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Abstract

With the push towards sub-micron technology, transistor models have become increasingly complex.
The number of components in integrated circuits has forced designers’ efforts and skills towards
higher levels of design. ‘Ihis has created a gap between design expertise and the performance
demands increasingly imposed by the technology. To alleviate this problem, software tools must be
developed that provide the designer with expert advice on circuit performance and design. This
requires a theory that links the intuitions of an cxpert circuit analyst with the corresponding
principles of formal theory (i.c., algebra, calculus, feedback analysis, network theory, and
clectrodynamics), and that makes each underlying assumption explicit.

Temporal Qualitative Analysis is a technique for analyzing the qualitative large signal behavior of
MOS circuits that straddle the line between the digital and analog domains. Temporal Qualitative
Analysis is based on the following four components: First, a qualitative representation is composed of
a set of open regions separated by boundarics. These boundaries are chosen at the appropriate level
of detail for the analysis. This cencept is used in modeling time, space, circuit state variables, and
device operating regions. Second, constraints between circuit state variables arc established by circuit
theory. At a finer time scale, the designer’s intuition of clectrodynamics is used to impose a causal
relationship among these constraints. "Third, large signal behavior is modeled by 'T'ransition Analysis,
using continuity and theorems of calculus to determine how quantities pass betwcen regions over
time. Finally, Feedback Analysis uses knowledge about the structure of equations and the properties
of structure classes to resolve ambiguities.
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Chapter One

Introduction

Advances in integrated circuit technology in the last decade have presented circuit designers with
new problems and challenges not dealt with previously. Interest in the potential of VLSI (Very Large
Scale Integration) has grown tremendously in recent years, both in the academic and industrial
settings. The ability to place large systcms on a single picce of silicon has made more advanced

systems realizable. Flowever, this increase in capability brings with it new problems for the designer.

One major problem is how to manage the design and analysis of systems with a large number of
components. Potential sotutions to this problem include developing methodologies which exploit
regularity and hierarchy during the design phase, and computer-aided design tools which take over
some of the lower level tasks of design and analysis. Much of the design takes place at an abstract
level where, for example, the mosfet is modeled as a charge controlled switch. This allows the

designer to ignore unnccessary detail,

An equally important problem arises when designing digital circuits, such as superbuffers, bootstrap
clockdrivers, and memory sense amplificrs, which must mect tight performance criteria. 'These
circuits sit on the boundary between the analog and the digital domains; although they are used in
digital systems, they must be viewed by the designer as analog circuits in order to meet speed, power
and voltage level requirements. These circuits usually consist of a small set of components; however,
the models necessary to analyze the circuit's performance are complex. The switch level mosfet model
used to anaiyze the digital behavior of circuits is not adequate to describe such characteristics as
switching speed, power dissipation, gain, capacitive coupling, or noise immunity, and so the designer

must usc analog device models to analyze the circuit’s behavior,

FFew tools are currently available to designers for analyzing the electrical characteristics of high
performance digital circuits. Existing tools are primarily electrical sitnulators which use numerical
techniques o produce a set of waveforms showing the circuit’s quantitative behavior during
successive increments of time in response (o a set of inputs. [20] These systems can only provide

quantitative answers about what the circuit is doing. The circuit analyst is responsible for using this



and other information to provide answers to questions like:

* How does this circuit work?

* Why didn’t the circuit behave as [ expected?

* Which device parameters should I change to make it work?

* Which paramecters should I change to increasc the circuit’s performance (speed, power,

voltage thresholds, etc.)?

The knowledge necessary to answer these and similar questions is usually classified under designer’s

intuition. To produce systems which will assist the designer in answering these questions, we must

develop a theory which captures some of these intuitions,

1.1 An Explanation for a Complex Bootstrap Driver
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Figure 1-1:Bootstrap Driver

We can cxamine the type of reasoning involved in describing a circuit’s behavior by looking at
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explanations of circuits which appear in journal articles. The following is a description of a 5-volt
bootstrap driver modeled after one used in the INTEL 2118 16K dynamic RAM [4] (Figure 1-1).
‘The reader is not expected to understand the details of this explanation but should just get a feel for
the style of reasoning involved. Most of the remaining examples in this paper are very simple and

require only a rudimentary knowledge of clectronics.

[nitially ¢ g Produces a step which precharges the gates of M11 and M13 high, turning
them on and holdmg the output at ground. When @ 1 Starts to rise, it charges capacitor
M9 through M$S and starts to turn M10 and M12 on. M6 isolates node 18, which allows
that nodc to bootstrap with MS’s gate capacitance, keeping M5 turned on hard. M1 and
M4 form a comparator that notices when CD]N has gonc above 2 threshold drops. When
this happens, M4 turns on and pulls nodes 12 and 18 down to ground. When node 18
discharges, M5 turns off, isolating node 16. Also, when node 12 discharges, M11 and
M13, which had been holding down nodes 13 and 14, now turn off, letting those nodes
rise. Capacitor M9 then bootstraps node 16 (which was isolated by MS when MS’s gate
fell), turning M10 and M12 on hard. M12 pulls the output node voltage up. (bm can now
fall without affecting the rest of the circuit because MS is off. When <D o Tiscs again, M1l
and M13 turn on and M10 and M12 turn off, forcing the output ]ow and resctting the
circuit. The bootstrapping capacitor M9 is driven from node 13 and not from node 14 to
get more gate drive on M12 which significantly improves the output rise time.

Much can be learned by examining this and similar explanations. The terms used in the explanation
arc primarily qualitative; when a quantity is used, it is usually a symbolic quantity such as "2
threshold drops” (2V,m), "high” (VDD), or "ground."” The behavior of circuit state variables is
described primarily in terims of their rate of change; phrascs like "rises,” "fall,” "starts to rise” and
"discharges” arc commonly used. In addition, terms like "high" and "low" are uscd to describe a
region in which the circuit state variable lics. High usually identifies the region above Vv, minus a
noise margin ( x > Vm) — NM, ), while low identifies a region between the threshold voltage minus a
noisc margin and ground (V,rh — NML > x > 0). The behavior of each device is described in terms of
its current region of operation and its movemnent between these regions (e.g., "on,” "off," "turns off,"
"starts to turn on,” and "resetting”). From these phrases we sce that the notion of qualitative analysis

plays a very important role in analyzing circuit behavior,

"o

Mauny of the qualitative phrases above are connected with words like "affecting,” "turning,”
“causing,” "pulls" and "holding." The use of these words gives the explanation a strong scnse of
cause and cffect. Except for the initial inputs, all changes of circuit state variables are described in
terms of other circuit state variables which caused the change. We even notice phrases such as

can now fall without affecting . . ..," where a lack of cffect is made explicit. Thus the notion of

causality also plays an important role in circuit analysis.
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In addition, most of the explanation is given in terms of local interactions between devices which are
physically connccted together.  Furthermore, the description of the circuit’s overall behavior is
inferred from the behavior of cach individual component and the way in which they are
interconnected.  This is a common notion of circuit analysis, which is captured formally by the

network laws and device models of circuit theory.

The cxplanation also uses a number of cliches, cach of which has a special meaning commonly
understood by the designer and the readers. These cliches serve two purposes: to conciscly refer to a
complex behavior and to assign an intended purpose (teleology) to a set of one or more devices. A
cliche like "precharges” conjures up in the mind of the recader a complex set of events whereby
turning on a device will charge a particular node up to V| or some other understood value. A cliche
like "bootstrapping capacitor” implics that the function of the capacitor will be to appear as a fixed
voltage source during certain periods of circuit operation. 'This is achieved by isolating onc of the
capacitor’s terminals from the rest of the circuit, causing the voltage at a node connccted to that
terminal of the capacitor to follow any changes in the voltage of the node connected to the other

terminal of the capacitor.

Finally, certain statcments reflect particular design decisions and assign purpose to certain devices;
for ecxample, "the booistrapping capacitor M9 is driven from node 13 and not from node 14 to get
more gate drive on M12, which significantly improves the output risc time.” Notice that node 13
doesn’t have nearly as much capacitance as node 14, which is connccted to CL. Thus, node 13 will
risc much faster than node 14. By connccting the bootstrap capacitor to node 13, rather than node 14,

node 16 riscs faster providing M12 with a strong drive quickly.

The explanation also makes a number of implicit assumptions and lcaves out parts of the explanation
which, hopefully, are obvious to the audience to whom the explanation is addressed. A system which
analyzces circuits must be able to make these assumptions explicit. This is important in understanding
the limitations of the analysis icchnique and understanding where exactly these limitations arise.
Furthermore, the generality of the components of an analysis technique depends on the specific

assumptions made for that component.

A number of preperties have been identified above which are important in reasoning about circuits.

Qualitative analysis is an approach to capturing these propertics.

12



1.2 Temporal Qualitative Analysis: an Overview

The remainder of this paper describes Temporal Qualitative (TQ) Analysis, a technique for analyzing
MOS circuits whose important behavior straddles the boundary between the analog and the digital
domains. 'TQ Analysis describes the causal qualitative behavior of a circuit in response to an input
over "clapsed” time, where time is viewed as a sct of intervals in which devices move through
different operating regions. A major objective of this work is to show a close link between the

intuitions of expert circuit analysts and the formal theories of calculus, circuit theory and feedback

analysis.

The analysis of clectrical systems involves two steps:

1. Developing models for clectrical devices which accurately model their physical behavior.

2. Predicting the behavior of systems which obey these models.

Circuit theory is only concerned with the sccond step and assumes that the models provided are
sound. In this paper a similar assumption is made, although particular properties of the analysis (¢.g.,

continuity) will constrain the models uscd.

Many of the ideas in TQ Analysis have cvolved from work by de Kleer on the causal qualitative
analysis of bipolar analog circuits. [7] De Kleer's PhDD work concentrated mostly on the Incremental
Qualitative (IQ) Analysis of devices within a single operating region. TQ Analysis differs from de
Klcer’s work in two important ways:

* Because our interest is in analyzing the clectrical performance of digital circuits we must
be able to describe the circuit’s large signal behavior.  ‘This involves providing a
mechanism for determining how devices move between operating regions (¢ransitions), as
well as describing their incremental behavior. Although de Kleer provided a mechanism
for recognizing transitions, this was not central to his thesis and is inadequate for the
types of circuits which we would like to analyze.

* Unlike the analog bipolar domain, an understanding of charge flow aud capacitive
storage is cssential in the analysis of digital MOS circuits. A mechanisin is provided for
representing "capacitive memory,” which is based on the continuity of clectrical
quantities (c.g., charge) over time.

Each of the remaining sections of this paper will describe a major conceptual component of TQ

Analysis.

Chapter two provides the basic definitions for qualitative representations of electrical networks, time,
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state variables, and device operating regions. Each of these representations is based on the notion
that a qualitative representation consists of a network of open regions, separated by boundarices.

'These boundaries are chosen at the appropriate level of detail for the analysis.

IN

O
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2 t2
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Figure 1-2:RC Example

Chapters three and four discuss the two basic types of reasoning involved in TQ Analysis: Causal
Propagation and Transition Analysis[27]. These two sections will be illustrated by a parallel RC

circuit (figure 1-2) which exhibits the following behavior:

We will assume that at instant t=0 the voltage across the capacitor is positive ([V]N GNI)]
= +).! This causcs the voltage across the resistor to be positive, producing a positive
current through the resistor, which begins to discharge the capacitor, decreasing VIN GND'
\Y deereases for an interval of time and eventually reaches zero.” At this point the

IN.GND . A
curient stops flowing and the circuit has reached a stcady state’ at zero volts.

This description is marked by a series of events such as Vm.c;m) being initially positive or V]N’GND
moving to zcro, which break the description into a scries of time intervals. Two types of rcasoning

are required to analyze the circuit during cach interval,

One type of reasoning involves determining the instantancous response of the circuit to a sct of

primary causes which mark the cvent; for example, "a positive voltage across the resistor, produces a

Hhc notation [V indicates the sign of the voltage from the node IN to GND.

lN,GNl)]

Since VIN Gap 52 decaying exponential it is positive for 1< ©Q and reaches zero at GO,

3By steady state we mean that afl the voltages and currents in the circuit arc constant.
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positive current through the resistor . . ." and so on. The mechanism corresponding to this type of
reasoning in TQ Analysis is Causal Propagation and is described in chapter three.  Causal
Propagation occurs at the start of a time interval when a set of qualitative inputs arc propagated
forward, using a sct of causal relations to dctermine their instantancous cffect on other circuit
quantitics. This may be viewed as a qualitative small signal analysis. The mechanism in this section

is similar to de Kleer’s Incremental Qualitative Analysis.

The sccond type of reasoning determines the long term cffects of these qualitative inputs; for
example, "V, N.GND decreases for an interval of time and cventually reaches zero.” 'This type of
reasoning is modeled by ‘Transition Analysis and is described in chapter four. Transition Analysis
determines whether or not a quantity will move between two regions of interest (e.g., moving from
positive to zcro or saturation to cutoff) at the end of a time interval. This analysis is based on the
assumption that real systems arc modcled by continuous functions and builds on a few simple

theorems of calculus. Transition Analysis may be viewed as a qualitative large signal analysis.

An understanding of both positive and negative feedback is essential to understanding digital circuits
and restoring logic. Chapter five examines the qualitative properties of feedback and discusses a

mechanism for recognizing and dealing with feedback in gcneral.4

The cxamples used in the first five chapters consist only of simple RC networks. In chapter six the
above mechanism is extended to describe the behavior of devices with multiple operating regions. A
qualitative model is created for an enhancement mode n-channel mosfet and is used to generate an

explanation for a simple mosfet circuit,

Chapter seven concludes the paper with a discussion of the material presented, comparing it to other

qualitative systems, pointing out its limitations, and suggesting directions for future work.

Our leedback mechanism was inspired by a sct of feedback heuristics presented in de Kleer’s PhDD thesis and is a
eeneralization of these concepts.
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Chapter Two

Qualitative Values

Pcople use a varicty of terms which are considered qualitative. Some examples are positive, negative,
increasing, decreasing, forward, saturation, yesterday, tomorrow, office and mosfet. What all of these
have in common is that they are regions over time, space, or some other sct of quantities which the
explainer considers "interesting.” In addition, these regions, which we call qualitative regions, are
separated by boundarics. For example, zero is a boundary between plus and minus, midnight is a
boundary between today and tomorrow, and the office walls define the space which is called the

office.

In Temporal Qualitative Analysis, the space of values, which the quantity of interest can take on is
broken into a sct of open intervals or regions separated by a sct of boundarics. These boundaries are
chosen at the appropriate level of detail for the analysis. For a particular domain, the construction of
a sct of qualitative representations may be viewed as a mapping between continuous functions to
functions of discrete intervals. In circuit analysis we arc mapping from the continuous cquations of
device physics to a set of qualitative relations in circuit theory. The following sections describe the
qualitative representation used in TQ Analysis for space, time, state variables (e.g., voltage and
current), and device behavior, For each section, we make the case that the qualitative representation
consists of a sct of open regions separated by boundarics. Many of these representations exist in

formal circuit theory, while others are implicd through common usage.

2.1 The Network Model

An integrated circuit is implemented as a semiconductor wafer with different ions diffused or
implanted into its surface. The equations necessary to describe a complex circuit at the device
physics level are not casily solvable and, more importantly, would not provide the designer with

much insight into the overall circuit behavior.,

In circuit theory, the complexity of these cquations is reduced by modeling a region of space with a

uniform clectrical behavior as a single lumped clement (e.g., a resistor, capacitor or mosfet). Each
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clement has a set of terminals which allows it to interact with other clements. The clectrical behavior
of a clement is described by a set of constitutive relations between state variables associated with the

clement’s terminals.

An clectrical circuit is described as a set of elements conncected together in a network. Each member
of a set of locally interacting clements has a terminal connccted to a common node. The interactions
between elements are described by a set of network laws known as Kirchoff's Voltage and Current
Laws. These network laws only hold as long as the circuit is small enough that clectromagnetic waves
propagate across it instantancously, that is:

d << c*dt

where:

d 1s the largest distance across the circuit
dt is the smallest time interval of interest
¢ 1s the speed of 1ight

This is known as the Lumped Circuit Approximation, and is important later in our discussion of

causality.

A network is described by a set of devices, nodes, and connections between the two. The field
Devices specifies the name of of cach component in the circuit, along with its corresponding type
(c.g., resistor(R1) means that the component R1 is a resistor). Nodes is a list of node names used in
the circuit.  Finally, Connections consist of a set of ‘asscrtions, cach of which specifics the device
terminals connected to a specific node. For example, if terminal onc of C1 (denoted t1(C1)) and 2(R1)

are connected to node IN, then this is specified as: connect (IN 11(C1) ©2(R1)).

The following is a specification for the parallel RC network in figure 1-2:

Network: Parallel RC
Devices: resistor(Rkl), capacitor(Cl)
Nodes: IN, GND
Connaections:
conpect(IN t{R1) t1(C1))
connect(GND 12(R1) ©(C1))

17



2.2 Time

We represent time as a lincar, non-overlapping sequence of alternating instants® and open intervals,
The duration of each interval is determined by Transition Analysis. During a single time interval, all
quantities of interest have a single qualitative value. In other words, cach quantity lics within a single
qualitative region throughout the duration of an interval. Using this representation, quantitics can
only interact if they are spatially local and they occur during the same time interval. A lincar
representation of time has been chosen for simplicity; however, none of the concepts presented in

this paper depend strongly on this represeatation being a lincar sequence.

2.3 State Variables

The representation we choose for describing clectrical quantities depends on which type of circuit
and which propertics we arc interested in. FFor example, if we are interested in verifying a circuit’s
behavior at the digital abstraction level, we might want to segment the range of input and output

voltages into the following sct of regions:

Valid Noise Forbidden Noise Valid
"o" Margin Zone Margin e
Gut Low High Out
S |-====- |--mmmmmmmnme e |--===- |--m-mmmmeee >

Qualitative representation of a digital signal

To look at the analog performance of digital circuits, the components must be viewed as analog
devices. At this level, a statc variable is described in terms of its sign and the sign of its dcrivativcs;6
for example, the voltage is positive or the current is decreasing. Sign separates the real number line
into two open intervals, positive and negative, with a boundary at zero. The sign of a quantity, A, will

be denoted by [A] and the sign of the quantities nth derivative by [d"A/dt").

S, . . . .
An instant is a closed interval with zero duration.

6Unlc.s's otherwise stated, all derivatives discussed in this paper are partials with respect to time.
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I
=inf (---=-----ommmmmm e il ittt > +inf
I
NEGATIVE ZERO POSITIVE
(-) (0) (+)

Qualitative representation of a real number A

2.4 Qualitative Expressions

To describe the network laws and the clement relations of circuit theory, a qualitative algebra in
terms of the signs of quantities is necessary. The arithmetic operations necessary for modeling the
MOS domain are ncgation, addition, and multiplication.7 Tables describing these opcerations are

shown below:

Addition: [A] + [B] Multiplication: [A] x [B] Negation:

[A]\[*E] + 0 - [AJN[B] f___f_i - [A] | ‘EA]
+] + + 7 +] + 0 - + | -
o] + 0 - 0] 0 0 0 o] o0
- - - -1 - 0 4+ -]+

also 7 x 0 =20

where:
+ = positive
0 = zoro
- = pogative
? = ambiguous

In the table for addition the symbol (7) means that the result of the sum is ambiguous. The sign of the
sum cannot be determined without additional information. Techniques for resolving this ambiguity
arc discussed in later scctions. Also notice in the multiplication table that the product of two
quantities can be deduced even when one quantity is ambiguous, as long as the other guantity is zero.

More complex arithmetic operations, such as subtraction, summation, and exponcntiation by a

7'l‘ho qualitative arithmeltic used here is similar to the one used in de Kleer and Brown’s Qual and Envision systems and
Forbus™ Qualitative Process Theory. [7, 14]
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positive integer, can be constructed from these basic arithmetic operations. Finally, it is important to
note that the variables participating in a qualitative expression arc not limited to quantities and their

first derivatives, but may include a mixture of sccond and higher order derivatives as well.

2.5 Operating Regions

Often non-lincar devices, such as diodes, bipolar transistors and mosfets cannot be described by a
single set of relations without making these rclations overly complex. Instead we consider the
behavior of the device in each of several distinct operating regions, cach described by a different set
of equations. ‘The mechanism for representing operating regions and describing how quantities move

between operating regions is presented in chapter six.

2.6 Summary

In TQ Analysis, a qualitative representation consists of a nctwork of open regions, scparated by
boundaries which are chosen at the appropriate level of detail for the analysis. The following table

summarizes the qualitative representations used in this paper for circuit analysis:

Representation open ragion boundary

space Tumped elements nodes

time open intervals instants

state variables positive,nsgative zero

relations operating regions edge of op. regions

20



Chapter Three

Causal Propagation

Causal Propagation is a technique which uses knowledge of circuit thcory and qualitative arithmetic
to describe the behavior of a circuit during an instant or interval of time; it may be viewed as a
qualitative small signal analysis. In circuit analysis, the valucs of the state variables of a network can
be determined at some instant of time from the network laws, cach device's behavior, and the initial
conditions. Using the qualitative quantitics and cxpressions described in the previous chapter, we
can perform a similar analysis at a qualitative level. Returning to the RC example (Figure 1-2), a set

of qualitative relations for the network is:

[vIN,GND] = [1[1(;{1)] Ohm's Law
- [Ill(Rl)] = [Iﬂ((jl)] Kirchoff's Current Law
[Iu(m)] = [dV,N'GND/dt] Capacitor Law
and the initial condition is:
[VIN,GND] =+
From these relations and the initial condition we can deduce, for cxample, that [Il](m)] = +,
Uu(c1)] = — and [dV, .7d] = —. The qualitative cquations act as a set of constraints on the

clectrical quantitics; as long as [V ] remains positive the other clectrical quantities are

IN,GND
constrained to be the values shown above. Furthermore, during any time interval, all qualitative
quantities must be single valued, i.c., a quantity cannot move between qualitative regions or

boundaries during the interval,

The qualitative model described thus far tells us what cach qualitative valuc is, but does not explain
how they came about. The qualitative description given by an engincer for the RC circuit (figure 1-2)
gives a causal account of the circuit behavior. For example, when Vm, GND becomes positive, this
causcs a positive current through the resistor, discharging the capacitor and causing Vm‘ anp 0
decrease. This causality is not provided in a circuit theory model. Where then doces this causality
come from? The answer lics in the assumnptions made in modeling a circuit as a network of lumped

clements.
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3.1 Causality and the Lumped Circuit Approximation

The Lumped Circuit Approximation (scction 2.1) states that the network laws hold only as long as the
smallest time interval of interest is sufficiently large that electromagnctic waves appear to propagate
across the circuit instantancously. When generating a causal description, the analyst breaks this
assumption by viewing the circuit behavior at a time scale close to the speed of light. On this time
scale, for example, there is a finite delay between the time an electromagnetic wave enters one end of
a wire and the time the wave exits the other end. One can imagine the wire as a pipe connected to a
faucet. When the faucct is turned, on there is a short delay before the water comes out of the pipe.
Only after the water has begun to come out of the pipe and the flow has stabilized, can we say that the
flow rate out of the pipe equals the flow rate out of the faucet. Similarly, once the current into the

wire has had time to stabilize, we can say that the current out of the wire ecquals the current into it.

In general, the analyst uses multiple viewpoints in describing the behavior of a circuit. A
microscopic, clectrodynamic level model is used initially to describe the effects of a set of changes on
the s.ystcm.8 Once these eftects have stabilized the analyst moves to a macroscopic viewpoint (i.c., the
network model), where these effects propagate instantancously.  Using the macroscopic viewpoint,

the set of initial changes provides a sct of constraints on the rest of the system.

One way of modecling these two different viewpoints is to provide two sets of modcls, one which
describes the clectrodynamic behavior of devices in terms of Maxwell’s cquations and a sccond set
which describes the circuit level behavior in terms of the constraints established by nctwork theory.
The former model, however, is both intractable and undesirable, ‘The primary reason for using a
circuit model, in the first place, is to avoid the detail and number of interactions which occur in the
clectrodynamic model.  To then reintroduce such a model would be counter productive.
Furthermore, supposing we could produce an electrodynamic maodel, we are still faced with the
problem of assigning a causal ordering to the cvents which occur at the electrodynamics level. Of
course, we could produce another model at an even lower level (c.g., quantum plysics); however, this

simply pushes the problem away one level and doesn’t solve it.

The solution which Causal Propagation takes is to build in the intuition, which a designer has about

causality from the electrodynamic level into the network level. This is done by initially imposing a

“de Kleer and Brown refer to this microscopic time scale as "mythical time" since, from the macroscopic view of network
theory, this time scale doesn't exist.
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sense of causality on the device relations and network laws in response to a sct of changes; these will
be referred to as causal relations. For example, if we know that [V] = [I] by Ohm’s Law, and the
voltage across the resistor has begun to increase (i.c., [dV/dt] = +), then we say that an increase in V
causes an increase in 1 by Ohm's Law.? If instead the current through the resistor was changing, then
we would say that the change in current causes a change in voltage by Ohm’s Law. In the above
cxample, Ohm's Law is a bidirectional rclation, since the causality can run in either direction, In
general, if all but one qualitative value is known in a bidirectional relation, the known valucs are used

to determine their effect on the unknown quantity.

In a few instances the engineer views this causality as occurring in only one dircection. (c.g., as we will
sce in chapter 6, an engincer will say that a voltage across the gate of a mosfet produces a current
through the device's channel but not the converse.) In this case we refer to the relation as
unidirectional and indicate the direction of the causality by replacing = with an arrow (—) pointing
from the cause(s) to the effect.)? Once the circuit has had time to stabilize, the causal relations revert
to a sct of constrainis between state variables without imposing a causal ordering. For example,
Ohm’s Law becomes a constraint between the current and voltage of the resistor and we say that V

and I are constrained to be positive by the input.

In TQ Analysis, the beginning of a time interval is marked by the transition of one or more quantities
from one qualitative value to another. The transitioning quantities arc referred to as the primary
causes for that interval ! The microscopic viewpoint is used to determine the cffects of these primary
causes, i.¢., to determine the qualitative valuc for cach state variable in the circuit at the beginning of

the interval. Moving to the macroscopic viewpoint, these quantities are then constrained by the

9thrc "A causes B” means that B is functionally dependent on A, i.c., the value that B has is caused by the value that A
has.

]OA bidircctional refation (R) is implemented as a set of unidirectional relations, where cach unidirectional rclation contains
one of R's quantitics as an ¢ffect and the rest of R's quantities as the cause. IFor example:
[11] + [I2] + [13] = ©

is cquivalent to:
[11] + [12] — - [13]
[I1] + [13] — - [12] and
(123 + {13} -» - [11]
During the Causai Propagation phase of analysis for a particular interval, at most one of a set of unidirectional relations will be
used.

11, ' L L . .
Itach primary cause is cither an externally driven input or the independent variable of 4 memory clement (e.g., the voltage
across a capacitor).
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qualitative network relations for that time interval. The end of the interval is marked when one or

more quantitics transition, creating a new set of primary causcs for the next interval of time.'?

3.2 Implementing Causal Propagation

Causal Propagation is implemented as a set of assertions and rules in AMORD[6], a rule-based
inference engine with a truth maintenance system. An assertion consists of a fact statement, which is
an arbitrary Lisp expression, and a supporting justification. The justification is a reason for the fact
to be true, along with a sct of facts which support this reason. A rule is composed of a pattern and a
rule body which consists of arbitrary Lisp code. The rule body is run whenever a set of assertions is

found which matches the rule pattern.

Each unidirectional causal relation is implemented as an AMORD rule . The rule pattern consists of
the quantities (i.c., "causes") in the relation’s qualitative expression; the expression is cvaluated as
Lisp code in the rule body, and the effect is an assertion made by the rule body. Each assertion is

recorded with a justification describing its cause.

Causal Propagation begins at the start of a time interval by asserting a sct of primary causes with their
corresponding qualitative values. Rules function in a dacmon-like manner. Whean all of a rule’s
patterns are matched with a set of assertions, the rule body is run, possibly creating more assertions.

Causal Propagation terminates when all of the relevant rules have fired.!3

3.3 Domain Knowledge

In this section the domain specific knowledge for analyzing electrical networks is discussed. 'This
knowledge is broken into two parts: network laws and device models. The network laws describe
how current and voltage quantitics of connccted devices interact, while the device models describe
the behavior of a device via the voltages and currents associated with its terminals.  Current is

measured going into a device’s terminals and voltage is measured between network nodes.

I'he duration of the interval is irrelevant to Causal Propagation. The interval may last to infinity or for only an instant.
‘The duration of an interval and the sct of transitioning quantitics which mark the end of the interval is determined through
Transition Analysis.

13 . . . R . . . . .
['his is not a complele constraint satisfaction system since some refations can ornly fire in one direction.
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3.3.1 Network Laws

Kirchoff's Voltage and Current Laws describe the network behavior of electrical circuits. Kirchoff's
Current Law (KCL) states: the sum of the currents out of a Gaussian surface is zero. 1f the Gaussian
surface is put around a single node, then the sum of the currents out of the node is zcro. The
qualitative KCL. rule says that the signs of the currents out of a node must sum to zero. Intuitively,
this means that a node cannot source or sink current; that is, cach node must contain at least one
current flowing into the node and one current flowing out (except when all the currents for that node
are zero). In addition, the KCL rule says that the signs of the ith derivative of the currents out of a

node also sum to zero.

The qualitative KCL. rule is shown below. This rule™ consists of a sct of preconditions and a set of
relations. 'The preconditions are a mix of pagterns for assertions which must exist and conditions
which must be true in order for the rule to be applicable. KCI. has onc precondition: an assertion
must exist which specifics all of the terminals connected to a particular node. The relations scction
consists of causal relations as described above.
Law: n-Terminal KCL
Preconditions:
connect(Node-l T1 T2 . . ., Tn )
Relations:
0 (r,J+[0r,j+. ..+ [I]
0 [d"I,“/dt“] + [d"In/dt“] + .. .+ [anTn/dtn]

Kirchoffs Voltage Law (KVL) states that the sum of the branch voltages around any loop in the
nctwork graph is zero. The qualitative KVL rule states that the sum of the signs of the branch
voltages around a loop is zero. For loops contaiﬁing wo neodes, the KVL rule (Voltage Negation) is
equivalent to saying that voltage is path independent. For loops containing three nodes, the KVL
rule states that the voltage between two nodes is the sum of the voltages between cach of the two

nodes and an intermediate node.

14, . . -
1Q Analysis considers the words Law and Medel to be synonymous witih Rule and these words are used purely for
docun:entation purposes.
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Law: Voltage Negation
Relations:
[Vm,m] = - [Vm.m]
- - n
[d“VNl'NZ/dt"] = [d"VNz'm/dt]
Law: Three Node KVL
Proconditions:
When NI # N2 # N3

Relations:
[VNI,N2] + [VNz,m] = [VNI. N3]
n N — n n
[d"V /dt"] + [d VNZ.NJ/dt ]=1[d Vm. Ns/dt ]

NI, N2

3.3.2 Device Models
In this scction we will first discuss a general property of network clements and then present the

specific device models for some simple network elements.

3.3.2.1 KCL Applied to Devices
Above KCL was stated as "The sum of the currents out of a Gaussian surface is zero." By placing a

Gaussian surface around a device this becomes; The sum of the currents into a device is zero.

Qualitatively this means that no device can source or sink current.  All of the devices we are

interested in have cither two or three terminals. KCL for a three terminal device is shown below:
Law: Three Terminal Device KCL
Preconditions:
three-terminal-device(D)
Relations:
0 = [Itl(l))] + [qu(l))] + [Im([))]
0 [d“I“(D)/dt"] + [d"IQ(D)/dt"] + [d“IB(D)/dt"]

3.3.2.2 Network Elements

The basic two terminal clements are resistors, capacitors and inductors. The constitutive relation for
cach of these clements is V = IR, [ = CdV/dtand V = LdI/dt, respectively, A circuit designer
views these relations as being bidirectional; that is, a change in voltage will produce a change in

current and vice-versa.  The models for the resistor and capacitor arc shown below. The ficlds
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Terminals and Corresponding Nodes list the device's terminals and the nodes connected to these
terminals, respectively. These models have an additional ficld called Assertions consisting of facts
which arc asscrted as a result of running the rule.

Model: Resistor(Rr)

Terminals: Tl 12
Corresponding Nodes: N1 N2

Relations: _

[VNl,Nz] = [IT](R)]

[V, /dt"] = [d"L, ,/dt"]
Assertions:

two-terminal-device(R)

Model: Capacitor(C)
Terminals: T1 12
Corresponding Nodes: N1 N2

Relations:
[dvm'y/dt] = [I“Y”1
n + + - n
[d Vm’m/dtn 1 =[d ITMC)/dt"]
Assertions:

two-terminal-device(C)

3.4 Example

Using the mechanism described thus far, we can determine the behavior of the parallel RC circuit
(figurce 1-2) for a particular instant of time. The analysis begins by inputting the network description
shown in section 2.1. At Instant-0 the initial condition (and the primary cause) is [Vm,cmD@HHS‘QM'O]
= +.13 This value is asserted and the causal propagator is invoked. We can then ask the system for
the qualitative value of any quantity in the network, along with a causal explanation for that

quantity: 16

]S'Khe symbol (2 means "at time" for cxample, [A@2U] = + translalcs to "the sign of A at time t1 is positive.”

16,4 . , . . . .
T'his explanation was gencrated by the current implementation of 'TQ Analysis.
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Explanation for FACT-24 : dV /dt@Instant-0 is negative:

IN,GND

It was given that Vix.onn during Instant=0 is +.
This causes IuUu) during Instant-0 to be +,
since from rule RESISTOR : [V12] — [I1].
This causes Lucn during Instant-0 to be -,
since from rule 2-T-KCL : [I2] — - [I1].
This causes dVi o’ dt during Instant-0 to be -,
since from rule CAPACITOR : [I1] — [dVi2/dt].

3.5 Ambiguities

The analysis technique described thus far is not powerful enough to deduce a set of qualitative values
under cvery condition. We have already scen onc cxample of this ambiguity in the addition table in
section 2.4. If A + B = Cand A and B have opposite signs, then C is ambiguous; that is, C could be

positive, negative or zero.

Each ambiguity which ariscs in qualitative analysis can be categorized as one of three types:

* Ambiguous cffect
* Simultancity

* Unknown primary cause

First, an ambiguous effect occurs when all of the causes in a qualitative relation arc known and the
effect cannot be deduced. In the present systemi such an ambiguity only results from addition,
Sccond, if a quantity (A) is a function of one of its effects (B) then B cannot be deduced without
knowing A and A cannot be deduced without B. This cyclic behavior is commonty referred to as a
simultancity. Finally, we nced a means of determining how each primary cause changes between

time intervals, as they are the inputs to Causal Propagation.

Analysts use a varicty of information, both qualitative and quantitative, in resolving these
ambiguities. The next two chapters discuss two techniques which use quatitative information to
resotve these ambiguities. The first technique, Transition Analysis, nses information about continuity

to resolve some of these ambiguities. The second technique, Feedback Analysis, reasons about the
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structure of the causal :clations to resolve ambiguitics which arise from simultancities along a
feedback loop. These two techniques do not resolve all types of ambiguities and other, more

quantitative techniques, are needed.

3.6 Summary

Key concepts:

* Causal Propagation models the incremental behavior of a circuit and may be viewed as a
qualitative small signal analysis.

* [nteractions between circuit state variables are described at two levels:

- Circuit theory views time at a macroscopic level and describes the interactions
between circuit state variables using a set of qualitative network laws and device
constitutive relations.

- Electrodynamics views time at a microscopic level and allows the designer to
imposc a causality on the network laws and device relations.

* Causal Propagation cannot always deduce the sign of every state variable in the circuit

unambiguously. These ambiguitics arc dealt with by Transition Analysis and Feedback
Analysis,
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Chapter Four

Transition Analysis

In the previous chapter we discussed the causal qualitative relationship between different state
variables over an interval of time. During a time interval it is assumed that cach quantity of interest
remains within a single qualitative region (e.g., "the voltage is positive™ or "the mosfet is in saturation
during the interval”). Causal Propagation, however, makes no predictions about if and when a
quantity will move to another qualitative region. The goal of Transition Analysis is to make these

predictions.

Causal Propagation may be viewed as a qualitative small signal analysis; similarly, Transition
Analysis may be viewed as a qualitative large signal analysis. In Transition Analysis we are concerned
with the way quantitics move from one qualitative region to another, such as a mosfet becoming
saturated or a current becoming positive and increasing. For each state variable in the circuit,
Transition Analysis trics to determine whether or not it will remain in the same qualitative region or

transition into another region at the end of a time interval,

As we discussed at the end of the last chapter, Causal Propagation sometimes cannot determince the
qualitative value for one or more quantities during a particular time interval. When this occurs, the
results of Transition Analysis can often be used to resolve the ambiguous quantity by determining
how the quantity has changed (i.c., whether or not it has transitioned) between the previous and
current time intervals. In the cvent that Transition Analysis cannot determine if a quantity has
transitioned, other techniques must be used to resolve the ambiguity, such as Feedback Analysis

(chapter 5).

Transition Analysis is broken into two steps: Transition Recognition and Transition Ordering.
Transition Recognition attempts to determine whether or not a quantity is moving towards another
qualitative region or boundary (¢.g., the positive charge on the capacitor is decreasing towards zero,
or a mosfet is moving from (he boundary between ON and OFF to the region ON). 'Transition
Recognition often determines that more than one quantity is moving towards another region or

boundary. Transition Ordering determines which subsct of these quantities will transition into a new
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region or boundary first, marking the end of that interval, ‘This chapter only discusses transitions
across zcro. In chapter 6 the mechanism described here is extended to recognize transitions across

boundaries other than zero.

4.1 Transition Recognition

The basic assumption underlying Transition Analysis is:

The behavior of real physical systems is continuous.’
More precisely, it is the functions which describe a physical system that are continuous. This is not to
say that the models that an engineer uses are always continuous. For cxample, only the currents,
voltages and their first derivatives are continuous in the Shichman-Hodges model [22] of the mosfet.
However, an engineer knows that this model is only an approximation and the behavior of a mosfet

in the real world is continuous and infinitely differentiable.

“here are a number of simple theorems of calculus which describe the behavior of continuous
functions over time intervals. In this section we discuss the intuition which these theorems provide in
determining how quantitics move between and within qualitative regions. These theorems are then
used to derive two rules about qualitative quantitics: the Continuity Rule and the Integration Rule.
The first rule requires that a quantity is continuous over the interval of interest, while the sccond

assumes that a quantity is both continuous and differentiable.

4.1.1 The Intermediate Value Theorem

When describing the behavior of some quantity over time, we need a sct of rules for determining how
a quantity changes from onc interval or instant to the next. If, for cxample, a quantity is positive

during some interval of time, will it be positive, zero or negative during the next interval of time?

The Zero-crossing Principle states that:
If fis continuous on the closed interval fa,b] and if fa) < 0 < fb) then £X) = 0 for some
number X in fa,b]. [19]

Intuitively, this means that a continuous quantity must cross zero when moving between the positive

and negative regions. In the above example, the positive quantity will be positive or zero during the

Continuily: "The function fis continuous if a small change in x produces only a small change in f{x), and if we can keep
the change in f{x) as small as we wish by holding the change in x sufficiently smail.” [19]
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next interval of time, however, it cannot be negative.

The Zero-crossing Principle is a specialization of the Intermediate Value Theorem which states that:

If fis continuous on the closed interval fa,b] and if [ is any number between fla) and
Ab). then there is at lcast one point X in fa,b] for which f£X) = [ [19]

From this we can infer, in general, that a quantity will always cross a boundary when moving from

one qualitative open regton to another.

4.1.2 State Variables and Time

By assuming that quantitics arc continuous and by using the results of the Intermediate Value
Theorem, a relationship can now be drawn between the representations for state variables and time.
Recall that the representation for time consists of a scries of instants scparated by open intervals. An
instant marks a quantity moving from an open region to a boundary or from a boundary to an open
region.  Also, recall that the range of a state variable is represented by the open regions positive
(0,-+90) and negative (—©0,0) scparated by the boundary zero, which we denote +, — and 0,
respectively. If some quantity (Q) is positive at some time instant t1 (Q@tl = ¢ where € > 0), then
there cxists some finite open interval (g,0) separating Q from zero.!8

If we assume that Q is described by a continuous function of time, then it will take some finite
interval of time {(11,t2) where tl # €2} to move from ¢ to 0, traversing the interval (¢,0). Similarly, it
will take a finite interval of time to move from 0 to some positive valuc e (Figure 4-1). Furthermore,
we can say that a quantity moving from 0 to & will lcave zcro at the beginning of an open interval of
time, arriving at ¢ at the end of the interval. Conversely, a quantity moving from & to 0 will lcave € at
the beginning of an open interval and arrive at 0 at the end of the open interval.  Another way of
viewing this is that a quantity will move through an open region during an open interval of time, and

a quantity will rernain on a boundary for some closed interval of time (possibly for only an instant).
The notion of continuity is captured with the following rule (Figurc 4-2).
Continuity Rule

* If some quantity Q is positive (negative) at an instant, it will remain positive (negative) for
an open interval of time immediately following that instant.

l8An_v two distinct points are separated by an open interval
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Figure 4-1:Relationship between State Variables and Time

* If some quantity Q is zero during some open interval of time, it will remain zero at the
instant following the open interval.

For example, suppose that A — B = C, [A] = + and [B] = 0 for some instant of time (t1). By
Causa! Propagation we deduce that [C@tl] = +. If B becomes positive for the next open interval
(11), then we cannot deduce C during 11 by the above causal relation, since the sum is ambiguous
(ie., [C@I} = (+) — (+) = 7). Using the first part of the Continuity Rule, however, we predict
that C remains positive during 11. ‘This agrees with our intuition since C is the difference between A

and B and we know that it will take some interval of time before B "catches” up to A (Figure 4-3).

Using the fact that a state variable will only move off of zero at the beginning of an open interval and
wili only arrive at zero at the end of an open interval, we can now sketch an outline of the steps

involved in TQ /\nalysis:]9

9 . . R
L In the actual implementation the first four steps are performed concurrently.
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Figure 4-2:Continuity

* Given a sct of primary causes for an instant, run Causal Propagation.

* Determine which quantitics may transition from zero to a positive or negative region at
the beginning of the next open interval,

* Use the results of Transition Analysis to determine the values of the primary causes for
the next open interval of time. Run Causal Propagation for that interval.

* Use Transition Recognition to determine which quantities arec moving from positive or
negative towards zero.

* Use Transition Ordering to determine which quantitics will transition to zero first. These
transitions define the end of that interval and the beginning of the next instant.

* Repeat this process for the next time instant.
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Figure 4-3:Continuity Example

4.1.3 Mean Value Theorem

In addition to looking at the continuity of quantities, information can also be derived by looking at
the relationship between quantities and theic derivatives. The following two corollaries of the Mcan

Value Theorem [26] are of particular interest to TQ Analysis:

Corollary 1:
If a function fhas a derivative which is cqual to zcro for all values of x in an interval
(a,b), then the function is constant throughout the interval,

Corollary 2:

Let fbe continuous on fu.bf and differentiable on (a.b). If £ {x) is positive throughout
(a.b), then fis an increasing function on [o,b], and if £ (x) is negative throughout (a,0),
then fis decreasing on fa,b].
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By combining these two corollarics with the Intermediate Value Theorem, the behavior of a state
variable is described over an interval (instant) in terms of its value during the previous instant
(interval) and its derivative. At the qualitative level, this is similar to integration and is captured by

the following rule (Figure 4-4):
Qualitative Integration Rule

Transitions to Zero

* If a quantity is positive and dccrcasing20 (ncgative and incrcasing) over an open time
interval, then it will move towards zero during that interval and possibly transition to zero
at the end of the interval.

* [f a quantity is positive but not dccrcasingzl(ncgativc and not increasing) over an open
time interval, then it cannot transition to zero and will remain positive (negative) during
the following instant.

Transitions Off Zero

* If a quantity is increasing (decrcasing) during some open time interval and was zero at the
previous instant, then it will be positive (negative) during the interval.

*If a quantity is constant during some open time interval and was zero at the previous
instant, then it will be zero during that interval.

Note that in the first two parts of the rule the derivative of the quantity affects how it behaves at the
following instant, while in the last two parts the derivative of a quantity affects that quantity during
the same interval. For example, suppose that a quantity (Q) is resting at zero at some instant (t1) (i.e.,
[Q)@1t]1 = 0 and [dQ/dU]@t1 = 0). If dQ/dt becomes positive for the next open interval (I12), then it
will cause Q to increase during that interval and become positive.  Furthermore, Q moves off zero
instantancously, thus Q is also positive during 12, In the above case, the causal relationship between a
quantity and its derivaiive is similar to that between two different quantitics related by a qualitative

expression (c.g., in a resistor a change in current instantancously causcs a change in voltage).

If we are interested in analyzing a system which includes a number of higher order derivatives, then

the Integration Rule may also be applied between each derivative and the next higher order

2Owhcrc "Q is deereasing” means that [dQ/dt] = —.

21whcrc "Q is not decreasing” means that [dQ/dt] = + or 0.
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Figure 4-4;Integration Rule

derivative. For example, suppose the system being analyzed involves the position (x), velocity (v) and
acceleration (a) of a mass (where dv/dt = a) and that all three quantitics are constant at some instant
(t1). If a becomes positive for the next open interval (12), then it will cause an increase in v, making it
positive for 12, Similarly, positive v causes an increase in x, making it positive for 12. Thus the
Integration Rule uses the relation between cach quantity and its derivative to locally propagate the
effects of changes along a chain from higher order derivatives down towards the lower order

derivatives.

deKicer and Bobrow [12] suggest an alternate formulation of the last two parts of the Integration
Rule which, for example, says that: When a quantity (Q) is zero at some instant (t1), if all of its
derivatives are zero at tl, then Q will remain zero during the following interval (11), otherwise [Q] =
[dQ"/d"] during 11 (where [dQ"/d("] is the first non-zero derivative). ‘This formulation has a

number of problems. First, it is over restrictive since it requires cach quantity and all of its higher
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order derivatives to be continuous. This restriction rarcly holds when modeling non-lincar systems,
such as MOS circuits, where a device model usually contains a discontinuity in at least onc level of
derivative. Thus the formulation is inadequate for many complex systems. The Integration rule only
requires that a quantity is continuous and differentiable, making the rule applicable for a wider class
of systems. Sccond, their formulation is non-local in the sensc that it looks at the rclationship
between a quantity and afl of it higher order derivatives to determine the behavior of that quantity.
The Integration rule only looks at the relationship between a quantity and its first derivative, allowing
changes in higher order derivatives to propagate up locally towards the lower order derivatives.
Finally, deKleer and Bobrow’s formulation can produce a description consisting of a sequence of

instants which are not separated by open intervals, thus their model of time is not dense.

As we have scen above, the Integration Rule describes the direction a quantity is moving with respect
to zero (e.g., towards or away from zcro). Recall that if a quantity is zero and increasing or decreasing
during the next interval, then the quantity must transition from zero. If, however, a quantity (A) is
moving towards zero for some interval of time, it may or may not reach zero by the end of the
interval. Suppose some other quantity (13) reaches zero first and B causes dA/dt to become zero, then
A will not reach zero. Thus we need a mechanism for determining which quantity or sct of quantitics
will reach zero first during an open interval of time. One mechanism for doing this is called

Transition Ordering and is described in the following section.

4.2 Transition Ordering

As a result of Transition Recognition we have divided the set of all quantitics into 1) those which may
transition (they are moving monotonically towards zero) 2) those which can’t transition (they are
constant or moving monotonically away from zero) and 3) those whose status is unknown (their

direction is unknown or is not monotonic).

Next we want to determine which subsets of these quantitics can transition by climinating those
transitions which lead to 1) quantities which are inconsistent with the set of qualitative relations (e.g.,
[A] = + and [B] = 0 when [A] = [B]) and 2) quantitics which violate the Intermediate Value

"Theorera and thus are discontinuous {c.g., Q is caused to jump from + to — without crossing 0).

The simplest solution to this is to enumerate all sets of possible transitions and test cach for the above

two criteria.  However, the number of sets of possible transitions grows cxponentially with the
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number of quantitics which can transition; thus this solution becomes intractable for large systems
(deKleer and Bobrow [12] use a similar approach, but only need to consider the transitions of the

independent state variables).

Instead, Transition Ordering uses 1) the direction cach quantity is moving with respect to zero, and 2)
the qualitative relations between these quantitics to formulate a set of constraints. These constraints
determine which quantities can transition first while still satisfying the criteria of consistency and
continuity. If in the worst case, every qualitative relation is used during Transition Ordering, then

this solution grows lincarly with the number of relations in the system.

If the derivative of a non-zcro quantity (Q) is known then its direction will be monotonic over the
interval (Q's derivative has a single qualitative value during that interval) and can always be
determined by Transition Recognition. However, even if the derivative of Q is unknown, it is still
sometimes possible to determine Q's direction using onc of the qualitative relations associated with
Q, along with the dircctions of the other quantitics involved in that relation. This is similar to
determining the derivative of Q in that, given the value of Q and its direction we can compute dQ/dt
for that interval; however, it differs in a number of important respects.  When determining the
direction of Q we are taking advantage of thosc times when 1) the value of dQ/dt remains the same
during the entire interval of interest (i.c., Q is changing monotonically) and 2) the value of dQ/dt can
be computed unambiguously. If the direction of Q cannot be casily determined it is-left unknown,
On the other hand, when determining the behavior of dQ/dt over time cach ambiguity must be
resolved. Furthermore, if dQ/dt changes value several times over the interval of interest, then this
interval must be broken into a series of sub-intervals using Transition Analysis (which then attempts

to determine dQ/dt’s direction).

The qualitative relations used in modeling devices are built from cquality, negation, addition and
multiplication. Thus for cach of these operations Transition Ordering contains a sct of rules which
place constraints on the dircction (c.g., toward zero) and transition status (c.g., can’t transition) of
cach quantity involved in the operation. The next section provides a few examples of these rules for
cach type of operation. In cach example we assume that the relation holds over the interval of
interest and the succeeding instant. A complete list of 'Transition Ordering rules is presented in the

appendix,
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4.2.1 Transition Ordering Rules

If the signs of two continuous quantitics are cquivalent (i.c., [A] = [B]) over the open interval of
interest and the following instant, then we know that if one of the quantitics transitions to zcro, then
the other quantity must transition at the same time. [If we know further that A is a monotone
increasing function of B, then A and B are moving in the same direction. This may be viewed simply
as a consistency check on cquality. The above rule also holds for negation (e.g., A = — B), since

negating a quantity does not change its dircction with respect to zero.

'The case where a quantity is the sum or difference of two other continuous quantities is more
interesting. For example, assume that quantitics A and C are moving towards zero and B is constant,
where [C] = [A] + [B]. IfA, B and C are positive, then A will transition to zero before C and C can
be climinated from the list of potential transitions.22 On the other hand, if B is negative, then C will
transition before A, and finally, if B is zero, then A and C will transition at the same time (since
[C] = [A]. Also, consider the casc where A and C arc positive and B is negative but the direction of
C is unknown (with the further restriction that C = A + B). If B is known to be constant and A is
moving towards zero, then C must also be moving towards zcro and will reach zero before A. 3
Finally, for multiplication (c.g., [A] x [B] = [C]) we know that, if A and/or B transitions to zcro, then
C will transition to zero at the same time; otherwise, neither A nor B is transitioning and C won’t

transition.

Thus, Transition Ordering 1) factors the quantities into scts which transition at the same time and 2)

creates an ordering between these sets according to which transitions precede other transitions.

4.2.2 Applying the Transition Ordering Rules

Transition Ordering rules are applicd using a constraint propagation mechanism similar to the one
used in propagating qualitative valucs. If a3 the result of applying these inference rules it is

determined that 1) all the remaining potential transitions will occur at the same time, and 2) the

22]f instead we had said that C transitioned to zero first then A would have to jump from plus to minus without crossing
rero(i.c, [A] = [C] = [B] = (0) ~ (—) = —). This violates the Intermediate Value Theorem and, therefore, cannol oceur.

23ln Transition Ordering the constraint requiring monotonicity of qualitative variables can be significantly weakened.
Under this weaker constraint we say that a quantity Q(U) goes ro zero in the internval I = (lq‘l'.) if Q1) is continuous and if Q(t) >
0 for all Cin 1 and Lim inf QM) = 0 or if Q1) < € for all tin I and ¥im sup Q(1) = 0.1t can be shown that the Transition
Ordering rules presented above are still applicable under this weaker definition of goes fo zero. An indepth discussion of this
definition and its ramilications is presented in [29].
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direction of these quantities is known to be toward zero, then the transitions occur at the end of the
current interval. Otherwise, an ordering may be cxternally provided for the remaining potential
transitions, or the system can try cach of the remaining sets of possible transitions. More quantitative

techniques which help resolve the remaining sets of possible transitions are currently being explored.

The next section provides an example of how Transition Recognition and Transition Ordering work

together to describe how # simple circuit behaves over time.

4.3 Example

Using Transition Analysis. we can now describe the behavior of the RC example (Figure 1-2) after

2 . . . . .es
Instant-0.2* 1n section 3.4, Causal Propagation was used to determine the values of the circuit’s state

variables at Instant-0. 'The results of this propagation were:

[Viv o] =t
— [Itl(m)] = + Resistor Model
— [It1(c1)] = - Kirchoff's Current Law
— [dVIN,GND/dt} = - Capacitor Model
— [dIu(m)/dt] = - Resistor Model
— [dI“(Cl)/dt] = + Kirchoff's Current Law

Since cach quantity is non-zero at Instant-0, we know by the Continuity Rule that all the values will

remain the same for an open interval (Interval-0) following Instant-0.

Next it must be determined whether or not any quantities will transition to zero at the end of
Interval-0. By applying the Integration Rule to [Vl.\chD] = + and [de’GND/dt] = —, we know that

Vm, Gap 1S Moving towards zero. Using a similar argument, we determine that [Ill(R 1)] and [Iu ( c1)] arc

also moving towards zero.

The direction of [dV N'GND/dt], [dlu(m)/dt] and [dld(u)/dt], however, cannot be determined using the
Integration Rule, since their derivatives (the second derivatives of V and I) are unknown. The
direction of cach of these quantitics can be determined using the inference rules for equivalences
described above. For example, we know that [dV N GND/dt] is moving towards zcro, since [ltl( c1)] is

moving towards zero and “ll(Cl)] = [dV, N’GND/dLJ from the capacitor model.  In addition, it is

2A'Morc complex examples of Transition Ordering are found in the example sections of chapters 5 and 6.
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deduced from KCL and the resistor model, which are both cquivalences, that [dlu(m)/dt] and

[dI . . /dt] arc also moving towards zero.

tl(ct)

Finally, since all of the quantitics arc qualitatively cquivalent, they will all transition to zero at the
same time. Since no other potential transitions exist, cach of these quantities will transition to zero at

the end of Interval-0.

Using the results of Transition Analysis, we know that the primary cause (V ) at Instant-1 is zcro,

IN,GNIY
where Instant-1 immediately follows Interval-0. Causal Propagation is then used to generate a causal

account of why, for example, [dV /dt] is zero at Instant-1.

IN,GND

The discussion, thus far, has assumed that all quantitics behave continuously. The next section

discusses how TQ Analysis might be extended to deal with discontinuous behavior.

4.3.1 Discontinuous Behavior

Although an engincer believes that circuits in the physical world exhibit continuous behavior, he
often wants to model portions of their behavior discontinuously. For example, a voltage may rise

sufficiently fast that the engincer wants to idealize the behavior as a step, simplifying his analysis.

Even when a circuit’s behavior is modeled by a discontinuous function, the discontinuitics are
isolated to a few places and the rest of the function behaves continuously (c.g., a step is only
discontinuous at onc point). If the point at which a quantity is discontinuous can be identified, 1Q
Analysis can deal with it simply by not applying Transition Analysis to the particular quantity at that

point in time.

'The remaining task, then is to identify when a quantity may behave discontinuously. A discontinuity
in one of the circuit’s state variables may result from cither a discontinuity in 1) an input, or 2) one of
the device models. Discontinuities in state variables can be identified by propagating cach
discontinuity (or continuity) forward from the input (or device modet) to the affected quantitics.
This propagation is performed using rules like:

If A + B = C where A is discontinuous at some point and B is not, then C is
discontinuous at that point.25

25 - Lo . .
Usually we can say that the output of a qualitative expression is guarantecd to be continuous at some time as long as all of
its inputs are continuous at that time.



Creating a sct of rules which correspond to integration is more difficult since the integral of a
discontinuous function may or may not be discontinuous, depending on the order of the singularity.
For example, the integral of an impulse (a step) is discontinuous, while the integral of a step (a ramp)
is continuous. To deal with integration the propagation mechanism for singularitics must keep track
of the order of the singularity as well. TQ Analysis is currently being cxtended with a set of rules

similar to the ones above which deal with discontinuities.

4.4 Summary

Key Concepts:

* The behavior of real physical systems is continuous.
* Transition Analysis may be viewed as a qualitative large signal analysis.
*'[ransition Analysis is built on a few simple theorems of calculus about intervals.

* Transition Recognition determincs the direction of a quantity with respect to zero using
the Continuity Rule and the Integration Rule.

* Transition Ordering uses the directions deduced during Transition Recognition, along
with the qualitative relations between quantities to:

- climinate potential transitions which would violate the Zero-crossing Principle

- determine, when possible, the direction of quantities not deduced by Transition
Recognition.

* Transition Analysis can be easily extended to deal with discontinuities.
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Chapter Five

Feedback Analysis

Feedback is an important property of most physical systems. Roughly speaking, fecdback occurs
whenever one of the inputs to a sum is a function of the sum's output. A feedback path then exists
between the sum’s output and an input. Negative feedback is often used to add stability to amplifier
gain and positive fecdback is used in digital systems to provide sharp transitions and bistability. This

chapter discusses how feedback and equations with simultancities affect TQ Analysis.

IN
\T/ I(IN)
I(R1) '+ I(R2)
R1 V(N R2
"-J_—— Gnd

Figure 5-1:RR Current Divider

Instances of feedback can be found in remarkably simple circuits, such as the resistive current divider
circuit (RR) shown in Figure 5-1. Assuming that IlN is initially zero, the following is one possible
explanation for the response of the circuit to a rise in Im:
An increase in | produces an increase in I , causing V, to rise. The rise in voltage is
applied across R2, increasing I and, hence, reducing the cffect of the initial current
incrcase on Im.

This is a simple example of negative feedback, where lR2 is the feedback quantity, Ciccuit analysts
usually ignore feedback at this primitive level. Nevertheless, in qualitative analysis it is important to

understand feedback at any level for two reasons. First, feedback is a special case which cannot be
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handled by the TQ mechanism discussed.  Second, by understanding the propertics which are
particular to feedback, the power of TQ Analysis is increased. In the following two scctions we
discuss the cffects of feedback on 'TQ Analysis, and how TQ Analysis can be augmented to deal with

it.

5.1 The Effects of Feedback and Simultaneities on TQ Analysis

If 1Q Analysis is run on the RR circuit we immediately run into a problem. Initially all the circuit’s
state variables and their derivatives are zero. At the beginning of the first open interval, dlm/dt
becomes positive. At this point the only applicable qualitative relation is Kirchoff’s Current Law:
[dl/dg — [dI, 7d{] = [dL, /dt]

Unfortunately, cither [dlm/dt] or [dlm/dt] must be known to solve this equation and there is no
means of calculating them using purely local information. We can see why this is not possible by
looking at the overall structure of the causal rclations between the circuit’s state variables; this is
shown in Figure 5-2 and is called a causal relation graph. 'To deduce [dlm/dt] from KCL we need to
know [dIRz/dt] ; however, we can sce from FFigure 5-2 that [dIRZ/dt] is a function of [d[m/dt]. This
results in a set of simultancous relations; [d[m/dt] cannot be calculated without knowing [dIm/dt]

and vice-versa.

di(IN)/dt N S dIR1Y/dt

dI{R2)/dt <._____ dV(IN)/dt

Figure 5-2:Causal Relation Graph for RR Current Divider

The structure of the relations around a binary sum (A + B = C) can be classificd as onc of two
types: direct sum or simultaneity. A direct sum occurs when both inputs are independent of the
output C. A sirudtancity occurs whenever one of the inputs, A or B, is a function of its output C (and

possibly some other inputs). The simultancity is distinguished when one of the inputs is only a
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function of the output by calling it fcedlmck.26 An example of cach type of sum is shown in figure
5-3. The point at which the feedback or simultancity is summed is called a comparison poirzt.27 For
the following discussion we will always use C as the effect, A as the independent cause and B as the

Sfeedback term.,

The mechanism discussed thus far has assumed that all sums are direct. Farlicr we found that if the
result of a direct sum is ambiguous, the results of Transition Analysis can often be used to resolve this
ambiguity. Similarly, if a sum is the comparison point of a simultancity, the results of Transition
Analysis can often be used to determine the valuc of a quantity which is the effect of a comparison
point and continue the propagation based on that value. If the results of Transition Analysis cannot
determine this value, we must look for the answer clsewhere. The next section cxamines the
propettics of feedback and shows how the resulting information is used to deduce the valuc for the

cffect of a comparison point.

5.2 Qualitative Properties of Feedback

Thus far TQ Analysis has only used local information to determine the behavior of a circuit. In this
section we examine the overall structure of the relations around a comparison point to determine the

value of its effect.

A Feedback loop is described in general by the following two equations:
A+B=C
B = %)

If the sign of B is the same as A, then we have an instance of positive feedback. In this case the sign of
C can be determined unambiguously and is the same as the sign of A. The result of positive feedback

is to amplity the effect of any changes in A.

If the sign of B is the opposite of A, then we have an instance of negative feedback. The valuc of C is
the difference between the magnitudes of A and B; this results in the sign of C being ambiguous. In

a typical use of negative feedback, B dampens the cffects of the input A on C, thus stabilizing the

26, . . - . . . .
This is a more restrictive definition than the one used in most lexts; however, by doing so we are able to describe a
number of interesting propertics later on.

27 . - - . . . Lo
A comparison point is a point in the rclation graph, and docs nol necessarily correspond to any particular point in the

circuit topology.
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Effect (C) Direct Sum

Cause (A) > @ >
Cause (B)

Effect (C) Simultaneity
Causc (A) EB 7

FFeedback (B) I
f(C,D)
K— Causc (D)
Effect (C)

Feedback
Cause (A) > -

SY
Feedback (B) I
f(C)

Figure 5-3:Support Classification

output. If F is a polynomial function, that is  only involves addition, negation and multiplication,
then we say that it is resistive.” If the feedback is purcly resistive then the magnitude of B will be less
than A, except when A, B and C are zero; thus, the sign of A and C are the same. Intuitively, this
means that, if there are no independent sources in the negative feedback loop, the feedback term will

always be weaker than the input o the feedback loop. [ order for the magnitude of the feedback

28! ntuitively, this means that the function is memoryless.
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term to be larger than the input, the gain of the function ¥(C) would have to be greater than one. An

engincers intuition says that such a gain can only be produced using an independent source of power.

Another way of viewing this concept is to consider therc to be a finite delay along the feedback path
and simulate the results of a change on the input. Assume that A, B and C are initiatly zero and F(C)
is a negative constant gain such that [B] = — [C]. Now, if A becomes positive, then C becomes
positive, since B is initially zero and C = A + B.This then causes B to become negative, reducing
the cffect of A on C. Now suppose that the magnitude of B becomes as large as A. This causcs C to
become zero, and since [B] = — [C], B must also become zero. However, we are now back to the
casec where A is positive and B is zero, so C must instantancously jump back to positive. By
continuing this argument C appears to oscillatc back and forth betwcen positive and zero
instantaneously. Such an oscillation violates continuity and cannot occur in real systems, thus C

remains positive until A moves to zer0.”

As we have scen above, for both types of feedback the sign of the effect is the same as the input. This

is described by the following rule:

Resistive Feedback Rule
IfA + B = Cand B is aresistive function of C

then the sign of C will always be the same as A ([A] = [C)).

The cquivalence between A and B also supplies an additional constraint to Transition Ordering

which is used to break simultancitics in the Direction and Transition constraints;

Resistive Feedback Traunsition Ordering Constraint
IfA + B = Cand Bis a resistive function of C

then A, B and C will transition to (from) zero at the same time,

Returning to the RR example (Figilrc 5-1), we know that dI /dt transitioned from 0 to + at the
beginning of Interval-0. [lel/d(] cannot be deduced by KCL. because [dlm/dt] is unknown;
furthermore, it is assumed that the value of [dlm/dt] cannot be determined by Transition Analysis.

We therefore assume that KCI. produces a rclation which is a feedback comparison point in the

29,. . . " " e .
fforbus uses this type of argument, which he refers to as "stutier”, to model a person’s naive intuition of simple fecdback.
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current divider's relation graph (Figure 5-2). In addition we assume that dI /dt is the cffect of the
comparison point and dl_/dt is the feedback term.®® Under this assumption we assert that
[dl RI/dl] = +,since [d] /di] = [dlm/dt] by the Resistive Feedback Rule, and eventually deduce by
Causal Propagation that [leZ/dt] = 4. 'This is a valid instance of feedback since the feedback term
([dlm/dt]), is only a function of the cffect ([dlm/dt]). Furthermore, it is negative feedback since

dl /dtand dl /dtarc both positive, where [dlm/dt] -~ [lez/dt] = [dlmldt].

After a period of time, [ i Stops rising and dIIN/dt transitions to zero, marking the end of Interval-0.
Using the Transition Ordering constraint for resistive feedback we deduce that lel/dt will transition
to zero at the same time as dI _/dt, and dI ,/dt will also transition at the end of Interval-0 since both
dl /dtand dI /dtarc transitioning and [dIIN/dt] - [dlm/dt] = [dlm/dt]. Finally, dV, /dt will also
transition to zcro since [dV| /dt) = [dlm/dt]. Therefore, at the instant following Interval-0 all three

currents are positive and constant and remain so until the input changes.

If a circuit includes an inductor or a capacitor along the feedback path then the function F will
involve intcgration.3 UFor a capacitor the relation [dV/dt] = [I] makes it necessary to integrate dV/dt
to get V, while the relation for the inductor, [V] = [d1/dt] requires dI/dt to be integrated. A
feedback path which requires voltage integration is called capacitive feedback, a path requiring
current integration is called inductive feedback, and a path requiring no integration is called resistive
feedback. 'The propertics of resistive feedback have alrcady been discussed above. The remainder of

this section discusses the properties of feedback paths which involve integration.

An RC circuit exhibiting capacitive feedback is shown in Figure 5-4, along with its relation graph.
KCL, again produces a feedback comparison point in the relation graph with I , as the feedback term
and [ as the cffect. IfV is initially zero, then the Integration Rule tells us that V will have the
same sign as dV /dt during the following time interval, This is depicted in the relation graph as

v /dt— V. .

When a negative fecdback path involves integration, it is not nccessarily true that [C] = [A] for all
time. For example, if A is positive and begins to quickly drop, then A may become less than Band C

becomes negative. The reason for this is that the integration along the feedback loop makes B

30111 the RR example we also could have called le 2/d1 the effect and dI__/dt the feedback term. A set of heuristics for
selecting the effect and feedback term of a comparison point is discussed in section 5.3.

3]Inluilivcly a feedback path involving integration has memory.
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Figure 5-4:RC Current Divider

sluggish and it can’t respond quickly enough.

If, however, A, B and C arc initially zcro at some time instant (t1) and A transitions from zero
immediately after tl, then the magnitude of B will be less than A for an interval of time (I1)
immediately following 1132 Thercfore, the sign of C will be the same as A during I1. After this
interval, the magnitude of B may become as large as A, in which case C will cross to zero and

[C] # [A]. This is described by the following rule:

Integrating Feedback Rule

IF
LA+ B=C,
2. Bis a function of C involving integration,
3.[A} = [B] = [C] = 0 at some timc instant and

4. A transitions from 0 immediately after that instant

THEN

3 The integral of a continuous quantity Q is always less than Q for some interval starting at the beginning of the integration;
therefore, the initial effect of the integration is 1o reduce the magnitude of the feedback term.
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the sign of C will be the same as A i.e., ([A] = [C]) for an interval of
time imincediately following that instant.

This rule can now be used to describe the behavior of the RC circuit (Figure 5-4). [Initially, it is
assumed that the input current is zero and the capacitor is discharged, so that all the circuit’s currents
and voltages are constant at zero. At the beginning of some open interval the current IlN becomes
positive.33 Using the Integrating Feedback Rule it is assumed that |1 Cl] = +, allowing the following

chain of deductions to be made:

([I,]1 = +) — ([dV(iN)/dt] = +) — ([V(IN)] = +) — ([I(Rr2)] = +)

Next we want to determine what transitions occur at the end of the interval. By the Integration Rule,
V,, is moving away from zero and cannot transition. 1, also cannot transition since [[m] = [Vm]. If
[, is moving towards zero then, I_ must reach zero before IIN to satisfy the Intermediate Value

IN

Theorem in the relation [[m] =1l Cl] + [lm]; thus I is climinated. This leaves [, and dV /dt, which
must transition at the same time, since [l ] = [V, /dt]. Since neither quantity’s dircction is known,
they may or may not transition. The former corresponds to the case where the input current levels
off and the capacitor eventually stops charging. This matches our intuition sincc a capacitor acts like
an open circuit at DC. The latter corresponds to the case where the input current continues to rise
forever, and the capacitor never stops charging. The Integrating Feedback Rule also holds for
inductive circuits; however, inductance is rarcly considered in digital MOS circuits. The remainder

of this section summarizes the steps involved in resolving ambiguitics due to simultaneitics.

During Causal Propagation, if one of the inputs to a sum (CP1) cannot be determined and no further
deductions can be made, it is assumed that the sum is a simultancity and the results of Transition
Analysis are used, if possible, to determine a value for C. [f the value for C cannot be determiined by
Transition Analysis, it is assumed that the sum is part of a feedback loop and one of the above

feedback rules is used to determine C.

Once the value for the feedback term (B) is deduced, this assumption is verified by looking at the

causal chain supporting B. 1f C is encountered along B’s causal chain then B is a function of C and the

33]1 is interesting o note that the behavior of this circuit is deduced without knowing the derivative of the input. We will
return to this cxample again in section 5.7, using higher order derivatives to produce a more detailed explanation.
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sum is a simultancity. If all of the causal paths supporting B start at C** then Bis a function of C
alone and the sum is further classified as feedback.? Similarly, the feedback is further classified as
positive or negative, and resistive, capacilive, inductive or both. Finally, if C is not encountered
among B’s support, then B is not a function of C and we have a direct sum. If an assumption proves

to be false it must be retracted.

Verifying a simultancity or feedback assumption is more complex for circuits with multiple feedback
loops or cross coupled feedback loops since the fecedback loops may neced to be verified
simultancously. An approach, similar the onc discussed above traces B’s causal chain with one
modification. If the effect of another comparison point (CP2) is encountered along B’s causal chain,
then it will not be possible to follow the causal chain of CP2’s feedback term if it hasn’t been
determined yet. We know, however, that CP2's feedback term is only a function of CP2's cffect and
need not be traced. Thus only the input to CP2 is followed (and the feedback term is ignored) under
the assumption that CP2 is the comparison point of a valid feedback loop. [f at a later point CP2’s
fecdback term is determined and it is found that CP2 is not the comparison point of a feedback loop

then the feedback term must be traced to verify CPL.

5.3 Bidirectional Comparison Points

The problem addressed in this section is the determination of the cffect and feedback terms of a
comparison point. TIn the previous scction we assumed that it was known which quantity was the
effect and which quantity was the feedback term. However, if the comparison point of a feedback
loop involves a bidirectional sum, the selection of these two quantitics is not obvious. Although all of
the feedback compaiison peints scen thus far have been a result of KCL, in general they can be
produced by any relation involving a sum, cither from a network law or a device model. Both of the

network laws (KCL and KV1) contain bidirectional sums; however, nonc of the device models which

34/\. less restrictive version states that the sunis a feedback comparison point if all of the causal paths supporting B start at a
quantity which is a member of C's qualitative cquivalence class.  C's qualitative cquivalence class then consists of all
continuous quantities whose qualitative values are cqual (or the ncgation) of C's qualitative value during the interval (thus
cach quantity in C's qualitative cquivalence class can be described as a function of C alone).

SB can be a function of another quantity (X) as well as C as long as [X] = 0: in other words, X is not driving the feedback
tertn,
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we've encountered in the MOS domain contain bidirectional sums.6

Returning to the RR current divider example (Figure 5-1) we notice that the circuit is symmetrical;
R1 and R2 could be switched without changing the behavior of the circuit. This can also be seen in
the relation graph (Figure 5-2). An cqually valid description of the circuit behavior would have been
to use I as the feedback term and T as the effect. In this example the sclection of a feedback term
is arbitrary since the feedback path is bidirectional. This, however, is not the case in the RC current
divider example (Figure 5-4). We sce from the relation graph that the causality along the feedback
path can only run in one direction. I must be the fecdback term since the Integration Rule is

unidirectional, allowing the causality to run only from dV Cl/dt to Vcr but not the reverse.

One way of dealing with bidirectional comparison points is simply to try both possible directions.
This, however, becomes costly, since most complex circuits have a large number of simultancities.
Furthermore, cngineers appear to use a sct of heuristics which allow them to significantly reduce the

amount of backtracking which is performed while reasoning about feedback circuits.

Returning to the RC current divider, a circuit analyst might describe its behavior as follows:

When the input current becomes positive, the capacitor initially acts like an incremental
short and all the current goes into the capacitor. As the capacitor charges, this produces a
positive voltage across the resistor, causing I to be positive.

The important part of this dialogue is the viewpoint that C1 acts like an incremental short. We can
understand this viewpoint by looking at the impedance of a capacitor. Initial changes in state
variables are usually fairly sharp, involving a large high frequency component. At high frequencies
(w), the impedance of the capacitor (1/jwC) becomes very small, causing the capacitor to act like an

incremental short or "battery™.

In this example the designer reasons that the current through the capacitor initially dominates over
the resistor current, and sclects the former as the effect of the comparison point. Looking at the
circuit’s relation graph, we sce that the capacitor "integrates™ 1 o The causality can only move from
1., towards V, and not vice-versa; therefore, 1., must be the effect of the comparison point. The

opposite case occurs in the RC high pass filter shown in Figure 5-5. This circuit behaves as follows:

When the input voltage begins to rise the capacitor initially acts like a "battery”,
transmitting the change in the input voltage directly to the resistor’s voltage.  This

36. . Co . . . .
Ihe mosfet model, presented later on, contains a relation involving a sumy which can be used as a comparnison point;
however, the relation is unidirectional.
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Figure 5-5:RC High Pass Filter

produces a current through the resistor which charges the capacitor and causcs V, to
increase.

In this example the designer reasons that the capacitor is initially insensitive to any changes in
voltage, and thercfore selects it as the feedback term of the comparison point. Looking at this
circuit’s relation graph, we scc that causality can only move from [ a towards V a and not vice-versa;

therefore, 1, must be the feedback term in the comparison point.

If the capacitor is replaced with an inductor in the above two circuits, the behavior is exactly the
opposite. At high frequencies (w) the impedance of the inductor (jwl.) becomes very large, causing
the inductor to act incrementally like an open circuit or current sgurce. Using the above analysis, we

can construct the following heuristic:
Feedback Direction Heuristic

For cach of the two unknown quantitics in the comparison point:
* 1f the quantity is current (or one of its derivatives) then

- If the relation attached to the quantity is capacitive, the quantity is the effect of the
comparison point,

- If the relation attached to the quantity is inductive, the quantity is the feedback

54



term of the comparison point.

* [f the quantity is voltage (or onc of its derivatives) then

- If the relation attached to the quantity is inductive, the quantity is the effect of the
comparison point.

- If the relation attached to the quantity is capacitive, the quantity is the feedback
term of the comparison point.

*If no relation, other than the comparison point, is attached to either quantity then
Feedback Analysis is not appropriate.

Scction 5.5.1 provides an cxample of how these heuristics are used to describe more complex circuits.
'The next section discusses a means of restricting the number of sums which are treated as comnparison

points.

5.4 Localizing the Effects of KVL

The KVL rule from chapter 3 states that the sum of the voltages between any three nodes is zero, no
matter how far or close the nodes arc spaced. This differs from KCI. and the device models in that its
effects are non-local. This presents some serious problems when applying the feedback rules, since a
change in voltage at one end of the network will produce a plethora of feedback assumptions across
the network, few of which arc of any use. Somecthing is clearly wrong with this approach. An
engineer doesn’t suddenly jump back and forth from onc end of a circuit to the other when
describing its behavior. Instcad he prefers to reason about circuit behavior in terms of local
interactions. When a voltage is given with respect to a reference, it is often viewed as a node voltage
(or potential) and the reference becomes implicit (c.g., VIN,GND becomes Vm)' A node voltage at node
(N) may then be reasoned about as if it was a quantity local to N. To determine the effects of the
node voltage, the analysts will lock at the branch voltage (i.c. a voltage between two nodes) across
devices which are dircctly connected to node N. In his PhID thesis, de Kleer identified the importance
of reasoning about voltage locally when dealing with feedback, calling it the KVL Conncction

Heuristic. 'The following is a paraphrased version of the KVI. Connection Heuristic:

If the voltage at a node, which is connected to one terminal of a device, is increasing or
decreasing, and nothing clse is known to be acting on the device, then the device responds
as it'the unkinown actions are negligible

A statement of the KVL Locality Heuristic used in TQ Analysis is shown below. The effect of the
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node voltage on the surrounding circuit is not stated in the KVL Locality Heuristic, but is determined
by the feedback rules and heuristics outlined above. The resulting behavior of the KV Locality
Heuristic differs from the KVI. Conncction Heuristic in that the change in the node voltage may or
may not be transferred across a locally connected device, depending on whether it is resistive,
capacitive, or inductive. The latter case occurs in the RC example (Figure 5-5) where the capacitor

acts initially like a voltage supply, and the change in 'V, is produced across R2 rather than C1.

KYL Locality Heuristic
Only apply Feedback Analysis to a comparison point produced by KVL if the input to
the comparison point is a node voltage (potential).

5.5 Examples

Using the rules and heuristics described in this chapter, it is now possible to describe the behavior of
more complex circuits. In this section, 'TQ Analysis is used to describe the behavior of two circuits:
an RC ladder network and a Wheatstone bridge circuit. The first example combines the Integrating
Feedback Rule with the Feedback Direction Heuristic to describe the behavior of a capacitive circuit
over an interval of time. The sccond circuit provides a complex example of resistive feedback, and

shows how FFeedback Analysis interacts with Transition Ordering.

5.5.1 RC Ladder Example

An RC ladder network is shown in Figure 5-6 along with its causal relation graph. This circuit has
three comparison points, two from KVL and one from KCL, producing the three potential feedback
loops shown in the network’s causal relation graph., 'We assume that the voltage across the input and
cach capacitor is zero at Instant-0. At the beginning of the next interval (Interval-0), Vi begins to
risc and becomes positive.  Using TQ Analysis, we can predict the behavior of the circuit during
Interval-0, as described below. Note that cach phrase of the explanation is followed by a set of rules

which were used to deducc that portion of the behavior:

1. As the voltage at node IN riscs,
({nput, KVI, Locality Heuristic)

2. C2 initially acts like a battery
(ecdback Direction Heuristic for voltages)

3. and the voltage across the resistor (R1) connected to IN begins to increase.
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(Iniegrating Feedbuck Rule)

4. The positive voltage across R1 producces a current
(Integration Rule, resistor model)

5. which flows into C2,
(KCL, Integrating leedback Rule)

6. since C2 initially acts like an incremental short.
(Feedback Direction Heuristic for currents)

7. This causes C2 to charge, producing an increase in voltage at node N1.
(capacitor model)

8. This change in voltage is transferred across R3,
(sameas I, 2 and 3)

9. producing a current which flows into C4,
(resistor model, Integration Rule, KCL)

10. causing the capacitor to charge, and raising the voltage at node OUT.
(capacitor model)

5.5.2 Wheatstone Bridge Example

Figure 5-7 shows an cxample of a Wheatstone bridge, one of the more complex, purely resistive
circuits used in engineering practice. Again, the voltage across the input, and therefore across cach
resistor, is assumed to be zero at Instant-0. At the beginning of the next interval (Interval-0), Vm
begins to rise and becomes positive. Causal Propagation and Fecdback Analysis arc used to predict
the behavior of the circuit during Interval-0. The arrows in the causal relation graph (figure 5-7) for
the bridge circuit indicate the direction of causal flow resulting from the prcpagation.37 The

following is an explanation of 1 s behavior in response to the input:

1. As the voltage at node IN riscs,
Input

2. the voltage across R2 increases,
KV Locality Heuristic, Resistive I'eedback Rule

3. causing an increase in lR
resistor model

2’

37/‘\ll the relations for the Wheatstone bridge circuit arc bi-directional.
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4. which flows into R4, producing an increase in I,
KCI, Resistive Feedback Rule

5. and causing VM to risc.
resistor model

6. Similarly, increasing V,  causes an increase in Vm,
KVL Locality Heuristic, Resistive Feedback Rule

7. increasing Im’
resistor model

8. which then flows into R3, producing an increase in [ ,,
KC1., Resistive Feedback Rule

9. and causing VR3 1o rise.
resistor model

At this point an ambiguity arises; the voltage across RS may become positive, negative, or remain
zero.  All three possibilities could occur, depending on the relative magnitudes of V, - and Vna'
These, in turn, depend on the specific values of the resistors in the network. For now we assume that

V. |> |VR 4]. Using this assumption the cxplanation can be completed:

R3

1. Assuming the increase in an dominates over VR " then
Assumption

2. this causes an increase in VRS,
KVL

3. producing an increase in IR
resistor model

5’

Next, TQ Analysis trics to determine whether or not any voltage or current can transition back to
zero. At first glance, it scems likely that Vis will go to zero, or oscillate back and forth between
positive and ncgative, since its qualitative value was ambiguous in the above analysis. However,
intuitively, an engincer knows that nonc of the circuit’s voltages or currents should oscillate; because
the circuit is purely resistive, there are no energy storage units to support an oscillation. That is, none
of the voltages or currents should transition to zero until the input voltage gocs to zero. Combining
Transition Ordering with the results of Feedback Analysis, shown below, 1TQ Analysis is able to make

a similar prediction.

Applying the Resistive Feedback Transition Ordering Constraint (scction 5.2) to the four feedback
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comparison points produces the following relations, where (X) denotes the time that X will transition

to z¢ro:
t(vV )=tV )= t(Vm) (5-1)
t(VlN) = t(VM) = t(VM) (5-2)
t(ll{l) = t([m) = t(IRS) (5-3)
() = t(,) = t() (5-4)

The resistor model provides the following additional constraint:
(V) =t )fornfromlto$ (5-5)

Using relations 5-1 and 5-2 above, we know that Vm through V_ , will transition to zero exactly when
\/IN transitions. In addition, from relations 5-3 and 5-4, lRl through IRs will also transition together.
Finally, applying rclation 5-5 to R5 and one of the other resistors (R1 — RS), Transition Ordering
determines that all of the currents and voltages in the circuit will transition to zero, exactly when V,
docs. 'This is precisely what we predicted above based on our intuition; thus VRS can only oscillate if

the input voltage oscillates.

Thus far we have discussed simultancitics which result in ambiguities at sums; in the next section we

discuss how simultancitics can produce ambiguitics which originate right at the primary cause.

5.6 Simultaneities Involving Primary Causes

Returning to the parallel RC circuit described in the introduction, it has been determined thus far
that Vm‘GND is initially positive during Instant-0, and decrecases during Interval-0, reaching zero at
Instant-1. At Instant-1 the values of the voltage, currents and their derivatives are all zero. Intuitively
we know that the voltage will remain zero during Interval-1, the interval following Instant-1 (since
/dt] is

can be determined using the Integration Rule. Unfortunately

any perturbation of Vm GND off of zero will immediately decay back to zero). If [dVIN GND

INGND

known daring Interval-1, then V
[dVlN’GND INGNDY € the relations contain a simultancity involving

Vw GND (Figure 5-8). "This situation is quite analogous to the feedback examples presented carlier. In

fact the parallcl RC circuit is identical to the RC high pass filter (Figure 5-5) when V| for the filter is

/dt] can only be deduced from V

zero, Because there is no independent source driving the feedback loop all quantities along the
feedback loop wiil remain constant at zero., Feedback Analysis deals with this type of simultancity

with the following rule;
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Simultancous Primary Cause Rule

If the value of a primary cause (Q), and its derivative (dQ/dt) are unknown during an
interval and were both zero at the previous instant, then assert that Q is zero during that
interval under the assumption that Q is part of a feedback loop with no source.

This rule is applied to any primary cause which is not independently driven as an input (i.e., the
independent variable of a memory clement, such as the voltage across a capacitor or the current
through an inductor). Tt is then substantiated when dQ/dt is deduced by making sure that 1) [dQ/dt]
= 0 and 2) [dQ/dt] is a function of Q alone.

Applying the above rule to the parallel RC cxample, we assume that [V ] = 0 during Interval-1.
. Im, and finally dV

assumption. At this point all of the state variables and their derivatives are zero. Transition Analysis

IN,GND

/dt arc zero, thus substantiating the

From this it is deduced that 1 INGND

determines that there are no more transitions and the system has reached steady state.

5.7 High Order Derivatives

Thus far, we have described the complete mechanism, provided by TQ Analysis, for analyzing
networks of devices which are modcled by a single operating region. The cxamplcs presenied have

only involved voltage, current, and their first derivatives. TQ Analysis, however, is not restricted to
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these quantitics and can use higher order derivatives when available, In this section we return to the
RC current divider (figurc 5-4) to show how higher order derivatives may be used to provide more

detailed predictions.

Recall from section 5.2 that, assuming C1 of the divider is initially discharged, a positive input
current, Im’ starting at the beginning of an open interval (11), causes Cl to charge, making VlN
positive, which produces a current through R2. Knowing only the sign of the input current, TQ
Analysis is unable to determine whether or not the capacitor stops charging after a period of time,
(i.c., docs IC1 transition to zero?). ‘T'he resolution of this ambiguity depends on more detailed
characteristics of the input waveform which were not provided. Now we will provide some additional

constraints on the input waveform and see how they affect the resulting prediction.

Instcad of specifying just that the input is positive, it is assumed that the input current is
monotonically increasing. This provides the additional constraint that the input current’s derivative
is positive during 11, The relation graph corresponding to the additional input, dlm/dt, is the same as
the one in figurc 5-4, except that cach quantity is replaced by its derivative. Again, applying the
Integrating Feedback Rulc to KCL, followed by constraint propagation, the following additional

deductions arc made:

([dI,7dt] = +) — ([dI_/dt] = +) — ([d?V(IN)/dt?] = +)
— ([d%I(r2)/dt2] = +)

Using these deductions, it is now possible to determine what [, will do. Notice that, since both
dICl/dt and 1 o are positive, ICl is moving away from zero, thus, rcsolving the ambiguity about
whether or not | o transitions. As long as dICl/dt stays positive, current will continue to flow and the
capacitor voltage will risc monotonically, This resolves the ambiguity mentioned above; however,
another ambiguity ariscs: dICl/dt may transition to zero. This transition might occur if the derivative

of the input current oscillates sharply, while remaining in the positive region.

To resolve this new ambiguity, onc final constraint is placed on the input current: the input
waveform is a ramp. This corresponds to the sccond derivative of the input current being zero during

I1. Using Causal Propagation, the following deductions arc made:
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([d21 /dt?] = 0) - ([d®I,/dt®] = +) — ([dI, /dt?] = -)
— ([d®V(IN)/dt3] = -)

This resolves the ambiguity about dlCl/d[ transitioning. Since its derivative (dzlm/dtz) is negative,
dl . /dt is moving toward zero. Furthermore, Transition Ordering determines that, since dlCl will
reach zero first, it must transition. QOnce, dl Cl/dt reaches zero, 1 and dlm/dt will both be rising
ramps, where [, lags I by the constant current [c1' No further transitions will occur as long as the

input current remains a ramp.

Above we saw that, by using higher order derivatives, it was possible to resolve all ambiguity in
response to the input. Furthermore, higher order derivatives enabled us to describe the behavior of
the circuit’s state variables more precisely. For cxample, knowing only the sign of the input it was
only possible to determine that 1 o Was positive. By knowing the first and sccond derivatives of the

input, we determined that 1 o Vas initially rising, but eventually leveled off to a constant value.

Using higher order derivatives does not always reduce the number of ambiguitics. If instead
[dzlm/dt?'] was positive, then it would have been ambiguous whether or not [d2[ Cl/dtz] transitioned to
zero. Furthermore, if the input was a rising exponential (eg., I, = ¢'), then all of the nth
derivatives of [, up ton = ©0 would be positive. For the exponential input, the addition of higher
order derivatives would result in replacing one ambiguity with another at a more detailed level. For

this input one must use some other reasoning technique, such as induction, to resolve the ambiguity.

In this section we have scen that higher order derivatives may be used to add detail to the prediction
of the circuit’s behavior, Furthermore, this additional information may sometimes be used to resolve
ambiguitics. Howcver, the use of higher order derivatives does not guarantee that all existing
ambiguities will be resolved and may even add more ambiguitics. In addition, these derivatives may
add a level of detail into the cxplanation which the user would rather ignore or might find
(:onl'"using.38 A good theory of when it is profitable to pursuc higher order derivatives is important in

qualitative analysis and is a topic of future rescarch.

38. . . . . .
The desired level of detail for an explanation depends on many factors, such as the domain and type of user. In the MOS
domain, first and sccond derivatives have been feund adequate for most circuits examined.
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5.8 Summary

When TQ Analysis encounters a situation where the input to a sum is a function of the sum’s output,
Causal Propagation cannot continue. The sum is assumed to be a simultaneity, and the results of
Transition Analysis arc used to deduce the output. If this is not possible, the sum is assumed to be a
casc of feedback and the qualitative properties of feedback can be used to determine the output.
These properties are summarized by the Resistive Feedback Rule and the Integrating Feedback Rule.

Finally, the assumption of simultaneity or fcedback is verified.

At a bidircctional comparison point an additional complication ariscs: The causc and feedback terms
must be identified. An engincer uscs his intuition about capacitive and inductive relations to resolve
this complication. This intuition is summarized in the Feedback Dircction Heuristic. At present,

bidircctional sums appcar only in the KCL. and KVL rules.

The number of potential feedback comparison points can be quite large due to the non-local
behavior of KVL. A designer, restricts this number by reasoning in terms of local interactions. This

notion is captured in the KVL. Locality Heuristic.

Finally, by viewing a circular sct of relations as a feedback loop with a "mythical cause”, Feedback

Analysis can be used to resolve the simultaneity.
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Chapter Six

Operating Regions and the MOS Transistor

The basic building block of MOS circuits is the Metal Oxide Silicon Ficld Effect Transistor or mosfet.
This chapter develops a qualitative model for an enhancement n-channel mosfet and discusses how
TQ Analysis is extended to decal with this and other models which have more than onc operating

region,

The mosfet can be modeled at a number of levels from device physics to the switch level abstraction.
In this chapter we use a very simple analog model [22] which is adequate for modeling most digital
circuits at the qualitative level. The mosfet model has three terminals which act as the gate, source
and drain. In addition, this model is broken into two parts: conduction and capacitance, where
conduction describes the relationship between VG,S , VD,S and [D, and capacitance describes the
relationship between Q o and the device’s terminal voltages. Figure 6-1 shows a high-level model of
the mosfet where capacitance is modcled as an ideal capacitor from gate to source and conduction is
modeled as a nonlincar dependent current source. The conduction model is broken into several
operating regions (c.g., off, on, unsaturated, saturated, forward and reverse), and cach region is
described using a different sct of constitutive relations. In this chapter we first discuss a mechanism

for modeling devices with multiple opcrating regions, then develop the mosfet’s conduction and

capacitance models, and conclude with the analysis of a simple mosfet circuit,

6.1 Modcling Devices With Multiple Operating Regions

Thus far only the analysis of devices with a single operating region have been discussed. To analyze
devices with multiple operating regions (e.g., diodes, bipolar transistors, JFETSs, Mosfets ctc.), TQ
Analysis must be extended in two ways. First, it must be able to determine which region a device is
currently operating in. This is nccessary to determine which set of device relations is applicable.
Sceond, TQ Analysis must be able to determine when a device transitions from one operating region

to another, identifying when one set of device relations must be exchanged for another.

An operating region is described by the set of boundarics which surround it. To determine the
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Figure 6-1:n-Mosfet Large Signal Model

operating region which a device is currently in, it is necessary to determine the device's position with
respect to cach of these boundarics. To determine whether a device may transition between
operating regions, onc must determine the direction the device is moving with respect to each of
these boundarics. When the device crosses one of these boundarics, it moves into a different
operating region. In Chapter 4, we discussed a mechanism (Transition Analysis), for determining how
a quantity transitions across the boundary zero, between the intervals, positive and negative. If a
quantity is associated with each opcrating region boundary, which describes the device’s distance
~ from that boundary, then Transition Analysis can be used to determine the device’s position and

moveinent with respect to that boundary.

The remainder of this scction describes the steps involved in defining the operating regions of a
device and specifying their associated device relations. During this explanations cach step will be

demonstrated using the operating regions of the mosfet as an example,

The operating regions of the mosfet model can be broken into two scts:  {Saturated, Unsaturated,

Off} and {Forward, Symmectric, Reverse}. These regions are described by the following incqualities:
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Forward: v. >0

Tt, T2
Symmetric: V,n‘.r2 = 0
Reverse: V,n.,l.2 <0
off: (Vg5 - v,) <0
On: (Vg5 - V.) >0
Unsaturated: VD'S (Vg - VL)
Saturated: Vi > (VG'S - V.)

A graphical representation of these operating regions is shown in figure 6-2.

Vds Von = (Vgs — Vth)
N /N
-1 Vsat = Vds — (Vgs — Vth)
Off © Saturated e
: //
7
7
7
v
7
7 ’ .
L7 Unsaturated
£ Lz NV
< l > '8
Vth

Figure 6-2:n-Mosfet Operating Regions

The first step in creating an operating region involves defining the boundaries that separate it from
other regions. A boundary and the half plancs above and below it can be described by the sign of a
quantity; that is, the boundary’s associated state variable.?? "This quantity is defined in terms of other

state variables using the arithinetic operations: addition, negation, and multiplication. Graphically,

9l"hls state variable represents the distance from the device’s current position in state space to the closest point on the
boundary.
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these operations correspond to rotating and translating, reflecting, and scaling a lincar boundary. In
the mosfet model, the quantity describing the boundary between Forward and Reverse is just V'n.n
and already exists. For the boundary between On and Off we define the state variable V where
VOn = VG‘S - V'r' Finally, the state variable VSat is used to describe the boundary scparating

Saturated and Unsaturated, where V. =V__ -V _.
Sat DS On

Next we need to be able to determine whether or not a device is above, below, or at a particular
boundary. This corresponds to asking whether or not the boundary’s state variable is positive (> 0),
negative (< 0) or zero (= 0). In addition, the region name is a boolcan which is truc if the device is in
that region, false if the device is out of that region, and ? if undetermined. The Forward, Symmetric

and Reverse regions are now dcefined as:

Forward = vV, ., 20
Symmetric = (Vyp =0)
Reverse = (Vi €0)

[f the behavior in a set of regions and boundaries can be described by the same set of rclations, then
those regions and boundarics can be combined. These regions are combined using union,
intersection and complement, which correspond to ANDing, ORing and Negating the truth valucs
associated with the particular regions being combined.  For example, using V or =, two new

predicates can be defined which combine a region and a boundary into a semi-closed region:

(A>0):=(A=20) Vv (A>0)
(A< 0):=(A=0) Vv (A<DO)

With these boolean operations and predicates we can now define the remaining operating regions

Off, On, Unsaturated and Saturated:

off = (V,, < 0)

On = (V,, > 0)
Unsaturated = (V, €0) A On
Saturated = (V,, = 0) A On

Finally, cach operating region can be asscciated with its corresponding relations using a set of
conditional statements. For example, when a mosfet is off the current is zero and constant. This is
expressed in the following statement:

If Off then ([I, ] = 0) A ([dI /dt] = 0)
Next a mechanism must be provided for determining how a device transitions from onc operating

region to another. Recall that cach boundary is described by a corresponding state variable. The sign
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of this state variable determines where the device is operating with respect to that boundary. By
computing the sign of the state variable’s derivative, it is possible to determine the direction the
device is moving with respect to its associated boundary. Transition Analysis is then applicd to
determine when a device will transition between operating regions. For example if [V On] = + and
[dv On/dt] = — then the mosfet is On and moving towards the On/Off boundary.‘m Transition
Analysis assumes that all quantitics are modcled by continuous functions. Because of this, the
relations in cach operating region must be continuous across the region boundaries, or the
discontinuity must be made explicit to Transition Analysis (section 4.3.1). In the mosfet model this
means that, since the current is zero in the Off region and at the boundary of On/Off, when a device
moves from Off to On, the current at the edge of the On region can be 07, but could not jump
discontinuously to 5 amps. The Shichman-Hodges model, which is used to derive the mosfet model
in the next section, is continuous in current, voltage, and their first derivatives. In the next scction,

the concept of multiple operating regions is used to model conduction in the n-channel mosfet.

6.2 The Mosfet Conduction Model

The n-mosfet is a charge controlled switch in which the three terminals, T1, T2 and T3, act as drain,
source and gate respectively. When positive charge is placed on the gate of the n-mosfet a layer of
negative charge forms between the gate and the substrate, which creates a channel between the source
and drain and allows ncgative charge to flow from the source to the drain. The voltagc'at\thc time the
channel is formed is called the threshold voltage (V,m) and is measured between the gate and source.
If VG,S < V,”1 then the device is Off and no current flows between source and drain. If Vo,s > V“l
then the mosfet is On and current may flow along the channel. The On operating region is

subdivided into Saturated and Unsaturated regions which are described by the following quantitative

relations:
. = - 2
Saturated: ID K(VG.S V,,m) )
Unsaturated: I, = K((VG.S = ViVos™ Vos /2)

If V_ ., is zero then the source and drain are indistinguishable and no current flows through the

channel.

The mental image most electrical engineers have for a mosfet is that voltage beiween the gate and

source producces charge on the gate and in the channel, causing current to flow. Changes in drain and

40.... . e .. . . .
This also requires some modifications to the mechanism for verifying {cedback loops which have not been discussed.

70



Model: n-channel-Mosfet(M)
Terminals: T1 T2 T3
Corresponding Nodes: N1 N2 N3
Roles: G S D
Relations:
[1,]=0
[dI,/dt] = 0
[Vo,l & [V, 1 = [Vy,]
[dV, 7dt] « [dVGﬁ/dt] - [av,, /dt]
[Vo,] = [V,] - [V,,]
[dvg 7dt] « [dVDJ/dt] - [dv,,/dt]
Region: OFF : [V, ] < O
Relations:
[1,1 =10
[dI, /dt] = 0
Region: ON : [V ] > 0
Region: SATURATED : [V, ] = O
Relations:
[1,] = [Vo,]°
[dI,/dt] « [V,] x [dV,/dt]
Region: UNSATURATED : [V&J <0
Relations:
[1,] = ([Vo,] = [V, D) x [V, (]
[dI_ /dt] « [VDJ] x [av, /7dt] - [V, ] x [dVDJ/dt]
Assertions:
three-terminal-device(M)
Assume-initially (is-acting-in-the-role-of (TI(M) D(M)))
Assume-initially (is-acting-in-the-role-of (T2(M) S(M)))
Assert-always (is-acting-in-the-role-of (13(M) G(M)))
Region: FORWARD : [V“'“] >0
Assertions:
is-acting-in-the-role-of (T1(M) D(M))
is~acting~-in-the-role-of (12(M) S(M))
Region: REVERSE : [V ] < 0
Assertions:
is-acting-in-the-role-of (Ti{(M) S(M})
is-acting-in-the-role-of (T2(M) D(M}))

™, 12

Figure 6-3:N-Mosfet Conduction Model
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source current are viewed as the effect of the device’s voltages and not the other way around. This
means that the two current cquations above should be modeled as unidirectional causal relations with

the voltages, VG s and V., ascauses, and | as the effect. Furthermore, positive charge flows from

DS
drain to source so these cquations have been written in terms of [D rather than IS. I . is determined as

an cffect of ID by three terminal device KCL (section 3.3.2.1).

The mosfet is a symmetric device in the sense that T1 and T2 switch between acting as drain and
soutce, depending on whether the mosfet is in the Forward or the Reverse operating region. We,
therefore, say that a particular terminal exhibits some behavior when acting in the role of source or
drain, rather than a terminal is the source or drain. T3 always acts in the role of gate; however, the
role of T1 and T2 may vary over time. The qualitative model for the n-mosfet is shown in figure 6-3.
Note that the mechanism for associating between terminals, nodes and roles is left implicit. For the
current I, D refers to the terminal acting in the role of drain and in VD,S, D and s refer to the nodes

connected to the terminals acting in the role of drain and source.

Three types of transistors commonly used in nMOS digital design are enhancement mode, depletion
mode and zero-threshold mosfets, The threshold voltage for an enhancement mode device is positive,
for a depletion mode device negative and for a zero-threshold device approximately zero. The model
for the enhancement mode n-mosfet is shown in figure 6-4. In the next scction we discuss the
capacitance which results from charge on the gate and along the channel.

Model: enhancemant-n-channel-mosfet(M)
Reilations:

v, (M)] = +

[dv, (M)/7dt] = 0
Assertions:

n-channel-mosfet(M)

Figure 6-4:Enhancement n-Channel Mosfet Conduction Model

6.3 Moslet Capacitance Model

Modeling mostet capacitance is very difficult due to its non-lincarities. If MOS capacitance is

modcled completely, then a capacitor should be connected between cvery terminal of the device,
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including the bias node. A digital designer, however, considers at most two of these capacitances, and
usually only one. These capacitances are CG’S and CG’D.41 Usually CG,D is less than CG’S and is
ignored. If the designer is interested in the detrimental cffects of parasitic capacitance then he
considers both of these capacitors, as they both have the ability to bootstrap. [f the designer is
explaining a bootstrap circuit, then he assumes that C G is dominant and ignores C 6" (An explicit
capacitor may be added to the circuit to make surc that CG,S is dominant). For more conventional
designs, a designer usually explains the gate capacitance as a capacitor from gate to ground. This
simplest model is adopted. Whenever a capacitor (CG’S) is being used for bootstrapping, it will be

made explicit.

As stated carlier, the gate capacitance on a mosfet is nonlincar. Below inversion (Off), there is no
channel for charge to move into, and gate charge terminates on the substrate. This produces a very
low capacitance.  When the channcl inverts (V G > V’Ih) charge moves into the channel and the
capacitance jumps dramatically. To model this effect it would be necessary to add, a qualitative
mos-gate-capacitor model. In this paper the ideal capacitor model given earlier is used. Next an
explanation is shown which TQ Analysis gencrates for a simple mosfet circuit using the model

described above.

6.4 Mosfet Example
(}Out [V(In,Gnd)@instant-0] = 0
Tu tl - :
IN [V(Out,Gnd)@instant-0] = +
T3 l I: M1 T Cl
1 2
T—l—_ Gnd
Figure 6-5:n-Mosfet-Capacitor Example
41 -

LG - is often referred to as the niiller capacitance.

73



By replacing the resistor in the parallel RC cireuit (figure 1-2) with a mosfet we get the circuit shown
in figure 6-5. Again we will assume that the voltage on the capacitor is some positive value; in
addition, the input voltage is 0 and the mosfet is off. At some time instant (Instant-0) the input
begins to rise. Eventually the mosfet turns on and the capacitor begins to discharge, decreasing

VOUT'GND. The following is an cxplanation using TQ Analysis to determine why the VOUT, GNp 18
dccreasing:42

Explanation for FACT-210: dV,, .,,/dt@Interval-1 is decreasing:

(1) It was given that VOUT’GND during Instant-0 is +.
(2) This causes M1 to be Forward,
since from rule NMOS-OP-REGION: Forward if V12 > 0.
(3) This causes T1(M1) to act as Drain and T2(M1) to act as
Source, from rule NMOS-FORWARD-BEHAVIOR.
(4) Also, 1t was given that Vm'GND during Instant-0 is 0.
(6) This causes V, to be -,
since from rule NMOS-BEHAVIOR: [Vgs] - [Vt] — [Von].
(6) This and (1) cause Vg, to be +,
since from rule NMOS-BEHAVIOR: [Vds] - [Von] — [Vsat].
(7) also (6) causes M1 to be OFf,
since from rule NMOS-OP~REGION: Off if Von < 0.

Interval-0:

(8) It was given that de'GND/dt during Interval-0 becomes +,
(9) This causes Vi, oy to be +,
since from rule INTEGRATION: [dA/dt] — [A].
(10) Fact (8) also causes dV,/dt to be +.
since from rule NMOS-BEHAVIOR:[dVgs/dt]-[dVt/dt]—[dVon/dt].
(11) This causes V,, to move towards 0
from rule INTEGRATION.

n
4"lhis explanation is similar, in style to the output gencrated by the current implementation of TQ Analysis
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Instant-1:

Eventually, V,, becomes 0 at Instant-1
by Transition Analysis on (11).

Interval-1:

(13) V,, becomes + at Interval-1 by the INTEGRATION rule.
(14) This causes M1 to be On,
since from rule NMOS-OP-REGION: On if Von > 0.
(16) This and (6) cause M1 to be Saturated,
since from rule NMOS-OP-REGION: Saturated if On A Vsat>O0.

(18) This and (13) cause Itl(Ml) to be +,
since from rule NMOS-SAT-BEHAVIOR: [Von] — [Id].
(17) This causes Itl(Cl) to be -,
since from rule 2-T-SKCL: ([I2] — - [I1]).
(18) This causes dVy,; cyp/dt to be -,
since from rule S-CAPACITOR: [I1] — [dVi2/dt].
(19) This causes Vg o, to move towards zero,

from rule INTEGRATION.

The remainder of the explanation describes how the capacitor discharges to 0 volts and will not be

given here,

The circuit shown in figure 6-6, is a simplified version of the bootstrap driver described in the
introduction. The problem with many digital circuits is that their output rises slowly if the output
load capacitance is large. One purposc of the bootstrap driver circuit is to provide a strong current
through the pullup (M2) to the output load capacitance, allowing the output to rise quickly. This is
achicved by using a bootstrap capacitor to fix a voltage across the gate and source of M2, keeping it
wurned on hard. To keep the capacitor’s voltage constant, the terminal of Cbmt connccted to node N1
is isolated, preventing any current from flowing into the capacitor. This isolation is performed by M3

which turns off when node N1 rises above the supply voltage. The digital behavior of the circuit’s
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L W d

— ~ | I: M2
M3 [ !
Coorr T OVt

IN
Ml
f\__ : [ I: -1 C Load

Iigure 6-6:Simplc Bootstrap Circuit

output is simply to invert the input.

The techniques described above make it possible to analyze the behavior of this circuit. We will
examine the behavior of the circuit at two points, when the input rises and when it falls. Initially the

input is low and the circuit has stabilized with the following conditions:

Mi: Off V. =0

G.S

M2: OFf, V.. = V
M3: OFf, V0o =V
[.vCIOad] =+
Veod = *

Immediately following some instant the input voltage begins to fall ([de/dt] = +). TQ Analysis is

then used to determine the response of the circuit to this input. Using the results of this analysis it is

possible to answer somce interesting questions about the circuit’s behavior:

3. . \ .
4 I'he text of the explanation shown here is what we would eventually like to produce and was generated by hand from the
rules discussed in this paper.
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at he : I rises?
What happens to V- when V _ rises?
Vour decreases
Why?

An increase in V., increases VG sy and eventually turns on M1, producing

an increase in II)(MX)' which begins 1o discharge C Load and decreases V. .
As VY drops, C,  actslike a battery, pulling down NI and increasing VG'S(M”.
This causes M3 to turn on, producing a current out of its Source and into C oot

which causes V. o 10 increase, turning on M2 and producing a current out

of‘its Source. Both Clm and M2 supply current to the Drain of M1, decreasing
the amount of current flowing out of C, _  and decreasing the rate
al which VOUT drops by negative feedback.

[n the above explanation we see how the rising input causes the output to drop and Cboot to charge up,
preparing it to bootstrap M2 on the falling edge of the input. The other interesting part of the
circuit's behavior occurs when the input is high and begins to fall. Just before the input falls the

circuit has stabilized with the following conditions:

Mi: Unsaturated, [I ] = +
M2: Saturated, [I ] = +
M3: Saturated, [I] = 0

[Vl : + (but close to zero)

cvon]

The results of TQ Analysis is then used to describe the effect of me on M2’s drain current when Vin

falls:

What happens to 1 when V| decreases?

DM2)

IDC\1 » reinains constant

Why?

13 / - - co T INJIT s L1001
A decrease in V, produces a decrease in | Doty Causing I C1oaq [0 iNCTEASE and

become positive. This causes C,_, to charge, thus increasing Vom" An

increase in ¥ ouy Causes an increase in V. turning off M3. This causes Iﬂ(Cboo[)

10 be zero, holding V. g ALTOSS M2 constant, and in turn causing I o1
'+ TAL

lo remiain constant.
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In this explanation we sce how M3 turning off isolates Nt which prevents current from flowing into
C‘m. I'his holds me constant which allows a change in V our © be directly transferred to V.

Thus, C__ is "bootstrapping™ V| from Vour

6.5 Summary

This chapter first described a technique for modeling devices with multiple operating regions, using
the qualitative arithmetic defined previously, along with a small sct of predicates and boolean
operations. This technique takes advantage of the mechanism described in Transition Analysis to
determine how a device moves between operating regions. However, to use Transition Analysis it is

necessary that the relations describing each device is continuous across region boundaries.

We then discussed the qualitative model for an n-mosfet which is broken into two parts: conduction
and capacitance. Conduction is modcled as a a non-lincar dependent current source described by the
cnhancement n-channel mosfet conduction model (section 6.2) and the capacitance is modeled as an
ideal capacitor (section 3.3.2.2) from gate to source or gate to ground . In the mosfet model, the
notion was introduced that a relation can be written in terms of the role which a terminal is playing,
as well as the terminal itself. Next these models were used to generate a detailed explanation for a
simple MOS circuit. Finally, TQ Analysis was used to describe some interesting characteristics of a

simplificd version of the bootstrap circuit presented in the introduction.
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Chapter Seven

Discussion

'This paper has presented a technique, Temporal Qualitative Analysis, for analyzing the behavior of
MOS circuits whose behavior straddles the analog and digital domains. Throughout this work, we
have emphasized the close relationship between an expert’s intuition and formal theory. To

summarize:

* By assuming that quantitics may be represented qualitatively as open regions separated
by boundaries, we have been able to unify the representations for space, time, state
variables, and device operating regions.

* Using the Lumped Circuit Approximation, circuit behavior has been modcled with a set
of network laws and device relations. By looking at the electrodynamics which underlie
circuit theory and understanding the limitations of the Lumped Circuit Approximation,
we are able to imposc a causal viewpoint on these relations (Cousal Propagation).

* By assuming that physical quantitics are modeled by continuous functions, we have been
able to usc a few simple theorems to determine how state variables move between
qualitative regions (Transition Analysis). These theorems capture one’s intuitive notion
of continuity and integration.

* Overall structural patterns of the relations, which describe a circuit’s behavior, such as
simultancitiecs and (cedback, have been used to derive additional constraints,
FFurthermore, the inwitions designers use for feedback have been employed to determine
the direction of a feedback path (Feedback Analysis).

* Because the boundaries of device operating regions are constructed from relations
between state variables, the mechanistn provided by Transition Analysis for deternining
statc variable transitions is also applicable to determining how devices move between
operating regions. In addition open regions and boundarics can be combined to describe
more complex regions such as semi-open time intervals and closed opcerating regions.

7.1 Related Work
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7.1.1 Qual and Envisioning

Some of the most notable work on the qualitative analysis of clectrical systems has been donce by
Johan de Klcer and John Scely Brown. In his PhID dissertation, de Kleer discusses Incremental
Qualitative (IQ) Analysis, a causal qualitative analysis technique that was the basis of a program,
QUAL, for describing and recognizing the functionality of bipolar circuits. [7] de Kleer and Brown’s
recent work on [invisioning [10, 11, 13] extends this carlier work to other domains, using the
methodology provided by system dynamics for describing a variety of physical systems (c.g. clectrical,
mechanical, fluid and thermal systems) in terms of networks of lumped clements.  As discussed

below, this work also extends QUAL's theory in the arcas of state, time, continuity and transitions.

7.1.1.1 Operating Regions and State

QUAL provides the qualitative arithmetic and some of the basic framework for the propagation
mechanism used in TQ Analysis. However, the analog bipolar domain used by de Kleer and the

digital MOS domain differ in a number of important respects.

First, when modecling an analog bipolar amplificr, the analyst is primarily concerned with the
incremental response of the circuit to a small variation on the input. During the analysis it is assumed
that each device in the circuit will remain within a single operating region and the initial perturbation
will propagate across the circuit instantancously; this corresponds to the circuit’s small signal
behavior. When modeling digital MOS circuits the analyst is siill interested in the instantancous
incremental response of the circuit; however, he is cqually concerned with the circuit’s large signal
behavior, This includes the long term effects of a changing input such as a device moving between

opcerating regions or a positive quantity becoming zcro.

Sccond, the modeling of capacitive memory was not important in de Kleer’s work since, during the
small signal analysis of bipolar circuits, large capacitors become incremental shorts and small,
parasitic capacitances become open circuits.  In the MOS domain circuit behavior is strongly

dependent on charge flow and capacitive mermory which results from charge storage.

Because de Kleer was primarily interested in incremental behavior, qualitative relationships were
written only in terms of voltage and current derivatives. In 'TQ Analysis this vocabulary is expanded
to include any type of quantity such as charge, current, voltage, thcir first derivatives, second

derivatives and any higher order derivatives.
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In QUAL the relationships among a device's different operating regions and the movement between
them is represented by explicit statements like "If the Diode is ON and the voltage across the diode is
decreasing then the diode will turn off." In addition, the persistence (inertia) exhibited by a device
with memory is modeled by breaking the device into several explicit states that include statements
describing the device’s movement from one state to the next (c.g. two of the states for a capacitor are
positively charging and constant). In QUAL, operating regions arc not distinguished from state; the

term "state” is used to refer to both.

In TQ Analysis a distinction is made between operating regions and state.  State is viewed as a
property of quantitics (i.c., state variables) rather than the device itself; the state of a device is then
described by the values of its independent state variables. The persistence exhibited by a device with
memory results from the continuity of its state variables. State is then a property of continuous
quantitics, rather than devices, and is the qualitative region in which the state variable currently lies
(c.g., +, 0 or-). For example, the notion that a capacitor is discharging is equivalent to saying that
the capacitor’s charge is positive and decreasing.  Furthermore, if the change in a device’s state
variables is zero the device exhibits memory (e.g., a capacitor stores charge or a mosfet remains in a
single operating region). Operating regions, on the other hand, arc properties of the devices

themselves and arc described as a set of qualitative regions on the device’s state variables.*4

Transition Analysis provides a single mechanism for determining how quantities move from one
qualitative region to another. These regions may be as simple as positive and negative, or as complex
as the opcrating regions: Saturated, Unsaturated and Cutoff. The mcchanism depends on the
propertics of continuous guantities and the rclati‘onship between them, rather than properties specific
to the device. Transition Analysis is, therefore, independent of the model, the domain and cven

Network Theory.

In recent work by de Klicer and Brown state and operating regions are still indistinguishable,
however, boundarics between device "states” arc modeled in terms of inequalitics between
"qualitative variables”. The notions of qualitative calculus and continuity are then used to provide a
mechanism for recognizing transitions between states (i.c., the inter-state bchavior). The strong
similarities between this mechanism and Transition Analysis suggests the possibility of unifying the

two viewpoints.

"Recall that a device is broken into several operating regions if the behavior of the device in each region is described by a

dilfcrent sct of equations.
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7.1.1.2 Feedback

QUAL. provided two heuristics for dealing with ambiguitics introduced by simultancitics in network
laws: the KVL Conncction Heuristic (discussed in section 5.4) and the KCI. Heuristic. Recent work
on ENVISION refers to these heuristics as the Component and Conduit Heuristics, respectively, and
provides an additional heuristic for resolving ambiguities introduced by simultaneitics in device
modecls (i.c.,, the Confluence Heuristic). These two heuristics suggest a style of reasoning where
ambiguitics introduced by simultancities are resolved heuristically using information local to the
ambiguity. This stylc of rcasoning is the motivation behind the Feedback Analysis portion of TQ
Analysis. Feedback Analysis scparates the gencral propertics of simultancous relations (e.g.,
Resistive Feedback Rule) from those properties which are specific to Network Theory (e.g., KVL
locality Heuristic). In addition, the fecdback propertics of systens with memory arc exploited
(Integrating Feedback Rule) and an engincers intuition about devices which introduce memory (e.g.,
capacitors and inductors) is used to determine the direction the feedback flows (Feedback Direction

Heuristic).

7.1.2 Qualitative Process Theory

Forbus’ Qualitative Process Theory [14] provides a viewpoint where physical interactions are
described through properties of processes, rather than properties of devices. A process is the basic
vehicle for change in a physical system. Examples of processes are heating, evaporating, stretching,
and flowing, A process-centered viewpoint is quite natural for many physical domains where a
device centered model would be awkward; on the other hand, many domains, cspecially circuit
analysis, naturally fit into a device centered model and would be difficult to understand in terms of a
process centered model. QP Theory and TQ Analysis also differ in intent; Qualitative Process
Theory models common-sense reasoning about everyday physics. Temporal Qualitative Analysis
modcls cxpert reasoning about clectronics. TQ Analysis tries to crcate a close link between the
intuitions an expert has and the formal theory that his expertise is built upon (c.g. calculus, algebra,
circuit theory, and feedback analysis). For example, QP Theory describes the behavior of negative
feedback in terms of an instantancous osciltation called "stutter” that results from the feedback term
oscillating instantancously between being equal to and less than the input to the feedback loop. An
engincer doesn’t consider these oscillations in complex circuits since they violate continuity (ic., a

quantity cannot jump instantancously); however, he may usc an argument similar to stutter to
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describe feedback to someone unfamiliar with the phcnomena.45
In spitc of these differences QP Theory and TQ Analysis have a number of similarities. In QP
Theory there is a clear separation between the properties of quantitics, as defined by the "Quantity
Space”, and the properties of processes. The clear division of quantities and processes motivated the
scparation of T'Q Analysis into its basic components. In TQ Analysis the only knowledge that
depends on a device centered view is the device model and network laws which have been made
explicit through causal rules. Furthermore, the mechanisms for determining transitions between
operating regions or processes in cach theory are domain independent and have a number of features
in common. The similaritics between philosophy and underlying mechanism suggest that these two

viewpoints can be unified into a single theory.

7.1.3 Allen’s Temporal Intervals

In this paper we have discussed the temporal representation that an engineer uscs in reasoning about
circuits. Allen [2] describes an interval based temporal representation and reasoning mechanism that,
among other applications, could be used as the temporal component of Naive Physics. Time is
represented as a set of intervals and the relationships between them.  Allen argues that zero-width
time points arc counter-intuitive; therefore, the temporal intervals in his representation are ncither

open nor closed but are described as "meeting”.

Allen supports this argument with the following example [2]:

", .. consider the situation where a light is turned on. To describe the world changing
we need 1o have an interval of time during which the light was off, followed by an interval
during which it was on. The question arises as to whether these intervals are open or
closed. if they arc open, then there exists a time (point) between the two where the light
is neither on nor off.  Such a siwation would provide scrious semantic difficuliics in a
temporal logic. On the other hand, if intervals are closed, then there is a time point at
which the light is both on and off. This presents even more semantic difficultices than the
former case."”

The problem in this example¢ is not with intervals being open or closed, but that a continuous process
is being modcled discontinuously,  Consider what really happens when the light switch is flipped.
When the light switch is closed, current begins to flow through the switch into the light bulb and the

filament beging (o glow at a very small intensity. Initially the light bulb resists this curreat, duc to

Sln fact, the description of the intuition behind the Resistive Feedback Rule in section 5.2 is very similar to the stutter

argument in QP Theory.
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inductance in the filament; however, eventually the light reaches a steady intensity and is considered
"on". This process consists of a closed time interval where the light is off, followed by an open
interval during which the light’s intensity is increasing and ending with a closed interval when the
light is "on". Of course this occurs too fast for the human eye to sce. The process, therefore is
collapsed into an instant and the light intensity is perceived as stepping from "off" to "on". The
reason for collapsing these series of events into an instant is that we are not interested in their details.
The price that must be payed for this abstraction is that the process is no longer continuous, and if we
look at the process too closely our intuitions about continuity will be violated (after all, how can a

light be both on and off during the samc instant!).

Allen also argues that . . . given an event, we can always ‘turn up the magnification’ and look at its
structure.” This is certainly true in some cascs. In the light switch example " by turning up the
magnification” we see that the light intensity doesn’t really step from off to on but changes
continuously over a finite interval of time. The instant the light switches from off to on is a useful
idealization, something which can’t be looked inside of without changing magnification (i.e.,

abstraction level).

The notion that zero-width time points exist is not counter-intuitive to someone with a math
background. Intuitions are developed from observations about the surrounding world. For example,
it seems intuitively obvious that a person who wants to enter a building cannot walk through its brick
walls, but must go through a door or some other opening. Early on in our math background many of
us arc told of such concepts as infinitcly thin, one dimensional lines and poinis with no dimensions.
These are things which don’t change appearance, no matter how much the magnification is turned
up. Using these concepts as givens, our instructors teach us how they can be manipulated to
understand and idealize many things that happen in the real world. Eventually notions such as
zero-widths points become part of the intuitions of someonc like an engineer or mathematician. For
example, when a ball is thrown in the air, it is obvious to a physicist that the ball is at the top of its arc
for only an instant independent of the magnification; to hang there longer would defy the laws of

gravi[y.‘“’

In spitc of these differences the temporal representation used here has a number of similaritics to that

of Allen’s. First, although instants play an important role in TQ Analysis, they are vicwed as a subset

46()1’ course, this is an ideal ball which can’t be held up by such things as rising gusts of wind!
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of closed intervals.  Sccond, except for the parts of Transition Analysis which depend on the
continuity of quantitics, closed and open intervals are not differentiated (e.g., in Causal Propagation
no distinction was made between the types of intervals). Finally, open and closed intervals may be
viewed as meeting; however, continuity places the restriction that the closed end of an interval can
only be met by the open end of another interval (i.e., time is dense). [f continuity were ignored, the

distinction between open and closed intervals would not be neeessary.

Allen has provided a rich vocabulary for describing the relationships between intervals and a
mechanism for reasoning about these relations.  As discussed in the next section, a "temporal
reasoner” based on open and closed intervals is currently being developed and will be incorporated

into TQ Analysis.

7.2 Limitations and Future Directions

As of this writing, all of the parts of TQ Analysis have been implemented and tested except for
Feedback Analysis. The system has been tested on simple R,I..C and mosfet circuits. The
explanations for the parallel RC and mosfet-capacitor circuits given carlier in this paper were
generated by the system. I am currently working towards generating a qualitative description of

circuits similar te the bootstrap clock driver given in the introduction.

The representation for time in TQ Analysis is in the process of being modified. The current
representation of time as a linear sequence places a total ordering on all events. Such a global
viewpoint is often not necessary or desirable, since it requires that an ordering be placed on unrelated
events. A more realistic representation breaks time into a set of open and closed intervals in a
temporal network. This creates a partial ordering on time intervals, rather than a total erdering. Two
quantitics, then interact only if they are locally connected in space and their time intervals (or

instants) coincide. ¥

There are two major components of circuit analysis which have not been addressed in this work so

far: the use of quantitative information and the usce of cliches [5, 3].

In TQ Analysis many of the ambiguitics which arise during Causal Propagation can be resolved using

non-numecrical information, such as continuity thcorems or propertics of feedback. There are,

47'l‘nig is similar to Tayes’ notion of Histories [16),
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however, a number of ambiguities which cannot be resolved using these techniques. Many of these
remaining ambiguities can only be resolved using some form of quantitative information. A circuit
analyst, for example, often considers certain circuit parameters dominant, and might usc phrascs like

the following when analyzing a circuit:

* The current drawn by C_ ¢ is insignificant compared to L
* The risc time of the output capacitance is much slower than the input.

* The pullup is much longer than the pulldown, allowing the inverter to meet a valid logic
low level.

Quantitative comparisons such as these, and other types of quantitative knowledge must at some

point be integrated with 'TQ Analysis.

A pumber of cliches are used by a designer in analyzing a circuit, such as the phrases "isolation”,
"precharging”, and "bootstrapping” used in the bootstrap clockdriver example in the introduction. A
cliche can cither refer to a set of devices, such as "precharge circuit™ and "bootstrap capacitor”, or it
can refer to a complex behavior, such as "precharging the input node” or "isolating the gate™. A
cliche which refers to a device can be used to help determine which of a number of possible
behaviors the designer intend the circuit to have. Furthermore, the ability to combine a scries of

cvents into a cliche is important in generating a qualitative summarization of a circuit’s behavior.

If the behavior of a device within a particular operating region during a time interval is viewed as an
episode, then a cliche may be described in terms of a scquence of cpisodes. This is similar to what
Forbus refers to as an encapsulated history. [14] Cliches may then be used in analyzing the circuit’s

behavior to answer questions not yet addressed by TQ Analysis such as:

* Why didn't ihe circuit behave as I expected?
* Which device parameters should I change to make it work? and

* Which parameters should [ change to increase the circuits performance (speed, power,
voltage thresholds etc.)?
By answering these and similar questions we hope to create a versatile tool which provides the circuit

analyst wilh expeit advice on a wide class of circuits.



Appendix A

Appendix: Transition Ordering Rules

A.1 Predicates

to-zero(Q) Q is moving monotonically towards zero during the current interval.
not-to-zero(Q)  Q is constant or moving away from zcro during the current interval.
transition(Q) Q will transition at the cnd of the current interval.

not-transition(Q) Q cannot tiansition at the end of the current interval,

A.2 General

* not-to-zero{A) — not-transition(a)

A.3 Equality
Transition infercnces: [A] = (+/ ~) [B]

* transition(A) iff transition(s)
* not-transition(A) iff not-transition(s)

Dircction inferences: A is a monotone increasing (decreasing) function of B
* to-zero(A) iff to-zero(B)

* not-to-zero(A) iff not-to-zero(B)

A.4 Sums and Differences
Transition inferences: [A] + [B] 4- [C] = 0 where [A] == [B} = — [C]

* transition{A) A transition(B) — transiticn(C)

* not-transition(A) V not-transition(B) - not-transition(C)
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* transition(C) — transition{A) A transition(B)

* not-transition(C) — not-transition(A) V not-transition(B)
Dircection inferences: A + B = C where [A] = [B] = — [C]

* to-zero(A) A to-zero(B) — to-zero(C)

* not-to-zero(A) A not-to-zero(B) — not-to-zero(C)

* 10-zero(C) — to-zero(A) V to-zero(B)

* not-to-zero(C) — not-to-zero(A) V not-to-zero(B)

A.5 Products
Transition inferences: [A] x [B] = [C]

* transition(A) V transition(B) — transition{C)

* not-transition(A) A not-transition(B) — not-transition(C)

* transition(C) — transition(A) V transition(B)

* not-transition(C) — not-transition(A) A not-transition(B)
Direction inferences: AxB = C

* to-zero(A) A to-zero(B) — to-zero(C)

* not-to-zero(A) A not-to-zero(B) — not-to~z§1'0(c)

* to-zero(C) —+ to-zero(A) V to-zero(B)

* not-to-zero{C) — not-to-zero(A) V not-to-zero(B)

A.6 Resistive IFeedback

Relation: [A] + [B] = [C] which is the comparison point of a fecdback loop.

Idea: If A is the causc and C is the cffect of a fecdback loop then [A] = [B] and all the inferences for

cquivalences apply.
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