the symmetry of creation of call and return pointers) shows that there are
up to [:“:} callees. Thus, splitting an item may take up to the sum of these
figures, leading to a total cost for the completer of

(Gl <[ ([ ))
o (G R R O s

When we add the costs of the three operations together, we find that
the completer dominates the cost of the other operations, so the cost of the
entire algorithm is hounded by the product of the completer cost and the
total number of items. This product is polynomial in €; in the string case it
reduces to ¢* = n® which is the cost of Earley’s algorithm.

px
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