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ABSTRACT

We wish to design a diagnostic for a device from knowledge of its structure and function.
The diagnostic should achieve both coverage of the faults that can occur in the device, and
should strive to achieve specificity in its diagnosis when it detects a fauit.

A system is described that uses a simple model of hardware structure and function,
representing the device in terms of its internal primitive functions and connections. The
system designs a diagnostic in three steps. First, an extension of path sensitization is used to
design a test for each of the connections in the device. Next, the resulting tests are improved
by increasing their specificity. Finally the tests are ordered so that each relies on the fewest
possible connections.

We describe an implementation of this system and show examples of the results for some
simple devices.
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1. Introduction

Diagnostics are programs that are run to test a device when it comes off the assembly
line and when there is evidence that the device has failed in the field. Their purpose is to
check for the presence of physical faults by exercising all the functions of the component and
looking for evidence of misbehavior. Diagnostics should achieve both coverage and
resolution. A diagnostic has coverage if it detects all the faults that could occur in the device
under a particular fault model. Resolution is the specificity with which the diagnostic can
identify the parts that could be responsible when a fault is detected.

We wish to design a diagnostic for a hardware component, given a structural and
functional description of it. Designing diagnostics from such descriptions is an important
task, and yet is still done largely by hand. Our goal is to automate this process with a program
that has an understanding of structure and function comparable to that of human designers.

Some parts of this problem are well understood. Languages for describing hardware
structure angd function have existed for some time. Test generation systems have already
been designed for parts of computers, principally by making use of well-known algorithms
such as the D-algorithm. Unfortunately, the D-algorithm (like others) adheres rigidly to the
stuck-at fault model, uses the "single-fault" assumption, and rarely uses any description level
beyond that of single gates. We have yet to see a system that accepts a structural and
functional specification of a system and by reasoning solely from this description produces a
complete and effective set of diagnostics.

In exploring this problem we have considered the performance of human experts at this
task and have been impressed by how much of the design is done knowing relatively little
about the device in question. Consider for example how a diagnostic writer would design a
diagnostic for the 4x4 memory shown in Figure 1.

She assumes initially that the fault will be one of the wires or cells stuck at 1 or 0, and
assumes that there is only a single point of failure (knowing that if necessary she can modify
her diagnostic later to cover faults that violate those assumptions). She can now plan a
diagnostic for this device by knowing only that the address selects one of the data inputs and
routes its data to or from a single register. That much knowledge tells her that she should

Fig. 1. A 4x4 Memory
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verify the addreasing lines before tesling the data inputs, and that she can test the data lines
independently of any single register by iterating over several values of the address. She
would organize the diagnostic into phases:

(1) Test whether the data input and output of the memory transmit data correctly.
(2) Test each whether each register can be addressed.

(3) Test whether data can be correctly stored at each register.

The plan shows attention to both coverage and resolution. It achieves coverage of fauits
by testing the address, data input and output, and the individual registers. It achieves
resolution by testing one function at a time and relying only on functions that have been
previously tested.

A similar diagnostic could be written for a 4x4 multiplexer: test the output, then the
address, then the individual inputs. The similarity arises from the similarity of function
between the memory and the multiplexer: each uses an address to route data internally.

Consider also designing a diagnostic for a processor’s 10 bus to which are attached
- controllers for terminals, a lineprinter, and a local network (Figure 2).

Again there are similarities of strategy, because the information transmission behavior of
the 10 bus is similar to that of a memory in spite of the difference in scale. The bus address
routes information from the processor to the selected controller and back. This diagnostic
falls into phases similar to that for the memory:

(1) Test whether data is being transmitted correctly by the bus.
(2) Test each controller to see whether it responds to its address.
(3) Test whether data can be correctly transmitted to and from each controller.
There is a common theme to these examples: we were able to plan the overall structure

of the diagnostics in spite of very limited information. This is the competence that our system
tries to capture.

Fig. 2. AnlO Bus
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To accomplish this it relies on a simple maodel of hardware structure and behavior and
uses some general assumplions and principles of diagnostic design. With this foundation it is
able to design a series of tests that provide coverage and resolution. The simple model can
then be augmented with specific knowledge about the device, and the resulting tests can be
refined using this knowledge.

This simple model of hardware, which we call the information path model, is intended to
capture the ability of humans to plan diagnostics without knowing very much about the
hardware implementation. The representation is used to determine what tests need to be run
and what dependencies exist among those tests.

Our system uses these principles to design a diagnostic in three steps. First, an
extension of path sensitization is used to design a test for each of the connections in the
device. Next, the resulting tests are improved by increasing their specificity. Finally, the tests
are ordered so that each relies on the fewest possible untested connections. We describe a
program which implements this system. The program treats the first phase as a search
problem in the space of possible tests for a given device, and treats the second and third
steps as a series of straightforward reorganization operations on sets.



2. Previous Work in Test Generation

Until recently, most efforts in automated test generation have focused on gate-level
representations of combinatorial circuits and have concentrated on achieving coverage
rather than resolution. The methodology typically employed is path sensitization. Experience
with path sensitization, as described below, seems to demonstrate that (1) it is most
successful when gate-level descriptions are used, but this is computationally expensive; (2) if
more abstract functional descriptions are used, a lack of correspondence between those
functional descriptions and their hardware implementations reduces both the coverage and
resolution of the resulting test sequences.

2.1 Path Sensitization and the D-Algorithm

Path sensitization relies on two basic concepts: a fault must be sensitized and the result
propagated to an output. A fault is sensitized when the presence of the fault will make a
difference in the behavior of the device. For example, if a wire is stuck at zero (sa-0) and we
try to force it to 1, then the fault is sensitized. A result is propagated to an output so that the
effect of the fault will be visible to an observer. This is done by choosing the remaining inputs
of the device so that the output of the faulty part will be propagated to an observable output.

Consider the simple circuit in Figure 3. To sensitize wire Y to the presence of a sa-1 fault,
choose inputs W and X to be 1. To propagate the sa-1, we choose input V to be 1. In this way,
the observable output Z will be 0 if the fault is present, and 1 otherwise. Path sensitization
takes its name from the fact that a path of sensitized wires results from sensitizing a single
fault.

Note that a sa-0 fault on the wires W, X, or Z would cause the circuit to appear faulty.
Thus W, X and Z are also sensitized to sa-0 faults.

The best-known algorithm for path sensitization is the D-algorithm [Roth 67], which uses
exhaustive search to generate tests for sa-0 and sa-1 faults in combinatorial circuits. The
algorithm takes its name from its use of D, meaning discrepancy, as an abstraction of
stuck-at-zero, and likewise ~D as an abstraction of stuck-at-one. Each primitive boolean gate
has a D-cube that defines the propagation behavior of the gate. These cubes are truth tables
extended to include the symbols D and ~D. Two examples of D-cubes are shown in Figure 4.

Fig. 3. Path Sensitization Example
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Fig. 4. Examples of D-cubes for a 2-input NAND

The first cube says that to sensitize ~D on the output of a 2-input NAND, make both
inputs 1. The second cube says that to propagate ~D from an input, make the gate's other
input 1 and test the output for sa-0. In the previous example, Y would be sensitized to ~D by
using the cube on the left, and ~D would be propagated using the cube on the right.

A propagation D-cube typically requires choices of input values for the test. Because
inconsistencies occur and backtracking must be done, the algorithm is essentially an
exhaustive search through alternative inputs. Detailed descriptions of the D-algorithm can be
found in [Breuer 76] and [Roth 80].

Extensive effort has been devoted to showing ways that path sensitization algorithms
can been extended to handle special classes of circuits efficiently and deal with multiple
faults. The principal result of efforts to handle multiple faults has been the observation that
any test that detects a single stuck-at fault will also detect some (but not all) multiple stuck-at

- faults.

Efforts have also been made to extend the D-algorithm to distinguish between faults, i.e.
to achieve resolution. But achieving resolution in a k-input combinatorial circuit, even using
an extension of the D-algorithm, involves trying all 2tk combinations of inputs, which is
exhaustive testing. ”

The D-algorithm has the virtue that it is guaranteed to generate a complete set of tests for
any combinatorial circuit, where "complete" is taken to mean that the tests can find all the
faults in a particular class, under a strong set of assumptions. Because sensitizing a faultin a
combinatorial circuit is NP-complete,' generating the tests is computationally expensive. As
circuits have become larger, the efliciency of the generation technique has become a
concern.

Heuristic methods may be used to improve the efficiency of test generation. [Rutman 72]
describes a system in which achieving a 1 or 0 on a particular wire is regarded as a
subproblem of a sensitization problem. In the example above, achieving a 1 on wire Yis a
problem that spawns the subproblems of achieving 1's on W and X and a 1 on V. The system
estimates the difficulty of all such subproblems once for the entire circuit, and performs
best-first search to do each path sensitization. '

Using higher-level models of components is also expected to improve the efficiency of
test generation algorithms. [Breuer 79] demonstrates that sensitization and propagation can
be done for devices such as adders and shifters. Currently the complexity of generating
methods for such devices appears to be a principal limitation. The simplicity with which
propagation D-cubes can be created for boolean devices partially accounts for the success of

1. Given a k-input conjunctive normal form expression, build a k-input, 1-output circuit from AND and OR gates that
implements it. Sensitize the output to a sa-0 fault. if that can be done, the expression is satisfiable.



the D-alqorithm, which is therchy closely tied to the "bits and gates” level of hardware
description.

2.2 Functional Testing

Some recent work on testing [Lai 81] represents a departure from traditional path
sensitization. Lai applied path sensitization to a functional description of a PDP-8 CPU. The
program produces functional tests, where functional testing is claimed to subsume design
validation, acceptance testing, and field diagnosis. The fault model used to generate the tests
was a path fault, corresponding to single-bit stuck-ats on the connections between functional
primitives. :

The example in Figure 5 shows how a test is generated for the output of a primitive
element of the functional description. The example shows a true gate: when the control input
at the left is true, the input at the top passes through to the output.

The program inserts a functional fault, in this case equivalent to a single bit stuck-at 0, on
the output of the gate. It sensitizes the cutput path by placing true on the control, and a test
parameter representing "all 1’s" on the top input. The output appearing from the gate is a
parameter representing the result of the test.

Propagations occur across primitives representing functional abstractions such as
decoders and adders. The program generates descriptions of test cases, and test programs
are coded by hand from the automatically generated descriptions.

Note that because the function paths do not necessarily correspond to physical
implementations in the processor, the path fault model mixes the notion of physical faults with
functional faults. The performance of the program was evaluated with respect to finding
these functional faults and was compared to the diagnostics provided by the manufacturer.
The automatically generated tests achieved 96% functional fault coverage, while the
manufacturer’s diagnostics provided only 92% coverage.

Fig. 5. Functional Test Example
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3. Models

Our approach to achieving coverage and resolution is based on choosing an appropriate
level of abstraction and viewing the diagnostic as a collection of primitive tests that can be
ordered to increase their resolution. The key point in our selection of a level of abstraction is
the notion that devices can be viewed as being composed of primitive functional components
connected by information paths. We use this model to abstract away from the digital
implementation details as much as possible and yet retain the ability to map the designed test
sequence back onto the real device when the time comes.

To illustrate these ideas we examine two implementations of a multiplexer. Both
implementations can be viewed in terms of common functional primitives, and we describe
these primitives. We then explore some of the subtleties of information paths and introduce a
simple fault model. Finally we introduce the notion of inquiries, which are the fundamental
units upon which diagnostics are organized.

3.1 Multiplexers

, Consider the 4x2 multiplexers shown in figures 6 and 7. One is built from boolean
devices, the other is done with tristates.

In the first multiplexer, the address bits are decoded to select one of four data inputs.
The selected input passes through two stages of NAND gates, getting inverted twice. The
unselected inputs are blocked by the fact that there is at least one 0 input to each NAND gate;
this causes those NAND gates to assert 1. The second stage of NAND gates have all inputs 1
except those selected, so those gates invert the output of the selected gates.

In the tristate multiplexer, the address bits are decoded and select one of the four data
inputs. The unselected tristates allow the output to float, while the selected tristate forces the
output to be the same as the selected input.

The explanations of the two implementations are similar; the address input selects some
data input and that data input goes to the multiplexer output, while the unselected data inputs
have no effect on the multiplexer output. This suggests that both multiplexers can be
described using the same functional primitives.

3.2 Devices

We use three primitive functional devices to represent the multiplexer: the Gate, the
Junction, and the Selector.

The Gate has a control input which determines whether its data input is transmitted to its
output. If the control input has the value on, then the data output will be the same as the data
input. If the control input has the value off, the data cutput will be the value Xg, which
indicates that the output is not sensitive to its data input (we explain the concept of Xg further
in 3.2.1). The range of values that the control input can have is {on,of f}. The data input can
have any value in the set {d0,d7...dn-1}. We will call this set D and note that n = 21k, where k
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is the width of the path in bits.” The output of a gate can have any value in D as well as the
value Xg.

The Junction merges several data transmission paths, called fanins. Xj represents the
fanin value that causes the output to be sensitive to other fanins (see 3.2.1). If all but one of
the fanins is Xj, then the output will be the value of that other fanin. For example (Figure 9) if
fanin-1 and fanin-2 are Xj and fanin-3 is d2 then the output is d2. The range of values on the
junction’s fanins is {X/,d0,d7...dn-1}.

The address input of a Selector determines which of its outputs will have the value hi;
the other outputs will have the value 10. Thus if the address is d7 then the 1st output will be
h1i and the other outputs will be 10.

The multiplexer that-we build from these primitives is shown in Figure 11. For simplicity
of presentation, the one we use has only three data paths.

There are currently two other primitives in our language, the Fanout and Memory.® A
fanout has a single input that it copies to all its outputs (Figure 12).

Fig. 8. Gate
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2. This is distinct from the D representing a discrepancy in the D-algorithm.
3. These are not used in the multiplexer.
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Fig. 11. Information Path Model of a 3-way Multipiexer

Fig. 12. Fanout

Qutput-1

Input Output-2

Output-3

The memory primitive has an enabie input, read/write input, data input, a state terminal,
and a data output (Figure 13). Data input is transmitied to the state when enable is on and
read/write is write. The value of the state terminal is preserved over time and is transmitted
to the output when enable is on and read/write is read. When the enable is off, or
read/write is write, the output is Xm, indicating that the output is not sensitive to the state.

We use the information-path model with two disclaimers. First, the set of primitives
chosen is a preliminary guess; no claim to completeness is intended, and it is expected that
the set will in time be expanded. Second, we assume that the information-path mode! of the
device in question is already available. The problem of parsing a hardware structure to
extract the information path description is outside the scope of this paper.

Fig. 13. Memory
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3.2.1 X Values

Values on paths are an abstraction of digital values on wires. The subscripted X values
Xg, Xj, and Xm are also abstractions of digital values, but in addition they capture information
about the intended behavior of the path when it is not in use: a path transmits an X value when
it does not affect, or is unaffected by, values on other paths.

The junction device provides the first example. By definition, the output of a junction is
insensitive to a fanin carrying Xj. The symbol Xj represents an abstraction of the concept of
the null value entering a junction. The easiest way to see this is to consider a 2-way junction
implemented as a 2-input OR, and alternatively as a 2-input AND, as shown in Figure 14. In
the OR implementation the fanins are A and B; the output is C. In the AND implementation the
fanins are F and G; the output is H.

When the junction is implemented as an OR, the null value is 0. This is because when A
is 0, C gets the value of B; when B is 0, C gets the value of A. In the AND implementation the
null value is 1, because when F is 1, H gets the value of G, and when G is 1, H gets the value of
F. .

The idea of a null value entering a junction is common to both implementations. We wish
to capture this idea without worrying about whether the digital value should be 0 or 1. Xj
represents this abstraction. The example shows that Xj (a) corresponds to a digital value on a
wire, and (b) is distinguished by the fact that the junction output is not affected by its
presence. :

We use the value Xg to represent the value carried by the output of a gate when its
control is 1o. Xg represents a data output value that is unaffected by the data input.
Consider two implementations of the gate primitive. It can be implemented as a 2-input AND
or as a 2-input OR, as shown in Figure 15. In the AND implementation the inputs are A and B;
the output is C. In the OR implementation the inputs are F and G; the output is H.

When the control Bis 0, C is 0 and unaffected by A, so Xg is 0. When the control Gis 1, H
is 1 and unaffected by F, so Xg is 1.

The idea of a null value emerging from the gate is common to both implementations. We
wish to capture this idea without worrying about whether the digital value should be 0 or 1. Xg
represents this abstraction. The example shows that Xg (a) corresponds to some digital value
on a wire, and (b) is distinguished because it represents a value insensitive to an input.

Finally, we use Xm to represent the value carried by the output of a memory when the
enable is of f or the read/write is write. Xm indicates that the output is not sensitive to the
state.

Fig. 14. Two Implementations of the Junction Primitive
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Fig. 15. Two lmplementations of the Gale Primitive
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3.3 Paths

The paths that connect these functional primitives transmit any one of a set of values, for
example, {hi,10}, {on,0f f}, and {d0,d7...dn-1}. :

Paths are annotated with several kinds of information. The two that will be important
here are (1) design information about the intended interaction of the parts, represented as a
mapping of input values to output values, and (2) information about the implementation
technology, represented as a mapping from the information path values onto digital values.

The first mapping captures design information about the intended interaction of the
devices. These intentions are represented by matching path input values to path output
values. For example, part of the design specification for a multiplexer is that a 1o input on a
gate’s control should ensure that the gate’s data input will not affect the multiplexer output
(Figure 16).

If the input of G1 is 10, it outputs Xg. But the junction requires Xj as an input. Thus the
design of the multiplexer requires that Xg and Xj be equivalent; path DO1 is annotated with
this information. Henceforth for simplicity we ignore the distinction between these two and
use X to represent the common value. -

Fig. 16. Design infermation in the Multiplexer

Xg = Xj,Impl =11

hi=on,Impl=11
lo = off,Impl = {00,01,10}




Similarly. on paths E1, E2, and E3. the selaector cutput hi maps onto gate control on, and
selector output To maps onto gate control of f. This is more design information, this time
about the intended interaction of the selector and gates. The mapping on E1, E2, and E3
allows us to use the values hi and 10 henceforth rather than on and of f.

The second kind of path annotation gives information about implementation. It shows
how information path values map onto digital values. Consider for example the information
path model representing a 4x2 boolean multiplexer (Figure 6). The control paths of the gates
are each two bits wide; the digital value 11 maps onto hi, while the values {00,01,10} map
onto lo. The gate output paths are each two bits wide, and the multiplexer output is
insensitive to the vaiues on these wires when they carry the digital value 11. That is, when the
control inputis 1o, the outputs are 11. Thus in the boolean multiplexer X = 11.

3.4 The Fault Model

Our fault model deals with path behavior: a fault is always a fault in the transmission of
values from one end of a path to the other. Restricting faults to appear only on paths
maintains a useful level of generality that encompasses a wide range of physical faults.

Path behavior is described by a function E whose domain and range are the values that
may be put on the path. Let di represent a value transmitted by a path. If the path is not
faulty, E is the identity function, so E(di) = difor all di. Ifitis faulty, E(di) = dk, where k is any
0..n-1 except i. When a value di is placed on the input end of a path, and the path has some
fault E, the value that appears on the output end is E(d}). :

For a faulty path, E models the behavior of a path which consistently transmits values
incorrectly. Several inputs may map onto the same outputs, just as, for example, sa-0 maps
the digits 0 and 1 onto 0. But because we are dealing with hard faults, E may not map a single
input onto more than one output. For example, on a path with three values X, d0, and d7, the
function { E(X) = do0, E(d0) = d7, E(d7) = d7 } is a valid fault, since it obeys these
restrictions.

Recall that D was defined in 3.2 to be the set of values {d0,d1..dn-1}. For a path
whose range of values is the set D, E can describe all possible stuck-at and bridging faults in
the underlying implementation. But for several reasons, this functional fault model is only an
approximation of physical faults. '

First, the fault model may not contain all the possible physical faults. Recall that in the
boolean multiplexer, the gate control paths are two-bit paths whose range is {hi,10},
implemented as hi =11 and 10 = {00,01,10}. Suppose the low-order bit of one of these paths
is sa-1. When the path tries to transmit 10 as 01 the fault will not be visible and E{(10)=10.
But when it tries to transmit 1o as 10, the value 11 will appear, which is hi, so E(10)=hi.
Thus it has a sa-1 fault that violates the nonintermittency property of E.

Second, no fault in our model ever changes the direction of information flow, so that the
"directionality” assumption is implicit. This is a common assumption to make when doing
diagnosis, although it is sometimes violated in the real world [Davis 82].



Finally, taults in devices are not yet considered. The addition of such faults will increase
the size of the problem, but we anticipate that it will not significantly change the design
process. At this stage we feel that our fault model is a good enough approximation and
general enough to be useful. '

3.5 Inquiries

A fundamental concept in our work is the inquiry. An inquiry is a question of the form,
"Does path P transmit the value y correctly?" The pair (P,y) is the focus of the inquiry. Each
inquiry relies on some subset of paths within the device. Its reliance on those paths can be
expressed as a set of conditions on those paths. If the inquiry fails, we conclude that one of
the conditions was violated. Thus, the larger the set of conditions, the less specific the
inquiry. Each inquiry consists of a single focus, a set of input values to the device, a test to be
performed on its outputs, and some conditions. One of the conditions of the inquiry is that the
focus is OK. Thus if the test fails we can infer that this condition may be violated and that the
focus is not OK, i.e. that the path P fails to transmit y.

Figure 17 shows a simple example of an inquiry. It uses a simple device consisting of two
primitive gates, and shows an inquiry about whether path C can transmit the value d2.
Appendix | details the notation.

Values. To test whether C transmits d2, we must establish values at A, B, and D that
cause d2 to be transmitted to E. Establishing d2 at A and hi at B causes C to transmit d2;
establishing hi at D causes E to transmit d2. To determine the outcome of the inquiry we
examine the output value at E.

Conditions. If C transmits d2 incorrectly, the inquiry will fail. Thus C appears in the
conditions.* Likewise if B fails to transmit hi correctly, C will get the value X and the inquiry
will fail. So B appears in the conditions. Similar arguments can be made for including A, D,

Fig. 17. AnInquiry

Transmits
d2 d2? d2
N N
A E
C
hi hi
B D

Inquiry I-1 : [ C ? d2 ]

Input Values: (A = d2) (B = hi) (D = hi)
OQutput Value: (E ? d2)

Conditions: (ok A) (ok B) (ok C) (ok D) (ok E)

4. The focus path of the inquiry always appears in the conditions, for the reason noted above.
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and E in the conditions.

In general, conditions in inquiries arise because the inquiry depends on some subset of
paths in the device. This subset typically includes paths that help establish an input on the
focus (e.g. path B in Figure 17) and paths that help propagate the result to an output (e.g.
path D). We will see that when devices with state are involved, the situation is slightly more
complex: the inquiry will require a sequence of input values, and different paths may be
involved at each step. The inquiry conditions will include every path relied on at any time
during the sequence.

When an inquiry gets a bad result, we say that the inquiry implicates the paths mentioned
in the conditions. Let a test be a series of inquiries, one for every value of a path.® If none of
the inquiries implicates-- i.e., none of the inquiries detect a fault-- then we conclude that the
focus path transmitted all. its values correctly. In this case we say that the test exonerates the
path,

We can now interpret the coverage and resolution criteria described earlier in light of the
information path model. Diagnostics, which are collections of inquiries, must provide
coverage and resolution. A diagnostic may be viewed as an attempt to exonerate all the parts
in the device. Hence a diagnostic consists of an inquiry for every value on every path, to see
whether the path can transmit the value faithfully. Exhaustive testing achieves coverage. To
provide resolution, each inquiry should implicate as few paths as possible, that is, it should
have the shortest possible list of conditions.

3.6 Conditions in the Information Path Model

A condition is an abstraction that captures a dependency between paths. In the previous
example, to say that the inquiry for C includes the condition that B is OK expresses that
dependency: it means that the inquiry for C depends on the behavior of B. But that statement
loses information: it is stronger than necessary: B could be bad, but with E(hi) = hi and
E(10) = hi. In fact the inquiry shown earlier does not require that B is completely correct, only
that it transmit hi correctly. To avoid overstating the case we need a vocabulary of
conditions more expressive than simply OK.

In the forthcoming discussions we will use a hierarchy of conditions. Three progressively
weaker conditions are used: 0K, XOK, and XI. 0K means that the path transmits all values
faithfully. XOK means that it transmits at least the value X faithfully. The condition XI means
"transmits information" and means that a path can transmit at least one bit of information.
The hierarchy is a compromise that captures dependencues while allowing us to express
conditions of varying strengths.

0K is the most common condition, although nearly always stronger than necessary, since
in a given inquiry a path will typically need to transmit only one of its several possible values
correctly. In most cases it doesn’t hurt to make the conditions on each path too strong. This
is because we are using the path conditions only to know what paths may have been

5. There are 2tk inquiries per path in the the general case, but under a more restrictive fault model there are only
O(K).



responsible for the inquiry failing: if the inquiry fails, we will know that ane of the conditions
has been violated, if the inquiry succeeds, we don’t know anything except that the path under
ingquiry transmits that value correctly.

The condition XOK is motivated by the observation that many inquiries rely on ensuring
that paths do not interfere with the propagation of results. Rather than use the condition 0K,
which suggests that a path strongly affects the inquiry result, we use X0K as the condition on
those paths which should transmit X so as not to affect the result.

X1 is the condition on a path whose information content need only be single bit. As an
illustration of this idea, consider how one would test a gate device implemented as a group of
tristates sharing a "control" input (Figure 18). We test the control by testing whether the
output is sensitive to changes in the input. This is done by making the control 1 and
examining the output when the input is 000, then examining it again when the input is 111. If
the output changes we will conclude that the control is not sa-0. Likewise if we make the
control input 0 and the output does not change when the input does change, we will conclude
that the control is not sa-1. The test can be made robust against single-bit failures on the data
input and output by examining the output with a "population count" rather than strict equality;
that is, we can test whether the output has a majority of 1’s or 0’s. The resulting inquiry relies
~only on the ability to detect a change of majority on the output as a result of a change on the
input. It thus requires that the input and output paths be able to transmit only one bit of
information, i.e., two distinct symbols that represent these majorities.

The conditions from strongest to weakest are: 0K, XOK, XI. XOK is weaker than 0K
because X0OK can be satisfied even if a fault is present, while OK implies that no fault can be
present. XI is weaker than XOK because a path that is XI may have E(di) <> di for ali values of
i, while a path that is XOK must have at least E(X) = X.

Fig. 18. Three Tristates implementing a Gate primitive
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4. Overview of the Diagnostic Gencration Procedure

Designing a diagnostic is done in three steps. First we create inquiries that cover ali the
paths in the device. From this step we get a set of inquiries, each with its own set of
conditions. This is the Inquiry Design phase. Second, we analyze and combine the
inquiries to reduce their conditions (thereby increasing their resolution) and improve their
efficiency. This is the Inquiry Improvement phase. Third, we collect the reduced inquiries
into tests and order the tests to take advantage of prior results. This is the Test Ordering
phase. The resulting test sequence can then be translated into the actual diagnostic using
implementation information.

4.1 The Inquiry Design Phase

During the Inquiry Design Phase we use an approach similar to path sensitization,
applying it to our information-path model of the device. Recall from 2.1 that path sensitization
works by sensitizing a fault and propagating the result. Henceforth, we will say that backward
propagation of values sensitizes a fault, and forward propagation makes the result visible. To
design inquiries, we propagate path values and path conditions. The local propagations are
described by rules that propagate across single devices. There are currently 56 rules for the
five primitives described in section 3.2.

There are four kinds of rules, capturing four different kinds of knowledge. Behavior rules
describe the input/output behavior of devices. Sensitization rules capture knowledge about
how values are propagated both forward and backward through devices. Goal rules guide the
direction that the sensitization rules propagate. Condition rules capture knowledge about
how the inquiries for a path depend on other paths.

A behavior rule is shown in Figure 19. This rule says that when the control of a gate is
h1i, the data input value is copied to the output.

Figure 20 is an example of a sensitization rule: to make the output of a gate di, make the
data input di and the control input hi.

A goal rule is shown in Figure 21. This goal rule says that to observe a value on the
control of a gate, values will need to be accomplished on the data input, and a value observed
on the output.

Fig. 19. A Behavior Rule

di I~ di

l/]/

hi



Fig. 20. A Sensitization Rule

/_\ accomplish
g — > di

Fig. 21. A Goal Rule

accomplish ? observe

\ observe /

Figure 22 is an example of a condition rule: suppose the value on the output of a gate
must be accomplished, and that the value must be OK. A fault on the data input could cause
the output to appear bad, so the data input must be OK. Likewise a fault on the control input
could cause the output to appear bad, so the control input must be 0K.

To design an inquiry for a given path and value, we need to sensitize the path and
propagate the result. To sensitize a path means we need to accomplish a particular value on
it, and to propagate a result means we need to observe the result. Hence we begin the inquiry
design process by annotating the focus path with the goals accomplish a value and observe it
at an output. The rules then propagate goals, values, and conditions outward to the edges of
the device.

For some rules, choices are available, and we iterate through these: upon reaching a
contradictory assignment of values, we retract the most recent choice and go on to the next
alternative. When the device contains elements with state, we stop propagating upon
reaching state elements, and recursively perform the same procedure: once to accomplish
the state inputs at an earlier time, and again to observe the state outputs at a later time. Thus
inquiry design can be characterized as an exhaustive search for all input sequences that
sensitize the focus and propagate its value. We will return to the search issue in section 8.4

Fig. 22. A Condition Rule
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when discussing the system’s implementation.

Consider designing an inquiry to see whether path DO-1 of the multiplexer transmits the
value d2. We start by annotating the path DO-1 with the goals acc (accomplish) and obs
(observe), the value d2, and the condition 0K (Figure 23).

Rules fire to propagate goals, conditions, and values throughout the device; the final
assignments are shown in Figure 24.°

The resulting inquiry is shown below.

Inquiry I-25 : [ DO-1 7 d2 ]

Inputs: (A = d71) (DI-1 = d2) (DI-2 = X) (DI-3 = X)

Qutput: (DO ? d2)

Conditions:

(ok A) (ok E-1) (ok DI-1) (ok DO-1) (ok DO-2) (ok DO-3) (ok DO)
(or (ok DI-2) (ok E-2)) (or (ok DI-3) (ok E-3))

This inquiry means: To test whether DO-1 transmits d2, assign A to be d7, DI-1 to be d2,

and let the other DI's be X. The test result can be observed by checking whether DO has the

.value d2. If the test succeeds, conclude that DO-1 can transmit d2. If the test fails, conclude

that one of the paths A, E-1, DI-1, DO-1, DO-2, DO-3, or DO was bad, that E-2 and DI-2 were
bad, or that E-3 and DI-3 were bad.

Fig. 23. Focus Assignments for the Inquiry [DO1 ?2d2]

acc + obs
ok
d2

6. Around gates G2 and G3, the conditions on the control and data inputs have been or'd by a rule which checks
whether X and 10 are present and if so "or’s” the conditions.
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Fig. 24. Mulliplexer Assianments for the Inquiry [DO1 ?d2] ‘

acce acc + obs
ok ok
d2 d2

acc
ok DI-1

4.2 The Inquiry Improvement Phase

As we have noted, each inquiry relies on some set of paths, and an inquiry achieves
better resolution as it relies on fewer paths. -The Inquiry Improvement phase transforms each
inquiry in an attempt to improve its resolution. This is done using the single point of failure
assumption, hereafter SPFA. In our case, the SPFA is an assumption that only a single path is
faulty; this is used to improve resolution in a number of ways. We describe each of these in
turn. In addition to improving the inquiries’ resolution, this phase also improves their
efficiency by detecting and eliminating redundancies. We also use local implementation
information to simplify inquiry conditions and further improve the inquiries’ efficiency.

We can remove from inquiries all conditions which are guaranteed to be satisfied under
the single point of failure assumption. During the construction of inquiries, it is sometimes
necessary to create conditions of the form, "either A is ok or B is ok." Under the SPFA, such
conditions are satisfied a priori and need not be considered further: if there is only a single
tautt, surely one of A or B must be ok. Thus we can simply drop such conditions from the
inquiries.

Another technique used to reduce conditions is collaboration. Because choices are
available during the inquiry design phase, we may find two inquiries for the same focus, each
relying on different paths. Such inquiries can be combined into a single inquiry having a
reduced set of conditions. We can do this under the SPFA because only conditions which
appear in both inquiries could be responsible for both inquiries’ failure.

Consider for example the situation in which we have two inquiries for A, one with the
conditions (ok A) and (ok B), the other with the conditions (ok A) and (ok C). We can
replace these with a single inquiry having only the condition (ok A): only a fault on A could



cause hoth original inquirics to fail: thus the new inquiry should have only A in its conditions.
Collaboration combines inquiries with common toci; the new conditions are the intersection
of the comprising inquiries.

In addition to these transformations which improve inquiries, we can improve the
efficiency of the inquiries by association. If a set of inquiries with different values but the
same focus rely on the same paths, their resolution is the same; all but one of the inquiries in
these sets can be discarded. Similarly, inquiries with different foci may have the same inputs;
only one need be performed.

Implementation information can be used to improve both resolution and efficiency. The
condition transformation process finds inquiries in which paths that are several bits wide are
used to transmit only a single bit of information. Under a special case of the single point of
failure assumption, conditions on these paths are dropped. Certain test sequences can also
be shortened by using this same information. This is described in detail in section 6.4.

4.3 Test Ordering

To exonerate a path under the current fault model, an inquiry must be performed for
each of the values which could be transmitted by that path. If all such inquiries fail to
implicate the path, then the path is exonerated. Test aggregation collects inquiries dealing
with the same path to create a test for that path. For example, the inquiry which asks whether
a gate control input can transmit hi and the inquiry which asks whether it can transmit 1o
comprise a test for that path.

The Test Ordering Phase then orders the resulting tests so that each has the minimal set
of conditions. Tests’ conditions can be reduced by ordering because any paths which have
already passed their test are known to be good and hence need not appear in later tests’
conditions. For example, suppose we have test T-1 with conditions (ok A) and (ok B) and
test T-2 with the condition (ok A). If we do the T-2 first, then T-1, the conditions in T-1 are
effectively reduced to the single condition (ok B).

4.4 Code Generation
We now use implementation information to translate the values in the inquiries into test

vectors, and translate the inquiry conditions, removing any mention of previously exonerated
paths, into "error messages."
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5. Inquiry Design Rules and Their Use

The preceding overview of the three phases of the diagnostic generation process
sketched the inquiry design phase. We now consider in some detail the rules that were used
in that phase.

Recall that to design an inquiry for a given focus path and value, we use rules to
propagate path values and conditions from the focus. As noted earlier, there are four kinds of
rules, capturing four different kinds of knowledge: Behavior, Sensitization, Goal, and
Condition rules. In the following sections we describe examples of these rules for the Gate,
Selector, Junction, Fanout, and Memory devices. There are 56 rules in all.

We then illustrate an inquiry design for the multiplexer, and go on to describe how the
notions of forward and backward propagation can be extended to design inquiries for devices
with state.

5.1 Behavior Rules
Behavior rules describe the behavior of devices.

The gate has two behavior rules: GB-1 (Figure 25) says that when the control is hi, the
output gets the value of the data input; behavior rule GB-2 (Figure 25) says that when the
control is 10, the output gets X.’

The selector has three behavior rules. Rule SB-1 says that the output of the ith output is
hi when the address is di. Figure 27 shows how the rule fires when the address is d7. The
selectors’ other two behavior rules allow us to infer from a hi output what the input must be,
and from 10 on n-1 outputs that the nth output must be hi.

The junction has two behavior rules. JB-1 says that the output is: X when all the inputs
are X, di when one input is di and the rest are X, and undefined when more than one input is
something other than X. Figure 28 illustrates case 2. A second rule infers from an X output
that all inputs are X.

Fig. 25. Behavior Rule GB-1

di N di

l/]/

hi

7. In general, rules are written so that they require the fewest inputs, even though this may increase the number of
rules. In this example, GB-1 requires that both gate inputs be known, while GB-2 requires only one.
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Fig. 26. Bebhavior Rule GB-2

N

T

lo
Fig. 27. Behavior Rule SB-1
hi
di lo
lo

The fanout has two complementary behavior rules which express the idea that all the
outputs must have the same value as the input, and that the input must have the same value
as each output.

The memory has three behavior rules: one describes a write operation, one describes a
read operation, and one describes its behavior when it is disabled.

5.2 Sensitization Rules

Sensitization rules are similar to the rules of traditiona!l path sensitization and show (1)
how information can be propagated forward through a device, and (2) how each possible
output value can be achieved. The rules used in the forward direction can be expressed as,
"to observe some input of a device, we need to accomplish some values on its other inputs
and observe the output.” The ruies used in the backward direction can be expressed as, "to
accomplish a value on the output of a device, we need to accomplish some values on the

Fig. 28. Behavior Rule JB-1

X/ J di
X)/
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inputs.”

An example of a forward propagating rule is GS-1 for gates (Figure 29): to observe any
value on the data input of a gate, we must assign hi to the control input (if we assigned a 1o,
the output would always be Xg, that is, insensitive to the data input):

All the rules which propagate forward rely on the behavior of the devices and on the
notion that when an input cannot be directly observed, we must accomplish values on its
fellow inputs that will make that input visible.

An example of a backward propagating rule is GS-2 (Figure 30) for gates: to accomplish
some value di which is not equivalent to X (Xg) on the output, we need to accomplish that
same value on the data input, and accomplish hi cn the control.

The rules which do backward propagation, motivated by the need to accomplish a value
on an output which cannot be directly set, nearly always involve choosing among the possible
inputs which would result in that output. Rule JS-1 provides an example: to accomplish some
value di on the output, we must choose some input path on which to accomplish di; X must be
accomplished on the other inputs. Figure 31 shows the result of choosing the first junction
input.

In Figure 31, exactly one of the junction inputs was chosen to transmit the value di. For
other devices the choices may be more involved. Rule GS-3 (Figure 32) provides an example:
to accomplish the value X on the data output, we have a choice of two possible assignments,
as shown in the two parts of rule GS-3. In the first choice, the control is 10. In the second
choice, the data input is X (Xg). Note that we could use both X and 1o. Thus they are not
exclusive choices. We will return to this issue in section 8.4.

Fig. 29. Sensitization Rule GS-1

observe /\
di % di
\\ hi
Fig. 30. Sensitization Rule GS-2

/I\\ accomplish
di di

1%




Fig. 31. Sensitization Rule JS-1

« 1
di
accomplish
X di
X

Fig. 32. Sensitization Rule GS-3
/\ l\ accomplish
R accomplish X
X I/r X l/r/
lo

There are eight sensitization rules for the three devices used in the multiplexer; six more
rules are used for the memory primitive.

5.3 Goal Rules

Goal rules tell which direction the sensitization rules will propagate, but do not assign
values to the paths. Each path value must be either accomplished, meaning that backward
propagation must occur from it, or observed, meaning that forward propagation must occur.
Recall that backward propagation is guided by rules which can be expressed as, "if we wish
to accomplish any value on the output, we need to accomplish some values on the inputs.”
Forward propagation is guided by rules which are expressed as, "if we wish to observe some
input of a device, then we need to accomplish some values on its other inputs and observe an
output. We call "observe" or "accomplish” the goal for a particular path. By assigning a goal
of either observe or accomplish to a particular path the goal rules effectively set the direction
of the sensitization rules.

Consider Figure 33, showing an arbitrary 3-input, 1-output device: to accomplish any
value on the output, we need to accomplish some values on the inputs.

Fig. 33. Prototype Goal Rule for Backward Propagation
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To observe some input of a device, we need to accomplish some values on its other
inputs and observe the output (Figure 34).

To observe an input of a multiple-output device, we have as alternative observation paths
any of the outputs of the device.! We conservatively assume that only one output will be
observable. An example is shown in Figure 35. In general, any of the outputs may be chosen,
although with some devices certain outputs will be unaffected by the input we wish to
observe. Such outputs will not be valid alternatives.

There are seven goal rules for the three primitive devices used in the multiplexer; the
fanout and memory primitives require eight more.

The focus of an inquiry has a path whose value must both be accomplished and
observed. From this focus we can use the goal rules to assign a goal to each of the paths that
will participate in the inquiry.

5.4 Condition Rules

Condition rules keep track of the interdependencies of establishing values on paths.
These rules, like goal and sensitization rules, occur in both forward and backward varieties.

GC-1 (Figure 36) is an example of a backward condition propagation. To test a gate
output to see whether it transmits a value di, the control should be h1i and data input di. Since
faults on either the control or data input would violate OK on the output, OK propagates to both

Fig. 34. Prototype Goal Rule for Forward Propagation
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Fig. 35. Goal Rule for Forward Propagation with Multiple Outputs

A/(C%\

| I N

observe

observe

8. Reconvergent fanout introduces a subtlety about backward propagation goal rules: rules for multiple-output
devices must check first whether an input already has the goal "observe," since a single path may play both roles.
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input paths.

This illustrates the basic principle behind condition rules: they add to the conditions of
the inquiry wherever a fault might cause the same effect as violating an already existing
condition.

GC-2 (Figure 37) is an example of a forward condition propagation. Suppose we wish to
observe whether the control transmits the value hi; the condition on the control is OK. If we
choose the data input randomly, we might end up with a value that could be mapped onto X
by an error on the input or output paths. This would make it appear that the control was bad.
Thus we have the condition that the input and output must be OK; that is, if the test fails, it
could be because either of those paths was bad.

However, we can in.fact get by with weaker conditions on the data input and output.
Recall from 3.6 that the condition XI means "transmits information” and is satisfied by any
path that can transmit one bit of information. We use m0 to mean "a majority of 0's", and m1
to mean "a majority of 1’s." {m0,m1} is the set of values transmitted by a path that is XI. If
we use one of the values in {m0,m1} on the data input and output, the only situation in which
the control input could appear bad would be if the data input or output were incapable of
transmitting even a single bit of information. Thus in this case we have the condition that the
data input and output must be XI. The resulting rule GC-3 is shown in Figure 38.

Rule GC-4, shown in Figure 39, is an example of a rule that produces an "or" of
conditions. Suppose we need to accomplish X on a gate output with the condition X0K. As
we have seen in Sensitization Rule GS-3 (Figure -8), we can accomplish X by making the
control 10, the data input X, or both.

Fig. 36. Condition Rule GC-1
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Fig. 37. Condition Rule GC-2
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Fig. 38. Condition Rule GC-3

mO [\ mO m1i mi

xi xi Xi ™~ Xi
i 7

observe observe
hi hi
ok ok

If 10 is chosen as the control input then the condition on the control input is OK because
an erroneous control value of hi could make the output appear bad.

If X is chosen as the data input then the condition on the data input is XOK because a bad
data input could make the output appear bad.

But if both X and 10 are chosen as inputs, then both inputs would have to be bad in order
to make the output value bad. The proper condition is "either the data input is XOK, or the
control input is OK." We can abbreviate this as (or (X0K data-input) (OK control)).
The circled "or" notation indicates that a disjunct of conditions is present.

There are nine condition rules for the primitive devices in the multiplexer; there are seven
more for the fanout and memory primitives.

5.5 An Example Of An Inquiry Design

The rules described above are used to design inquiries. We choose a focus path and
value, annotate the path to indicate that we want to both "accomplish” and "observe" that
value, and set the condition on the path to be OK. The rules fire and assngn goalis, values, and
conditions to other paths in the device.

As an example we show the design of an inquiry for the multiplexer that tests whether
path DO-1 can transmit the value d2. Figure 40 shows how the goal rules assign acc and obs
to the paths in the multiplexer. Note that the address input A could be assigned acc¢ from any
of the selector outputs.

Figure 41 shows how the sensitization rules and device behavior rules use the previously
assigned goals and the value d2 at DO-1 to assign values to the paths. For each of the gates
G2 and G3, a consistent set of assignments is reached using behavior and sensitization rules.
Both behavior rule SB-1 and sensitization rule GS-3 have determined the value 1o for the
control input. Both the behavior rule GB-2 and the sensitization rule JS-1 determine the
value X for the data output.
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Fig. 39. Condition Rule GC-4
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Fig. 40. Goal Assignments in the Multiplexer

The conditions on the multiplexer paths arise from the goals and values, and from the

condition 0K on path DO-1. Figure 42 shows the condition rules used and the final
assignments, :



.31-

Fig. 41. Value Assignments in the Multiplexer
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Fig. 42. Condition Assignments in the Muitiplexer
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Around Gates G2 and G3, condition rule GC-4 has been used, so that the conditions on
the control and data inputs for each of G2 and G3 have been or'd. The propagation of the
condition OK from the gate control paths E2 and E3 to A includes (ok A) as a condition in a
disjunct of the or-clause, but is ignored. It is redundant, since it is already a member of the

top level conjunct. The resulting inquiry is shown below.



Inquiry I-25 : [ DO-1 7 d2 ]

Inputs: (A = dl) (DI-1 = d2) (DI-2 = X) (DI-3 = X)

OQutput: (DO ? d2)

Conditions:

(ok A) (ok E-1) (ok DI-1) (ok DO-1) (xok DO-2) (xok DO-3) (ok DO)
(or (xok DI-2) (ok E-2)) (or (xok DI-3) (ok E-3))

This inquiry means that to test whether DO-1 transmits d2: assign A to be d7, DI-1 to be
d2, and let the other DI's be X. The test result can be determined by checking whether DO
has the value d2. If the test succeeds (i.e. d2 appears on DO), conclude that DO-1 can -
transmit d2. If the test fails, conclude that one of the paths A, E-1, DI-1, DO-1, DO-2, DO-3, or
DO was bad, that E-2 and DI-2 were bad, or that E-3 and DI-3 were bad.

5.6 Propagation Through Time

Real computers contain memories of all sizes and types, so it is important for a diagnostic
generation system to deal with state devices. Testing a device with state requires using a
sequence of inputs, only at the end of which can the result be examined. For example, to test
whether the output of a master-slave flip-flop is sa-0, we must write a 1 into the flip-flop on one

. clock tick and look at the output on the next. To design such a test, we would start with the
goal of sensitizing the flip-flop output, and realize that to set it to 1, we must set the contents
of the flip-flop to 1. Master-slave flip-flops only change their outputs after a clock tick, so we
must write the 1 during a previous clock.

This kind of reasoning is quite analogous to the backward propagation that the system’
already does, but now we propagate back in time as weli as space. To design inquiries for
devices containing the memory primitive, we must propagate values and conditions forward in
time to observe, and backward in time to accomplish. As before, reaching primary inputs and
observable outputs terminates the propagations.

To illustrate propagation backward through time, we show the design of an inquiry that
tests whether the output path OUT of the simple memory device in Figure 43 can transmit d2.
We begin by annotating path OUT with the goal of accomplishing and observing the value d2
with the condition OK. The currenttimeist.

Recall from 3.2 that the the memory primitive has a state terminal whose value persists
over time and is transmitted to the output when the R/W control is read. The state terminal
can be annotated with a goal, value, and condition, just like an information path. A state
terminal with the goal "accomplish at a previous time" is a state input; similarly, a state
terminal with the goal "observe at a future time" is a state output. Whenever we have a state
input, we must propagate backward in time to t-1. Similarly, we propagate forward from state
outputs. Thus, the rules annotate state terminals during the current time, but only use those
annotations for further propagation during a previous or future time.

Our system accomplishes this propagation by allowing the rules to run to quiescence and
then taking a snapshot. A snapshot records the primary and state inputs, and the observable
or state output during one clock tick (recali from section 5.3 that only one output is ever
observed, so that there is never more than one primary or state output in a snapshot). The
snapshot below is taken at t and corresponds to Figure 43. For simplicity of presentation,



Fig. 43. Propagations at Time t
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conditions have been omitted from the snapshots.

Snapshot at Time t

Primary Inputs : (EN = on) (R/W = read)
State Inputs : (STATE = d2)
Observable Output : (OUT ? d2)

This snapshot says that at time t we will perform a read operation on the memory and
examine the output to see whether it is d2.

In order to get any value out of the memory at time t, we must get it onto the state
terminal at time t-1, that is, we must accomplish d2 with the condition 0K on the state terminal
att-1.° We make those assignments and get the results shown in Figure 44.

This results in the snapshot below. it shows that we will write d2 into the memory at t-1.
There are no state inputs, so the system stops backward propagation. There were no state
outputs at t + 7, so there are no forward propagations through time and we are done.

Snapshot at Time t-1
Primary Inputs: (IN = d2) (EN = on) (R/W = write)
State Output : (STATE = d2)

The resulting inquiry is shown below and consists of the time-ordered sequence of the
snapshots’ primary inputs; its conditions are the union of the conditions accumulated at each
time step.

9. Having taken a snapshot we can clear away the previous assignments. This allows paths to transmit different
values during different time steps.
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Fig. 44. Propagations at Time 1-1
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Inquiry I-37 : [OUT ? d2]

Inputs @t-1: (IN = d2) (EN = on) (R/W = write)

Inputs @t: (EN = on) (R/W = read)

Output @t: (OUT ? d2)

Conditions : (ok IN) (ok EN) (ok R/W) (ok OUT) (ok STATE)

This inquiry says that to test whether QUT transmits d2, write d2 into the memory at time
t-1. At time t, read the memory and examine OUT to see whether it is d2. If it is not d2 then
one of the paths IN, EN, R/W, or OUT, or the ability of the memory to store data, is bad.

5.7 Summary

We have seen how path sensitization can be used to design inquiries in the information
path model. The connectivity and behavior of the device’s components are used to drive the
inquiry design process by propagating values backward and forward from the focus. This is
done using sensitization rules; goal rules guide the sensitization rules to do forward or
backward propagation. We have also seen that conditions can be propagated using rules
similar to those for sensitization. Finally, we have seen that analogous "backward" and
"forward" propagations can be used to design inquiries for devices containing state
elements.
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6. The Inquiry Improvement Phase

The inquiry improvement phase improves the resolution of the inquiries by reducing their
conditions. This is done using a number of techniques, including the use of the single point of
failure assumption to reduce the conditions in inquiries, and to combine inquiries so that their
conditions are reduced.

The single point of failure assumption (SPFA) assumes that there is only one fault in the
device. This is both a reasonable model of real-world faults and a useful simplification for test
generation. The SPFA narrows considerably the conclusions that can be drawn from any
given test: to explain any misbehavior, there are far more hypotheses involving multiple
failures than those involving single failures. Thus, using the SPFA can be viewed as an
application of Occam’s razor.

The two uses of the SPFA in this phase are: elimination of "or" conditions, and
collaboration, which combines inquiries. A specialization of the SPFA, the independent
channel assumption, uses local implementation information to reduce conditions.

This phase also improves the efficiency of the inquiries by eliminating redundancies both

. among alternative inquiries for the same focus, and among similar inquiries with different foci.

More local implementation information can be used to reduce the length of some test
sequences.

6.1 Elimination of "OR" Conditions Using the SPFA

Some of the conditions created during inquiry design contained "or"’s, most commonly
as (or (ok control) (ok data-input)). Under the SPFA we know that only one path, if
any, is bad, so that such conditions can be satisfied immediately. In this case either the
control or the data input must be OK. Here, we simply drop all such clauses from the
conditions of our inquiries. Below, Inquiry 1-19 is shown before and after or-elimination.

Inquiry I-19 : [ DI-1 ? di ]

Inputs: (A = d-1) (DI-1 = di) (DI-2 = X) (DI-3 = X)

Output: (DO ? di)

Conditions: ,

(ok A) (ok E-1) (ok DI-1) (ok DO-1) (xok DO-2) (xok DO-3)-(ok DO)
(or (xok DI-2) (ok E-2)) (or (xok DI-3) (ok E-3))

Inquiry I-19 : [ DI-1 ? di ]

Values: (A = d-1) (DI-1 = di) (DI-2 = X) (DI-3 = X) (DO ? di)
Conditions:

(ok A) (ok E-1) (ok DI-1) (ok DO-1) (xok DO-2) (xok DO-3) (ok DO)

Since or'd conditions are going to be dropped from inquiries, it might appear that they
should not be generated during inquiry design. This can be done, as long as fanout and
reconvergence are taken into account. Consider Figure 45.



Fig. 45. Condition Resulting from Or-Conditions on Reconvérgent Paths

D should be included in the conditions for any inquiry about A because if it is bad the
values on both B and C will be bad. This has the same effect as violating (or (ok B) (ok

c)).

6.2 Collaboration

Collaboration creates a new inquiry with reduced conditions by using evidence from at
least two inquiries. Consider two inquiries that have the same focus but have different
conditions, as shown below.

I-1

[A?2d]

Inputs:

Output:

Conditions: (ok A) (ok B)

I-2

[LA?d]

Inputs:

Output: ..

Conditions: (ok A) (ok C)

Suppose Inquiry-1 implicates. Then one of A, B, or C is bad. Suppose also that Inquiry-2
does not implicate. Now we cannot implicate A. Further inquirics would be necessary to
distinguish between B and C,

Now suppose that Inquiry-1 and Inquiry-2 both implicate. Then one of A, B, or C is bad,
AND one of A, B, or D is bad. Under the SPFA, C cannot be bad because this would not
explain the result of Inquiry-2, and D cannot be bad because this would not explain the result
of Inquiry-1. So, the conditions of the new inquiry 1-3 are (ok A) (ok B), because these are
the only paths it can implicate. Inquiry-3 is shown below. It has two input/output sets
corresponding to those of the comprising inquiries. Inquiry-1 and Inquiry-2 are no longer
needed and can be deleted.
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I-3

[A 7 d]

Inputs 1:

Output 1:

Inputs 2: ...

Output 2: .

Conditions: (ok A) (ok B)

The conditions of the new inquiry are the intersection of its constituent inquiries’
conditions. Hence a compound inquiry is more robust and has better resolution because it
achieves isolation from faults that violate conditions in only one of the two inquiries.

An interesting example of collaboration occurs among the three inquiries for
[ DO ? di ]. Inquiry I-19, shown below, is one of these three inquiries and transmits di
along the paths DI-1 and DO-1 to get to DO. Inquiries I-20 and 1-21 are similar, but use
different routes for di.

Inquiry I-19 : [ DO ? di ]

Inputs: (A = d1) (DI-1 = d2) (DI-2 = X) (DI-3 = X)

Output: (DO ? d2)

Conditions:

(ok A) (ok E-1) (ok DI-1) (ok DO-1) (xok DO-2) (xok DO-3) (ok DO)

There is a subtlety about intersecting conditions: the intersection of (ok D0-1) and
(xok DO-1} is the the condition (xok DO-1), since the condition that path DO-1 must
transmit X correctly is subsumed by the condition OK.

Collaboration results in a single inquiry 1-38 with reduced conditions. The comprising
inquiries 1-19, I-20, and |-21 are deleted.

Inquiry I-38 : [ DO ? di ]

Inputs 1: (A = d-1) (DI-1 = di) (DI-2 = X) (DI-3 = X)
Output 1: (DO ? di)
Inputs 2: (A = d-2) (DI-1 = X) (DI-2 = di) (DI-3 = X)
Output 2: (DO ? di)
Inputs 3: (A = d-3) (DI-1 = X) (DI-2 = X) (DI-3 = di)

Output 3: (DO ? di)
Conditions: (ok A) (xok DO-1) (xok D0-2) (xok D0O-3) (ok DO)

6.3 Transforming Conditions Using Implementation Information

Another tool for reducing conditions is the mapping of information paths back onto the
actual digital implementations. This mapping can be used to reduce or transform conditions.

The independent channel assumption is that all paths that transmit more than two values
may be viewed as bundles of single-bit paths. With the SPFA we conclude that any multi-bit
path is guaranteed to have at least one good single-bit path, and thus transmits at least two
values even when faulty.” Recall that XI is the condition that a path need transmit only a
single bit of information. For any path P that is more than one bit wide, the condition (xi P)
is automatically satisfied under the independent channel assumption.



We can thus transtorm our existing inquiries by deleting X1 conditions on paths that are
more than one bit wide. In addition, XI is equivalent to OK for paths that are only a single bit
wide, so we transform the inquiry to reflect this by changing XI conditions to OK.

6.4 Improving Inquiry Efficiency

Having reduced the conditions in the inquiries to achieve resolution, we can now
eliminate redundancies to improve the inquiries’ efficiency.

Recall that the existence of choices during inquiry design can lead to multiple inquiries
for the same focus. For example, two inquiries could be designed for a simple device
consisting of a single gate, as shown in Figure 46. As in this case, the multiple inquiries may
have different inputs and the conditions of one may be a subset of another. Typically this
occurs after or-conditions have been eliminated under the SPFA.

The conditions of I-1 are a subset of those of -2, so I-1 has better resolution. In such
cases we discard the inquiry with more conditions, retaining the inquiry with more resolution.

There are also cases in which inquiries for different foci have identical inputs. For
example, an inquiry to see whether a gate’s data input transmits d2 will be the same as one to
see whether its output transmits d2. In such cases, we note that the inquiries are identical so
that the resulting diagnostic will perform only one of them.

The efficiency of individual inquiries may also be improved by using implementation
information. Recall from section 3.6 that we test whether a gate control path transmits hi by
making the control hi and then examining the output to see whether it changes when the
input changes. The example there showed that to test a gate implemented as a group of
tristates, we could make the control input 1, change the data input from 000 to 111, and
examine the output to see whether it too changed.

Fig. 46. Two Inquiries for a Simple Device

acce acc +obs acc acc + obs
X X X X
N xok xok xok
acc "ace
lo hi

I-1: [Output 7 x]
Inputs: (Data = x) (Ctl1 =
Output: (Output ? x)

|

lo) |

|

Cond's: (xok Output) |

I-2: [Output ? x]

Inputs: (Data = x) (Control =
OQutput: (Output ? x)

Cond's: (xok Data) (xok Output)

hi)

10. This excludes from consideration such "single faults” as a disconnected bus cable that actually change the

behavior of all the wires making up an information path.



A similar test could he written for the control input of a q:nev device implemented as a
group of AND gates. However, the more general test can be made more efficient in this case
by using implementation information. For the AND gate implementation we only need 111 as
an input to tell whether the output is sensitive: if the output is closer to 000, we conclude that
the output is not sensitive and thus the control is not transmitting 1; if the output is closer to
111, we conclude that it is sensitive and the control is indeed transmitting 1.

We can describe this in terms of the information path model. The output path of the gate
implemented as tristates transmits the values {X,d0,d1...dn-1}. On the other hand, the
output path of the gate implemented as AND-gates transmits the values {d0,d1...dn-1}
and X, which is implemented as 000, happens to be identical to d0. In this latter case,
inquiries that would require two input sets because they must transmit both elements of the
set {m0,m1} are transformed to have only one input vector that uses the value dn-1 to
represent mi.
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7. The Ordering Phase

The test ordering phase improves resolution by ordering the tests so that each has the
minimal set of conditions. Tests’ conditions can be reduced by ordering because any paths
that have already been tested need not appear in later tests’ conditions. In other words, if an
inquiry relies on a previously exonerated path, that path appearing in its conditions may be
ignored because the condition is known to be satisfied.

For example, assume that A has been exonerated previously, and the inquiry for B only
has the conditions (ok B) (ok A) (ok C). If the inquiry for B indicates a bad result, only B or
C could be bad; A is known to be good. This is a powerful technique that explains the usual
tendency of hand-written diagnostics to test in a progressive way, beginning with those parts
that are required for communication with parts to be tested later. A memory test, for example,
would check the read/write enable control before moving on to test the data integrity.

The ordering is accomplished by comparing tests pairwise using three rules. We will
show the rules and the ordering of the tests developed for the multiplexer. First we describe
how tests are created from inquiries.

7.1 Test Aggregation

We defined a test for a path as a series of inquiries, one for each value on the path.
When an inquiry has been run for every value of a particular path and none of the inquiries
has implicated, then the focus path has transmitted all its values correctly. In this case we say
that the test exonerates the path.

The general form of a test is shown below along with an example, the test created for E-1
from inquiries for the values hi and 1o.

Test T-n : (ok 7 <path>)

Inquiries: <list of inquiries>

Length: <number of value sets in all inquiries>
Conditions: (<cond> <path>) (<cond> <path>)

Test T-2 : (ok 7 E-1)
Inquiries: I-10, 1-43
Length : 3 '
Conditions: (ok A) (ok E-1)

Test-2 uses three test vectors and was constructed from the inquiries 1-10 and 1-43. If
neither of the inquiries implicate, we will conclude that E-1 is OK. If either implicates, then we
look at the inquiries’ conditions to see which of the paths are implicated in addition to E-1.
The tests’ conditions are the union of its constituent inquiries’ conditions and are used as an
ordering criterion.
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A useful abbreviated notation for tests shows only the path under test and the conditions.
Below is the abbreviated form of Test-2, whose tocus is represented by (ok? E-1).

(ok? E-1) : (ok A) (ok E-1)

7.2 Rules faor Pairwise Ordering of Tests

The basic principle behind ordering of tests is to perform them in the order that
minimizes the conditions required at each step. We do this by ordering pairs of tests so that
the tests with the weaker conditions are done first.

Conditions can be thought of as dependencies between tests: the test for path A
depends on the test for path B if B appears in the conditions of the test on A. Thus for any
group of tests we can build a directed graph whose links indicate "depends on." During this
phase we want to change this directed graph into an acyclic directed graph and the resulting
partial ordering into a total ordering. We can do this by collapsing loops into single nodes,
eliminating redundant transitive links, and adding links where the ordering is left ambiguous.

There are two subtleties to this ordering. First, two paths may depend on each other.
~Since the resulting tests for those paths are not independent, they should be done close
together in time to preserve the outward coherence of the resulting diagnostic. This is a
matter of esthetics and has no effect on the logic of the tests.

Second, there are different strength links because the conditions have different
strengths. The dependence of A on B resulting from (ok? A) : (xi B) is weaker than the
dependence of B on A from (ok? B) : (ok A). Thus, while two paths may depend on each
other, if A uses a weaker condition about B than B uses about A, we will test B first."

With these foundations in place we now describe the rules. They are presented in both
textual and graphic form. The text on the left shows a "before" and "after" transformation of
test conditions. The graph on the right shows links representing the ordering on the nodes,
which represent tests. Nodes nearer the top will be performed before those below. Unlinked
nodes are unordered. '

11. A related subtlety has to do with interpreting conditions. The test that went first because it had a weaker
condition for some path F may be abie to partially exonerate P, in particular when that weaker condition was X0K. A
single inquiry is sufficient to determine whether or not ( X0k P ): If the path is not XOK, then the condition would be
violated and the inquiry would implicate. I the inquiry does not implicate, we conclude that all the paths with the
condition XOK were properly transmitting X, and thus can delete XOK from the conditions of all the tests that follow.
This is an exception to the notion that inquiries alone cannot exonerate paths. But we cannot similarly exonerate
other paths mentioned with stronger conditions.
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7.2.1 Ordering Rule 1: Postpone Tests with Strong Conditions

Postpone tests that could benefit from prior exoneration. Remove the satisfied
conditions from the later tests. '

(ok? Y) :

(ok? Z) : (ok Y) ... (Y)
| I
| I
v I
Test Y before Z. (2)
(ok? Y) : -
(ok? Z) :

Ordering Rule 1, case 1
This indicates that Z needs Y but Y does not need Z. Once the ordering has been
established, the condition in the later test can be removed, because Y will already have been
exonerated by (ok? Y).

The same principle holds when Y does need Z, but requires only (xok Z) or (xi Z): we
still do Y first because it requires the weaker condition.

(ok? Y) : (Kcond> Z) ...

(ok? Z) : (ok' Y) ... (Y)
|

==) ) '
I

Test Y before Z. (Z)

(ok? Y) : (<cond> Z) ...

(ok? Z) :

Ordering Rule 1, case 2

Ordering rule 1 orders multiplexer tests T-1 and T-11:

(ok? A)
(ok? DO) : (ok A) (xok DO-1) (xok D0-2) (xok DO-3) (A)
I |
I I
v I
Test DO after A, (DO)
(ok? A)

(ok? DO) : (xok DO-1) (xok DO-2) (xok DO-3)

Example of Ordering Rule 1 Being Applied
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7.2.2 Ordering Rule 2: Group Tests That Rely On Each Other

Some tests have each others’ focus path in their conditions. They generally share
inguiries. These tests should be ordered to be close together in time to give the diagnostic

coherence.

(ok? Y) : (ok Z)
(ok? Z) : (ok Y)

I
I (Y) === (2)
Vv

Test with Z

(ok?

(ok?

N =< =<

) ¢
) ¢
Ordering Rule 2

This indicates that there is an overlap of implications caused by faults on Y and Z. In
other words, during testing of Y, there are some inquiry results that could implicate either Y or
Z, and likewise, during testing of Z there are inquiry results that could implicate Zor Y. ltis
possible that there are results that could only implicate Y, or only implicate Z, but since the
tests generally will be sharing inquiries, they might as well be tested together.

An example of ordering rule 2 being applied between the tests for DI-1 and DO-1 is
shown below.

(ok? DI-1): (ok DO-1)
(ok? DO-1): (ok DI-1)

|

{v - (DI-1) === (DO-1)

Test DI-1 and DO-1 together
(ok? DI-1 DO-1):

Example of Ordering Rule 2 being Applied

7.2.3 Ordering Rule 3: Disjoint Conditions

The preceding two rules will not apply in all cases, because sometimes test conditions
are disjoint. In this situation we do the tesis with weaker conditions first. If the conditions
cannot be characterized by relative strength, we order by doing first those tests that require
fewer input sets in their inquiries. If the input sets are of equal length then the ordering is
arbitrary.

In the multiplexer, the tests for E-1, E-2, and E-3 are disjoint from the conditions for DO.
We apply this third rule to order the E-j's, which each require 3 value sets, before DO, which
requires 3n + 3 value sets.
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7.3 Ordering the Multipiexer Tests

The set of tests developed previously is shown in Figure 47. For simplicity of
presentation the XI conditions have been removed under the independent channel
assumption, as described in section 6.3. They do not change the ordering.

Ordering rule 1 applies:

* Between (ok? A) and all the other tests

* Between each (ok? E-j) & (ok? DI-j) and between (ok? E-j) & (ok? DO-j)
* Between (ok? DO) and each (ok? DI-j) and (ok? DO-j).

Ordering Rule 2 applies between (ok? DI-1) & (ok? DO-1), between (ok? DI-2) & (ok?
D0O-2}, and between (ok? DI-3) & (ok? D0-3).

Ordering Rule 3 applies, as mentioned before, between each of the (ok? E-j) and (ok?
DO).

This gives us the final ordering shown in Figure 48 and leaves the tests for E-1, E-2, and
E-3, as well as the DI/DO-j pairs unordered.

Fig. 47. Multiplexer Tests with Xl-conditions Removed

(ok? DO3) : (ok A) (ok DI3) (xok DO1) (xok DO2) (ok DO) (ok E3)
(ok? E3) : (ok A)

(ok? DI3) : (ok A) (xok DO1) (xok DO2) (ok DO3) (ok DO) (ok E3)
(ok? DO2) : (ok A) (ok DI2) (xok DO1) (xok DO3) (ok DO) (ok E2)
(ok? E2) : (ok A)

(ok? DI2) : (ok A) (xok DO1) {ok DO2) (xok DO3) (ok DO) (ok E2)
(ok? DO1) : (ok A) (ok DI1) (xok DO2) (xok DO3) (ok DO) (ok E1)
(ok? E1) : (ok A) :

(ok? DI1) : (ok A) (ok DO1) (xok DO2) (xok DO3) (ok DO) (ok E1)
(ok? DO) : (ok A) (xok DO1) (xok DO2) (xok DO3)

(ok? A) :

Fig. 48. Ordering of Multiplexer Tests after Rules 1, 2 and 3

UI\)
(D0)
/ |\
Fommm———— + | +----mm-- +
| \
(E1) (E2) (E3)
/ A\ / N\ / N\
/ \ / \ / \

(DI1)===(D01) (DT2)===(D02) (DI3)===(D03)
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This givas us the following sequence of tests:

(2) TestA:{ok?A) : (0kA)

This means that the test will either implicate A or exonerate A alone.

(4) TestE-1,E-2,and E-3:
(ok? E-1) : (ok E-1)
(ok? E-2) : (ok E-2)
(ok? E-3) : (ok E-3)

This means that the tests for each E-j will will either implicate or exonerate that E-j alone.

(6) TestDO: (0ok? DO) : (ok DO) (xok DO-1) (xok DO-2) (xok DO-3)

This means that the test can be written so that it can exonerate DO, and it can implicate
DO, DO-1, DO-2, or DO-3."

(8) Testeach of DI-1/D0O-1, DI-2/D0O-2, and DI-3/D0-3 together
(ok? DI-1 DO-1) : (ok DI-1) (ok DO-1)
(ok? DI-1 DO-1) : (ok DI-1) (ok DO-1)
(ok? DI-1 DO-1) : (ok DI-1) (ok DO-1)

This means that for each j, a test can be written that will exonerate DO-j and DI-j, or will
implicate DI-j or DO-j. :

7.4 Local Preordering

The time needed to check for intersections between large sets of conditions degrades
the performance of the ordering phase. We can improve this by using local information to
decide which pairs of tests to try to order first. The heuristic is that pairs connected to a
common device can be locally ordered. For example, consider a gate with data input IN,
control CTL, and output OUT. Designing tests for these paths results in the tests shown
below.

(ok? CTL) : (xi IN) (xi OUT)
(ok? IN) : (ok OUT) (ok CTL)
(ok? OUT) : (ok IN) (ok CTL)

Between CTL and IN, and between CTL and QUT, we can apply Ordering Rule 1.
Between IN and OUT, Ordering Rule 2 applies. Figure 49 shows the result of the ordering
rules.

12. As described in the previous footnote, the condition XOK on the DO-k’s means that if this test succeeds, then
future inquiries with the condition ( xok D0-k ) cannot implicate DO-k.
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8. Implementation

An implementation of the system has been written in Franz Lisp on a VAX-11/780
running Unix. Devices built from the primitives of the information path model are represented
in a language described in [Davis 82]. In the inquiry design phase, the rules previously
described are used to derive the consequences of goal, value, and condition assignments to
paths. Because some rules require choices to be made, the program designs all the inquiries
for a focus using exhaustive search. The search can be limited in several ways, as described
below. Inquiry improvement and test ordering are programmed for the most part as
straightforward set operations and sorting algorithms.

8.1 Rules

The description language, based on DPL [Batali 81], has a mechanism for implementing
rules. Each device has some terminals; for example, the terminals of a gate device are the
data input, the control, and the output. These terminals have cells that can be assigned
values. Each rule has some input cells, a procedure, and an output cell where the
procedure’s value will be assigned. Each rule is "threaded" across cells at the terminals of a
particular device. Whenever a cell is assigned a value, the list of rules that use the cell are
checked to see if they can run, and those that can will run and cause other assignments to
cells.

The propagation mechanism, which is based on the notion of constraints [Steele 80},
causes the system to run rules and assign cells until quiescence is reached. Dependencies
are maintained for cell assignments, so that retracting a cell upon whose value other cells
depend will cause those other cells’ values to be retracted as well. When terminals of devices
are attached by an information path, their cells are shared, so that setting a value in a cell by
one rule will cause the connected devices’ rules to fire.

The inquiry design rules shown earlier are encoded as rules using this machinery. Every
terminal has "goal,"” "value," and "condition” cells, across which the rules are threaded.
Rules have the form (<output-cel1> (<input-cells>) <1isp-form>). Rules run when
all their input-cells are assigned. A ruie may run and either fail or succeed. The form
(whenever <condition> <1isp-form>) causes the rule to fail unless <condition> is true."
If the rule runs and succeeds, the output-cell is assigned the value that the lisp-form returns.
Below are encodings of Behavior Rule GB-1 and GB-2.

(output-value (input-value control-value)
(whenever (eq control-value 'HI) input-value))

(output-value (control-value)
(whenever (eg control-value 'L0O) 'X))

13. Thisisin contrastto ( if <condition> <{form>), which would cause the rule to succeed and return the
value "nil".
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As it happens, the rules can have only a single output cell, so a rule such as GS-2 must
be encoded as two rules:

(input-value (output-goal output-value)
(whenever (and (eq output-goal 'ACCOMPLISH)
(neg output-vaiue 'X))
output-value))

(control-value (output-goal output-value)
(whenever (and (eq output-goal 'ACCOMPLISH)
(neq output-value 'X))
'HI))

8.2 Avoiding Or-Conditions

Recall from section 6.1 that "or-conditions" result when a condition depends on any one
of several conditions being satisfied and that these or-conditions can be eliminated by using
the single point of failure assumption. Our implementation of the system avoids recording
these conditions, thus bypassing or-elimination during inquiry improvement.

For example, in Figure 50, reproduced from section 6.1, the condition (ok A) results in
the or-condition (or (ok B} (ok C)). (ok D) results from both (ok B) and (ok C). Thus,
the conditions will be (ck A), (ok D), and (or (ok B) (ok C)). The last of these conditions
can be eliminated under the SPFA.

The program eliminates or-conditions during the inquiry design phase by making use of
information maintained by the rule-running mechanism.' For any assignment to a path, such
as (ok A), the mechanism maintains all the consequences of that assignment. In the
example above, (ok D) is a consequence of (ok B) and (ok D) is a consequence of (0k C).
Each condition in an or-clause has a set of consequences; the program only records
conditions in the intersection of these sets. In the example above, only {ok D) would be
recorded.

Fig. 50. Conditions Resulting from Reconvergent Paths

14. When state devices are involved, this information can be preserved in snapshots.
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8.3 Avoiding Inquiry Designs

As noted before, the inquiry improvement phase detects and deletes redundant inquiries.
Such inquiries can often be detected before the design begins by doing fault collapsing. For
example, the fault E(d2)<>d2 on a gate input and E(d2)<>d2 on its output are
indistinguishable, and so can be collapsed. Inquiries that test paths for indistinguishable
faults will always turn out to be identical. Only one of each such pair needs to be generated.

We can also use parameterization to reduce the number of inquiry designs. For example,
inquiries that test for d2 and d3 on the same path will nearly always be similar. We design
such inquiries by propagating the symbolic parameter di to represent the values d0 through
dn-1 on the focus path.

8.4 Inquiry Design as a Search Problem

An assignment of a value and condition to a focus path results in the creation of choice
points. To make all the inquiries for a particular focus, an exhaustive search must be made of
all the choices. In general the size of the search tree has an upper bound of O((n*m)jth),
where h is the length of the longest path from an input to an output, n is the number of devices
in each stage, and m is the number of possible choices for each device. Upon reaching a
choice, the program creates a choice node and iterates through the possible assignments.
This results in a depth first search.

Search may be avoided by making choices that are likely to yield better inquiries. Since
we prefer inquiries with fewer conditions, we may search the tree in such a way that we try
only those assignments that keep local conditions to a minimum. Pruning branches in this
way has the effect of reducing the work done in the inquiry improvement phase. Recall from
6.4 that if two inquiries test the same path, we delete the inquiry whose conditions were a
superset of the other’s. Instead of deleting the redundant inquiry, we can avoid generating it
in the first place. As with any search heuristic that prunes branches we must accept the
possibility that we will miss winning branches, so we may in rare cases miss better inquiry
designs.

An example of this heuristic is currently encoded into the program’s rules. By comparing
condition rules GC-2 and GC-3, it should be clear that observing whether the control input is
hi or 1o should be done using the inputs {m0,m1}, since this results in the condition XI on
the output path, while any other data input assignment results in the condition OK, which is
stronger. This cuts down the number of possible assignments from n-7 to 1.

This heuristic also treats an "or" of conditions as weaker than, and thus preferable to,
any of XI, XOK, or OK alone. This is obviously true under the SPFA, but still true even if we
only assume that multiple failures are less likely than single failures.

The gate device provides an example of an "or" condition. Recall sensitization rule
GS-4: to accomplish X on the output of a gate, we may either accomplish X on the data input,
or accomplish 10 on the control input. These choices typically result in the conditions (ok
control) and (ok data-input).
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In reality there is another alternative: we can also assign both X and 1o as inpuis to the
gate. The resulting conditions include (or (ok control) (ok data-input)), which may
be dropped during or-elimination. Thus choosing both may yield an inquiry whose conditions
are less than the conditions resulting from either alone.

The program takes advantage of this. We call the assignments of X and 10 nonexclusive
assignments. Upon reaching a set of nonexclusive assignments, it creates a choice node with
three alternatives. The first alternative is to try making al/l the assignments; this terminates
early and successfully if any inquiries are found. If that fails then it goes on to iterate through
all the individual assignments.'®

More than one such set of alternatives may be available at any point during an inquiry
design. The order in which the sets are explored may prevent some inquiries from being
found. For example, the inquiry [DO ? x] creates three choice nodes, at G1, G2, and G3. If
we begin at the first choice node by assigning X and 1o to G1’'s inputs, then making
subsequent choices at G2 and G3, we find two inquiries with (A = d2) and (A = d3). Butwe
would miss the inquiry with (A = d1). Because the order of exploration matters, the program
tries all permutations of that order and avoids redundant sets of assignments by memoization.

15. The gate is a simple, 2-assignment case. The technique generalizes to trying all the subsets of the n
assignments-- first the subsets with n elements, then the subsels with n-1 elements, etc.-- and allowing successful
termination after any group of subsets. As a result an exponential number of subsets may be tried.
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9. Future Directions

There is much more to the problem of designing diagnostics than covered by the current.
system. Some limitations become clear in examining the inquiry design methodology, the
multiplexer problem on which it currently works, and its performance on a device containing
state elements.

9.1 Limitations of the Inquiry Design Methodology

There are two important limitations of our current system that arise because the system is
based on local propagations. First, the rules can only propagate single values, when at times
sets of values would be more appropriate. Second, the system also needs nonlocal
information about relationships between values on related paths. In a junction, for example,
we may need to know that to obtain a di at the output, exactly one of the inputs must be di
while the other inputs have X. Unfortunately such assertions about the behavior of the
junction cannot be represented by local assignments to individual paths.

Consider an inquiry to see whether path DO of the multiplexer can transmit di. Strictly
applying the method previously described, we arrive at a set of inquiries differentiated only by
the choice of path. So we would have separate inquiries that use gates G1, G2, and G3 to try
to transmit the value di from a primary input to the observable output. Figure 51 shows the
value and condition assignments for one of the three inquiries.

All three inquiries have the condition 0K on the address input, since a fault on this input
would cause an incorrect data input to be selected.

Fig. 51. One of Three Inquiries for [DO ? di]

ok ok
di di

acc +obs
ok
di




But if we put the value di on all the data inputs at once, the choice of address input would
be a don’t-care, so that there would not be any condition on the address input. This is
desirable because it reduces the conditions for inquiries about DO. To perform this task the
system needs two important additions to its knowledge: paths transmit sets of values, and
values on paths may be related in ways not captured by device behavior rules. The system
also needs an addition to its notion of goals.

9.1.1 Paths Transmit Sets of Values

The rules currently do not capture the knowledge that a properly behaving device may
constrain its paths to have a range of values. For example, to accomplish the value di on the
output of a junction, each individual input will be either di or X. But the rule can only make a
choice among those values, which is not the same thing.

We can use such information to constrain the choice of gate inputs. Because each input
of the junction is either di or X, each gate output is either di or X. For any input value of the
selector, every output will be either hi or 10; from this we see that for each gate data input is
either hi or 10. Finally, we know that when the gate’s input is dj, its output is either di or X
depending on whether its control is hi or 1o.

We can achieve this effect by propagating sets of values. For example, DO-1 may be
assigned the value "(X, d2)", meaning "either X or d2." We can make a sensitization rule
using the knowledge that when the data input is di, the output is either X or di. The
sensitization rule shown in Figure 52 says: to accomplish (X, d/i) assign the data input to be di
and assign the control input (h1i, 10).

Unfortunately such a propagation is unmotivated if all we know is that the output could
be one of X or di: we have no reason to choose di as an input unless there is some case in
which the output must be di.

Fig. 52. Sensitization Rule GS-5

accomplish
d2 (X,d2)

(lo,hi)



9.1.2 Globatl Information Is Available

We need information about the relationships between values on related paths. For the
junction in the example above, we know that exactly one of the inputs must be di. For the
selector, we know that exactly one of the outputs must be hi. Thus we can choose di for
every gate’s input value to cover the cases when the control is hi and when it is lo.
Choosing the input on every gate to be di allows us to "match up the cases” on both the input
and output.

Unfortunately such assertions as these about the behavior of the selector and junction
cannot be represented by local assignments to individual paths. This problem occurs in
virtually any system relying on local propagation.

One answer to this problem is to redefine what things are local; related paths can be
grouped as a collection of paths. Now any rules that propagate assertions about collections
of paths are in fact local. In the muiltiplexer, for example, we might group together the paths
DO-1, DO-2, and DO-3. If the device is described in a structural hierarchy, we might use that
hierarchy as the basis of the collections. In most cases this will be appropriate.’® Since we
want local propagations to make use of global information, we have considered the idea of
"global comments.” Global comments are annotations accessible locally, shared by, and

referring to, several paths. For example, path DO-1 may have a global comment stating "One
of the paths (DO-1 DO-2 DO-3) has the value d2," where each of DO-1, DO-2, and DO-3 have
been assigned the value (X, d2). Now GS-5 should only fire when just such a global comment
is present on the gate output.

It may be that the problem with this approach lies in the enumeration of rules like GS-5
that propagate sets of values. Clearly, we don’t want to write different rules for every possible
combination. What is really required is to be able to deduce the appropriate assignments
from the existing rules.

Even if these additions are made, however, the problem described in the next section
arises.

9.1.3 "Accomplish” and "Observe" are not a Complete Set of Goals

Imagine that we have reached a stage of the inquiry design for [DO ? di] at which E-1,
E-2, and E-3 all had the value (h1,10), as shown in Figure 53. No further propagations occur.

We cannot leave the address input unassigned, because the conditions of the inquiry
may change depending on its value. For example, if we select d7, then E-1 will be hi, and
DO-1 will be d3. E-2 and E-3 will be 10, and DO-2 and DO-3 will be X. Thus, aithough the
value of the address has been left arbitrary, the value actually chosen determined which paths

16. In fact it is hard to imagine cases in which the designers’ hierarchy is not appropriate; if such cases were
common it would call into question the wisdom of using higher level models in the first place. Nevertheless, it would
be nice if the test designer discovered the appropriate global view rather than having the global information built
into the structure description.
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Fig. 53. Result of Applying GS-5
acc acc
d2 (X,d2)

—1G1

acc

acc
(lo,hi)

needed to be OK. The conditions that arise in this case are shown in Figure 54.

Unfortunately, conditions have propagated so that the inquiry includes the condition 0K
on A, suggesting that the whole effort to remove A from the conditions for [DO ? di] was in
vain.

Fig. 54. Assignment of Conditions After Choosing (A = d1)

acce ace + obs
ok ok
d2

acce

d2

— G1
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The problem is that we did not "accomplish” d7 on A, nor "accomplish” the values
derived as a consequence of that choice. While E-1, E-2, and E-3, whose values were
consequences of that choice, may have conditions due to the assignments on DO-1, DO-2,
and DO-3, the path A should not have any conditions.

We need a different goal notation to indicate that A was not forced, but was an
unconstrained choice. We also need to modify Condition Rule SC-2 so that the selector input
condition is only used when the value is forced. By overriding the existing "accomplish”
notation on the selector input with "choice" when choosing a value, we get the desired effect.

9.2 Inquiry Design With State Devices

It is important for a. diagnostic generation system to handle devices with state. The
system’s inquiry improvement and test ordering phases seem to require no adaptations to do
this. Currently the inquiry design phase of the system can design some of the inquiries for
devices containing the memory primitive, using the notion of snapshots to accomplish
propagation through time, as described in section 5.6. But the search paradigm used
currently fails when there is more than one state terminal with a value to be accomplished.

Figure 55 shows a two-way addressable memory. Consider designing an inquiry that
tests whether the path E1 can transmit 10. We finish propagating at time t to find that we must
accomplish dn-7 at state terminal S1 at time t-7, and X at state terminal S2 at time t-1. For
simplicity of presentation the conditions are not shown.

Propagating backward one step in time, it appears that there is no way to accomplish
both goals ai t-7, since the behavior of the device is such that only one memory device can be
written into per time step. We know, however, that both goals need not be accomplished
simultaneously, since the memory devices preserve the values at their state terminals.

The system could be made to rely on the persistence of state values, never trying to
accomplish more than one such goal during any time step. This is similar in spmt to the
restriction that only one output may ever be observed. -

9.3 Diagnostic Design as a Problem

More important than these shortcomings in the propagation and search machinery, the
system must also be broadened.

First, it is clear that the vocabulary of devices is extremely limited. It must be extended to
include computational devices such as adders and shifters. This is not to propose that every
possible device will have its own primitive. Rather, the issue is to identify those primitives that
classify hardware structures on the basis of their testing requirements.

Second, while fauits on paths is a good place to start on the problem, the possibility of
faults in devices must also be considered. As it stands, our devices are simple enough that to
include them as possible sources of faults would make the condition lists longer without
changing the ordering information significantly. We anticipate that just as we found it
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Fig. 55. Assignments in an Addressable Memory at Time t
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necessary to have a hierarchy of conditions on paths, we will also find it useful to have a
hierarchy of conditions on devices. For example, a multiplier represented as a primitive might
be used to multiply by 1, in effect passing data on to another part under test, before it had
been fully tested. The appropriate condition for the multiplier would be that it "passes data”
correctly. »

Third, we must finish the task of generating a runnable diagnostic. Up to now we have
used structural information only to modify path conditions; we will also need to use structural
information to map our models of paths and devices onto the underlying implementation so as
to generate test routines for the real hardware.
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10. Conclusion

Recall now the original 4x4 memory example. We were able to figure out the sequence
of tests that constituted a diagnostic for that piece of hardware simply by knowing that the
address lines selected one of the registers and routed its data to or from it. Among other
things, this told us that we should not test the registers until verifying the addressing lines,
and that we could test the input and output buses independently of any single registers by
iterating over several values of the address.

The system we have described uses the information path model, the notion of an inquiry,
and the principle of minimizing conditions to perform the same task. The information path
model, although still crude at this point in its vocabulary, is a structural and functional
representation of the multiplexer that seems to be appropriate for designing diagnostics. The
system views the multiplexer as a structure composed of primitive functions, and plans the
diagnostic in a general way. By abstracting away from the "bits and gates" level of
description used by conventional test generation approaches, we are able to discover
structural regularities and dependencies, so as to plan a diagnostic with the goal of achieving
resolution. The principle of minimizing conditions, and the ways that this can be done, work
equally well at any level of detail.

Having decided that the individual inquiries that make up the diagnostic have sets of
conditions, the problem is then to generate these sets. This problem is approached by
augmenting the traditional path sensitization technology. Knowledge of the structure and
behavior of the device under test is brought to bear; device-specific rules express the
relationship of goals to appropriate values and the conditions that result. Propagation of
constraints is shown as a natural way of expressing and using the rules. The inquiry design
phase uses information about the behavior of the devices, a simple fault model, and the
notion of sensitization to create sets of candidate inquiries that are analyzed and combined to
make tests with explicit dependencies.

The conditions on the individual inquiries are then reduced using the single point of
failure assumption, and the resulting tests are ordered so as to reduce their conditions. Once
the tests have thus been ordered and their internal structure as sequences of inquiries have
been defined, the diagnostic can be derived from this representation by translating the
inquiries using implementation information.
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Appendix | - Notation
We use two types of expressions: expressions conberning values and expressions
concerning conditions.

(<path> = <value>) is a value clause. E.g. (DO-1 = di) means that the path DO-1 is
transmitting the value di.

(<condition> <{path>) is a condition clause. E.g. (ok A) means that path A is OK.
Another example of a condition clauseis (or (ok CTL) (xok IN)), meaning that either path
CTL is OK or path IN is XOK. :

The following notation is used to describe inquiries.

[<path> ? <value>] represents the focus of an inquiry. [ IN-1 ? d2 ] is an inquiry to see
whether path IN-1 transmits the value d2.

(<path> ? <value>) describes the test to be done on an observable output. (QUT ? d2)
means that the inquiry should implicate if anything other than d2 is observed on path OUT.
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