eeeeeeeeeeeeeeeeee

Issues 1n the Design

and
Implementation

of Act?

Daniel G. Theriault

Artificial Intelligence Laboratory

Tius blank page was inserted to preserve pagination.

Issucs in the Design and Implementation of Act2

by
Daniel Gary Theriault
Massachusetts Institute of Technology

June 1983

©® Massachusetts Institute of Technology 1983

This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the research reported on in this
paper was provided primarily by the System Development Foundation. Support for
the Artificial Intelligence Laboratory is provided in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research
contract N0014-80-C-0505.

This empty page was substituted for a
blank page in the original document.

Issues in the Design and Implementation of Act2

by
Daniel Gary Therault

Revised version of a thesis submitted to the
Department of Electrical Engineering and Computer Science
on May 6, 1983 in partial fulfillment of the requirements
for the Degree of Master of Science

Supervised by Professor Carl E. Hewitt

Abstract

Act2 is a highly concurrent programming language designed to exploit the
processing power available from parallel computer architectures. The language
supports advanced concepts in software engineering, providing high-level constructs
suitable for implementing artificially-intelligent applications. Act2 is based on the
Actor model of computation, consisting of virtual computational agents which
communicate by message-passing. Act2 serves as a framework in which to integrate
an actor language, a description and reasoning system, and a problem-solving and
resource management system. This document describes issues in Act2’s design and
the implementation of an interpreter for the language.

This empty page was substituted for a
blank page in the original document.

Acknowledgments

I would like to take this opportunity to shower my thanks on Carl Hewitt, my
thesis advisor, for his help in making this thesis a reality. He provided a wealth of
ideas and encouragement. My wife, Candace, provided moral support and helped
massage drafts into more coherent forms, for which I will be forever grateful. I hope
I will be able to make up for this period of intense suffering during the years ahead.
I'd like to extend special tﬁanks to Henry Lieberman and Jonathan Amsterdam for
their implementation of Scripter and an Apiary, without which an Act2 interpreter
would remain a dream. Peter de Jong, Carl Mikkelsen, Gene Ciccarélli, Dan Weld,
Roy Nordblom, and Priscilla Cobb also played essential roles in forming that
dynamic (and unique) environment called the Message Passing Semantics group.
This thesis would have been impossible without the solid foundation of Carl
Hewitt’s work, Henry Lieberman’s implementation of Actl, Jeff Schiller’s work on
Apiary0, Bill Kornfeld's Ether, and work on Omega by Jerry Barber, Beppe Attardi,
and Maria Simi. | owe a debt of gratitude to Charles Smith and the System

Development Foundation for their financial support.

This empty page was substituted for a
blank page in the original document.

This empty page was substituted for a
blank page in the original document.

Preface: A Guide to this Document

The organization of this document was part of an attempt to satisfy a variety of
audiences. When possible, essential information is encapsulated in a convenient
location, to be studied or ignored as a whole. The main body of the document
describes the historical setting in which Act2 materialized, the creation process, and
a rationale for its design. The appendices generally describe the language itself, and

serve as reference material,

Chapter One describes the context in which Act2 was built, including the
foundation of previous work upon which it stands. Chapter Two is an
impressionistic introduction to the language itself, making use use of canonical
examples. At this point, interested readers may browse through the appendices in
order to become more familiar with the language before pushing on. The following
chapters assume a familiarity with the language and a willingness to refer to
appendices for details of the language’s syntax and semantics. Chapter Three relates
the design and development strategies used to produce Act2. Chapter Four
discusses issues considered important in Act2’s design. It is the backbone of the
document’s body. Chapter Five touches on implementation issues and mechanisms,

and Chapter Six wraps up with a summary and conclusions.

Appendix A contains a glossary for help in decoding actor jargon. Appendix
B presents a sample of conversational interaction with Act2. Appendix C informally
describes the syntax and semantics of Act2, construct by construct. Appendix Disa
more formal description of the language, in the form of an Act2 implementation of
itself. It is useful for resolving ambiguities in the natural language descriptions of

Act2, and for understanding the general strategies used in its implementation.

Appendix E descaben pag

of Act2, as well as some standard o

few more

a

F

A

Table of Contents

Preface: A Guide to this Document
Chapter One: Conceptual Framework

1.1 The Actor Model of Computation
1.1.1 Actors
1.1.2 Transactions

1.2 Plasma :

1.3 Actl

1.4 Omega

1.5 Ether

1.6 Apiary0

1.7 Integration

Chapter Two: Introductory Examples

2.1 A Simple Recursive Factorial Actor
2.2 A More Concurrent Factorial Actor
2.3 A Simple Bank Account Actor

2.4 A New Control Abstraction

Chapter Three: The History of Act2

3.1 A Meta-Circular Description of Act2
3.1.1 Perspective

3.2 A Toy Language Implementation Experiment
3.2.1 Act2 Implementation

Chapter Four: Issues in the Design of Act2

4.1 Act2 is Part of a Layered Implementation
4.1.1 Act2 Assumptions
4.1.2 Act2 Design Goals
4.1.2.1 Integration as a Design Goal
4.1.2.2 Expressive Power as a Design Goal
4.1.2.3 Expressiveness as a Design Goal
4.2 Programmer Interaction

13

15
15
17
19
19
21
23
26
28

30

30
32
34
35

38

42
48

30

30

51
52
53
53
54
54

4.2.1 Interactiveness
4.2.1.1 Actor-Based Interpretation
4.2.2 Act2 Separates Syntax from Semantics
4.2.2.1 Presentation and Editing Tools
4.2.3 Syntactic Issues
4.2.3.1 Bracketed Syntax
4.2.3.2 Template English
4.2.3.3 Verbosity
4.2.3.4 Keyword-Based versus Positional Instantiation
4.2.3.5 Extensibility
4.2.4 The Expressive Character of Act2
4.2.4.1 Familiarity
4.2.4.2 Economy of Concept
4.2.4.3 Uniformity
4.2.4.4 Programmer Productivity Supported by High-Level
Constructs
4.2.4.5 Abstraction and Extension
4.3 Act2 has Actor Semantics
4.3.1 Act2 is Actor-Based
4.3.1.1 Representation Abstraction
4.3.1.2 Absolute Containment
4.3.2 Modularity
4.3.3 Message Passing Semantics Permeate Act2
4.3.3.1 Primitive Actors use Message Passing Semantics
4.3.3.2 Actors Implemented in Act2 have Actor Scripts
4.3.3.3 Programs as Data
4.3.4 Transactions
4.3.4.1 Customer Chains versus Execution Stacks
4.3.4.2 Complaint Handling
4.3.5 Inherent Concurrency
4.3.5.1 Local versus Global State Change
4.3.5.2 Local Binding versus Assignment
4.3.5.3 Concurrent Commands and Shared Resources
4.3.5.4 Concurrent Evaluation and Explicit Sequericing
4.3.5.5 Resource Management
4.4 Act2 Integrates Description and Action
4.4.1 Coexistence of Mechanisms for Description and Action
4.4.1.1 Abstract Syntax for Description and Action
4.4.2 The World of Action
4.4.2.1 Change

55
56
57
57
58
58
58
59
61
62
63
63

65

66
67
67
68
63
69
70
70
71
71
12
73
73
75
16
76
16
7
78
18
18
80
81
81

4.4.2.2 Local Changes versus Global State Changes
4.4.2.3 Maintaining Computation Histories

4.4.3 Descriptions as Information Containers

4.4.4 Description of Actors: Data-typing and Specification
4.4.4.1 Description of Actors
4.4.4.2 Behavioral Types
4.4.4.3 Controlling Visibility

4.4.5 The Many Uses of Pattern Matching
4.4.5.1 Pattern-Directed Recognition and Extraction
4.4.5.2 Security
4.4.5.3 Polymorphism
4.4.5.4 Authentication

4.5 Act2 and Open Systems
4.5.1 Suitability for Open Systems
4.5.2 Synergy

Chapter Five: Implementation Issues and Mechanisms

5.1 Bottoming Out
5.1.1 Rock-Bottom Actors
5.1.2 Scripts :
5.1.3 Communications
5.1.4 Instance and Atomic Descriptions
5.2 Extensibility from a Listen-Loop
5.3 Providing both Positional and Keyword-Based Instantiation
5.4 Making Composite Constructs Work
5.5 Serialized and Unserialized Actors
5.6 Missing Information
5.7 Actors and Types
5.8 Making Pattern-Matching Work
5.9 Compilation
5.10 The Ubiquitous Atomic Description

Chapter Six: Conclusion

6.1 Summary
6.2 Design Philosophy
6.3 Future Work

Appendix A: Glossary

81
82
82
83
83
83
84
84
85
85
86
86
87
87
89

91

91
92
93
93
94
96
97
98
100
101
103
104
105
106

108

108
110
111

113

Appendix B: A Sample Session with Act2
Appendix C: Act2 Language Description

C.1 The Actor Model of Computation
C.2 A Glimpse of Act2
C.3 Pre-Defined Actors
C.3.1 Symbols
C.3.2 Numbers
C.3.3 Boolean Values
C.3.4 Sequences
C.3.5 Convenient Expression of Basic Operations
C.4 Descriptions '
C.4.1 Atomic Descriptions
C.4.2 Instance Descriptions
C.4.3 Pattern Matching
C.5 Top-Level Expressions
C.5.1 DEFNAME Expression
C.5.2 DEFCONCEPT Expression
C.5.3 DEFINE and NEW Expressions
C.6 Simple Expressions
C.6.1 ASK Expression
C.6.2 QUOTE Expression
C.6.3 PARSE-EXPRESSION and PARSE-COMMAND Expressions
C.7 Creating Actors
C.8 Simple Context-Free Commands
C.8.1 REPLY-TO Command
C.8.2 COMPLAIN-TO Command
C.8.3 SEND-TO Command
C.9 Composite Constructs
C.9.1 LET Construct
C.9.2 LABEL Expression
C.9.3 Interpretation of Command Bodies
C.9.4 ONE-OF Construct
C.9.5 1IF Construct
C.9.6 CASE-FOR Construct
C.10 Context-Sensitive Commands
C.10.1 REPLY Command
C.10.2 comPLAIN Command
C.10.3 BECOME Command

10

119
124

124
126
127
128
128
128
129
129
130
130
131
133
137
138
138
139
140
140
141
141
142
146
146
147
147
148
148
149
149
150
151
151
153
153
155
155

C.11 Other Commands 157

C.11.1 CONCURRENT and SEQUENTIAL Commands 157
C.11.2 HANDLE-COMPLAINTS Command 157
C.11.3 USING-SPONSOR Construct : 158
C.11.4 Comments 159
C.12 Syntactic Extension 159
C.12.1 DEFEXPRESSION Expression 160
C.12.2 DEFCOMMAND Expression 162
Appendix D: A Meta-Circular Description of Act2 163
D.1 Primitive Actors 163
D.2 Simple Expressions 165
D.3 Variable Binding ' 166
D.4 Abstraction 168
D.5 Extending Listener’s Environment 170
D.6 Creating Instance Descriptions 170
-D.7 Creating Actors 172
D.8 Simple Commands 173
D.9 Composite Constructs 175
D.9.1 Case-for Construct 175
D.9.2 One-of Construct 178
D.9.3 Let Construct 180
D.9.4 Other Constructs 182
D.10 Subsidiary Abstractions 183
D.10.1 Environments and Layers 183
D.10.2 Atomic Descriptions 184
D.10.3 Instance Descriptions 186
D.10.4 Serializers 189
D.10.5 Evaluating Composite Expression Bodies 194
D.10.6 Evaluating Communication Handler Bodies 195
D.10.7 Evaluating a Command Sequence : 196
Appendix E: Pre-Defined Names, Actors, and Protocols . 197
E.1 Common Protocol for All Actors 199
E.2 Surface Syntax Actors 199
E.3 Parsers 200
E.4 Abstract Syntax Actors : 201
E.5 Environments and Layers 202
E.6 Rock-Bottom Numbers 202

11

s

-«

E.10 Instance Descriptions

E.8 Sequences and Lists

E.7 Symbols
- E.9 Atomic

F.4 Context
F.5 Com

F.2
F.

. F.1 Lexical
3INol

Chapter One

Conceptual IFramework

The recent history of Computer Science shows significant advances in
computer software and hardware engineering. Increasingly sophisticated and
complex software application systems are being designed and implemented,
especially in the area of Artificial Intelligence. Requirements for software have
grown to include open systerhs, in which autonomously owned and independently
conceived software systems communicate and cooperate. Modern programming
languages may exploit the increased parallelism afforded by hardware and support
thé software engineering principles and practices for reduction of complexity in

.designing and implementing software systems.

These trends were anticipated by [Hewitt 77, Hewitt and Smith 75}, which
proposed a novel computational model, based on virtual computational agents
called actors. The actor model was abstraction-oriented, processor-independent,
and inherently concurrent. Languages realizing this model are intended to exploit

parallelism available in future computer architectures.

The first actor language, Plasma, was essentially an experiment to determine
whether it was possible to construct a language based on the actor model of
computation. Though Plasma was a useful language in itself, its design and
implementation pointed out the fact that more needed to be learned about actor-
based languages with advanced features suitable for Artificial Intelligence
applications. It also pointed out that trying to solve the whole problem at once was

not a practical approach; that it may be more wieldy to decouple some of the issues

13

and mechanisms by experimenting with different aspects of the problem more

independently.

The Actl programming language [Licberman 81a] was a dircct realization of

the actor computational model. It was an experiment in the use of actors and in
_expressing their behavior and communication among them. The Omega description

and deduction system [Barber 82, Hewitt, Attardi, Simi 80] was an experiment in
knowledge represcntation and manipulation mechanisms useful for languages
implementing artificial intelligence applications. Ether [Kornfeld 79] was a
reasoning system for solving problems in much the same way they are solved by
scientific communities. It dealt with the creation and management of independent
problem solvers cooperating to establish or refute common goals. Apiary0 [Hewitt
80] was a design for a computer architecture consisting of a large number of
independent processors interconnected with high-bandwidth links. The computer
architecture itself was responsible for services such as storage management,
transmission of communications, migration of actors, and load-balancing.

Languages built of top of an Apiary can ignore such issues.

Many new ideas and insights were acquired in the design and development of
each of these experimental systems. Now that they have been completed, the time
has come to integrate these ideas and others developed independently into a single,

more sophisticated programming language: Prelude.

The Act2 programming language is the first step in implementing Prelude. It
blends basic ideas, mechanisms, and philosophies from Actl, Omega, and Etherin a
single programming language. They arc not simply juxtaposed, but permeate the
language through to its foundation. Act?2 itself does not fully implement the more
sophisticated aspects of Omega and Ether, but is extensible in a manner such that

the rest of Prelude can be embedded within it.

14

Our implementation of Act2 runs on Lisp Machines [Weinreb and Moon 81].
It is written in Scripter [Lieberman 83], a language embedded in Lisp Machine Lisp,

tailored for expressing actor computations,

1.1 The Actor Model of Computation

Early computational models were significantly more machine-oriented than
the actor model. Early languages implicitly had a model in which computation
progressed as a succession of modifications to a global machine state. Both the
existence of a set of fixed-size storage locations and a set of machine instructions
showed through to the language level. Data structures were mapped onto sets of
contiguous storage locations. Procedures were developed to encapsulate a series of
primitive operations, procedure calls, and state changes as a single abstract
operation. Object-oriented languages abstracted away the structure of the store. An
object consisted of some storage and primitive operations with which to access and
manipulate this concrete representation. Though encapsulating the representation
of data types was a tremendous advancement, the underlying computational
paradigm was still that of sequentially modifying a global state. Advancements in
hardware technology have provided increasing amounts of parallelism for
programming languages to exploit. Languages based on the old computational

models are inherently sequential, and need special attention to exploit parallelism.

1.1.1 Actors

The actor model of computation [Hewitt and Baker 78] is one in which many
active, self-contained computing entities, called acrors, process communications in
parallel. Each actor has its own processing power and storage. Instead of having a

notion of control flow, the actor model makes use of a more flexible idea of

15

cooperation; of communication among entitics which are under their own control,

Actors interact by transmitting information in communications to ¢ach other.

An actor is a mathematical abstraction [Clinger 81a). It is self-contained and
opaque in the sense that its internal composition cannot be directly seen or
manipulated by other actors. They are restricted to sending communications to the
actor and observing whatever communications the actor might send in reply. Only
the actor itself can access its underlying representation. It also is responsible for
how it reacts to any communication; it may even choose to request authentication,
requcst additional computing resources, or reject the communication altogether. An
actor 1s an encapsulation mechanism providing information-hiding capabilities,

which are a corner stone of good software engineering,

Each actor has a script, which determines what communications it can accept
‘and what computations it will perform upon receiving each. It may also have some
acquaintances, which are other actors it can directly communicate with as it
processes a communication. An actor’s behavior is uniquely characterized by its
script and acquaintances. When it accepts a communication, an actor can make
simple decisions, create new actors, send communications to its acquaintances (or to

itself), and designate an actor to serve as a replacement for itself.

One of the effects an actor can cause is the replacement of itself by another
actor. It becomes indistinguishable from the replacement actor, which processes any
future communications for the actor. Serialized actors, or serializers, are actors
which may change. Unserialized actors are actors whose behavior includes no
provision for change. The distinction is a very important one. Because a serializer
may change as a result of processing a communication, it can only process one
communication at a time. For this reason, the order of arrival of communications is

important for serializers.

16

Unserialized actors, on the other hand, can change neither their behavior nor
their acquaintances, and as a result can process communications concurrently.
Arrival ordering does not matter, because behavior does not change. Unserialized
actors can also be copied arbitrarily, because lack of change will make the copies

indistinguishable.

1.1.2 Transactions

Communications are also actors. There are three kinds of communications,
representing the major forms of communication in transactions among actors. Each
communication has a message acquaintance containing information for the target
actor. An actor can send a request communication to another, asking it to cause
effects or provide information of some form. After the request has been successfully
fulfilled, some actor will eventually respond to the request with a
reply communication. Otherwise, the response is a complaint communication
containing a message, which says why the request could not be successfully

processed. We refer to replies and complaints collectively as responses.

Transmission of communications is one-way, asynchronous, and buffered.
Concurrent activities can be spawned simply by transmitting more than one
communication when processing a communication. The sender does not wait for
the receiver (or targer) to be ready to receive a communication; instead, the
communication is enqueued for reception by the receiver. If the receiver is
serialized, arrival order is preserved in a first-in, first-out queue. The sender of a
request does not wait for a response from the receiver, because all communication is
one-way. Instead, the sender includes in the request a customer, an actor to which a
reply can be sent. It also includes a complaint department, to which a complaint can
be sent, in the event that the request cannot be satisfied. When an actor sends a

request to another actor, it includes in the request a customer and complaint

17

department, which are responsible for completing the computation. While this
computation continues, the actor might begin processing another communication.

See [Kerns 80] for a rigorous definition of transactions.

Computation is event-driven. An event happens when an actor accepts a
communication for processing. An actor only consumes computing resources when
it processes a communication. An event is machine-independent, because all of the
information necessary to process it is present in the incoming communication and
target actor — its behavior and acquaintances. A transaction begins by sending a
request to some actor, which might send communications to other actors.
Eventually, an actor might reply to the original customer or complain to the original

complaint department.

Because of its emphasis on communication, the actor model of computation
unifies the ideas of procedural, data, and control abstraction developed by languages
using other models. For example, a data abstraction, such as a checking-account,
can be embodied in an actor with an acquaintance that serves as a current balance
and with a behavior that responds appropriately to requests for deposits,
withdrawals, and balances. A procedural abstraction, such as factorial, can be
embodied in an unserialized actor which accepts a request containing an integer,
performs a computation (possibly asking itself for the factorial of other integers),
then replies with the result. Control abstractions such as recursion, iteration, back-
tracking, tree traversal, etc. can be embodied in actors which send each other

appropriate communications.

18

1.2 Plasma

Plasma was the first actor language. As the first language design endeavor
using the actor model of computation, it made some progress in implementing and
developing the model. At that time, the actor model was in its infancy, and
advancements have since been made, thanks to experiments such as Plasma and
Actl.

Plasma had basic facilities for transmitting communications, but did not
formally distinguish requests, replies, and complaints as different kinds of
communications. It incorporated the ideas of expressing control structures as
patterns of message-passing, and of unifying the notions of data structures and
procedures by concentrating on communication. The language had simple data
strﬁctures such as numbers and simple constructors like sequences and packagers.
Packagers were similar to record structures in languages such as Pascal, allowing the
encapsulation of a set of labeled actors, but lacked the flexibility and power of
instance descriptions developed in Omega. Though Plasma did acknowledge the

need for change, the idea of serializers had not yet been conceived and formalized.

1.3 Actl

Actl was a programming language which directly realized the actor model of
computation [Lieberman 81a, Liecberman 81b]. It was implemented in Maclisp for
PDPI10, as an experiment in implementing an actor language which uses the
message-passing paradigm down to the level of primitive actors, such as numbers
and lists. 1t helped formalize common patterns of message-passing and useful types
of communications, as well as the notion of change in actors. As an experimental
language, it was unencumbered with mechanisms such as those in Omega and Ether,

which provide sophisticated services for the programmer. It provided mechanisms

19

for creation of actors and for point-to-point communication between actors. 1t
allowed an actor to delegate its incoming communications to another actor for

handling.

Act] allowed a programmer to write programs which appeared to have two-
way communication between actors, and translated such expressions into requests

with appropriate customers and complaint departments.

Act] provided constructs for sending arbitrary communications to actors. It
also provided constructs for actors to change their behavior, and provided explicit
synchronization primitives to avoid problems of change. Actl also provided a
notion of a guardian, an actor which could accept requests, store away state

information, then reply to their customers at some later time.

Sub-expressions in Act] were evaluated sequentially. However, Actl

provided the following constructs for lazy and eager evaluation of expressions:

(delay expression)
(hurry expression)

When evaluated, the hurry expression would create and reply with a future,
which was an actor representing the value of the expression inside the hurry
expression. A newly-spawned process would evaluate that expression concurrently
with whatever activity occurred once the future was returned. 1f the future ever
became inaccessible, the process computing the expression’s value could be garbage-
collected. If any communications were sent to the future actor, it would enqueue

them, then send them to the result of the expression, once its evaluation terminated.

In addition, Act] had the notion of a race for concurrent activity. Given a list
of expressions to be evaluated, a result list was immediately provided. As results

became available, they were appended to the list asynchronously. An actor with

20

such a race in i1ts possession could apply the standard first and rest operations on it.
Synchronization was done by the race, so that if results were not yet available, it
would wait for them before responding. If the race became inaccessible, it along

with the processes still computing for it would be garbage-collected.

Actl had primitive actors, such as numbers and symbols. It also had
constructors, like sequences. It had a form of constructor, called a package, which
resembled Plasma packagers and behaved in essentially the same manner. Pattern-
matching was performed as a structural correspondence between the pattern and

object of the match.

1.4 Omega

Omega [Hewitt, Attardi, Simi 80, Attardi, Simi 81, Barber 82]is a system for
representing knowledge in general, reasoning about knowledge, and retrieving
information from a knowledge base. It represents knowledge as
descriptions representing abstract concepts and individuals, and as relationships

among those descriptions.

The simplest form of Omega description is an atomic description, such as
real-number,complex-number,lz,man,animal,orJack.'Theserepresentabsﬂ%&i

concepts or individuals in a model of some world.

An instance description represents some collection of individuals which are
instances of some abstract concept. 1t can also be thought of as representing any

individual in such a collection. Examples of simple instance descriptions include:

(a real-number)

(a complex-number)
(a man)

(an animal)

21

The collection of individuals represented by an instance description can be
restricted by describing attributes which they possess. The order in which attributes

appear in an instance description is irrelevant.

(a man (with mother Jill))
(a man (with mother (a woman)) (with father (a man)))
(a man (with mother (a woman (with father Bil1))))

One fundamental mechanism for knowledge representation is the assertion of
an inheritance relationship between two descriptions. This represents a relationship
between the collections of individuals the descriptions represent. The statement
(D1 s D2) represents the idea that anything described by the description D1 is also
described by the description D2. This also means that D1 is a specialization of D2;
that D2 is a generalization of D1. Any knowledge associated with D2 is inherited by

D1..

(Jack is (a man))

(man is (a species))

((a man) is (a mammal))

(12 is (a real-number))

((a real-number) is (a complex-number))

((a real-number) is (a complex-number (with imaginary-part 0)))

Omega implements an omega order logic for making deductions about
generalizations and specializations. Omega uses several axioms for reasoning about
descriptions and the inheritance relationships between them. For example, there is
an axiom establishing the commutativity of attributes, so that it doesn’t matter in
what order they are included in the instance description. There is an axiom
establishing the transitivity of the inheritance relation. There are axioms for dealing
with conjunctions and disjunctions of descriptions, and for relating them to single
descriptions. In addition to the with attributes above, there are different kinds of

attributes, to which more or fewer axioms can be applied.

For example, the relationship (Jack 1s (a mammal)) can be deduced from

the rclationships (Jack is (a man)) and ((a man) is (a mammal)) by the

22

transitivity axiom. Very significant amounts of knowledge can be cmbedded in a

lattice formed by descriptions and inheritance relationships between them.

A description lattice is required to be monotonic. All descriptions are
unchanging, all inheritance relationships are assumed to hold forever once asserted,
and knowledge can be added but never altered or removed. Revision of beliefs,
opposing sets of beliefs, and suppositions can be represented using a viewpoint
mechanism. Omega assertions are commutative — the same deductions can be

made, no matter what order the inheritance relationships are asserted.

Omega supports partial description of abstract ideas, and incremental
specialization of those descriptions with others. Knowledge about the characteristics
of an abstract concept or object and its relationship to other concepts can be
embedded in an incomplete fashion, and new pieces of knowledge can be added
incrementally. Later, we can retrieve and use not only the particular information
asserted, but combinations thereof and deductions made from them using sets of
assertions made in the knowledge base and sets of axioms for relating them to each

other.

1.5 Ether

Ether is a highly concurrent problem solving system based on a metaphor of
problem-solving in a scientific community [Kornfeld 79, Kornfeld, Hewitt
81, Kornfeld 82]. In this model, many independent problem solvers (called sprites)
can exist in a community. Each sprite specifies a computation to be performed if
some specific goal or hypothesis is presented to the community for comment.
Sprites can either work to prove or disprove a goal. Such a computation can post

new goals or hypotheses. One of the fundamental concepts is dissemination of

23

information to all sprites which have an interest in it.

Ether has a resource management scheme which associates a sponsor with each
goal. The sponsor provides computing resources for those working to prove or
disprove the goal. Sprite must request some of these resources, which are used as its

computation proceeds.

Ether contains commands for disseminating goals and hypotheses. For
example, assuming we had primitives for description and inheritance like those in
Omega, we might represent the fact that some pattern pattern0 matched some

object object0 with a predicate: (pattern-matches pattern0 object0).

We might disseminate this as a goal:

(disseminate (goal (pattern-matches pattern0 object0))).

Some sprite we create then activate may eventually prove this, then
disseminate it as a hypothesis:

(disseminate (hypothesis (pattern-matches pattern0 object0))).

Alternatively, some sprite may disprove it, in which case it may disseminate its
negation:

(disseminate (hypothesis (not (pattern-matches patternd objectO)))).'

We can create and activate a trivial sprite with an expression such as:

(disseminate :
(when (goal (pattern-matches =p =0))

(1f (eq p o)
then (disseminate (hypothesis (pattern-matches p 0)))))

Other sprites might try to prove or disprove this goal in other ways. For
example, if the pattern and object are instance descriptions, one sprite might try to

establish a simple correspondence between the concepts and attributes. Another

24

might traverse an Omega lattice, trying to find a more claborate way of matching the
pattern and object. Other sprites might be responsible for applying Omega axioms
to descriptions and inheritance relations. Note that Ether itself knows nothing
about instance descriptions, Omega lattices, inheritance relationships, or deduction
axioms. These are assumed to be accessible via some operations independent of

Ether itself.

Often, a sprite trying to establish a goal will disseminate sub-goals, then
disseminate a hypothesis once the sub-goals have been established. Large numbers
of hypotheses may be disseminated as a result. Because these have been
disseminated, they can be used in establishing other goals, without being re-
established. Because Ether is monotonic, these hypotheses are never forgotten. An
interesting phenomenon results, called combinational implosion, like the gains

obtained from dynamic programming techniques.

Ether allows programmers to explicitly mention sponsors and viewpoints. For
example, a goal can be sponsored by some specified sponsor or with respect to some

specified viewpoint:

(disseminate
(goal (pattern-matches pattern0 object0)
(with sponsor sponsor0)
(with viewpoint viewpoint0))
(disseminate
(when (goal (pattern-matches =p =0)
(with sponsor =s)
(with viewpoint =v))

o))

Constructs exist for establishment of sophisticated resource management
policies and for establishing relationships among viewpoints. One command for
resource management simply makes a sponsor refuse to provide resources to sprites
requesting them. This is useful for staving off alternative proofs of a goal once the

goal has been established or disproved. For example, if the goal above had really

\J

25

been disseminated, and a sprite had just established it, the sprite could choke off

related computation by other sprites with the command:

(withhold sponsor0
(with reason (established (pattern-matches pattern0 object0))))

Ether supports pluralism. Conflicting hypotheses can exist freely in different
viewpoints. Sprites can try to establish the same goal with different approaches.
Some sprites can try to establish a goal while other sprites can try to refute it. Ether
relies on monotonicity. It assumes that any hypotheses once disseminated will
remain available and unchanged for all time thereafter. Ether supports
commutativity. Goals and hypotheses disseminated after the activation of a sprite
will be made available to the sprite and processed as appropriate. Likewise, sprites
activated after the dissemination of goals and hypotheses will be available for the
sprite. Ether has much potential for parallelism. The very notion of sprites is as
problem solvers which compute independently, and therefore concurrently. The
monotonicity criterion avoids synchronization problems. The unit of concurrency is
the sprite, and not the commands or expressions which appear within its body. The
implementation of Ether was done in Lisp and is very lisp-oriented. This is not

inherent in Ether, but is an artifact of its implementation.

1.6 Apiary0

Apiary0 was a design and preliminary implementation of a computer
architecture for supporting actor languages [Hewitt 80]. It supports a model of
hardware as a large number of physically small processors, each with its own
memory, connected by a network of high bandwidth links. Each processor (or
worker) is independent of the rest, but they cooperate by sending messages to each

other over the network.

26

The Apiary architecture is responsible for providing storage management
services. It allocates space for newly-created actors. It also garbage-collects
inaccessible actors. A fast, real-time garbage collection algorithm [Lieberman and
Hewitt 83] is used for actors existing locally in the worker's memory. A more
complex garbage-collection algorithm involving cooperation among workers is used
in non-local garbagé collection. This algorithm also tries to group related actors
onto the same worker, to provide locality of reference, and minimize

communications across workers.

The Apiary architecture is responsible for providing computing power for
actors. Because it must provide computing power for all actors in its memory, it
maintains a queue of tasks. Each task consists of an actor and a communication for
it to accept. It dequeues a task and processes it, enqueueing any new tasks which

this processing causes.

The Apiary performs reliable transmission of communications to target actors.
If the target is on the same worker as the sender, the transmission is fast and trivial,
involving only local memory operations. If the target is not on the same worker as
the sender, then the worker must communicate with at least one of its neighboring
workers, to get the communication on its way to the target. The communication
transmission might involve more of this kind activity, depending on how far away
the target is, and what forwarding information each worker has. Routing of

communications is done dynamically by workers.

The architecture is also responsible for migrating actors and performing load-
balancing. Actors can be moved from worker to worker. This is easy for
unserialized actors, because they can be copied arbitrarily. Moving serialized actors
requires extra synchronization. When a worker’s pending task queue is significantly

longer than one of its neighbor’s queues, the worker can migrate some of the tasks to

27

its neighbors. In this process of load-balancing, actors are chosen for migration in a
fashion that attempts to preserve locality of reference as much as possible, to

minimize message-passing across workers.

The Apiary must also be able to deal with physical problems, such as the

failure of communication channels or workers.

1.7 Integration

Actl, Omega, Ether, and Apiary0 were experiments dealing with different
aspects of the design of a high-level actor-based language system. Work progressed
on each, and independent implementations were developed, not all of which were
actor-based. An actor language currently being designed is intended to blend the
functionality and use the mechanisms of Actl, Omega, and Ether. This language,
.Prelude is expected to run on a computer architecture such as the Apiary, which
provide parallel computation facilities, as well as services such as storage

management, migration, and transmission of communications.

As an actor language, Prelude will have at least the functionality of Actl. The
specific constructs with which it provides that functionality, however, will be
oriented more toward the intended usage and flavor of the language. In addition,
Prelude will use instance descriptions as information containers and as types. It will
use pattern-matching for information extraction, for type-checking, and for
recognition of communications. It will also use sponsors for resource management.
Pattern-matching with deduction can make use of sprites working together
concurrently to establish or deny a relationship between a pattern and the object

being matched.

Actl, Omega, and Ether were implemented independently. Each was molded

28

to deal with specific and well-chosen issues and ideas, and (0 a large extent ignored
the issues dealt with by the others. As a result, their designs and implementations
are incompatible. All three are very closely tied to the Lisp language in which they

were implemented.

There are also conflicts in their underlying philosophies. Omega and Ether
assume monotonicity, and assume that nothing they deal with will ever change.
Because of this, they can support parallelism, with no need for synchronization.
They can also assume that once something is shown to be true (or false), it will
remain that way forever. On the other hand, Act2 has serializers, which can alter

their behavior.

In addition, syntactic conflicts arise when attempts are made to integrate the

constructs from each with minimal change.

The task of implementing Prelude is factored into the im plementation of a few
layers. The Lisp language provides an interface to the raw hardware used in the
implementation of an Apiary. A language called Scripter which is embedded in
Lisp provides an interface to the Apiary architecture, as well as convenient
expression of low-level message-passing computations. Act2 is an actor language
implemented in Scripter which integrates the basic mechanisms from Actl, Omega,
and Ether, in an extensible fashion. Prelude can be embedded in Act2 with a set of
syntactic and semantic extensions written in Act2, by providing the more

sophisticated services from Omega and Ether.

29

Chapter Two

Introductory Examples

The following chapters — especially Chapters Four and Five — assume a
familiarity with the Act2 language. This chapter serves as a very brief introduction
to the language, by way of illustrative examples. This chapter is merely intended to
provide impressions of the language, its constructs and their use. It is not intended
to provide a full understanding of the language. Such descriptions have been
encapsulated in appendices, for use as reference material. For those who are
interested in a deeper understanding of the syntax and semantics of Act2, we

recommend browsing through one or more of:
an Act? tutorial {section B, page 119},
an informal language description {section C, page 124},
or a detailed meta-circular description of Act2 {section D, page 163}.

The choice of appendices should be based on degree of familiarity with Act2 or with

previous actor language designs, and on the depth of understanding desired.

2.1 A Simple Recursive Factorial Actor

Our first example is a standard recursive implementation of factorial. The
factorial of any integer n larger than 0 is the product of n and the factorial of n - 1.

The factorial of 0 is 1. Factorial is only defined over the domain of whole numbers.

Our recursive implementation of factorial will be a direct realization of the
above description. We will establish a definition of a factorial abstraction, so we can
then obtain the factorial of a number such as 3 with an expression of the form,

(new factorial (with number 3)).

30

A factorial abstraction can be defined with an expression such as the one

below, entered as input to an Act? listen loop.

(define (new factorial
(with number (=n which-is (a whole-number))))
(if (= n 0)
(then do (reply 1))
(el1se do (reply (* n (new factorial (with number (- n 1))))))))

The define expression includes a template describing a particular form of new
expressions. That is, the template
(new factorial (with number (=n which-is (a whole-number))))
characterizes all new expressions like (new factorial (with number 3000)),
which have a concept which evaluates to the factorial concept, and which has a

number attribute whose filler is a whole-number.

The define expression also includes an expression which denotes the meaning
of new expressions described by the template. This expression is evaluated in the
environment in which the define expression itself was evaluated, extended with any
bindings occurring in the template. For example, when an expression such as
(new factorial (with number (+ 2000 1000))) is asked to evaluate itself in

some environment, it looks up the concept factorial in the environment.

Next, it asks the pattern
(a factorial (with number (=n which-is (a whole-number)))), which was
installed by the define expression above, to match an instance description of the
form (a factorial (with number 3000)). This resultsin a successful match,
binding n to 3000. The definition environment installed by the define is extended
with this binding, producing a new environment. If the match had failed, a
complaint would have been sent immediately as the response to the new expression’s

evaluation request.
Finally, the expression installed by the define,

31

(if (= n 0)

(then do (reply 1))

(else do (reply (* n (new factorial (with number (- n 1)))))))
is asked to evaluate itself in this extended environment. 1ts response to the
evaluation request is sent as the response for the evaluation of the new expression

itself.

When this expression is asked to evaluate itself, it discovers that 3000, which is
bound to n, and 0 do not believe they are equal. In response to the evaluation
request, it replies with the product of 3000 and the result of
(new factorial (with number 2999)).

2.2 A More Concurrent Factorial Actor

In the naive implementation of factorial above, the history of multiplications
in obtaining the factorial of 3000 had the form,
(3000 * (2999 * (... * (3 * (2 * (1 * 1)))...))). All multiplications had
to be performed sequentially, because of the algorithm chosen as the

implementation for factorial.

A highly concurrent implementation might view the factorial of 3000 as a
product of the integers in the range from 1 through 3000. The algorithm for
computing this range product might divide the problem into the product of the
range product from 1 through 1500 and the range product from 1501 through 3000.
These subproblems are independent, and can be computed concurrently.
Moreover, they can be computed in the same manner, spawning even more
concurrent activity. Thus, a large number of the multiplications involved in

computing the factorial of 3000 could be done concurrently.

Our implementation of factorial can check for the special case of the factorial

32

of 0. and can make usc of a subsidiary range-product abstraction for integers larger

than 0. Here is the revised implementation of factorial.

(define (new factorial
(with number (=n which-is (a whole-number))))
(if (= n 0)
(then do (reply 1))
(else do (reply (new range-product
(with Tow 1)

(with high n))))))

The implementation of the range-product abstraction has special cases, where
the lower bound is larger than and where the lower bound is equal to the higher

bound. Here is its implementation:

(define (new range-product ,
(with low (=1lo which-1is (a natural-number)))
(with high (=hi which-is (a natural-number))))
(one-of
(if (= Yo hi) do (reply 1lo))
(if (> 10 hi) do (reply 1))
(if (< o hi) do
(1et ((=mid match (floor (+ (+ lo hi) 2)))) do
(reply (* (new range-product
(with low 1)
(with high mid))
(new range-product
(with low (+ mid 1))

(with high h1))))))))

Notice that Act2 expressions such as the multiplication expression, * are
defined to evaluate their arguments concurrently. This is a major source of
concurrency in performing range products using this algorithm. Notice also that the
if branches of the one-of expression are tried concurrently. That is, the boolean
expressions within them are evaluated concurrently, and the first one (temporally)
which is noticed to reply with a true value is chosen. The body of the chosen branch

is then evaluated.

33

2.3 A Simple Bank Account Actor

So far, we have seen actors which behave like mathematical functions,
performing factorials and range products. These are typical of the programming
style espoused by applicative programming aficionados. We can implement other
kinds of actors using the same abstraction mechanism. For example, we can define
a simple account actor, which can represent bank accounts. Our code will be
typical of an object-oriented programming style, made popular by Smalltalk [Ingalls
78]. We can establish a suitable meaning for expressions of the form
(new account (with balance 3000)), so their evaluation results in the creation of

new account actors with the specified balance.

Here is an example of an implementation of such an account abstraction:

(define (new account
(with balance =b))
(create
(is-request {a balance) do (reply (a balance)))
(is-request (a deposit (with amount =a)) do
(become (new account (with balance (+ b a))))
(reply (a deposit-receipt (with amount a))))
(is-request (a withdrawal (with amount =a)) do
(1et ((=new-balance match (- b a))) do
(i1f (= new-balance 0)
(then do
(become (new account (with balance new-balance)))
(reply (a withdrawal-receipt (with amount a))))
(else do
(complain (an overdraft))))))))

When an expression of the form (new account (with balance 3000)) is
asked to evaluate itself, it behaves in much the same way as
(new factorial (with number 3000)). The difference is that the expression
which gets evaluated is a create expression, which represents the creation of an actor
whose behavior is described by the communication handlers in the create expression.
These communication handlers classify the communications which the actor can

accept for processing, and describe what the actor will do to process each

34

communication. For example, the first communication handler is for requests
containing a message which match (a balance). The actor replies to such a request

with a reply containing the current balance as its message.

The second communication handler is for requests containing deposits. When
such a request is received, the account concurrently replaces itself with a new
account with an appropriately increased balanced, and replies with a deposit receipt

for the deposited amount.

The third communication handler is for requests containing withdrawals.
When such a request is received, the account must first check for an attempt to
withdraw more than the current balance. 1f this happens, then it complains with an
overdraft and does not alter its behavior. If the amount is a valid one, the account
concurrently replaces its behavior with an appropriately decreased balance, and

replies with a receipt for the withdrawal.

Notice that the become and reply commands are evaluated concurrently in the
environment in which the actor was created, extended with the bindings of local
variables in the communication handlers and enclosing commands. Note also that
when the account receives a communication, the communication handlers attempt

to match it concurrently.

2.4 A New Control Abstraction

As a final example, we will define abstract syntax for an expression with which
we could extend the language. On the surface, this expression might look like
(first-response expl exp2). We would like the evaluation of this expression to
respond with the first response it gets when it concurrently asks the two expressions

to evaluate themselves. As soon as it relays the first response, it should stop

35

sponsoring the sccond computation and should discard the second response.

Our implementation of the first-response-expression abstract syntax actor
will make use of two subsidiary abstractions, an initial-sponsor and a
subsequent-sponsor. The strategy is to collect all relevant information present in
the expression-eval request, including the message, customer, complaint--
department and sponsor. We create an initial-sponsor actor using the original
customer, complaint-department and sponsor. We then send both sub-expressions a
request containing the original expression-eval message, but designate the
initial-sponsor actor we just created as the customer, complaint-department and

SpONsOT.

(define (new first-response-expression
(with expression-1 =expl)
(with expression-2 =exp2))
(create-unserialized
(is-communication
(a request
(with message (=original-message which-is (an expression-eval)))
(with customer =original-customer)
(with complaint-department =original-complaint-department)
(with sponsor =original-sponsor))
do
(let ((=1s match
(new initial-sponsor
(with customer original-customer)
(with complaint-department
original-complaint-department)
(with sponsor original-sponsor))))
do
(let ((=new-expression-eval match
(new request
(with message original-message)
(with customer is)
(with complaint-department is)
(with sponsor 1s))))
do
(send-to expl new-expression-eval)
(send-to exp2 new-expression-eval))))))

The initial-sponsor actor is a scrializer which serves as a sponsor for the

evaluation of the two sub-expressions, as a customer for collecting replies, and as a

36

complaint-department for collecting complaints. As a sponsor, it should rclay any
requests for more resources to the original sponsor. As a customer and complaint
department, it should relay the first response to the original customer or complaint
department, as appropriate. As it does this, it should also become a
subsequent-sponsor actor, which will refuse to grant more resources and will

discard any other response.

(define (new initial-sponsor
(with customer =c)
(with complaint-department =cd)
(with sponsor =s))
(create
(is-request (=message which-is (a resource-request)) do
(reply (ask s message)))
(is-reply =message do
(reply-to ¢ message)
(become (new subsequent-sponsor)))
(is-complaint =message do
(complain-to cd message)
(become (new subsequent-sponsor)))))

The implementation of the subsequent-sponsor abstraction is quite simple.
It complains when asked for more resources, and does nothing in response to any

replies or complaints it receives.

(define (new subsequent-sponsor)
(create-unserialized
(is-request (a resource-request) do
(complain (a no-resources-available)))
(is-reply something do)
(is-complaint something do)))

37

Chapter Three

The History of Act2

One part of this thesis work has been work on the design of Act2. The design
effort consisted of taking the prelirhinary design for Prelude itself as documented in
[Theriault 82], analyzing it with respect to our design goals, self-consistency,
uniformity, and implementability, and making modifications as necessary. Some
changes were made less to the syntax of constructs than to their scmantics. The
design of Act2 involved evaluating the preliminary, documented design, checking
for consistency, synergy, simplicity; evaluating them in terms of new design goals
and principles; deciding what could be factored out into a base language and what
could be embedded in this language. Integration was envisioned in the preliminary
design, but its details had not been worked through. Some forms of bottoming out
had been addressed by Lieberman’s Actl implementation, but bottoming out of

scripts and instance descriptions was peculiar to the requirements for Act2.

As design began, so did the beginnings of an implementation, in order to
further develop intuitions for how much work is done in message-passing using
instance description, for the problem of bottoming out, and for what
implementation aids would be useful. At this time, Scripter did not yet exist, and an
Apiary simulator for the Lisp Machine was still in its infancy. An implementation in
Lisp would have been very bulky, time-consuming, and difficult to read and modify.
The circularity problems in bottoming out Act2 are more acute than they were for

Actl, and this would have accounted for significantly more code.

We decided to write a meta-circular description of Act2, using it as a tool in

38

the design of Act2 itself. "The meta-circular description, being an abstract
implementation of Act2, also provided an opportunity to plan and experiment with

implementation strategies.

Once the language design had settled to a reasonable extent, Scripter and the
Apiary simulator were beginning to become usable for small experiments. We
decided to implement expressions for a small toy language, as if they were part of
Act? itself. An implementation for these expressions was first written in Act2, to
demonstrate its generality, flexibility, and readability. This included the
implementation of an actor-based listen-loop, event-based parsing, and event-based

evaluation.

Next, an implementation for the toy language was attempted in Scripter, to
provide higher-level testing of it and to point out any problems and deficiencies in
the interface it provided to the Apiary. Once the fundamental portions of the toy
language had been implemented, progressive extensions were made to it, to work
out more of the implementation problem, including bottoming-out of primitive

actors and implementing serializers.

This set the stage for an implementation of Act2 in Scripter. The next step
might have been to integrate descriptions and pattern-matching into the toy
language. This was a quantum leap in the complexity and size of the language.
Instead, work was started on the implementation of a rudimentary version of Act2 in

Scripter. This grew into the present implementation of an Act2 interpreter.

39

3.1 A Meta-Circular Description of Act2

3.1.1 Perspective

The meta-circular description is best understood by first understanding the
context in which it exists. A user’s interface to Act2 is an event-based listen-loop,
with an operating environment in which names are resolved. The listener first
accepts input from the user in the form of list structure, symbols, and numbers. It
asks this input to parse itself, producing an actor which represent the abstract syntax
of the input. This actor may have acquaintances which represent the abstract syntax
of portions of the input. The listener then asks the abstract syntax actor to evaluate

itself as an expression in the current environment.

Each abstract syntax actor is responsible for its own evaluation. Rather than
‘having a single interpreter, which accepts, parses, and evaluates the input, Act2’s
approach is "actor-based" or "object-oriented.” The interpretation process is a
cooperative one, with knowledge about each construct localized in the

implementation of the construct.

An interpreter for Act2 consists of a set of actors which parse list structure into
abstract syntax objects, and abstract syntax objects which evaluate themselves and
create actors or transmit communications as appropriate. Our meta-circular
description consists of an Act2 implementation of abstract syntax objects
representing Act2 constructs. That is, we describe the processing which occurs when

the abstract syntax object receives a request to evaluate itself in Some environment.

The meta-circular description provides a form of informal, high-level
operational specification of the semantics of each construct. Because of the

circularities which naturally arise in an Act2 description of itself, our meta-circular

description is mathematically vacuous. It does, however, convey o its reader a fairly
accurate idea of just what each construct means, in a relatively clear, concise, and
precise manner. This made it useful for discussing the design decisions and
problems with others. 1t was often less ambiguous than corresponding English

descriptions.

It was also useful because of the way it allowed us to postpone dealing with
low-level implementation detail, such as exactly how communications are
transmitted, how actors are implemented, how Act2 bottoms out into and interfaces
with the underlying architecture. Rather, it distills out the high-level problems and
issues, so they can be dealt with directly, rather than indirectly by debugging a large
and detailed implementation. For the same reason, it increased the likelihood of
experimenting with alternatives, because they were relatively quick and easy to try

out. In the long run, this saved much time and implementation effort.

Because the meta-circular description was written in a programming language,
it made case analysis more natural. The likeness to programming tended to promote
completeness and attention to detail. Often, troublesome cases which might
otherwise have been ignored or taken for granted became apparent. “This also
allowed us to use the programming intuitions, which we have acquired through

implementation experience, in the design process.

In addition, writing the description of Act2 in Act2 provided us with intuitions
about what Act2 programming would be like, and what Act2 code would look like.
This experience in itself was responsible for a few changes. Implementing Act2 in

itself also demonstrates its generality as a programming language.

In hindsight, the meta-circular description was a very useful design and

implementation tool. The structure and content of the Scripter implementation of

4]

Act2 was modeled closely after the meta-circular description, and progressed

smoothly as a result.

3.2 A Toy Language Implementation Experiment

When our meta-circular description had become relatively stabilized, we
began to experiment with the implementation of a very simple expressional
language. Part of our purpose was to specify the expressions in the language as
syntactic and semantic extensions to Act2. Since no implementation of Act2 existed,
the implementation of our toy language would actually be implemented as if part of
Act2, requiring only the additional implementation of an event-based listen-loop,
implementation of environments, and installation of appropriate behavior for

numbers, symbols and lists.

Initially, we needed only unserialized actors, which was fortunate, since our
apiary simulator did not support serializers. Our environments were unserialized,
even though we realized they would eventually need to be serialized. The
expressions we chose to start with were representative of the lambda calculus. A
lambda expression provides the ability to lambda-abstract an expression with
respect to an identifier. Any free identifiers in the expression are statically bound.
When evaluated, a lambda expression replies with a unary operator. When this
operator is "applied" to an operand, the expression it abstracted from is evaluated in
its original context, but with the lambda-variable bound to the operand. Such an
application in our actor-based design consists of sending the operand as a messagé .

in a request to the operator.

Our lambda and apply expressions have the form:

(1ambda lambda-variable-symbol abstracted-expression)
(apply operator-expression operand-expression)

42

An implementation in Act2 was trivial. The apply expression simply cvaluates
the operator and operand expressions, then sends the evaluated operand (wrapped
in a request) to the evaluated operator. The Act2 code is presented below simply for
illustrative purposes, to present an image of the language, its use and expressiveness.
Code in this section is intended mainly to provide imagery, and its details need not
be understood except by readers who are interested enough to browse through

language descriptions in the appendices.

(define (new APPLY-EXPRESSION
(with operator =op)
(with operand =x))
(create-unserialized
(is-request (=eval which-is (an expression-eval)) do
(reply (ask (ask op eval) (ask x eval))))))

The lambda expression simply results in a closure, which retains the variable,

expression, and environment for later use as an operator.

(define (new LAMBDA-EXPRESSION
‘ (with variable =var)
(with body =exp))
(create-unserialized
(is-request (an expression-eval (with environment =env))) do
(reply (new closure

(with variable var)
(with body exp)
(with environment env))))))

(define (new CLOSURE
(with variable =var)
(with body =exp)
(with environment =env))
(create-unserialized
(is-request =val do
(reply
(ask exp
(an expression-eval
(with environment
(new environment
(with primary
(ask {(new empty-layer)
(a grow
(with symbol var)
(with value val))))
(with secondary env)})))))))

43

The language also had some simple expressions, to facilitate experimentation.
Numbers evaluated to themsclves. The symbols true and faise were bound in the

initial environment to primitive actors with appropriate behaviors.

With the addition of an if expression, to choose between two expressions to
evaluate, the language had the ability to make decisions. The if expression had the

form: (if boolean-expression expression-if-true expression-if -false).

Given this as a base, we demonstrated that Act2 indeed had the expressive
power to implement the lambda calculus, and the elegance to implement it in
simple, readable code. We also wrote Act2 code implementing environments, and

representing the behavior of numbers, symbols, and lists.

This established, we set about implementing environments and a listen-loop in
Scripter. We provided a scripter interface for Act2 to customize the behavior of
primitive actors. We implemented event-based parsers for the constructs, and
installed them in an expression-parsing environment. We implemented abstract
syntax for each expression, which knew how to evaluate itself, given an
environment. We ran experiments on the apiary simulator, entering expressions in
our experimental language, noticing what they parsed and evaluated into, and
noticing how many events were required for parsing and evaluation. Printing of

actors was done by Lisp functions.

Some logical and numeric expressions were provided, to express simple

computations. These provided somewhat larger and more interesting test cases.

(not boolean-expression)

(and boolean-expression boolean-expression)
(or boolean-expression boolean-expression)
(eq expression expression)

(+ numeric-expression numeric-expression)
(- numeric-expression numeric-expression)
(* numeric-expression numeric-expression)

44

We found it desirable to further extend our toy language, to remember the
results of previous computations. We invented a construct for extending the loop’s
prevailing environment by binding a symbol to the result of evaluating an
expression. In order to make this work right, we introduced a simple

implementation of serializers to the Apiary, to provide serialized environments.
Our new construct had the form: (defname symbol expression).

It allowed us to construct recursive operators, simply by entering an

expression such as:

(defname factorial
(1ambda x

(if (eq x 0)
1
(* x (apply factorial (- x 1))))))

Our implementation of expressions requiring the evaluation of sub-
expressions was a simple one. It would evaluate the sub-expressions sequentially
from left to right, obtaining the result from the leftmost before beginning the
evaluation of those to the right. Some evaluators for the lambda calculus have
included mechanisms for lazy or eager evaluation. For example, in an expression
such as (apply (lambda x 3) operand-expression), it is not necessary to evaluate
the operand-expression because it is not used in the body of the lambda expression.
Also, in an expression such as (apply (lambda x (+ x x)) operand-expression),
the lambda calculus’ substitution semantics would evaluate operand-expression
twice. Introduction of lazy evaluation mechanisms to lambda calculus interpreters

prevents unnecessary or duplicate evaluations of expressions such as these.

Lazy evaluation is easy to add to our little language implemented in Act2. We
can simply extend Act2 to include a simple delay expression, which replies

immediately with an actor. This actor saves the evaluation environment and the

45

cxpression’s abstract syntax. 11 no message is ever sent to the delay, it never
evaluates the expression. If any are sent, the delay evaluates the expression, replaces
itself with the result, then processes the incoming communication. The delay
expression can have the form (delay expression) and can be implemented in Act2

as.

(define (new DELAY-EXPRESSION (with expression =exp))
(create-unserialized _
(is-request (=eval which-1is (an expression-eval)) do

(reply
(create
(is-communication =c do
(let ((=value match (ask exp eval))) do
(send-to value c)

(bscome value))))))))

We can selectively denote the lazy evaluation of an expression by explicitly
saying (delay expression). For example, a programmer can guarantee lazy
evaluation of operands by writing apply expressions like
'(app'l y (1ambda x 3) (delay operand-expression)). In this case, the
operand-expression would never be evaluated, because the operator would simply

reply with the value, 3.

Alternatively, we can have all operands to apply expressions be evaluated

lazily by trivially modifying our implementation of the apply expression:

(define (new APPLY-EXPRESSION
(with operator =op)
(with operand =x))
(create-unserialized
(is-request (=eval which-is (an expression-eval)) do
(reply (ask (ask op eval) (delay (ask x eval)))))))

The ability to implement the delay and hurry expressions required a full
implementation of serializers in the Apiary. Eager evaluation was implemented
using futures. It was cxpressed in our language as (hurry expression). When

evaluated, a hurry expression immediately returns with a future actor which

46

represents the result of the evaluation, in much the same way that a delay actor did
above. Howecver, it concurrently asks the expression to evaluate itself, and to
respond to the future. Until it receives the response, the future will enqueue
communications intended for the value. Once it obtains the value, the future will
become the value and will also send all of the enqueued communications to it for
processing. The implementation of futures is a bit more complicated than the
implementation of delays. Note that the response from the eyaluation of the
expression must be distinguished by the future from communications sent to the
value. We provide this ability by using the authentication mechanisms provided by
Act2,

Given the existence of the hurry expression, we can explicitly denote eager

evaluation of an expression with (hurry expression).

We can provide eager evaluation by default in our little language by
modifying the apply expression, so the evaluation of the operation proceeds

concurrently with the evaluation of the operénd.

(define (new APPLY-EXPRESSION
(with operator =op)
(with operand =x))
(create-unserialized
(is-request (=eval which-is (an expression-eval)) do
(reply (ask (hurry (ask op eval)) (hurry (ask x eval)))))))

In the evaluation of an expression such as (apply (apply op argl) arg2),

the expressions, op, arg1, and arg2, are cvaluated concurrently.

Some researchers [Backus 78, Dennis 81, Turner 79] believe applicative
languages to be ideal for concurrent programming. Because every expression is
completely functional, and has no side-cffects, the order in which expressions are
evaluated is irrelevant. They typically introduce eager evaluation into interpreters

for these languages, in order to realize this potential for concurrency. No matter

47

how they implement their interpreters, some amount of synchronization is
necessary. In general, this synchronization requires the notion of state change.
Because of this, the applicative languages are not powerful enough to implement
their own interpreters. Similarly, these languages are not powerful enough to

implement interpreters with lazy evaluation.

3.2.1 Act2 Implementation

The implementation of Act2 in Act2 has the same style as the implementation
of the toy language expressions in Act2. It does, however, handle complaints
wherever they may occur. The listen-loop interface to Act2 has event-based, object-
oriented parsing {section 5.2, page 96} which makes the language extensible.
Abstract syntax objects representing Act2 expressions and commands are

responsible for their own evaluation.

Making syntactic extensions to Act2 is relatively simple. A programmer
simply extends the appropriate expression or command parsing environment,
mapping some symbol which will serve as a keyword to a user-supplied parser. This
parser will pérse list structure dénoting an instance of the construct into some
abstract syntax actor. Act2 provides a construct for establishing this in a simple way.
For example, here is how we might establish a connection between the concrete and

abstract syntax for apply and lambda expressions:

43

(defexpression apply
;; a parser for "(apply EXPRESSION OPERAND)"
(create
(is-request (an expression-parse (with source =src)
(with expression-keywords =ek)
(with command-keywords =ck))

do
(case-for src ;s note that a LIST is a (simple) SEQUENCE.
(is ['apply =op =arg] do
(reply

(new application-expression
(with operator
(ask op (a parse-yourself-as-expression
(with expression-keywords ek)
(with command-keywords ck))))
(with argument
(ask arg (a parse-yourself-as-expression
(with expression-keywords ek)
(with command-keywords ck)))))))))))

It is quite likely that installations of Act2 will provide generalized parser
abstractions, which will often eliminate the need to write code like that shown
-above. Assuming the existence of such an abstraction, prefix-parser, the

installation of the lambda expression might look like:

(defexpression lambda
(new prefix-parser
(with keyword 'lambda)
(with number-of-arguments 2)))

Act2 is also semantically extensible, because a user may define his own
abstract syntax objects, or redefine pre-existing ones. The implementation of Act2
constructs consists of definitions of appropriate parsing and abstract syntax actors,

and the definition of any actors which are useful to create dynamically.

The implementation of Act2 in Scripter is closely patternéd after the meta-
circular description. It uses the same major implementation strategies. It differs in

the details, because Scripter docs not have the expressiveness of Act2.

49

Chapter Four

Issues in the Design of Act2

4.1 Act2 is Part of a Layered Implementation

Act? is part of a layered appr.oach to the design and implementation of a more
sophisticated actor language system. Prelude is intended to incorporate and
augment the functionality of the Actl, Omega, and Ether experiments. It will
integrate their fundamental mechanisms and higher-level approaches, ironing out
their differences in philosophy. The result will be a high-level, highly-concurrent
programming language with knowledge representation and problem solving
capabilities. This language system will be accountable for the actors implemented
and created within it, making possible the cooperation of applications written within

it with independently-conceived application systems.

The design and implementation of Prelude is a rather ambitious project.
Attempting to implement it all at once would very likely lead to difficulties, as the
implementation of Plasma did, and might result in a very bulky implementation

which was difficult to understand and evolve.

Act2 was designed to serve as a substrate for the implementation of Prelude.
It can also stand as a programming language in its own right. Act2 addresses
practical issues involved in an interface with the computer architecture below. It
addresses issues involved in an interface for programming applications and
embedding languages above. In addition, it addresses issues involved in integrating
the fundamental mechanisms of Actl, Omega, and Ether into a coherent language

base. In this way, a substantial set of issues can be addressed by a manageable

50

project, without incurring the burden of a full-scale implementation of Prelude.

Prelude’s additional functionality can be embedded in Act2, using Act2
implementation mechanisms, without the need to address those issues already
addressed by Act2. Additional features include the ability to construct and
manipulate lattices of descriptions, related by inheritance; the ability to make
deductions based on these relationships; more sophisticated resource management

policies; and dissemination of information.

4.1.1 Act2 Assumptions

Act? itself is built on top of other layers, in which other sets of problems are
factored out and solved. Lisp-Machine Lisp [Weinreb and Moon 81] provides a
comfortable interface to the underlying hardware, and provides abstractions suitable
for representing actors. The worker interface to the Apiary architecture is
implemented in Lisp, and provides a view of the underlying hardware as part of an
actor-based apiary. Scripter is a macro language embedded in Lisp, which provides
a high-level interface to workers, allowing computations to be expressed in terms of
actor creation, one and two-way ‘communication, and change of behavior, in

addition to Lisp code. Act2 is implemented in Scripter.

An important part of the design and implementation of Act2 is an assumption
about the character of computation on the underlying computer architecture. For
example, Act2 assumes that the transmission of communications is reliable, cheap,
and quick. The worker optimizes the transmission of a communication when the
target is on the same worker as the sender. Workers attempt to maintain locality of

reference when migrating actors to other workers.

Act?2 assumes that creation of actors is very cheap. All that is involved in actor

51

creation is the allocation in Lisp of a small data structure to represent the actor.

Act2 assumes that actors are garbage-collected, and that the garbage collection
algorithms are efficient and effective. Each worker docs local real-time garbage
collection of inaccessible actors. An algorithm has been developed for this, which
reclaims storage quickly [Lieberman and Hewitt 83]. Garbage collection across
workers is a more difficult problem, requiring a more sophisticated algorithm by

which workers cooperate to localize inaccessible actors for intra-worker reclamation.

Act2 assumes memory is inexpensive and plentiful. This is becoming more
and more true with time. Act? also assumes that copying and maintaining multiple
copies of unserialized actors on different processors is cheap. Actors which cannot
change can be copied indiscriminately, to increase locality of reference, and to make

migration easier.

Act2 assumes that the underlying computer architecture may consist of large
numbers of processors interconnected by high-bandwidth links. The apiary was
designed with this in mind. Workers perform load-balancing and migration, in

order to make use of the available parallelism.

A consequence of these assumptions is that a high degree of concurrency may
be obtained by expressing computations in terms of large collections of highly
specialized actors communicating with each other by transmission of

communications. That is exactly the style of computation supported by Act2.

4.1.2 Act2 Design Goals

52

4.1.2.1 Integration as a Design Goal

Act2 1s designed to integrate the fundamental mechanisms developed in
experiments with Actl, Omega, and Ether. Assuch, it is an actor-based language,
founded on message-passing semantics. It provides mechanisms for creating actors,

for point-to-point communication, and for expressing two-way communication.

Act2 makes use of descriptions in fundamental and pervasive ways, which
allow for them to coexist with other actors. It implements its own mechanisms for
pattern-matching, which do not involve deduction. Inheritance and deduction

mechanisms can be introduced as extensions to the language.

Act?2 uses sponsors as its fundamental resource-management mechanism for
controlling asynchronous computations. It is possible to implement sprites as actors,
and to introduce more sophisticated resource management policies. Sprites can
work off patterns which are descriptions, and dissemination of information can be
performed in coordination with description lattices and point-to-point

communication.

4.1.2.2 Expressive Power as a Design Goal

Expressive power is an objective measure of the generality of a language.
Because it will be used to implement Prelude and arbitrary applications for
concurrent systems, Act2 must be general enough to express whatever might be
necessary. Generality includes the ability to deal with concurrent systems, including

those which do not assume a closed world model.

One criterion for generality is the ability to implement Act? in itself. The
meta-circular description {section D, page 163} is evidence of this. Another is the

direct support for the actor model, whose generality has been considered

53

independently.

Act2 is expected to be used to implement languages as well as applications.
For this reason, it needs abstraction mechanisms and mechanisms for syntactic

extension.

In addition, Act2 is expected to deal with issues such as protection, security,
and authentication, to protect the integrity of actor systems and allow controlled

sharing of information.

4.1.2.3 Expressiveness as a Design Goal

Expressiveness is a highly subjective measure of the quality of a language. It
involves such areas as simplicity, friendliness, benevolent character, and range of
application of a language. For example, Act2 was designed to be interactive. Act2
was not designed to be a minimal language, providing only enough mechanism for
the integration and generality goals. Instead, its constructs are geared more toward
understandability and programmability. It includes software engineering features in
addition to those of Actl. Act2 was not designed to provide everything a
programmer might want, but to make it possible and convenient to embed further

and more useful mechanisms.

4.2 Programmer Interaction

One of the important aspects of a language is the interface it presents to a
programmer. We take a broad notion of "programmer" to include both traditional
human programmers and computer programs which write or manipulate other
programs. There are many trade-offs in user-interface design, and more are

introduced by this broad concept of a user.

54

Our general approach in the design of Act2 has becn to attempt to maximize
flexibility and generality. Specifically, in the area of programmer interface, we have
opted for a language which is highly interactive in character, for comfort in
programming. We have also attempted to decouple issues of syntax and semantics,

so they could be handled separately.

4.2.1 Interactiveness

One of the basic requirements for Act2 was that it be designed to be
interactive in nature. [Sandewall 80] demonstrates the utility of interactive
programming environments. Experience has shown that more interactive
programming environments tend to be more comfortable to work with and provide
a friendlier human interface to the machine and language system [Algol, Lisp,
Smalltalk, Halbert-thesis]. Act2 was designed as an interpretive language;
compilation is treated as an optimization which is engineered to fit within this
framework. The interface to Act2 is a listen-loop, similar in nature to that of Lisp,
which accepts as input any expression in the language. This encourages a more

conversational interaction between man and machine.

There is always an environment associated with the listener for resolving
symbols used in the user’s input. This environment corresponds both to the context
of a conversation and to a personal data-base. The environment is preserved from

session to session, to provide a sense of continuity.

Special expressions exist for the binding of names and definition of
abstractions at the top level. They alter the semantic content of the prevailing
environment, in order to preserve the definitions for later use. A user can associate
names with specific actors using the defname expression, and can can define

abstractions using the define expression. Most other expressions in the language do

55

not alfect the environment in which they are evaluated.

4.2.1.1 Actor-Based Interpretation

Act2 is implemented in the same style we advocate for all applications. There
is no centralized interpreter for the language. Instead, each construct is
implemented by an abstract syntax actor, which is responsible for its own evaluation.
This makes semantic extensions possible in a very natural manner — we can simply
define new abstract syntax actors using the same mechanism for implementing any
other abstraction. The implementor only needs to make the abstraction obey the
communication protocols of abstract syntax actors, accepting communications such

as requests for evaluation or compilation.

Parsing is also actor-based. Each construct parses itself, using a parser which
has been associated with the construct. The listener reads in user input as a set of
nested syntactic phrases, represented as a composition of list structure, symbols, and
numbers. Each syntactic phrase is asked to parse itself. List structure scans itself,
looking for a symbol which has been defined as a keyword for some construct. It
then delegates the job of parsing to the parser which has been associated with that

keyword.

This method of parsing makes syntactic extension of Act2 an easy matter. A
programmer can install a new keyword/parser pair using the defexpression and
defcommand expressions. Such declarations are done at top level, to the listener.
Once again, the actor-based programming discipline gives us the flexibility we

desire.

56

4.2.2 Act2 Separates Syntax from Semantics

The actor-based implementation of Act2 decouples the activities of parsing
and evaluation of language constructs. In so doing, it provides natural means for
syntactic and semantic extension of the language. In addition, it decouples the
syntax of the language from its semantics. A set of abstract syntax actor definitions

embody the semantics of the Act2 language.

These abstract syntax actors are largely independent from the concrete syntax
which is mapped onto them by a set of parsers. This separation of syntax and
semantics allows a large degree of separation of style from mechanism, of
presentation from representation, of form from function, and of syntactic issues
from semantic issues. It allows us as language designers to concentrate on different

sets of issues separately.

We took advantage of this by concentrating on semantic issues and
requirements. We chose a concrete syntax which closely resembles the abstract
syntax we found desirable. Alternative sets of constructs can be mapped onto this

set of abstract syntax actors if and when desired.

4.2.2.1 Presentation and Editing Tools

We gain additional benefits from this decoupling of syntax from semantics.
Presentation tools can operate with abstract syntax objects, and provide alternative
ways of looking at them, based on such things as programming style, familiarity of
the reader with the code, indentation preferences, and available space. This can

provide a more comfortable way to read code written by others.

Editing tools can make it more comfortable to write Act2 code. An editor can

provide templates for the programmer to fill, decreasing the amount of typing

57

needed. It can also allow programmers the luxury of personal short-hand, which it

converts to the appropriate abstract syntax.
4.2.3 Syntactic Issues

4.2.3.1 Bracketed Syntax

Act2 has a bracketed syntax. This was chosen because we needed a
convenient, uniform way of recognizing phrases and sub-phrases in the language. It
provides us with this ability even in the face of arbitrary syntactic extensions It
makes the language amenable to convenient construction and analysis by computer
programs as well as human programmers. [t allows lexical analysis to be performed
automatically, and to be ignored by those making extensions. This in itself removes
a large part of the complexity of parsing. It reflects the structure of computer
languages in their syntactic representations. This makes the problems of parsing

and extension tractable.

User input is read in as nested list structure, grounded by "atomic” tokens
such as symbols and numbers. Each list, is asked to parse itself. In doing so, it scans
itself for a symbol for which has been established a keyword/parser pair. This is the
mechanism by which syntactic extension is made possible and practical in Act2.

Bracketed syntax is the most natural way we know of to provide these capabilities.

4.2.3.2 Template English

In choosing a concrete syntax for Act2, one of the guidelines we used was to
try to make it resemble English as much as possible. Whenever possible, we
attempted to make the meaning of constructs closely resemble the intuitive meaning

of the phrases denoting them, giving Act2 an air of familiarity and understandability

58

even to novice readers. An Act2 construct often reads somewhat like text, with the
addition of parentheses to mark off essential clauses. This is especially noticeable in
instance descriptions and new expressions. It is also evident in more complex
expressions, such as case-for, if, one-of, and let. Some compromises were made for
the sake of conciseness. There is a point where verbosity ceases to enhance
readability because a sense of structure is lost. We believe Act2 strikes a good
balance, being verbose enough to be relatively understandable to novice readers,
using parenthetical template English to make the structure of the code visible, and

avoiding overly verbose concrete syntax for constructs.

Programs are also made more readable by the existence of more familiar
expressions of common primitive operations. For example, (+ 3 5) can be used
instead of (ask 3 (a + (with operand 6))) In addition, programmers can use the
infix notation (3 + &) if they feel more comfortable with it. This is slightly more
readable for novices and has more of an English-like "flow" to it. Unfortunately,
with the opportunity for arbitrary syntactic extension, there is a danger of confusing
leading identifiers with keywords. For example, the identifier ain (a + b) might
cause confusion when parsing the expression, because it resembles an instance
description. For this reason, Act2 warns programmers when they attempt to bind an

identifier which also happens to be an expression keyword.

4.2.3.3 Verbosity

One important trade-off in Act2 syntax is verbosity. On the one hand, a
language which is overly verbose may be cumbersome to write programs in, and
may even be less readable if the main ideas and algorithms are lost in words and
symbols. On the other hand, a language like APL which is overly terse can be very
cumbersomie to read, even for those who have made the effort it takes to become

fluentin it. The bias in Act2 is toward readability, at the expense of increased

59

verbosity. Our assumptions are that more code is read than is actually written or
modified, and that the readers will often not be the original writers. It attempts to
combine the local-understandability benefits of natural language phrases with the
more global-understandability benefits of structured code. Of course, Act2 is
somewhat flexible about the whole matter, allowing programmers to introduce more
concise or verbose forms of constructs, using the syntax extension mechanisms.
Modern editors have abbreviation facilities and other writing aids. Some deal
directly with the syntax of a language. With the similar tools, an Act2 programmer

should have few reservations about writing "verbose" code.

If we look at Act2 code more closely, we find it difficult to justify a more
concise syntax for its constructs. We could shorten the keywords, but the language
would become more cryptic. Instance descriptions are about as concise as they can
be, without an adverse effect on readability. As they are now, they read just like
English text and has exactly the connotations we intend, enhancing the imagery of
even experienced readers. New expressions could be forsaken in favor of a
positional notation, but we would lose the value of keywords, which are a great aid
to readability and understandability. One major source of bugs in the history of
Lisp programming has been interface problems and misunderstandings, because
Reading code is difficult without flipping back and forth between function calls and
definitions, to see what each parameter means. In addition, the strong resemblanée |
between new expressions and instance descriptions is strongly suggestive of the
relationship between actors and their descriptions, and of Act2’s flexible notion of

instantiation of abstractions.

Act2 constructs have been designed so their most common usages are also
their most concise. For example, the otherwise clauses in create, one-of, and
case-for constructs are rarely needed, and can simply be omitted. The usual intent

of programmers is to simply complain if none of the possibilities they allowed for

60

actually occur. In addition, all constructs relay any unhandled complaints which
might occur in the evaluation of sub-expressions within them, eliminating a need to

explicitly wrap a handler around the sub-expressions.

There are many cases in Act2 where the programmer is allowed not to
explicitly denote information which can be derived from context. Commands like
reply and complain allow the programmer not to mention the intended target, when
handling a request communication. The become command refers to the enclosing
serializer, which need not be explicitly mentioned. When the replacement actor is
simply another instance of the same abstraction, the new expression within the
become command need only mention those attributes which will be different. In
general, Act2’s constructs behave in such a manner that customers, complaint

departments, and sponsors need not be explicitly mentioned by programmers.

4.2.3.4 Keyword-Based versus Positional Instantiation

It is possible for Act2 code to be presented in a more condensed form, when
desired. new expressions can be presented with a lisp-like function call notation
which eliminates keywords. Programmers can easily make an extension for a

smalltalk-like keyword notation.

There are serious issues to consider when choosing a style. From a software
engineering standpoint, it is very useful for a keyword to describe the significance of
each parameter of an instantiation. The attribute relations in new expressions are
very useful for this purpose. They serve as good documentation for readers, and
allow extra consistency checking between the instantiation and the definition. They
also eliminate the problems which occur when parameters are permuted. The main
advantage of positional notation is its conciseness. In writing a program, it is very

convenient to reduce typing, and in reading a program, it sometimes makes the

61

overall algorithm more apparent by reducing the amount of text required to
represent it. The benefits of positional notation are often easily obtained with
appropriate editing and presentation tools. Act2 provides programmers with the

ability to choose which style they wish for each individual instantiation.

4.2.3.5 Extensibility

Part of the success of Lisp has been its extensibility. This feature allowed
other languages to be embedded within it. It also allowed the language itself to

grow to include increasingly sophisticated and useful features.

We also wanted Act-2 to be syntactically extensible, for these and additional
reasons. We feel it may be desirable to develop more than one concrete syntax for
Act-2, to serve the needs, desires, and customs of programmers with different styles.
Syntactic extension allows programmers to choose a level of verbosity which best
serves their needs, and to introduce whatever syntactic sugaring they wish into the
language. Customization is an important property of a language which is to be used

by disparate institutions.

Assuming syntactic extensibility allowed the Act2 language design to go on at
the abstract syntax level, without much concern for the syntactic details. It also
allowed us, in the language design phase, to choose a concrete syntax which is very
near the abstract syntax, permitting us to concentrate independently on underlying

mechanisms and programmability.

Providing the ability for embedding Prelude in Act2 saves us from a full
implementation of Prelude; instead, we only need to program the extensions. It is
difficult to anticipate now the syhtactic and semantic requirements of Prelude, so

syntactic extension is even more important.

62

4.2.4 The Expressive Character of Act2

There were some guidelines we used while choosing an abstract syntax for
Act2. Many of the decisions which needed to be made were very subjective in
nature, dealing more with expressiveness than with expressive power. We did not
intend for Act2 to be a kernel language for implementing Prelude. Instead, we
wanted it to be a full-fledged programming language in its own right, with emphasis
on mechanisms for good software engineering. This is necessary because the
implementation of Prelude is a rather complex task in itself, and should be done
with a suitably high-level ahd comfortable language. These criteria were deemed
more important than the size of Act2 and the complexity of its implementation. As
a consequence, Act2 has high-level, very ﬂéxible constructs, such as éreate, case-for,

one-of, and let.

4.2.4.1 Familiarity

One of the guidelines we followed was to make Act2 syntax be as similar as
possible to familiar syntax. The syntax for instance descriptions and patterns were
borrowed, unchanged, from Omega. Our notation for instantiation of abstractions is
almost identical to the notation for instance descriptions, to make them readable,
and to suggest a close relationship between the two ideas. Whenever possible, we
attempted to use the syntax described in [Theriault 82]. Above all, we did not want
to make the language much more complex to read or work with. We made an effort
to express familiar ideas and constructs in familiar ways and with commonly-
understoed notations. For example, we permit the use of infix notation in

expressions.

63

4.2.4.2 Economy of Concept

There are relatively few fundamental concepts in Act2. All computation is
ultimately expressed in terms of actor creation and replacement, communication
transmission, and simple decision. Properties of actors and the actor model are
exploited in the language, to avoid introducing new concepts and constructs. There
is also the familiar and intuitively appealing notion of description. They are used as
information containers as well as "types” in the language. Pattern matching is used
for recognizing and extracting information, binding names, accepting
communications, handling complaints, dispatching on values, testing for equality,

instantiating abstractions, comparing descriptions, and type-checking.

4.2.4.3 Uniformity

In Act2, similar things are done in similar ways. We have already seen the

similarity of new and a expressions. Creating a new bank account with

(new bank-account (with balance 600)) is very similar to creating a description

of the bank account with (a bank-account (with balance 500))

The create, case-for, and one-of expressions are quite similar in the way they

choose one of many possibilities. They all have the form:

(introductory-part
possibility-1-1
possibility-1-2
j)f)ésibility-l -nl
(otherwise possibility-2-1
possibility-2-2
possibility-2-n2
(otherwise ...)))
The first set of possibilities, possibility-1-i, are tried concurrently. The first
(temporally) to succeed is chosen, and its body of commands is evaluated. If none is

successful, the sccond sct of possibilities is tried. Any number of sets of possibilities

64

can be denoted in nested otherwise clauses. f none succeed, the evaluation

complains.

Another aspect of uniformity is that case-for, let, one-of, and if expressions
have exactly the same syntax and very similar semantics as case-for, let, one-of, and
if commands. In addition, these expressions, and the create expression, have bodies
of commands very much like those of composite commands. This allows concurrent
activities to be performed as the bodies are evaluated. All bodies have the form:

do command-1 command-2 ... command-n

The idea of denoting the natural or exceptional "value" of a composite
expression is thought of as sending a reply or complaint communication in response
to a request for evaluation of the expression. Therefore, the same syntax is used for
this as is used for replying or complaining in response to a request communication,
in the bodies of create expressions. The reply and complain commands serve both

purposes.

4.2.4.4 Programmer Productivity Supported by High-Level Constructs

Studies have suggested that the average amount of debugged code, measured
in lines, a programmer can write per day is relatively constant across languages. The
most interesting of these tests supported this result when comparing assembly
coding and PL/1 coding. It found that people would write and debug at roughly the
same rate in lines of code per day. Because a line of PL/1 code typically does much
more than a line of assembly code, the PL/1 programmers tend to produce more.
This might be attributable to the increase in readability, understandability, and

programmability, as well as higher-level abstraction mechanisms.

Part of the goal in the design of actor languages is to do as much as possible

65

for a programmer. Writing highly concurrent programs in some languages, such as
Mesa, assembly code, and even Ada, is somewhat cumbersome and requires special
attention; concurrency is inherent in Act2 and needs little if any consideration by

programmers. Act2’s high-level constructs allow convenient expression of complex

concurrent behavior.

Another of Act2’s features is pattern-matching, which condenses and localizes
much functionality in areas such as recognition, filtering, and dispatch. Act2 makes
it potentially more of a savings, once assertion and deduction mechanisms are

embedded and made use of.

4.2.4.5 Abstraction and Extension

Act2 has mechanisms for defining and instantiating abstractions, the define
and new expressions. These mechanisms unify the notions of procedural, control,
and data abstraction by emphasizing communication, rather than representation.
Abstraction allows a programmer to define his own abstractions in addition to those
which are provided with the language. Because of the uniformity in which pre-
defined and user-defined abstraétions are treated, this can be thought of as raising
the level of the language itself. It makes the language more suitable for
implementing applications which are more easily expressed in terms of those

constructs.

Act2 goes beyond this aspect of expressiveness, allowing programmers to
introduce new expressions and commands into the language itself. Not only is it
possible to define abstractions suitable for special application domains, but it is
possible to tailor the language itself into one allowing convenient expression of

fundamental concepts in the application domains.

66

Programmers can exploit the extensibility mechanisms to provide a more
comfortable language with syntactic sugaring allowing common behavior to be
expressed concisely. We can extend the language with more specific constructs,
which are implemented in terms of the more general ones. For example, the if
construct is simply a specialization of one-of. It was, however, included because of
the frequency with which binary decisions occur, and because it makes them more

readable, and is more familiar to programmers.

4.3 Act2 has Actor Semantics

4.3.1 Act2 is Actor-Based

The Act2 language is based on a well-defined, mathematically understood
‘computational model. The integrity and consistency of the actor model have been
established in [Clinger 81b]. This formal model serves as a solid foundation for
Act?2, which inherits the benefits of well-definedness, and exploits the properties of
the model.

Many of the fundamental issues in language design of a language system, such
as abstraction mechanisms and concurrent computation, are dealt with abstractly by
the Actor model of computation [Hewitt and Baker 78]. Because Act2 allows the
characteristics of the model show through at the language level, issues handled by
the model are inherited by the language. The language design can concentrate more
on other issues. This is another of the features of a layered language design

approach.

67

4.3.1.1 Representation Abstraction

An actor cannot directly view or manipulate the contents or implementation of
another actor. All it can do is communicate with the actor, asking it for information
or requesting it to change. Only the actor itself can alter its behavior. This property
is known by several names, including representation abstraction, protection,
encapsulation, opacity, and information-hiding. The hiding of implementation
details has proven itself as one of the fundamental paradigms.of software

engineering.

Limiting access to an actor’s implementation has many benefits in the area of
software engineering. Techniques for data-type induction have been developed for
the object-oriented computational model [Liskov 72, Guttag, Horowitz and Musser
76). Similar techniques can be used within the actor model [Hewitt and Attardi
81, Hewitt, Attardi, Lieberman 79]. The correctness of an actor’s implementation is
a local phenomenon, depending only upon its specification, its script, and the

specification of the actors it communicates with.

The discipline of communication enforced by actors allows the
implementation of an actor to chémge, without affecting the actors which
communicate with that actor, as long as the actor’s communication protocols do not
appear different to them. It also allows different implementations of an actor to

coexist.

4.3.1.2 Absolute Containment

In addition to being opaque, an actor is entirely self-contained. It can only
communicate with its acquaintances and with the acquaintances of the
communication it is currently processing. There is no notion of global state to put

restrictions on the existence and location of the actor. Actors can be migrated from

68

worker to worker when convenient, because of their machine independence. This
transportability is possible precisely because there is no dependence of the actor on

any storage locations local to a worker.

4.3.2 Modularity

Actors’ properties of representation abstraction and absolute containment
suggest the modularity inherent in the actor model. The model goes beyond this,
unifying data, control, and procedural abstractions. The fact that an actor contains
both data and procedural information (its acquaintances and script), is naturally
sufficient for representing both procedures and data structures. The model’s

emphasis on communication blurs the distinction between them.

The emphasis on communication also allows the representation of control
abstractions as actors [Hewitt 77]. One typical use for control structures in
programming languages is to obtain a stream of values [Liskov, et al 81]. These can
be represented as dynamic sequences in Act2, a literal manifestation of the
"sequences” like those in [Waters 83]. Suppose we have an abstraction
implementing tree traversal. Wé can simply create an actor representing the
traversal of some specified tree. This actor might behave just like a sequence,
accepting requests for its first and rest. In fact, it retains information about the
tree and its placement within it, and computes the requested information

dynamically.

Sponsors allow the implementation of a new class of control abstraction. They
regulate the availability and rate of consumption of computing resources by
asynchronous computations. Explicitly expressing this in the computations

themselves would drastically increase the complexity of their implementations.

69

Act2 untfies the idcas of data, control, and procedural abstraction in a single
abstraction mechanism. This abstraction mechanism encapsulates not only the
creation of actors, but arbitrary expressions in the Act2 language. This allows for a
more convenient expression of procedural abstractions than that mentioned above.
The define and new expressions cooperate to provide this very flexible form of

lambda abstraction.

Abstractions in Act2 are actors, and can be sent communications just like any
other actor. This corresponds to the idea of abstractions being first-class objects in
other languages. This is clear in the case that the abstraction definition simply
represents the creation of an actor. It is also true in the case of some other arbitrary
expression. For example, consider the definition of a factorial procedural
abstraction as a recursive expression. The implementation is installed in a
factorial atomic description, which can then be sent communications relevant to

the implementation.

4.3.3 Message Passing Semantics Permeate Act2

In an actor-based language such as Act2, everything is an actor. All
computation is performed using transmission of communications. These provide
tremendous flexibility in expressing and performing computations, as. will be

discussed below.

4.3.3.1 Primitive Actors use Message Passing Semantics

In Act2, the message-passing paradigm of the actor model is used down to the
level of primitive, pre-defined actors such as numbers and symbols. For example,
simple arithmetic operations can be performed by the numbers themselves, in

response to requests to do so. Because a uniform protocol is used throughout, a user

70

can define his own form of numbers, such as complex numbers, which behave like
numbers. Code written for handling numbers in general will work even when some
of the numbers handled are user-defined ones. The use of message-passing
semantics in this manner makes the arithmetic operations work across machines, and
with arbitrary actors using the numeric communication protocols. This is essential
for concurrent applications in general. Arithmetic operations involving primitive
numbers on a single worker is viewed as a special case which can be optimized,

rather than as the only case, such as in many other languages.

4.3.3.2 Actors Implemented in Act2 have Actor Scripts

The script for an actor implemented in Act? is itself an actor. The declaration
of an abstraction involves the installation of an abstract syntax tree representing the
abstracted expression. Instantiation of uncompiled abstractions causes this abstract
syntax tree to evaluate itself. Actors created in this manner have scripts which are
composed of a tree of abstract syntax actors, representing the behavior of the actor
in terms of Act2 language constructs. Acceptance of a communication involves

message-passing among the abstract syntax actors com posing its script.

4.3.3.3 Programs as Data

Act2 programs are "first-class objects” in the Act2 language. User input is
read in as symbols, numbers, and list structure. All of these are actors, which can be
communicated with. Parsing produces abstract syntax trees, composed entirely of
actors. Environments are first-class objects in the language, and can be accessed,
created, or manipulated by programs. Evaluation can be done simply by sending an
evaluation request to an abstract syntax tree. It is evident, then, that Act2 programs
can be written which manipulate or create other Act? programs. Such power

accounts partially for the popularity of Lisp.

71

The quote cxpression is very useful for construction of Act2 code by other
programs. It allows the denotation of unparsed list structure and symbols, of which
Act2 syntax is composed. The parse-expression expression is convenient for
denoting abstract syntax trees. It parses, but does not evaluate the list structure or

symbols in its argument.

4.3.4 Transactions

All communication in Act2 occurs by one-way, asynchronous, buffered
transmission of communications. It does not rely on a procedure-call mechanism, as
do languages like Argus and Ada. Procedure call semantics can be implemented
efficiently using message-passing. They are simply a special case of the more

general notion of transactions in Act2.

Act2 supports three major kinds of communications. Request
communications correspond roughly to the procedure-call part of the procedure--
call-and-return mechanism. They include extra information, customers and
complaint-departments, indicating where a response should be sent. Reply
communicatibns correspond rou'ghly to the return part of the procedure-call-and-

return mechanism.

A very common pattern of communication is the sending of a request,
including a customer, to some target actor, followed eventually by the sending of a
reply to the customer. The sending of the request and the sending of the reply are
fully decoupled, however. The receiver of the request can redirect the request to
another actor. It can do some processing and let another finish. It can hang on to or
pass along the customer from the request, which is a "first class object” in the
language. It, or some other actor, can eventually reply to the customer. Between the

sending of the request and the sending of the reply, arbitrarily convoluted patterns

72

of communication transmission can occur. Actors are not arbitrarily restricted by

strict control structures like procedure call and return.

4.3.4.1 Customer Chains versus Execution Stacks

There is no need for execution stacks in Act2. This functionality is subsumed
by "chains” of customers — customers with customer acquaintances. When they
receive a reply, they might eventually reply to their customer acquaintances. These
chains are more flexible than execution stacks. Many such chains can exist. They
can branch off into multiple customer chains. They can span workers. Portions of
them can be migrated from worker to worker, independently from the rest. Being

actors, they can be kept as acquaintances and communicated with.

The very common pattern of sending a request and accepting a reply are
-expressed very conveniently in Act2. The programmer does niot need to explicitly
construct customers for each request. Act2 expressions transform their procedure--
call notation, and the contexts in which they occur, into the sending of requests with
appropriate customers. This is done without programmer effort. Common patterns
of communication among actors on the same worker can be optimized, increasing

the efficiency of the transactions.

4.3.4.2 Complaint Handling

When an actor accepts a request, it is usually expected to respond. If
processing of the communication completes without problems, a reply
communication can be sent in response. If minor problems occur, it is often
possible to reply with some meaningful message. If, however, irreconcilable
problems do occur, some means is needed to indicate that fact, as well as to respond

with some communication with a message which might indicate the reason for the

73

failure and provide any information which might be helpful to recover from the

problem,

Act2 provides a special type of communication called a complaint
communication to represent an exceptional response. This corresponds roughly to
Clu signals, PL/1 conditions, or error codes. In keeping with the Actor model of
computation, Act2 performs exception handling using the message-passing

paradigm.

Act? provides mechanisms for handling complaints. The primary one, the
case-for construct, is for handling complaints generated by the evaluation of an
expression, which we’ll call the guarded expression. 1t recognizes complaints using
pattern-matching. It performs an additional service by recognizing replies using
pattern-matching. That is, the case-for construct makes use of the pattern-matching
paradigm to recognize and extract information from responses to requests, whether
they are replies or complaints. Along with this recognition is the selection of a body

of commands to be evaluated once the respdnse is obtained.

The case-for construct serves both as a dispatching mechanism for (replies to
the evaluation of) the guarded expression and as a complaint-handling mechanism
(if complaints are generated by the evaluation). In this sense, case-for unifies the
notions of dispatching, complaint-handling, information extraction, and decision-
making. For example, suppose we had a variation of the account abstraction
defined in {section 2.3, page 34}, which included the new balance in deposit and
withdrawal receipts. When making a withdrawal, we could use the case-for
construct to handle a complaint or to take different actions based on the new

balance:

74

(case-for (ask my-account (a withdrawal (with amount x)))
(complaint (an overdraft) do ...)
(is (a withdrawal-receipt
(with new-balance (=b such-that (< b 600)))) do ...)
(otherwise :
(is (a withdrawal-receipt (with balance =b)) do ...)))

Act?2 provides a mechanism for handling complaints from a command. This is
very similar to a case-for command with has complaint handlers, exclusively.

Rather than guarding an expression, this command guards another command.

Complaints are automatically relayed by constructs which do not explicitly
handle them. In addition, this does not even cause a degradation in performance,
because requests have both a customer and a complaint department.” Replies are
sent directly to the customer. Complaints are sent directly to the complaint
department, with no need for winding down through a customer chain. This idea

was suggested in [Lieberman 82].

Act2 may, itself generate complaints when this is appropriate and there is no
convenient alternative. For example, if no handler is capable of accepting a
communication, Act2 will complain to the communication’s complaint department

(if it is a request) or to the implementor.

4.3.5 Inherent Concurrency

The actor model, with its one-way, asynchronous, buffered model of
communication, is inherently concurrent. The Act2 language preserves this inherent

concurrency in its high-level constructs.

Whenever no ordering is necessary between the evaluations of separate
commands and expressions, the Act2 definition does not impose one. This allows

them to be evaluated concurrently, and their evaluations can proceed in parallel if

15

sufficient parallelism is available. The design of Act2 attempts to minimize
dependencies among expressions and commands. Inherent concurrency is an
important aspect of our actor language which distinguishes it from other modern
programming languages, in which concurrency must be artificially generated, or

requires special attention from the programmer.

4.3.5.1 Local versus Global State Change

As discussed above, change in Act2 is a local phenomenon. An actor can
change its own behavior, but cannot directly manipulate any form of “global state”.
This permits more concurrency by reducing the necessary synchronization. Because
change is local, the only synchronization necessary is for serializers to process one
communication at a time. Allowing change to a global state would require
additional synchronization among actors and transactions, to preserve the integrity

of the global state.

4.3.5.2 Local Binding versus Assignment

Act2 has no assignment command. In addition, bindings established in an
expression or command, such as create, let, and case-for, are not available outside
that expression or command. Because of this, there are no timing constraints among
distinct expressions and commands. These expressions and commands can be
evaluated concurrently. An assignment command would introduce timing

constraints among commands, requiring them to be evaluated sequentially.

4.3.5.3 Concurrent Commands and .Shared Resources

When commands share a resource, such as a serializer, programmers may wish

to rely on additional synchronization. For example, one command might cause

76

some actor 1o change its state, and the other might ask the same actor for some
information. The progrmmﬁer may wish the request for information to reach the
actor after any communications sent to it by the first command have been processed.
A programmer can impose an ordering upon commands using the sequential
command. This should only be used when the programmer explicitly relies on such

timing dependencies.

4.3.5.4 Concurrent Evaluation and Explicit Sequencing

Act? is specified as an inherently concurrent language. For example,
commands in a command body are evaluated concurrently. Sub-expressions in a
command or expression are evaluated concurrently. In a set of pattern-matchers,
such as in let, case-for, or create expressions, all evaluations of patterns and

expressions and subsequent pattern-matching itself are done concurrently.

Create, case-for, one-of, and if also contain the otherwise clause as a
convenient way to serialize sets of possibilities. [Theriault 82] had a similar
mechanism, but used it as a mechanism for providing a default body. Act2
generalizes this into a full-fledged sequencing mechanism, from which providing a

default is a trivial case. For example, it is easy both to provide a default, as in
(case-for x
(is (a stack (with top =t)) do ...)

(othsrwise (is something do ...)))

and to prioritize the sets of possibilities, as in

(case-for x
(is (a whole-number) do ...)
(otherwise (1s (an integer) do ...)
(otherwise (is (a real) do ...))))

11

4.3.5.5 Resource Management

With the amount of concurrent activity produced by Act2, resource
management is important. Act2 uses sponsors for resource management. Every
communication contains a sponsor, which is charged for the processing of the
communication. This requires cooperation from the underlying apiary architecture,

which requires payment for processing each event.

Below is an example of Act2 code which explicitly deals with resource
management. It is simply 4 reworking of the example in {section 3.2, page 46}. In
this code, it is the sponsor from the evaluation request which pays for the evaluation
of the contained expression, rather than the sponsor from the first communication

sent to it.

(define (new DELAY-EXPRESSION (with expression =exp))
(create-unserialized
(is-communication
(a request
(with message (=eval which-is (an expression-eval)))
(with sponsor =s))
do
(reply (create
(is-communication =c do
(1et ((=value match
(using-sponsor s do
(reply (ask exp eval))))) do
(send-to value c)
(become value))))))))

4.4 Act2 Integrates Description and Action

4.4.1 Coexistence of Mechanisms for Description and Action

One important consideration in the design of Act2 is the unification of
mechanisms for description with the imperative mechanisms of the actor model.

Act2 integrates the fundamentals of Actl and Omega, which are very different in

78

character. Actl deals in an operational world of message-passing, actor creation,
and behavior change. Omega deals with knowledge acquisition in a lattice of
descriptions, and deduction based on installed relationships among them. It models
change by creating more descriptions, but is incapable of actually implementing
actors which can change. A language suitable for open systems, or concurrent

applications in general, must combine both sets of ideas.

Act2 is built upon the actor model of computation. It has constructs for
transmission of communications, for making simple decisions, for creating actors,
and for self-replacement. Act2 also has actors which behave like atomic descriptions
and instance descriptions, which it uses for their information containment
properties, for their descriptive properties, and for a direct form of pattern-
matching. Act2’s abstraction mechanism, the define expression, establishes a
relationship between the two worlds by associating a description with every actor,

‘which corresponds to the actor’s "type"”. Act2’s pattern matching acknowledges this

relationship, serving as a form of "type-checking" when appropriate.

For example, a bank-account actor created with the expression
(new bank-account (with balance 500)) might be described by the instance
description (a bank-account) or by the instance description
(a bank-account (with balance 600)) if the implementbr of the abstraction
wished to allow the balance information to be revealed. The actor could be matched
by a pattern of the form (a bank-account) in either case, and by a pattern of the
form (a bank-account (with balance =x)) in the second case, with the

identifier x being bound to the balance, 500.

79

4.4.1.1 Abstract Syntax for Description and Action

One of the problems in integrating the ideas from Actl and Omega is a set of
apparent name conflicts which arise in the constructs we desire Act2 to have. Note
the relationship between the instance description (a bank-account ...) and the
abstraction instantiation (new bank-account ...). In the instance description,
bank-account is some concept or atomic description. In the instantiation,
bank-account refers to the implementation of bank-accounts, as previously declared

in a define expression.

In addition, flexibility demands that we be able to have arbitrary expressions
as the concepts of instance descriptions, evaluating to atomic or instance
descriptions. It also demands that we have arbitrary expressions denoting the
implementation of an instantiation. Because arbitrary expressions undoubtably
include locally-bound symbols, bank-account is a symbol in both cases, and must

be evaluated in the prevailing evaluation environment at that time.

The resolution of such conflicts is done in Act2 by interpreting bank-account
as a symbol, and broadening our interpretation of atomic descriptions. The
functionality of atomic descriptiéns is extended such that implementations are
installed in them. This confirms the feeling that there is a relationship between the

concept of bank-account and the implementation of bank accounts.

It does not prevent the coexistence of implementations of different bank
accounts, which can be installed in different atomic descriptions. That is, I can have
my own concept of bank-account, and a corresponding implementation, whereas
you too can have your own concept of bank-account as well as your own

implementation. Act2 will deal correctly with both of them.

Act2 could have introduced operators to denote atomic descriptions and

30

implementations. For example, abank-account and tbank-account might produce
atomic descriptions and implementations by performing some calculation, perhaps
looking them up in different environments. This would have reduced readability,
and would have been a less general solution. As it stands now, users could extend

the syntax of Act2 if such expressions were desirable.

4.4.2 The World of Action

Act2 contains constructs for transmitting communications. It has constructs
for creating new actors with specified behaviors and acquaintances. The very nature
of an actor is that of action. It receives a communication, then causes effects to
happen. These effects might be communication transmissions or actor creations.
Primitive actors provide a message-passing, actor-based interface to the underlying
hardware. For example, some primitive actors might serve as an interface to a
keyboard, a screen, or a robot arm. In response to communications, they might read

characters, display information, or construct a ham sandwich.

4.4.2.1 Change

One important effect an actor can have is to cause itself to be replaced by
another actor. This is such a significant concept that Act2 makes a fundamental
distinction between serializers and unserialized actors. Serializers are Act2’s method
of dealing with change. They are treated very differently in most aspects of their
existence, such as pattern-matching, equality tests, copying, migration, and

concurrency.

4.4.2.2 Local Changes versus Global State Changes

As we have mentioned earlier, all change is local to an actor. This is done in

81

preference to using a state transition modcl, in which change happens to some
global state. A serializer can replace itself with another actor, in response to some
communication. We have seen the benefits of this for concurrency and software

engineering.

4.4.2.3 Maintaining Computation Histories

Act2 provides a biography mechanism for recording the computation history
of actors. This allows actors to keep track of the communications they receive and
what they do in response, in a manner such that the effects of receiving the
communication can be undone. This feature is an adaptation of the work reported
in [Jefferson, Sowizral 82]. A serializer which has maintained its history can be

rolled back to some previous state, or can report on previous states.

4.4.3 Descriptions as Information Containers

Part of the integration of Omega descriptions in Act2 is the use of instance
descriptions as information containers. From this perspective, instance descriptions
can be thought of as aggregate data types, or type constructors. They, like
sequences, allow a programmer to express a collection of actors, without

instantiating any special abstraction.

An instance description can be thought of as a flexible record structure. The
concept serves as a tag indicating type. The attributes correspond to record fields,

where attribute relations are field names, and where attribute fillers are field values.

In this capacity, instance descriptions are very convenient for packaging actors
and representing information. They are especially useful as messages in

communications. The use of instance descriptions for this purpose is especially

82

beneficial, in view of Act2's ubiquitous pattern matching. Even more important is
the potential it allows. When inheritance and deductive mechanisms are embedded
in Act2, it may be possible to have different perspectives on incoming information,

or to coerce the incoming information into a usable form.
4.4.4 Description of Actors: Data-typing and Specification

4.4.4.1 Description of Actors

Part of the integration of Omega descriptions is the use of those descriptions
to describe actors, much like types in common programming languages. This makes
pattern-matching work nicely for both instance-descriptions and arbitrary actors. It
also makes the idea of type potentially much more powerful and general than
simply that of a tag, as it is in many existing languages. It opens an avenue for
making assertions and deductions about the properties of a type and about the
relationships among types, when inheritance and deduction mechanisms are added
to Act2.

4.4.4.2 Behavioral Types

An actor’s type is not simply a tag, but a description of the actor. Although'
Act? itself does not implement assertion and deduction mechanisms, the perspective
it takes on types is very important in the philosophy of the language, and provides
tremendous potential for a very pbwerful and flexible type system. The notion of
type in Act2 is of describing the behavior of an actor. An actor’s type provides |
reliable information about the semantic properties of actors. With this philosophy
and perspective, actual type mechanisms can range from simple descriptions and

exact match, which looks much like a tag-oriented scheme, to behavioral

33

specifications ranging from partial to total descriptions of an actor’s behavior. The
full flexibility and generality of the description system can be brought to bear in the
description of abstractions, including incremental and partial description and
inheritance of properties from other descriptions. The type system can be arbitrarily
finely-grained, and have a very flexible notion of type equality and type
conformance. A form of pattern-matching can be used which treats the pattern
match as a goal, then uses mechanisms for deduction in the description system for

establishing or refuting that goal.

4.4.4.3 Controlling Visibility

By default, the description associated with an actor is simply a description with
no attributes, such as (a bank-account) rather than a more explicit one such as
(a bank-account (with balance 600)) in order to preserve the opacity of the
actor. Act2 provides alternative expressions for creating actors, so a programmer
can allow the extra information to be revealed, to allow the extra information to be
extracted in a pattern-match. Deductions can potentially be made which involve
these attributes and fillers. One feature of this for serialized actors is that it allows

convenient extraction of a consistent state.

4.4.5 The Many Uses of Pattern Matching

Pattern-matching plays a fundamental and pervasive role in Act2. It is used
for extracting information from instance descriptions, for authentication, for type-
checking and extraction of information from actors, for determii]ing equality of
actors, and for binding variables to actors. It is used for acceptance of
communications, for dispatch on expressions, for exception-handling, and for
decision-making. It is also used in the instantiation of abstractions, in the evaluation

of new expressions.

84

The pattern-matching implemented by Act2 involves no déduction
mechanisms, and is efficient when compared to deduction. Act2 makes it possible
to embed deduction mechanisms in the language and implement an extended form
of pattern-matching which makes use of them. This means that the full power of a
description system like Omega can potentially be employed in the pattern-matching

process.

4.4.5.1 Pattern-Directed Recognition and Extraction

In Act2, the standard mechanism for recognizing actors, which may or may
not be instance descriptions, is to use pattern matching. Pattern matching works
both on descriptions, using simple specialization axioms, and on arbitrary actors,
using their associated descriptions. Dispatching on the characteristics of an actor
can be done using pattern-matching. Recognizing communications can be done by

pattern-matching.

4.4.5.2 Security

Security is an important part of modern programming languages. Type-
checking allows detection of type errors, a very common nuisance in programming.
Act2’s abstraction mechanism allows the implementor to restrict what actual
parameters are bound to what formals. Act2 allows the types of objects to be
declared and performs type-checking wherever a programmer puts restrictions.

Restrictions can be put anywhere a pattern or variable-binding can appear.

Act2 allows the programmer to refrain from making restrictions: to have
objects described as something, and to make no restrictions or mild restrictions on
bindings. It also allows a programmer to make very comprchensive restrictions on

matching. They not only serve to allow more complete type-checking, but also

85

provide very good documentation for programmers reading the code. Presence of

type information increases the potential for optimization.

4.4.5.3 Polymorphism

Abstractions are typically defined in terms of sub-abstractions. Polymorphism
is that property of being able to use as a sub-abstraction any of a set of abstractions
conforming to some expected behavior, rather than a single, pre-specified
abstraction. This property.is often thought of in terms of overloading, generics, and
parameterized abstractions. Polymorphism is provided by Act2 by its use of
message-passing semantics as its fundamental means of communication. This is
similar to the way Smalltalk and Simula provide polymorphism. As long as an actor
responds to all the right messages in all the right ways, it can be used. For example,
an operation can be declared, which operates on some set of arguments. The
operation can be performed successfully on any actors, as long as they behave in the

correct manner.

4.4.5.4 Authentication

Act2 addresses the issue of authentication with atomic descriptions. Each
creation of an atomic description, (new concept (with name ...)), creates a new:
atomic description which will not match any other atomic description. Everyone
shares enough atomic descriptions so that they can communicate with each other,

enough to mail atomic descriptions to each other.

Suppose you give someone access to a bank account you created — one
implemented in {section 2.3, page 34}. Unless you give him access to the atomic
descriptions used as the concepts in the communication-handler patterns (such as

balance, deposit, and withdrawal), the bank account will not accept any

86

communication he sends to it. Remember that his atomic description with name
withdrawal is not the same as the one with which you defined your bank-account
abstraction. You can send him your balance atomic description, which he can bind
to some identifier his-balance, and can then obtain your account’s balance by
sending it a request with message (a his-balance). He will still, however, be
unable to make withdrawals, because he does not have your withdrawal atomic
description. Because of static séopin g, you can define operations with access to
certain bank account operations which a user of the operation does not have access

to.

4.5 Act2 and Open Systems

4.5.1 Suitability for Open Systems

Prelude must have the full generality and flexibility of a language suitable for
open systems [Hewitt, de Jong 82]. Act2, as a substrate for Prelude, must also be
suitable for this style of programming, by realizing a suitable model of computation,
providing sufficient fundamental mechanism, and providing a potential for
embedding appropriate higher-level mechanisms and policies. A requirement for
languages suitable for open systems is the ability for independent programmers to
communicate with each other, selectively share independently-produced software
and data, and merge subsystems together as integrated wholes. Open systems are
characterized by the coexistence of independently-conceived and evolving software
applications which need to cooperate in flexible but controlled ‘ways. These
applications might be autonomously owned by mutually suspicious organizations
which never-the-less wish to share information and information processing abilities

to some extent.

87

We believe Act?2 is suitable for open systems. It provides a solid foundation
upon which more sophisticated languages and applications can be implemented. It
provides mechanisms for description as well as for causing effects and change. It
also provides for a natural coupling of descriptions and actor systems. Its use of
descriptions as a "type" mechanism means its fundamental perspective on types is
quite flexible and potentially very powerful. With the addition of inheritance and
deduction mechanisms, such a "type" can be extended to inqlude extra semantic
properties of the abstractions and relationships among abstractions. In the limit, a
"type" might include a full specification of the abstraction. Similarly, this allows
very flexible forms of identifier declaration, type checking, abstraction instantiation,
and parameter passing. These features are extremely useful for programming-in--
the-large. The potential flexibility of this type system would allow for the coupling
of independently conceived and independently-named application systems, even in

the presence of name conflicts.

Act? supports controlled sharing and cooperation among independent
systems. Part of the bottoming out of instance descriptions is a set of concepts
which can be understood by all users of Act2. This enables independent
programmers to communicate. Each programmer operates in his own environment,
which is an actor itself. All environments are distinct. The opacity of actors insures

that they cannot be compromised directly, without sending communications.

Authentication is a crucial part of controlled sharing among separate
applications. Act2’s atomic descriptions provide this important functionality. All
atomic descriptions created by defconcept or (new concept ...) are distinct and
do not match each other. This turns instance descriptions into key-based access
mechanisms, in addition to the functionality they already have. Built into Act2’s
recognition facilities are mechanisms suitable for authentication of incoming

communications. Because Act2 expressions are statically scoped, the environment

38

used to resolve names used in the concepts of patterns in an actor’s implementation
will be the environment in which the actor was defined. The actor will not be

compromised simply by using it in another environment.

One of the most important requirements for languages suitable for open
systems, and for Act2 in particular, is sufficient generality to express desired
concurrent computations. By virtue of its actor foundation, Act?2 inherits the
properties shown about the actor model [Clinger 81b]. We have also demonstrated
some aspects of its generality with initial experiments. For example, with our
applicative language experiment, we showed that Act2 is more general than
applicative languages for concurrent systems. We also implemented a shared
checking account in Act2, which was suitable for concurrent systems could be

shared among several owners.

This chapter has discussed a number of issues in the design of Act2. A few
more issues are discussed in an appendix {section F, page 205}. All of these are
germane to languages for open systems. The choices made in Act2 for dealing with
these issues were all made with the goals of suitability for open concurrent systems,
for expressibility of high-level applications, and for support of software engineering

principles.

4.5.2 Synergy

It is interesting to note that many of the design decisions for Act2 had a
bearing on several issues. Also, different design decisions had pleasant interactions
which went beyond simple additivity. As a simple example, lexical scoping is not
only more natural for programmers, but combines with our notion of uniquencss of
atomic descriptions and pattern-matching to provide authentication. Our

relationship between descriptions and arbitrary actors provides a very flexible type

89

system. : It also makes pattern-maiching. s

dispatching on the values of expressions::- -

; IR0 ’:m ZagRUTIN 3

3

'gﬁ%’ fL fz’f&éxﬂ* i s1ow

mgmgy»

Chapter Kive

Implementation Issues and Mechanisms

5.1 Bottoming Out

The previous chapter described issues which were explored in the design of
Act2, assuming the actor model of computation as a foundation. The model is
conceptually elegant and sound, and is inherently machine-independent. An actor
language implementation, however, must bridge the gap between this conceptual
model and a concrete computer architecture rooted in physical hardware. The actor
model of computation, by its very nature, requires careful implementation for a
practical realization. There are many potential circularities which must be
‘unraveled so useful computation can take place. The following paragraphs will
point out some of the circularities which might exist in a naive implementation

attempt.

Actors interact by transmitting communications to each other. The
communications themselves, as well as the messages they contain within them, are
also actors. Our conceptual model dictates that actors cannot directly manipulate or
read each others’ contents. Potentiaily, an actor receiving a communication must
send it (the incoming communication) further communications to find out what’s in
it, and the communication itself faces the same problem when it receives these
communications. A good implementation must break this ci rcularity in a general

and flexible way.

In the conceptual, machine-independent actor model, every actor has a script,

which is also an actor. Because it is an actor, the script itself must also have a script.

91

[t is obvious that there must exist primitive actors at some level, but a proper
solution must be sufficiently flexible to let programmers reference and manipulate

scripts or define their own script actors.

Instance descriptions are Act2's primary information containment and
recognition facility. To construct an instance description, we need an appropriate
atomic description. To get the atomic description, we need to ask an environment
for it, since all we have is its name. To ask the environment for it, we must construct

an instance description for a message.

For a practical implementation, we represent numbers, symbols, and lists as
themselves — as lisp objects. Such primitive actors must be able to behave like
actors do, receiving requests and transmitting replies or complaints in response.

These actors must be made to behave like Act2 numbers, symbols, and lists.

5.1.1 Rock-Bottom Actors

Much of the bottoming-out process must be done in intimate cooperation with
the underlying computer architecture. The Apiary recognizes certain rock-bottom
actors, such as numbers, lists, and symbols, whose concrete representation is
inherited directly from the underlying implementation language, Lisp. These
concrete representations do not contain scripts for processing incoming
communications. When a worker is instructed to transmit a communication to such
a primitive actor, the worker is responsible for handling the communication in some
appropriate way. The worker itself can intercept and directly handle a few special
requests intrinsically associated with these actors. The rest of the communications
must be handled by Act2.

Part of the process of installing Act2 is the installation of actors to serve as

92

representatives for each kind of rock-bottom actor. When a worker cannot directly
handle a communication for a rock-bottom actor, it asks a representative to handle
the communication on behalf of the rock-bottom actor. The representative is

responsible for realizing the expected behavior.

5.1.2 Scripts

The Apiary architecture supports the creation of actors with scripts composed
of Lisp functions. These primitive scripts correspond to microcoded abstractions in
many other programming languages. Many of the actors used in the
implementation of Act2 have scripts which were written in Scripter, which compiles

into Lisp.

Act? deals with scripts in terms of abstract syntax trees — hierarchies of actors
which represent Act2 code. Actors created by instantiation of uncompiled Act2
definitions have scripts composed of abstract syntax trees. These abstract syntax
scripts must be integrated into the Apiary implementation, so these scripts can run
on the Apiary. This is done with a special kind of primitive script with
acquaintances including the absfract syntax script, the definition environment and a
description of the actor. These actor-based scripts coexist with and are implemented

using the primitive scripts.

5.1.3 Communications

Communications are primitive actors which are recognized and manipulated
directly by the Apiary architecture. They serve simply as a package for transmission
of information between actors, and are recognized as requests, replies or complaints.
Communications contain special acquaintances, such as a message, a Sponsor or a

customer.

93

5.1.4 Instance and Atomic Descriptions

When an actor receives a communication, it typically attempts to recognize the
communication’s message by pattern-matching. The patterns used are quite often
instance descriptions. An instance description serving as a pattern needs to ask the
message some questions in order to discover whether it should match. Considering
the common case where the message is an instance description, we must examine
what might happen when an instance description receives a communication
containing another instance description as a message. Does it naively exhibit the
above behavior? Somewhere, we must break the circularity in which an instance
description sends an instance description another instance description in order to
find out what'’s in it. Much cooperation is needed from the Apiary to bottom out
instance descriptions. In that respect, they resemble primitive actors like numbers

and symbols.

Part of the cooperation we require from the Apiary is a primitive operation
which determines, without causing any events, whether an actor’s script is a special
instance description script. If the message in an incoming communication is such a
special instance description, its parts can be extracted directly by special Lisp
("micro-") code without causing more events. This special Lisp code can extract the
instance description’s concept as well as its attributes and their parts, using its
knowledge of the the format in which instance descriptions are represénted.
Instance descriptions are represented as primitive, scriptless data structures easily

recognized by Lisp codel.

1This also mcans that these instance descriptions are very much like the primitive, rock-bottom
actors. The Apiary must recognize primitive instance descriptions and make sure any
communications transmitted to them are handled. Act2 must install representatives which handle
communications dirccted to themn on behalf of primitive instance descriptions.

94

Once the parts of the instance description have been extracted, the only
barrier to understanding its meaning is the concept. Using atomic-description
concepts exclusively would require causing at least one event to find out what it
meant. In order to break the circularity we've just described, it is crucial that
somewhere along the line some actor must be able to accept and recognize an
incoming communication without causing any further events. Therefore, for some
low-level instance descriptions, a symbol is used as the concept instead of an atomic
description. All relevant information can be extracted from these easily-recognized
"primitive" instance descriptions without causing any events. In an Act2
implementation, we write Lisp code for accepting communications. If it can extract
all necessary information directly, it does so. If it cannot — because the concept of
the message is an atomic description or because the message is not a directly
accessible instance description — it actually resorts to a message-passing protocol

for obtaining the necessary information.

Given that we have instance descriptions with concepts that can be either
symbols or atomic descriptions, and that we want user-written code to be able to
send messages to any actor, we nged some uniform way to denote both kinds of
instance descriptions. Moreover, we do not want to require users to distinguish
between them. Once again, we have increased the functionality of atomic
descriptions in order to solve yet another fundamental problem. This time, we add a
piece of ("concept-creation”) information which tells whether to create instance
descriptions with a symbol or an atomic description for a concept. When an
expression denoting an instance description is asked to evaluate itself and the sub-
expression denoting the concept evaluates to an atomic description, it asks the
atomic description for an appropriate concept. Based on its concept-creation
information, the atomic descriptibn replies either with itself or with the symbol

which is its name. By default, defconcept and (new concept ...) create atomic

95

descriptions which indicate that the atomic description should be used for concepts.
Another expression, (new primitive-concept ...), creates one which uses the

name, a symbol, for concepts.

5.2 Extensibility from a Listen-Loop

The mechanism for extension of Act2 is the Act? listener itself. This loop is
implemented in an actor-based way, which naturally provides much flexibility.
When the loop is started, an environment becomes associated with it. This is the
environment which the listener uses to obtain keyword environments for parsing
and to for resolving names when evaluating expressions. The listener first reads in a
surface syntax representation — list structure, symbols, and numbers — which
denote an Act2 expression. It then asks the surface syntax actor to parse itself into
an abstract syntax actor representing the expression in a meaningful way. When this
has been successfully completed, the listener asks the abstract syntax actor to
evaluate itself as an expression, using the prevailing environment for resolving
names to the intended actors. When the abstract syntax actor has replied or
complained, the listener asks the response to print itself, then begins the next

iteration.

The actor-based parsing technique is responsible for Act2’s extensibility.
When the listener asks a surface syntax actor to parse itself, it provides two
environments to aid with the parsing. Symbols and numbers can ignore these
environments, because they typically parse directly into themselves. Lists, on the | _
other hand, represent more interesting expressions and commands. In order to
increasc the flexibility of parsing and to distribute the knowledge about different
expressions and commands, lists solicit the help of more specialized parsers. The

two parsing environments help realize this behavior by mapping symbols used as

96

keywords identifying a construct to an actor which can parse appropriate list
structure into an abstract syntax actor representing the construct. One of these
environments establishes expression keywords, and the other establishes keywords
for commands. Syntactic extension of Act2 can be done simply by extending these
environments appropriately. With this technique, lists can parse themselves simply
by scanning themselves from left to right, looking for a keyword, then can ask the

associated parser to take care of the rest of the parsing.

5.3 Providing both Positional and Keyword-Based Instantiation

The destrability of keyword-based and of positional notation for the
instantiation of abstractions has already been discussed {section 4.2.3.4, page 61}.
Act2 prefers the use of keyword-based notation, using the new expression. It also
‘makes some provision for the use of positional notation, but discourages its use. For
example, when (factorial 3) attempts to parse itself as an expression, it discovers
that there are no expression keywords within it. As a result, it parses into an abstract
syntax actor representing
(ask factorial (an instantiate (with arguments [3]))). Notice that this
would handle multiple arguments nicely. The factorial atomic description will
accept the instantiate request, then will proceed to match the arguments, in order,
with the attribute fillers in the new expression template from the definition of
factorial. From there, the instantiation will proceed as if the instantiation had been
written as (new factorial (with number 3)), rather than as (factorial 3),
assuming the factorial had been defined as in '

(define (new factorial (with number ...)) ...). Thereisa risk in using
positional notation in this way, however. If any subexpression should happen to
look like an expression keyword, the expression would be sent to some undesired

parser. For example, taking the factorial of the actor bound to the identifier a

97

would be written (factorial a), and the list structure would be sent to a parser for
instance descriptionsz. Of course, it would be possible to extend the language with a
new kind of expression with prefix notation which would have the right effect. For
example, an expression of the form (cal1 factorial 3) or (do factorial 3)
could parse into abstract syntax for

(ask factorial (an instantiate (with arguments [3]))). Theleading

keyword would eliminate the possibility of confusion.

5.4 Making Composite Constructs Work

One-of, case-for, let, if, and using-sponsor are examples of Act2 constructs
which can be used both as commands and as expressions. They provide much
flexibility and convenience in the language. We have already seen the if construct
used as an expression in an implementation of a factorial actor {section 2.1, page
31}, and as a command in an impleinentation of an account actor {section 2.3, page
34}. If necessary, please refer to {section C.9, page 148} for a description of these

constructs.

The commands which are allowed in the bodies of these constructs, and the
interpretation of some of those commands, depend upon the context in which the
constructs appear. Our implementation must resolve these problems and must
enforce additional restrictions required by each context. For example, we never
want to evaluate more than one become command, because that is semantically
incorrect (not to mention confusing). If we encounter no become command in a

serializer's communication handler, we must be aware of when processing has

2F ortunatcly, Act2 would have warncd the programmer about a previous attempt to bind a,
because it is used as an expression keyword.

98

finishied, so we can prepare the serializer for accepting another communication. No
become command should ever appear in an expression body context or in a
communication handler for an unserialized actor. For constructs used as
expressions, we want to evaluate exactly one reply or complain command, which
represents the response from the evaluation of the expression. In the context of a
communication handler, reply and complain commands transmit communications to
the customer or complaint department from an incoming request. All of these
problems must be taken care of in a suitable implementation of these constructs,

even in the face of syntactic and semantic extensions by users.

3isto

The way we deal with these problems in our Act2 implementation
introduce a notion of effects, which represent the evaluation of commands.
Whenever a command receives an evaluation message, it evaluates itself to the best
of its ability, then replies with an effect representing what has been done and what
remains to be done. An effect can be a simple instance description containing some
information by convention, or can be a sequence of effects. For example,
commands such as reply-to, which have enough information to completely evaluate
themselves, reply with (a completed-command-effect). Because it does not
contain target information, a reply command such as (reply message) evaluates
message, wraps it in a reply communication, then replies to the evaluation request
with (a send-effect (with communication ...)). A become command such as |
(become exp) evaluates exp, then replies to the evaluation request with
(a become-effect (with replacement ...)). A composite command replies to
an evaluation request with the sequence of effects resulting from the body of '

commands it evaluates.

3 Details can be found in the meta-circular description in {section D, page 163}.

99

The cther portion of this solution is the processing of effects. There are two
contexts in which commands may be evaluated — in expression bodies and in
communication handler bodies. When composite constriicts are evaluated as
expressions, they select a body to evaluate, ask the commands to evaluate
themselves, and collect the resulting effects in a sequence. It then recursively
processes this effect, ignoring completed-command-cffects, complaining if a
become-effect is seen or unless éxactly one send-effect is seen. If a single send-
effect is left at the end of this process, the communication it contains is sent to the
customer or complaint-department of the evaluation request, as appropriate. When
an actor accepts a communication, the body of the chosen communication handler is
evaluated, and the effects are collected in a sequence. It then recursively processes
this effect, ignoring completed-command-effects, transmitting the communications
in send-effects to the customer or complaint department if the incoming
‘communication is a request (or complaining if it isn’t), and complaining if more
than one become-effect is seen. Afterward, if a become-effect has been

encountered, the (serialized) actor can change its state.

5.5 Serialized and Unserialized Actors

Serialized and unserialized actors are actually represented and manipulated
differently by the Apiary architecture. For example, no synchronization is necessary
for unserialized actors, so they can process different communications concurrently,
and can be copied indiscriminately. Different copies of an unserialized actor can
exist on different workers, and are recognized as "the same actor,” for purposes of
matching and equality tests. Serialized actors, on the other hand, need
synchronization. They can only process one communication at a time. Because they

can change, serializers cannot be copied arbitrarily.

100

When a communication is sent to a serializer. it is enqueued on the serialized
actor’s incoming communication queue for processing. If the actor is not processing
another communication, it will begin processing this one. When it has finished —
and it is necessary for it o know when it has finished — it must prepare for
processing the next communication. If it must become another actor, it forwards
any communication in its queue to that actor. Otherwise, it begins processing the
next communication in the queue. If the queue is empty, the serializer goes into a

dormant but receptive state until it receives another communication.

5.6 Missing Information

Some Act2 expressions and commands do not require a programmer to
explicitly denote all of the information needed for complete evaluation of the
construct. The missing information is instead obtained implicitly from the context
in which the evaluation occurs. For example, any construct for sending a message,
such as reply-to, complain-to, or ask, must provide a sponsor to pay for the

communication and its processing.

A new expression inside a become command need not fully specify the new
actor, if it is of the same type as the current actor. Suppose we define a shared bank

account actor with a define expression of the form,

(define (new checking-account
(with balance =b)
(with owner =0))

.)
If we have a become command like
(become (new checking-account (with balance x))) which does not mention
the owner acquaintance, Act2 will create the new checking account actor with the

same owner. What we wrote is assumed to mean

101

(become (new checking-account
(with balance x)
(with owner 0)))

The missing information is filled in from the properties of the current actor.

In both cases, the way the information is provided to the commands is similar.
An actor receives a communication, and chooses a body of commands to evaluate
{section D.10.4, page 192}. The evaluation message it sends to each of the
commands contains not only an evaluation environment, but also includes
sponsorship information and a description of the instantiation with which the actor
was created {section D.10.7, page 196}. This extra information is available to any
command which cares to look at it. Implementations of abstract syntax actors are
expected to relay this information. The way the become command transmits extra
information to the new expression is to include it in the expression-eval message it
sends to the expression it contains. Once again, abstract syntax actors for

expressions are expected to relay any extra information in eval messages.

Another form of missing information in Act2 is the provision of default
communication-handlers for standard protocols required of all actors. For example,
all user-defined actors will respo‘nd to requests with messages such as
(a match ...), whether or not the implementor explicitly provides one. A
programmer can explicitly handle any of these messages by including her own
request handler (which looks just like any other request handler) for it in the first set
of handlers in a create expression. Otherwise, Act2 will handle them immediately
after looking in the first set of handlers for one which can accept the
communication. These default handlers arc¢ built into the evaluation of create
expressions. For more details, see {section D.10.4, page 190} and {section D.10.4,
page 191}.

Yet another transfer of extra context information occurs on installation and

102

instantiation of abstractions. This is the mechanism by which "types™ are associated
with newly-created actors, even though the create expression itself has no such
information. When a define expression, such as

(define (new account (with balance =b)) exp) is cvaluated, the abstract
syntax for the new expression is asked to install the abstracted expression with the
prevailing environment {section D.4, page 168}. This asks the account atomic
description to install, among other things, the instance description

(an account (with balance =b)). When an cxpression such as

(new account (with balance 50)) is asked to evaluate itsclf, it retrieves the
installed implementation information {section D.4, page 169}. It creates an
instance-description, (an account (with balance 60)), which it matches against
the retrieved description, (an account (with balance =b)), then extends the
definition environment with binding of b to §0. Finally, it asks the abstracted
expression to evaluate itself in the extended environment, with the description

(an account (with balance 60)). When asked to evaluate itself, a create
expression will use this description information if it is present; otherwise, it will use

something as its description.

5.7 Actors and Types

When an actor is created as a result of the evaluation of a new expression, the
create expression which actually creates the actor is provided with a description of
the instantiation, such as (an account (with balance 60)). It remembers all or
part of this description as a descriptor for pattern-matching. This corresponds to
data types in some programming languages. By default, it would only use
(an account) as a descriptor, to preserve the opacity of the actors. A programmer
may also wish to make the attributes visible. Variations of the create expression —

the create-visible and create-visible-unserialized expressions — do this, using the

103

whole imstantiation description as a descriptor for the newly-created actors. ‘The

extra attribute information is then available for extraction in pattern-matching,

5.8 Making Pattern-Matching Work

Although basic pattern-matching in Act2 involves no deduction, it does cope
with both simple matching of instance descriptions and matching which corresponds
to type-checking. By "simple" matching of instance descriptions, we mcan that the
concepts match without deduction, that all attributes in the pattern are present in
the object, and that corresponding fillers match "simply"”. An instance-description
used as a pattern will match any instance description which is a simple specialization
of it, and will match any actor which it describes (any actor whose descriptor

matches).

Whenever pattern-matching occurs, there is always the possibility that part of
the matching process will involve binding symbols to actors. The pattern-matching
process involves a pattern, an object to match, and an unserialized environment layer
which is extended with symbol/actor bindings as the match proceeds. Pattern-
matching happens as follows: the pattern is sent
(a match (with object 0) (with bindings B)), whcre B is (new empty-layer).
What happens from there depends on the behavior of the pattern.

If the pattern, P, is an instance description, the effect of the match will depend
upon whether or not the object, 0, is an instance description. If it is an instance
description, we would simply want to compare them; otherwise, we wish to perform
a "type check” of 0. The pattern has no way of knowing what to do, so it has the
object do the work by sending it

(a converse-match (with pattern P) (with bindings B)). If 0isan instance

104

description, it will do a simple instance description match. Otherwise, the default
handler provided by Act2 for converse-match will simply relay the
converse-match request to the actor’s descriptor, which is an instance description

and will do a simple instance description match.

When an instance description, 0, receives a converse match with bindings B
and with pattern P, it asks the pattern for its concept, which it asks to match 0’s
concept with bindings B. Next it asks P for a sequence of attribute relations. For
each relation: if 0 has no attribute with that relation, the match fails. If it has one, it
asks p for the corresponding filler pattern, which it asks to match the filler of its own
corresponding attribute. The bindings resulting from each match are fed into the
next, until the matching is finished. If any of the sub-matches fails, the whole match
fails; otherwise, the match succeeds with the bindings established during the filler

matches.

5.9 Compilation

Act?2 views Compilation as an unobtrusive optimization technique. A user
should see no functional difference before and after compilation, even when
debugging code. Compiled code should retain enough information about the source
code from which it was generated to provide intelligible interaction with the user,
who only deals in terms of the source code. Compilation is done in terms of
abstractions. For example, an abstraction defined in a manner such as
(define (new account ...) ...)iscompiled simply by saying
(ask account (a compile)). The atomic description then asks its installed

implementation to perform the appropriate transformations.

Compilation could be done with arbitrary sophistication. Even the simplest

105

forms of compilation can provide substantial performance improvement. One
optimization is to e¢liminate the transmission of as many evaluation and match
messages as possible by inline expansion of the code from abstract syntax objects.
Another is to switch from deep binding of free names in the definition environment,
to straight indexing of acquaintances. Performing these two transformations should
provide a large return on investment by substantially reducing the amount of
message-passing that goes on. More optimizations can be added for economizing on

events, and more conventional optimization techniques can be brought into play.

3.10 The Ubiquitous Atomic Description

It is worth a brief enumeration of the functionality of atomic descriptions, to

gain a better perspective of just how useful they are in our implementation of Act2.

First of all, of course, they behave like atomic descriptions, representing some

abstract concept or individual in some user’s model of a world. Because of this, they
serve as suitable concepts for instance descriptions. Atomic descriptions are used as
part of Act2’s machinery for establishment of abstractions. Definition of new
expressions involves installing implementation information in an atomic description.
This contributes to a smooth coexistence of new expressions and instance
descriptions. Atomic descriptions contain information pertaining to the creation of
instance descriptions, contributing to the solution of the bottoming out problem for
instance descriptions. In addition, the uniqueness and opagqueness properties of
atomic descriptions combined with their use as instance description concepts
provides an authentication mechanism for controlled sharing of actors in open
systems. Compilation is done in terms of atomic descriptions. To improve the
performance of a user-defined abstraction declared as

(define (new foo ...) ...) wesimply ask the instance description, foo,

(a compile). Atomic descriptions help make clear the relationship between actors

106

pespgaint S1uh

g i

¥ 4
4

Chapter Six

Conclusion

6.1 Summary

Act2 is a highly concurrent programming language designed to exploit the
processing power available from parallel computer architectures. The language
supports advanced concepts in software engineering, providing high-level constructs
suitable for implementing artificially-intelligent applications. Act2 is based on the
Actor model of computation, consisting of virtual computational agents which
communicate by message-passing. Act2 serves as a framework in which to integrate
an actor language, a description and reasoning system, and a problem-solving and

resource management system.

We have completed a design of Act2 and have implemented a preliminary
version of an Act2 interpreter. The development process was interesting in its own
right. In the absence of Scripter, the language we eventually used for implementing
Act2, we were forced to complete the design without experimenting with an
implementation. Instead, we created and evolved a meta-circular description of
Act2 — an implementation of Act2 in itself. This served as our primary design tool,
as our informal language specification, as our design documentation, as exploratory
Act2 code, and as a medium with which to explore implementation strategies for the
language. This was followed by an implementation in Scripter of a variation of a
subset of the Act2 language, which served as a minimal-inertia test bed for ideas

before a full-scale implementation was begun.

Act2 was designed to address basic actor language issues, and to be

108

syntactically and semantically extensible. Because of this, it can serve as a substrate
for embedding more sophisticated language features — in cssence allowing language
designers to tailor their own languages, concentrating on the issues and mechanisms
they care about and taking for granted the more fundamental issues which Act2 has
already addressed. Because of these open-ended requirements, generality and
flexibility were considered the most important issues in the design and
implementation of the languagﬁ Act2 must have sufficient expressive power to
implement as broad a range of actor systems as possible, and must be sufficicntly
flexible to permit (and encourage) sophisticated and fundamental extensions as yet

unanticipated.

Act2 is based strictly on actor semantics. As a result, the language can exploit
its well-defined, formally specified foundation. One obvious advantage is the
unification of procedural, data, and control abstractions. Another is the inherent
machine-independence and concurrency of the model, as well as the tremendous
flexibility of asynchronous, unidirectional, buffered communication primitives. The
permeation of the actor model down to the fundamentals of the language itself give
it much generality. The emphasis on communications makes the language suitable

for implementing open application systems.

Act2 integrates mechanisms for description with mechanisms for causing
action and change. It uses descriptions for their information-containing ability, as
well as for describing actors. The result is a very powerful and flexible notion of
"type". and use of the pattern-matching paradigm to provide an extensive range of
functionality for the language. Pattern-matching is used for recognition of actors,
extraction of information from actors, binding identifiers to actors, accepting
communications, authentication, catching complaints, dispatching on the values of

expressions, type-checking, parameter-passing, and comparing actors.

Act2 decouples syntactic issues from semantic issucs. This helps isolate the
related sets of issuces, so they can be addressed separately. Our approach
immediately provides several advantages. Extension of the language is natural and
easy, consisting simply of extending an appropriate environment with a binding of a
new keyword symbol to a parser for the expression. It is possible to have alternative
syntaxes for the language, and to have them coexist. It is more convenient to
develop presentation and editing tools which work on abstract syntax, providing
different perspectives on and different concrete manifestations of the abstract

syntax.

Act2 supports modern software engineering principles. An intcrpreted,
interactively oriented language, it encourages a conversational style of
programming. English-like, but structured, syntax increases readability. A single
abstraction mechanism (the defline expression) unifies the ideas of procedural, data,
and control abstraction. The mechanism for instantiation of abstractions (the new
expression) labels each parameter. Act2 allows programmers to declare and check
the types of actors denoted by identifiers or expressions. A very flexible notion of

"type" ranges from no type at all to a full specification.

6.2 Design Philosophy

There was a definite perspective from which we approached issues, problems,
and proposed solutions during the design of Act2. There was always a deep concern
for generality and flexibility. There was a concern for programmability and

economy of mechanism. This raised such questions as:

110

Can this feature allow more to be done?

Can parts of these mechanisms be replaced by user-defined actors?
Can these mechanisms be combined easily to provide new functionality?
Can this functionality be achicved with existing mechanisms?

Can this be donc more easily and naturally?

What new mechanisms need introduction?

How do they interact with other mechanisms?

Do they address other issues?

Can we now remove or hone down some other mechanism?

Is this construct natural to use?

Does it do enough?

It was often necessary to postpone major decisions until others had been
made. Similarly, it was sometimes necessary to reconsider previously made
decisions in light of new ones. Often what initially seemed like a sticky problem,
when left alone for a while, would eventually be at least partially solved by solutions
to other problems. In fact, the synergy of concepts and mechanisms in the final
product is a testimonial to the power and applicability of the underlying ideas,

which were previously developed by the Message Passing Semantics group.

6.3 Future Work

There are still many problems which need to be resolved in the design and
implementation of Act2. We'll pick an obvious example — attribute relations are
currently used directly, without evaluation. It is clear that at least some evaluation

will be necessary in the future, to allow attribute relations such as:

(with (owner of possession) fred)

(with (new ...) =x)

(with v =x) ;; where "v" is an identifier.

One solution is to use identifiers bound to atomic descriptions for relation names, as
we did for instance description concepts. Unfortunately, this has its own drawbacks.

It requires more concepts to be defined. It restricts the programmer’s choice of

111

identificr names, because name conflicts would occur if local variables had the same

names as attribute relation names.

Biographics have only been partially implemented. Also, work needs to be
done on deciding what kinds of history-oriented services should be provided by
default for actors. We need to implement compilation. Some preliminary work has
been done on this, but much more needs to be done about compilation and
optimization before large scale implementations can be written and run in Act2.
Work is needed on a programming environment and user interface to Act2. We are
in need of source-level debugging tools for Act2, which are capable of dealing with
concurrent activity spanning across workers. Interested readers are encouraged to

approach the Message Passing Semantics group with suggestions.

112

acquaintances

Actl

Act2

actor

apiary

Appendix A

Glossary

The set of actors accessible by an actor. See {section 1.1.1, page
16}.

A computer language for expressing basic actor-based
computations, implemented by Henry Lieberman. See {section
1.3, page 19}.

An extensible actor language which integrates basic mechanisms
from Actl, Omega, and Ether. The Act2 programming language
and interpreter are the main topics in this document. See
{section 1.7, page 29}.

A virtual computational agent, which is machine-independent
and communicates using message passing semantics. See
{section 1.1.1, page 15}. .

A computer architecture consisting of some numbecr of workers
(processors) interconnected by high-bandwidth links. Itis
responsible for storage management and communication
transmission. See {section 1.6, page 26}.

atomic description A concrete actor which represents an abstract concept or

attribute

individual, for purposes of knowledge representation as in
Omega. For example, an atomic description with name
automob 11e can represent the abstract concept of automobile. 1t
can be used as a concept in instance descriptions such as

(an automobile (with color red)). See {scction 1.4, page
21}

A part of an instance description, which specializes the
description. For example, (with color red) is an attribute in
the instance description, (an automobile (with color red)).
See {section 1.4, page 22}.

113

attribute kind

attribute relation

attribute filler

behavior

binder

biography

communication

complaint

Part of un attribute which indicates the significance of the
attribute to the instance description. There are different kinds of
attributes, and different axioms can be applied to them. For
example, with is an attribute kind in (with color red).

Part of an attribute which indicates the relationship of the
attribute filler to the instance description. For example, color is
an attribute relation in (with color red).

Part of an attribute which denotes a description or actor which is
related in some manner to actors described by the instance
description. For cxample, red is an attribute filler in

(with color red).

A characterization of an actor, denoting what communications it
can accept and how it will process each of them. See {section
1.1.1, page 16}.

An Act2 expression of the form (bind symbol), which is used in
pattern-matching to bind a symbol to the corresponding
component of the object being matched.

A record of the history of an actor. This includes the
communications the actor accepted, and the effects it caused in
processing each of them.

A unit of information flow between actors. A communication is
an actor containing mformation for another actor. It is
transmitted from one actor to another as part of a computation.
See {section 1.1.1, page 16}.

A type of communication used by convention in an actor
language to indicate that the processing of a request has not been
successfully completed, and why. See {section 1.1.2, page 17}. .

complaint department

An actor included in a request communication, which will accept
complaints generated during the processing of the request, and
react appropriately, continuing the computation of which the
request was a part. See {section 1.1.2, page 17}.

114

concept

customer

description

dissemination

Ether

event

generalization

goal

In reference o instance descriptions, the abstract idea or concept
of which actors described by the instance description are
specializations. For example, automobi1e is the concept of the
instance description, (an automobile (with color red)). See
{section 1.4, page 21}.

An actor included in a request communication, which will accept
replies from the processing of the request, and will continue the
computation of which the request was a part. See {section 1.1.2,
page 17}.

A representation of some abstract concept, individual, or
collection of individuals with specified properties. See {section
1.4, page 21}, and the definitions of aromic description and
instance description.

The transmission of goals and hypotheses to interested sprites.
See {section 1.5, page 23}.

A reasoning system for concurrent systems, implemented by
William Kornfeld. The reasoning process is modeled after the
problem-solving activities typical of scientific communities. See
{section 1.5, page 23}.

The acceptance of a communication by an actor for processing.
See {section 1.1.2, page 18}.

In a description system such as Omega, a generalization of a
description is another description which describes at least those
individuals described by the first. For example, the statement
that ((an automobile) is (a moving-object)) cstablishes
(a moving-object) as a gencralization of (an automobile). It
automatically relates the knowledge we have about

(a moving-object), such as how it obeys physical laws of
motion, to (an automobile). See {section 1.4, page 22}.

In Ether reasoning, a characterization of some problem to be
solved, or some statement to be proven. See {section 1.5, page
23}

115

history

hypothesis

inheritance

A record of the events inan actor’s "life™. Sce biography.

In Ether reasoning, a characterization of something which is
thought to be true. See {section 1.5, page 23}.

In reference to Omega knowledge representation, if an
inheritance relation is asserted between one description and
another, then all individuals described by the first are also
described by the second. Any information collected about the
second also applies to the first. See {section 1.4, page 22}.

instance description

matching

message

Omega

pattern

pattern matching

Planner

A representation of some set of related abstract individuals.
Sometimes used to represent an arbitrary member of that set.

For example, the following might be used to represent the set of
red automobiles or any arbitrary red automobile, depending on
the context of usage: (an automobile (with color red)). See
{section 1.4, page 21}.

See pattern maiching.

Part of a communication. The message is that piece of
information intended to be interpreted by the target of the
communication. See {section 1.1.2, page 17}.

A description system for knowledge representation and
manipulation, implemented by Gerald Barber. Tt allows
assertions 10 be made about the relationships between abstract
concepts and individuals, and is able to make its own deductions
based on these inheritance relationships. See {section 1.4, page
21},

See pattern maiching.
The process of determining whether some pattern is a
generalization of some object. The pattern and object of the

match may be a description or any other actor.

An early programming language for Artificial Intelligence
applications. 1t provided mechanisms for reasoning, but relied

116

Plasma

Prelude

reply

request

response

script

sertalized actor

serializer

specialization

on back-tracking to simulate non-determinism.

The first programming language bascd on the actor model of
computation. Sce {section 1.2, page 19}.

An actor language which will have the full functionality of Actl,
Omega, and Ether. It will be implemented as a set of extensions
of Act2. See {section 1.7, page 28}.

A type of communication, used by convention as a response to a
request which has been successfully completed. See {section
1.1.2, page 17}.

A type of communication used by convention to initiate a form of
communication resembling two-way communication. An actor
sends a request communication to some target, expecting some
response as part of the processing. The request contains a
customer and complaint department which will accept the
response and continue with the rest of the computation. See
{section 1.1.2, page 17}.

A reply sent to a customer, or complaint sent to a complaint
department, as part of the processing of a request. See {section
1.1.2, page 17}.

That portion of an actor which dictates what communications the
actor can accept and how it will process each. See {section 1.1.1,
page 16}.

An actor which can replace itself with another actor, as part of the
processing of some communication. See {section 1.1.1, page 16}.

A serialized actor. See {section 1.1.1, page 16}.

A description is a specialization of another description if the set
of abstract or concrete individuals it describes is a strict subset of
that described by the other description. For example, the
statement that ((an automobile) is (a moving-objecti))
establishes (an automobile) as a specialization of

(a moving-object). It automatically relates the knowledge we

117

sponsor

sprite

target

transactions

unserialized actor

worker

have about (a moving-object), such as how it obeys physical
laws of motion, 10 (an automobile). Scc {scction 1.4, page 22}.

A resource management agent. The apiary charges for each
event processed. Every communication transmitted contains a
sponsor, to pay for the processing of the event. See {section 1.5,
page 24}.

An independent problem-solving agent, which actively applies a
specific problem-solving rule. Each sprite has a trigger pattern
characterizing which goals or hypotheses which activate it, and a
body indicating what to do if such an announcement is
disseminated. See {section 1.5, page 23}.

In reference to transmission of communications, the target is the
intended recipient of a communication. See {section 1.1.2, page
17}.

1. Common patterns of communication, such as request/reply
and request/complaint.

2. A computation. All activity caused by the sending of a request.
See {section 1.1.2, page 17}.

An actor which cannot replace itself with another, in response to
some communication. See {section 1.1.1, page 16}.

An independent processor in an apiary architecture. See {section
1.6, page 26}.

118

Appendix B

A Sample Session with Act2

A person interacts with Act2 by conversing with an Act2 listen loop. When
the listener prompts for input, the person simply types in any Act2 expression. This
expression is cvaluated by the listener, which is associated with an environment
serving as a context for resolving names. The listener displays the response it

received from the evaluation, then prompts for more input.

In this appendix, we will present a "sample session” of conversational
interaction with an Act2 listener. This will be slanted in order to gradually
introduce the constructs in the language. Each iteration will have user input labeled
request and Act2’s response labeled reply or complaint. Brief commentary may also
be interspersed with iterations, to reveal their significance or explain what's being

input.

Like most languages, Act2 has numbers. Primitive numbers can be denoted

directly, by a sequence of digits, optionally preceded by a minus (-) sign.

Request:
10

Reply:
10

Arithmetic operations are defined for numbers, and convenient expressions
are defined for denoting them. Although both prefix notation, asin (+ 10 7), and

infix notation, asin (10 + 7), may be used, prefix notation is recommended.

Request:

(+ 10 7)
Reply:

17

119

One can also directly ask the numbers to perform the operations. In fact, that
is exactly what expressions like (+ 10 7) do when evaluated.

Request:

(ask 10 (a + (with operand 7)))
Reply:

17

The identifier, true, is bound to a logical value representing truth.

Request:
true

Reply:
T

The identifier, false, is bound to a logical value representing falsity.

Request:
false

Reply:
NIL

Symbols can be denoted by quoting them to prevent their evaluation.
Capitalization may be used arbitrarily, because case is ignored when distinguishing

symbols.
Request:

X
Reply:
X

Act2 has sequences for representing ordered collections of objects. When an
expression denoting a sequence is evaluated, each of the expressions denoting an

element of the sequence is evaluated. By default, sequences are represented directly

as lists.
Request:

4 true false (+ 1 2)]
Reply:

(4 T NIL 3)

A simple expression exists for binding a symbol to some value in the listener’s

120

top level environment. Only the expression denoting the value is cvaluated.

Request:

(defname x (+ 7 6))
Reply:

X

Names previously bound in the listener’s environment may be mentioned in

expressions for the listener to evaluate.

Request:

(+ 6 x)
Reply:

17

The evaluation of some expressions may result in a complaint instead ofa
reply. The expression below attempts to divide by zero, which is not mathematically

defined.

Request:
(/7 65 0)
-Complaint:
(a division-by-zero)

The let construct provides a convenient means for binding symbols to actors,
for use within a body of commands. It is quite flexible, allowing an arbitrary

pattern-match instead of just a trivial symbol binding.

Request:
(1et ((=x match 3)
((a foo (with bar =y)) match (a foo (with bar 4))))
do (reply (+ x ¥)))
Reply:
7

The defconcept expression below binds a new atomic description with name

add5 to the symbol, addb.

Request:

(defcaoncept addb)
Reply:

ADDS

121

Now, we can define a new abstraction which adds 6 1o a number we provide.

Request:

(define (new addb (with number =n)) (+ 6 n))
Reply:

ADDbS

We can instantiate our new abstraction with a new expression.

Request:
(new addb (with number 2))
Reply: ’
7

An attempt to instantiate our abstraction with a form of the new expression

which does not match will result in a complaint.

Request:

{new add5 (with bar 'x))
Complaint:

(a failure ...)

We can also define a bank account abstraction, as in {section 2.3, page 34}.

We will assume all appropriate atomic descriptions already exist.

Request:
(define (new account
(with balance =b))
(create :
(is-request (a balance) do (reply (a balance)))
(is-request (a deposit (with amount =a)) do
(become (new account (with balance (+ b a))))
(reply (a deposit-receipt (with amount a))))
(is-request (a withdrawal (with amount =a)) do
(1et ((=new-balance match (-~ b a))) do
(if (= new-balance 0)
(then do
(become (new account (with balance rnew-balance)))
(reply (a withdrawal-receipt (with amount a))))
(else do
(complain (an overdraft))))))))

Reply:
account

Now, we can create a new account, binding it to a symbol in the top level

122

environment for later reference.

Request:

(defname my-account (new account (with balance 30)))
Reply:

MY-ACCOUNT

We can deposit some money in our account.

Request:

(ask my-account (a deposit (with amount 5)))
Reply:

(a deposit-receipt (with amount 6))

We can also withdraw money from our account.

Request:

(ask my-account (a withdrawal (with amount 10)))
Reply:

(a withdrawal-receipt (with amount 10))

If we try to withdraw too much money, our account will complain.

Request:

(ask my-account (a withdrawal (with amount 100)))
Complaint:

(an overdraft)

Finally, let’s find out what our current balance is.

Request:

(ask my-account (a balance))
Reply:

26

123

Appendix C

Act2 Language Description

This section informally presents the meaning of Act2 constructs in English.
Precision is sacrificed for readability. As a result, parts of this informal description
may seem ambiguous to some readers, who are invited to refer to the meta-circular

description {section D, page 163} for clarification.

C.1 The Actor Model of Computation

An actor is a fundamental computational entity in the actor model of
computation. Computations proceed as actors send communications to other actors,
who process them. Each actor has a script, which indicates what communications
the actor will accept and how the actor will process each of them. It also has a set of
acquaintances, which are the other actors it can communicate with. Notice that each
actor contains both data and procedural information (its acquaintances and script).
For example, a bank-account actor might have an acquaintance which represents the
current balance, and a script which determines how it responds to communications
such as deposit or withdrawal requests. This information is encapsulated by the
actor, and is therefore hidden from all other actors. The only other actors that an
actor can communicate with are its acquaintances and the acquaintances of the
incoming communication. Because of this, an actor is not tied down to any

hardware processor — it can migrate from machinc to machine.

When they receive communications, actors can do simpie recognition of the

incoming communication, make simple decisions, create new actors, transmit

124

communications to actors, and change their own behavior. Any actor-based

computation is composed from these primitive operations. [t is possible to construct
sophisticated applications from suitable compositions of actors. Because the actions
of actors themselves are inherently concurrent, these applications will also be highly

concurrent, with no special effort.

There are very important differences between actors whose scripts do not
allow for a change in behavior and actors which may change. An actor which can
change its behavior can only process one communication at a time, because the
processing of one communication might affect the processing of communications
accepted later. Because it must accept communications serially, such an actor is
called a serialized actor, or serializer. It restricts parallelism by requiring

synchronization.

Actors which cannot change their behavior are called unserialized actors.
They can process arbitrarily many communications at a time, requiring no
synchronization whatsoever. Moreover, they can be copied indiscriminately when
convenient. These actors provide the full potential for parallelism inherent in the

actor model.

Communications and the messages within them are also actors. There are
three kinds of communications, corresponding to a model of interaction among
actors which is analogous to interaction among humans working together on some
problem. An actor may send a request to another actor, which is often expected to
reply upon completion of the requested activity or to complain if some problem
arises. Rather than waiting for a response to a request, which would limit
parallelism, an actor spawns new actors to accept the response and pick up with the
computation where it left off. These actors are included in addition to the message

in the request, so the actor can begin processing the next communication

125

immediately after sending the request. ‘There are two such actors in cach request, a
customer for processing replics, and a complaint-department for processing

complaints.

Computation is event-driven. An actor is dormant when not processing a
communication. Upon receipt of a communication, it is awakened and can proceed
with the computation. This minimizes the resource usage by actors not doing useful

work, and makes resource management easier in general,

C.2 A Glimpse of Act2

Actor languages provide a higher-level interface to the basic computational
abilities of actors. They can make use of the inherent concurrency of actors to
provide concurrency in a natural way at the language level. Act2 is an actor
language. A user interacts with it using a listen-loop, one iteration of which reads,

parscs, and evaluates an Act2 expression, then prints its result.

Act?2 has some pre-defined actors, like numbers and symbols. Some standard
names are provided, such as true and false. The symbols are bound to appropriate
actors in the standard Act2 environment. Constructors of information structure,

such as sequences and instance descriptions, are also pre-defined.

Act2 provides a convenient notation for expressing actor-based computation.
For example, the sending of a request and subsequent reception of a response is
naturally denoted as an expression in the language. The customer and complaint---
department are created by Act2 from information available from the context of the

expression,

A convenient form of pattern-matching is provided. It is useful for

126

recognizing communications and their contents and binding names to their parts for
later reference. This pattern-matching unifies the ideas of comparing descriptions

and of type-checking.

The evaluation of an expression should always be thought of as sending a
request to the expression asking it to evaltuate itself in the environment supplied in
the request’s message. For example, if the expression (+ 3 x) is asked to evaluate
itself in an environment in which the symbol x is bound to 4, the expression will first
ask its sub-expressions to evaluate themselves in the supplied environment. They
reply with the values 3 and 4, then the expression adds them together and replies
with the value 7. In general, if an Act2 construct containing an expression is
evaluated and the evaluation of the expression complains, the evaluation of the
construct will respond with that complaint, unless the construct explicitly handles
that complaint. If there are more than one such complaining sub-expressions, the

first to be noticed will be relayed, and the rest will be ignored.

C.3 Pre-Defined Actors

Act2 provides pre-defined actors which can be used in computations. These
pre-defined actors correspond to those provided in most other languages: logical
truth values, numeric values, symbols, and sequences. All of these are actors,
behaving like actors in the computational model. They accept communications,
perform some computation as a result, then transmit communications in fesponse.

All pre-defined actors are unserialized.

127

C.3.1 Symbols

A symbol is a name typically used as a keyword or identifier in the Act2
language. In the printed representation of the language, a symbol is denoted by one
or more adjacent alpha-numeric characters. For example, reply-to, t1, and
message are symbols. Symbols are bound to actors in environments. When asked
to evaluate itself as an expression in some environment, a symbol will look itself up
in the environment. Symbols also respond to a number of other requests, such as
requests to parse, print, or match. Because the evaluation of a symbol is an attempt
to get at an actor to which the symbol is bound, denoting the symbol itself is done

by using a quote expression: (quote foo) or 'foo.

C.3.2 Numbers

Numbers are actors which behave like numeric mathematical entities. They
accept communications stich as: a request to add (subtract, multiply, divide, ...)
themselves with some other number, or a request to compare themselves with some

other number (for equality, or numeric ordering).

C.3.3 Boolean Values

Act2 provides values which behave like logical truth or falsity values. These
accept messages such as a request asking them to perform onc computation if they
represent truth or another if they represent falsity. The identifiers true and false

are bound to actors with the appropriate behavior.

128

(.3.4 Sequences

Sequences represent an unserialized, ordered collection of actors. They
roughly correspond in behavior to Lisp lists. The concrete realization of that
behavior, however, may have many forms. A sequence is created by an expression
such as (sequence expressions), where each expression is a sequence element. Act2
provides a syntactic sugaring for this type of expression: [expressions]. For
cxample, an empty sequence can be denoted [], and a sequence with the elements
3, true, and -3.14 can be denoted [3 true -3.14]. An empty sequence can also
be created by the expressioh (new empty-sequence). new expressions will be

discussed below.

A non-empty sequence can also be thought of as a recursive data structure,
composed of a first element and a sequence containing the rest of the elements.
Sequences can be created with an expression of the form,

(new sequence (with first 3) (with rest eea)).

C.3.5 Convenient Expression of Basic Operations

Act2 provides convenient expressions for increasing the readability of certain
requests such as those handled by pre-defined actors. For example, the expressmn

(+ 3 4) isaconvenient expression of (ask 3 (a + (with operand 4))).

Other such conveniences include: (- 3 2), numeric subtraction; (* 3 2),
numeric multiplication; (+ 3 2), numeric division: (A true false), logical
conjunction; (V true false), logical disjunction: (7 true), logical negation;
(= x y), equality of arbitrary actors; (< x y), less-than partial ordering; (> x y),

greater-than partial ordering, etc.

129

C.4 Descriptions

When actors perform computations, they cooperate with each other by
transmitting communications among themselves. These communications contain
messages, which can be arbitrary actors. When an actor receives a communication,
it must be able to recognize the communication and the message therein, so it can

react to it appropriately, using any information it contains.

Atomic and instance descriptions were developed in [Hewitt, Attardi, Simi 80}
for description and reasoning. These descriptions provided a convenient form of
expressing and recognizing arbitrary information. Act2 makes use of descriptions
for several important and fundamental purposes. Because descriptions can contain
arbitrary information in a very convenient way, they are often used as messages in
communications, such as (a deposit (with amount 30)). They are also used to
describe actors, in a way which corresponds roughly to data types in existing
languages, such as (a bank-account (with balance 500)). Instance descriptions
are often used as patterns for recognizing communications, messages, and actors in
general, such as (a deposit (with amount =a)). Patterns and pattern matching

will be described in more detail below.

C.4.1 Atomic Descriptions

Atomic descriptions are significant in our descriptions as representations of
abstract concepts, such as the concept of bank-account and of deposit. They have
other uses in Act2, some of which will be described below. Atomic descriptions are
often referenced in Act2 expressions representing instance descriptions by a symbol
bound to an atomic description. Often, the atomic description has the same name as

the symbol uscd to denote it.
The most convenicnt way to create new atomic descriptions is with an

130

expression of the form (new concept (with name 'foo)). This creates an atomic
description which is distinct from all other atomic descriptions, cven from others
having the same name. One of the acquaintances of an atomic description (which is
hidden by the concept interface) is a discriminator which distinguishes it from all
others. This discriminator is used in the comparison and matching of atomic

descriptions. Two atomic descriptions match if they have the same discriminator.

C.4.2 Instance Descriptions

Instance descriptions abstractly represent a set of instances of some concept.
For example, (a bank-account) represents the notion of instances of the concept of

bank-account, and in so doing represents any bank-account which may exist.

Instance descriptions can be specialized by adding further restrictions to what
instances they can represent. These restrictions are in the form of attributes. For
example, (a bank-account (with balance 500)) represents any bank account
having a balance of 500, is significantly more specialized than the description

(a bank-account).

Instance descriptions can be used in Act2 for their descriptive capabilities.
For example, supposing we had a serialized actor representing a bank account which
happens to contain a balance of 500. We could describe this actor as
(a bank-account) Oras (a bank-account (with balance 500)) as long as those
descriptions remain true. Unserialized actors, because they cannot alter their

behavior, are even more amenable to description.

Instance descriptions can be used in Act2 for their information-containing
capacity. For example, supposing we had a serialized actor representing a bank

account with balance 500 dollars and wanted to deposit an additional 30. The most

131

convenient way to express our desire is to send the bank account a message such as

(a deposit (with amount 30)).

Instance descriptions can be used in Act2 for their recognition or pattern-
matching capabilities. For example, our bank account might be capable of receiving
requests to deposit some amount, to withdraw some amount, or to reveal the current
balance. The account needs some way to recognize an incoming request, and what it
is asking for. It must also be able to extract any additional information from the
message, such as the amount to deposit or withdraw. [t might use an instance
description as a pattern, making use of a few special features for information

extraction.

The pattern could look like (a deposit (with amount =a)). Act2 defines
matching such that this pattern would successfully match all specializations of the
pattern. This will be described in more detail below. For now, we will simply look
at what patterns might look like. The expression, =a, is a convenient way of writing
the expression (bind a). If asked to match some actor in an environment E, this
expression will bind the identifier a to the actor and reply, indicating a successful
match, as well as the extended environment. The pattern could impose an
additional restriction that the actor be a number:

(a deposit (with amount (=a which-is (a number)))). The pattern could
also impose the restriction that the amount be a positive number, as in

(a deposit (with amount (=a which-is (a positive-number})))) or

(a deposit
(with amount
(=a which-is
((a number) such-that (> a 0)))))

In gencral, Act2 expressions representing instance descriptions look like:

132

(a concept
(attribute-kindl aitribute-relationl aitribute-fillerl)
(autribute-kind2 attribute-relation2 attribute-filler2)

)

The keyword an may be used instead of the keyword a as an aid to
pronunciation and readability. When asked to evaluate itself in some environment
E, an instance description expression will evaluate its concept cxpression and its
attribute-fillers. Tt will then create an instance description from the resulting

information in addition to its attribute kind and relation information.

Each attribute has a keyword which indicates what kind of an attribute it is.
This affects the applicability of various axioms for deduction involving instance
descriptions with attributes in Prelude. For the purposes of Act2, which does no

sophisticated deduction, the keyword wi th is sufficient for all uses.

Each attribute has a relation name, which indicates the significance of the
attribute’s filler. By default, Act2 does not evaluate attribute relations, and a raw
symbol is sufficient there. This can be thought of as analogous to field names of

records in many languages.

Each attribute also has a filler, which contains information of interest. The

filler may be a description, or may be an arbitrary actor.

C.4.3 Pattern Matching

Pattern-matching is the fundamental recognition mechanism in Act2. Itis
used for recognizing a communication and its message, and for binding symbols to
some of the parts for later use. This recognition is performed by communication
among the actors involved. Typically, an object is available for matching, such as a

communication, its message, or some acquaintance. There is also at least one

133

pattern presented for recognition of the object. Associated with a pattern is some
form of processing involving the matched object. For each attempt at a match, we
have a pattern for matching, an object to match, and a small environment for
holding symbol/actor bindings made during the match. Pattern matching is often a
recursive process, first matching the pattern’s top level, then matching each of the

pattern’s fillers.

A typical object to be matched is an instance description or an arbitrary actor.
For example, the instance description (a bank-account (with balance 6)) could
be included as a message in a communication, as could any actor, such as a serialized

bank-account actor.

A typical pattern is an instance description, which may match another instance
description if they are similar, or which may match an arbitrary actor if it is a
suitable description of that actor. For example, the following could be used as

patterns;

(a bank-account)
(a bank-account (with balance =b))
(=x which-is (a bank-account))

The pattern-matching performed by Act2 itself does not involve sophisticated
deduction based upon knowledge of inheritance relationships among instance
descriptions, although constructs providing such matéhing could be embedded in

the language.

Pattern-matching is a negotiation process between patterns and objects, and
does not violate the principle of absolute information containment by actors. A
pattern-match between a pattern P and an object O is initiated by an Act2 construct

by sending P a request with message;

134

(a match
(with objact 0)
(with bindings (new empty-layer}))

After some negotiation among the pattern, the object, and their acquaintances,
we expect a reply of the form (a successful-match (with bindings ...)) Or

(a failed-match).

The behavior of a pattern-match depends upon the way actors used as patterns
respond to match requests. A few expressions are provided by Act2 which evaluate
into actors providing useful functionality for matching. These are often used in

conjunction with instance descriptions to construct patterns.

The bind expression has the form (bind symbol), and can be written =symbol.
It does not evaluate its argument. When asked to match some object O, where the
set of bindings B has been established, the most common result is for it to simply
reply with a successful match, with an extension of B in which the symbol is bound
to O. It actually checks first whether or not the symbol is already bound in B. [f not,
it simply proceeds as above. If so, the match succeeds (with bindings B) only if the

actor bound to the symbol matches the actor, O.

The which-is expression has the form (which-is patternl pattern2) or
(pattern] which-1is pattern2). In order for it to result in a successful match, both |
patternl and pattern2 must match successfully. A typical use of this expression is to
add some restriction to what can be matched by a bind expression. For example:

(=x which-is (a natural-number)).

A similar expression adds a restriction in the form of a predicate which must
be satisfied in order for the match to succeed. A such-that expression has the form
(such-that patiern predicate) or (pattern such-that predicate). When asked to

match some object with established bindings B, it succeeds only if pattern succeeds

135

with some bindings B', and predicate yiclds truth when evaluated in the prevailing
environment extended with B'. This might be used in a situation such as:

(=x such-that (< x 6)).

Atomic descriptions have a name which is meaningful to humans, and a
discriminator, which is actually used to identify them. An atomic description will
only match another atomic description which has the same discriminator. Matching
atomic descriptions always have the same name. Independently-created atomic
descriptions will not match, even if they have the same name, because their

discriminators will differ.

An instance description performs a slightly more sophisticated match. For
example, the pattern (a bank-account) will match both a comparable instance
description such as (a bank-account (with balance 600)) as well as a serialized
actor which is described by an instance description such as (a bank-account).
Whereas this would naturally occur if’ Act2 did matching involving deduction, it

must be done explicitly by Act2 with an appropriate protocol.

An instance description’s simple protocol for matching another instance
description is: the concepts must match; the relations present in the pattern must be
present in the object; and the fillers in attributes with the same relations must

match.

When the object is not a description, the pattern will match the deséription of
the object, rather than the raw object itself. Every actor has a description, which is
associated with it at its creation time. Act2's simple protocol for matching two
instance descriptions is Act2 has a predicate which can be used to distinguish
whether an object matched is an instance description or not. It has the form

(individual actor), and returns truth when applied to actors which are not

136

descriptions.

Any other actors are provided with extra communication handlers by Act2 if
needed, to handle communications such as a request to match. By default, arbitrary
actors match if they are "the same actor”. Sameness for serialized actors means that
the actors must really be the same actor, and must occupy the same storage. Because
unserialized actors can be replicated arbitrarily, they are the same if they have the
same behavior and the same acquaintances. That is, we cannot tell the difference
between copies of an unserialized actor, because their behaviors will never become

different.

C.5 Top-Level Expressions

A user’s interface to Act2 is a listen loop. At all times, there is a prevailing
environment associated with the listen loop. It is with respect to this environment

that expressions entered by the user are evaluated.

The user’s input is read in as list structure, symbols, and/or numbers. What is
read in is asked to parse itself. The resulting abstract syntax is asked to cvaluate
itself, with respect to the prevailing environment. The response is asked to print
itself for the user. then the next iteration begins, prompting the user for more input.
Should any unhandled complaints be generated at any point in a listen-loop
iteration, the loop itself will handle the exception (by entering a debugger or by

asking it to print itself), then will proceed with the next iteration.

The user is able to evaluate arbitrary Act2 expressions simply by typing them
in to the listen loop. Act2 provides convenicnt expressions for: extending the
prevailing environment by associating a symbol with an actor denoted by some Act2

expression (defname); introducing an abstraction which encapsulates arbitrarily

137

complex information (define); and delining syntactic extensions to the language by
extending the environments used in parsing Act2 code (defexpression and

defcommand).

C.5.1 DEFNAME Expression

It is convenient for someone conversing with a listen-loop to remember the
results of expression evaluations for later reference. A convenicnt expression is
provided which binds a symbol to an actor in the prevailing environment. For
example, (defname foo (+ 3 4)), when asked to evaluate itself in some
environment, E, would ask (+ 3 4) to evaluate itself as an expression in
environment E, would accept the reply (7) then ask E

(a grow (with symbol 'foo) (with value 7)).

The expression, (defname expl exp2), when asked
(an expression-eval (with environment E)), will behave as follows. If all goes
well, the environment E grows to associate the symbol exp/ with the value (V) of the
expression exp2 in E, and the defname replies V. If expl is not a symbol, the

defname will complain. If exp2 éomplains, the defname will relay the complaint.

C.5.2 DEFCONCEPT Expression

Atomic descriptions are a very important part of Act2. Among other things,
they serve as concepts for instance descriptions. For flexibility, the concept part of
an expression such as (a foo) denoting an instance description is evaluated. For

readability, it is convenient to express simple concepts simply.

Both constraints are satisfied if the symbol foo is bound to a suitable atomic

description. The defconcept expression is a convenient way of creating an atomic

138

description and establishing such a binding at the same time. For example,
(defconcept foo) can be thought of as

(defname foo (new concept (with name 'foo))), where

(new concept (with name 'foo)) createsa new atomic description which among
other things has the name foo. For more details, see {section D.5, page 170} in the

meta-circular description of Act2.

C.5.3 DEFINE and NEW Expressions

Act2 has a single abstraction mechanism which is suitable for encapsulating
the information content of arbitrarily complex expressions. Only one such
mechanism is necessary, because the actor model of computation can express
procedural, data, and control abstraction directly in terms of actors. The define

expression has the form (define expression-template expression).

Intimately related to define expressions are new expressions. A define declares
the meaning of a set of related new expressions. For example,
(define (new double (with number =n)) (* 2 n)) declares the meanings of a
class of expressions including (new double (with number 3)), which means
(* 2 3),and (new double (with number -3.14)), which means (* 2 -3.14).
Any expressions with concept doub1e but not of the form
(new ... (with number ...)) are undefined, and will complain when evaluated.

For more details, see {section D.4, page 168}.

new expressions look very much like instance descriptions, having a concept
and optional attributes, but are imperative rather than descriptive. For example,
(new bank-account (with balance 300)) may yield a newly-created bank
account with the stated balance, whereas (a bank-account (with balance 300))

would simply describe such an account. The template in a define is typically a new

139

expression whose attribute fillers contain binders. For more details, sce {section

D.4, page 169},

A define expression of the form (define expl exp2) will behave as follows:
The abstract syntax exp/ is asked to install itself, given the prevailing environment
and the abstract syntax exp2. The define expression will relay any unhandled
complaints generated by this process, else will acknowledge completion. expl

should be a new expression.

A later define expression declaring a new expression with the same concept
will shadow the older declaration; only the newest will be used. All concepts in

well-formed and meaningful new expressions evaluate to atomic descriptions.

C.6 Simple Expressions

C.6.1 ASK Expression

In the actor model, two-way communication is achieved by sending a request
containing some message as well as a customer to which the target of the request
should reply. The ask expression is a convenient way of expressing just that {section
D.2, page 165}. In an ask expression, a target for the request and the message in the
request are explicitly denoted, but the customer is constructed for the user from the
context in which the ask expression occurs. For example,

(ask my-bank-account (a balance)) is an expression whose value will be 300 if
the symbol my-bank-account is bound to an actor which responds to a request with

message (a balance) with a reply with message 300.

A useful way of thinking about the ask expression is: when asked to evaluate

itscll as an expression in environment E in a request with customer C, it asks its

140

target and tts message to evaluate themselves in E. 1t then sends to the target value a
request with the message value and the customer C. Therefore, the response from
the evaluation of an ask expression is the response from the ask’s target when sent

the ask’s message in a request.

C.6.2 QUOTE Expression

Unless explicitly stated otherwise, Act2 expressions typed in by the user are
both parsed and evaluated.. This is the case for most contexts in which expressions
are expected. Sometimes, it is desirable to be able to denote some unparsed symbol
or list structure in a context in which expressions are normally evaluated. The quote
expression accepts one argument, which it neither parses nor evaluates {section D.2,
page 165}. The result of a quote expression is typically either a symbol or some list
structure. For example, an evaluation of the expression (quote foo) yiclds the
symbol foo. An evaluation of the expression (quote (a & (x))) yields a list
containing three elements: the symbol a, the number 6, and a list with one elcment,

the symbol x.

LA

A prefix operator ('), known as "quote"”, "single-quote", or "accent-mark”, is
provided for convenience. The expression ' exp is syntactically equivalent to the
expression (quote exp). Thus, the examples above could have been written 'foo

and '(a 6 (x)).

C.6.3 PARSE-FXPRESSION and PARSE-COMMAND Expressions

The parse-expression expression parses its argument as an expression,
producing an abstract syntax actor. It is included only for convenience, because its
effect can be reproduced by sending a parse request to a quoted expression. An

expression such as (parse-expression '(ask foo (a decrement))) evaluatesto

141

an abstract syntax actor representing the expression (ask foo (a decrement)),
which might later be asked to cvaluate itself in some environment. A similar
expression, parse-command, exists for parsing surface syntax into abstract syntax

representing a command.

C.7 Creating Actors

The create cxpression provides a mechanism for creating actors having a
specific behavior. It contains communication handlers describing what messages the
actor will accept and how the actor will react to each of them. Each communication
handler has two parts. A matching part contains an instance-description pattern,
which characterizes the communications the handler will accept and extracts
information from communications it matches. A body part contains a set of
commands to be evaluated when a communication is accepted by the handler. Act2

commands will be described below.

When a create expression is asked to evaluate itself in some environment, it
constructs a new actor from that environment and the communication handlers
{section D.7, page 172}. Itis useful to think of this actor as if it retains the creation
environment and the abstract syntax for the handlers. At times, the evaluation
message may contain extra information, such as a description of the actor. This
information is incorporated in the newly-created actor, as will be mentioned in the
discussion of the define and new expressions. The newly-created actor is éapable of
accepting and processing communications, as dictated by the communication

handlers.

The most common communication handler is for accepting requests, and has

the form (is-request message-pattern do commands). If the incoming

142

communication is a request, and its message is an actor which matches the
message-pattern, then the communication handler is capable of accepting the
communication. There are similar forms of communication handlers for accepting
replies, (is-reply message-patiern do commands), and complaints,
(is-complaint message-pattern do commands). There is also a more general form
of communication handler, which allows explicit extraction of more or less
information from the communication. It contains a pattern for matching the whole
communication, rather than just its message:

(is-communication communication-pattern do commands).

A create expression itself has the following form, where an otherwise clause

can be omitted at any point:

(create
communication-handlers
(otherwisa communication-handlers
(otherwise communication-handlers
(otherwise ...))))

Upon receipt of a communication, all handlers in the first set of handlers are
given a chance to match the incoming communication. These attempts at matching
are performed concurrently. [fany of the handlers successfully matches the
communication, one is chosen (the first one noticed, temporally) to handle the
message. 1f all attempts at matching by these handlers fail, some handlers supplied
by Act2 will be tried by default. These handle such communications as requests to
print or requests to match some actor. If these fail, and there is an otherwise clause,
the next set of handlers is tried. This process continues until a handler is found that
can accept the communication, or until there are nc more handlers to try. In the

latter case, the actor rejects the communication.

Rejecting a communication happens as follows. 1f the communicationis a

request, the actor complains to the complaint-department designated in the request;

143

otherwise, the actor complains to a standard complaint-department reserved for

such purposes by the implementor.

A communication handler chosen to process the communication evaluates the
commands in its body, using the actor’s creation environment, extended with any
bindings established during the match {section D.10.6, page 195}. The commands
in its body are evaluated concurrently. Some important picces of information, such
as a customer, complaint department, or sponsor, are often left un-named or
completely unmentioned in communication handlers. Act2 has context-sensitive

commands which can make use of this information.

In principle, the create operation is sufficient for creating actors. We have two
kinds of actors: serialized and unserialized. Serialized actors are able to change their
behavior, and are therefore not permitted to handle more than one communication
concurrently. Unserialized actors can not only handle many communications
concurrently, but can also be replicated indiscriminately. The distinction between
them is important not only for performance, but for recursive computations4. By
default, create creates a serialized actor, to be on the safe side, because an
interpreter does not conveniently know whether or not one of the handlers with
cause a change in behavior. A compiler, on the other hand, could create
unserialized actors from a create expression when it notices that the actor’s behavior

cannot change.

4Bccause a scrialized actor can only process one communication at a time, it cannot send itself
communications as part of the processing of another communication. This would frecze the actor in
a deadlock. For example. consider our bank account example from {section 2.3, page 34}. Suppose
we had implemented the serialized actor to respond to a deposit request by sending itself a
withdrawal request with the negated amount. Because the serialized actor can only process one
communication at a time, The withdrawal request would have simply been enqueued for the actor to
process Jater. Becausc it will never get a response from its withdrawal request, the deposit request
will never be satisficd.

144

Act2 provides the create-unserialized expression, which behaves like the create
expression, but always creates unserialized actors. This is an aid to the interpreter,
which does not have enough information conveniently at its disposal to deduce that
the actor cannot change. It is an optimization for compilation, saving the work it
would otherwise take to determine that the actor is unserialized. Itis also good
documentation for human readers of Act2 code. No attempts in a communication
handler body to change the behavior of one of these actors will be honored, and a

complaint will be generated as soon as this is noticed.

A create-unserialized expression itself has the following form, where an

otherwise clause can be omitted at any point:

(create-unserialized
communication-handlers
(otherwise communication-handlers
(otherwise communication-handlers
(otherwise ...))))

By default, the descriptor which is associated with a newly-created actor
contains no information about the actor’s state. For example, if a bank account

abstraction was defined with

(define (new account (with balance =b))
(create ...))

accounts created with expressions of the form (new account (with balance 500))
would be associated with the description (an account), instead of

(an account (with balance 600)). This helps guarantee the opacity of these
actors, since the balance could not be obtained with simple pattern-matching. The
implementor of an abstraction may make this information available by default by
using other variations of the create expression. The create-visible and
create-visible-unserialized expressions do exactly this, and have syntax similar to that
of the create and create-unserialized expressions. In order to make the balance of

these bank accounts available for pattern-matching, the accounts would have been

145

defined with define and create-visible expressions of the form

(define (new account (with balance =b))
(create-visible ...))

C.8 Simple Context-I'rece Commands

Few of Act2’s commands are completely context-free. They are for one-way
transmission of communications, where both the communication and target are fully
specified. These commands can be included in any context where commands can be

put.

C.8.1 REPLY-TO Command

The reply-to command specifies a target and a message. When successfully
evaluated, it creates a reply communication containing the message, then transmits
that communication to the target {section D.8, page 174}. For example,
(reply-to customer 3) sends a reply communication with message 3 to the actor

bound to the symbol customer in the evaluation environment,

More specifically, the form of the reply-to command is
(reply-to farget message). When asked to evaluate itself as a command in some
environment E, it asks /arget and message to evaluate themselves as expressions in
environment E. If they both reply, it transmits a reply communication containing
the message value to the target value. If rarget complains, then the reply-to
command relays the complaint. Otherwise, if message complains, the complaint is

transmitted to the target value.

146

C.8.2 COMPLAIN-TO Command

The complain-to command specifies a target and a message. When
successfully evaluated, it creates a complaint communication containing the
message, then transmits that communication to the target. For example,
(complain-to complaint-department (a failure)) sendsacomplaint
communication with message (a failure) to the actor bound to the symbol

complaint-department in the evaluation environment.

More specifically, thé form of the complain-to command is
(complain-to largel message). When asked to evaluate itsclf as a command in
some environment F, it asks targetr and message to evaluate themselves as
expressions in environment E {section D.8, page 174}. If they both reply, it
transmits a complaint communication containing the message value to the target
value, If targer complains, then the complain-to command relays the complaint.

Otherwise, if message complains, that complaint is transmitted to the target value.

C.8.3 SEND-TO Command

The send-to command is for transmitting an arbitrary communication to some
specified target. It is similar in behavior to the reply-to and complain-to commands,
except that the whole communication to be transmitted is specified, rather than just’
the message {section D.8, page 174}. The examples above could have been written
as (send-to target (new reply (with message 3))) and

(send-to target (new complaint (with message (a failurae)))).

147

C.9 Composite Constructs

Concepts such as name-binding, decision, and complaint-handling are useful
both in the context of commands and expressions. Act2 provides such a set of

constructs which can be used both as commands and as expressions.

The evaluation of each of these constructs may involve the evaluation of a
body of commands included in the construct. The commands allowed in the bodies,
and the meaning of a few of those commands, depend upon the context in which the
construct appears. The construct may be used as an expression, as acommand in a
communication-handler body, or as a command in an expression body. This will be

explained in more detail below.

C.9.1 LET Construct

The let construct allows the extension of the evaluation environment with
symbol-actor bindings resulting from one or more attempts at matching. The
extended environment is used in the evaluation of the commands in the body of the

let construct {section D.9.3, page 181}.

An example of the use of a let command is:

(let ((=x match 3)
(=y match (+ 2 2))
((a deposit (with amount =z))
match incoming-message))
do
(reply (+ x y))
(become (new frotz (with balance z))))

In general, the form of let constructs is:

148

(1et ({pattern! match expressionl)
(pattern2 match expression2)

do
command|
command?2

..)

When evaluated in some environment E, as either a command or as an
expression, the set of matchers is first processed. The patterns and expressions in
the matchers are evaluated concurrently in the environment E. If any complain, the
let construct relays that complaint. Next, each pattern is asked to match the
corresponding expression. If any of the matches are not successful, the let construct
complains. Otherwise, E is extended with all bindings made during the matchings,
then the commands in the body are evaluated concurrently in the extended
environment. 1fthe evaluation of any of these commands complains, then the let

construct relays the complaint.

C.9.2 LABEL Expression

The label expression is introduced for convenience in denoting self-reference.
For example, wrapped around a create expression, it allows an actor t0 reference

itself with a locally-bound identifier. The label expression has the form
(1abe1 symbol expression)

It is essentially equivalent to the expression

(1et ((=symbol match (delay expression))) do
(reply symbol))

C.9.3 Interpretation of Command Bodies

As mentioned earlier, there are restrictions on the commands allowed or
required in command bodies, depending upon usage of the construct. If the

construct is used as a command, the commands allowed in the construct’s body are

149

the same as the commands allowed in the context in which the construct exists.
‘Thosc commands mean the same as they would if they had occurred in the context
in which the construct exists. This will become clear as we describe composite
constructs in more detail below. For example, in the command body of a
communication handler, we can have a become command, reply or complain
commands, and others. If one of our commands is a let construct, its command
body can contain exactly those commands which were allowed in the context in
which the let construct appeared. That s, it can contain a become command, reply
or complain commands, and more. The meaning of and restrictions on the
commands in its command body are the same as if those commands had appeared

instead of the let construct.

If the construct is used as an expression, there are different restrictions on the
commands which can appear in its command body, and reply and complain
commands have a different and special meaning. The evaluation of the construct
must include the evaluation of a single command which denotes the value of the
expression with a reply command, or which generates a complaint with a complain

command. These commands will be described below.

C.9.4 ONE-OF Construct

The basic decision-making construct in Act2 is the one-of construct. This has

the form, where the otherwise clause may be omitted at any stage:

(one-of ~
(if expression do commands)

(otherwise (if expression do commands)

i&iherwise ..0)))

When asked to evaluate itself, the construct concurrently evaluates the

150

expressions in its first set of arms {section D.9.2, page 179}, Of thosc returning an
actor behaving like the truth value true, one is chosen, and the body of commands
it guards is evaluated. If any of the expression evaluations complains, the construct
complains. If any of the expressions yields an actor which does not behave like a
truth value, the construct complains. If all expressions yield an actor behaving like
the truth value false: if there is an otherwise clause with another set of guards,
then the above process is rcpeat.éd; if there is no otherwise clause, the construct
complains. 1fabody of commands is chosen for evaluation and its evaluation causes
at least one unhandled complaint, then the one-of construct will relay the first

complaint it notices.

C.9.51F Construct

Act? provides a convenient construct for simple two-way decisions, the if

‘construct. It has the form

(if expression
(then do commands)
(e1se do commands))

As expected, this is simply a convenient form of writing

(one-of
(if expression do commands)
(if (— expression) do commands))

C.9.6 CASE-FOR Construct

Another composite construct is used for handling the result of evaluating an
(arbitrarily complex) expression. It allows the pattern-matching of the message
from the evaluation’s reply or complaint, followed by the evaluation of some body
of commands associated with the winning matcher. The match can involve binding

symbols to parts of the incoming message, which will be used in the evaluation of

151

the chosen body. The pattern-matching itself provides a form of decision-making.

The case-for construct has the form:

(case-for expression
response-handlers
(otherwise response-handlers
(otherwise ...)))

When asked to evaluate itself, it evaluates the expression, whose result will be
matched {section D.9.1, page 176}. This will result in either a reply or a complaint
communication with some message. Correspondingly, there are two types of
response-handlers, one for matching reply communications,

(is message-pattern do commands), and one for complaint communications,
(complaint message-pattern do commands). When a handler is involved in the
matching process, the following happens: if the type of communication is
incompatible, the match fails; otherwise, the expression denoting a pattern is
evaluated, yielding a pattern. If the evaluation complains, the whole construct
relays the complaint. Next, the pattern is asked to match the message from the

incoming communication.

The first set of response-hahdlers is checked concurrently for those capable of
handling the reply or complaint communication. The first one noticed which can
handle the communication is chosen, and the commands in its body are evaluated in
the evaluation environment for the construct extended with any bindings
established in the pattern-match. If all of these attempts at matching fail: if there is
an otherwise clause, the matching attempt is continued; if there is none, and the
communication being matched is a complaint, that complaint is relayed, otherwise a

standard complaint is generated.

152

C.10 Context-Sensitive Commands

Act2 provides a few commands whose meaning depends upon the context in
which they appcar. There are two major contexts in which commands appear: in
the bodies of composite expressions such as let, one-of, or case-for expressions (the
expression-body-context); and in the bodies of communication handlers in
expressions such as create or create-unserialized, which describe the behavior of

actors (the handler-body-context).

C.10.1 REPLY Command

The reply command represents the transmission of a specified reply
communication to some unspecified target. The target of the reply depends upon
the context in which the reply command occurs. The reply command has the form
(reply expression). When asked to evaluate itself, it asks the expression to
evaluate itself, then sends the result as a message in a reply communication to the
unspecified target {section D.8, page 174}. Examples of this will appear below.
Should the evaluation of the expression complain, that complaint is transmitted to
prevailing complaint-department instead. The target of the reply depends on the

context in which the reply command occurs.

If the reply command occurs in a handler-body-context, the behavior deper‘xds‘
upon the type of communication received. The reply command is intended to be
used only when handling request communications, which contain a customer and
complaint department. If this is the case, the reply will be sent to the customer. .
Should any problems occur in evaluation, the resulting complaint will be relayed td
the complaint department. In the event that the incoming request is not a request,
some implementation error exists, so a complaint is sent to the implementor of the

actor. For example, consider a strange-actor abstraction defined as

153

(define (new strange-actor)
(create

(is-request =m do (reply 3))

(is-complaint =m do (reply 4))))
If such an actor receives a request, it will transmit a reply with message 3 to the
customer included in the request. Notice that this customer is not mentioned
anywhere in the Act2 implementation of the actor. If such an actor receives a
complaint, the reply command, not having a customer to which to reply, will instead

complain of an implementation error.

If the reply command occurs in an expression-body-context, we think of the
evaluation of the command as occurring in response to a request for evaluation of
the expression. Therefore, the reply is sent to that request’s customer. Should a
complaint occur in the evaluation, it is relayed to the request’s complaint--
department, as usual. The net effect of this is that the reply command denotes the

-value of the expression. For example, consider the expression

(+ 6
(let ((=x match 3)
(=y match 4)) do

(reply (* x ¥))))
The let construct is used as an expression. The reply command in its body indicates
that the construct will reply with a 12 when asked to evaluate itself as an expression.

The + expression will therefore reply with a 17 when asked to evaluate itself as an

expression,

Exactly one reply or complain command must be encountered in the
evaluation of a composite expression’s body. If neither is evaluated, or more than

one is evaluated, then a complaint is generated.

154

C.10.2 coMPLAIN Command

The complain command is similar to the reply command, and has the form
(complain expression). Rather than sending a reply with the denoted actor as its
message, the complain command transmits a complaint containing it instead. In
essence, the complain command indicates that the evaluation of this expression

should result in a complaint.

C.10.3 BECOME Command

The become command may occur in the body of a communication handler in
an expression which creates an actor. We have already seen an example of this in
the account example {section 2.3, page 34}, reproduced below with the become

commands in bold italics.

(define (new account
(with balance =b))
(create ‘
(is-request (a balance) do (reply (a balance)))
(is-request (a deposit (with amount =a)) do
(become (new account (with balance (+ b a))})
(reply (a deposit-receipt (with amount a))))
(is-request (a withdrawal (with amount =a)) do
(1et ((=new-balance match (- b a))) do
(if (= new-balance 0)
(then do
(become (new account (with balance new-balance)))
(reply (a withdrawal-receipt (with amount a))))
(else do
(complain (an overdraft))))))))

It has the form (become expression), where expression denotes a replacement
actor. The become command may be evaluated when the actor accepts a
communication. When it is evaluated, it first asks the expression to evaluate itself.
If the expression evaluation complains, that complaint is relayed through the
become command. Otherwise, the actor changes its behavior such that it is

indistinguishable from the replacement actor resulting from the evaluation of the

155

expression in the become command. For more details, see {scction D.§, page 173}
and {section D.10.4, page 189}.

No more than one become command should be evaluated in the evaluation of
a handler body. Ifan attempt to do this is made, a complaint will be gencrated. The
become command is not permitted in an expression-body-context. If it does occur
there, a complaint will be generated. For example, the become command would be

inappropriate in a context such as

(+ 6 .
(let ((=x match 3)
(=y match 4)) do
(become (* x y))
(reply (* x ¥))))

If the actor was created with a new expression declared by a define expression
of the form (define (new ...) (create...)), the expression in a become
command in one of its handlers can specify values for some of the attributes, and
fillers for the rest will be derived from the actor itself. That is, only those attributes
which are different need be mentioned. For example, the new expression in the
become command below is equivalent to

(new checking-account (with balance ...) (with owner 0)):

(define (new checking-account (with balance =b) (with owner =0))
(create
(is-request (a deposit ...) do
(become (new checking-account (with balance ...)))

o))

156

C.11 Other Commands

C.11.1 CONCURRENT and SEQUENTIAL Commands

The concurrent and sequential commands have the form
(concurrent commands) and (sequential commands). Commands are normally
evaluated concurrently in Act2, so unless nested inside a sequential command, a
concurrent command serves only to group a set of commands into a single
command. This is useful in conjunction with the handle-complaints command,
which is described below. The net effect of a concurrent command is to cause the
concurrent evaluation of the commands it contains. The sequential command, on
the other hand, causes the commands to be evaluated sequentiaily, in order of
occurrence. If any of the commands in either should complain, then the sequential

or concurrent command simply relays the first complaint it notices.

C.11.2 HANDLE-COMPILAINTS Command

The case-for construct is useful for handling complaints generated in the
evaluation of an expression. It is'also useful to be able to handle complaints
generated in the evaluation of a command. The handle-complaints command does
exactly this. For example, if we wish to handle some of the complaints which might
arise in the body of a communication handler for some actor, we might define the

actor as

(define (new foo ...)
(create
(is-request ... do
(handle-complaints command
(complaint (a bar ...) do ...)
..l))
eee))

or if we wish to handle complaints from morc than one command, we can group

those commands with a concurrent command, as in

157

(defins (new foo ...)
(create
(is-request ... do
(handle-complaints (concurrent commands)
(complaint (a bar ...) do ...)

)
o))

It looks very similar to the case-for command. Rather than guarding an
expression, it guards a command. Rather than having both is and complaint
handlers, it has only complaint handlers, since commands do not rc.ply with a value.
Therefore, this command has the form, where any of the otherwise clauses may be

omitted:

(handle-complaints command
(complaint pattern do commands)

(otherwise (complaint partern do commands)

iéiherwise ...)))

If no complaints are generated by command the meaning of the
handle-complaints is the same as the meaning of command itself. If a complaint is
generated in the evaluation of command, then the behavior of the handle-complaints
is very similar to that of a case-for construct used as a command. Each set of

complaint hiandlers will be tried in turn.

C.11.3 USING-SPONSOR Construct

Act2 makes use of special actors known as sponsors for resource management,
in order to impose some control over parallel computation. Normally, users need
not bother with these, since the default policies for resource usage are adequate for
average use. Programmers desiring more control over resource usage by different
commands or expressions may make use of the using-sponsor construct. It has the

form (using-sponsor expression do commands).

158

All communications transmitted have a sponsor as an acquaintance. By
default, this sponsor provides the resources for the computation performed upon
acceptance of the communication. This sponsor can be bound to an identifier when

matching the communication, then used later in a using-sponsor construct.

When the construct is evaluated, it evaluates expression, which should denote
a sponsor. This sponsor is used to provide resources for the evaluation of
commands in the body of the construct. The using-sponsor construct will relay any

complaints generated in the evaluation of the expression or of the commands.

C.11.4 Comments

Comments can be inserted anywhere in Act2 code where separators such as
space characters or other white-space can occur. A comment begins with a semi-
colon (;) and ends with the next end-of-line character. Any sequence of characters

can occur between these.

C.12 Syntactic Extension

In Act2, user input is read in as list structure and symbols. Whatever is read in
is asked to parse itself as either an expression or a command, and is provided with
two special keyword environments. Symbols (and numbers) ignore the
environments and parse themselves directly, but a list or sequence will scan itself
from left to right, locking for a symbol which has been dec]ared_ as a keyword.

Mechanisms for declaring such keywords will be presented below.

Each keyword environment associates a symbol with an actor which parses
sequences. When a list or sequence is asked to parse itself as an expression, it scans

itself from lefL to right. Whenever it encounters a symbol, it looks that symbol up in

159

the expression-keyword environment. 1 the symbol is not a keyword, the scan
continues. Ifitis a keyword, the parser to which it is bound is asked to parse the

sequence.

Users share common parsing environments for the basic Act2 language
definition. In addition, each user’s environment has private environments for
personal extensions. These personal environments are bound to the identifiers,

standard-act2-expressions and standard-act2-commands.

The defexpression and defcommand expressions are included in Act2 for
convenient extension of these personal parsing environments. Syntactic extension is
meant less for casual users than for Janguage designers embedding new languages in
Act2.

C.12.1 DEFEXPRESSION Expression

The defexpression expression has the form (defexpression symbol exp).
When asked to evaluate itself, the expression proceeds with the evaluation of exp,
which should be an expression denoting or creating an actor which will parse a
sequence identificd with the symbol. It then asks the default expression-keyword
environment to extend itself with a mapping from the symbol to the parser. If any
unhandled complaints are generated in these attempts, they are relayed as the

response from the evaluation of the defexpression.

Here is an example of the use of defexpression to declare a new kind of
expression with the form (delay expression), which will provide a lazy evaluation
capability. When evaluated, the delay expression will return immediately with a
newly created de1ay actor, without evaluating expression. 1f and when the delay

actor is ever sent a communication, the delayed expression will be evaluated, and the

160

result will be sent the coinmunication,

Here we establish the expression keyword, and install an appropriate parser.
The full implementation of the parser is shown, to illustrate the various messages
which get passed around. In practice, there would be a set of parameterized parser
abstractions available, and only a simple instantiation of one of them would be
required.
(defexpression delay
(create
(is-requast (an expression-parse
(with source =src)
(with expression-keywords =ek)
(with command-keywords =ck))
do
(case-for src
(is ['delay =exp] do
(reply
{(new delay-expression
(with arg
(ask exp (a parse-yourselif-as-expression

(with expression-keywords ek)
(with command-keywords ck)})))))))))

Here is an implementation of an abstract syntax actor abstraction for

representing delay expressions, .

161

(defina (new dolay-exprossion (with arg =exp))

(creats
(is-roquest (an expression-aval (with environment =env)) do
(reply
(create ;; a serializer representing the evaluated expression.

(is-communication =com do
;s 1f it ever gets a communication,
;s we should eval the expression in original environment.

(case-for (ask exp (an expression-eval
(with environment env)))

{is =value do ;3 if the evaluation succeeds:
(send-to value com) ;; send the communication to it, and
:; become the result, so future communications go
;3 directly to it.

(become value))
(complaint =reason do ;; if the evaluation fails:

(complain reason) ;s relay the complaint, and
i; become something that will complain in the same way
;3 to any further communications.

(become (create-unserialized
(is-comnunication =x do

(complain reason))))))))))))

Here is a simple example of the creation of an expression,

(prevailing-environment), whose value is the current environment, in which the

expression itself is evaluated. A single actor serves both as parser and as abstract

syntax.
(defexprassion prevailing-environment

(1abel =self
(create-unserialized
(is-request (an expression-parse) do (reply self))
(is-request (an expression-eval
(with environment =e))

do (reply e)))))

C.12.2 DEFCOMMAND Expression

The defcommand expression is identical to the defexpression expression,

except that it establishes a new command keyword, rather than a new expression

keyword.

162

Appendix D

A Meta-Circular Description of Act2

This appendix contains a meta-circular description of Act2. It consists of Act2
implementations of abstract syntax objects representing the expressions and
commands in Act2. Our preliminary Scripter implementation of Act2 was very

closely patterned after this description.

To save typing space, an expression of the form (evaluate exp env) was
introduced. It means exactly the same as

‘(ask exp (an expression-eval (with environment env))).

This description relies on some aspects of Act2 which increase the conciseness
of the code. For example, the evaluation of an expression will directly relay a
complaint in the evaluation of one of its sub—expressions. Unhandled
communications will result in a complaint. These and similar cases are explicitly

included in the Scripter imp]eme'ntation.

D.1 Primitive Actors

Primitive actors are implemented in cooperation with the underlying apiary.
They are represented directly as the corresponding Lisp objects. Primitive scripts
are associated with each category of primitive actors. Their meta-circular

descriptions are simply a high-level representation of their behavior.

Numbers include integers and reals, both positive and negative. They are

represented by Lisp fixnums, flonums, and bignums,

163

(define (new mamber-expression (with value =v))
(1abel self
(create-unserialized
(is-request (an expression-eval) do (reply v))
(is-request (a match (with bindings =b) (with object =o0)) do
(case-for o
(is self do (reply (a successful-match (with bindings b))))
(otherwise (is somathing do (reply (a failed-match))))))
(is-request (a zerop) do (reply (= v 0)))
;3 similariy: plusp miausp oddp minus abs 1+ 1- fix float
(is-requost (a + (with operand =x)) do (reply (+ x v)})
iy similarly: = > >= < <= max min - * // remainder gcd

<))

Symbols serve as keywords and identifiers in Act2. In the underlying
implementation, T also represents the logical value of truth, and NIL represents the

logical value of falsity. NIL also serves as an empty list.
(define (new Symbol-expression (with symbol =s))
(1absl self
(create-unserialized

(is-request (an expression-eval (with environment =env)) do
(reply (ask env (a Tookup (with symbol s}))))
(is-request (an instal) (with creation-expression =ce)
(with environment =env)) do

(case-for (ask ce (an expression-eval (with environment env)))
(is =v do

(reply (ask env (a grow (with symbol s) (with value v)))))))

A sequence represents an ordered collection of actors. It can be used as a

pattern, with bind-expressions for elements. By default, sequences are represented
as Lisp lists.

164

(define (new scquernce (with first =f) (with rest =r))
(create-unserialized
(is-request (=eval which-is (an expression-eval)) do
(reply (new sequence (with first (ask f eval))
{(with rest (ask r eval)))))
(is-request (a first) do (reply f))
(is-request (a rest) do (reply r))
(is-request (a length) do (reply (+ 1 (ask r (a length)))))
(is-request (a match (with bindings =b) (with object =o0)) do
(case-for o
(is (a sequence (with first =o1) (with rest =or)) do
(case-for (ask f (a match (with bindings b) (with object o1)))
(is (a successful-match (with bindings =b)) do
(reply (ask r (a match (with bindings b)
(with object or)))))
(otherwise (is something do (reply (a failed-match)))
(complaint something do (reply (a failed-match))))))
(otherwise (is something do (reply (a failed-match))))))
e))

D.2 Simple Expressions

The quote expression simply prevents the parsing and evaluation of an

expression,

;i expression: (quote expression)
(define (new quote-expression (with source =s))
(create-unserialized

(is-request (an expression-eval) do (reply s))

)

The ask expression represents the sending of a request to some target, and the
receipt of a response. It looks to the programmer like a two-way communication

exchange.

; expression (ask largel message)

(define (new ask-expression
(with target =t)
(with message =m))

(create-unsarialized
(is-request (=eval which-is (an expression-eval)) do
(reply (ask (ask t eval) (ask m eval))))
-er))

A convenient expressional notation is provided for primitive operations, such

as addition. subtraction, and conjunction. A simpie protocol is used, so these

165

operations are all represented with the same ae abstract syntax object.

; expression: (+12) (1 +2) ...

(define (new binary-operator
(with opsrator =op)
(with 1hs =1eft)
(with rhs =right))

(create-unserialized

(is-request (=eval which-is (an expression-eval)) do
(reply (ask (ask left eval)
(an op (with operand (ask right eval))))))
)]

The delay cxpression provides the ability to perform lazy evaluation on

demand.

(define (new delay-expression
{(with expression =exp))
(create-unserialized
(is-request (=eval which-is (an expression-eval)) do
(reply
(create
(is-communication =com do
(case-for (ask exp eval)
(is =value do
(send-to value com)
{become value))
(complaint =msq do
(complain msg)
{become
(create-unserialized
(is-communication something do

(complain msg))))))))))))

D.3 Variable Binding

Act2 has a few special expressions for use as patterns. One is for binding an
identifier to the corresponding actor in the object of the match. Others put

restrictions on the actors which can be bound.

The bind expression is used as a pattern, to bind an identifier to the actor it is
supposed to match. 1If the identifier has not been bound during the match, or if it
has been bound to the same actor as the one being matched, the match succeeds.

Otherwise, the match must fail. -

166

; expression: "=x", "(bind x)"
(define (new bind-cxpression (with symbol =s))
{(1abel self
(create-unserialized
(is-request (an expression-eval) do (reply self))
(is-request (a match (with bindings =b) (with object =o0)) do
(case-for (ask b (a lookup (with symbol s)))
(complaint =m do
(reply (a successful-match
(with bindings
(ask B (a grow
(with symbol s)
(with value 0}))))))
(is =v do (case-for o
(same v do (reply (a successful-match (with bindings b))))

(otherwise do (reply (a failad-match)))))))
-))) ‘

The which-is expression is usually used to place restrictions on what a bind
expression can match. Essentially, the which-is expression is a binary conjunction

operator for descriptions.

; expression: "(which-is =x PATTERN)"
(define (new which-is-expression (with 1hs =1) (with rhs =r))
(create-unserialized
(is-request (= which-is (an expression-eval)) do
(reply (new which-is-expression (with 1hs (ask 1 eval))
(with rhs (ask r eval)))}))
(is-request (a match (with bindings =b) (with object =o0)) do
* (case-for (ask 1 (a match (with bindings b) (with object 0)))
(1s (a successful-match (with bindings =b1)) do
(repiy (ask r (a match (with bindings b1) (with object 0)))))
(otherwise (is something do (reply (a failed-match))}))))
)]

The such-that expression provides another way to filter a pattern-match. It
provides a description to match, as usual. It also provides a predicate which decides

whether or not to let the match succeed after the match with the description has

succeeded.

167

(define (new such-that-expression
(with description =d)
(with predicate =p))
{(create-unserialized
(is-request (=eval which-is (an expression-eval
(with environment =env))) do
(let ((=desc match (ask d eval))) do
(create-unserialized
(is-request (=msg which-is (a match
(with bindings =b)
(with object =o0))) do
(case-for (ask desc msg)
(is (a failed-match) do (reply (a failed-match)))
(is (=result which-is (a successful-match

(with bindings =b))) do

(if (evaluate p (new environment

(with primary b)
(with secondary env)))
(then do (reply result))
(else do (reply (a failed-match))})))))))))

D.4 Abstraction

Act2 has a single abstraction mechanism. There are two aspects of the

abstraction mechanism: definition of an abstraction and instantiation.

The define expression is for defining a new abstraction. The expression
contains a template (or "pattern’) characterizing a set of new expressions, and

another expression which denotes a meaning for those new expressions.

; expression: (define creation-template absiracted-expression)
(define (new define-expression
(with creation-template =t)
(with abstracted-expression =ce))
(creoate-unserialized
(is-request (an expression-eval (with environment =e)) do
(reply (ask t (an install
(with expression ce)
(with environment e))))

-2))

The new expression is for instantiating abstractions.

168

(define (new new-expression
(with concept =¢)
(with attribute-sequence =as))
(create-unserialized
(is-request (an install (with expression =ce)
(with environment =e)) do
(case-for (ask e (a lookup (with symbol c)))
(is (=ad which-is (an atomic-description)) do
(reply (ask ad (an install-implementation
(with environment e)
(with expression ce)
(with pattern
(evaluate (new instance-description
(with concept c)
(with attribute-sequence as))

&N

(is-request (=eval which-is (an expression-sval)) do
(case-for (ask ¢ eval)
(is (=ad which-is (an atomic¢c-description)) do
(case-for (ask ad (a summarize-implementation))
(is (an installation (with environment =el)
(with expression =cel)
(with pattern =cp1)) do
(1et ((=state match
13 There's actually a bit more to it than this,
(ask (new instance-description
(with concept ¢)
(with attribute-sequence as))
eval)))
do
(case-for (ask cpl (a match
(with bindings (new empty-layer))
(with object state)))
(is (a successful-match (with bindings =b)) do
(reply (ask cel
(an expression-eval
(with environment
(new environment
(with primary b)
(with secondary el)))
(with pattern cpl)

(with state state))))))))))))
)

169

D.5 Extending Listener’s Environment

The defname expression is used to associate a name with the result of

evaluating an expression, at the top level listener.

(define (new defname-expression
(with symbol =sym)
(with expression =exp))
(create-unserialized
(is-request (=eval which-is (an expression-eval
(with environment =e))) do
(reply (ask e (a grow
(with symbol sym)
(with value (ask exp eval))))))))

The defconcept expression is for extending the prevailing environment with a

new concept. It is meant to be used at top level, from a listen-loop.

(define (new defconcept-expression (with symbol =s))
(1abe) self
(create-unserialized
{is-request (a expression-eval (with environment =e)) do
(Tet ((something match
(ask e (a grow
(with symbol s)
(with value (new concept (with name s))))))) do
(reply s))))))

D.6 Creating Instance Descﬁptions

An a or an expression represents the creation of an instance description. Its
evaluation involves the evaluation of the concept and attribute fillers, followed by

the creation of an instance description.

170

; expression "(an automobile (with color red))"
(define (new a-cxpression
(with concept =c)
(with attribute-sequence =as))
(1abel self
(create-unserialized
(is-request (=eval which-is (an expression-eval)) do
(reply (new instance-description
(with concept (ask c eval))
(with attribute-sequence
(new eval-attribute-sequence
(with attribute-sequence as)
(with eval-message eval))))))
-+)))

This abstraction evaluates a sequence of attributes from an a-expression, for

creating an instance description.

(define (new eval-attribute-sequence
(with attribute-sequence =as)
(with eval-message =eval))
(case-for as
(is [] do (reply [1))
(is (a sequence (with first =f) (with rest =r)) do
(reply (a sesquencse
(with first (new sval-attribute
(with attribute f)
(with eval-message eval)))
(with rest (new eval-attribute-sequence
(with attribute-sequence r)
(with eval-massage eval))))))))

This abstraction evaluates a single attribute. An attribute is represented as a
sequence of three elements: the kind, the relation, and the filler. It is evaluated by

evaluating its filler.

(define (new eval-attribute
(with attribute =a)
(with eval-message =eval))
(case-for a
(is [=kind =relation =fillor] do
(reply [kind relation (ask filler eval)]))))

171

D.7 Creating Actors

The create expression is for creating actors with specified behaviors. Here, we
give a single implementation, of serializers. An implementation of create-
unscrialized would be almost identical. Expressions for creating actors whose

internals arc visible for pattern-matching also have a very similar implementation.

(define (new create-expression
(with handler-groups =hgs))
(create-unserialized
(is-request (=eval which-is
(an expression-eval (with environment =e))) do
(reply
(new serializer
(with environment e)
(with descriptor
(case-for eval
(is (an expression-aval (with pattern =p)) do
(roply (ask p (a make-descriptor (with environment 8)))))
(otherwise (is something do (reply (a something))))))
(with state
(case-for eval
(is (an expression-eval (with state =s)) do
(reply s))
(otherwise (is something do (reply (a2 something))))))
(with behavior
(new serializer-behavior
(with handler-groups
(new eval-handler-group-patterns
(with handler-groups hgs)
(with environment e)})))))))

)

This abstraction ripples down the groups of communication handlers in a
create expression, calling on eval-handler-sequence-patterns to evaluate the patterns.
The structure of a create expression is similar to the structure of case-for and one-of
constructs. Communication handler groups are represented as a sequence of
handler groups. A handler group is represented as a sequence of handlers. A
handler is represented as a scquence containing three elements: a keyword
indicating the significance of the pattern, a pattern, and a sequence of commands

comprising the body.

172

(define (new cval-handler-group-patterns
(with handler-groups =hgs)
(with environment =e))
(case-for hs
(1s [1 do (reply [1))
(is (a sequence (with first =f) (with rest =r)) do
(reply (a sequence
(with first (new eval-handler-sequence-patterns
(with handler-sequence f)
(with environment e})))
(with rest (new eval-handler-group-patterns
(with handler-groups r)
(with environment e})))))))

This abstraction ripples down a sequence of communication handlers,

evaluating the patterns.

(define (new eval-handler-sequence-patterns
(with handler-sequence =hs)
(with environment =e))
(case-for hs
(is [] do (reply (1))
(is (a sequence
(with first [=keyword =pattern =body])
(with rest =r))
do
(reply (new sequence
(with first [keyword (evaluate pattsrn e) body])
(with rest (new eval-handler-sequence-patterns
(with handler-sequence r)
(with snvironment 8)))))}))

D.8 Simple Commands

The become command designates a replacement for an actor, and causes the

actor to become indistinguishable from its replacement.

; command: "(becoms ...)"
(define (new become-command (with replacement-actor =r))
(create-unserialized
(is-request (a command-eval
(with environment =e)
(with state =s)) do
{reply (a becoms-offect
(with replacement-actor
(ask r (an expression-eval
(with environment e)
(with default s)})))))
)

173

The send-to command causes a communication 1o be sent to some target. ‘The

reply-to and complain-to commands are implemented in a very similar manner.

; command: "(send-to T C)", "(reply-to T M)", "(complain-to T M)"
(define (new send-to-command (with target =t) (with communication =c))
{create-unserialized
(is-request (a command-eval (with environment =e)) do
(case-for (evaluate t @)
(is =target do
(case-for (evaluate ¢ @)
(is =com do
(send-to target com)
(reply (a completed-command-effect)))
{(complaint =m do
(complain-to targst m)

(reply (a completed-command-effect)))))))
ves))

The send command causes a reply to be sent to some default customer or a
complaint to be sent to some default complaint-department. The reply and

complain commands are implemented in a similar manner.

; command: "(send ...)", "(reply ...)", "(complain ...)"
(define (new send-comma (with communication =com))
(create-unserialized
(is-request (a command-eval
(with environment =e)

(with communication =c)) do
(case-for ¢

(is (a reguest
(with customer =cus)
(with complaint-department =cd)) do
(case-for (evaluate com o)
(is (=r which-is (a reply)) do
(reply (a send-effect
(with communication r)
(with target cus))))
(is (=r which-is (a complaint)) do
(reply (a send-effect
(with communication r)

(with target cd))))))))
)

174

D.9 Composite Constracts e i e,

D.9.1 Case-for Construct

fiot _‘Wevaluanoﬁ dfan

$ fg key;pbrd ficm mhat}, a pmw and a

ﬁi} 1%&3’? -

1

(dafine (new casc-for-constrict (with test-expression =te)
(with handlier-groups =hgs))
(create-unserialized
(is-request (a command-eval
(with environment =se)
(with communication =c¢)
(with state =s)) do
(case-for (new find-case-for-body-from-expr (with test-expression te)
(with handler-groups hgs)
(with environment e))
(is (a found-case-for-body (with body =b) (with environment =e)) do
(reply (new eval-command-segquence (with command-sequence b)
(with environment e)
(with communication ¢)
(with state s))))
(is (a could-not-find) do
(case-for ¢)
(is (a complaint) do (send c))
(is (a reply) do
(complain (an unmatched-reply (with reply c))))))))
(is-communication (=com which-is ‘
(a request
{with message
(an expression-eval
(with enviroament =e))))) do
(case-for (new find-case-for-body-from-expr (with test-expression te)
(with handler-groups hgs)
(with environment e))
(is (a found-case-for-body (with body =b) (with environment =e)) do
(reply (new eval-axprossion-body
(with command-sequence b)
(with environment e)
(with communication com)
(with state (ask com (a descriptor))))))
(complaint (a could-not-find (with communication =c)) do
(case-for ¢
(is (a compiaint) do (send c))
(is (a reply) do
(complain (an ummatched-reply (with reply ¢))))))))
eed))

This abstraction evaluates the test expression in the case-for construct, then

sets up find-case-for-body to do the rest of the work.

176

(define (new fiiul-casc-for-body-from-expr
(with test-expression =ta)
(with handisr-groups =hgs)
(with environment =env))
(case-for (evaluate te env)
(is =v do
(reply (new find-case-for-body
(with keyword 'is)
(with message v)
(with handler-groups hgs)
(with environment env))))
(complaint =m do .
(reply (new find-case-for-body
(with keyword 'complaint)
(with message m)
(with handler-groups hgs)
(with environment env))))))

This abstraction ripples down the sequence of handler groups, sequentially
trying each for a match. Each handler group corresponds to a set of handlers nested

in an otherwise clause.

; for each handler in 'hs: eval pattern, try to match, return body and env.
(define (new find-case-for-body
: (with keyword =k)
(with message =m)
(with handler-groups =hgs)
{with snvironment =env))
(case-for hgs
(is [] do (reply (a could-not-find)))
(is (a sequence (with first =f) (with rest =r)) do
(case-for (new find-case-for-body-1
(with keyword k)
(with message m)
(with handler-sequence f)
(with environment env))
(is =x do (reply x))
(is (a could-not-find) do
(reply (new find-case-for-body
(with keyword k)
(with message m)
(with handler~-groups r)
(with environment env))))))))

This abstraction ripples down a handler group [a scquence of handlers],
looking for a matching handler. Specifications state that these patterns are checked
concurrently. This can be achieved in a concrete implementation by eagerly

evaluating recursive calls of this abstraction.

177

(define (new fird-case-for-body-1
(with keyword =k)
(with message =m)
(with handler-sequence =hs)
: (with environment =env))
(case-for hs
(is [] do (reply (a could-not-find)))
(is (a sequence
(with first [=keyword =pattern =body])
(with rest =r)) do
(if (= keyword k)
(then do
(case-for (ask (evaluate-pattern env)
(a match .
(with bindings (new empty-layer))
(with object m)))
(is (a successful-match (with bindings =bin)) do
(reply (a found-case-for-body
(with body bod)
(with environment
(new environment
(with primary bin)
(is (a failod " d (with secondary env)}))))
is (a failed-matc 0
(reply (new find-case-for-body-1
(with keyword k)
(with message m)
(with handler-sequence r)
(with environment env)))})))
(else do
(reply (new find-case-for-body-1
(with keyword k)
(with message m)
(with handler-sequence r)
(with environment env)))))

D.9.2 One-of Construct

The one-of construct is a very flexible and general construct for making

decisions based on Boolean predicates. It is similar in structure to the case-for and

create expressions. It is represented as a sequence of arm groups, each of which is a

sequence of arms. The arm groups are tried sequentially, looking for one whose

predicate yiclds truth. The arms in each arm group are specified as being tried

concurrently. Each arm consists of a predicate and a command sequence which

serves as the body.

178

(define (new onc-of-construct (with arm-groups =ags))
(1abel self
(create-unserialized
(is-request (a command-eval

(with environment =e)
(with communication =c¢)
(with state =s)) do

(reply (new eval-command-sequence
(with command-sequence
‘ (new find-one-of-body (with arm-groups ags)

(with environment e)))
(with environment e)
(with communication c)
(with state s))))
(is-communication
(=com which-is
(a request (with message
(an expression-eval (with environment =e)))))

do

(reply (new eval-expression-body
(with command-sequence

(new find-one-of-body
(with arm-groups ags)
(with environment e)))

(with environment e)
(with communication com)
(with state (ask com (a descriptor))))))

-+)))

This abstraction ripples sequentially down the sequence of handler groups,

calling find-one-of-body-1 on each group, until a body is found.
(define (new find-one-of-body

(with arm-groups =ags)
(with environment =env))
(case-for as
(is [] do (complain (a not-found)))
(is (a sequence (with first =f) (with rest =r)) do
(case-for (new find-one-of-body-1
(with arm-sequence f)
* (with snvironment env))
(is =b do (reply b))
(complaint (a not-found) do
(reply (new find-one-of-body
(with arm-groups r)
(with environment env))))))))

This abstraction ripples down an arm group, which is represented as a
sequence of arms, looking for an arm whose predicate yields truth. An arm is

represented by a sequence with two elements: a predicate and a command

179

sequence.
(define (new find-one-of-body-1
(with arm-sequence =as)
(with environment =env))
(case-for as
(is [] do (complain (a not-found)))
(is (a sequance
(with first [=predicate =body])
(with rest =r)) do
(if (evaluate predicate env)
(then do (reply body))
(else do (reply (new find-one-of-body-1
(with arm-sequence r)
(with environment env))))))))

D.9.3 Let Construct

The let construct provides a general way to perform a number of pattern-
matches, then evaluate some commands using any bindings which resulted in the
matches. A degenerate, but very useful, case of this is simply binding an identifier
to the result of an expression. The group of matchers in a let construct are
represented as a sequence of matchers. Each matcher is represented as a sequence

containing two elements: a pattern for the match and an object for the match.

180

.

(define (new let-construct
(with matcher-sequance =ms)
(with hody =b))
(1abel self
(create-unserialized
(is-request (a command-eval
(with environment =e)
(with communication =c)
(with state =s)) do
(reply (new eval-command-sequence
(with command-sequence b)
(with environment
(new environment
(with primary -
(new process-matcher-sequence
(with matcher-sequence ms)
(with bindings (new empty-layer))
(with environment e)))
(with secondary e)))
(with communication c)
(with state s))))))
{is-communication
(=com which-is
(a request (with message
(an expression-eval (with environment =e}))))
do
(reply (new eval-expression-body
(with command-sequence b)
(with environment
(with primary
(new process-matcher-sequence
(with matcher-sequence ms)
(with bindings (new empty-layer))
(with environment e)))
(with secondary e))
(with communication com)
(with state (ask com (a descriptor))))))))

-+)))

This abstraction ripples down the sequence of matchers, performing each
match. 1f successful, it replies with a layer of bindings established during the

matching.

181

(define (new process-mutcher-sequence
(with matcher-sequence =ms)
(with bindings =b)
(with environment =env))
(case-for ms
(is [] do (reply b)))
(is (a sequence
(with first [=pattern =object])
(with rest =r)) do
(case-for (ask (evaluate pattern env)
(a match
(with bindings b)
(with object (evaluate object env))})
(is (a failed-match) do (complain (a cannot-match)))
(is (a successful-match (with bindings =b)) do
(reply (new process-matcher-sequence
(with matcher-sequence r)
(with bindings b)
(with environment env)))))))

D.9.4 Other Constructs

The if construct can be implemented as a syntactic extension of Act2, or can
be implemented in a way similar to the implementation of one-of. An if construct of

the form

(if predicate
(then do then-commands)
(else do elsc-commands))

has the same meaning as a one-of construct of the form

(one-of
(if predicate do then-commands)
(otherwise (if true do else-commands)))

The label expression can also be implemented either directly, or as a syntactic
extension. A label expression of the form (1abel symbol expression) has the same

meaning as a let expression of the form

(1et ((=symbol match (delay expression))) do
(reply symbol))

Notice the presence of the delay expression, to postpone the evaluation of the

expression. This is necessary, since the expression can refer to its own value.

182

D.10 Subsidiary Abstractions

D.10.1 Environments and Layers

Environments are composed of layers. The top laver of each environment can
be grown with new bindings of symbols to values. Therefore, environments are
serialized. Layers are unserialized, for speed. The top layer of an environment is

called its primary layer. Each environment also has a secondary environment.

(define (new environment
(with primary =pe)
(with secondary =ss))
(create
(is-request (a grow (with symbol =s) (with value =v)) do
(let ({=x match (naw environment
(with primary
(ask pe (a grow
(with symbol s)
(with value v)}))
(with secondary =se))))
do (become x) (reply x)))
(is-requast (a lookup (with symbol =s)) do
(case-for (ask pe (a lookup (with symbol s)))
(is =value do (reply value))
(complaint =message do
(reply (ask se (a lookup (with symbol s)))))))
{is-request (=msg which-is (a present (with symbol =s))) do
(reply (or (ask ps msg) (ask se msg))))
vee))

In order to implement layers, we need to implement empty layers which
accept the same communications as layers and environments. An empty layer has

no bindings, and replies with a layer when asked to grow.

(define (new empty-layer)
(1absl self
(create-unserialized
(is-request (a grow (with symbol =s) (with value =v))‘do
(reply (new layer
(with symbol s)
(with value v)
(with next seif))))
(is-requost (a lookup (with symbol =s)) do
(complain (a missing-binding (with symbol s))))
(is-request (a present) do (reply false))

)

183

A layver is an unscriatized collection of bindings of symbols to values. It can be

implemented as a recursive data structure, as shown here.

(define (new hlyer
(with symbol =s)
(with value =v)
(with next =n))
(1abel self
(create-unsertalized
(is-request (=msg which-is (a lookup (with symbol =sym))) do
(if (= s sym)
(then do (reply v))
(else do (reply (ask n msg)))))
(1s-request (=msg which-is (a present (with symbol ::sym))) do
(if (= s sym)
(then do (reply truse))
(else do (reply (ask n msg)))))
(is-request (a grow (with symbol =sym) (with value =val)) do
(reply (new layer
(with symbol sym)
(with value val)
(with next self))))

)

D.10.2 Atomic Descriptions

The friendly interface to atomic descriptions is through the concept
abstraction. It allows a programmer to create an atomic description by providing

only its name.

(define (new concept (with name ._n))
(reply
(new atomic-description

(with name n)
(with encryption-id (new encryption-id))
(with description-stuff (new description-stuff))
(with impliementation-stuff (new implementation-stuff))
(with creation-stuff (new creation-stuff)})))

The full detail of atomic descriptions is managed by the atomic-description
abstraction. Each atomic description has a name, which is a symbol used mostly for
identification by humans, as well as an encryption-id, which is a unique
discriminator used to distinguishvbetween independently-created atomic

descriptions. In addition, atomic descriptions have room for installing description-

184

lattice information (description-stufl), for installing implementation information
(implementation-stuff), and for aiding in bottoming out instance descriptions
(creation-stuff). The details of the latter are not important for this level of
description. The atomic description itself is unserialized, but has some serialized

acquaintances, such as implementation-stulf.

(define (new atomic-description
(with name =nam)
(with encryption-id =eid)
(with description-stuff =des)
(with implementation-stuff =imp)
(with creation-stuff =cre))
(1abel self a
(create-unserialized
(is-request (a match (with object =o) (with bindings =b)) do
;: eventually match will be done with a low-level comparison of 'eid.
13 'eid is a unique encryption id associated with an atomic
;;description when it 1is created with a (defconcept).
(one-of
(if (identical self o) do
(reply (a successful-match (with bindings b))))
;: should eventually let description-system have a crack at it.
(otherwise do (reply (a failed-match)))))
(is-request (a converse-match ...) do ...)
(is-request (=msg which-1is
(an instali-implementation
(with environment =s)
(with creation-pattern =cp)
(with creation-expression =ce))) do
(reply (ask imp msg)))
(is-request (=msg which-is (a summarize-implementation)) do
(reply (ask imp msg)))

When a define is evaluated, implementation information usually gets installed
in an atomic description as a result. It is in the implementation acquaintance that
this information is installed. This actor must be serialized, so redefinitions can

OCCur.

185

(define (new implementation
(with expression =exp)
(with envirocnment =env)
(with pattern =pat))
(create
(is-request (an install-implementation
(with expression =expl)
(with environment =envl)
(with pattern =patl)) do
(become (new implementation
(with expression expl)
(with environment envl)
(with pattern pat1)))
{(reply (a completion-report)))
(is-request (a summarize-implementation) do
(reply (an installation
(with expression exp)
(with environment env)
(with pattern pat))))

)

The implementation-stuff abstraction is a trivial interface to the
implementation abstraction. It is used to create an initial, null implementation. This
‘implementation simply complains that the abstraction does not yct have an

implementation.

(define (new implementation-stuffy
(new implementation

(with expression

(function

(1et ((something match 1)) do
(complain (an unimplemented-abstraction)))))

(with environment (new empty-layer))
(with pattern (a something))))

D.10.3 Instance Descriptions

The instance-description abstraction implements instance descriptions for
Act2. An instance description is represented as a concept and a-sequence of
attributes. Each attribute is represented as a sequence containing three elements:

the attribute kind, the attribute relation, and the attribute filler.

186

.

(define (new instance-description
(with concept =c)
(with attribute-sequence =as))
(1abel self
(create-unserialized
(is-request (a match (with bindings =b) (with object =0)) do
(reply (ask o (a converse-match
(with pattern (an instance-description
(with concept c)
(with attributes as)))
(with bindings b)))))
(is-request (a converse-match
{(with pattern -
(an instance-description
(with concept =c¢1)
(with attributes =as1)))
(with bindings =b))
do ;: try to match self with instance-pattern.
(if (identical ¢ ci)
(then do
(reply (new match-attributes
(with patterns asl)
(with objects as)
(with bindings b))))
(el1se do (reply (a failed-match)))))
(is-request (a make-descriptor (with environment =e)) do
(reply (new instance-description
(with concept ¢)
(with attribute-sequence []))))

)

This abstraction matches the attribute-sequences from two instance

descriptions.

187

(define (new murtch-atuibutes

(with patterns =ps)

{(with objects =os)

(with bindings =b))

(case-for ps
(is [] do (reply (a2 successful-match (with bindings b))))
(is (a sequence
(with first [=kind =relation =filler])
(with rest =res))
do ;; try to find a matching attribute in os.
{case-for (new match-attribute-in-sequence
(with kind kind)
(with relation relation)
(with filler filler)
(with objects os)
(with bindings b))
(1s (a successful-match (with bindings =b)) do
(reply (new match-attributes
(with patterns res)
(with objects os)
{(with bindings b))))
(otherwise (is something do (reply (a failed- match))))))))

ThSabﬁnmﬁonanmnpmtonundla&&nmﬂkdpaumnauﬁbuwtoan

attribute in a sequence of object attributes.

(define (new match-attribute-in-sequence

(with kind =k)

(with relation =r)

(with filler =f)

(with objects =os)

(with bindings =b))

(case-for os
(is [] do (reply (a failed- match)))
(is (a sequence (with first [=k1l =r1 =f1])
(with rest =res))
do ;; try to find a matching attribute in os.
(one-of
(if (identical r r1) do ;; found relation, now try to match filler.
(reply (ask f (a match (with bindings b) (with object f1)))))
(otherwise (if true do ;; keep looking for relation.
(reply (new match-attribute-in-sequence

(with kind k)
(with relation r)
(with filler f)
(with objects res)
(with bindings b)))))))))

188

D.10.4 Serializers .

This abstraction represents serialized actors. The implementation of

unserialized actors resembles this.

(define (new serializer
(with descriptor =d)
(with state =s)
(with behavior =b)
(with environment =ce))
(1abel self :
(create
(is-communication =com do
(send-to b (a process-communication

;s the incoming communication:

(with communication com)

i+ the creation environment:

(with environment ce)

;+ the actor's "type":

(with descriptor d)

;3 a description of the actor, including internals.

(with state s)

;3 the actor itself:

(with self self)))))))

This abstraction represents a serializer’s behavior, or script.

(define (new serializer-behavior
(with handler-groups =hgs))
(creats
(is-request (a process-communication
(with communication =com)
(with environment =ce)
(with descriptor =d)
(with state =s)
(with self =self))
do
(case-for (new sval-matching-handler
(with handler-groups hgs)
(with descriptor d)
(with state s)
(with environment ce)
(with communication com)
(with self self))
(is (a become-effect (with replacement-actor =ra)) do (become ra))
(otherwise
(is something do)
(complaint (a no-match) do
(complain (a rejected-communication (with communication com)))))))))

When an actor accepts a communication, it calls this abstraction to find a

189

handler for the communication and evaluate the corresponding body.

(define (new eval-matching-handler
(with handler-groups =hgs)
(with descriptor =d)
(with state =s)
(with environment =ce)
(with communication =com)
(with self =me))
(case-for hgs
(is [] do
(reply (new try-default-handlers
(with descriptor d)
(with communication com)
(with state s)
(with self me))))
(1s (a sequonce (with first =f) (with rest =r)) do
(case-for (new find-and-evai-winning-handler
(with handler-sequence f)
(with environment ce)
(with communication com)
(with state s))
(is =x do (reply x))
(complaint (a no-match) do
(case-for (new try-default-handlers
(with descriptor d)
(with communication com)
(with state s)
(with self me))
(is =x do (reply x))
(complaint (8 no-match) do
(reply (new eval-matching-handler-without-defaults
(with handier-groups r)
(with descriptor d)
(with state s)
(with environment ce)
(with communication com)

(with self me))))))))))

This abstraction implements default handlers for all actors. These handle

communications such as requests to match, converse-match, and print.

190

(define (new liyv-defuult-hundlers
(with descriptor =d)
(with communication =c¢)
(with state =s)
(with self =me))
;s should be able to write these as user code.
(case-for ¢
(is (a request (with message (a match
(with object =o)
(with bindings =b)))
(with customer =cus))
do ;; need to be same actor as me for a match.
(one-of
(if (identical me o) do
(reply-to cus (a successful-match (with bindings b))))
(otherwise do (repiy-to cus (a failed-match)))))
(is (a request)
(with message (which-is =m (a converse-match)))
(with customer =cus))
do ;; This match is really a type-check, so let descriptor try.
(reply-to cus (ask d m))) :
(otherwise (is something do (complain (a no-match))))))

This abstraction is similar to eval-matching-handler, but is for those handler
groups appearing after the first. The difference is that this abstraction will not try

the default handlers again.

(define (new eval-matching-handler-without-defaults

(with handler-groups =hgs)

(with descriptor =d)

(with state =s)

(with environment. =ce)

{(with communication =com)

(with self =me))

(case-for hgs
(is [] do (complain (& no-match)))
(is (a sequence (with first =f) (with rest =r)) do
(case-for (new find-and-eval-winning-handier
(with handler-sequence f)
(with snvironment ce)
(with communication com)
(with state s))
(is =x do (reply x)) '
(compiaint (a no-match) do
(reply (new eval-matching-handler-without-defaults

(with handler-groups r)
(with descriptor d)
(with state s)
(with creation-environment ce)
(with communication com)

(with self me))))))))

191

This abstraction attempts to lind and evaluate a handler for the incoming

communication. It looks for it in a singlc handler group, which is represented as a

sequence of handlers.

(define (new find-and-eval-winning-handler
(with handler-sequence =hs)
(with environment =cs)
(with communication =c)
(with state =s))
(case-for hs .
(is [] do (complain (a no-match)))
(is (a sequence (with first =f) (with rest =r)) do
(case-for (new match-handlor (with handler f) (with communication c))
(is (a successful-match
(with bindings =bin)
(with body =bod)) do
(reply (new sval-handler-body
{(with state s)
(with body bod)
{with communication c¢)
(with environment
(new environment (with primary bin)
(with secondary ce))))))
(is (a failed-match) do
(reply (new find-and-eval-winning-handler
(with handler-sequence r)
(with environment ce)
(with communication ¢)

(with state s))))))))

This abstraction attempts to match a communication handler with an
incoming communication. The representation of a communication handler is a

sequence with three elements, a keyword, a pattern, and a body.

192

(dofine (new muatch-harndler
(with handler =han)
(with communication =com))
(case-for han
(is [=key =pat =bod] do
(case-for key
(is 'is-communication do
(case-for (ask pat (a match
(with bindings (new empty-layer))
(with object com}))
(is (& successful-match (with bindings =bin)) do
(reply (a successful-match
(with bindings bin)
(with body bod)))) .
(is (a failed-match) do (complain (a failed-match)))))
(is 'is-request do
(case-for com
(is (a request (with message =msg)) do
(case-for (ask pat (a match :
(with bindings (new empty-layer))
(with object msg)))
(is (a successful-match (with bindings =bin)) do
(reply (a successful-match
(with bindings bin)
(with body bod))))
(is (a failed-match) do (complain (a failed-match)))
(otherwise (is something do (complain (a failed-match)))
(is 'is-reply do
(case-for com
(is (a reply (with message =msg)) do
(case-for (ask pat (a match
(with bindings (new empty-layer))
(with object msg)))
(is (a successful-match (with bindings =bin)) do
(reply (a successful-match
(with bindings bin)
(with body bod))))
(is (a failed-match) do (complain (a failed-match)
(otherwise (is something do (complain (a failed-match)
(is 'is-complaint do
(case-for com
(is (a complaint (with message =msg)) do
(case-for (ask pat (a match
(with bindings (new empty-layer))
(with object msg)))
(1s (a successful-match (with bindings =bin)) do
(reply (a successful-match
(with bindings bin)
(with body bod))))
(is (a failed-match) do (complain (a failed-match)
(otherwise (is something do (complain (a failed-match)

))
)))

))))
NN

1))
NN

193

D.10.5 Evaluating Composite Expression Bodies

When composite constructs such as case-for, one-of, and let are used as
expressions, the commands in their bodies are evaluated by the eval-expression-body
abstraction. [t calls eval-command-sequence to evaluate the body, then calls

process-expression-effects to condense the result into a single send-effect.

(define (new eval-expression-body
(with command-sequence =cs)
(with environment =e)
(with communication =c)
(with state =s))
(case-for (new process-expression-effects
(with environment o)
(with effects
(new eval-command-sequence
(with command-sequence cs)
(with environment 8)
(with communication c)
(with state s))))
(is (a send-effect (with communication com)) do (send com))
(otherwise (is something do (complain (a failure))))))

This abstraction processes a sequence of effects from the evaluation of a body
of commands. It assumes the context is for a construct which has been used as an
expression. There should be no become-effect. There should be exactly one

send-effect.

(define (new process-expression-effects
(with effect-sequence =es)
(with environment =env))
(case~for os
(is (a send-effact (with communication =c¢)) do (reply es))
(is (a completed-command-effect) do (reply es))
(is (a become-effect) do (complain es))
(is (a send-effect) do (complain es))
(is [1 do (reply [1))
(is (a sequence (with first =f) (with rest =r)) do
(case-for (new process-expression-effects (with effect-sequence f)
(with environment env))
(is (a send-effect (with communication =c)) do
(case-for (new process-exprassion-sffects (with effect-sequence r)
(with environment env))
(is (a send-effect) do (complain (a failure)))
(otherwise (is something do (reply (a send-effect
(with communication ¢)))))))
(otherwise (is something do (reply (new procoess-expression-effects
’ (with effect-sequence r)
(with environment env)})))}))))

194

D.10.6 Evaluating Communication Haundler Bodies

The process of evaluating a communication handler body consists of
evaluating its body. This transforms a sequence of commands into a sequence of

effects, which we the process with process-handler-effects.

(define (new eval-handler-body
(with state =s)
(with communication =c)
(with environment =s)
(with body =b))
(reply (new process-handler-effects
(with effect-sequence
(new eval-command-sequence
(with command-sequence b)
(with environment e)
(with communication ¢)
(with state s))))))

This abstraction processes a sequence of effects from the evaluation of a

communication handler body. No more than one become-effect should be

encountered.

.

; 'es might be just an effect, instead of a seguence of effects.
(define (new process-handler-effects
(with effect-sequence =es))
(case-for es
(is (a completed-command-effect) do (reply es))

(is (a send-effact (with communication =com) (with target =tar)) do
(send-to tar com)

(reply (a completed-command-effect)))
(is (a become-affect (with replacement-actor =ra)) do (reply es))
(is [] do (reply (a completed-command-effect)))
(is (a sequence (with first =f) (with rest =r)) do
(case-for (new process-handler-effects
(with effect-sequence f))
(is (a become-effect (with replacement-actor =ra)) do
(case-for (new process-handler-effects
(with effect-sequence r))
(is (a become-effect) do (complain (a failure)))
(1s (a completed-command-effect) do
(reply (a become-effect (with replacement-actor ra))))))
(is (a completed-command-effect) do
(reply (new process-handler-effects
(with effect-sequence r))))))))

195

D.10.7 Evaluating a Command Sequence

The evaluation of a sequence of commands produces a sequence of effects,

(define (new eval-command-sequence
(with command-sequence =cs)
(with environment =env)
(with communication =com)
(with state =s))
{case-for cs
(is [] do (reply [1))
(is (a sequence (with first =f) (with rest =r)) do
(reply (new sequence 4
(with first (a command-sval
(with environment env)
(with communication com)
(with state s)))
(with rest (new eval-command-sequence
(with command-sequence r)
(with environment env)
(with communication com)

(with state s))))))))

196

Appendix E

Pre-Defined Names, Actors, and Protocols

When a user first encounters an Act? listener, there will already be an
envi‘ronment associated with the listener. This environment will contain mappings
from a number of standard identifiers to useful actors. This initial community of
actors serves as a foundation upon which one can build useful actor communities of
his own. The following table describes the actors in this standard initial
environment. It may not be wise to rebind some of these names in your

environment, or in computations.

true An actor which behaves like a logical value of truth.
Jalse An actor which behaves like a logical value of falsity.

standard-act2-evaluation-environment
This is the environment currently associated with the listener.
The defname expression extends this environment.

standard-act2-expressions
An environment used for parsing. It is a mapping from symbols
which serve as expression keywords to parsers which can create
abstract syntax actors from a list-structure representation of the
expression. The defexpression expression extends this
environment.

standerd-act2-commands ‘
An environment used for parsing. It is a mapping from symbols
which serve as command keywords to parsers which can create
abstract syntax actors from a list-structure representation of the
command. The defcommand expression extends this
environment.

197

standard-act2-initiul-evaluation-environment
An environment containing the pre-defined symbols for Act2.
This environment may be shared by other users and should not
be extended. [t serves as a secondary environment for
standard-act2-evaluation-environment, which can be extended at
will.

standard-act2-initial-expressions
An environment containing standard expression keyword/parser
mappings. lt serves as a secondary environment for
standard-act2-expressions, and might be shared among different
users. Customizations should be installed by extending
standard-act2-expressions, and standard-act2-initial-expressions
should only be used for reference.

standard-act2-initial-commands
An environment containing standard command keyword/parser
mappings. It serves as a sccondary environment for
standard-act2-commands, and might be shared among different
users. Customizations should be installed by extending
standard-act2-commands, and standard-act2-initial-commands
should only be used for reference.

In addition, a number of identifiers are bound to atomic descriptions for the
concepts of each of the instance descriptions used as messages in the standard
communication protocols described below. These include: abs, addl, are-you,
attribute, become-effect, command-compile, command-eval, communication,
compile, complaint, completed-command-effect, concept, concept-for-instance-
description, converse-match, could-not-find, creation-info, evenp, expression-
compile, expression-eval, failed-match, failure, found-case-for-body, grow, if,
install-implementation, installation, lookup, make-descriptor, rﬁatch, match-
compile, merge-attributes, minus, mihusp, name, oddp, plusp, present, process-
communication, ready-effect, reply, request, requisition, send-effect, sequence,
something, successful-match, summarize-implementation, zerop, =, >, >=, >,%,
{=,<,+,-,%//,and 1.

198

.1 Common Protocol for All Actors

All actors Act? deals with should handle requests with the following messages.
Actors created with any variation of the Act2 create expression are provided with

handlers for these communications, by default.

(a = (with operand ...)) :
Reply with a truth value indicating whether or not you and the
operand are "the same actor”. The exact behavior expected
depends upon whether or not the actors are serialized, and upon
the sophistication of the actor making the comparison.

(an are-you (with what ...))
Reply with a truth value indicating whether or not you know
yourself to be an instance of the specified concept. The what is
often asymbol, asin (an are-you (with what 'sequence)).

(a match (with object ...) (with bindings ...))
Reply either with (a failed-match) or
(a successful-match (with bindings ...)),depending upon
whether you as a pattern match the object, given the specified
symbol-to-actor bindings. A successful match might involve
extending the set of bindings.

(a converse-match (with pattern ...) (with bindings ...))
Reply either with (a failed-match) or
(a successful-match (with bindings ...)), depending upon
whether the pattern matches you, given the bindings.

E.2 Surface Syntax Actors

Act?2 expressions are read in by an Act? listener as list structure, symbols, and
numbers. Immediately after reading in such a surface syntax actor, the listener asks
it to parse itself as an expression.” It may, in turn, ask surface syntax actors within
itself to parse themselves cither as expressions or as commands. The result of this

parsing process is expected to be an abstract syntax actor.

199

(a parse-yourself-as-expression
(with expression-keywords ...)
(with command-keywords ...))
Reply with an abstract syntax actor representing the expression
you denote, otherwise complain. Lists can represent a variety of
expressions, so they make use of the expression-keywords
environment. The list will scan itself from left to right, looking
for a symbol which serves as a keyword. Keywords are symbols
which are bound to parsers in the expression-keywords
environment. When it has found a parser, the list asks it to parse
the list into an abstract syntax actor using the keyword
environments. Notice that the language can be extended
syntactically simply by adding new bindings to these keyword
environments.

(a parse-yourself-as-command
(with expression-keywords ...)
(with command-keywords ...))
Reply with an abstract syntax actor representing the command
you denote, otherwise complain. The parsing process is very
similar to that for expressions.

E.3 Parsers.

Parsers in Act2 are used to help parse list structure, as indicated immediately
above. They accept a list which represents Act2 source code, as well as
environments in which keywords are bound to parsers. Parsing a list will typically
involve asking elements in the list to parse themselves either as expressions or as
commands.

(an expression-parse
(with source ...)
(with expression-keywords ...)
(with command-keywords ...))

If possible, parse the list structure presented as the source into an
abstract syntax actor representing one of the particular kinds of

200

expressions you were created to parse. [f you cannot make sense
of the list structure, complain with a revcaling message.

(a command-parse
(with source ...)
(with expression-keywords ...)
(with command-keywords ...))
Try to parse the source list structure into an abstract syntax actor
representing a command.

E.4 Abstract Syntax Actors

Abstract syntax actors represent Act2 expressions and/or commands. When
they are asked to evaluate themselves as such, they perform the actions characteristic

of the constructs they represent.

(an expression-eval (with environment ...))
Evaluate yourself as an expression, resolving names in the
environment provided. Respond with a reply containing the
expression value or with a compiaint explaining the reason you
cannot successfully produce such a value.

(a command-eval
(with environment ...)
(with communication ...)
(with state ...)) v
Evaluate yourself as a command, resolving names in the
environment provided. You may use the extra context
information provided in the communication being processed, or
in a description of the actor in whose communication handlers
you appear. Respond with an appropriate effect, such as
(a complated-command-effect),
(a send-effect (with communication ...)),0r
(a become-effect (with replacement ...)),indicating
what's been done or what remains to be done.

201

1.5 Environments and Layers
Environments and layers speak with the following protocol.

(a lookup (with symbol ...))
If you contain a binding of the symbo1 to some actor, reply with
that actor; if not, complain.

(a present (with symbol ...))
Reply with a truth value indicating whether or not you contain a
binding of the symbo1 to some actor.

(a grow (with symbol ...) (with value ...))
Extend yourself with a binding of the symbo1 to the value, then
reply with the resulting environment or layer. Environments are
serialized and reply with (a changed version of) themselves.
Layers are unserialized and reply with a new layer.

E.6 Rock-Bottom Numbers

Rock-bottom numbers obey the common protocols, the protocols for surface

syntax actors and for abstract syntax actors, as well as the protocols below.

(a + (with operand ...))
Reply with the number which is the sum of yourself and the
operand. Other arithmetic operations understood are:
subtraction (-), multiplication (*), division (//, +),
exponentiation (1), maximization (max), minimization (min).

(a < (with operand ...))
Reply with a truth value indicating whether or not you consider
yourself "less than" the operand. Other relational operations
understood are: greater than (), equality (=), greater than or
equal (> =, >), less than or equal (=, <).

(an are-you (with what ...))

Rock-bottom numbers understand the concepts: 'number,
'integer, 'real, 'whole-number, and 'natural-number.

202

.7 Symbols

Primitive symbols obey the common protocols, the protocols for surface
syntax actors and for abstract syntax actors, as well as the protocols below. The
special symbol, T, also behaves as the logical truth value representing validity. The
special symbol, NIL, also behaves as the logical truth value representing falsity, and

as an empty list or scquence.

F.8 Sequences and Lists

Sequences and lists represent linearly-ordered collections of actors. They
obey the common protocols, the protocols for surface syntax actors and for abstract
syntax actors, as well as the protocols below.

(a first) Reply with the first element of the list or sequence. Complain if
you are an empty list.

(a rest) Reply with the list or sequence consisting of all elements except
the first. Complain if you are an empty list.

(an nth (with number ...))
Reply with the number™" element in the list or sequence.
Complain if there is no such element.

th

E.9 Atomic Descriptions

Atomic descriptions serve as concepts for instance descriptions, and as an
organizational tool for the Act2 implementation. They obey the common protocols,
as well as the protocols below.

(an install-implementation

(with environment ...)
(with creation-pattern ...)

203

(with creation-expression ...))
Install the implementation information provided in yoursclf, for
future reference. Reply with an indication that you have done so.

(a summarize-implementation)
Reply with a summary of the implementation information
previously installed within you. Encapsulate that information in
an instance description of the form:

(an installation
(with expression ...)
(with environment ...)
(with pattern ...))

(a~concept-for-instance-description)
Reply with a concept appropriate for an instance description
being created. The reply contains either yourself or your name,
depending upon what your creation information indicates.

(an are-you (with what ...))
Recognizes concepts 'atomic-description, 'description, and
‘concept.

E.10 Instance Descriptions

Instance descriptions obey the common protocols, as well as the protocols
below. Expect the set of protocols obeyed by descriptions in general to increase

when inheritance and deduction mechanisms are embedded in Act2.

(a make-descriptor (with environment ...))
Reply with an instance description which has the sume concept as
you do, but which has no attributions. This is typically used for
extracting type information for an actor from a description of it,
which was used in its creation.

(an are-you (with what ...))

Recognizes the concepts 'instance-description and
‘description.

204

Appendix F

Other Language Issues

F.1 Lexical Scoping

Act2 implements lexical scoping of free identifiers in abstraction definitions.
These are conceptually more appropriate for programmers in general [Sussman and
Steele 75, Church 41, Landin 64]. It has the property of referential transparency.
That is, if a programmer defines an abstraction with free variables, those free
identifiers are resolved in the definition environment. There will be no accidental

name conflicts with code which instantiates the abstraction [Sussman and Steele 75].

Lexical scoping and static binding are essential for controlled sharing and
authentication. They guarantee that the expressions denoting patterns in an
abstraction definition are evaluated in the définition environment. The atomic
descriptions used for the concepts will be those in the definition environment. Only
those atomic descriptions conforming to those will match, so our authentication
mechanism is preserved. If free identifiers were bound dynamically, as in Lisp,

these authentication mechanisms would not work.

F.2 Aliasing

Act? realizes the actor computational model, in which actors are independent
virtual computational agents. Identifiers in Act2 serve as names for denoting actors,
and not as information containers, such as identifiers in languages such as Fortran.
A single actor can be referred to with different names in a computation. Modern

object-oricnted languages tend to favor this approach of using identificrs as names,

205

rather than as containers [Liskov, et al 81, Ingalls 78].

The notion of sharing fostered by this view of identifiers has further
implications. There is no need to distinguish between parameter-passing
techniques. Container-oriented languages have notions of call by reference, call by
value, etc., which determine the relationship between identifiers used as formal and
as actual parameters. These typically affect the meaning of assignment within the
abstraction body. In Act2, identifiers are names, and there are no assignment
commands, so this problem docs not arise. The parameter-passing semantics are

thosc of call-by-sharing, as in Clu [Liskov, et al 81].

F .3 No ldentificr Lifetime Problems

Act2 has no lifetime, or dangling reference, problems. Actors exist as long as
they are accessible, so no dangling references can occur. Act2 inherits this property
from the underlying Apiary architecture, which is responsible for storage
management. The Apiary performs garbage collections to reclaim storage associated
with inaccessible actors. This is a major benefit for Act2 programrﬁers, because they
do not need to be concerned with allocation and deallocation of storage.
Programmers using languages without garbage collection typically spend a large |
fraction of their time thinking about storage management in their programs. Act2 -

programmers are spared from this time-consuming activity.

206

IF.4 Context Sensitivity

Act2 contains several context-sensitive commands and expressions, to increase
the conciseness, readability, and programmability of the language. Some were
introduced into the language in order to reduce the verbosity of the language by
omitting information which is obvious to a reader, or which is available form the

local context. This also is very convenient for the writer of Act2 code.

For example, a create expression appearing as an abstraction declaration, such

as

(define (new checking-account (with balance =b) (with owner =e))
(create ...))

becomes associated with a description, (a checking-account), which serves as its

"type".

The new expression is also context-sensitive. When appearing inside a become
command with the sole effect of changing some acquaintances, without changing its
script, it needs only to mention those needing change. For example,

(become (new checking-account (with balance 60))), when appearing in a
context such as that above, would be equivalent to

(become (new checking-account (with balance 60) (with owner charles))).

The become command is also context-sensitive in another way. For it to be
truly context-free, it would have to indicate not only the replacement actor, but also
the actor to replace, which happens to be the one in whose script the becéme
command appears. No more than one become command can be evaluated in
response to a communication. Also, the become command is context-sensitive in

the sense that it is not allowed to appear in composite-expression bodies.

The reply and complain commands are very context sensitive. The target for

207

the reply or complaint communication is left unspecified and must be identified by
Act2 from context. When appearing as a command in a request-handler context, a
reply command sends its communication to the customer from the request,

complaints are sent to the request’s complaint department.

When appearing in the body of a composite expression, a reply or complaint
command designates a reply or complaint to the evaluation of the expression.

Exactly one must be evaluated in the evaluation of the expression.

Sponsors, the resource management mechanisms, are usually handled entirely
by context. Typically, the sponsor contained in the communication being processed
pays for the processing of that communication. None of the constructs explicitly
mention sponsors, except the using-sponsor construct, which works by affecting the
context of the commands it contains, and the is-communication variation of
communication handlers, which allows the programmer to have a pattern which will

extract the sponsor during a pattern-match.

F.5 Compilation fits into Interactive Framework

Act? treats compilation purely as an optimization technique. The ideal is that
programmers should not be able to tell the difference between compiled and
uncompiled code. Separate compilation is supported at the abstraction level. The
protocol for compilation is, in the case of factorial,

(ask factorial (a compile)).

208

Bibliography

[Attardi, Simi 81]
Attardi, G. and Simi, M.
Semantics of Inheritance and Attributions in the Description System Omega.
In Proceedings of IJC Al 81. 1JCAI, Vancouver, B. C., Canada, August, 1981.

[Backus 78]
Backus, J. _
Can Programming be Liberated from the von Neumann Style? A Functional
Style and Its Algebra of Programs.
Communications of the ACM 21(8):613-641, August, 1978.

[Barber 82]
Barber, G. R.
Office Semantics.
PhD thesis, Massachusetts Institute of Technology, 1982.

[Church 41]
Church, A.
The Calculi of Lambda-Conversion.
In Annals of Mathematics Studies Number 6. Princeton University Press,
1941. '

[Clinger 81a]
Clinger, W.D.
Foundations of Actor Semantics.
PhD thesis, Massachusetts Institute of Technology, May, 1981.
Available as MIT Al Lab TR 633

[Clinger 810}
Clinger, W. D.
Foundations of Actor Semantics. ,
AI-TR- 633, MIT Artificial Intelligence Laboratory, May, 1981.

209

[Dennis 81]
Dennis, J.B. ‘
Data Should Not Change: A Model for a Computer System.
Available as MIT Laboratory for Computer Science Computer Structures
Group Memo 209. ‘

[Guttag, Horowitz and Musser 76]
Guttag, J.V., E. Horowitz, and D.R. Musser.
Abstract Data Types and Sofiware Validation.
Technical Report RR-76/48, USC/Information Sciences Institute, August,
1976.

[Hewitt 77]
Hewitt C.
Viewing Control Structures as Patterns of Passing Messages.
Artificial Intelligence 8:323-364, 1977.
Also available as MIT Al Memo 410

[Hewitt 80}
Hewitt C. E. ,
The Apiary Network Architecture for Knowledgeable Systems.
In Conference Record of the 1980 Lisp Conference. Stanford University,
Stanford, California, August, 1980.

[Hewitt and Attardi 81]
Hewitt, C.E. and G. Attardi.
Guardians for Concurrent Systems.
Draft of MIT Artificial Intelligence Laboratory memo.

[Hewitt and Baker 78]
Hewitt, C.E., and H. Baker.
Actors and Continuous Functionals. .
In Neuhold, editor, Formal Description of Programming Concepts. North
Holland, 1978.
Also available as MIT/LCS/TR-194

[Hewitt and Smith 75)
Hewitt. C., and B. Smith.
Towards a Programming Apprentice.
[EEE Transactions on Sofiware Engineering SE-1(1), march, 1975.

[Hewitt, Attardi, Lieberman 79)
Hewitt C., Attardi G., and Lieberman H.
Specifying and Proving Properties of Guardians for Distributed Systems.
In Proceedings of the Conference on Semantics of Concurrent Computation.
INRIA, Evian, France, July, 1979.

[Hewitt, Attardi, Simi 80]
Hewitt, C., Attardi, G., and Simi, M.
Knowledge Embedding with a Description System.
In Proceedings of the First National Annual Conference on Artificial
Intelligence. American Association for Artificial Intelligence, August,

1980.

[Hewitt, de Jong 82]
Hewitt, C., de Jong, P.
Open Systems.
In Brodie, M. L., Mylopoulos, J. L., Schmidt, J. W., editor, Perspecttves on
Conceptual Modeling. Sprmger Verlag, 1982.

[Ingalls 78]
Ingalls, D.H.H.
The Smalltalk-76 Programming System: Design and Implementation.
In Conference Record of the Fifth Annual ACM Symposium on Principles of
Programming Languages. Association for Computing Machinery, 1978.

[Jefferson, Sowizral 82]
Jefferson, D., Sowizral, H.
Fast Concurrent Simulation Using the Time Warp Mechanism, Part I: Local
Control.
Technical Report N-1906-AF, RAND, December, 1982.

[Kerns 80]
Kerns, B.S.
Towards a Better Definition of Transactions.
Available as MIT Al Memo number 609.

[Kornfeld 79]
Kornfeld, W.
Using Parallel Processing for Problem Solving.
Al Memo 561, MIT, December, 1979.

211

[Kornfeld 82]
Kornfeld, W.
Concepts in Parallel Problem Solving.
PhD thesis, Massachusetts Institute of Technology, 1982.

[Kornfeld, Hewitt 81}
Kornfeld, W. A. and Hewitt, C.
The Scientific Community Metaphor.
IEEFE Transactions on Systems, Man, and Cybernetics SMC-11(1), January,
1981.

[Landin 64]
Landin, P.J.
The Mechanical Evaluation of Expressions.
The Computer Journal 6(4), January, 1964,

[Lieberman 81a]
Liecberman, H.
A Preview of Act-1.
A.l. Memo 625, MIT Artificial Intelligence Laboratory, 1981.

[Lieberman 81b}
Lieberman, H. :
Thinking About Lots of Things At Once Without Getting Confused:
Parallelism in Act-1.
A.l. Memo 626, MIT Artificial Intelligence Laboratory, 1981.

[Lieberman 82]
Lieberman, H.
Personal communication.

[Lieberman 83]
Lieberman, H.
An Object-Oriented Simulator for the Apiary.
Draft of MIT Artificial Intelligence Laboratory memo.

[Lieberman and Hewitt 83]
Lieberman, H., and C. Hewitt.
A Real Time Garbage Collector Based on the Lifetimes of Objects.
Communications of the ACM , June, 1983.
Also available as MIT Al Memo 569A

212

[Liskov 72}
Liskov, B.H.
A Design Methodology for Reliable Software Systems.
AFIPS Conference Proceedings 41 1:191-199, 1972.
FICC

[Liskov, et al 81]
G. Goos and J. Hartmanis, editor.
Lecture Notes in Computer Science. Volume 114: CLU Reference Manual.
Springer-Verlag, New York, 1981.
Also available as MIT LLCS TR 225, October 1979.

[Sandewall 80]
Sandewall, E.
Programming in the Interactive Environment: the Lisp Experience.
Computing Surveys 10(1), March, 1980.

[Sussman and Steele 75}
Sussman, G.J. and G.L. Stecle.
SCHEME: An Interpreter for Extended Lambda Calculus.
Available as MIT Al Memo 349

[Theriault 82]
Theriault, D.
A Primer for the Actl Language.
A.l. Memo 672, MIT Artificial Intelligence Laboratory, April, 1982.

[Turner 79]
Turner, D.A.
A New Implementation Technique for Applicative Languages.
Software - Practice and Experience 9:31-49, 1979.

[Waters 83]
Waters, R.C.
Lets: An Expressional Loop Notation.
Available as MiT Al Memo 680A

[Weinreb and Moon 81] A
Weinreb, D., and D. Moon.
Lisp Machine Manual.

213

This empty page was substituted for a
blank page in the original document.

CS-TR Scanning Project o L
Document Control Form Date: & /15 1%

Report #_AL-TR- 1338 '

Each of the following should be identified by a checkmark:
Originating Department:

;K(Artificial Intellegence Laboratory (Al)
{0 Laboratory for Computer Science (LCS)

Document Type:

/K\Technical Report (TR) O Technical Memo (TM)
O oOther:

Document Information Number of pages: &/0 (40-imaG s)

Not to include DOD forms, printer intstructions, efc... original pages only.

Originals are: ' Intended to be printed as :
O Single-sided or O Single-sided or
K Double-sided |)X Double-sided
Print type:
[J Typewnter JX[OftsetPress [Laser Print
[J inksetPrinter [] Unknown [other:

Check each if included with document:

m DOD Form(&) O Funding Agent Form X Cover Page
t& Spine [0 Printers Notes O Photo negatives
O Other:

Page Data:

Blank Pagest s nmewi: [z 0us T, TLE ASST, A<k DR - LasT PREE (343)

Photographs/Tonal Material ey page numbed:

Other (nots descriptionpage numben:
Description : Page Number:

Imaer Mag2 (1- X8 Jowin Tis 8 STRAC
Blank Ack QLAN I, DD AT N, Gmwh)

c_7 .8 LN\!K(W’:D) 4
(289-26) Teanomade crviw, SPInE, PIOLDTRGTS ®

Scanning Agent Signoff: . -
Date Received: ol / 1S/96 Date Scanned: S~/ /96 Date Returned: 139156

Scanning Agent Signature: W\% : GQJLJ Rev /o4 DSILCS Document Control Form cstform ved

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AI-TR 728
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Issues in the Design and Implementation of Act 2| Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORC(S) 8. CONTRACT OR GRANT NUMBER(s)
Daniel G. Theriault N0014-80-C-0505
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

s e o . AREA & WORK UNIT NUMBERS
Artificial Intelligence Laboratory

545 Technology Square
Cambridge, Massachusetts 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projects Agency June 1983
1400 Wilson Blvd 13. NUMBER OF PAGES
Arlington, Virginia 22209 213

14. MONITORING AGENCY NAME & ADORESS(if dilferent from Controlling Office) 15. SECURITY CLASS. (of thia report)
Office of Naval Research . UNCLASSIFIED
Information Systems

1 1 ini 1Se. DECL ASSIFICA /DOWNGRADING

Arlington, Virginia 22217 ¢ DECLASSIFICATION/DO

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

Actor Languages Open Systems
Description and Action Concurrent Systems
Computer Programming Languages Distributed Systems
Message Passing Semantics Parallelism

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
Act2 is a highly concurrent programming language designed to exploit the procep-
sing power available from parallel computer architectures. The language sup-
ports advanced concepts in software engineering, providing high-level construcks
suitable for implementing artificially intelligent applications. Act2 is
based on the Actor model of computation, consisting of virtual computational
agents which communicate by message-passing. Act2 serves as a framework in
which to integrate an actor language, a description and reasoning system, and

] a problem-solvin i t ri

DD 505", 1473 eoiTion oF 1 NOV 65 1S OBSOLETE UNCLASSIFIED

S/N 0:02-014-6601 :

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

*tm& aa :a'trwiy WERTA D e DAG iswgaf“-'ﬁxs“ &
‘*miﬁm‘i&é $§§i§§§§§$$ﬁ fgizytizws

- ssupl ypoloadast 282
éi%’e -2itseurtaseent qg%i?éﬁ““
' AESK i%?i'ﬁ ;mur ﬁ‘}i"é zmu e ma\,a T

Eﬁ’g qipe ! i%e !Jﬂ
s ﬁla?ii tﬁﬂigw

EITOR VRATHINE SR

il

B e e e sy St e iy

putpdFeiuil

£ oo

4%& Yo

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

