eeeeeeeeeeeeeeeeee

" Motion Planning
with Six Degrees
of Freedom

Bruce R. Donald

MIT Artificial Intelligence Laboratory

Tius blank page was inserted to preserve pagination.

Motion Planning with Six Degrees of Freedom
by
Bruce Randall Donald

(© Massachusetts Institute of Technology, May 1984

This report is a revised version of chapters 1-7 of “Local and Global Techniques
for Motion Planning,” a thesis submitted on May 10, 1984 to the Department
of Electrical Engineering and Computer Science at the Massachusetts Institute of
Technology in partial fulfillment of the requirements for the degree of Master of
Science. Chapters 8—11 may be obtained seperately as A.I. Memo 736, “Hypothesizing
Channels Through Free-Space tn Solving the Findpath Problem.”

Motion Planning with Six Degrees of Freedom
by

Bruce Randall Donald

Abstract: The motion planning problem is of central importance to the fields
of robotics, spatial planning, and automated design. In robotics we are interested
in the automatic synthesis of robot motions, given high-level specilications of
tasks and geometric models of the robot and obstacles. The Mover’s problem
is to find a continuous, collision-free path for a moving object through an
environment containing obstacles. We present an implemented algorithm for the
classical formulation of the three-dimensional Movers’ problem: Given an arbitrary
rigid polyhedral moving object P with three translational and three rotational
degrees of freedom, find a continuous, collision-free path taking P from some initial
configuration to a desired goal configuration.

This thesis describes the first known implementation of a complete algorithm
(at a given resolution) for the full six degree of freedom Movers’ problem. The
algorithm transforms the six degree of frcedom planning problem into a point
navigation problem in a six-dimensional configuration space (called O-Space). The
C-Space obstacles, which characterize the physically unachievable configurations,
are directly represented by six-dimensional manifolds whose boundaries are five
dimensional C-surfaces. By characterizing these surfaces and their intersections,
collision-free paths may be found by the closure of three operators which (i)
slide along 5-dimensional level C-surfaces parallel to C-Space obstacles; (ii) slide
along 1- to 4-dimensional intersections of level C-surfaces; and (iii) jump between
6-dimensional obstacles.

Implementing the point navigation operators requires solving fundamental
representational and algorithmic questions: we will derive new structural properties
of the C-Space constraints and show how to construct and represent C-surfaces and
their intersection manifolds. A definition and new theoretical results are presented
for a six-dimensional C-Space extension of the generalized Voronoi diagram, called
the C-Voronot diagram, whose structure we relate to the C-surface intersection
manifolds. The representations and algorithms we develop impact many geometric
planning problems, and extend to Cartesian manipulators with six degrees of
freedom.

[y

Acknowledgements. This report describes research dome at the Artificial

Intelligence Laboratory of the Massachusetts Institute of Te r. Support for
the Laboratory's Artificial Intelligence rescarch is provided k M by the System
Development Foundation, in part by the Office of Nawsl Ressarch under Office of

* Naval Rosearch contract NOGOL4-81-K-0484, sad in part by:the Advanced Rosearch
Projects Agency under Office of Naval W W MW and
N00014—82—K~0334 ‘

. 7\}%‘*\ -

Acknowledgments

This work was made possible by many (riends, mathematicians, and scientists at
the A.I. Lab. While tradition requires me to take responsibility for any remaining
flaws, honesty compels me to share credit with them for whatever insight and
clarity this thesis manifests.

I am deeply indebted to my supervisor, Tomas Lozano-Pérez, for his guidance,
support, and encouragement. Many of the key ideas in this thesis arose in
conversations with Tomas, and this work would have been impossible without his
help.

Thanks to Patrick Winston for providing generous support and the unique
environment of the A.I. Lab. In particular, thanks for the private VAX and Lisp
Machine I required for the implementation.

Michael Erdmann, John Canny, and Steve Buckley showed me shorter proofs
and better friendship than I probably deserved. They spent many hours with me at
whiteboards discussing this research. Mike was always willing to talk about math,
and spent the weekend after his oral exam carefully reading a draft of this thesis
and making many insightful comments and suggestions.

Thanks to Mike Brady, Rod Brooks, and Eric Grimson for reading drafts and
for much encouragement. Through their comments and infectious enthusiasm, the
presentation of this report was much improved. Rod shared his code and gave help
with the implementation of the channels system, too.

Thanks to all the robotics and vision people, especially Philippe Brou, Rich
Doyle, Ellen Hildreth, Gideon Sahar, Lori Sorayama, and Demetri Terzopoulos for
discussions and help at various times. Philippe’s Dover program allowed me to send
lisp machine graphics to our laser printer.

I would like to thank the Macsyma Consortium for the ability to manipulate
complicated equations. I am grateful to George J. Carrette for spending many
hours helping to bring up Macsyma under NIL on our VAX, and for advice on how
to optimize the algebra system under NIL for the Lisp Machine.

Thanks to Robin for diversion and support. Finally, thanks to my parents for
incalculable help over many years.

Table of Contents

ADSETACE & v o v e
Acknowledgmentso oo e e e
Table of Contents v v v o v e e e e e e e e e e e e e e e e e e e

1. Geometric Planning Problems00 o
1.1 What Are Geometric Planning Problems?

1.3 Configuration Space o oo oo oo e e e e

1.4 Local versus Global« . v v v v e

1.5 Review of Previous Work oo oo v oo o

1.6 An Outline of this Thesis: Research Contributions
How to Read this Thesis ¢ o o ¢ v v v v v v v v v v o o o v e

2. A Planning System for the Classical Mover’s Problem with Six Degrees

of Freedom v v i v it i e e e e e e e e e e e e e e
2.1 Definitions o . o . e e e e e e e e e e e e e e e e e
2.2 Introductiono L h e e e e e e e e e e e
2.3 A Complete Search Strategy oo
2.4 Local Experts for the Find-Path Problem
2.5 Examples of the Local Expertsin Use,

2.6 Path Planning versus Discrete Intersection Detection

3. Questions of Representation: C-functions and Applicability Constraints

in a Six Dimensional Configuration Space
3.1 Definitions and Conventions o« v oo e e e
3.2 Representing Constraints in Configuration Space
3.3 The Geometric Interpretation for C-functions
3.4 Redundant Constraints v o v o v oo e
3.5 Applicability Constraints for Type (a) and (b) C-functions
3.6 Applicability Constraints for Type (¢) C-functions
3.7 Disambiguating Applicability Constraints (DACS) for Type (c)
Constraints v v vt e e e e e e e e e e e e e e e
3.8 On the Structure of the Applicability Regions on SO(3)
3.9 Orienting Type (c) Constraints
3.10 Singularities and Special cases
311 Level ACFs o i e e e e e e e e e e e e e e
3.12 A Note on the Computation and Algebra of Applicability
Constraints v v v v v e e e e e e e e e e e e e e e e e e e

4. Mathematical Tools for Motion Planning in a Six Dimensional
Configuration Space0 o oo e e e

4.1 Introduction e e e e e e e e e e e e e e e e 152

4.2 The Intersection Problem in ®2 x 8! 154

4.3 Related Problems in ®2 X S 161

4.4 The Intersection Problem in # X SO(3) 163

4.5 The Algebra System« . o 0o 171

4.6 Related Issues in R3 X SO(3) o o i i i 173

5. Moving Through Rotation Spaceo 175
5.1 Introduction oL 000 e e e e e e e 175

5.2 The Applicability Decomposition for SO(3) 176

5.3 A Naive Algorithm Without an Update Strategy 177

5.4 Update Strategies: Example 178

5.5 Using Update Strategies oo 180

5.6 Update Strategies v v v o oo e e 182

5.7 Analysis and Evaluation 192

6. The C-Voronoi Diagram and its Relationship to Intersection Manifolds . . 196
6.1 Introduction00 e e e e e e e e e 196
Theorem I i i e e e e 202
Theorem II i o e e e e e e 207
Theorem III (The Existence of Bridge Manifolds) 211

The Equivalence Theorem for intersection Manifolds and the CVD . . 215
7.Conclusion L. e e e e e e e e e e e 217
Appendices L L L oL e e e e e e e e e e e e e e e e e 220
I. Details of the Intersection Problem, and Related Problems 220
II. Transformation to the Channel Domain 229

III. Integrating Local and Global Algorithms for the

Find-Path Problem ¢ o v i i e e e e e e e e e e e e e 233
IV. A Listing of Macsyma Code oo o v oo 242
References v v v v i i e 258

6

1

Geometric Planning Problems

Introduction and Statement of the Problem

The motion planning problem is of central importance to the fields of robotics,
spatial planning, and automated design. In robotics we are interested in the
automatic synthesis of robot motions, given high-level specifications of tasks and
geometric models of the robot and obstacles. The problem is to find a continuous,
collision-free path for a moving object through an environment containing obstacles;
hence it has also been called the Find-Path or Piano Movers’ problem. In its most
general formulation the object can have an arbitrary number of hinges and joints,
and in some cases coordinated motion planning for multiple objects has been
considered. We will confine ourselves to the classical formulation of the Movers’
problem: Given an arbitrary rigid polyhedral moving object P, find a continuous,
collision-free path taking P from some initial configuration to a desired goal
configuration. We are particularly interested in the 3-dimensional Movers’ problem,
for an object with 3 translational and 3 rotational degrees of freedom. This thesis
describes the first known implementation of a complete algorithm (at a given

resolution) for the full 6 degree of freedom Movers’ problem.

1.1. What are Geometric Planning Problems?

Our work has impact on a class of geometric planning problems. In robotics

we arc typically interested in motion planning for a mobile robot or manipluator.

Figure 1.1. An cxample of a solution path for the elassical Mover’s problem with six degrees
of freedom. This illustration is a “time-lapse” picture of a path found by our planner for a
hammer-shaped object. In all our examples, the workspace is bounded by a box (which is not
shown). This solution path requires use of all three rotational degrees of freedom.

In Computer-Aided Design (CAD), the problem of automated structural design
for n structural members is also an instance of the most general form of the
Mover’s problem. The problem of determining whether an object can be assembled
as designed, and of generating an assembly plan if it can, is also in this class.

Examples of geometric planning problems include:

(i) The Find-Pathor Movers’problem is to find continuous, collision-free path
for one or more moving objects in the presence of obstacles. Find-path problems
fall into two broad categories: single-body and multiple-body motion planning
problems. In the classical Movers’ problem, a single rigid polyhedral object must
be moved through a workspace containing polyhedral obstacles. For the linked
or hinged body Movers’ problem, a set of moving objects connected via joints or

linkages must be moved. An industrial robot arm is a typical example of such an

Figure 1.2. A different view of the solution path for the hammer example, with the obstacles
“transparent” to allow us to view the rotations better.

object. In the coordinated planning problem, a number of independent (i.e., not
necessarily linked) objects must be moved. An algorithm for multiple body motion
planning must ensure that the moving objects collide neither with the walls nor

with each other.

(ii) The find-space problem is to find a collision-free placement for one or
more objects in a field of obstacles. By analogy with the find-path problem, we
can speak of the classical, linked-body, and coordinated find-space problems. In
computer-aided design and automated design, the find-space problem is typically
subject to additional geometric constraints. Lozano-Pérez (1983) grouped find-path

and find-space algorithms together as the spattal planning problems.

(iii) The fine-motion problem cntails motion-planning along obstacle surfaces,
typically while maintaining some applied force. Collision-free paths and placements

avoid obstacles: however, for many tasks in robotics and in automated design, it

attix unattix clesr shou

Figure 1.3. Application Example: Planning for an industrial tobot arin with six degrees of
freedom is an cxample of the linked-body movers’ problem. (Figure courtesy of Rodney Brooks).

is necessary to plan motions and placements in contact with obstacle surfaces. For
example, consider the tasks of welding, insertion, and assembly in robotics. These
tasks require compliant motions, entailing consideration of additional physical
constraints such as friction, kinematics, and force control. However, the compliant
motion planning problem has a strong geometric flavor and its solution requires

the tools of spatial planning (see Mason (1981), Erdmann (1984)).

(iv) Recently, researchers have begun to consider motion planning with
uncertainty (Mason (1981), Brooks (1982), Lozano-Pérez, Mason, and Taylor (1983),
Erdmann (1984)). Broadly speaking, uncertainty may arise from inaccuracy in
object models, sensors, or control. Motion planning with uncertainty also presumes

algorithms and representations from spatial planning.

As we can see, all geometric planning problems contain components of the

spatial planning problem, especially if the underlying geometries are the same. In

10

-

[————a..]|
s
o

]

IRTE & ton otl
o Rt (bt SealePAcToR’ s 0.8
-7 phed PLAN
s DA ALL

Figure 1.4. Example from computer-aided design: Autorﬁatically generated flat-plate structure
from Donald (1983b). How can we gencrate structural patterns subject to the constraints of the
building envelope and mechanical core?

particular, for high-dimensional configuration spaces, the theoretical analyses of
Mason (1981), Lozano-Pérez, Mason, and.Taylor (1983), and Erdmann (1984) all

presume geometric results which are derived in this thesis.

This work impacts all geometric planning:problems. To illustrate the theoretical
resplts, we address one particular problem, namely the classical Movers’ problem
with six degrees of freedom. Our algorithms immediately generalize to applications
involving gross-motion and fine-motion planning for Cartesian manipulators with

six degrees of freedom.

11

goal

I--—— start

Figure 1.5. A find-path problem for an L-shaped object. The L-shaped object is shown amidst
obstacles in the start and goal configurations.

[64]

Figure 1.13. Solution Path 1, framc 64 (final configuration).

12

— — v;\

2 2 =

[— —
— — =

Figure 1.6. Solution Path I, frames 1-9: A diflicult solution path for the l.-shaped object.

13

[81] (1] fo1])
e 1] [¢1)
[n1] ::_ (18]

Solution Path I, frames 10-18

Figure 1.7.

14

&= E

(7] [o7] [s7]
[vz] [ez] [zz]
[yz] [o7) [61]

Figurc 1.8. Solution Path I, frames 19-27

B % 4
. L Im e [
@ B 9
. L B L [
M G| g

Figure 1.9. Solution Path I, frames 28-36

16

w=E & =E
2 &E &E
=H oFE

Solution Path I, frames 37-45

Figure 1.10.

17

= & FE
B &E PE

Solution Path I, frames 46--54

Figure 1.11.

18

[vo]

[e9] [29] [19)
[o9] [6s] [25)
L8] [o5]| [ss])

Solutlion Path I, fraines 55-63

Figure 1.12.

19

T

7

(1]

91
[12]

T

[11]
[14]

0

7 7 T7 T
qu

=T
7 T 57

[[7: (Plano is invisible In 1-6)]

[10]
(13]

Figure 1.14. A diffcrent view of the same solution path, showing how the L-shaped object must
rotate to attain the final position. The first six frames are not shown, since the moving is not
visible from this perspective. Solution Path 1 (view 2); frames 715

20

]

=

[21]

r[24]

=

'
=TT

[17]
[

[20]

[23]

=

@L
=2

[16]

(191

[22]

==

Figure 1.15. Solution Path I (view 2); frames 16-24

21

r[27]

l'
E&

[30]

=

(331

g
—

I
il

(291

/

7
L

(32]

=AM

25

L]
©
o~
=]

A
I,

[28]

.

(31]

Figure 1.16. Solution Path I (view 2); frames 25-33

i[36]

I

[39]

[42]

(3s]

R e T

Tl

[41]

Ny

=T

[34]

=
A

™~

(a0]

iy

Figure 1.17. Solution Path I (view 2); frames 34-42

23

1

(48]

P,

T

P[45]

a1

[47]

/ l/ @
— -

T
T

N

=g

(so]

i[43]

Ny

[46]

T

= T

[49]

Figure 1.18. Solution Path 1 (view 2); frames 43-51

b

[s4]

y

[s3]

DT

/

14
1
=

(s2]

(s3]

i

Figurc 1.19. Solution Path |

(view 2); frames 52 60

25

[isseoans]

b

[(uopemByuoca feuy) :p9]

—

?.oi

N

e

[z9]

[19]

Figure 1.20. Solution Path I (view 2); frames 61-64

26

Figure 1.21. A detail of the path for the L-Shaped example. The detail is in “time-lapse” format,
and shows a complex double rotation near the goal configuration.

Examples of “classical” find-path problems solved by our planner may be found
throughout this chapter, and also at the end of chapter 2 (section 2.4, “Ezamples
of the Local Ezperts in Use”). See fig. 1.5-21, 1.22-28, and 2.7-21. In general,
geometric planning problems with more than three degrees of freedom have proven
extremely difficult to solve. We believe that in part, this difficulty has been due
to the unresolved issues in the mathematics of spatial planning. By solving these
problems for the six degree of freedom case, and illustrating the results for the
find-path problem (which holds considerable intrinsic interest), we hope to provide

a geometric foundation which will make all geometric planning problems feasible.

27

Figure 1.22. (3 Views of the “Puzzle Problem”). In this find-path problem, the L-shaped object
must be moved around the diagonally-placed obstacle. Here the L—shaped object is shown in the
initial and goal configurations.

1.2. A Simple Example: How to Find a Path for a Point Amidst 3-D
Polyhedral Obstacles

We will begin by diécussing an algorithm for navigating a single point amidst
polyhedral obstacles in three-dimension Euclidean space R3. We then review the
configuration space transformation of Lozano-Pérez (1983), which transforms the
problem of reasoning about the motion of a polyhedral object to reasoning about a
single point in configuration space. If the configuration space is isomorphic to R3,
then the point navigation algorithm can be applied directly to find collision free
paths. In this thesis we will gencralize the point navigation algorithm to work in
the configuration space for a three dimensional polyhedral object with six degrees

of freedom.

The six degree of freedom planner is based on the following analogy: suppose

28

-~
o
(S} =~

©

wd

N

™~ —
—)

| —
] \
—
N -

-

o

Figure 1.23. Puzzle Problem, frames (1-6), view 1.

29

P
o
—
L}
o~
-
Cmand
.
—
[eo]
—
|
-
-
Red
{
]
4
{
<
'
(
(
—
~
—
——
<
-
\maud

Figure 1.24. Puizle-Problem, frames (7-12), view 1

r—
o~
S
[on
©
el
o —
o (2]
(]]
=
~
<
L
9
-
7]
3
-
)
-
[]
]
-]
<
-
Y
A
~ —
v -
ek [

Figure 1.25. Puzzle-Problem, frames (1-6), view 2

—
= o~
o -
d (=
»

o
Lon -

(¥} -
o)
~—

~— =
o~ -
| (]

Figure 1.26. Puzzle-Problem, frames (7-12), view

32

D o
) e
=
.
s D
fa) o
=
_—
<
D3
¢
-
@
1
-r
]
-
©
]
&
<
-
B
A 4
J— —
= -
L= (o]

Figure 1.27. Puzzle-Problem, frames (1-6), view 3

33

—
- -~
o -
o d
=
- -
d -
O o
- s
\ -~
| L] o

Figure 1.28. Puzzle-Problem, frames (7-12), view 3

34

we wish to find a path for a point in R3, avoiding collisions with polyhedral
obstacles, where each polyhedron is modeled as the intersection of a finite number
of half-spaces of ®%. One solution might be to move until the point comes in
contact with a polyhedron, and then to move around the obstacle by traversing the
edge-graph on its boundary. (Refer to figure 1.39, ignoring the caption for now).
Each arc in the edge-graph is the intersection of two surfaces bounding half-spaces.
Even if the polyhedra are allowed to overlap, the technique will still work since their
intersections have the same structure. Naturally, we will also need some technique

for jumping from one obstacle to another.

To summarize, we can find a collision-free path for a point amidst obstacle

polyhedra in R3 through the closure of three operators:

The Point Navigation Operators

Operator (i) slides along the 1-dimensional edges, which lie in the intersections
of the obstacle planes;

Operator (ii) slides along the two dimensional obstacle planes, which contain
faces of the obstacle polyhedra;

Operator (iii) jumps from one 3-dimensional obstacle to another.

We now review the configuration space transformation. Using this transfor-
mation in its simplest form, the find-path problem in three dimensions without

rotations is reduced to the point navigation problem amidst polyhedral obstacles.

1.3. Configuration Space

The configuration of a movihg object is a vector of parameters representing
its combined translation and orientation, relative to a specified coordinate system.

For the classical Movers’ problem in the plane, a typical configuration

(z, y,0)

35

represents a displacement (translation) of (z,y), and a rotation by 8. (For example,
imagine a polygon displaced by (z,y), and rotated by 6 about one of its vertices).

For the six degree of freedom classical Movers’ problem, a typical configuration

X = (=9, 2, R(©))

represents a displacement (translation) of (z, ¥, 2), and a three dimensional rotation
R(©). The three dimensional rotation group is a three parameter family; typical
representations of rotations include Euler angles, (Symon (1971)), spherical angles,
and quaternions (Hamilton (1969)). For example, if the Euler angles © = (¢,0,¢)
are employed, then they determine a 3 by 3 rotation matrix which functions as
R(©) in the rotation group. It is convenient to identify the rotation operator with

its parameterization, that is, to express X as

X = (23, Y,2,9,0, ¢)

Using configuration space, reasoning about the motion of a complicated three-
dimensional body amongst obstacles may be transformed into reasoning about
a point in a six dimensional configuration space. The transformation described
by Lozano-Pérez (1983) entails “shrinking” the moving object to a point, and
correspondingly “growing” the obstacles. In principle, the point may then be
navigated around the grown obstacles by means of the point navigation operators

(above).

In this thesis, the point navigation operators will be generalized to the

six-dimensional configuration space of the classical Movers’ problem.

In order to present our algorithm for planning in C-Space, it is necessary to
review the basics. We present an introduction to representations in configuration
space at two levels: first, we present an intuitive discussion. Next, we present a
more detailed, slightly more mathematically-oriented exposition. For the sake of
readability, there is some redundancy in the sections. Those who are encountering
configuration space for the first time may wish to postpone reading the latter

section for now.

36

SstarT

VAV

Joul

Figure 1.29. Thesc figures show an obstacle polygon B and a fooving polygon A. A must be
moved around B to the goal configuration. /

1.3.1. Representations in Configuration Space: An Intuitive Treatment

Figure 1.29 is an example of the classical Movers’ problem in two dimensions,
without rotations. A is a moving object which must be moved from the start
configuration to the goal configuration, around an obstacle polygon B. The start
and goal configurations may be expressed as two dimensional vectors of the form
(z,y) which represent the displacement of a vertex v; on A from a fixed coordinate
frame. The displacement is a rigid translation of the polygon A. The C-Space of
this Movers’ problem is the space of two dimensional translations, which is the
same as the Cartesian plane. Lozano-Pérez (1983) demonstrated a transformation
which shrinks A to the vertex vy, while inversely growing B. The grown obstacle for
B is a C-Space obstacle called CO(B), and is shown in figure 1.31. (We will discuss
the details of this transformation later). The problem of moving the polygon A

from the start to the goal is transformed into the problem of navigating the point

37

[v,
e ! 8 e’
" 2
’ v’

V/ e, >

Figure 1.30. The edges and vertices of A and B.

vy around the C-Space obstacle shown in figure 1.31.

Both A and B are convex; non-convex objects are represented by overlapping
unions of convex polyhedra. The C-Space obstacle CO(B) is constructed by
considering all feasible interactions of the edges and vertices of A and B. Each such
interaction generates a constraint which is manifest as an edge of CO(B). We say
that an interaction between a vertex of A and an edge of B, or between an edge of
A and a vertex of B, is feasible if there is some pure translation which can bring
the vertex and edge in contact without causing A and B to overlap. For example,

the set of all possible interactions of A and B is the union of the two cartesian

products

{61,62,63} X {1)1’,1)5,1):;, ‘U,; }
and

38

Pl
sTaryT ‘—_—"7
’
A\ T
v, ’ (v'o 0‘" \ / eA
(3 N \
3) \ /
’l “-” ll v
’ ‘\ , 5 ! [
’ “ . v
(vs,eN | NS ., e,)
« 4
‘v v
) : Phd
- ’ -”—
¢ <
I .
¢ Y
N)
(e,)v') .

Figure 1.31. CO(B), the grown obstacle for B in C-Space. The vertex vy must be navigated
around CO(B).

{vly v2, V3 } X {e{) eé!ei’ii C,; }’

However, at the depicted orientation of A, only these interactions are feasible:

{(v1, e{), (vl’ eé), (e1, Ué)’ ("’2’ eé), (‘32) v,;), ("’3’ e,;), (53’ ”{) }

It is easy to visualize the translation that will bring any of these pairs into contact.

Furthermore, note that (for example), no translation can bring v3 in contact with
'
€.

Now imagine that A is allowed to rotate about v;. At different orientations,

there will be different sets of feasible contacts. We say that the constraints associated

with feasible contacts are applicable constraints. It should be clear that at any given

39

A
y
1ev,e,°) —_—
(e3,v) /‘
A
/
y
Clp'h\ ; ~ v,.)
v, e’d /.
SRR RS
y
/
< o(QR) /
A
/
AR L L AL
(Va, e,’) > /
/
/
/]
(ebv") ¢ e3 N,
N3
4 . e, A
/ a
/
)
4 a
/
/
A
7

Figure 1.32. CO(D) can be represented as the intersection of 7 half-spaces, whose boundaries
contain edges bounding CO(B).

orientation, only certain constraints will be applicable. The orientations for which a
given constraint is applicable form its applicability region. The applicability regions
for each constraint in this problem are angular sectors of the form [6; < 8 < 04
This simply means that there exists a range of angles in which a particular contact
is feasible. This range of angles may be geometrically visualized as a sector of a

circle.

When A is allowed to rotate, the geometry of CO(B) changes as 8 varies, and
as the set of applicable constraints changes. As the edges and vertices of A rotate
about vj, the constraints they generate sweep out ruled surfaces which bound
CO(B) in a three dimensional C-Space. (The C-Space is three dimensional, since
A now has three degrees of freedom: z, y, and 8). At any fixed orientation 6o, an
z-y slice of CO(B) is a polygon, called siice(CO(B),). Figure 1.31 shows such a
slice at the depicted orientation of A. With each edge of slice(CO(B), 0) there is an

40

associated half-plane containing slzce(CO(B), 0), whose boundary contains the cdge
(see figure 1.32). The intersection of these half-planes is exactly slice(CO(B),9).
As 0 changes, different half-planes are used to construct slice(CO(B),0). By (1)
deriving the line equation of the boundary of these half-planes in terms of the
orientation @, and (2) by determining the applicability region for each half-plane
constraint, we can characterize slices of the C-Space obstacle slice(CO(DB),0) as 8
changes. Thus we can characterize the three dimensional C-Space obstacle CO(B).
This representation may be used to develop planning algorithms for the Movers’
problem with two translational and one rotational degrees of freedom (see Brooks

and Lozano-Peréz (1983)).

In this thesis we develop such a representation for the six degree of freedom
Movers’ problem. There are several problems which must be solved. Because
the structure of the rotation group is more complicated in three dimensions,
the applicability regions for constraints in a six degree of freedom C-Space are
geometrically much more complicated. While in two dimensions the applicability
regions may be visualized as sectors on a circle, in three dimensions they are
complicated three dimensional manifolds on the projective 3-sphere. It is important
to characterize these regions, since they specify where a constraint is applicable.

We will discuss some of the other problems presently.

Generalizing the Point Navigation Operators Requires Solving

Representational Questions

In order to generalize the point navigation operators to the C-Space of the
classical Movers’ problem, we must be able to characterize the surfaces of C-Space
obstacles, and the intersections of these surfaces. The first two opcrators, then, must
slide along the C-surfaces and their intersections. In the next section, we discuss some
of the representational issues involved in developing such operators. For example,
when rotations are allowed, the C-surfaces are curved. In the six-dimensional space
of the classical Movers’ problem, each C-surface is a five-dimensional submanifold of
C-Space, and the intersection of two such surfaces is a four-dimensional manifold.

Thus it is possible to slide along such an intersection with four degrees of freedom.

41

1.3.2. Representations in Configuration Space: A More Formal Treatment

In this section, we present a somewhat more abstract formulation of
representational issues in C-Space. Some readers may wish to postpone reading this
section until later. We will proceed as follows: first, we will outline an important
representational question which must be solved in this thesis. Next, we discuss
how to represent volumes (such as C-Space obstacles) in C-Space. In the course
of this discussion, several terms will be defined in context by means of intuitive
descriptions. At the end of this section, under the heading Working Definitions, we
will summarize and formalize the definitions to the extent that will be required in

chapters 1 and 2.
The Domain Question

Until now, geometric planning problems with more than three degrees of
freedom have proved resistant to solution.! In this thesis we provide such an
algorithm for find-path with six degrees of frecdom (the classical Movers’ problem).
The resistance of these problems has largely been due to unresolved mathematical
issues and questions relating to the structure of configuration space and to the nature
of C-Space constraints, (although for fine-motion and planning with uncertainty

there are of course additional issues).

One fundamental theoretical problem for high-dimensional configuration spaces
may be stated as follows: in a configuration space C with rotations, each C-Space
obstacle may be reprcsentcd by the intersection of a finite number of half-spaces.
Each half-space, in turn, is defined by a real-valued C-function on C-Space. For
example, the half-space might be the set of configurations where the C-function
is negative. However, each C-function is a partial function on C, whose domain
is a complicated region in C-Space. This greatly complicates the representation
for C-Space obstacles and C-surfaces (see figure 1.36). Moreover, until now the
domains of the C-functions were unknown for all but the one-dimensional rotation
group. One of our first tasks will be to derive the domains of all C-functions for

the classical Movers’ problem with six degrees of freedom.

"Hlowever, previous work has provided an existence proof of a polynomial time algorithm for
certain spatial planning problems. In addition, there are approximate algorithms for some of these
problems. Sce our review of previous work.

42

There are several related problems, for which we also present solutions. This
allows us to construct a complete geometric representation for the configuration space
of the classical Movers’ problem with six degrees of freedom. This representation
impacts all the geometric planning problems we have discussed, and extends

naturally to Cartesian Manipulators.

Representing Volumes in Configuration Space

The dimensionality of configuration space is the number of degrees of freedom
in the parameter space, i.e., the number of degrees of freedom available to
the moving object(s). Thus the classical Mover’s problem in the plane has two
translational and one rotational degrees of freedom, while in three dimensions it
has three translational and three rotational degrees of freedom. The configuration
spaces for these problems are three and six dimensional manifolds, respectively.
As the number of degrees of freedom increases, a geometric planning problem
becomes harder. There are several reasons for this. First of all, when rotations are

allowed, configuraticn spacc ccascs to be Buclidean, and the C-surfaces become

curved. Furthermore, the non-commutativity and multiple-connectedness of the
three-dimensional rotation group are classical difficult issues in mathematics. In
addition, it can be shown that the computational complexity of spatial planning

grows exponentially with the dimensionality of the C-Space.

A fundamental issue for geometric planning algorithms is: how should C-Space

obstacles and surfaces be represented and computed?

A volume in a configuration space C may be represented by the intersection of
a finite number of half-spaces (see figure 1.33). Each half-space may be defined via

some smooth, real-valued function function on C,

fi:C—- R

For example, (fig. 1.34) suppose f;(z,y) = az + by + ¢, for some constants a, b,
and c¢. The kerncl of f is the line where f(z,y) = 0. The halfspace h; is the
portion of the plane where f(z,y) is negative. C-functions such as f; arise in the

two dimensional Movers’ problem, at a fixed orientation.
b}

43

D
oN

A

x
LR

oL

Figure 1.33. The region CO is thc intersection of the half-spaces h;", h}, hy, and h; .

In general, the (closed) half-space h; is the set of all points in C where f; is

negative-valued or zero:

hy ={veC|fil) <o}

The common intersection of a number of such half-spaces can yield a volume in
C. Lozano-Pérez (1983) showed how C-Space obstacles can be modeled in this
manner, and gave the form of the functions f;. Note that each C-surface lies
within the kernel of some constraint f;. Fine-motion strategies and algorithms for
planning with uncertainty need to compute the normals and tangent spaces to
these C-surfaces. The normal can usually be derived from the gradient V f; (this
requires placing an appropriate Riemannian metric on the tangent space). When

a real-valued function f; on configuration space is used to describe constraints in

44

‘Fignrclﬂ Exmp’cﬁt%hhﬁlm"

that C-Space, (u,e., O—Qmee betacles),
interpretation of C-fanethm are }

ion. The form and

20,0,

rg,e(

Figure 1.35. Illustration of the classical Mover’s problem in three dimensions. B is an obstacle,
and A is an object which must be moved around B. A, g, shows A in the start configuration,
and A,g, shows A in the desired goal configuration. C is the polyhedron which is the C-Space
obstacle from I3 for A at oricnlation ©;. At oricntation 6, the C-Space obstacle from B is a
different polyhedron, which we show as C’.

Ezample: (See figure 1.35). Consider the Movers’ problem for a three dimensional
polyhedron A which can translate but not rotate amidst polyhedral obstacles. The
configuration space for A is a three-dimensional vector space of translations, which
it is convenient to identify with R3. Each constraint f; will be linear on R3, and
the kernel of f; is a plane. Each such plane bounds a C-Space obstacle (such as C
or C' in figure 1.35). The C-Space obstacles are possibly overlapping polyhedra in
3. The find-path problem in the transformed space is that of navigating a point
past the union of these C-Space polyhedra (see figure 1.39).

In this formulation there is a fundamental underlying assumption: f; is a total
function on C, that is, the domain of f; is all of C. In the example this is not a
problem, since the domain of each linear C-function is the entire space. A function
whose domain is a subset of C is called a partial function on C. When rotations are

allowed, C-functions become partial functions.

A7

Figure 1.36. The functions f;, fx, and fi are used to describe the half-spaces h;, h;, and
hi . If all functions arc total functions on the plane, then the intersection of the eorresponding
half-spaces will be the the rectangloid region R. llowever, suppose that f; is a partial function,
whose domain is restricted to the half-space where y is positive. We say that f; is not applicable
below the line y = 0. Furthermore, we assume that points outside the domain of f; are within
h7. In this case, the interscetion by [V h; N hj is triangloid region T.

48

Figure 1.37. The two-dimensional classical Movers’ problem: An pbstacle polygon B and a moving
polygon A. A is shown at a particular orientation, 0;.

Why do C-Space constraints become partial functions when rotations are
introduced? Consider the classical find-path problem in two dimensions, for a
moving polygon A which can translate and rotate in the plane (see figure 1.37). A
configuration of A may be represented by three parameters, (z,y,0). The surfaces of
the C-Space obstacle for B arise from each of the feasible contacts (or interactions)
between the edges and vertices of A and B. Thus the constraint functions (which
we have been calling f;) are defined by considering pairwise interactions of edges
and vertices of A with vertices and edges of B. Every such pair such as e, and v
will generate a smooth, real-valued C-function f, v, on configuration space.2 Each
constraint is designed such that their conjunction enforces a disjointness criterion
for A and B. However, not all interactions are possible at any given orientation.
For example, at the depicted orientation 0, of A, edge ez can interact with vertex

v, but edge e; cannot: at orientation 6;, no translation can bring e; in contact

2l'or the form of the C-functions, sce chapters 3 and 4.

49

with v while maintaining the disjointness of the interiors of A and B. We say the
associated C-function f,, , is not applicable at orientation 0;. In other words, no

configuration

(z,9,01) € R% X {61}

is in the domain of fe,,. Each constraint f, ., is applicable only at certain

orientations, and hence each can be considered a partial function on the C-Space.’

In three dimensions (see figures 1.35 and 1.39), the surfaces of the C-Space
obstacle for B arise from each of the feasible contacts between the vertices, edges,
and faces of A and B. By analogy with figure 1.37, it is clear that not all of these
interactions are feasible at any given orientation. Thus the C-functions describing
C-surfaces for spatial planning with six degrees of freedom must also be partial

functions.
Working Definitions: Review and Suramary

We now summarize and formalize the key definitions and concepts required in

this chapter and the next:

Configuration Space: (Formal definition) Configuration space is the product
space of the space of translations and the space of rotations for an object. In three
dimensions, the space of translations is Euclidean 3-space 13 and the space of
rotations is the 3-dimensional rotation group or Special Orthogonal Group, SO(3).
SO(3) is isomorphic to the intersection of the Special Linear Group (the set of
all real 3 X 3 matrices with determinant 1) and the Orthogonal Group (which
may be thought of as the set of matrices with orthonormal rows and columns).
The orthonormality of rows and of columns are equivalent conditions. SO(3) is
isomorphic to P3, the 3-sphere S* with opposite points identificd. (P3 is also known
as the projective 3-sphere). S3 is isomorphic the group of unit quaternions. For the
classical Movers’ problem we will employ configuration space, R X SO(3). We will

denote the classical Movers’ Problem with three translational and three rotational

3See Brooks and Lozano-Perés (1983) for a discussion of the domains of C-functions for the two
dimensional find-path problem with rotations.

50

degrees of freedom as 6DOF. In practice, we will represent rotations as members
of a three-parameter family (for example, Euler Angles), but we must keep in mind
that they parameterize an isometry and that 3 X SO(3) is not a vector space.
If the Euler angles (4,0, $) are employed to represent the orientation of a rigid
polyhedral body, a typical configuration X in N3 X SO(3) has the form

X = (m7 Y, =, ¢) 07 ¢)

We will sometimes adopt the notation

X = (Tr 0),

where r denotes a three-dimensional translation vector, and © some three
dimensional rotation. This second notation is independent of the particular
representation chosen for rotations; the first isn’t. If Euler angles are employed, we

may think of © as the “vector” of Euler angles, (v, 6, ¢).

C-Space Obstacle: (Informal definition) Configuration space obstacles are
(possibly overlapping) six dimensional manifolds (with boundary) which correspond
to sets of configurations that would cause collisions of the moving object with real

space obstacles.

Free space: The free space is that subset of C-Space which lies within no

C-Space obstacle. The free space will be denoted F.

Applicability Set: (Informal definition) Refer to figures 1.29-32 and 1.33-38, and
recall that C-Space obstacles are represented by the intersection of a finite number
of half-spaces. (To be formal we should call them half hyperspaces). The boundary
of each half-space is a C-surface, and contains a boundary patch of the C-Space
obstacle. Each C-surface S may be expressed as the kernel of a real-valued function
f on C-Space. The C-function f is negative on the obstacle side of the half-space
C-Space obstacle, and positive on the other half. In the literature C-functions have

been called constraints, since they express constraints on the possible motions for

an object. A surface parallel to S is called a level C-surface, and represents the set
of configurations where f has a certain fixed value. This value is termed the level
of the level C-surface. The boundary of the C-Space obstacle is a special case of
level C-surface, where the level is zero. We have seen that at any given orientation,
only certain C-functions (and their associated C-surfaces) are applicable. This is
because only certain contacts are feasible between the faces, edges, and vertices
which generate the C-functions. We call this set of C-functions the applicability set.
For example, in 1.29-32, at the depicted orientation the applicability set is

{ (vl, el’)r ('1)1, eé), (61: 012)1 ('02’ eé)’ (62’ v'i)r (")3: 64), (33; v{) }

(Actually, the applicability set is the set of C-functions generated by these
vertex/edge and edge/vertex pairs, but since there is a one-to-one correspondence
between the generator pairs and the C-functions, we can write it this way). In later
chapters, we will demonstrate algorithms for computing the applicability set, and

for decomposing rotation space into regions where the applicability set is invariant.

Redundant and Non-redundant Constraints: (Informal definition). If a config-
uration X is in free space, the set of constraints which is (locally) relevant to motion
planning from X is a subset of the applicable, positive-valued C-functions at X.
However, the value of a C-function does more than merely indicate which side of a
C-surface X is on. A C-function’s value represents the translational distance to that
surface. Thus, C-functions provide a collection of pseudo-metrics on C-Space. Using
these metrics, it is possible to order C-surfaces by their closeness to a configuration
X (simply sort the C-functions on their value at X). We say that a C-surface is
redundant if it is subsumed by a nearer, intervening constraint. In figure 1.38, for
example, f and g are non-redundant constraints at X, but h is redundant since it
is subsumed by f. It is useful to determine the sct of non-redundant constraints at
X since this is the smallest set of constraints that are locally relevant to motion

planning. We provide a formal definition of redundancy in chapter 3.

Robot, Moving Object, and Piano: All of these terms have been employed in

the literature to refer to the moving object for which a collision-free path must

52

-~ -
= e
-

]

'

'

! \
'

i

[]

]

[]

Figurc 1.38. h is a redundant constraint.

be found. Qur moving object is modeled as the possibly overlapping union of a
finite set of convex polyhedra. The union is rigid, but not necessarily convex or

connected. The moving object has three translational and three rotation degrees of

freedom. To avoid monotony, we may employ the term robot to refer to the moving

object. The terminology is justified in part by the fact that our algorithm extends

straightforwardly to Cartesian manipulators.

53

The Research Agenda of this Thesis

A Brief Outline

I. Computational Theory

Paths can be found in C-Space by the closure of three operators:
(i) slides along 1- to 4-dimensional intersections of level C-surfaces;
(i1) slides along 5-dimensional level C-surfaces;

(iii) jumps between 6-dimensional obstacles.

. Represcentation and Algorithm

Search Algorithm Employing the Three Operators

m

Solve the Intersection Problems.
Develop a represention for the intersection manifolds.

m

Solve open questions about the structure of 6DOF constraints. Derive and
represent structural propertics of the constraints, for example, the domains of
defining partial functions. Develop decomposition algorithms.

HI. TImplementation

Implement the 6DOF planner.

IV. New Theoretical Results

The structure of 6DOYF constraints: Theorems on the domains and domain
topology of the defining partial functions.

Theorems on the applicability decomposition.

The C-Voronoi Diagram (CVD).

The Equivalence Theorem for intersection manifolds and the CVD.

Criteria for designing/integrating local and global planning algorithms.

1.3.3. Generalizing the Point Navigation Operators

Consider a three-dimensional configuration space containing smooth, curved
C-Space obstacles. Observe that the point navigation operators will work even if
the surfaces are curved and complicated, as long as we can find their intersections.
For the two-dimensional Mover’s problem (for a polygon allowed to rotate and
translate in the plane), we employ a configuration space N2 % S'. R? is the space of
two dirﬁensional translations, and S' is the unit circle, on which one-dimensional
rotations may be represented. C-functions are of the form f; : R2 x S! - R and
are valid within some sector A; of S!. A C-surface is the set of configurations
where J; is zero. Although these C-functions are complicated expressions containing
trigonometric terms of the form zcos® and ysind, it is possible to solve two
such C-surfaces simultaneously to obtain an intersection curve in R2 % S! which -
is parametric in 0 (these intersection manifolds are derived in chapter 4). The
analogy to navigating a point through a polyhedral environment should now become
clear: the faces of the polyhedra correspond to C-surfaces in ®2 X S! and the
edge-graphs to the graph of C-surface intersections. By searching the graph of

C-surface intersections we can find a path in configuration space, if one exists.

Planning in a Six Dimensional C-Space

Our planner for a six dimensional C-Space is based on the idea of moving along
the interscetions of level C-surfaces in free space, parallel to the boundaries of C-
Space obstacles. In the example above, the coincidence between the dimensionality
of configuration space and Euclidean space was serendipitous: edges on polyhedra
corresponded to curves in %2 X S!, and faces to 2-dimensional surfaces. However, in
a six dimensional C-Space, the C-surfaces are 5-dimensional and their intersections
are 4-dimensional sub-manifolds. Intuitively this means that the set of possible

motions while complying with two constraints is a four-parameter family.

Our idea is as follows: Suppose we could slide along C-surfaces (see figure 1.39).
In addition, suppose we could intersect C-surfaces to construct a lower dimensional
manifold in C-Space which contained paths along (or around) the boundary of
C-Space obstacles. By sliding along C-surfaces, and by sliding along the intersection

of C-surfaces, we should be able to devise an algorithm which can circumnavigate

(<24
344

Ty,

Figure 1.39. We can represent the configuration of a polyhedron A by a pair, (T,©), where T is
a translation of A and © is a rotation of A. The problem of moving A from configuration (r,, ©1)
to (r4,©,) is transformed to the problem of navigating a configuration point, r, past C, which
is the C-Space obstacle due to B. S; and Sz are C-surfaces bounding C. The configurations ¢;
lic on the boundary of C, while d; is in free-space. Two trajectories around B are shown. Note
that the path segments (cg, (g, ©2)) and (di,(ry, ©2)) must also include a rotation. (The actual
reference point is at the centroid of A, but for the purposes of exposition, we have placed it at a
veriex as shown).

C-Space obstacles. (Of course, we also need a way to plan motions which “jump”

from one obstacle to another).

Ezample: Figure 1.39 shows how such a planning algorithm might work. The
planner moves through free-space from (ry, ©1) until it strikes a C-surface Sp at
¢1. From ¢; a path is found towards c; sliding along the C-surface S;. We say the
planner slides along S to c2. Configuration c2 lies on an intersection manifold of
the C-surfaces S; and Sy. The path segment (c2,c3) slides along this intersection
manifold, which lies on the boundary of C. A path (c2, 3, ¢4, ¢5, ¢g) is planned along
the graph of intersection manifolds on the boundary of C. From cs we leave the

boundary of C, and translate and rotate through free-space to (ry, ©2). This path

56

is an idealized example of planning along C-surfaces and intersection manifolds of
C-surfaces. The implemented planner finds a path similar to ((r,, 01),d1, (rg, ©2))
(see chapter 2). The path segment ((rs,©), dy) is parallel to the C-surface S, and
we say that it slides along a level C-surface for Si. The path segment (d1,(rg,©))
is along a level C-surface for Sp. These level C-surfaces intersect along a manifold
in free-space containing d; (imagine extending the faces Si and Sy beyond the

boundary of C until they intersect).

We will derive the necessary mathematical theory and tools relating to C-
surfaces and their intersection manifolds, and present algorithms for moving and

planning paths in C-Space. Some of the issues we will address include:

(i) What is an appropriate representation for constraints in a six dimensional
C-Space?

(ii) How do we plan motions using constraints whose domains change with the
motions?

(iii) How can trajectories in C-Space be intersected with C-surfaces whose domains
change along the trajectory?

(iv) How can intersection manifolds be constructed in C-Space?

(v) How are motions planned which slide along C-surfaces and intersection manifolds?

It is useful to develop a terminology for evaluating algorithms and repre-
sentations for geometric planning problems. An algorithm employing an approzimate
representation does not characterize the constraints exactly. A complete algorithm
(for a given resolution) is guarantecd to find a solution if one exists (at that
resolution). In general, construction of a complete algorithm mandates the employ-
ment of a complete representation. A brute-force algorithm tries to find a solution
through exhaustive search. Heuristic algorithms fall into two (overlapping) classes:

heuristically complete, and heuristically fast. See also the review of previous work

(below).

The implemented algorithm we prescnt for the classical Mover’s problem with
six degrees of freedom employs a complete representation of the configuration space

constraints, and a complete search algorithm (for a given resolution).

1.4. Local versus Global

Local algorithms for the find-path problem examine local constraints in some
neighborhood of real space or in C-Space, and propose motions based on the
geometry of the neighborhood. Typically, local algorithms are implemented as
searches, and the examination of conmstraints near a scarch node leads to the
selection and application of some local operator to move the robot in space. For
example, in our algorithm for the six degree of freedom Movers’ problem, the local
constraints correspond to the geometric structure of C-surfaces in a neighborhood,
and local operators consist of motions along C-surfaces.! In general, a local planning
algorithm will be complete if (1) the closure of the local operators is complete for the
arcwise-connected components of C-Space, and (2) each local operator attempted

ensures that a collision-free path exists between configurations in the search.

However, our observation has been that in general, even complete local
algorithms can get lost examining irrelevant local constraints. In particular, without
adequate knowledge of the connectivity of a workspace and the classes of paths
it contains, such mecthods may choose impossible or ill-advised candidate paths:

hence they may take a long time to converge.

A global ind-path algorithm attempts to construct a model of the connectivity
of the workspace. We believe that the connectivity of configuration space can be
inferred from the conncctivity of real space. Good hypotheses about the channels,
or classes of paths through frec-space can serve as guidance for a more detailed
method. While there exist several proposals for global approaches to the Movers’
problem, in Donald (1983a) we attempt to formalize criteria for the design of such
algorithms. A global planner bascd on these criteria was implemented, and coupled

with a complete local algorithm to form an integrated planning system.

Channels are an encoding of free-space corresponding to the classes of paths
within an environment. An implementation exploiting this global model of the
connectivity of free-space has been able to solve two dimensional find-path problems

in several minutes which formerly took many hours. The algorithm is essentially

I'This example is illusteative and typical of the local constraints and operators. The im plemented
planner is more complicated, as we shall sce.

a problem-solving strategy using a homcomorphic reduction of the search space.
Sce Donald (1983a) for a description of the channel algorithm. In appendix III,
we discuss the design and integration of local and global planning algorithms in

13 x SO(3).

1.5. Review of Previous Work

1.5.1. Introduction

In this section we review previous work on geometric planning problems.
We also give a formal characterization of completeness for the spatial planning
problems. A survey of robotics issues in robot motion planning can be found
in Brady, et al. (1980). For related work on the mover’s problem, see Brooks
(1983a), Lozano-Pérez (1981, 1983), Lozano-Pérez and Wesley (1979), Brooks and
Lozano-Peréz (1983), Schwartz and Sharir (1982a), Reif (1979), Moravec (1979),
Udupa (1977) and Hopcroft and Wilfong (1984). Wingham (1977) and Popplestone,
Ambler, and Bellos (1980) consider related issues in geometric pianning problems.
Some issues in automated structural design are addressed in Donald (1983b). For
a review of geometric modeling techniques, see Baer, Eastman, et al. (1979) and

Requicha (1980).
1.5.2, Complexity-Theoretic Results

In seminal work on the complexity of the Movers’ problem, Reif (1979) has
shown that the motion planning problem for a robot with an arbitrary number
of degrees of freedom in the form of arm-like linkages is P-Space-hard. Hopcroft,
Joseph, and Whitesides (1982) have shown similar results for planar manipulators
with 7 linkages. In general it has been found that with n degrees of freedom, the
problem is P-Space-hard. Happily, Schwartz and Sharir (1982a) have demonstrated
the existence of a polynomial-time algorithm for the Movers’ problem with fixed
degrees of freedom, where the size of the problem is measured in the number of
obstacle faces in the environment. The algorithm of Schwartz and Sharir (1982a)

for the classical Movers’ problem is unfortunately of time complexity

0(71,2 d+ 6)

59

where n is polynomially dependent on the number of faces in the environment, and d
is the number of degrees of freedom. For 6 degrees of freedom this becomes O(n1096),

Hence it serves chiefly as an existence proof for a polynomial-time algorithm.

The coordinated motion problem has also been given some attention: Schwartz
and Sharir (1982b) address the problem for 2 and 3 circular bodies moving amidst
polygonal obstacles in the plane. The coordinated motion system has degrees of
freedom cqual to the sum of the degrees of freedom of the moving bodies. These
results lead us to expect exponential behavior from all motion-planning algorithms
as the number of degrees of freccdom grows. For these reasons we will confine
ourselves to the classical Movers’ problem, which has 6 degrees of freedom in

3-dimensional space.

Reif (1979) also sketches a polynomial-time algorithm for the classical Movers’
problem, but it appears incomplete in that it ignores constraints arising from the
interactions of faces of the moving object with vertices of obstacles, and does not

consider edge-edge interactions in 3 dimensions.

1.5.3. Work in Computational Geometry and Robotics

The foundations of our approach lie in Lozano-Pérez (1981, 1983), Lozano-Pérez
and Wesley (1979) and Schwartz and Sharir (1982a). The problem of moving a
complex polyhedral object among obstacles is transformed to the problem of finding

a path for a point in a high-dimensional configuration space.

Brooks and Lozano-Peréz (1983) have implemented a general path-finding
algorithm for a polygonal object in the plane with two translational and one
rotational degrees of freedom. Their planner uses hierarchical subdivision of the
3-dimensional configuration space R? X S1. The subdivision algorithm has been
specialized to the particular geometry of the Movers’ problem in R2 x S! and
while in principle it is extensible to the 6 degree of freedom problem, its space-
complexity in high dimensions is likely to be unattractive. A problem with the
hierarchical subdivision strategy is that it has trouble exploiting coherence in
C-Space. Its spatial taxonomy is restricted to filled, empty, and mixed, in a

world where almost everything is mixed. Mixed cells are subdivided until an empty

60

region is found. However, it is hard to propagate this uselul information to guide
the scarch through nearby, unrefined cells in the subdivision. One goal of the
algorithms and representations in this thesis has been to exploit coherence in the
configuration space. The intuitive appeal is that the intersections of C-surfaces “go
somewhere useful” (i.e., around the obstacles). We will adopt an approach which
exploits the coherence of C-Space obstacles by moving along the intersections of

high-dimensional C-manifolds® parallel to the obstacle boundaries.

Lozano-Pérez (1981) has described approximate solutions for Cartesian manip-
ulators with 6 degrees of freedom (in principle) which consider 3-dimensional
slice-projections of Configuration space. In practice these approximations are only
reasonably accurate for Cartesian manipulators with 4 degrees of freedom. In
principle, the C-Space constraints on motion defined by Lozano-Pérez (1983) can
be extended directly to a 6 d>egree of freedom planner; indeed, this is our starting
point. However there are many interesting and complex problems to work out (see
Rrooks (1983b) for another discussior of these problems). In particular, there are
many unresolved mathematical dctails for the 6 degree of freedom case. Given

the mathematical model, there still remains the issue of a complete planner which

exploits the model.

1.5.4. Global Methods

Global methods for path planning attempt to construct a model of the
connectivity of frce-space which can be related to the Vorono: diagram (see
Drysdale (1983)). In particular, Brooks (1983a) has implemented a 2-dimensional
path-planner which models the free-space as an overlapping union of Generalized
Cones (Binford (1971)). Each cone provides orientation constraints on motion within
the cone, and these constraints are intersected to find a translational path along the
cone axes (called spines) interspersed with rotations at the spine intersections. This
work was extended to a six-link manipulator for moving payloads with 4 degrees
of freedom (Brooks (1983b)). The extended algorithm uses the same cone model,
but swecps each cone vertically to build prisms at horizontal slices through the

workspace. This method works well when the payload (or polygon) is small and

2A C-manifold is a manifold in a configuration space.

61

convex in a relatively uncluttered obstacle environment. It is not at all clear how
to extend the algorithm to large, non-convex moving objects, or how to consider
more than one rotational degree of freedom at a time. Nevertheless the concept of
computing “freeways,” or “channels” through free-space is attractive in that it can
provide global guidance to local algorithms (such as C-Space methods), and can

enumerate good hypotheses about candidate paths through complex workspaces.

Using an approach called retraction, O'Dinlaing and Yap (1982), O’Dinlaing,
Sharir and Yap (1982) construct a Voronoi diagram for a two-dimensional workspace
and consider moving simple objects (a disc, a line-segment) along it. This technique
was mentioned by Brooks (1983a). It has not yet been extended to polygonal objects
or 3-dimensional cases. We will address this issue by considering Generalized

Voronoi Manifolds.
1.5.5. Approximation and Completeness

Planning problems have two components: characterizing the constraints, and
searching for a solution which satisfies the constraints. One attermpts to achieve a
complete (in some sense, “exact”) characterization of the constraints, and a complete
search algorithm for the representation. Since the Mover’s problem is a continuous
mathematical decision problem, we must in general consider a discretized version of
the problem (sec Reif (1979)), for example, we might represent the polyhedral input
models as systems of linear inequalities within a fixed accuracy €, with 0 < € < 1.
In fact, there are two kinds of resolution limit. Any algorithm which employs real
arithmetic has a resolution limited to the machine precision. (Schwartz and Sharir
(1982a) employ rational and algebraic numbers instead). For the find-path problem,
we are interested exclusively in the physically realizable paths, that is, those paths
lying entirely within open sets of free space. The resolution limit Reif mentions is
essentially a bound on how small an open set can become before it is no longer
considered open. The open sct resolution limit is typically greater than the machine

precision.

Almost all find-path search algorithms are complete only to this fixed resolution;
the notable exception is Schwartz and Sharir (1982a), which appears to be

search-complete and resolution independent. We should stress that for a complete

62

representation, the resolution-dependence is in practice not a scvere restriction.
However, the effect of a complete search algorithm running on an approximate
characterization of the constraints is not clear. In principle, in case of search failure,
it is sometimes possible to refine the approximation and redo the search until a
path is found. This possibility has rarely been exploited however, and introduces a
number of unpleasant technical and conceptual issues. A complete search running
on an approximate representation will in general result in an incomplete algorithm.
For these reasons we would prefer a complete characterization of the constraints

coupled with a complete search algorithm.

We will place this thesis in the context of previous work by considering the

following criteria:

(i) For what degrees of freedom does the algorithm apply?

(ii) Is the representation (the characterization of the constraints) complete?
(iii) Is the search complete (at a given resolution)?

(iv) Has the algorithm been implemented?

Approximate Representations

Much of previous work has focused on approximate characterizations of the
constraints. Approximate representations may (1) artificially restrict the degrees of
freedom in a problem, (2) bound objects in real-space by simple objects such as
spheres, or prisms with parallel axes, while considering some subset of the available
degrees of freedom, (3) discretize configuration space at certain orientations, or (4)
approximate swept volumes for objects over a range of orientations. Such restricted
planning systems may lose solutions which require exploiting all six degrees of
freedom. An approximation of the obstacle environment, robot model, or C-Space

obstacles can result in a transformed find-path problem which has no solution.

Some approximate algorithms—for example, those of Brooks-run quite fast
for the class of problems that they address. In general, speed has been a
motivating factor in the design of these approaches. We also observe that some
approximate methods were motivated by the difficultics of modeling constraints in
a full 6-dimensional C-Space. These difficulties in turn stemmed from unresolved

mathematical problems relating to both C-Space itself and to the structure of

63

C-Space constraints. However, even with a complete mathematical model in hand,
we are still confronted with the problem of devising a complete planner which

works using the full set of constraints.

The configuration space of the three dimensional classical Movers’ problem with
six degrees of freedom is R3 X SO(3), where SO(3) denotes the three-dimensional
rotation group. In this thesis we first complete the mathematical framework for the
configuration space 83 X SO(3) and present solutions for some heretofore unsolved
problems. This foundation then allows us to propose and construct a complete
planner exploiting the full set of constraints and 6 degrees of freedom for motion

planning in R X SO(3).

In this section, we characterize the completeness of previous work. Unless noted,
search-completeness is resolution-dependent. Schwartz and Sharir (1982a) describe
complete representations and complete (unimplemented) search algorithms for 2D
and 3D. These theoretical algorithms appear to be resolution-independent. Brooks
and Lozano-Peréz (1983) describe complete representations and search algorithms
for the problem in 2 X S!. Lozano-Pérez (1981, 1983), Lozano-Pérez and Wesley
(1979) give approximate representations (except for translation) with complete
search algorithms for %2 X S and ®3 X SO(3). These approximate representations
also model Cartesian manipulators. Most algorithms for % X SO(3) can be extended
for Cartesian manipulators in a similar manner. For translations, Lozano-Pérez’
algorithms are complete to the machine resolution. Brooks (1983a) provides an
approximate constraint characterization with a complete search algorithm for
R? x S!; Brooks (1983b) extends this for a linked arm carrying a payload with
degrees of freedom N3 X S1. A significant contribution of Brooks was the addressing
of the issue of jointed arms. The open set resolution limit for the Voronoi methods
(for simple objects in two dimensions) is no larger than the machine precision.
Udupa (1977) and Widdoes (1974) uscd approximate representations and incomplete

search algorithms in addressing find-path for jointed arms.
In this light, we can characterize our algorithm as follows:

o This thesis presents the first implemented, representation-complete, search-

complete algorithm (at a given resolution) for the classical Movers’ problem in

64

R3 X SO(3).
1.6. An Outline of this Thesis: Research Contributions

In this thesis we present a local algorithm for the six degree of freedom
classical Movers’ problem. The channel based algorithm developed in Donald (1984)
is described in Donald (1983a).

At the heart of this research lie certain mathematical developments that may
seem fairly abstract at first reading. To motivate the mathematics, we first present,
in chapter 2, the design and implementation of a six degree of freedom planning
system for the classical Movers’ problem. The description of the planning algorithm
assumes that certain representations and mathematical tools are available. In
subsequent chapters, we develop these tools in answer to the following questions,

for which chapter 2 assumes solutions:

AReprescntational and Algorithmic Questions

(i) What is an appropriate representation for constraints in a six dimensional
C-Space? (Chapter 3).

(ii) In the six dimensional C-Space of the classical Movers’ problem, the domain of
each constraint is the product space of %3 and a complicated three-dimensional

manifold (with boundary) on the projective three-sphere. What are these regions,
and what is their structure? What representation can be used for these domains?

(Chapter 3).

(iii) How do we plan motions using constraints whose domains change with the
motions? (Chapter 5).

(iv) Given a trajectory in C-Space, it is necessary to find where it intersects
the boundary of C-Space obstacles. How can trajectories be intersccted with
C-surfaces whose domains change along the trajectory? (Chapter 4, 5).

(v) How can intersection manifolds be constructed in C-Space? (Chapter 4).

(vi) How are motions planned that slide along C-surfaces and interscction manifolds?
(Chapter 4, 2).

(vii) How can rotation space be decomposed into regions where the set of applicable
constraints is invariant? (Chapter 5).

How to Read this Thesis

Chapter 2—covering the design and implementation of the search algorithm in
C-Space—presents the most heuristic component of this research. It is also in some
sense the most accessible chapter to the non-specialist. However, do not confuse
chapter 2’s implementation details and search heuristics with the representational
and algqrithmic framework developed under the considerably more formal agis of
chapters 3 through 6. The thesis is structured so that those prefering a presentation
more in keeping with the traditional style of mathematical exposition may read the

chapters on 6DOF planning in the alternative order:

(1) Geometric Planning Problems

(3) Questions of Representation: C-functions and Applicability Constraints in a
Six Dimensional Configuration Space

(4) Mathematical Tools for Motion Planning in a Six Dimensional Configuration
Space

(5) Moving Through Rotation Space

(6) 'The C-Voronoi Diagram and its Relationship to Intersection Manifolds

(2) A Planning System for the Classical Movers’ Problem with Six Degrees of
Freedom.
In the alternative order, the representations and algorithms are derived and

presented first, and the application and implementation is presented last.

Chapter 3 presents a formal framework in which several open questions about
configuration space constraints—notably (ii) (above) —may be solved. Chapter 3
also derives fundamental structural properties of C-Space constraints, in particular,
the domains and domain topology of C-functions for the classical Movers’ problem.
We call these domains applicability constraints. Chapter 4 addresses the tntersection
problem in high-dimensional C-Space: how to construct and slide along intersection
manifolds, and how to intersect trajectories with C-surfaces and applicability
constraints. We demonstrate the form of the intersection manifolds for ®° X SO(3)
and R? X S'. Chapter 5 discusses algorithms for moving through rotation space,
and for decomposing rotation space into equivalence classes where the set of
applicable constraints is invariant. In chapter 6, we extend the concept of the

generalized Voronoi diagram (which Drysdale (1983) defined for the plane) to the six

66

dimensional C-Space ®® X SO(3), to provide a formal and constructive definition
of the C-Voronoi Diagram, or CVD. The CVD is an attractive construction, in that
it contains a representative component for each “branch” of free space. Each such
component is a submanifold of dimension 0 < d < 5, called a Voronot manifold.
We will derive the following connection between intersection manifolds and the

CVD:

Theorem: (The Equivalence Theorem for intersection manifolds and the C'V.).
Let p be a path along the CVD. p lies along a connected chain of Voronoi
manifolds, Vi, ..., Vi. We demonstrate that for cach Voronoi manifold V;, there
exists an equivalent intersection manifold of level C-surfaces, I;. Turthermore,
we also show that for every connected chain of Voronoi manifolds, there is an
equivalent connected chain of intersection manifolds (of level C-surfaces). (The -
equivalence we demonstrate is actually stronger than homotopic equivalence,

but the additional details are too complicated for this chapter).

67

2
A Planning System for the Classical
Movers’ Problem with Six Degrees of Freedom

In this chapter, we describe the design and implementation of a planning
system for the classical Movers’ problem with six degrees of freedown. The planning
algorithm required the solution of the seven “Representational and Algorithmic
Questions” listed at the end of chapter 1. The solutions to these problems are

presented in subsequent chapters.

In this chapter we will simply assume that these problems are solved, and
proceed to employ the solutions in constructing a planning algorithm. Of particular
importance will be two effective procedures, which address the intersection problem

in C-Space:
(I} Given two or more level C-surfaces, construct their intersection manifold.

(Chapters 3 and 4).

(I) Given a C-surface and a trajectory, find their intersection. Determine
whether the intersection lies on the boundary of a C-Space obstacle. (Chapters
4 and 5).

The immediate application of (I) is the sliding problem: How to slide along
one level C-surface, and how to slide along the intersection of two or more level

_C-surfaces.

68

Using the point navigation operators (chapter 1), we implemented a best-first
search algorithm in C-Space. The algorithm has nice theoretical properties which
include completeness (at a resolution). This chapter describes the heuristic search,
with particular emphasis on the heuristic strategies that evaluate local geometric

information, and on the interaction of these strategies.

2.1. Definitions

A topological space M is called an n-dimensional manifold if it is locally
homeomorphic to R™. A chart is a way of placing a coordinate system on M: if
U and V are open subsets of M, two homeomorphisms f : U — f(U) C " and
g:V — g(V) C R” have C* overlap if the maps

fog™h:gUNV)— f(UNV)
go T SUNV) = g(UNV)

are also C® (that is, possessing continuous partial derivatives of all orders). A
family of pairwise C®-overlapping homeomorphisms whose domain covers M is
called an atlas for M. A particular member (f,U) of an atlas U is cailed a chart (for
the atlas U), or a coordinate system for U. For a good introduction to differential

geometry, sce, for example, (Spivak, 1979).

In this thesis we usually specify charts via the inverse form h : R — M
(where R is an open subset of R") with the understanding that it is the inverse
(or set of local inverses) h™! which provides the family of charts {(h~1,W;)}, for
U; W; = h(R). As an example, consider the map 4 that specifies a chart for a five
dimensional level C-surface:

h: R — R X SO(3)

Eoyy + 3z + Ey — £
(y: 2, "»b; 0’ ‘/5) = (_'—ZJ 3E1 ! Y, 2, ¢:97 ‘75)

Here the E; are smooth, real-valued functions on SO(3), that is, E; : (¢,9, $) — N.
The inverse map h~! is obvious, and provides a chart for the five dimensional
submanifold of R X SO(3). In subsequent chapters we will derive such charts, in

the form of k; in this chapter, we will take them for granted.

69

2.2. Introduction

We are now ready to describe a planning system for the find-path problem in
R3 % SO(3). The algorithm has the structure of a search and is complete (for a
given resolution). The basic idea is as follows: we are able to define and implement
certain local operators. When applied at a configuration in C-Space, a local operator
attempts to move the robot in a specified direction until cither the subgoal or an

intervening C-surface is reached. The local operators have the general form

M ove(X :con figuration, 0:direction, limit:configuration),

and are designed to ref;urn X' the configuration reached in direction 9, and
the reason for stopping (which will either be “reached subgoal” or the name of
the C-surface which halted progress). The local operator assumes that X is in
free-space, and ensures that there exists a collision-free path along 9 taking the
robot from configuration X to X '. Furthermore, we insist that limit = X +19, for
some positive t. In general, 9 can be represented as a tangent vector to N3 % SO(3);

the space of directions is clearly locally homeomorphic to RS,

Many different M ove operators can be defined. Let X = (z, ©). We will restrict

¥ to be either a pure translation

e x {0}

or a pure rotation

b e { +’!Z, _"l/Ja +07 ‘b’ '+'$) "(;5 }

The closure of these operators is complete for the space of configurations. By
this we mean that in the absence of obstacles, there is some finite scquence of
operators which carrics any configuration X into any other configuration Y. It is
often convenient to think of these operators as Translate(X, 4, z') (where 4 € R°

and z’ is a goal translation) and Rotate(X, ®, ') (where $ is an angular direction

70

and ¢’ is a goal angle). The theory and implementation of T'ranslate and Rotate

is discussed in chapters 3, 4, and 5.

Given the local operators, we can define more sophisticated local strategies for
spatial reasoning. These strategies are implemented by local ezperts' in C-Space.
For example, one local expert attempts to circumnavigate C-Space obstacles by
sliding along intersections of level C-surfaces. Another, “greedy” expert tries to
translate or rotate straight towards the goal. A local expert typically examines the
local geometric environment of C-surfaces, their normals and intersections. It also
takes into account the history of planning. The local experts can be thought of as
issuing “commands” in terms of the local operators. Depending on the results of
these attempted motions, an expert may issue other local operator commands, and

either directly invoke or leave a forwarding message for another local expert.

To summarize: a local operator is an algorithm for moving along a specific
trajectory until a constraint is encountered (or a subgoal is reached) . A local expert
is a strategy for choosing the trajectory based on an examination of the history of
planning and the local geometry. When a local expert chooses a trajectory, it calls

on some sequence of local operators to realize it.

"The term local expert was brought to my attention in discussions with Van-Due Nguyen (Nguyen
(1983)), Tomas Lozano-1’¢rez, and Rodacy Brooks.

71

Figure 2.1. Schematic illustration of the “Bumble” strategy an exhaustive search). A fine
six-dimensional lattice is thrown across C-Space. By cxploring from onec configuration to its
neighbors in the lattice, a path will eventually be found, if one exists at the lattice resolution.
Fortunately, it is also possible to take large steps in the lattice, and simply record the neighborhoods
the path visits.

2.2.1. Planning and Scarch

The planning algorithm is implemented as a search of configuration space. The
search constructs a graph of neighborhoods which have been explored. (We will be
more precise about the term neighborhood later). Each node in the search graph is
associated with a configuration and contains information about the local geometry
and the history of planning. The search algorithm chooses a node for exploration.
Several local experts are then applied at that node. Each expert can produce a new
search node. All of these are sons of the explored node, and are added to the search
queue. The new sons are connected to their father by the arcs of the search graph

and each son may be thought of as an ezploration from the father.

If at any point in the scarch, two explorations reach the same neighborhood,

72

the planner attempts to merge the associated nodes into one node.

The search algorithm is Best-First (Nilsson (1980)) with the metric of progress
established as distance from the goal. (This requires placing a metric on both
translation and rotation space). Other search measures (such as path length, or
time) would also be possible, and an A* scarch strategy could be exploited to find
optimal paths. In practice this would probably require adding new local experts in

order to ensure reasonable performance.

As search nodes are explored, they are entered in a priority queue, called the
search queue. The nodes in the search queue are ordered by the search metric.
Some search strategies we discuss require two search queues: when the primary

queue is exhausted, then nodes from the reserve queue are explored.

We will proceed as follows. First, using the local operators alone, we can define
a complete search strategy (at a given resolution). This search strategy can be
considered the most primitive local expert, and is known as the “Bumble Strategy.”
By applying the Bumble strategy at every search node, we are guaranteed to find

a path (at a given resolution) if one exists.

Next, we will define more complicated local experts which will be applied to
search nodes at the same time as the Bumble expert. These experts greatly improve

the performance of the planner.

73

2.3. A Complete Search Strategy

A search node is associated with a configuration. Every configuration is in turn
associated with a neighborhood of C-Space. The neighborhoods form a partition
of C-Space. Since many configurations are associated with one neighborhood, so

several search nodes may have configurations lying in the same neighborhood.

Assume the neighborhoods are “small.” If the configurations of two search
nodes are in the same neighborhood, it indicates that they should, if possible, be
merged into one node, since they are close together. By keeping track of the set of
explored neighborhoods, we can avoid redundant explorations. If the neighborhoods
are sufficiently small, then the search will be complete at a resolution closely related

to the neighborhood size.

74

nery

(Rer) QO (Rer 9\

Figure 2.2. f,g: ®R® X SO(3) = R are C-functions which describe two level C-surfaces, ker f
and kerg. The level C-surfaces are smooth, 5-dimensional manifdlds parallel to C-Space obstacle
boundarics. From X € ker f, three paths sliding along the level C-surface ker f are shown.
Each path is orthogonal to Vf. The sliding ezpert plans such paths along 5-D level C-surfaces.
(ker f)(N(kerg) is the intersection of the two level C-surfaces, and is a 4-dimensional manifold.
The interscetion expert plans paths along interscction manilolds. Such a path p is shown from
configuration Y.

It is possible to devise a complete search strategy (at a given resolution) using just
the local operators. We first throw a fine six-dimensional lattice? over configuration
space. The lattice is used to keep track of the state of the planner, i.e., which
neighborhoods have been explored, and for computing the connectivity of these
neighborhoods. The lattice will “wrap around” in the rotational dimensions, but
this is easily implemented using modular arithmetic. We will define an adjacency
function for points in the lattice; in addition, when a neighborhood is explored,
the corresponding node in the lattice is marked. When a search node is chosen for

exploration,

21.c., the factor spaces of the parameter space are quantized, and the lattice is a partial order
on the Cartesian product of the factor space quantizations.

75

(i) X, the configuration of the search node is mapped to L, a point in the lattice.
L is the name of the neighborhood N(L) centered on L, which contains X .

(i) The unexplored neighborhoods adjacent to N(L) are found. Each of these
neighborhoods is also identified by a central lattice point.

(iii) The planner attempts to move to each of the unexplored, adjacent neighbor-
hoods.

(i) has the effect of mapping a neighborhood of C-Space to a canonical element
(which lies on the lattice) in its interior. These neighborhoods decompose R3 X SO(3)
into equivalence classes with the same canonical element. When a neighborhood
is reached for the first time, we mark its lattice point as explored. The search
terminates when a neighborhood containing the goal is reached, and when that

exploration can be connected to the goal configuration.

76

2.3.1. Implementation of Neighborhoods and Lattices

In principle, it is possible to implement the lattice as a six-dimensional array
(with modular indexing for the rotational dimensions). In practice, for any fine
resolution, this array will be enormous, and very sparse. Although an adversary
can design a find-path problem for which our planner must explore the entire
lattice, in practice this does not occur. However, we must maintain a record of what
neighbofhoods have been explored, in order to generate the unexplored neighbors

for a search node. Since the array is sparse, we will employ a different strategy.

A partial order can be defined on lattice points by considering them as
six-dimensional vectors. This order has no particular geometric significance for
the rotational dimensions, but it can be used to store explored lattice points in a
binary tree. Since the vast majority of neighborhoods are never explored, the tree
it typically small, even for fine lattices. To mark a lattice point as explored, we
insert into the binary tree. To find whether a lattice point has been explored, we

search the tree.

It is desirable to employ a fine lattice in order to ensure completeness at a fine
resolution. The use of a binary tree to record explored configurations effectively
rernoves the problem of lattice size for storing explored configurations. For example,
if we segment C-Space into an N X N X ... X N lattice, then an array would
have to be V% long. But the binary tree need store only the explored locations, and

(if height-balanced) can access any leaf in O(log V) operations.

77

If the lattice resolution is fine, then the planner as described so far will take
very small steps for each search exploration. This has been remedied as follows:
If a local operator is invoked to find whether limit may be attained from X in
direction 9, it must effectively intersect a path in direction 9 with all C-surfaces. It
is not much harder to find the first constraint along the path p(t) = X -+t (even
if it is beyond limqt): in particular, we note that all intersections along the path p
may be sorted on distance from X. The complexity of finding this first intersection
along p is independent of the lattice resolution (since the intersection algorithm has
nothing do do with the lattice; see chapter 5). We can “sample” the portion of the
path which lies in free space at the lattice resolution. All of these configurations
are then marked as “explored”, and as reachable from their immediate neighbors
along the path. Thus they form a connected chain in the lattice along the path p.
While all these configurations are in some sense sons of X, in practice we will select
only one or two to be entered in the primary search queue. These sons might be
(1) the son which is closest to the goal, and (2) some son at a reasonably large step
away from X . This step size, called the Bumble resolution, might be 3 to 10 times
the lattice resolution. The other sons should be kept on a reserve queue, which can

be explored when the primary search queue is depleted or exhausted.

In practice, it may preferable to enter ranges in the exploration tree, for

example, to record that all lattice points
((12, Y, %, "p) 01 ¢) S L _<.. (ZIJ + de’ Yy, =z, 'lp’ 01 d’)

(for some integer k) are explored. This requires keeping an exploration tree of lines
instead of configurations, with the intent of minimizing the number of exploration
tree entrics. When lines are entered into the tree, they may be merged with previous
lines to form connected components of explored regions. These operations are
supported by hicrarchical subdivision algorithms. At this point in the experimental

use of the planner, it is still too early to tell whether this optimization is necessary.

78

In practice we have had no problem in selecting a very fine resolution for
the lattice (one selects a fine lattice resolution, and a considerably larger Bumble
resolution or step size, as described above). This lattice-based strategy is not
only theoretically complete for a given resolution, but has also been used to find
very complicated paths for the 6 degree of freedom classical Mover’s problem.
However, the algorithm has an “excessively local” flavor—it is clumsy and quite
slow when employed alone (hence the strategy’s name). We can construct much
“smarter” heuristic experts which attempt to exploit coherence in C-Space. When
these experts are used in conjunction with the Bumble strategy, we obtain a
planner which is not only complete, but which can solve complicated problems in
a reasonable amount of time. We continue to find the lattice useful for recording

the planner’s exploratiohs by the local experts.

2.3.2. Keeping Track of Connectivity

Suppose a subsequent exploration reaches the same neighborhood. There are

two choices, which we call the mark algorithm and the connect algorithm:

The Mark Algorithm. Discard the exploration, since the neighborhood is already
explored. In practice, the mark algorithm often suffices for path-finding. The mark
algorithm computes a directed, spanning tree T' of explored neighborhoods, which

is rooted at the start configuration.

The Connect Algorithm. Connect together the search nodes for all explorations to
that neighborhood. The connect algorithm is more complicated, and requires the
following bookkeeping (see figure 2.3). Let N be a neighborhood of R X SO(3),
and L € (V) be a lattice point which is the canonical element for N. Suppose X is
an exploration of N, i.e., X € N is the final configuration in some motion reaching
N. Let 5(X) denote the search node for X. (If X is the first exploration of N, then
create a search node s(L) for L). Determine whether there exists a path from X to

L (using the local operators). If so, connect s(X) and s(L) together.

The connect algorithm computes a more complete connectivity graph for
the neighborhoods of C-Space. It computes an undirected graph H of explored

neighborhoods, which may contain cycles. As long as H is connected, then T

79

Figure 2.3. The lattice point L is at the center of a neighborhood N of C-Space. Search
explorations arrive at configurations X and Y in N. The planncr attempts to find a path
connceting X and Y, Ly trying to connect bolh conligurations to L.

is a spanning tree for H, and the mark algorithm is complete for planning a
connected path along H. However, not all planning strategies admit this kind of
“connected planning.” In particular, when we consider strategies which construct
partial paths and planning islands (which may later connect up), the connect

algorithm is necessary. (See the Suggestor strategy, below, for an example).

2.3.3. Discussion of the Bumble Strategy

Suppose the lattice spacing is dr and dp in the translational and rotational

dimensions. Then the adjacent lattice points to L = (z,y, 2,9, 6, ¢) will be:

80

(z £ dr,y,2,9,0,4)
(z,y £ dy,2,%,0,8)
(z,y,z +dr,9,0,)
(z,y,2,% + dp (mod 27),0,9)
(z,y,2,9,0 £dp (mod 27), qS)
(z,9,2,%,0, ¢ + dj; (mod 2))

Each adjacent lattice point is the center of a neighborhood of configurations which
is contiguous to the neighborhood of L. Each such neighborhood can be reached
(if it is in free space and there is no intervening C-surface) by the local operators
Translate and Rotate. Since there are 12 neighbors for each lattice point, we have
found it inadvisable to explore them all for each search node expansion. Instead,
the set of unexplored adjacent neighborhoods is ranked (in terms of proximity
to the goal), and motions towards the top kp translational and kp rotational
neighbors are attempted. (Typically, k7 = 3 and kg =~ 2). If the node is recxplored
later, motions toward k7 + kp more of the unexplored neighbors will be attempted
(if there are that many left). When using the mark algorithm (above), we say
an exploration is successful if it reaches a new (unexplored) neighborhood. If an
exploration is successful, then a new search node is created and the neighborhood
is marked as explored. Since the neighborhood’s “name” is its lattice point, this
simply corresponds to marking the lattice point. Whether successful or not, all
explorations are recorded at the parent search node so that they will not be tried
again.

Suppose X is a configuration in neighborhood N(L), with associated lattice
point L. The unexplored adjacent lattice points to L indicate a set of subgoals to
be attained from X . The Bumble strategy ranks these subgoals, chooses some of
them, and selects trajectories which may attain them. The local operators are then
employed to (try to) realize the selected trajectories. These explorations are then
recorded so that only new cxplorations will be pursued in the future. Note that
the planner is not constrained to move along the lattice, and that although the
subgoals lie on the lattice, the motion from X to any subgoal does not, unless

X = L.

The local experts are considerably more sophisticated than the Bumble strategy.

81

Their subgoals neced not lie on the lattice, and the motions specified to the local
operators need not lie along the lattice. The lattice is still employed to keep track

of the planning history and the connectivity of explored neighborhoods.

Clearly, the arcwise-connected sets of lattice points are closed under the
operators Translate and Rotate. If a path exists at the lattice resolution, then
the search is guaranteed to find it. We sce now exactly what the resolution for
this find-path algorithm is: by choosing a sufficiently fine lattice, the algorithm is
(trivially) complete at the lattice resolution. As we saw above, we can choose a very
fine lattice with little computational overhead. One final point: the start and goal
configurations may not lie directly on the lattice. This is not a problem, however,
since the local operators .can ensure that there exists a path from the start and goal

to the nearest lattice point.

2.4. Local Experts for the Find-Path Problem

2.4.1. Path Planning versus Continuous Intersection Detection: Why We
Nced Local Experts

The Translate and Rotate operators detect collisions along continuous
trajectories.’ Given these operators, it is possible to devise a complete path-planning
algorithm based on something like the Bumble strategy, above. However, while
complete, this is not a particularly good algorithm, in that it says nothing about
how or when the operators should be applied. The domain of the operators is
large and for realistic path planning, it is necessary to know where, and in what

directions to apply them.

Algorithms which can detect intersections with obstacles for a robot following
a continuous trajectory say nothing about how to plan these trajectories.

However, they can be used to find a path by exhaustive search.

The Translate and Rotate operators use the constraints in C-Space to detect
collisions. However, these constraints can also be employed to plan paths. In

chapter 1, we proposed an idealized planner which constructed the intersection

3This discussion also holds for the general M ove operator.

82

manifolds of level C-surfaces, and slid along these manifolds to navigate around
C-Space obstacles. Such a planner could exploit coherence in configuration space:
by examining C-Space constraints an algorithm can be devised for intersecting
and sliding on C-surfaces to circumnavigate C-Space obstacles. In the following
sections, we describe a planner which approaches the idealized planning algorithm
of chapter 1. The local experts are strategies for reasoning about the local geometry
of configuration space, and for exploiting geometric constraints to plan collision-free
paths. When applied to a search node, each local expert examines the local geometry
and history of planning to propose one or more path segments. Each path segment
is realized by means of the local operators, which ensure that a collision free path

exists.
2.4.2. Designing Local Experts

In the exploration tree of C-Space neighborhoods, we have seen one type of
information that must be maintained for planning. In designing local experts, we
must address the following questions:

(i) What constitutes a local description of a (level) C-surface?

(ii) What information should be stored at a search node?

(i) can be stated, “What constitutes a sufficiently rich description of the
local geometry in C-Space to allow robust local experts?” (ii) relates more to the
history of planning, and the connectivity of the explored search neighborhoods.
For example, we want to record the results of previous applications of experts at a

search node, and the adjacent nodes in the search graph.

The Local Description of a C-surface

A C-surface has a normal at point X . Motions tangent to the C-surface at X
will have instantaneous velocities orthogonal to the normal. We must characterize
the normal and tangents to a C-surface in order to plan trajectories which slide

along it.

Let f be an applicable, positive-valued C-function at X. We can check that f is
non-redundant at X (see chapter 6); alternatively, we may heuristically assume f is

non-redundant if its value at X is small. We wish to develop a local characterization

83

of f at X, that is, of the level C-surface S = {Y | f(Y) = f(X)} about X. We

should think of S as the kernel of the auxiliary function

fx : R X SO(3) - R
Y f(Y) = f(X).
The local characterization will have two parts, one of which is invariant, and one
of which will change for different subgoals. The invariant part of the description is

a pair,

(re0, vr)

consisting of the value of f at X and the normal to S at X. Now, since 3 X SO(3)
is not a vector space, the normal V f(X) to S at X will depend on the Riemannian
metric defined on the tangent space at X. We will employ a metric which admits
construction of V f(X) using the partial derivatives of f at X, with respect to the

paramecterization of C-Space. Hence if rotations are parameterized by Fuler angles,

af af of of 3f I
then Vf = (3, 35, 55 55 3 95):

Assume that V f is normalized to be a unit vector. We now wish to characterize
the relationship of the C-surface to some subgoal, G: this requires some way of
talking about directions in 2% X SO(3). Specifically, we wish define a “vector”

algebra on configurations, such that

lim HG -—X“ =0
G-X

and

. . . ' —
Jim (@ X) (@' - X) = 1.

These equations express the vector space characteristics which are required for
our computations on tangent vectors. To construct this algebra, it is possible to
define a field of inner products over * X SO(3), i.e., to deline an inner product on
the tangent space to each point. Thus ®% X SO(3) is 2 Riemannian manifold (see
Erdmann (1984)). If two tangent vectors-i.e., directions-are applied to the same
point, this inner product allows us to talk about the angle between two such tangent

vectors, or of the angle between an arbitrary tangent vector to R X SO(3) and the

84

normal to a C-surface. However, the inner product is somewhat arbitrary for our
application. Alternatively, we could also construct geodesics on P3, the 3-sphere
with antipodal points identified. These approaches are probably too elaborate for

a heuristic strategy.
Heuristics for Evaluating Directions in the Tangent Space

A basic issue is that placing a metric on a non-abelian group, such as SO(3),
is a difficult problem. We will demonstrate the metric that our planner employs,
and then show that it is adequate for this application. In particular, the metric
is adequate when applied to three one-dimensional slices of SO(3). (These are the
slices considered by the Rotate operator). Note, however, that a metric may also
be derived by representing rotations as unit quaternions. In this case, the metric is

obtained by considering rotations as points on 53 embedded in R (Brou 1983).

Suppose we employ rotation matrices to represent rotations. (The implemented
planner uses Euler angles). If we are willing to tolerate singularities in the
representation, it is often convenient to identify a rotation matrix in SO(3) with
the vector of three angles, (1,8, ¢) which determine it. The angles (¢, 0, ¢) form a
three dimensional angle space, Q3. The rotation matrix corresponding to (3,0, #) is
of course R(1, 8, ¢). (The singularities induce an equivalence relation on @3, where
two points in angle space are equal when the rotation matrices they determine
are equal). Most of the time, the identification of SO(3) with @* does not lead
to problems. However, when we wish to compute directions, and differences of

configurations, it is necessary to distinguish between SO(3) and Q3.

We can state this more concisely as follows: SO(3) is a three dimensional

manifold. The mapping R from Euler angles to rotation matrices is a chart for

SO(3):

R: Q% — SO(3).

We typically describe a rotation R(©) € SO(3) by its chart coordinates (1,0, ¢) =
© € Q3. This makes it convenient to identify © with R(®), so that in gencral,

instead of dealing with the manifold directly, we will work with a chart for the

manifold. In this section alone, however, we must distinguish between the domain

and image of R.

We can compute a direction in R3 X SO(3) by simply subtracting two
configurations (of course the angles must be subtracted (mod 27)) to yield a
six-dimensional direction vector. Using this arithmetic, the goal direction is denoted
G — X . We will use the convention that the first three coordinates of G — X arise

from R3, and the second three coordinates arise from Q3.

Let G = (G4, Go) and X = (X,;,Xg). Since G — X is clearly well defined
when G and X differ only by a translation, assume that G and X differ only by a
rotation. Assume further that rotations are represented by Euler angles. Note that,
in general G — X is not a rotation which carries the moving object at orientation
G into ﬁhe moving object at orientation X. However, G — X does represent the
difference in orientation, i.e., it specifies a displacement in angle space which will
carry G into X . For example, if Gg = (45°,50°,90°) and Xg = (45°,45°,45°) then
there are rotation matrices R(Gg) and R(Xg) corresponding to each of Gg and
Xg. (We use degrees, not radians in this example, since the syrbol 7 will soon be

used for a projection map). Note that

R(45°,50°,90°) 54 R(45°, 45°,45°)R(0°,5°, 45°),
where RR' indicates composition of rotations. However, the path in angle space

p(t) = Xo + t(Go — Xp)
== (45°,45°, 45°) + £(0°, 5°, 45°)

(for t € [0, 1]) will work, since it corresponds to the rotational path

R(p(t)) = R(Xe + t(Go — Xo))
— R((45°,45°, 45%) + 1(0°, 5%, 45°)).

Considering configuration space as the product space of the translation space

and the angle space, we see that G — X is well defined. Gg — Xg specifies a

86

direction and a distance to be traveled in angle space in order to carry Xg into Gg.
Furthermore, along the path from X¢ to Gg, the corresponding rotations specified
by the angle space trajectory p are well defined. For all G € R X SO(3), we will
treat the space of directions G — X as the tangent space Tx to ®* X SO(3) at X.
Properly, Tx is the product space of the tangent space to R° at X, and the three

dimensional angle space Q3.

We now define a map from Ty X Tx to the plane, which will function in place
of an inner product. First, define the natural projection maps from Tx onto its

factor spaces:

mps Ty — R
(G—-X)— (G, — X;)

19 : Tx — Q3
(G = X) = (Go — Xo)-

Let u - v denote the standard inner product on R?, for vectors u and v. If u
and v are projections (under mys) of direction vectors in Ty, we say that u and v
are translationally orthogonal if u-v = 0. Let (q1, g2, q3), (w1, we, w3) € @®. Assume

the each pair of angles ¢; and w; (for ¢ = 1,2, 3) is normalized so that
lgi — wi] < 180°.

(Note that this normalization is critical). Now, define
nQ((Ql: 92, q3), (w1, w2, wa)) = qiw1 + Qw2 + q3w3.

ng will function in place of an inner product on Q?. We say that two rotational

directions ¢ and w are rotationally orthogonal if ng(q, w) = 0.

We may now define &y, which will function in place of an inner product on

Tx. First, let

87

Assume that Dy, D}, Dg, and D¢, are all normalized to be length 1 (where the
length of Dg is defined as ng(Deg, D(_))L‘) Finally,

by Ty XTx — R?
(p, D) (w(m (D), ng(me (D), ﬂ@(D')))-

So ®x yields a pair consisting of the dot product of the translational components
of the direction vectors, and the ng product of the rotational direction vectors. If
®x (D, D') = (0,0), we say that D and D' are orthogonal directions in the tangent
space Ty. Note that two directions are orthogonal if, and only if, their translational

components are orthogonal and their rotational components are orthogonal.

This discussion extends naturally to other representations for rotations. For
example, if spherical angles (Kane and Levinson (1978)) are used, then the difference
in orientation ¢s the rotation carrying G into X, that is, Gg — Xg is a rotation
carrying the moving object at orientation Xg into the moving object at orientation
G@. We should stress that the natural Riemannian inner product (Erdmann (1984))
could be used instead of ®y. This would complicate the representations employed
in subsequent chapters. ®x and ng are heuristic measures on directions in Tx. We

will later discuss why, for our purposes, they are good heuristic measures.
Evaluating Normals and Gradients to C-Surfaces

The local description of a C-surface relative to some subgoal is designed to

address the following qualitative questions:
(1) Is the C-surface locally tangent or locally orthogonal to the goal direction?

(ii) Is the C-surface locally orthogonal to any rotational motion?

Recall that a level C-surface ker f is described by a real-valued C-function f.
Assume that normals and tangent vectors are appropriately normalized. Question

(i) may be resolved by examining

dx((G - X), VI(X). (2.1)

When (2.1) approaches (0, 0), we say that ker f is locally tangent to the goal direction.

Note that (2.1) makes sense: f maps parameters of the form (z,y, 2,9, 0, ¢) to real

88

numbers, and hence the gradient of f,

(af af of af of 6f)

3z’ dy’ 0z’ 3y’ 80’ d¢
is clearly a direction in T'y.

We will also employ

s (G — X) - ma(V (X)), (2.20)

When (2.2a) approaches 0, we say that ker f is (locally) translationally tangent
to the goal direction. Symumetrically, when (2.1) (resp. (2.22)) approaches (1,1)
(resp. 1), we say that ker f is locally orthogonal (resp. translationally orthogonal)
to G — X. A similar calculation yields the rotationally tangent and orthogonal

C-surfaces to the goal direction:

nq(re(G — X), me(VF(X)). (2:26)

Why @y and ng are Good Ileuristic Measures

Suppose that the rotational direction is along one of the axes. (Let us say the
direction is 55) To tell whether a C-surface is rotationally orthogonal (or tangent)
to the 55 direction, we simply examine the magnitude of %, which can be obtained

directly from V f(X). This is because

na(b, mo(TUCON) = n((0,0,1), (55, 351 55) = 55:

In other words, the map ng need not be employed. Since the implemented Rolate

operator moves along the rotational axes in directions

D € {+";’)) _{L: +é7 '—b’ 'i‘(’]\s, "& }:

this is the most common—but not the only— test for rotationally orthogonal (or
tangent) C-surfaces. This information is used by the rotation experts to choose

rotational subgoals that move away from C-surfaces.

89

Description of a Search Node

The following information is stored at each scarch node. Lazy evaluation is
implemented so that some of these objects (for example, the set of all applicable
C-surfaces) may not be computed until they are required.

(i) The configuration X of the search node.

(i) The lattice point for X, which is the unique identifier for the neighborhood
about X.

(iii) The applicability set at X.

(iv) A, the set of non-redundant constraints at X, sorted on increasing value. The
non-redundant constraints may be approximated by the applicable constraints
having small positive (or zero) values at X.

(v) The parent node.

(vi) The From-Direction (The direction traversed from the parent node to this
node). ’

(vii) The sons of this node. These include “unsuccessful” explorations which did
not reach a sub-goal, or which reached a previously explored neighborhood.

(viii) The C-surfaces on which X lies which also bound C-Space obstacles, that is,
all f € A such that f(X) = 0 and ker(f) bounds a C-Space obstacle at X.

(ix) An Ezplanation of how this node was reached. An explanation typically includes
the name of the local expert that planned the move, and enough information
to reconstruct the move. For example, the experts which slide along level
C-surfaces leave an explanation containing the names of the constraints, their
levels at the parent node, and the parameterization chosen for the intersection
manifold.

Much of the information stored at a search node is used to record the history
of the planning. An expert which planned the move to a search node s will not be
applied again with the same parameters. As an example, consider the Intersection
expert, which attempts to slide along intersection manifolds, and the Greedy expert,
which attempts to move straight towards the goal. We discuss these experts in
more detail in the next section. If applied to s, the C-surface intersection expert
will not attempt to construct and slide along the same intersection manifold
which led to s, unless it can slide in a different direction aloug the intersection
manifold. By recording the From-Direction for a node, the planner can avoid

repeating unfruitful explorations. In particular, different experts can advise motion

in the same direction; thus a particular intersection manifold may point in the

90

same direction which was previously (or simultaneously) attempted by the Greedy
expert. Whether successful or not, re¢xploration in this direction may be avoided by
examining the From-directions of the sons of s. An additional constraint is provided
by the From-Direction of s itsell: there is typically no point in exploring back in
the direction we came from. The process of leaving information for some expert
which may be applied in the future is known as “forwarding.” As we shall see, the
performance of one expert can provide strong hints as to what expert should be

applied next.

The planner computes local descriptions for the C-surfaces in A. Naturally, parts
of these descriptions will change for different subgoals. The local characterizations of
C-surfaces allow the planner to find the set of C-surfaces to which the goal-direction
is tangent (or orthogonal) as described above. When a planning direction is chosen,

these C-surfaces clearly provide strong constraints.

We are now ready to discuss the experts themselves. The Bumble strategy is
also applied at each node, since it is a guarantee of completeness. In light of the
previous discussion, we will omit any discussion of the detection and pruning out
of explorations in unfruitful directions (as determined by the planning history).
We will consider the application of particular experts to a search node s (at

configuration X') which has parent so.

91

2.4.3. The Greedy Expert

The greedy expert attempts to translate or rotate directly towards the goal.
The cxpert is necessary as an “end-game” strategy, in order to close in on a -
particular subgoal without worrying about finding the appropriate intersection
manifold. The Greedy expert illustrates two important heuristics: forwarding and
backing off. Suppose the greedy expert translates from a parent node so to a
son s. An appropriate explanation for the move will be left at s. If the same
subgoal is intact when the planner explores s, the greedy expert will not attempt
translation again. Instead, the rotation expert (see below) might be invoked. The
effect is one of translating until an obstacle is hit, and then rotating to get around
it. Alternatively, the sliding expert (which slides along level C-surfaces) might
be invoked. This coupling of experts is termed the “hit and slide” strategy (see
figure 2.4). However, the planner does not directly recurse by calling the sliding
expert immediately after the greedy expert. Instead, a suggestion is left by way of
explanation at s, and when s is explored in the search, the appropriate follow-up
expert is invoked. The exact choice for which expert is invoked will depend on
the history of planning (typically, what neighborhoods and directions have been

explored from sg and s), and on the local geometry of C-surfaces about s.

Suppose that all experts moved the robot as far as they could, that is, moved until
a constraint was hit and left the robot touching the constraint. This could result in
jamming the robot up against many C-surfaces at once. It can prove very difficult
to extricate the robot from this logjam situation. In fact, it is usually not preferable
to move all the way up to an obstacle. Instead, we wish to detect this intersection
with a planned trajectory p, and then back off from the obstacle boundary (along
p). Thus if p(0) = X and p(1) = Y is the first intersection of p with C-Space
obstacle boundary, then it makes good sense to move to p(0.8). This has the effect
of leaving the robot in the channel between obstacles instead of jamming it up in
corners. Of course, if it is necessary to move to p(.95) then the greedy and Bumble

strategies will ultimately converge.

92

slive

\

Figure 2.4. An idealized illustration of the hit and slide strategy. Some expert moves the robot
in dircction ¢ until a C-surface S is hit at X. When the planfer tries to move from X, the
sliding expert is invoked to slide along § in the goal dircction.

2.4.4. The Intersection Expert

The mathematics of intersection manifolds in R3 X SO(3) is presented in
chapters 3 and 4. The intersection expert attempts to find two C-surfaces in A
whose intersection manifold contains a path which makes progress towards a subgoal.
The path may be a pure translation or a pure rotation. We will begin by describing
the process of finding a translational path which slides along an intersection
manifold. First, all C-surfaces in A which are nearly translationally tangent to the
goal-direction are selected. We select the first few of these which have the smallest
value at X. Ideally, these are the closest non-redundant constraints at X. Call
this set A'. The explanations for the moves from sy to s and from s to any sons
of s will yicld a set of previously explored intersection manifolds. (An intersection
manifold may be identified by the name of the intersected C-surfaces, their levels,

and the chosen parameterization). The C-surfaces in A’ are pairwise intersected

93

(see chapter 4), after appropriate pruning as indicated by previously explored
intersection manifolds. Each intersection manifold (ker f) N(ker g) is constructed. A
translation or rotation vector 9y, is chosen such that the path pys 4(t) = X +tdy4
slides along the intersection manifold of the two level C-surfaces ker f and kerg
at X. The intersection expert then selects the direction ¥y, which is closest to
the goal direction (and which is not pruned out by consideration of the planning
history). Suppose #;, is a pure translation. The local operator Translate is called
to move from X in direction 94 until a C-surface is struck? or the point on the

trajectory ps, which maximizes proximity to the goal is reached.

Now, suppose ¥y, is a pure rotation. Our experimental implementations have
intersected two C-surfaces ker f and kerg to yield pure rotational paths sliding
along the intersection manifold of ker fNkerg (see chapter 4 for the details). In
Proposition (4.4), we demonstrate that these paths may be approximated to an
arbitrary resolution by successive applications of the local operators, with only a
lincar increase in the number of path scgments as the resolution grows finer. We
have also found it useful to approximate the rotational path along the intersection

as follows.

Given two level C-surfaces ker f and kerg at configuration X, we wish to
choose a direction from X tangent to both. For example, if the configuration space
were isomorphic to ®3, then ker f and ker g would both be two dimensional surfaces
in 3-space, and this direction would be Vf(X) X Vg(X). (Where X denotes the
standard cross product on R3). In the tangent space to a six-dimensional C-Space,
there are typically four such tangent vectors at X which are tangent to ker f and
ker g. We will demonstrate an operator analogous to X which produces one such
tangent vector in a natural way. (It is also possible to solve for all such tangent

vectors).

We begin be defining an extended product on the tangent space to N3 X SO(3)
at X. Let V = (V,,Vg) € Tx be a tangent vector at X. We may think of V; and

Vo as the translational and rotational componcnts of a six-dimensional velocity

1Although we also employ the backing ofl heuristic here.

9

vector V at X. If W = (W,, W) € Tx is another tangent vector at X, we define
the extended product of V and W by

V X W = (Vy X Wq, Vo X We).

The cross products on the right hand side are simply the standard three-dimensional
cross product. (See below (2.3) for why this makes sense for the rotational
components, Vo X Wg). f V =V f and W = Vg then V X W is tangent to both
ker f and kerg at X. Since X only operates on tangent vectors to R3 X SO(3)
which have the same point of application, we will never have reason to confuse it

with X, which can only be applied to three-dimensional tangent vectors.

Let f, g € A’ be C-functions generating the C-surfaces ker f and kerg at X.
Observe that the tangent vector V f(X) X Vg(X) is tangent to both ker f and
kerg at X. We can locally approximate a pure rotational trajectory sliding along

the intersection of f and ¢ by a path in direction

me(VF(X)) X mo(Vg(X)). (2:3)

Note that this is well defined since

()

((af 3f 8f 8f 8f af))_(:?i of @‘.).

—(9;,5;’5;’5&’55’5—(5 a¢;ao)a¢

The differential rotations from X are isomorphic to a three dimensional vector

space, and hence the cross product

af af af) (Bg dg dg)
(X)), == (X), ==(X -—(X), —(X), ==(X
(5560 5509, 5500) x (57,00, 550, 550
is also well defined, and guaranteed to be tangent to ker f and kerg at X. The
Rotate operator can be called in succession on the largest components of (2.3)

in order to approximate the sliding trajectory. Of course, it is also possible to

re-evaluate the tangents after each step.

2.4.5. The Sliding Expert

The sliding expert attempts to find a path sliding along one level C-surface
at X, which makes progress towards the goal. The sliding expert can be thought
of as a less constrained version of the intersection expert. The sliding expert tries
to choose a C-surface in A’ to which the goal-direction is (almost) tangent. As we
will see in chapter 4, it is possible to choose a parameterization along a C-surface
which maximizes progress. This path along the C-surface can then be realized (at a
desired resolution) by successive applications of the local operators. However since
there are many paths from X sliding along a C-surface at X, we need to develop

a good heuristic strategy.

Our motivation is as follows. There are an uncountable number of paths from
X sliding along a C-surface at X. We could maximize a directional derivative at
X to choose a locally optimal search direction. This would work once; however,
this would not solve the problem of state: it is necessary to partition the set of
paths.into “neighborhoods,” and to mark a neighborhood of paths as explored
when a representative from that neighborhood is sclected and attempted by a local
operator. In principle, a computation involving homotopic equivalence classes is
possible (see Donald (1983a) and appendix III). However, this requires a global
computation in C-Space. In particular, the image of all paths in an equivalence
class may cover ®% X SO(3), even if there are several classes. We wish to find a
way to partition the paths from X into neighborhoods, sample a canonical element

from the ncighborhood, and evaluate it as a local move in the search.

Given a C-surface normal V f at X, we wish to choose a direction ¥ sliding along
the C-surface ker f which maximizes progress to a subgoal. Let B = (%,%, 2, 9,0, 65)
be the obvious orthonormal basis for the tangent space to R* X SO(3), and
~B = (—%&,—§,—%,—9, -0, —9).

Next, we form a set of vectors orthogonal to V f(X) as follows:

D= {vs)}®(8U-8)

96

where PR Q = {p X q | p € P, q € Q}. All of these vectors are orthogonal to
ker f at X. We then choose the direction ¥ € D which maximizes ®x(9,(G — X)),
where the G — X is the goal direction. If ®y is the heuristic product on tangent
vectors insead of the single-valued Riemannian inner product, then both components
of the image of ®y should be maximized. In chapter 4 , we will see that it is
possible to comply as closely as desired to the C-surface ker f while traveling in

direction 9.

To understand this strategy, consider the following example: Suppose we
employ a basis B’ which only spans R3. Then the expert will choose the available
translation sliding along the level C-surface which maximizes progress towards the
goal. Once the direction ¥ is chosen, the Translate operator is invoked to slide

along the level C-surface until a constraint is reached.

There is no need for the basis B to be orthogonal; this was merely adopted for
the sake of intuitive development. The basis provides a sampling of the function

space of paths compliant to the C-surface about X.

A Conjecture on Completeness using Extended Spanning Sets

By using the basis B, we obtain a 12-way sampling of the space of dircections
orthogonal to Vf at X—in other words, there are 12 vectors in D. Imagine using
another set of vectors, B, which is larger than B, to construct D. Then D would
provide a finer sample of the space of directions, since more directions would be
sampled. In principle it should be possible for a sample to be complete at a given

resolution. We formalize this idea as follows:

A spanning set for a space V is a set of vectors which spans V yet which is
not necessarily a basis. A spanning sct is a basis for V which has been extended
by adding other vectors. We conjecture that there exist certain spanning sets
which might be employed to construct a complete planning algorithm without the
Bumble strategy. What constitutes such a complete spanning set? The analogue of
resolution for an arbitrary spanning set B* would consist in (1) the cardinality of

the spanning set and (2) the uniformity of distribution of the vectors

97

3+'U .;s'f

. about the unit five-dimensional sphere S% i in thc sagent sps . L X.

~the number of vectors in the spanning aet, M the m 1 th
about. 5%, the finer the resolution of the plaaser. Tl e developinen
- algorithm requires surmounting. addiﬁaual and b hai

A
o
—_>

- //7/// ///////////

ANSNNNNNNENN

Figure 2.5. An idealized illustration of the hit and rotate strategy. Some expert moves the robot
in direction until a C-surface S is hit at configuration X. When the planner tries to plan a
move from X, the rotation expert is called to calculate a rotation away from S (in dircction ¢).
From the new configuration, direction ¥ can be pursued again.

2.4.6. The Rotation Expert

The rotation expert is built on the rotational operator Rotate, and is designed
to handle some of the special problems of moving through rotation space that are
discussed in chapters 3, 4, and 5. The rotation expert might be called to accomplish
a simple rotational subgoal, or in conjunction with some more elaborate strategy.
In particular, when a translational motion terminates by striking a C-surface,
forwarding messages are left for both the sliding expert and the rotation expert.
The former has been discussed as the “hit and slide” strategy (figure 2.4); the latter
is known as the “hit and rotate” technique (figure 2.5).

The first problem that the rotation expert must deal with is the “wrap around”
in rotation space. A subgoal @y can be reached in directions +$ and —&S, although

typically one is “shorter”. In conjunction with the planning history, the rotation

99

expert, on successive applications to the same node, can develop strategies for

rocking back and forth on a slice of rotation space.

The Rotate operator is more constrained than the T'ranslate operator (in that
it can only be applied in :i:'(:b, +0, and :i;(?S) Hence the rotation expert must have
a method for approximating rotational trajectories (specified in angle space) which

are linear combinations of the rotational basis vectors, such as

b= a) + b0 + c (2.4)

for some scalars a , b, and c.

In terms of the completeness of the algorithm, there is no need for a rotate
operator in direction (2.4) (provided a path along ¥ lies in open sets of free space).
In chapter 4, we show that a continuous path may be approximated as closely as
desired by a sequence of moves along the rotational axes, and that the number
of staggered path segments required grows only linearly as the resolution becomes
finer. In practice this use of the restricted rotate operator has proved adequate
in our path-finding experiments. However, it is heuristically useful to realize such
paths as accurately as desired, since this allows higher level experts to suggest
arbitrary rotational trajectories. Given such a trajectory, the rotational directions
are ranked by magnitude of change, and the unexplored direction of greatest change
is first attempted. On failure, or upon successive applications of the rotation expert
to the search node, the other directions in (2.4) will be attempted. This process
leads to the approximation of arbitrary pure rotations by a staggered sequence of
rotations along the axes. If the extent of each rotation is limited, the approximation
can be made arbitrarily fine. To approximate motion in a direction such as (2.4), the
planner actually attempts several of the directions simultaneously, which results in
a spanning “box” of rotational moves about the idealized trajectory (in the absence

of obstacles).

Suppose a, b, and c in the idealized trajectory (2.4) are positive. This yields
a set of positive, or “forward” rotational directions, and a set of “backwards”

rotational directions which can attain the goal. Which directions are forward and

100

which are backward depend upon the distance (in the vector parameter space V)
of the goal from X, that is, on mg(G — X). For example, if G4 — X is negative and

small, then +<§3 will be a backwards direction, and —& will be a forward direction.

The rotation expert develops and ranks these sets of forward and backward
rotational directions. By examining the planning history and the local geometry of
C-surfaces at X, these sets of directions are in turn pruned. In particular, local
C-surfaces that would block a particular rotational motion are detected. For a
direction 9, this is done by examining the magnitude of the directional derivative
in 9. The importance of such an impediment is then heuristically ranked by the
closeness of the C-surface at X. Special consideration is given to C-surfaces which
have a history of proving troublesome. For example, when an expert runs into a
C-surface, the reason for stopping is left as part of the move explanation. If the
rotation expert is invoked as part of a “hit and rotate” strategy, then we must
ensure that the planner tries to rotate away from the C-surface(s) which blocked
progress. The rotational ditrections which point away from C-snrfares may be found
by examining V. The process of determining the rotational constraints from the
local geometry of C-surfaces is closely related to our earlier discussion of detecting

rotationally orthogonal C-surfaces.

Thus the requested rotational trajectory and rotational goal provide a set
of desired rotational motions. The planning history supplies a set of rotational
constraints, and from the local C-surface geometry can be inferred a set of
preferred and prohibited motions. The constraints, preferences, and prohibitions
are intersected with the forward and backward desires. This yields a set of rotational
dircctions which will be attempted using the Rotate operator. Depending on the
kind of invocation, the rotation expert may apply the IRotate operator up to
some fixed number of times-—this is particularly useful when it must attempt to
approximate an idealized rotational trajectory which is a linear combination of the

basic rotational directions.

Canny (1984) has recently extended the Rotate operator for directions such as

eq. (2.4), corresponding to uniform rotation.

101

<D
<>

—

Figure 2.6. An idealized illustration of the around expert. When progress for the moving object
in the goal dircction 9 is blocked, the expert attempts to find a C-surface which is roughly
orthogonal to #. A sliding motion (cither & or —) is then planned along this level C-surface
(around the obstacle). The resulting search node is then expanded.

2.4.7. The Around Expert

The around expert attempts to circumnavigate obstacles by sliding around
their boundary. An idealized illustration of the around expert is shown in figure 2.6.
The around expert is similar to the sliding expert, except that instead of attempting
to find a C-surface which contains a path towards the goal, the around expert
searches for a C-surface which is (roughly) locally orthogonal to the goal direction.
Next a path is planned sliding along this surface in a direction 3’ orthogonal to the
goal direction; the path is attempted using a local operator. Typically, this motion
will result in a search node s’ which is farther from the goal than the parent node,
s. Ordinarily, s’ would not be explored soon, since other search nodes would appear
more promising to the planner’s best-first strategy. In order to give the around

strategy a chance, the around expert explicitly places s’ at the front of the search

102

queue and calls the planner recursively.

The around expert can also invoke the intersection expert. Recall that the
intersection expert normally tries to construct tangent intersection manifolds which
contain paths towards the goal. However, when called from the around strategy,
it can construct intersection manifolds locally orthogonal to the goal direction. To
construct the intersection set of locally orthogonal level C-manifolds, we perform a

pairwise intersection of C-manifolds locally orthogonal to the goal direction at X.

2.4.8. The Suggestor

The suggestor is a strategy for proposing good subgoals in configuration space.
As we saw in Donald (1983a), one of the problems with local operators even if
they are complete (that is, their closure covers configuration space), is that without
good subgoals, they may take a long time to converge. The suggestor is a heuristic

strategy for setting subgoals in C-Space.

First, a very coarse lattice is thrown over C-Space. This lattice is then
searched for a sequence @ of free configurations (not a path) stepping through the
lattice to the goal. If no such sequence can be found, then configurations on a
promising partial sequence are cmployed. These configurations may then be set as
subgoals, and the planner can be called recursively. The configurations ¢ represent
intermediate planning islands of safe configurations. If paths can be found between
these configurations, then the find-path problem is solved. Otherwise, expanding
from any partial paths found can also prove useful, in that the planning islands
effectively distribute the application of local experts and operators over more of

configuration space.

The suggestor complicates the connectivity of the explored neighborhoods
graph. The ability to cxplore arbitrary subgoals and suggested paths requires
more complicated bookkeeping for neighborhood exploration: we must employ the
connect strategy, in order to know when partial paths link up. If partial paths
not rooted at the start neighborhood are permitted, then the graph of explored
neighborhoods will not necessarily be connected, and the mark strategy will fail (the

mark strategy constructs a directed, spanning tree for a connected, rooted graph

103

903 1

start

Figure 2.7. A path which was found using local experts. This find-path problem is very casy (it
is used as an example in chapter 1). /

of cxplored neighborhoods). Happily the connect strategy will succeed, since it is
defined on an arbitrary graph. An algorithm for the connect strategy is discussed

in section 2.1.2.

104

Listing I: The log of expert explanations for the path in figure 2.7.

(find-path *s1 x*gi)
Verifying the start and gocal points...
start : (0 0011 11), goal : (-6 10 0 0 0 0).
Starting search, boss...
Exploring (0 0 0 1 1 11)...
Local Expert: I translated straight towards goal, reaching ((-1 1 01 1 11))
Exploring (-1 1 01 1 11)...
Local Expert: I Slid along a level C-Manifold, reaching ((-6 1 0 1 1 11))
Exploring (-6 1 0 1 1 11)...
Local Expert: I translated straight towards goal, reaching ((-6 10 0 1 1 11))
Exploring (-6 10 0 1 1 11)...
Rotation-Expert: Found O guiding constraints on rotational motion.
Rotation-Expert: Intersected Rotational Constraints with desired
rotations yielding possible motions in
((MINUS PHI) (MINUS PSI) THETA).
Rotation-Expert: I am trying to rotate in (PLUS THETA) ...
Local Expert: I rotated to reach ({(-6 10 0 1 1 0))

Exploring (-6 10 01 1 0)...
Rotation-Expert: Found O guiding constraints on rotational motion.
Rotation-Expert: Intersected Rotational Constraints with desired
rotations yielding possible motions in
((MINUS PHI) (MINUS PSI)).
Rotation-Expert: I am trying to rotate in (MINUS PHI) ...
Local Expert: I rotated to reach ((-6 10 0 0 1 0))
Exploring (-6 10 0 0 1 0)...
Rotation-Expert: Found O guiding constraints on rotational motion.
Rotation-Expert: Intersected Rotational Constraints with desired
rotations yielding possible motions in
((MINUS PSI)).
Rotation-Expert: I am trying to rotate in (MINUS PSI)
Local Expert: I rotated to reach ((-6 10 0 0 0 0))
Exploring (-6 10 0 0 0 0)...
[success!] Saving and Drawing final path...
Back to Lisp Top Level in Lisp Listener 2

105

[19]

Ninj

Figure 2.12. View II: (frame 19), The final configuration.

2.5. Examples of the Local Experts in Use

In figure 2.7, we show a very simple example of a path found using local

experts. Listing I shows a log of the expert explanations for each move.

The “Thor’s Hammer” example in chapter 1 was 'produced by disabling all
experts, and employing only the Bumble strategy. (Please refer to this figure). In
the accompanying figures (2.8-13), we show a path found by a strategy comprising
all the experts described above. The solution path is very different, and tends to

slide around obstacles instead of finding convoluted paths between them.

Figures 2.14-21 show the solution for a find-path problem in a cartesian
workspace. A cartesian workspace is a bounding box beyond which the reference
point may not translate. However, the bounding box imposes no restrictions on
rotations. The Movers’ problem in a cartesian workspace is similar to the motion-
planning problem for cartesian manipulators, and the L-shaped object may be
thought of as the (wrist and) payload. First, we show the reference point on
the L-shaped object. Next two views are presented of the path found within the
workspace, around a large, diagonally-placed obstacle. View (II) is a view from
the side; view (I) is a view from the top. Only the back faces of the rectangloid

workspace are shown. Since the rotation from frames 13 to 14 is very large (> 7

106

(6]
{91

I (Y]

— - Lo

%) [)
= = =
— [=~
= 1= e

Figure 2.8. View I: (frames 1-9). These 18 frames show a solution path for the “Thor’s Hammer”
Mover’s problem. Local experts (as described in this chapler) are employed to slide the moving
object along level C-Manifolds. Three views are shown. The final configuration is only visible in
view I (figure 2.12).

107

(81] [41] {o1]
?.L [¥1] fc1]
[z1] L] ?@

Figure 2.9. View I (frames 10-18).

108

~ 0| 0
R [il
P DK
N 1

Figure 2.10. View II (frames 1-9) of the Thor’s hammer Example using Local Experts.

109

{s1]| [a]] [91)
[s1] (] (e1]
(a1 [l fo1]]

Figure 2.11. View II: (framcs 10-18).

110

{31
(6]

- —
o~ [¢]
= e
Lo s
-t -
l= s

Figure 2.13. View 1lI: (A dctail of frames 1 through 6).

111

The reference peint on the L-shaped moving object

Figure 2.14. The reference point on the L-shaped object.

in the ~—1Z direction), a detail of the rotation is also shown.

2.6. Path Planning versus Discrete Intersection Detection

Imagine a brute-force planner which discretizes configuration space, places the
robot at every point in the discretization, and tests for intersection. This would
yield a discrete sct of configurations where the robot could be placed. Alternatively,
the tests could be structured in a search. As stated so far, this is not collision-free
path planning. Path planning ensures that a path exists between each configuration
on the path. It has been argued that if the intersection-detection is done at a
fine enough resolution then a path will have been effectively found. At a given
resolution, it is possible to bound the size of the intersection between the robot
and any obstacle which can occur between intersection checks. This bound grows
smaller as the sampling of the space grows finer. By growing the real-space obstacles

by this bound, it is possible to ensure that no collisions occur between discrete

12

\E {s] (]
[l [s) 2]
Le]] (] (L warqoig ‘11 maA) [1]

Figure 2.15. Solution Path, View (II), frames (1-9)

113

=\ o\ R
el (] todd

)
p— — ~
.5\ a\ E:_'\

[16]

[F7o1
[13]

Figure 2.16. Solution Path, View (Il), frames (10-18)

114

[21]

P

[20]

[19)

Figure 2.17. Solution Path, View (II), frames (19-21)

115

\‘/ 4
'/
Lo}
-
Py ° e,
(]]
-
— Low))
fal & ~'m
>
o~
=)
&
[-}]
—
=
[-]
=)
(-]
-
E 4
[9
]
>
z
- e =
:.J () L

Figure 2.18. Solution Path, View (1), frames (1-9)

116

p— P— Lon
o 2] 2
- = —
o T

~—
— [
- - 2:
pe -]
b Ch
—— — ~
[~ w
- - -
[(] [

Figure 2.19. Solution Path, View (1), frames (10-18)

117

[21]

[20]

191

Figure 2.20. Solution Path, View (1), frames (19-21)

118

Figure 2.21. Detail of the rotation from frames 13-14.

intersection checks (Gouzenes (1983)). Of course, if the resolution is insufficiently

fine, then the obstacles may be grown so much that no path can be found.

For gross motion planning in an uncluttered environment, this approximate
method may perform reasonably well. In complicated environments, however, the
resolution will have to be fine in order to ensure that paths are collision free
without growing the obstacles so much that no path can be found. We will
compare the asymptotic complexity of the discrete intersection method with the
Rotate oper.ator. (The Rotate operator is the most complex local operator). The
fundamental observation is that the complexity of the discrete intersection method
varies linearly with the sampling resolution, whereas the complexity of the Rotate
operator is independent of (any) resolution. This is because our discretization is
quite different: a lattice is thrown on the space in order to record the state of the

planner and the connectivity of the explored neighborhoods.

119

Consider the following. Suppose X and Y are configurations on a rotational
trajectory in direction <;5 Suppose further that the robot is composed of m convex
polyhedra containing k generators each, and that there are m convex obstacles
containing j generators each. The number of faces on a robot polyhedron or an
obstacle polyhedron is O(k) (respectively, O(5)). To perform one intersection check
(at a single configuration) for one robot polyhedron and one obstacle polyhedron
requires time O(log?(j + k)) (Dobkin and Kirkpatrick (1980)). This theoretical
intersection algorithm has not yet been implemented, but we consider it since it
is the fastest known. To perform a check (at one configuration) for the entire
robot against the entire obstacle environment requires time O(mn log2(j + k)). Now
suppose that the path segment [X,Y] must be sampled 7 times for the quantizing

intersection checker. This requires time

O(imn log?(j + k)).

In chapter 5, we show that our planner’s Rotate operator could determine whether
there exists a path from X to Y in time O(N log N) (where N is the number of
C-surfaces). In chapter 3, we show that N = O(mnjk). Hence the complexity for
Rotate is

O(mnjk log(mnjk)) = O(mnjk(logm + logn + log j + log k)).

Rotate ensures that there exists a path from X to Y without growing the real-space
obstacles, and does not involve a resolution factor 7. Holding k and j fixed, the
relative asymptotic performance of the quantizing intersection detector and the

Rotate operator will depend on whether or not

1 > log(mn).

The constants 7, 7, and k& will depend on particular workspaces and find-path

problems. However, we believe that in order to be reasonably sure of the safeness

120

of a path between configurations without growing the real-space obstacles too
much, ¢ may have to be quite large. This is especially true in reasonable sized
environments. So as mn increases, the workspace becomes more crowded and/or the
robot becomes more complicated, and the sampling rate will have to be increased.
We think it unlikely that the sampling rate will grow only logarithmically with
the workspace complexity. Moreover, the theoretical O(log(j + k)) intersection
time for the Dobkin and Kirkpatrick (1980) algorithm assumes that the solid
models of the m robot polyhedra are precomputed. (If the solid models must be
computed for each configuration, then this will take O(km) additional time per
sample point). In addition, for a polyhedron with k faces, O(k log k) preprocessing
time is required by the algorithm (for each intersection check), which would
yield an even higher complexity for the discrete path planning algorithm. At this
stage, since the algorithm is unimplemented, it is unclear whether some sort of
lazy evaluation, parametric representation, or efficient precomputation could be
employed to reduce the complexity of iterative application of this intersection test.
Most implemented intersection detectors that are reasonably robust have time
complexity O((7 + k) log(j + k)) or O((5 + k)?). However, it is possible to employ

minimum distance checks, or O(5 + k) intersection checks in some cases.

Summary

In a practical planning system, there are, of course, other considerations. For
example, our employment of the Rotate operator requires time to update the lattice.
The main point is as follows: on a lattice of spacing d, to verify the safeness of a
path of length di, the discrete intersection method requires at least time O(imn),
whereas the Rotate operator requires time O(mnlog(mn)). The discrete method
actually does not ensure safeness, but merely that the intersection “size” is no

greater than some function of d.

Competence versus Performance

We have shown that the relative performance of the two algorithms will largely
depend on the constants in the problem. For gross motion in uncluttered workspaces
the discrete intersection algorithm will probably perform better. In complicated,

crowded environments, or in problems requiring motions close to the obstacles, the

121

required sampling rate will probably be prohibitive. In addition to the question
of performance, we should also mention the issue of competence. (In linguistics,
competence refers to the knowledge base, and performance refers to how well it is
used). The representations we develop in subsequent chapters are applicable not
only to the find-path problem with six degrees of freedom, but also to the class of
geometric planning problems described in chapter 1 (for example, fine motion, and
planning with uncertainty). It is clear from previous work that these problems are
within the competence of the representation we develop for %3 X SO(3) (Mason
(1981), Lozano-Pérez, Mason, and Taylor (1983), Erdmann (1984)). At this point we
have no indication that these problems are within the competence of the discrete
intersection method. (Find-space, however, can be accomplished using discrete

intersections).

122

3

Questions of Representation: C-functions and Applicability
Constraints in a Six Dimensional ConfigurationSpace

In this chapter, we first present a formal framework in which several open
questions about configuration space constraints may be resolved. This framework
has been discussed informally in the first two chapters. We then proceed to construct
and prove a set of theorems about the domains and domain topology of C-functions

for the classical Movers’ problem with six degrees of freedom.

These theorems allow us to define the applicability constraints on C-functions for
the Movers’ problem in 82 X SO(3). Every C-function characterizes a constraint on
motion only within a certain region of rotation space. Determining what constraints
are applicable at a given orientation (or range of orientations) is of fundamental
importance to the mathematical framework for the spatial planning problem: in
order io plan using constraints, we must know where (at what orientations) these
constraints are applicable. Recall that each C-function is generated by a pair of
boundary cells (g, b), where a lies on the boundary of a moving polyhedron and b on
the boundary of an obstacle polyhedron. Put simply, the applicability constraints

determine what boundary cells @ and b can interact at a given orientation.

3.1. Definitions and Conventions

Let A denote any rigid, convex set. A(©) denotes A rotated to orientation ©.

Formally, if © is an orientation, and R(©) is the corresponding rotation operator,

123

then A(©) denotes R(©) applied to A. As akind of shorthand, we refer to A(©) as “A
at orientation ©,” or “A rotated to orientation ©.” For example, if F is a face, then
F(©) denotes I' at orientation ©. F’s normal, N, rotates with F', and is denoted
N(©). We assume face normals are outward-directed from the polyhedra they
bound. We will in general use A to denote a convex moving polyhedron, and B for a
convex obstacle polyhedron. If e, is an edge of A and mid(e,) denotes its midpoint,
then mid(e,(©)) denotes its midpoint at orientation ©. At this point it is not
convenient to commit ourselves to any particular representation for 3-dimensional
rotations. However, the reader may without essential loss of gencrality interpret
v(©) (for v € N3) as the rotation matrix R(O) applied to the vector v, where R(©)
might be parameterized by Euler Angles. Since R(©) is an orthonormal matrix,
[R(©)]7! = [R(©)] can be employed to rotate a plane which is represented as a
4-dimensional vector. This operation yields the rotated normal N(©) of course (see
Paul (1981)). However, note that the results of this chapter are independent of any
particular representation of rotations, and that R(©) is properly a generic rotation
operator. u - v denotes the standard inner product on R3 of u and v. If u and v are

complicated expressions, however, we will use the notation (u, v).

The six dimensional configuration space R3 X SO(3) is formally defined in
chapter 2. X will denote a configuration in this space. We will identify © with
R(©) and write © € SO(3). Writing X = (z, ©) makes explicit the translational

component of the configuration (z) and the rotational component (© or R(9)).

O denotes the boundary operator. For example, if ' is a face on a polyhedron
B, then OF denotes the ring of edges which bound F. 3B denotes the faces of B,
Oe for an edge e denotes e’s vertices, and so forth. The coboundary operator is the
dual of the boundary operator and is denoted §. The coboundary of a vertex is the
set of edges incident there; the coboundary of an edge are the faces which the edge
bounds; and the coboundary of a face is the zero, one, or two solids it bounds. In
chapter 5, we provide a formal definition of boundary and coboundary using the

chain groups; alternatively, see Hocking and Young (1961) or Giblin (1977).

We denote the faces, edges, and vertices of a polyhedron B by faces(B),
edges(B), and vert(B), respectively.

If S is a set then 7(S) denotes its interior, and xS its closure. &S = ¢(S)U3S.

We denote the classical Movers’ problem with six degrees of freedom by 6 DOF.

3.2. Representing Constraints in Configuration Space

Lozano-Pérez (1983) showed that the C-Space obstacles can be represented as
an intersection of a finite number of half-hyperspaces,! where each half-hyperspace

is represented via a constraint function of the form

fi 1 R X SO(3) > R

where the sign of f;(X) determines whether X is inside, on, or outside the C-Space
obstacles. However, when rotations are allowed, each constraint function is valid,

or applicable only within a certain region A; of the rotation space:

i WX A - R (A; C SO(3)).

We call such a function f; a C-function. We consider the robot and obstacles to
be modeled by the (possibly overlapping) union of convex polyhedra, and define
a boundary cell to be a face, edge, or vertex of such a polyhedron. C-functions
model constraints on motion generated by pairs of cells (g4, g5) where g, and gy are
boundary cells on the robot and on an obstacle, respectively. Lozano-Pérez (1983)
identified three types of interactions: (face,vertex), (vertex,face), and (edge,edge),
which to preserve tradition we shall term type (a), (b), and (c) constraints. However,
these interactions can only occur in certain orientations; for example, it is easily seen
that although two cuboids generate 144 type (c) constraints, at any fixed oricntation
only certain edges can interact and hence only certain type (c) constraints are
applicable. The region of rotation space where a C-function f; is applicable is it’s

applicability region, A;. The domain of f;, then, is %% X 4;.

For the two-dimensional Movers’ problem, the rotation space is the 1-sphere
and the applicability regions A; are simply sectors on S!. While Lozano-Pérez

For a moving object and obstacles represented as overlapping unions ol convex polyhedra.

125

(1983) was able to define the form of C-Space constraints f; for 6DOF, previous
work has not been able to formulate the applicability regions in SO(3).

We begin by defining CO C R3 X SO(3), the space of forbidden configurations:

CO = {X |V CulX)} (1)

where Oy is a constraint sentence (see Brooks and Lozano-Peréz (1983)). a is indexed
by C-Space obstacles. For each C-Space obstacle O4, C, maps a configuration X
to true or false, depending on whether X is inside O,. (1) states that if X is inside
any C-Space obstacle, then it is in CO.

For X = (z,0),

Culz, ©) = ,;\(@ € 4; = fi(z,0) < o).)

Let us parse (2). The index 7 ranges over the set of all C-functions {fi,-- s fn}
which define the C-Space obstacle O,. We call such a set of C-functions a family
of C-functions. This family is generated by considering pairwise interactions of
features on the boundary of A and features on the boundary of B, where A is a
convex polyhedron on the moving object, and B is a convex obstacle polyhedron.
For a two dimensional example, refer to figures 1.29-32 (chapter 1), which illustrate
an obstacle polygon B with four vertices, and a moving polygon A with three
vertices. Tor these two polygons, the family of constraints generated corresponds

to all possible interactions of their edges and vertices:

famalyyp(A, B) = (faces(A) X vert(B)) U(vert(A) X faces(B))
= ({ €1,€2,€3 } X {'Uf’ 'Uér ’Ué; ’l),; }) U({ vy, V2,3 } X {e{) Cé, e:;) e'; })

Each pairing, for example (ej,v{), generates exactly one C-function f;. In three

dimensions, a family of C-functions corresponds to a set of constraints resulting

126

from the possible interactions of one polyhedral component of the moving object,

and one obstacle polyhedron:

famalysp(A, B) = (faces(A) Xvert(B)) U(vert(A) X faces(.B)) U(edges(A) Xedges(B)).

Of course, in both two and three dimensions, at a given orientation, only a subset of
this family is applicable. For each C-function f;, there is an associated applicability
region A;. Equation (2) for C, can be parsed as follows: for a configuration X, for
each C-function f; such that X is in the domain of f;, f;(X') must be negative-valued
(or zero) for X to be inside the C-Space obstacle O,. To determine whether X
is in the domain of f;, test whether the rotational component of X is within the

applicability region A;.

Next, we define

F =% x SO(3)~CO

to be the space of free configurations.

Now, for each C-function f;, A; C SO(3) is the corresponding portion of
rotation space where f; is applicable. We construct A; as the intersection of a set

of half-hyperspaces on SO(3):

4= {© € 50() | \(s1(0) 2 0)) ©
J

where g; : SO(3) — R is an applicability constraint function (ACF). A C-function
f; is said to be applicable for a configuration X = (z, ©) if © € A;. Ia this chapter,
we will derive, and prove, the form of the ACFs. Geometrically, the applicability
regions A; are complicated three dimensional manifolds (with boundary) on the
projective 3-sphere. Their boundaries are the two dimensional manifolds ker g;. (5
indexes over the set of functions used to construct A;. There are typically three or

four g;, as we will see later).

127

The form of the applicability constraints was heretofore unknown. Many of
the representational and algorithmic issues for gcometric planning problems with
six degrees of freedom rely on a correct formulation of the applicability constraints.
With these advances, however, the mathematical framework will be complete, and

we can construct the planner of chapter 2 which exploits the geometry.

The work of Brooks and Lozano-Peréz (1983) dealt with surfaces in the C-Space
N2 x 81, which are called C-surfaces. The obvious extension of this concept for
6DOF is a C-manifold in B X SO(3). For a C-function f; we define a level
C-manifold to be the set of configurations X where f; is applicable and f;(X) = ¢,
for some level £. Thus a level C-manifold is the level set f;l(e). Of particular

interest is the C-manifold

ker f; = f71(0) = { X | fi(X) =0},

which contains a boundary patch of a C-Space obstacle. Since in the literature,
C-manifolds of this form have been called C-surfaces, we shall also employ this

term.

We now define paths in C-Space. Given a start configuration s and a desired
goal configuration g, a successful collision-free path is a continuous function
p: It = R% X SO(3) such that p(0) = s, p(1) = g, and p(I') C F. I' denotes the

closed unit interval, [0, 1].

2.3. The Geometric Interpretation for C-functions

Consider the interaction of an obstacle polyhedron B and a moving polyhedron
A, where both A and B are convex. Let f, be in the family of C-functions generated
for A and B. f, models a constraint on the motion of A. For example, f, might be
generated by considering the interaction of a face of A and a vertex of B. For a
given orientation ©, the projection into 3 of any (applicable) C-manifold f;l(O)
is a plane corresponding to a face of the polyhedron resulting from the Minkowski

sum of ©A and B, that is,

128

BOA©) = {b+a(®)|bE B,ac OA}

where a(©) denotes vector a rotated to orientation ® and ©OA ={—a|a € A}.
(Note that in constructing ©A(O), the “negation” takes place before the rotation).
B © A(6) is the projection into R of the C-Space obstacle at orientation ©. In
effect, we have parameterized the plane equations of féces of BE& A(O) by ©. Here
is the form of the parameterized plane equations derived by Lozano-Pérez (1983):
a;(©) is a vertex of GQA(O) and b; is a vertex of B. Recall that the equation of
a plane in R3 can be expressed as {z | (N,z) = (N, q)}, where N is the plane
normal and ¢ is a reference point known to be on the plane. Then C-functions take

the form:

fp(2,0) = (N(©),z) = (N(©), (a:(©) + b5)) (4)

where z is a point in R3. N(O) is the real-space component of the C-manifold
normal at orientation ©, and is defined as follows: for a type (a) C-function,
N(©) is the normal of a face of ©A(O). For a type (b) C-function, N(©) is the
normal of a face on B, and hence is constant. For a type (c) C-function, N(©) is
the cross-product of an edge on B and an edge on ©A(O). Furthermore N(O) is

normalized to a unit vector when it is non-zero.

The geometric significance of fy(z, ©), is now clear. The value of f, represents
how far the (reference) point z lies above the plane of a face in the ©-parameterized
Minkowski solid. (Assume (z, ©) € F'). When the projection of z falls on the fy-face
of the Minkowski solid, the metric provided by f, represents the translational
distance to a collision. When the projection falls outside the face, the value of f,
represents the translational distance to the plane of the f,-face. Hence even though
there is no convenient way of talking about distances between configurations in
R3 X SO(3), we can employ the values of C-functions as a metric on the distances
of the moving object from obstacles at any configuration. This metric will become

important in chapter 6.

129

3.4. Redundant Constraints

In chapter 2, we gave an informal definition of a redundant constraint (see
figure there). We now give the formal definition of a redundant constraint for
a configuration X € F. Intuitively, a redundant constraint is one subsumed by
nearer, intervening C-functions (lower C-manifolds). Let C denote the set of all
applicable, positive-valued C-functions at X = (z,©). For each f; € C, let s; be

the projection into ®* of the kernel of f; restricted to orientation ©. That is,

si={y €N | fiy,0) = 0}.

Note that s; is the projection into R of the tangent hyperplane at © to the level
C-manifold for f;. Intuitively, s; is the plane of the face of the Minkowski solid

determined by f;, at orientation ©.

Now, let h; be the half-space of ®% bounded by s; containing z. Constructing

(ki

i

yields asolid S in R, Those half-spaces bounding S correspond to the non-redundant

constraints at X.

130

Yo

LN
® NG
ANS VAR U A W R W SRR A A

/

Figure 3.1. /

3.5. Applicability Constraints for type (a) and (b) C-functions

We are now in a position to derive the domains of the C-functions. To define the
applicability constraints, we consider a family of C-functions in isolation (that is,
an environment comprising only the obstacle B and the moving polyhedron A). We
perform an analysis to see what generators can interact at what orientations. While
C-functions are defined on the “negated object” ©SA(O), applicability constraints
are defined from the “positive object” A(8).

Definition: Consider a constraint ¢, generated by (ga, g5) where the pair (g4, g) is
either (a) a face of A and a vertex of B, (b) a vertex of A and a face of B, or (c) an
edge of A and an edge of B. We say c is applicable at orientation © if some pure
translation of A(©) can bring g,(©) in contact with g, such that

i(A(©))i(B) = 0.

131

See figure 3.1. Let f(©) be a face on a moving polyhedron A(®), with a normal
N(©). Let b; be a vertex on obstacle B. (f,b;) generates a type (a) constraint. Let
R be the set of adjacent vertices of b; on the edge graph of B, that is,

R = {b, € vert(B) | 6b,{)6b; #£0}.

It is instructive to parse the definition for R. (Recall that § denotes coboundary). 6b,
is the set of edges incident at b,. If two vertices b, and b; have disjoint coboundaries,
then they are not adjacent on the edge graph of B. If their coboundaries overlap,

then the common element is the edge connecting b, and b;.

Theorem HL1: A type (a) constraint generated by (f, b;) is applicable at orientation
O if, and only if, for all b, € R,

b, - N(©) —b, - N(©) > 0. (3.1)

If the type (a) constraint is applicable, then (3.1) holds for all vertices b, of B.
We will show that considering the vertices in R provides a necessary and sufficient

condition for applicability.

Proof: (&) Observe that applicability is invariant under translation. We
transform the workspace so that the plane of f(©) contains the origin. Then for
x € N3, z- N(O) is the perpendicular distance of z from the plane of the constraint.
Since face normals are outward-directed, when this distance is positive, then z lies
above the plane of f(©). If (3.1) is true, then when b; is brought to rest on the
plane of f(©), then b; - N(0) = 0. Now, for all b, € R, b, - N(©) > 0. Thus all
adjacent vertices to b; are on or above the halfspace boundary. Since A and B are

convex, their interiors cannot intersect.

(=) If we can bring b; in contact with f(©) while maintaining the disjoint
interior criterion, then we have b; - N(©) = 0. No b,, € R can dip below the surface
of f(©), since then the interiors of A and B would intersect. Hence each b, must

lie some distance d > 0 above the plane of f(©). &

132

o®
. "

S NSRRI M RN

TFigure 3.2.

Now, let f be a face of B with normal N. (See figure 3.2). Let a; be a vertex
of A, and

R = {a, € vert(A) | ban[)6a; # 0}

be the vertices adjacent to a; on the edge graph of A.

Theorem ITI.2: A type (b) constraint generated by (a;, f) is applicable at orientation
O if, and only if, for all a, € R,

a,(6) - N — a;(©) - N > 0. (3.2)

Proof: Symmetric case of Theorem (III.1). &

Consider

9c(©) = by, - N(©) — b; - N(©) (3.3)

133

Figure 3.3. The applicability region A, is the interscction of the half-hyperspaces where gx > 0.

as a mapping gk : SO(3) — R. We call g; a type (a) applicability constraint function
(ACF). (There are several ACFs for one type (a) C-function—or indeed for any
C-function, and they are indexed here by k). For the symmetric case from (3.2), we

call

94(0) = an(6) - N — ai(€) - N (3.4)

a type (b) ACF. The region on SO(3) where g; is positive-valued defines a half-
hyperspace of SO(3) (see figure 3.3). (3.2) and (3.1) define the applicability region
for a type (a) or (b) constraint as the intersection of these half-hyperspaces. This

yields the conjunction promised earlier:

4. ={©€5003)| Q(gk(e) >0)}.

134

A C-function ¢ is applicable if and only if for a configuration (z,©), each of ¢’s
ACFs is positive (or zero) at O, that is, © € A.. The number of ACFs for a type
(a) or (b) constraint is equal to the cardinality of ‘he coboundary of the generating

vertex (which is the same as |R]).

3.6. Applicability Constraints for Type (¢) C-functions

Determining the applicability regions for type (¢) C-functions (generated by
edge—edge interactions) turns out to be a bit more grueling. We can derive a set
of ACF's for type (c) constraints which are analogous to g; in (3.3) and (3.4). The
conjunction of these type (¢) ACFs is a necessary but not sufficient criterion for
applicability. The positive conjunction (the intersection of half-spaces where the
type (c) ACF's are positivé) forms two, disconnected regions in SO(3). It will become
apparent shortly how these regions arise, but let us pause, before bringing in some
complicated machinery, to survey their topology. In one region A the type (c)
constraint is applicable, in the other A’, it is not. To determine which region © is
in, we use a set of related functions termed disambiguating applicability constraints
(DACSs). Fortunately, the symmetric region A’ where the ACFs are positive but
the constraint is not applicable is disconnected from the valid applicability region
A (where the ACFs are positive and the constraint ¢s applicable) by a region A,
where the ACFs do not hold (see figure 3.4). We will demonstrate that since A is
disconnected from A’, it is possible to plan continuous paths within A with heed
only for the basic type (c) ACFs. Both type (c) ACFs and DACs are functions of
the form ¢ : SO(3) — R ; however, they are co‘nsiderably more complicated than

(3.3) and (3.4), above.

Figure 3.4. The space SO(3) showing A, 4', and 7. The type (c) ACFs determine whether 8 is
in the set A or in AU A’. The DACs determine, for © € A|J A’, whether © is in Aor A'.

3.6.1. The Basic ACY's for Type (c) Constraints

Let ¢ be a type (c) constraint generated by the pair of cdges (eq,€p). As
usual e,(©) denotes e, rotated to orientation ©. We will define type (c) ACFs
which provide a necessary criterion for applicability. In conjunction with the DACs
(below), the type (c) ACFs form a complete characterization of the applicability of
type (c) C-functions. We employ the following construction: imagine trying to make
the midpoints of e, and e, touch while maintaining the disjoint interior criterion

for A and B. We then allow A to pivot about

v = mid(e;) = mid(eq(O)) (3.5)

while maintaining disjoint interiors. Keeping (3.5), for what orientations (values of

©) are the interiors of A and B disjoint?

136

t
1
\
I S o (S
[
‘ ()
; :
. Ay
] [}
' [
tv’\: :_‘ N3
7773 Y Gy v oy Qe oY S A 4V 4
B0 :
‘in(’\) L
T
Ny F

Figure 3.5. A scction view through e, (ep is orthogonal to the page).

Let us denote the vertices of e, and e, as follows: (see figures 3.5 and 3.6)

vert(eq) = (a;, a;+1) and vert(e;) = (bj, bj41). Now, e, bounds 2 faces f) and f on

A; let their normals be Ny and Ns. Similarly, let the normals for the faces f3 and
f4 cobounding e; be N3 and Ny.

Theorem IML3: If a tybe (c) constraint generated by (eq,ep) is applicable at
orientation ©, then

—d,(©)dy(©) > 0 (3.6)

and

—d3(©)ds(©) > 0 (3-7)

where

d](e) = b]' . N1(9) - mid(eb) . N](@) (3.6(1)

137

Figure 3.6. A scction view through e,(8) (e.(©) is orthogonal to the page).

dy(©) = b, - N(©) — mid(e;) - No(6) (3.6b)
d3(©) = a;(©) - N3 — mid(e,(©)) - N3 " (3.7q)
d4(©) = a;(©) - Ny — mid(e,(0)) - Ny (3.7b)

(We express (3.6-7) in this form rather than as d;(©)d2(©) < 0 in order to preserve
the positive sign convention for all the ACFs).

Proof: Refer to figures 3.5 and 3.6. Again, since applicability is invariant under
translation, we transform the workspace so that mid(e;) is at the origin. With
mid(e,(0)) fixed at mid(ep), d;(©) for 7 = 1,2 is the distance of b; above the plane
of f;; for ¢ = 3,4, this is the distance of a;(©) above the plane of f;. We allow
eqs to rotate about v = mid(e;) with 3 degrees of freedom. Observe that a; and
a;+1 may not dip below the surface of B, and that b; and b;;; may not fall below

the surface of A. This is clearly enforced by considering only the planes of the

138

faces cobounding e, and €. If the type (c) constraint is applicable at ©, then d(©)
and dp(©) can never both be positive, nor both negative, for in these cases e, will
intersect the interior of A. We see this as follows: If d;(©) < 0 and d2(©) < 0, then
b; is inside both halfspaces, and some point on the line segment (mid(e,;), b;) must
be inside A. If di(©) > 0 and dy(©) > 0, then b is inside both half spaces, and

some point on the line segment (mid(e;), b;;1) must be inside A.

Hence d;1(©)dy(©) < 0. This immediately yields (3.6). A similar and symmetric
argument yields (3.7). g

139

3.7. Disambiguating Applicability Constraints (DACS) for Type (c¢)

Constraints

The basic type (¢) ACFs take into account cdge-edge interactions, but do not
model the interactions of the faces they bound. In order to preserve the disjoint
interior criterion, we introduce Disambiguating Applicability Constraints (DACs) as
follows. DACs are constraints on the tangent vectors to faces cobounding e, and eg;
assuming that the basic ACFs have determined that © € A A', DACs discriminate
between A and A’. In fact, the DACs are necessary and sufficient conditions for
applicability. We split the type (c) applicability computations between the basic
type (¢) ACFs and the DACs for reasons relating to the algebra system, which
is described in chapter 4. Our proofs draws heavily on constructions employing a

separating plane.
The Separating Plane Construction

Join the midpoints of €,(©) and e, together as usual. Consider the plane P
containing v = mid(e,(©)) = mid(e;), whose normal is e,(0) X €. Assume without
loss of generality that e,(©) X e, 5% 0. P contains both e, and e,(©). Suppose that
the type (c) ACF's for constraint ¢ are positive-valued (or zero), i.e., (3.6) and (3.7)
hold. Hence each vertex of e, is on or above the plane of one face cobounding
ea(©), and each vertex of €,(©) is on or above the plane of one face cobounding es.
Refer to figures 3.6 and 3.5 once more. By reason of the ACF values for ¢ and the
convexity of A and B, some open halfspace Py of ®3 which is bounded by P must
contain 7(B) entirely, and some open halfspace P4 bounded by P must contain

1(A(©)) entirely:
B C K,(PB)
A(@) C IC(PA).

(Recall that x(S) denotes the closure of a set S: &(S) = 1(S)U 9S).

Now, if ¢ is not applicable, then {(A(6)) N (B) 7% 0. This means that A C «(Pp)
also, since unless P4 = Pp, then P would separate 1(A(©)) from ¢(B). We conclude

110

that for all ©' € A', i(A(©')) C Py and {(B) C Py. By a symmetric argument, for
all © € A, plane P separates 1(A(©)) from 7(B). To summarize: If the constraint
¢ generated by (e, e;) is applicable at orientation ©, then #(A(©))N:(B) = 0.
Therefore there exists a separating plane between 7(A(©)) and #(B). On the other
hand, if ¢ is not applicable, there exists no such separating plane, for then the
interiors could not intersect. Furthermore, if €,(©) X €5 5% 0, then there exists
exactly one separating plane that contains all four points vert(e,(©)) U vert(e;). We

formalize these results in the following lemma;:
In this lemma, we abbreviate e,(0) by eq, and A(O) by A.

Lemma I1.4.1: (Exzistence and uniqueness of the separating plane). Join together
the midpoints of e, and e,. Assume that e, X e, 5% 0. The constraint ¢ generated
by (eq,es) is applicable if, and only if, the plane P containing e, and e, separates

the interior of A from the interior of B.

Proof: (&) If P separates 2(A4) from i(B), then 1(A)N7(B) — B. Therefore the

constraint ¢ is applicable. §

Proof: (=) 1If cis applicable, then there exists exactly one separating plane between
:(A) and i(B), and this plane is P. To see this, first observe that if :(4)N%(B) = 0,
then by convexity there must exist some separating plane. Assume that this plane
does not have normal e, X e;. In this case, the plane cannot contain both e, and
ey. Since the plane contains the midpoints of both edges, it must intersect either
eq or ey in a non-parallel cut. But in this case, the planc intersects the interior of
either A or B. Thus it cannot be a separating plane. Since there must exist some

separating plane, it must have normal e, X e;. 1

The strategy for defining DACs is as follows. For each face cobounding e, we
choose a point in the interior of that face. The basic type (c) ACFs ensure that
ep is outside the interior of A(©), and that €,(©) is outside the interior of B; the
DACs ensure that the faces cobounding e lie on the opposite side of P from the
the faces cobounding e,(®). If the type (c) constraint is applicable, then i(A(©))
must lie in a half-space bounded by P complementary to the half-space bounded

by P containing #(B). The DACs ensure that if the faces cobounding e,(©) lie in

141

Figure 3.7. The Tangent Vectors T3 and Ty to the faces coboundiv,ng €.

k(P,), then the faces cobounding e, must lie in x(Pp), with P4 7 Pp. Since A and
B are convex, this suffices to show that A and B lie in complementary half-spaces

bounded by P.

The vertices of ,(©) and e; lie on P. Let py, p2 be points in the interior of the
faces cobounding e,, and p3, py be points in the interior of the faces cobounding
ep. The DACs ensure that p; and p; lie on one side of P, and that p3 and p4 lie on
the other.

The points inside the faces cobounding e, and e, are chosen as follows. For
each edge e on B and A, we construct a pair of tangent vectors, (T}, T2), where
Ty and T, are tangent and interior to the faces cobounding e. T; and T3 are also
perpendicular to e. For an edge e, on A, (T1(0), T2(©)) will clearly rotate with e,
and A, maintaining these criteria. The tangent pair for e, is shown in figure 3.7.

Formally, we proceed as follows:

142

Ca(O)
A(E)

Figure 3.8. The tangent pairs and normals for eq(©).

Definition: A tangent vector to ®3 (O’Neill (1966)) is a pair (v,p) € 13 X N3,
interpreted as the vector v applied to point p. We will sometimes write v, for (v,p),

or, when there is no ambiguity about the point of application, we simply write v.

Definition: Consider an edge e on a polyhedron P. Let f1, f2 be the faces that
cobound e, and let Ny, N be their normals. A tangent pair for e is a pair of tangent
vectors to %3, (T3, T3), both applied to mid(e). T; is perpendicular to e and to NV;,
and it is directed into the interior of f; when applied to mid(e) (: = 1,2). In other

words,

T,‘=k(N,'Xe) (i=1,2)

where k € {+1,—1} is chosen to orient T} into the interior of f;. N; X e indicates
the cross product of N; and the directed edge vector for e.

143

Refer to figures 3.7 and 3.8. We will now construct DACs. Let (T%,T4) be the
tangent pair for e;, and let V3, N4 be the normals to the faces cobounding ep. Let
(T1(©), T»(©)) be the tangent pair for e,(©), and let N{(©), No(©) be the normals
to the faces cobounding e,(©). Thus T; - N; = 0 (for 7 = 1,2, 3,4). Keeping with
this numbering convention, let f; be the face with normal N;. As usual, we imagine

joining together the midpoints of e, and e,(©).

Let Np(©) be the normal to the plane P, that is, Np(©) = €,(©) X e5. Assume
without loss of generality that Np(©) 5£ 0. The plane containing mid(e,(0)) =
mid(e;) with normal Np(©) also contains €,(©) and e;. We construct DACs which
ensure that ¢(A(©)) is on one side of P, and that ¢(B) is on the other side. To
ensure that the points mid(e;) + T3 and mid(ep) + T4 lie on the same side of P, we

have the constraint
sign(T3 - Np(©)) = sign(T} - Np(©))
which may be written
(T3 - Np(©))(Ts - Np(©)) > o.

Assume without loss of gencrality that the signs are non-zero. The case where one
sign is zero is easily handled by examining the other sign. To ensure that the points
mid(eq(©)) + T1(©) and mid(eq(0)) + T2(O) lie on the same side of P, we have the

symmetric constraint
sign(T1(6) - Np(0)) = sign(T3(8) - Np(6))

Now, we must ensure that the two half-spaces are complementary. This is enforced

by insisting that the signs are opposite. All of the following must be true:

k]; = 51gn(Tg NP(O))
= blg‘ n(Ty - Np(0)) (3.8a)
sign(11(0) - N(6)
—31gn(T3(()) Np(©)) (3.8b)
ka 7 kp (3.8¢)

Equations (3.8a-¢) embody the DACs we require.

114

Theorem II1.4: Let ¢ be a type (¢) C-function gencrated by (eq,ep). Assume the
tangent pairs for e, and e,, and normals to the faces cobounding e; and e, are as

above. Then ¢ is applicable if, and only if, the all the DACs (3.8a-c) hold.

Proof: (=) Assume the type (c) constraint is applicable, but that at least one of
(3.8a-c) is false. We will demonstrate a contradiction. Join the midpoints of €,(©)
and ep, as usual. If any of the DACs is false, then P does not separate (A(©)) from

7(B): a contradiction.

Proof: (&) We show that if the DACs hold, then c is applicable: if these conditions
are true, then P is a separating plane. Therefore the interiors cannot intersect, and

c is applicable. &

145

3.8. On the Structure of the Type (c) Applicability Regions on SO(3)

In this section, we prove a theorem on the structure of the regions 4, ﬂ", and
A for type (c) constraints, (see figure 3.4) which yields an immediate completeness
result for our formulation of ACFs and DACs. As promised, we will show that 4
and A’ are disconnected on SO(3), and that the region A separates them. Our

proof draws heavily on constructions employing a separating plane (lemma II1.4.1).
Theorem IIL.5: A disconnects A from A’ on SO(3).

Proof: We first observe that by definition,

AUAU A = s0(3)

(see (3.6), (3.7)‘for confirmation). Recall the separating plane construction: we saw
that for all ©' € A', {(A(0')) C Py and i(B) C Pgy. Let Pg denote the interior
of the complement of Py: Py = 4(R% - Pg). By a symmetric argument, for all
© € A, plane P scparates 1(A(0)) from ¢(B). If AU A’ is path-connected, then there
exists a continuous function, p : I' — SO(3), such that p(0) = O, p(l) = ©', and
p(I') C AU A’. Turthermore, if AU A’ is path-connected, then for all t € I, either
1(A(p(t))) C Pg, or 1(A(p(t))) C Pp (assume without loss of generality that for all
t, ep X eq(p(t)) 4 0). Note that for all ¢,

Pi(AR() = 0.

Hence in traversing the path p in rotation space, A is required to “flip” over P
from Pp to Pp, without its interior ever intersecting P. This is clearly impossible

if continuity is to be preserved. g
3.9. Orienting Type (c¢) Constraints

Consider affixing mid(e,(©)) to v = mid(e;) as usual. Refer once more to 3.5

and 3.6. The cross product

Np(@) == ea(e) X ep

116

when applied to v will for some © point out of Py and into P4; for other O,
Np(©) will point into Py and out of P4. (Assume for now that Np(©) 7 0.) Hence
for some orientations Np(©) is the correct (unnormalized) real-space normal for
constraint (eq, ep); for other orientations we must employ —Np(©). When applied
to v, the real-space normal kNp(©) (for k € { +1,—1}) must always point out of

Pp and into P4. The following rule for choosing & is stated without proof:
k = sign(Np(©) - I(©)) (3.12)

where I(©) = T1(0©) + T5(©).

However, it is easy to see that we need not compute this dot product each
time we use the C-function. k (and the orientation of Np(©)) will be invariant in
regions of A where the signs of the ACF's are invariant. For example, if k is positive
for some © € A and

d3(©) > 0 and dy4(O) < 0, (3.13)

then clearly wherever (3.13) holds, then k must be positive. Also, wherever
d,}(@) < 0 and d4(@) > 0,

k must be negative. This argument should be quite obvious if the reader imagines
how the cross product of the edges changes as e, pivots about mid(e;). This leads to
the following simple algorithm for orienting a type (c) C-function c. Essentially, we
can just compute (3.12) once, and record the signs of the ACFs at that orientation.

(i) For some ©, compute the values of d;(0) (z = 1,2, 3,4) for the type (¢) ACFs.
If ¢ is not applicable, then stop.

(ii) If &£ has not been corputed yet, calculate k as in (3.12). (Assume k 54 0). Record
the signs of d3(@) and d4(0©) for ¢. We call this pair of signs the sign map for c.

(iii) If a k and sign map have been computed for ¢, then compare the recorded sign
map to the current sign map for d3(©) and d4(®). If the sign maps are equal,
use k to orient c¢; otherwise use —k.

147

3.10. Singularities and Special Cases

Our analysis of type (c) ACFs and DACs assumes that e,(©) and e, are never
aligned, i.e., that their cross-product is never zero. In addition, our algorithm
for orienting type (c) C-functions assumes that no function d; is zero. The cross
product will be zero when e,(®©) is parallel to e;, and an ACF will be zero when
either e,(0) is aligned with a face cobounding e;, or when e; is aligned with a face
cobounding ¢,(©). In practice, these special cases will arise frequently. Fortunately,
they can be ignored. Consider the following: The vertices of e, generate type (b)
constraints with the faces cobounding e;; and the vertices of e, generate type (a)
constraints with the faces cobounding e,. In the cases where €,(©) is aligned with
ey or a face cobounding e, (or in the symmetric case), some of these constraints
will also be applicable. In these aligned cases we say that the type (c) constraint
is subsumed by the neighboring type (a) and (b) constraints, because the disjoint
interior criterién will be enforced by the type (a) and (b) constraints alone. This can
be seen as follows: (see figure 3.5) sunppose some ACT, for example d3, is zero-valued
at ©, and that © € A. Then both mid(e,(0)) and a;(0) can be brought to rest
on the plane of f3, while preserving the disjoint interior criterion. Since a;(1(©)
is also lies on e4(0), it too may be brought to rest on the plane of f3. Clearly,
the type (b) constraints generated by (a;, f3) and (a;41, f3) must also be applicable
at orientation ©. At this aligned orientation, the type (c) constraint ensures the
following: while mid(eq(©)) is on the plane of f3, a;(©)) must also lie on the plane
of f3. This is precisely the condition enforced by the equivalent pair of type (b)

constraints. Symmetric arguments hold for the other ACFs.

3.11. Level ACF's

For ACFs, there is an analogous concept to a level C-Manifold. Let g : SO(3) —
R be an ACF for a C-function ¢. An ACF Boundary is the space of rotations where

¢ is applicable and g is zero:

kerg = {© € 50(3) | ¢(6) = 0}.
A Level ACF is the space of rotations where ¢ is applicable and g is some constant

148

value £:

{0 €50(3)| g(6) = £}.

Recall the geometric interpretation for ACFs. Consider a type (b) constraint (see
figure 3.5). A path p : I' — SO(3) along a level ACF for the constraint (a;, f3)
would, if the midpoints of the edges were affixed, preserve a;(©) at a constant

height above the plane of f3.

3.12. A Note on the Computation and Algebra of Applicability Constraints

The implemented planning system contains an algebra system (described
in chapter 4), which performs the computations relevant to the applicability
constraints. We would like to make the computation as simple as possible, for

otherwise an implementation might be infeasible.

We have shown that there are four types of computations foi the applicability
constraints:
(i) Type (a) ACF's (3.3) which determine the applicability of type (a) C-functions.
(i) Type (b) ACFs (3.4) which determine the applicability of type (b) C-functions.

(iii) [Basic] Type (c) ACFs (3.6) and (3.7), which provide a necessary but not
sufficient condition for the applicability of type (c) C-functions.

(iv) DACs (3.8a-c) which provide necessary and sufficient conditions for type (c)

applicability.

However, it is not hard to show that the real-valued functions for (iii) and
(iv) are composed of simple type (a) and (b) ACFs. We will demonstrate this as
follows. Let N3 be the space of normals to planes in R°. Note that N3 is of course
isomorphic to R3. We now define the functions F4 and Fj to model the computation
of type (a) and (b) ACFs. These functions will be composed to compute the more
complex type (¢) ACFs and DACs. Let F4 and Fp be real-valued functions

Fo, Fp:REXREX N R

where
Fy(bn, b;, N, ©) =b, N(6)— b; - N(©)

149

and
Fp(an,a;,N,0) == ap(0)- N —a;(0)- N.

Clearly, 4 and Fp3 can be used to compute ACFs for all type (a) and (b)

constraints. They can also be used to compute type (c¢) ACFs as follows:

FA(bj, mid(eb), N,', @), if 2 = 1, 2;
Fg(a;, mid(e,), N;, ©), if 1 = 3, 4.

d;(0) = {

Np(©) is already computed as the real-space normal for a type (c) C-function.
With Np(©) in hand, DACs can be computed using Fp and Fj4. This is because
DACs are essentially constraints on tangent vectors to the [aces of the polyhedra
in question, and the tahgent space of R is isomorphic to its normal space. We
will show how to compute DACs using type (a) and (b) ACFs. Our trick for
rotating a tangent vector (v, p) simply involves rotating the line segment (p, v + p)

to (p(®), [v + p}(©)). For example,
T\(©) - Np(©) = Fn(mid(ea(@)g)) + T1(80), mid(ea(©0)), Np(6), e)

Here O¢ denotes some fixed orientation. Typically ©¢ is the identity element for
the rotation group, i.e., it denotes no rotation at all, and will be the orientation
in which the polyhedra are given, and in which the tangent pairs arc initially

computed. In particular, [T;(0)](©) = Ti(O).

Our reduction of all applicability computation to a few simple functions is
partially motivated by msthetics, and partially by the design of an algebra system

for our planner. The reduction will admit a simpler and more elegant design.

3.12.1. A Conjecture

Let us make one final comment on type (c) ACFs. For each type (c) C-function,
there are two type (¢) ACFs. One type (¢) ACF (3.6) is the product of two
type (a) ACFs; and the other (3.7) is the product of two type (b) ACFs. These
products are constrained to be negative. In practice, we would probably wish only
to compute the value of each subresult (d;) for each type (a) and (b) ACF, and then

compute a logical conjunction to determine when one is negative and the other

150

positive, instead of computing their product.? We conjecture that the composition
of type (c) C-functions and ACFs reflects the underlying algebraic structure of these
constraints: observe that each type (c) face f,; of the Minkowski solid B © A(©)

is the composition (by direct sum) of an edge on A and an edge on B:3

fa,b = ea(@) @ €p. (314)

Similarly, the (real-space) normal N, to such a face is the composition (by vector

cross-product) of an edge on A and and edge on B:
Nap = €4(0) X e. (3.15)

In this chapter we have derived a new symmetry, a symmetry for the ACFs of type -
(c) constraints. In particular, it is now clear that type (c) ACFs are the composition

(by scalar multiplication) of a pair of type (a) or (b) ACFs.

2This approach is taken for the implemented planner.
3Equations (3.14) and (3.15) are from Lozano-Pérez (1983).

4
Mathematical Tools for Motion Planning
in a Six Dimensional ConfigurationSpace

4.1. Introduction

Our earlier presentation of representational issues and applicability constraints
in $3 X SO(3) addressed basic theoretical issues for the motion planning problem.
In this chapter we discuss specific issues which were critical for the implementation
of the planning system described in chapter 2. The fundamental issue is the
tntersection problem in high-dimensional configuration spaces:

(i) low do we intersect high-dimensional level C-Manifolds to construct an
intersection manifold?

(i) How do we intersect a trajectory in configuration space with C-Space constraints?

Examples and applications of these results may be found in chapters 1 and 2.

We will proceed as follows. First, as a “simple” example, we will solve these
problems for the configuration space ®2 X S!. For this space the algebra is not
unreasonable and illustrates some of the complexities of planning for the 6 DOF
case. However, in 2% X SO(3), the equations for some constraints (notably, type (c)
constraints) can fill several pages. For this reason, I first computed the general form
of the intersections for an arbitrary constraint, and then solved all intersections
using Macsyma (LCS (1983)). The results were then optimized and compiled into

Lisp. For all practical purposes these results are in machine readable form only. For

152

example, using Euler Angles parameterized by © = (¢, 0, ¢) for three-dimensional
rotations,! a type (b) constraint in Macsyma becomes:
((-XC(AI) «+XC(NGJ) *COS (PHI) ~-XC(AI) *YC (NGJ) *SIN (PHI)) *COS (THETA)
+XC (AI) *ZC(NGJ) *SIN(THETA) -YC (AI) *YC (NGJ) *C0S (PHI)
+YC (AI) *XC (NGJ) *SIN (PHI))
*C0S (PSI)
+((YC(AI)*XC(NGJ) *COS (PHI) +YC (AI) *YC(NGJ) *SIN (PHI)) *COS (THETA)
-YC (AI) *ZC (NGJ) *SIN (THETA) -XC (AI) *YC (NGJ) *COS (PHI)
+XC (AI) *XC(NGJ) *SIN(PHI))
*SIN(PSI)-ZC(AI) *ZC (NGJ) xCOS (THETA)
+(-ZC (AI) *XC(NGJ) *COS (PHI) -2C (AI) *YC(NGJ) *SIN (PHI)) *SIN (THETA)
-YC{NGJ) *C0S (PHI) +XC{(NGJ) *SIN(PHI) +ZC (NGJ) *Z+YC (NGJ) *Y+XC (NGJ) *X
~ZC (BJ) *ZC (NGJ) ~YC (BJ) *YC (NGJ) -XC (BJ) *XC (NGJ) .

This is the simplest of the constraints; a type (c) constraint is over 10 times as long.
For ®3 X SO(3) our approach has been to (1) derive these constraints (and the
ACFs) from some arbitrary representation for rotations, (2) reduce each constraint
to a series of simpler, canonical forms which are linear, bilinear, or quadratic in the
terms of interest, and (3) develop simple mathcmatical procedures for operating on

the canonical forms.

For example, to construct an intersection manifold for n constraints, we

essentially need to solve a set of n simultaneous equations, each of the form
f(X)=0. (X e R X SO(3))

We proceed as follows. Let D = {z,y, 2,1,0, ¢ } be the set of all the degrees
of freedom. I'irst we select P, a subset of 6 —n elements of D. P will parameterize
the intersection manifold. The variables in P will be the free variables which the
planner can choose; the variables D — P will vary dependently with P so as to stay
on the intersection manifold. Mechanically, this entails (1) solving the n constraints
simultaneously eliminating all but one variable in D — P, and (2) expressing all

dependent degrees of freedom D — P in terms of the free variables P.

The canonical forms are expressions for C-functions which make explicit the
coeflicients of the depeudent variables (D — P) themselves, and of the sines and

cosines of these variables. 13 complicated equations describe the canonical forms

"Buler angles are implemented as rotation matrices in the planner. See Sywmon (1971).

153

of a C-function, and 9 equations are needed for a type (a) or (b) ACF.2 Complete
Macsyma listings of these procedures are provided in an appendix. Before wading
into these waters, however, let us turn our attention to the configuration space
R? x St

We will adhere to the definitions and conventions established in chapter 3.

4.2. The Intersection Problem in R2 x S!

The find-space and find-path problems in ®2 X S! are of considerable intrinsic
interest. We have suggested that good algorithms for the two dimensional Movers’
problem could be developed by planning along the intersections of constraints. Some
of the necessary theoretical tools for this approach are presented in this section.
These results illustrate the principles necessary for planning along intersection
manifolds in 8% X SO(3). The derivations are simpler because (1) the constraints
are simpler and (2) the applicability regions are merely sectors on the unit circle. A
complete, general path planner has been implemented for this problem (see Brooks
and Lozano-Peréz (1983)). This scction serves both as a pedagogic example and as

a presentation of a new approach to the planning problem in R®2 X S

To plan paths along the intersections of constraints, we must be able to construct
the intersection manifold of some set of constraints. To preserve tradition (see
Brooks and Lozano-Peréz (1983), for example), we will call any level-0 C-manifold a
C-surface. A C-surface is the space of configurations where a C-function is applicable
and zero-valued. C-surfaces are interesting because they bound C-Space obstacles.
We will derive the form of the intersection of any two C-surfaces in %2 X S!. Each
C-surface is a 2-dimensional manifold in ®2 X S!, and their intersection manifold is
a curve p in ®% X S!. We derive a curve p which is parametric in .3 Since there are

2 types of C-surfaces (type (a) and (b)), there are 3 types of intersection manifolds.
4.2.1. The Intersection of Two C-Surfaces in R2 X S!

We describe a technique for finding the intersection of two C-surfaces for the

two dimensional mover’s problem with rotations. Throughout this discussion of

2We sce now why it was desirable to express all ACFs and DACs as compositions of type (a)
and (b) ACFs.
3Recall that (z,y,0) is a typical point in the C-Space R% X S!.

R? x S!, we will employ the abbreviations C = cosf and S = sin 0. The surfaces
are embedded in a 4-dimensional manifold and expressed as functions on (z,y,C, S)
with the added constraint that C? + 8% = 1. A system of equations for two surfaces

can then be solved for z and y in terms of C and S.

Two type (a) constraint surfaces are functions of the form f(z,y,0) = 0, for

example:

sin(0 4+ X\;)y + cos(@ + \;)z — ||bj|| cos(0 + \; — ¥;) — llas]| cos(hi — m;) (al)

sin(0 + Xy + cos(0 + X))z — [|bjl| cos(0 + X\; —) — llal| cos(Mf — 7)) (a2)

Similarly, two type (b) surfaces are:

sin(4;)y + cos(¢;)z — [|ail| cos(6 — ¢, + 7:) — ||b;]| cos(4; — ;) (61)

sin(4;)y + cos(¢))z — ||a;]| cos(0 — 65 + 1) — [|bjl| cos(b5 — ;) (62)

Refer to figure (4.1). Here the a;’s are vertices of the “negated” moving polygon
(©A in Lozano-Pérez [1981, 1983]), in its local coordinate system. 7; is the angle
the line from the origin of that coordinate system to the point a; makes with the
coordinate system’s z axis, and \; is the angle made by the normal to the segment
from a; to a; . Similarly the b;’s are the vertices of a convex obstacle polygon, 7;
the orientation of the line from the origin to b;, and ¢; the orientation of the normal
to the segment from b; to b;, ;. The parameter 6, a parameter of the configuration
space, measures the angle between the z-axes of the object and obstacle coordinate

systems.

Type A constraints can be thought of as being generated by a face (edge) of
the moving object A coming into contact with a vertex of an obstacle B, and a

type B constraint as a vertex of A coming into contact with a face (edge) of B.

Y

X5

teference
vertex

(-7}

generating line

(]

........

- - -

type A

fl licontg-v)

type B

Figure 8. Thertwo types of lur-f;ces can be defined by bring the reference point of the

negative of moving object A into contact with a vertex and an edge of fixed obstacle B.
Both are defined over a range of orientations 8.

Figure 4.1. An illustration of the terms in cquations (al) and (b1). Reprinted with permission
from Brooks and Lozano-Peréz (1983).

156

Each constraint is valid only over a fixed range of 0. For type A surfaces the range

is given by 8 € [¢;_1 —\i, ¢;—\;] and for type B surfaces by 6 € [¢;—N;, d;—Ni—1]."

By applying trigonometric reductions we can express these constraints as

follows (only (al) and (bl) are shown):

cos(X\;)Sy + Csin(\;)y — sin(X\;)Sz + C cos(\;)z
+sin(; —)|1b5]1S — llail| cos(Mi — ms)
— Ccos(\; — ;)l[b;]| (al)

sin(@;)y + cos(¢;)z — ||a;]| sin(d; — n:)S
— Ollasl| cos(¢; — m:) = [[bjl| cos(; —) (61)

Where
C =cosf, 8§ =sinb.

Now, we can consider a pair of these equations as a system in four variables,
(z,y,C,S), and proceed to solve (al) and (b2), (b1) and (b2), and (al) and (b1) for
z and y. For example, the intersection of two type (a) surfaces, (al) and (a2) is a

curve

p:raln'r(ﬂ_’mz X Sl

where 7,1 Nrq2 C S! denotes the intersected applicability constraints for
(al) and (a2). Although the solutions are in the variables C' and S, we can use
C = cos@ = cosr and S = sin@ = sinr to generate the curve of intersection
in ®% X SL. Because of their excessive length, these equations may be found in

appendix I.

4.2.2. Intersecting Trajectories with C-surfaces

A General Discussion for %2 X S! and R* X SO(3)

In order to motivate a discussion of the intersection problem for trajectories

and C-surfaces, we now introduce the problem in a context which will be expanded

1 Source: The last three paragraphs are excerpted from Brooks and Lozano-Pérez, [1983].

157

- upon in chapter 5Thﬂ'*“*"*

In principle it is possible to intersect arbitrary trajectories with C-surfaces—
such trajectories could translate and rotate simultaneously. Once an intersection
is found, we must then determine whether (1) the C-surface is applicable, and (2)
whether it lies on the boundary of a C-Space obstacle. The question of applicability
may be resolved a priort by maintaining and updating an accurate set of applicable
constraints as the planner moves through rotation space. This set is called the
applicability set. As the planner moves from © to ©’, the updating algorithm
must detect which constraints have ezpired (ceased to be applicable) and which
new constraints have been activated (become applicable). The expired constraints
are deleted from the applicability set, and the new constraints are added. In this
manner the trajectory will be intersected only with the applicable constraints.
Another approach involves intersecting the trajectory with all C-surfaces, and then
finding the first applicable intersection on the boundary of a C-Space obstacle.
The first strategy is more general in that it decomposes the image of the trajectory
into equivalence classes where the applicability set is invariant. Hence it can in
principle be used to map out these equivalence classes on SO(3). However, for
most environments the latter strategy runs faster, although both techniques can
be shown to have the same asymptotic complexity. Both algorithms have been

implemented® and tested, and are presented later in chapter 5.

There are also two ways to determine if an intersection lies on the boundary
of a C-Space obstacle. Let X be the intersection point of a trajectory with an
applicable C-surface f. Then X lies on the boundary of a C-Space obstacle bounded
by f if either of the following holds:

(i) All applicable C-functions in f’s family are negative or zero-valued at Xx.6

(ii) If the projection of X into real-space lies within the displaced face of the
Minkowski solid corresponding to the generators for f.

Correctness Argument: Let us briefly discuss why (i) and (ii) are equivalent. The

correctness of (i) is obvious, since the C-Space obstacle is constructed as the finite

intersection of half hyperspaces, each of which is defined by a real-valued function

on C-Space. Let § denote the face of the Minkowski solid, and z the projection of

SFor R X SO(3) but not for K2 X S

6The famsly of a C-function is defined in 3.2.

159

the intersection point into real-space (i.e., X = (z,©)). We will demonstrate that
(i) & ().

(=) Suppose (i), but not (ii). We demonstrate a contradiction. z must lie on
the plane of §, even though z &S, since that is how the C-functions are defined
(X could not be an intersection point, otherwise). Recall that the normals of the
faces (and planes) bounding the Minkowski solid are defined to be outward-directed
from the interior. Since the Minkowski solid is convex, the plane of S bounds a
half-space entirely containing the solid. If z is not within §, then it must be outside

the plane of some other face, §’, which shares an edge with S. But in this case,

the C-function corresponding to §' will be positive-valued: a contradiction.

(&) The Minkowski solid is convex. If z € §, then it is behind (or on) the
plane of every other faces of the solid. The C-functions are defined in terms of the

distance of from these planes, which must be negative (or zero). 1

One further note: suppose that all intersections with C-surfaces—including
non-applicable C-surfaces-—have been sorted along the image of the trajectory in
C-Space. Then if X is the first intersection for which (ii) holds, then f is applicable
and X lies on the boundary of the C-Space obstacle. Again, both approaches have

been implemented, and the results are discussed later.

Intersecting Trajectorics with C-surfaces in %2 X S1

We will now present methods for intersecting pure translational and pure
rotational trajectories with C-surfaces in %2 X S!. Note that as long as every path
of interest lies entirely within open sets of ®2 X S, then for every such path there
exists a homotopically equivalent path composed of “staggered” pure translations
and pure rotations. We assume such paths can be expressed as (piecewise) linear
functions of some parameter. Intersecting such a path with a C-surface entails

finding the zeroes of the associated C-function (with respect to the parameter).

Pure Translational Paths. Note that (al) and (bl) are linear in z and y. At a fixed
orientation their projection into real space is a line. A pure translational path is
also a line. Clearly then, intersection of a pure translational path with a C-surface

is trivial.

160

Pure Rotational Paths. A pure rotational path is a linear function from I' to S
Intersecting such a path with a C-surface involves finding the zeros (with respect
to §) of the C-function at a constant translation. Observe that C-surfaces (al) and

(bl) are linear in C and S, that is, they can be expressed as

EC+ES+E;=0 (41)

where the terms E; (for ¢ = 1,2, 3) vary only with z and y. The zeros of (4.1) are
not hard to find. First we note that (4.1) can be expressed as a pure quadratic in
C (or S), and that solving a quadratic for its zeros is easy. (We must, of course,
check for the first applicable zero which is on the boundary of a C-Space obstacle).
This method is not the best because of susceptibility to numerical problems and
singularities. Happily, such equations arise frequently in robot kinematics; Paul
(1981) describes a stable, singularity-free calculation for the zeros of exactly this
form of trigonometric equation.
Practical Note

The reader will notice that motion sliding along an intersection manifold
in 2 X S! will not in general be a pure translation or rotation. We have not
derived the results for intersecting arbitrary trajectories with C-surfaces in %2 X S,
although in principle it is possible to do so. Note that any such sliding motion
can be approximated as closely as desired by a sequence of pure translations and
rotations, and furthermore, any such “approximating” planner will be complete (in

the sense discussed above) if the “sliding” planner is complete.

Furthermore, our purpose here is a theoretical analysis in low dimensions
which still illuminates some of the staggering difficulties in R3 X SO(3). As it turns
out, with the additional degrees of freedom in R3 X SO(3), this turns out to be

considerably less of a restriction.

4.3. Related Problems in 22 X S

There are a number of interesting related problems in %2 X S!. The first
addresses techniques for “sliding” along one geometric constraint (C-surface).

Sliding is a useful way to circumnavigate obstacles; it can also be used to slide to an

161

intersection manifold. The second result is of use in the find-space and coordinated
motion problems, and involves characterizing the minimum clearance to a C-surface
in N2 X S!'. Again, these results are presented not only for their intrinsic interest,
but also as an exposition of some of the algebraic techniques required and as an

illustration of the complications arising in high-dimensional configuration spaces.
4.3.1. Techniques for Moving Along C-Surfaces in %2 x S!

In this section we present techniques for moving along a C-Surface. We could
imagine using these methods to move to the nearest “edge” (C-Surface intersection),
for example. A level C-Surface is defined via a function f(z,y,0) = k for k constant.
[is exactly of form (al) or (b1) (above), and the level surface in R2 X S! is all
points

L={Xe® Xr/|f(X)=k},

where 7y C S' is the 8 applicability range for f.

Define a hyperplane in 2 X S! as the set

P={XecRxS'|X H=—-hy},
where H = (hy, hg, h3).

We intersect the level surface L with the hyperplane F to obtain an intersection
curve p : I' — R? X S'. The equation for this curve for both type (a) and (b)

C-surfaces may be found in appendix I.
4.3.2. Characterizing Clearance to a C-Surface

It would be very useful to characterize the minimum clearance to a C-surface.
The result could be applied in the coordinated motion problem to determine where
two mobile objects could possibly interact. In the find-space problem, we could use
clearance information to maximize the clearance to a constraint while placing one

object, in order to leave room for another. We would like to answer the question:

o IFor a point by € R%, at what orientation is bzy closest to a C-surface, and
what s minimum directed clearance vector at that orientation?

Using Lagrange multipliers, we can minimize a function f(z,y,8) subject to a

constraint g(z,y, 0) = 0 by construcling the auxiliary function

162

II(Z) Y, 075) == f(fl), Y, 0) - Zg(:l), Y, 0)

and simultaneously solving the partial derivatives of H. In our case, ¢ will define
a C-surface, and f will be a distance function. Now, the rotational dimensions
cannot be treated uniformly in establishing a metric, so we will define distance in
Euclidean space. Minimizing the square of the translational distance suffices for

our purposes. Hence,

f(2,9,0) = (z ~ b2)* + (v — by)*.

Differentiating H gives us a system of four equations. Solving these equations for z,
y, 0, and £ is not trivial. We provide the solutions and their derivation in appendix

L. (Solutions are given for both type (a) and type (b) C-surfaces).

4.4. The Intersection Problem in R X SO(3)

In this section we extend the previous examples of intersection problems to
the B-dimensional C-spare B3 ¥ S§N(2). At this point we must commit ourselves
to a particulaf representation for rotations. The implemented planner uses a
rotation matrix specified by Euler Angles. Implementing a different representation
for rotations (such as spherical angles, quaternions, or joint angles for a Cartesian
Manipulator) would merely require replacing the Macsyma rotation abstraction
ROTATE-VECTOR with the appropriate new function (and recompiling the algebra
system). The Euler Angles are

© = (¢,0,4).

The intersection problems in ®% X SO(3) are as follows. With each problem
we give the motivation for attacking it.
(i) Intersecting (level) C-surfaces. (Necessary to construct the intersection manifold).

(ii) Intersecting Level ACFs. (Interesting theoretical question: relates to planning on
different kinds of intersection manifolds, and exploiting coherence in C-Space
constraints).

(iii) Intersecting C-Surfaces with Level ACFs. (Same as (ii)).

(iv) Intersecting Trajectorics with C-surfaces. (Indicates that we may have hit a
C-Space obstacle).

163

(v) Intersecting Trajectories with ACFs. (Indicates that a constraint has expired
(ceased to be applicable)).

Note that we never have to intersect a trajectory with a DAC, since any path
straying out of a type (c) constraint’s applicability region must first violate an ACF
boundary (see Theorem III.5). Since all ACFs can be composed out of type (a) and
(b) ACFs, we need only deal with three distinct kinds of functions on %% X SO(3)
and two on SO(3). In the context of this section the term ACF is used to refer
only to the basic type (a) and (b) ACFs out of which all ACFs and DACs may be
composed.

Our approach is as follows: We express all C-functions and ACF's in certain
canonical forms. The Macsyma procedures to derive these forms are provided in an
appendix. We then develop certain operations which are defined on any function
expressed in these forms. Throughout this discussion of %% X SO(3), we use the
notation C = cosa and S, = sin o where a € {,0,¢}. Most of the claims in
this section should be self-evident when the rotation matrix R(©) for Euler Angles

is considered.

Claim 4.1: All C-functions are affine in z, y, and 2z. This is obvious, since R(©) is

a linear transformation. &

Claim 4.2: While expressions for C-functions and ACFs can contain cross-terms of
the form CySg, SaSg, or CoCp, it should be clear that o 5% 8, that is, C, can

always be expressed as an afline function of S,.

To derive this, consider the definition of a C-function (equation (4) in chapter

3) once more:

fp(z,0) = (N(©),z) — (N(8), (a:(©) + b;))

Only the term (N(0), a;(©)) could result in any troublesome terms. For a type (b)
constraint, N(0) is a fixed vector. For a type (a) constraint, N(O) is a rotated

normal of a face of 4, and we have

{(N(©),a:(0)) = (N, a).

164

Finally, for type (c) constraints, N(©) is the cross product of e,(©) and e;. This

results only in cross-terms of different angles:

(0:(©),ea(©) X es) <al(6);(az} @) — a4)) X ep)
<ai(9): z+l X €y — a,(@) X eb)
= (a;(©), a;1+1(0) X ep)

= {

i(©) X ai11(©))-

o
o
Q

A proof for the ACFs is very similar. §
4.4.1. Canonical I'orms for C-functions and ACF's

Definition: The Linear Form for a C-function f : %% X SO(3) — R is an equivalent

expression

f((l), Yy, z, 8) = Elm + EZ?/ + E3z + E4;
where E; : SO(3) — R (for . = 1,2, 3,4).

Definition: A Trigonometric Quadratic Form (TQF) (in ¢) for a C-function f is

an equivalent expression
f($1y72)¢)0)¢) - Flsin¢+F2cos¢+F3,

where
Iy R X (4,6) - R (t=1,2,3)

Definition: A Trigonometric Quadratic Form (TQF)(in ¢) for an ACF g : SO(3) —

RN is an cquivalent expression
g(¥,0,) = G, sin ¢ + Gocos ¢ + G,

where

G;: (1,0) - R. (1=1,2,3)

The TQFs are defined here in ¢—of course we must also define the TQFs in
and in € in the natural way. ¢ will be our typical example angle in this discussion,

however.

165

Before we proceed let us provide some intuition for these definitions. Imagine
deriving a linear form for a C-function, and setting the expression equal to zero.
The result is just an expression whose coeflicients make explicit how the plane

equation of the face of the Minkowski solid changes with rotation.

A TQF (in ¢) is just a way of expressing C-functions and ACFs in terms of
the coeflicients of sin ¢ and cos ¢. Linear forms and TQFs will be useful canonical
forms for the intersection problem in %2 X SO(3). It is important to realize that the

coefficients E;, F;, and G; are actually functions on the other degrees of freedom.
We see immediately from claims (4.1) and (4.2) that:

Claim 4.3: Every C-function can be expressed as a linear form and as a TQF in

¥, 0, and ¢; similarly, every ACF can be expressed as a TQF in 9, 0, and ¢.

4.4.2. Intersecting C-surfaces in %3 X SO(3)

When intersecting C-surfaces in 2 % S1, we essentially eliminated variables in
a system of eqﬁations. This corresponds exactly to “spending” degrees of freedom
to comply to two constraints. In R? X S!, there were few choices for which
variables to eliminate. However, in 3 X SO(3), we have many more degrees of
freedom, and hence there are more choices for how to solve the intersection of
a set of constraints. For example, to construct the intersection manifold of three
constraints, we could spend all the translational degrees of freedom, which would
result in parameterizing the intersection manifold by (1,6, ¢). Alternatively, we
could in principle eliminate the rotational degrees of freedom and parameterize
the intersection manifold by (z,y,2). In the former case, we leave (¢,0,¢) as
independent degrees of freedom: parameterizing the intersection manifold simply
involves solving the 3 constraints simultaneously for z, y, and z in terms of (¢, 9, ¢).
To move along their intersection, we are free to plan any values for (¢, 0, ¢), and
the parameters for the translational degrees of freedom will vary so as to comply
to the simultancous set of constraints. Obviously the choice of which degrees of
freedom should parameterize an intersection manifold is important; linear forms
and TQFs give us a general way of attacking it. This approach is best illustrated

through the following examples:

166

Ezample (i). A C-surface in linear form is an expression for a C-function in linear
form set equal to zero. Two C-surfaces expressed in linear form may be intersected
to yield a 4-dimensional intersection manifold parameterized’ by (2,%,0,¢). This

amounts to simultaneously solving the equations

f(z,9,2,0) =Eiz+ Eyy + Esz2+ E4 =0
9(z,y,2,0) =FE{z+ Ejy+ E{z+ E; =0

by first eliminating = and then solving for y. This yields expressions for z and
y in terms of (2,1,0, ¢); we say that (z,1,0,$) form a 4-parameter family for
the intersection manifold, and that z and y comply to the C-surfaces f and g as

(2,,0, ¢) are varied.

This intersection has the following geometric interpretation. Imagine holding
orientation constant at ©;. Then E; and E are all constant also. Intersecting f
and g at a constant orientation is equivalent to intersecting two planes in R3. The
intersection is a line, and the position along the line may be parameterized by
the one remaining translational degree of freedom, z. The planes intersected are
exactly the planes of the faces of the Minkowski solid for f and g at orientation
;.

Ezample (11). The intersection manifold f(X) = ¢(X) = 0 from example (i) may
be intersected with another C-surface, h(X) = 0, cxpressed in linear form. Suppose
z is eliminated. Then the intersection manifold for f, g, and h is parameterized by
(¥, 9, 8). The translational degrees of freedom z, y, and z, will be expressed in terms
of the rotational degrees of freedom, and will slide along the intersection manifold
as rotations are chosen. The new intersection manifold f(X) = ¢(X) = h(X) =10
is a 3-dimensional sub-manifold of %% X SO(3). This intersection has the following
geometric significance. Imagine holding orientation fixed at ©; once more. The
intersection at a fixed orientation of f, g, and h is the intersection of three planes
in 3. This intersection (if it exists) is a typically a point. If © is allowed to vary,
the intersection point moves. The coordinates of the intersection point are the z,

y, and 2z degrees of freedom as they comply to the intersection manifold.

?Assume that the constraints arc not parallel, and that this is possible, ete.

167

Examples (i) and (ii) show how to spend translational degrees of freedom to
intersect C-surfaces. In (i), we saw that it is possible to plan motion along the
the 4-dimensional intersection manifold with one translational and three rotational
degrees of freedom. (i) can be used to plan a pure translational path complying
to two C-surfaces. The free translational parameter may essentially be chosen to
maximize progress in a search algorithm. This is precisely how one “local expert”

in the implemented planner works.

One last note on linear forms: the discussion and examples above can be easily
generalized to arbitrary level C-surfaces (instead of C-surfaces with level 0) by
increasing or decreasing E4 (the “constant” term in the linear form) by a constant

equal to the level.

Intersecting Two TQI's

Consider a TQF g (in ¢) for either a C-function or an ACF,® and suppose
further that the TQF has been set equal to zero so that it is actually a TQF surface,
ker g, by which we mean a TQF for a C-surface or ACF boundary:

Fising + Fycos¢p -+ F3 =10

Such a TQF can be expressed as:

(F? 4 F2)cos® ¢ + 2Py cos ¢ + F3 — F2 = 0. (4.2)

The new expression is quadratic in cos@. (This explains the name TQF). The
procedure for intersecting two quadratics is well known.? Such a procedure can
be used to intersect two quadratics of form (4.2) (i.e., with cos¢ treated as the
quadratic variable). Thus we can obviously intersect any two TQF surfaces. This
means that the procedure for intersecting two quadratics can be applied to TQFs of

C-surfaces and of ACF boundaries. This immediately yields an effective procedure

8Depending on whether the TQF is a C-function or ACF, the functions F; will have dilferent
domains, but this will not matter for our discussion.

*For example, sec Winston and ilorn (1981), (p. 175).

168

for constructing the intersection manifold of two C-surfaces, two ACI' boundaries,
or a C-surface and an ACF boundary while spending only rotational degrees of

freedom.

4.4.3. Intersecting Trajectories with C-Surfaces and ACF Boundaries in
3 X SO(3)
In this section we extend the method of (4.2.2) for intersecting arbitrary linear

pure translational and pure rotational trajectories with C-surfaces in R X SO(3).

Pure Translational Paths. A pure translational path can not stray out of an
applicability region. It is not hard to intersect a linear pure translational path with
a C-surface. Such a path can be represented as a line in R3. At the fixed orientation
of the path, any C-surface can be represented as a plane in R#°. Hence the problem
of intersecting a C-surface with a (linear) pure translational path is simply the
problem of intersecting a line with a plane. The linear form of any C-surface

directly provides the coeflicients of this plane for any (applicable) orientation.

Note that in intersecting a pure translational trajectory from some configuration
X &€ F with a set of applicable C-surfaces, we need only consider C-functions which

are positive-valued at X.

Pure Rotational Paths. We restrict our attention to linear, pure rotations in

one rotational direction (i.e., in +4), 40, :I:gAb), for example,

B(t) = ko + kqt (tell)

(for some constants kg and k). To intersect such a path with a C-surface (or ACF
boundary), we simply find the zeros of the appropriate TQF. For this example, we
would use the TQF (in ¢) for the C-surface:

Fysin¢g -+ Fycos ¢ + F3 = 0. (4.3)

With motion strictly in ;b, the functions F; will be constant, and may be regarded
simply as the coeflicients of a quadratic form. (4.3) is easily solved for the values of

¢ which are its roots (see section 4.2.2). Now, depending on the solution technique,

169

(4.3) may yield several roots. The correct root may be chosen as follows: for a
C-surface, we choose the first root where the C-surface is applicable. For an ACF
boundary, we choose the first root where the associated C-surface is applicable.

This last step requires examining the other ACFs for the C-surface.
Completeness and Complexity for Rotational Trajectories

We have seen that a continuous path through rotation space can be approximated
as closely as desired by a series of linear motions along the rotational axes. We now
show that the number of path segments required grows linearly as the resolution

of the approximation becomes finer.

Definition: Let V be a vector space, and P and P! be trajectories in V. We say
that P’ approzimates P at resolution 7 if for all p’ € P’, the perpendicular distance

of p’ to P is less than 1.

Proposition 4.4: A linear trajectory in a vector space can be approximated by a
number of path segments along the axes, which increases linearly as the resolution

becomes finer.

Proof: Suppose V = R3, and P is a linear trajectory from u to v. Imagine
approximating P by linear motions along the Z, , and 2 axes. Segment, P into &
subpaths. From u, attain each of the k — 1 subgoals (and v) by 3 linear motions
(along %, 4, and %) from the previous subgoal. This yields a sequence P' of 3k
motions which approximates P at resolution 7. We can bound le from above as

follows:

1
o < Emax(lvz — g, [y — uyl,

Vy — Uy I)

To achieve a particular resolution 7, it is casy to choose the smallest k satisfying

the reverse inequality. We see immediately that k varies linearly with 7. g

Let the angle space @3 be the domain of a chart for S0(3), as described in
chapter 2. Then the angle space trajectory

p(t) = O + td

170

for

D = ath + b0 + ¢

specifies a well-defined trajectory R(p(t)) in SO(3).

Proposition 4.5: We can approximate p as closely as desired by a sequence {g¢; } of
motions in @3 along the 1}, i), and a) directions. Furthermore, the size of the set

{ ¢; } grows only linearly as the resolution 7 becomes finer.

Proof: Immediate, from proposition (4.4).

4.5. The Algebra System

The treatment here of the implemented algebra system is mercifully brief.
Given the discussion, the details, at least in principle, should be easily imagined
by most readers. In computer algebra these problems are well understood, and the
system does not make a significant contribution to that field. I would like to note,
however, that the algebra system is both massive and at the heart of the planning
system. It takes 12 hours for a dedicated VAX to optimize and compile the vector
form of the constraints (in Macsyma) into the primitive functions of the Lisp algebra
system. On top of these primitives is built a more abstract system, which (for
example) can evaluate constraints, intersect constraints, intersect trajectories with
constraints, and find zeros of constraints. The intersection and evaluation system
has automatic singularity handling (for division by zero, imaginary roots, alignment,
etc). For example, to intersect two C-surfaces (a ld example (i)), the planning system
will typically specify a list of preferences for the translational parameterization of
the intersection manifold. The system then attempts to construct an intersection
manifold with a high-ranked parameterization, and on encountering singularities

will back up and try again.

It should now be clear how the algebra system for the planner is designed.
For each kind of constraint (C-function or ACT), the algebra system contains
procedures which compute the coellicients of the linear form (for C-surfaces only),

and coeflicients of the TQI's. Each of these procedures can be thought of as a

171

function of (1) the constraint, and (2) the parameters not explicit in the form (for
example, the rotation parameters for the z coefficient of a linear form). On top
of this is built a level of abstraction, so that for example the operation “compute
the sin ¢ coefficient of the TQF (in ¢)” is defined on all constraints. Coeflicients
of all possible forms are described by a total of 12 coefficients for the linear forms
of C-functions, 27 coefficients for the TQFs of the C-functions, and 18 coeflicients
for the TQFs of the ACFs. (These functions correspond exactly to the functions
E;, F;, and G;, above). All of these functions are constructed and optimized by

Macsyma running under NIL (Burke (1983)), and then converted into Lisp.

We have also experimented with precompiling functions for all possible
intersection manifolds (up to some degree).!® For intersection manifolds of degree
2 or 3, this is not hard, and in fact we have already illustrated all the necessary
mathematics in this chaptef. Intersection manifolds of higher degrees may be
constructed by solving for the submanifold representing the simultaneous satisfaction
of several constraints, for example, three constraints in linear form together with
two TQFs such as (4.2). When higher degrees are considered, this becomes
quite complicated, especially when we allow different parameterizations of the
intersection manifolds. Construction of intersection manifolds of higher degree may
be easier when different representations for rotations—such as unit quaternions—are
employed. This appears a fruitful direction for future research. In practice, we view
it as preferable, wherever possible, to obtain the values of coefficients of a form
at a certain configuration, and then to plan locally while keeping these coeflicients
fixed. Thus for example, we might compute the coefficients of the linear forms of
two C-surfaces at a given orientation, and then intersect the resulting planes to
obtain a translational path along their intersection. The structure of the forms
makes this easy to do. For example, rotating the moving object (say, in (?)) until
it hits a constraint is mathematically a complicated operation. All we need do,
however, is find the cceflicients of the TQF in ¢, and supply them to a procedure
in the algebra system which finds the zeros of TQF surfaces. (But see chapter 5 for
the details of the applicability set computation).

10The degree of an intersection manifold is simply the number of constraints intersected there.

172

4.6. Related Issues in R X SO(3)

4.6.1. Normals to C-surfaces

Let f be an applicable C-function and X a configuration on a level C-surface
for f. When an appropriate inner product is defined on the tangent space,!! the
normal to the C-surface at X is the gradient of the C-function f evaluated at f.
Normals to C-surfaces are of great importance for motion planning. The gradient
may be computed as follows: first the coefficients for the linear form of f (evaluated
at X) are obtained:

f(X) = E\z + Exy + E3z + E,.

Clearly, % = B, % = Fs, and %% = F3. To obtain the partial derivatives in the
rotational direction, we find then coeflicients of the TQFs (evaluated at X)

f(X) = Fisin¢ + Fycos ¢ + F3

to obtain

af .
5—(; = F} cos ¢ — Fysin ¢.

4.6.2. C-functions, Potential Fields, Penalty Functions, and Morse Theory:
A Conjecture

A popular approximate algorithm for collision avoidance places “potential
fields” around the obstacles (either in real space or in some C-Space), and attempts
to navigate the reference point through a trough of least resistance. The obstacles
may be thought of as having a “charge” which repels the robot, and the goal has an
inverse charge which “attracts” it. The potential field method is closely related to
the so-called “Morse Theoretic”? approach to motion planning, and lends itself to
fast control-loop algorithms which can exercise real-time dynamic control of robot
arms with few degrees of freedom, in simple environments. As might be expected,
the method works best for robots that can be approximated by points or spheres. A

proper potential function increases as the robot approaches the obstacle, and goes

HGee sec. 2.4.2 and Lirdmann (1984).

2Which takes its name from Morse Theory in differential topology.

173

to infinity at the obstacle boundary. Traditionally, the potential function is chosen
somewhat arbitrarily, with much emphasis on the closeness of the “fit” of the
potential surfaces about the real-space obstacles, and with understandable concern
for the computability of such functions by specific control hardware. With the
theoretical tools we have developed, it is now possible to give a potential function in
configuration space which is “cxact.” For a configuration X, let f be a C-function
representing the maximum, applicable, non-redundant constraint from one family.

For each such f, we conjecture that a good potential field function would be:

(F)7F, i f(X) >0,

P(X) - {oo, if f(X)=0.

for some k > 2. Whether or not such penalty functions could be used in devising
a fast real-time control algorithm is, of course, another question. The suggestion is
primarily intended to show that there is a representation on which (in principle)

less approximate potential field methods might be based.

174

5
Moving Through Rotation Space

5.1. Introduction

In this chapter we discuss some of the computational issues involved in
planning paths 'involving three dimensional rotations. The primary issue is that
of keeping track of which constraints (C-functions) are applicable as orientation
changes. In principle it is possible to intersect paths with all ACF boundaries, and
thus to determine which applicability regions the path traverses and crosses. It is
also possible, in principle, to compute the applicability regions a priors, before the
planning begins.! In practice this is computationally infeasible. Even for simple
environments, there are typically thousands of constraints, each of which has at
least 3 associated type (a) and (b) ACFs. We will investigate alternative strategies
which exploit coherence in how the set of applicable functions changes as the
robet moves continuously through rotation space. In previous chapters (particularly

chapter 4) we showed how to intersect trajectories with C-surfaces and ACFs.

The applicability set for an orientation © is the set of all applicable constraints
(C-functions) there. Clearly, there are regions on SO(3) for which the applicability
set is invariant; orientations in the interior of these regions correspond to orientations

where no edges or faces of the robot are aligned with the edges or faces of any

UThis approach is similar to the critical region computations suggested by Schwartz and Sharir

(1981).

obstacle. Ilor a fixed orientation ©, we compute the applicability set by examining
the signs of the ACFs for all C-functions (see chapter 3). However, this is clearly
not an operation we wish to repeat very often, and the applicability set calculation
procedure should be memoized. (A memoized procedure records the answer for a
given input, so it will not have to be recomputed. Instead, it can simply be looked up
in a table). As the robot moves in rotation space, certain constraints will expire as
the path moves out of their applicability region, and other constraints will become
active as we move into their applicability region. This suggests that an incremental
update algorithm should be possible: we imagine detecting when constraints expire,
and when new constraints become active and constructing a Deletelist of expired
constraints and an Addlist of new constraints. The applicability set is then updated

by means of the Deletelist and Addlist.

5.2. The Applicability Decomposition for SO(3)

In this chapter, we will first present a naive algorithm which does not use
an update strategy. We then present a more sophisticated procedure, called the
G update algorithm, which is an incremental update strategy. We have performed
experiments using both algorithms to implement the local operator Rotate, which
was discussed in chapter 2. Both algorithms have the same asymptotic complexity.
Although we have applied both to the find-path problem, they are designed for
fundamentally different tasks. The naive algorithm is specialized for a particular
find-path operator, while the update algorithm is a general tool for computing a

decomposition of C-Space for spatial planning.

The § update strategy addresses the fundamental problem of applicability set
computations in a continuous space. Without the § algorithm, there exists only
the “discrete” applicability set computation, which given one point in SO(3) can
determine the set of all applicable C-functions. With an incremental update strategy
we can map out regions on SO(3) for which the applicability set is invariant. The
boundaries of these regions are ACF boundaries. Let Y(©) be the applicability
set at © € SO(3), and == be a binary relation on SO(3) such that © =~ O’ if,
and only if Y(©) = Y(©'). Clearly, = is an equivalence relation on SO(3), and

S0O(3) is decomposed by =~ into disjoint equivalence classes where the applicability

176

set is invariant. We call this the applicability decomposition for SO(3). Computing
this decomposition is a fundamental step in reducing continuous spatial planning

problems to discrete computational problems.

We will show how to compute these decompositions for sections of SO(3) in
any of the directions § = {i@,ia, :{:(2)} In particular: The incremental update
strategy computes a projection of the applicability decomposition onto a subspace
of SO(3) which is isomorphic to S!. In principle it is not hard to generalize
these sections to arbitrary rotational slices: algebraically this entails solving the
intersection of a TQF with an arbitrary pure rotation. As we have noticed, any
rotation of interest can be approximated as closely as desired be a sequence of

rotations in §, with no loss of completeness (at a given resolution).

The naive algorithm, on the other hand, is highly specialized to the particular
problem of rotating to a constraint. It does not address the more fundamental
problem of decomposing SO(3) into applicability set equivalence regions. We
believe that the applicability decomposition is also important to planning problems
other than find-path, particularly, for find-space, fine-motion, and planning with
uncertainty. However, in practice the naive algorithm has proved faster for rotating
to a constraint than any incremental algorithm we have devised. It is gratifying to
find that both strategies have the same asymptotic complexity; however, we have
no strong indication that the O(/Vlog N) bound we demonstrate is optimal, and

faster algorithms may exist.

5.3. A Naive Algorithm Without an Updatec Strategy

We begin by presenting a naive algorithm for moving in rotation space which
does not employ an update strategy. We wish to design an effective procedure which
is to be given a start configuration s, a goal direction & € { —H,Z, ——{}, +9, —9, +$S, ——55 h
and a goal configuration g. The goal configuration differs from s only in that the
goal angle in the & direction will be g, instead of s,. The procedure determines
if the robot can rcach g along the trajcctory in &, or whether it will strike an
obstacle, in which case it must return the C-surface hit and the intersection angle.

(We use intersection angle to mean the value of « at the intersection point).

177

€,
ﬂ(L
W %
e, 'A
4 Y S 2R S 7 7 77 77 7 7 7 7 7 7 7 7 7 7 7 /7 LAV A iV V]
(a) (b) (c)
Figure 5.1.

Let C be the set of all C-surfaces. Calculate the intersection of the trajectory

p(t) = s + t&

with every C-surface in C (whether applicable or not). Each such intersection can
be expressed as a single angular value (i.e., the value of t or a for which p(t)
lies on the C-surface) and hence as a single point on the unit circle. We can
order the intersection points by their intersection angle with a C-surface. Sort the
intersections around the circle. Then traverse the intersections on the circle in
direction & from s, and find the first intersection which is both applicable and on
the boundary of a C-Space obstacle. In 4.2.2 we gave an algorithm for how this

may be determined.

5.4. Update Strategics: Example

We now proceed to describe how an update strategy works. If constraints could

178

Direction: (MINUS THETR) TStart: 2.42; Goal: 8.0 [boid
]

Csurface Intersections |ACF Intersections

Figure 5.2. As the hammer rotates in the —@ direction from (0, 2.42, $0) to (%0, 0, do), the boxes
in the lower left show the C-Space obstacle boundaries and ACF boundarics that the trajectory
hits. Since the hammer is in free-space, it hils no C-surfaces. However, it crosses many ACF
boundaries.

expire and become active “arbitrarily”, this problem might still be formidable.

However the following observation makes things much easier:

Claim (5.1): When a constraint expires, another “neighboring” constraint

becomes active.

For example, consider figure 5.1, which depicts a cross-section of a rectangloid A
moving above an obstacle face f. As A translates, it rotates in direction 3) In
5.1a, constraint (vy, f) is applicable, and (vg, f) is not. At 5.1b, however, we move
out of the applicability region for (vy, f) and (v, f) becomes active. 5.1b is on
the boundary of the applicability regions, and both constraints are applicable. By
5.1c, however, (vj, f) has cxpired. (ve, f) has replaced (vi, f) in the applicability
set. (vg, f) clearly seems like a neighboring constraint to (v, f), in that v; and v

are adjacent vertices on the cdge graph of A. We would like to devise an update

179

strategy which, given a Deletelist of expiring constraints, could enumerate a small
list of candidates for the Addlist. In general an expiring constraint will be replaced
by neighboring constraints. However, the neighborhood function is somewhat more
complicated than in this simple example. For instance, imagine that A were rotating
towards the viewpoint (out of the page), leading with vertex v3 (see figure 5.4). It
is possible for constraints (v, f), (v4, f), and (vs, f) to replace (vy, f), if the faces
[and {v;,v2,v3,v4 } are parallel when (v;, f) expires. Clearly v3 is also “near” vy, -
but not as near as vy and v4. To exploit claim (5.1), it remains to be seen just
what we mean by a “neighboring constraint.” We should emphasize that the update
strategy does not predict exactly which constraints will become active, but merely
a set of candidate constraints, some of which must replace the expiring constraints

in the applicability set.

5.5. Using Update Strategies

Let us modify the naive algorithm to incorporate an update strategy. At
configuration s, we compute the applicability set. The trajectory p is next intersected
with all C-surfaces in the applicability set, and with all ACF boundaries for these
C-surfaces. The two lists of intersections are merged and sorted around the unit
circle. (The sort key, once more, is the intersection angle). We call this sorted
structure of C-surface and ACF intersections the intersection queue, since it a

priority queue containing intersections. An entry in the intersection queue is a pair:

(C—surface or ACF, Angle of intersection).

We then traverse the intersection queue in order from s in direction &, taking

the following actions when we encounter a C-surface or an ACF intersection:

(1) When an ACF boundary is hit, a C-surface has expired. Let the angle of
intersection be c;. Sometimes several C-surfaces expire at once; in this case their
ACT boundaries will all have the same intersection angle on the circle. Determine
all the C-surfaces that expire at o (simply scan down the intersection queue until
an interscction angle greater than o) (with respect to direction &) is found). These

C-surfaces constitute the Deletelist. Assume we have an update procedure, which

180

can determine an Addlist of newly active C-surfaces given a Deletelist of expiring
C-surfaces. Call the update procedure with the Deletelist, to determine the Addlist.
(i) Delete all C-surfaces in the Deletelist from the Applicability set.

(i) Delete all C-surfaces in the Deletelist from the intersection queue.

(iii) Delete all the ACFs of C-surfaces in the Delctelist from the intersection queue.
(

iv) Create an Addlist intersection queue, i.e., a sorted structure containing the
intersections of all C-surfaces in the Addlist, and all ACT' boundaries of these
C-surfaces, with the trajectory p.

(v) Merge the Addlist intersection queue with the old intersection queue.

(2) When encountering a C-surface intersection, we know the C-surface must
be applicable, since we have not yet hit an ACF boundary which could invalidate it.
(This is essentially the correctness criterion maintained by step (1) of the algorithm).
Test to see if the intersection is on the boundary of the C-Space obstacle. Note
that this operation typically requires knowing the applicability set.

We then continue traversing the intersection queue (of course, resuming
traversal the next « slightly beyond a; in the & direction) until either an obstacle
is hit or the goal angle is reached. As the intersection queue is traversed, steps
(1) and (2) are performed to update the queue and detect collisions whenever an
ACF-boundary or C-surface (respectively) is crossed. SO(3) is typically quite dense
in ACF boundaries: see figure 5.2. In this figure, the small boxes depict one
dimensional slices (isomorphic to S!) of rotation space in the —8 direction. The
thin line extending out of the circle indicates the start angle, which is § = 2.42
radians, and the heavy line extending out of the circle indicates the goal angle,
which is § == 0. The intersections of the trajectory with C-surfaces are shown in the
left box (there are none). The intersections of the trajectory with ACF boundaries
are shown in the right box. Each line indicates the angle of intersection for an
ACF boundary. The applicability set is invariant between intersection points. The
moving object is shown rotating between the start and goal angle. The C-surfaces
and ACFs were generated by the moving object and obstacles shown. However, the
actual size of each Addlist is usually small. The algorithm works by maintaining a
correct applicability set as we move in &, and by modifying the intersection queue

to remove C-surface and ACF intersections that are not applicable.

181

5.6. Update Strategies

In this section we finally discuss specific update strategies. An update strategy
has two parts: first, given a Deletelist of expiring constraints, it must predict a
set of C-functions guaranteed to contain the Addlist. Second, it must test each of
these predictions to determine which are really applicable. The latter operation is
conceptually trivial, but since it is expensive, we wish to make the prediction set
as small as possible. For example, predicting C, the set of all C-functions is clearly

correct, but not very useful.

A better approximation would be as follows: given a Deletelist, determine
all the C-families (i.e.,'families of C-surfaces) it represents. A safe prediction
would comprise all the C-functions in these families, since clearly an expiring
constraint will be replaced by another constraint from its own family. In practice
this approximation has proved useful, however, it is not the best we can do. In
particular, note that even two cuboids will generate 48 type (a) C-surlaces, 48 type
(b) C-surfaces, and 144 type (c) C-surfaces. Clearly the C-family approximation is
not a very tight upper bound for the replacement set, that is, the Addlist for a
Deletelist.

Let Vp, £p, and Fp denote the vertices, edges, and faces of polyhedron P. For
a moving polyhedron A and an obstacle polyhedron B, we can express the family

of constraints as:

(Fa X V) U(Va X F5)U(€a X En).

To be formal, this should, strictly speaking, be considered the domain of a bijection
C which maps pairs of generators to the function space of C-functions, but
where there is no ambiguity we will speak of a pair (g4, gn) as representing the

corresponding C-function C(g4, gp).

For an expiring C-function (g4, gs), we would like to define a neighborhood

map on a polyhedron P,

182

g: ‘vaé‘PU r— (vaEI’U p)*

(where * is the Kleene star denoting closure) such that the set

9(g4) X G(9B) (5.1)

is the smallest maximal replacement set for (g4, gp). In other words, we want (5.1)
to contain all possible replacement sets for (g4, gp), no matter what the rotational
motion; but we also wish (5.1) to be as small as possible so as to minimize the
ACF computations. It is possible for § to be local in character: although several
constraints in a family may expire simultaneously, all that we require is that the

union of their replacement sets is correct.

We conjecture it might be possible to find exact—-or at least smaller replacement
sets by taking the specific motion into account. Such a strategy has not yet been

developed, however.
5.6.1. Mathematical Prcliminaries

In chapter 3, we gave an informal definition (by example) of the boundary and
coboundary operators. We now define and employ two related operators which can
be composed to define operators such as “the faces which contain vertices vy, va,

and v3” and “the edges which are incident at the vertices of these faces.”

In this section we define the discrete boundary and coboundary operators.
Consider a finite collection of cells, S. The discrete boundary and discrete coboundary

of S, denoted 85 and S, are defined as follows:

88 = | 9s
8cS

68 = |} 6s
s€S

The discrete boundary and coboundary operators have very different properties
from the normal boundary and coboundary operators. For example, if f is a face,

then 82f = 0, while 32f = vert(f). To see this, observe that

183

(ob)
Sy
I
Q>
(o5
~
~

In fact, for any “well behaved” object P (and in particular, any polytope), 3?P =0
and 62P = 0 (this is a fundamental theorem of topology). Hlowever, two (or more)
applications of the discrete boundary or coboundary operator will not, in general,

yield 0.

A2
Ezamples: 6 (v), vg, v3) is the set of faces F which contain at least one of the vertices
a2 A2 A2a2
vy, v2 or vy. Since for one face f, 0 f = vert(f), then O F = 9 6 (vi,v2,v3)
is the vertices of all the faces F. The set of edges incident at these vertices is

33232(1)1, vy, v3).

. . 2223
Ezercise: What is 0 6 (v1,v2, va)?

Elementary Review: Boundary, Coboundary, and Star

We must show that the discrete boundary and coboundary operators are well
behaved. We will do so by presenting a formal definition of d (and 3) on a single
chain. Readers who have encountered a bit of homology will find the demonstration
transparent. Others may wish to take this section on faith, and to skip to the next

section, where we define the star operator.

Discrete boundary and coboundary operators can be considered as the ordinary
boundary and coboundary “modulo orientation.” We see this as follows. (For a
more comprehensive account see any textbook on elementary topology, for example,

Hocking and Young (1961)).

Let K be an arbitrary oriented complex of abstract cells, and Z an arbitrary
(additively written) abelian group. An n-dimensional chain on the complex K with
coefficients in Z is a function ¢, mapping oriented n-cells of K to Z, such that if
cn(+0") = 2, then ¢y(—0™) = —=z. An arbitrary n-chain ¢, on K can be written as

the formal linear combination

184

where z; = cu(+0?). The boundary operator 9 is a mapping from n-chains to
(n — 1)-chains. d(2; - o) is an (n — 1)-chain which has non-zero coeflicients only on
the (n — 1)-faces of the cell o?. Formally, let [0, 0" !] be the incidence number for

o™ and &"‘1, that is

0, if 6™ 1 is not a face of o™,
[e", 0'"-1] = {+1, if ™! is a positively-oriented face of o™,
—1 if o"~! is a negatively-oriented face of ™.
) g y
Hence,
ANz -oM= Y lo" o™] 2 .0" L
T 1___41 L ‘ v
on-

To factor out the effect of orientation, we define the discrete boundary operator as

follows:

HNzi-of) = S |lo™, 0™ Y| 2 - o™ L.

on—1

Discrete coboundary is defined analogously.

The Star Operator

Let P be a polyhedron. Any cell k is a face of itself, although it is not a proper
face. A proper face of P must be lower in dimension than P: If an n-dimensional
cell k is on the boundary of P, then we call k an proper n-face of P. Thus edges
are proper 1-faces, and vertices proper 0-faces of a 3-dimensional polyhedron. Let
K be some complex of cells. If k is a n-face of K, then we write K > k. We will

usually assume that a face is a proper face.

Now, let ¥ be some set of cells in K. The star of X (in K) is defined by

185

St(Z,K)={ceK|(Ar€X), s >1},

i.e., the set of all cells in K that contain a member of ¥ in their boundary. When
there is no ambiguity we will simply write St(X). (Giblin (1977), Hocking and Young
(1961)).

For a cell k, define § k = k, § k = 8k, and 6 k = §(3k), (etc). We see
immediately that the star of {k } may be computed as

Using this observation, we have implemented the star operator by recording the

boundary and coboundary of each cell in the geometric model.

5.6.2. Local Computation of Replacement Sets
Type (a) and (b) Constraints

Consider figure 5.3. (vy, f) denotes a type (b) constraint. Consider any rotational
motion from the configuration shown. Assume this rotation will cause (vy, f) to
expire. We wish to determine the maximal possible type (b) replacement set for
(v1, f), that is, the set of neighboring type (b) constraints which could replace (v1, f)

under any conceivable rotation.

Consider the set

(860 - {o13) x (£} (52

3’01 == §v; is just the edges which mecet at v,. The discrete boundary of these
edges is simply the collection of their vertices. v, is deleted, since it is expiring.
Now, consider a rotational motion which causes (vy, f) to expire. (5.2) will contain
replacement type (b) constraints. However, (5.2) is not maximal: consider a rotation
which causes (vy, f) to expire at some orientation at which a face f' containing vy

is parallel to f. (See figure 5.4). Then all the vertices of f' are replacements for vy,

186

Vy

£ ————— 7 777

Figure 5.3.

that is, the type (b) replacement set is (vert(f’) —{v }) X { [} In gencral, the
maximal predicted type (b) replacement set for (vy, f) is

(vert(8*or) = (w1 H X {1} (5:3)

By similar analysis, we see the following claims:

Claim (5.8): When (v1, f) expires, so will at least one type (c) constraint with

generators in

A A

dvy X 9f.

Claim (5.4): See figure 5.5. When a type (c) constraint (eq, €y) expires, so must

some type (b) constraint with generators in

éea X :Seb.

187

’.C
*ﬁ

] -
T 77 77777 7771

‘ll

% 'a " V.'

77 777 7 7 7 7 77 77

£f>

7
SecTion Th Pﬂ"\ €

Figure 5.4. (a) A is rotating above face f, out of the page, (towards the eycpoint). f' is the
visible face, with vertices vy, va, vs, and vq. (b), (c) show a section through f’ as A rotates.
When f and f’ are parallel, vg, w3, and vy all becume active as vy expires. This is a singular
point; as A continues to rotate, vz and vy expire, and vz remains applicable. The instantaneous
replacement set for vy is vert(f') — {v1 }. ‘

This analysis is, of course, symmetric for type (a) constraints. In this case, f
would be interpreted as a face of A and v; as an obstacle vertex. The equations

given all work when the generator pairs are reversed.

Claims (5.3) and (5.4) are particularly interesting, in that they suggest that
we can detect all expiring type (c) constraints by examining the ACFs of type (a)

and (b) constraints alone.

5.6.3. Definition of the Neighborhood Mapping for the Replacement

Generators

The replacement set in (5.3) makes a certain amount of sense: the replacements
for an expiring generator v; are to be found in the faces containing v;. On a

polyhedron P, the general neighborhood function § is a simple generalization of

188

////] 77 7

9%

Figure 5.5. Scction through ey. de, = {v1,v2}.

(5.3):

G6(:) = St(vert(-), 9P),

. that is, G(k) is the set of all cells which contain vertices of k as faces.

Let D be a Deletelist. The smallest maximal replacement set for D is

U 6(g4) X G(9n).

{9a,98)ED

This particular formulation requires that we ignore “nonsense” pairings such
as all members of V4 X V. This is easily accomplished by appropriate construction
of the function C mapping pairs of generators to the function space of C-functions.

We extend the domain of C' to A X 3B, and map all generator pairs except those
in (% X Vg)U(Va X 75) U(Ea X &p) to 0.

189

A Correctness Proof for §

We shall now argue that § is the correct mapping to predict smallest maximal
replacement sets. Let (g4, gg) be an expiring constraint at some orientation ©. The
replacement set for a constraint is the Cartesian product of the the replacement
sets for its genecrators. Hence the the replacement set for (g4, gp) is 7(g4) X 7(gB).

Consider the replacement set r(g4) for gy, i.e., the set of constraints

r(ga) X {95}

which will replace (g4, 9p). This set of constraints will become active at orientation

©, while (g4, gp) expires. Let

G = {ga}Ur(ga)

Note that (1) all constraints in G X { gp } must be applicable at orientation ©, and
(2) © must lie on the boundary of each of their applicability regions in SO(3). We
say that at © each g € G is in ACF boundary condition. Note further that 7(g4)
is not a predictive replacement set, but any actual replacement set for a generator

g4 under some arbitrary rotation.
We will first show that all ¢ € G are coplanar.

All ACFs are defined in terms of a contact verter and an applicability vertex
(see chapter 3). The contact vertex is brought to rest on some applicability plane
(which is parallel to a face of the other polyhedron), and the applicability vertex
is constrained to lie above that plane. When a constraint is in ACF boundary
condition, then both the contact vertex and the applicability vertex of at least one
of its ACFs are constrained to lie on the applicability plane. (We consider type (c)
constraints to be composed of four such ACFs, two of which are type (a) and two

or which are type (b) ACFs). In addition, observe that each line segment

(Applicabi]ity vertex, Contact vertex)

190

lies on some edge of either polyhedron A or polyhedron B. In fact, these edges,
which we term applicability edges, cover the edge graphs of both polyhedra, although
the mapping is many-one. We are given a generator g4 for a constraint (g4, ggn)-
The constraint is placed in ACF boundary condition. This requires aligning an
(applicability) edge of A with a face of B (or vice versa). (This point is fundamental
to understanding the correctness argument: if both contact vertex and applicability
vertex must lie on the applicability plane, then the applicability edge, which is
an actual edge of A, must be aligned with the plane). We are then asked to find
all constraints which can be simultaneously placed in ACF boundary condition.
This is equivalent to asking, “Given one edge of A aligned with some face of
B, and maintaining this alignment, what additional edges can simultaneously be
aligned with faces of B, such that all associated constraints are in ACF boundary
condition?” (By associated constraints we mean the following: the aligned edge is
considered as an applicability edge. Since the applicability edges cover the edges
of the polyhedra, the associated constraints for an applicability edge e4 are those

C-functions for which the orientation of e4 determines applicability.)

Now, by fixing an edge e4 at some arbitrary aligned orientation (with a
face of B), we retain one rotational degree of freedom ¢ about e4. We wish to
choose this rotation such that (1) the constraint associated with e4 (i.e., (g4,9n))
remains applicable (and of course, in boundary condition), and (2) a maximal set
of constraints is simultancously placed in boundary condition. The replacement set
we compute is the union of these maximal sets. (2) requires a maximal number of
additional edge alignments, and must also preserve the disjoint interior criterion.
So choosing ¢ so as to maximize the number of edge alignments propagates the
alignment constraint. Clearly, by propagating the alignment constraint, we obtain
a set of coplanar edges (recall that A and B are convex). Each edge represents a
contact vertex and an applicability vertex for (one or more) ACFs in applicability

boundary condition. The associated generators must also be coplanar.

We have seen that all replacement generators r(g4) must be coplanar with
ga- (As usual, there exists a symmetric argument for r(g;)). Given an expiring

generator gp on a polyhedron P, we wish to predict replacement sets. Replacement

191

sets are obtained from maximal sets of coplanar generators which contain vertices
of gp. Clearly, the maximal coplanar sets of generators for a convex polyhedron
are exactly its faces (and their boundaries). Hence, to predict replacement sets, we
must find the set of faces of P (along with their boundaries) that contain vertices

of gp. This set is
G(gr) = St(veri(gp), OP).

5.7. Analysis and Evaluation

We have implemented algorithms for moving in some selected rotational
direction until either the goal or a C-surface is reached: The naive algorithm (see
section 5.3), the predictive update algorithm based on the C-surface family as a
loose maximal bound on the replacement set (section 5.6), and the incremental
update algorithm based on g (section 5.6.3). We next show that the naive algorithm
and the § algorithm both have the same asymptotic complexity. This means that
their performance will largely depend on the constant factors in the computation.

We discuss empirical results to indicate the size of these constants.

5.7.1. Complexity

Naive Algorithm: O(nlogn)

Let N be the number of C-surfaces in the environment (including non-applicable
C-surfaces). If the moving object is made up of mgy convex polyhedra with ko
generators each, and the obstacle environment comprises ng convex polyhedra
with 70 generators each, then clearly N == jpkymong. The complexity of the naive

algorithm is as follows:
(i) Intersect trajectory with all C-surfaces (O(IV)).
(ii) Sort intersections around S!. (O(N log N)).

(iii) For each intersection, determine if it is applicable and on the boundary of a
C-Space obstacle. First, test to see if the C-surface is applicable by examining
its ACF's. If so, there arc two options: (1) if the applicability set is known at the
intersection point, we can test to sce if the other C-functions in the family are
negative or zero. (2) If the applicability set is not known at the intersection point,
we can compute the displaced face of the Minkowski solid corresponding to the
two generators for the C-surface. Next, test to see whether the intersection point
falls within the face. (1) would make this step O((Joko)*mono) = O(jukoN).

192

However, (2) needs only examine the generators of a constraint, and allows this

step to be O(N). (O(N)).

We see that the complexity of the naive algorithm is O(NN log).
G Update Algorithm: O(N log N)

The complexity of the G update algorithm is as follows:

(i) Intersect trajectory with all applicable C-surfaces and their ACFs. Let the
number of applicable C-surfaces be % < N, and the number of ACFs per

C-surface be a. ({(1 + a) intersections = O(£l)).
(ii) Sort the intersections around St. (o (N log -))
(iii) For each intersection: Sort, add, and delete j C-surfaces from the intersection

queue. (O(7 log 7))

This yields complexity:

N . N N,. .
o jlogj = —-(log N —logk) + (7 log 1)

N
log —
k

m:z

= O(N log N).
In the next section, we justify treating k as a constant.

Actual Performance

In practice, the naive algorithm has run faster than the § update algorithm
for the specific problem of rotating until a C-surface (or the goal) is reached. As the
complexity analysis has shown, since both algorithms are O(N log IN), the difference
in performance will be due to different constant factors. A good estimate for k is
10. Tor example, in a typical environment with 624 type (a), 704 type (b), and 1872
type (c) C-surfaces, 4 sample applicability sets have sizes 353, 362, 365, and 355. j
is quite small; for this environment it is typically between 2 and 40. The number of
ACFs per C-surface depends on the degree of the vertices. For trihedral vertices,
for example, a < 4 (type (c) C-surfaces have 4 ACFs). Hence this tends to balance

out any possible gains, since k is not much bigger than a.

Once more we should remember that the § update algorithm is designed to
solve the more general problem of applicability decomposition of SO(3), while the

naive algorithm has been specialized to solve the “rotate to a C-surface” problem.

193

We speculate that similar specialized algorithms may be developed as fast solutions
to specific spatial planning problems. However, decomposition tools are a more

general solution which can be applied to a whole class of spatial planning problems.

5.7.2. Related Work, Searching and Lazy Evaluation

The implemented planning system is described in chapter 2. The control
structure of the algorithm is a search. The search erﬁploys certain local operators
for moving between configurations. One such local operator is precisely the “rotate

to a C-surface (or the goal)” algorithm.

As for most heuristic? search algorithms, an adversary can probably devise a
find-path problem which must require an exponential amount of time to solve. This
does not imply that a polynomial-time algorithm using the mathematics presented -
in this thesis could not be devised; indeed, the theoretical work of Schwartz
and Sharir (1982&) suggests this possibility. However, in practice, the planner has
performed quite well. We offer the following explanation for why the planner should,

in average cases, perform better than in the adversary situation.

In the theoretical work of Schwartz and Sharir (1982a) and Schwartz and
Sharir (1981), the concept of non-critical regions is introduced. A non-critical
region, intuitively speaking, is a region in (free) configuration space where the
constraints are invariant. We employ similar constructs via sets of non-redundant
constraints, and by means of applicability sets. In Schwartz and Sharir (1981), for
example, free space is decomposed into critical and non-critical regions, and the
connectivity of these regions computed. The connectivity graph is then searched
for a path. However, computing these regions is (geometrically and algebraically)
quite difficult. The regions are at least as complex as the C-Space obstacle and

applicability regions.

Instead of precomputing the applicability regions (or knowing them a priori),
our planner computes them as it cxplores configuration space. While in the worst

case the entire applicability decomposition must be calculated, this case does not

2We usc the term heuristic in reference to the time complexity, and not the completeness of the
algorithin.

194

6

The C-Voronoi Diagram and its Relationship
to Intersection Manifolds

6.1. Introduction

For a finite set of points P in the plane, the Voronot diagram is the set of all
points in the plane which are equidistant from two or more points in P. The Voronoi
diagram for P is a network of straight line segments. Drysdale (1983) introduced
the generalized Voronoi Diagram (or GVD) for the plane: for a set of polygons in the
plane, the GVD is defined to be all points in the plane which lie (perpendicularly)
equidistant between two or more polygons. The GVD is a network of straight line
segments and parabolic sections. If the polygons are considered as obstacles, the
GVD represents the network of paths through free-space which maximize clearance
from the obstacles. Brooks (1983a) and O’Dinlaing and Yap (1982), O’Diinlaing,
Sharir and Yap (1982) have developed definitions and algorithras employing an
extension of the Voronoi diagram for low-dimensional configuration spaces. Nguyen

(1983) also discusses the relationship of global mcthods to the GVD.

More formally, the generalized Voronoi diagram (and its extensions) decompose
the free space into a set of regions, { R; }, such that all points X € R; are closer to
one obstacle than to any other. Thus points on the GVD are equidistant from two

or more obstacles.

196

V

A\

F

ve- bisector w bisector A

WA

Figure 6.1. A picture of the generalized Voronoi Diagram for a bounded 2D workspace containing
four polygonal obstacles. Reprinted with permission from Nguyen (1983).

In this chapter; we extend the concept of the generalized Voronoi diagram to the
six dimensional C-Space R° X SO(3), to provide a formal, constructive definition
of the C-Voronot Diagram, or CVD. The CVD is an attractive construction, in that
it contzains a representative component for each “branch” of free space. Each such
component is submanifold of dimension 0 < d < 5, called a Voronoi manifold. We

will derive the following connection between intersection manifolds and the CVD:

Let p be a path along the CVD. p lies along a connected chain of Voronoi
manifolds, Vi, ..., V. We demonstrate that for each Voronoi manifold V;, there
exists an equivalent intersection manifold of level C-surfaces, I;. Furthermore,
we also show that for every connected chain of Voronoi manifolds, there is an
equivalent connected chain of intersection manifolds (of level C-surfaces). (The

equivalence we demonstrate is actually stronger that homotopic equivalence).

This yields an immediate (theorctical) completeness result for planning along

197

intersection manifolds. While our proof is constructive, it cannot be considered an
effective procedure. The charts for the Voronoi manifolds are undoubtedly very
difficult to derive. This in turn makes it hard to develop planning algorithms along
the C-Voronoi diagram. In C-Space, the most attractive feature of the CVD is not
that it maximizes clearance from obstacles, but that it represents the connectivity
of free space. In other words, given the CVD, the Movers’ problem can be solved
by connecting the start and goal configurations to the same connected component
of the CVD. But since the Movers’ problem has already been reduced to the task of
navigating a point, it is clear that, modulo some uncertainty bound, we do not need
to maximize clearances while in planning paths in C-Space. We demonstrate that
instead, it is possible, in principle, to devise a planning algorithm along intersection
manifolds-—for which we have derived charts (chapter 4)—which is equivalent to a

planner along the CVD.

Generalized Voronoi Manifolds

In this-section we define the C-Voronoi Diagram (CV D) for the configuration
space N3 X SO(3). Note that for Euclidean configuration spaces we would employ
the standard techniques (Drysdale (1983)). The metric in %3 X SO(3) is non-obvious,
and the CVD does not reduce to the GVD when rotations are factored out. However,
it has the same connectivity as the GVD. The CV D for configuration spaces without

a Euclidean distance metric is fundamentally different, and is defined as follows.

To define the CVD, we rely on the collection of pseudo-metrics provided by
the geometric interpretation of C-function values (chapter 3). Intuitively, within
some well-defined region in free-space where a C-function is non-redundant, its
value characterizes the translational distance to either (1) an obstacle face, or (2)

the plane of the obstacle face. Formally:

In this chapter, we will use ¥ C %% X SO(3) to denote frec space. See chapter
2 for a formal review of charts and atlases. As noted in more detail in chapter 2, in
this thesis we usually specify charts via the inverse form h : " — M (where E™ is
an open subset of R") with the understanding that it is the inverse (or set of local

inverses) A™! which provides the family of charts { (™!, W;)}, for U; W; = h(E™).

198

Definition (1): Let M be the set of families of C-functions on %3 X SO(3). For
X € 7, let Ax be the set of maximum, applicable, non-redundant C-functions
within families, that is, if M € M is a family of C-functions, and M' C M is
the subset of applicable and non-redundant C-functions at X, then M contributes
to Ax the function f € M' such that f(X) > h(X) for all h € M'! — {r}y Itk

functions in M’ tie for maximum, then M contributes all k to Ay.

Let n be the dimension of C-Space. Now, X € CV D if there exists a maximal
subset B of Ay, containing at least two and no more than n C-functions, such that
all functions in B have the same value by at X and all functions in Ax — B have a
value greater than bg. We say that X € CV D lies on an (n — |B| + 1)-dimensional
Voronot Manifold. The C-Voronoi Diagram for C-Space is the union of these

Voronoi Manifolds.

We have seen that a level C-manifold is analogous to a level surface in ®3, in
that it is the set of configurations { X | f(X) = £} for some applicable C-function
f. Clearly, points on a k-dimensional Voronoi manifold V lie on the intersection of

n —k -+ 1 equal level C-manifolds, i.e.,

AX) = = fakr1(X) = X)

where the level £(X) is allowed to vary as X moves along V. Furthermore, we insist
that the C-functions f; constructing the Voronoi manifold must belong to pairwise

distinct families.

When we say that a Voronoi manifold V; is constructed from a set of constraints
F;, we mean that all the C-functions f € F; have equal value along V;. An intersection
manifold constructed from Fj; is the intersection of level C-surfaces for constraints
in F;. By this we mean that first a level is chosen for each f € F;, and then
the resulting level C-surfaces are intersected. In general, a level C-surface for a

C-function f at level £ has the form

199

Figure 6.2. Strongly cquivalent intersection manifolds, and the bridge manifolds connecting them.
Each V; is strongly equivalent to J;. Each bridge manifold B; 1y is equivalent (but not strongly
equivalent) to V;.

f71(¢) is the trivial intersection manifold, that is, the manifold constructed by
intersecting one level C-surface with itself. The intersection of two level C-surfaces

is

L= ") Ng ' (t)

The intersection manifold I| is constructed from the same C-functions at different

levels:

Il= () Ng (&)

An Overview of the Proofs

200

Let p be a path along the CVD. p lies on a connected chain of Voronoi
manifolds. Call this chain Vy,..., V. For a Voronoi manifold V; we say that an
intersection manifold I; is equivalent to V; if (1) the set of C-functions which
construct V; is a (possibly non-strict) superset of the C-functions F[which define
I;, (2) I; is homotopically equivalent to V;, (3) I; lies in free space, and (4) all
C-functions in [I7} satisfy definition (1) along L. If F; = F/, i.e., I; is constructed

with exactly the same C-functions, then I; is strongly equivalent to V;.

Note that by definition, each 7V, is restricted to where the conditions of definition
(1) hold, i.e., to some region NR(F;) C ¥ where all C-functions in F; constructing
V; are maximum, applicable, non-redundant C-functions within families. Now, in
general, I; is an unbounded level set which cannot lie in free space everywhere.
Thus by convention, we also restrict I; to the region of interest NR(F!) where
all C-functions in F! satisfy definition (1). That is, NR(F!) = {X | F{ C Ax }.

Instead of writing I; | NR(F}) everywhere, this convention is assumed throughout.

In is an interesting question whether, for every Voronoi chain Vi, ..., Vg, there
exists a connected, finite, corresponding equivalent or strongly equivalent chain of
intersection manifolds Iy, ..., Ixs (where k is not necessarily equal to k'). Theorem
(I) shows that for all Voronoi manifolds V;, there exists a strongly equivalent
intersection manifold I;. These I; might not form a connected chain. Theorems
(II) and (III) show that each disconnected pair of intersection manifolds I; and
I;+1 can be connected by an infinite sequence of “bridges.” Each bridge is an
intersection manifold equivalent (but not strongly equivalent) to V;. We then argue
that since there exists an infinite bridge sequence, therefore there must also exist

a finite bridge sequence. Iinally, (theorem IV) we show that there exists an entire

intersection chain

Ly U

which is homotopically equivalent to the entire Voronoi chain

WU UV

20t

Theorem I: Let Vi be an m-dimensional Voronoi manifold, constructed from a
set of applicable, non-redundant constraints A, which satisfy definition (1) along
V. Then if there exists an intersection manifold Iy of level C-surfaces for the
constraints A, and if the constraints A satisfy definition (1) along I, then Vi and

I are homotopically equivalent.

Proof: We will show that two intersection manifolds constructed from the same
C-functions at different levels are homotopically equivalent. Next, we demonstrate

that the Voronoi manifold is essentially a special case of intersection manifold.

Let Vi be an m-dimensional Voronoi manifold,

Vo= {X | A(X) = = fulX)}, (n="6—m+1)

where the f; are chosen from A as defined above (see definition (1)). Note that
the value of the f; may vary with X € V. Let I be a (m — 1)-dimensional (or
0-dimersional, if m = 0) intersection manifold of level C-surfaces constructed from

the same functions f;:

LI ={X|(X)=04, fa(X)=1t2,..., fa(X)=tn }.

The region of interest for Vi and Iy is of course restricted to NR({ f; }), where the
functions { f;} satisfy definition (1). I; differs from Vj in that on Vi the values
(levels) of the functions f; are equal, whereas on Ii, they are not. Furthermore, on

Vi the value varies, whereas on I the values are fixed.

I may be expressed as

L =) /i'(&).

The claim is that J; is homotopically equivalent to V, that is, thatif g : E¥ — 7
is a chart for I and ¢’ : E¥ — 7 is a chart for Vi, then there cxists a continuous

homotopy deformation h: E¥ % I' — F between g and ¢’ such that

WY, 0) = g(Y)
h(Y,1) = g'(Y).

As usual, I' denotes the unit interval [0,1]. For a review of elementary

homotopy theory consult appendix II.

The charts g and g’ exist, since Iy and Vj are manifolds. (Assume without loss
of generality that only one chart is required). A level C-manifold f;'(¢) (for some
level £) is a 5-dimensional manifold and hence there exists a chart C; : E> — ¥ for

f71(£). We demonstrate such charts in the proof of claim (I.1), below.

Let £y be any achievable value for the functions f; along the Voronoi manifold
Vi, that is, any £y such that there exists some X € Vg satisfying definition (1) for
which

fi(X) = = fo(X) = £y.

Now, tf; + (1 —t)€y is a linear enmhination of the levels #; and ¢y for f;. Since each

level C-surf: acev

f;‘(tei +(1 - t)ev)

is a manifold, each has a chart of the form Cj;, above. If ¢t € [0,1], these are
C-surfaces for f; with level £ € [£y,¢;], and their charts may be parameterized!
by t. Suppose we have a set of several level C-surfaces (as in Ii). Their charts
may be intersected to form a new chart for the intersection manifold. We define

h: E*¥ X I' — 7 to be the chart for the intersection manifold at ¢, such that

h(E*, t) = N f;“‘(tl,- +(1— t)Zv).

We call h a chart famaily for the intersection manifold.

Clatm (I.1): The chart family A can be constructed such that h(Y,t) is continuous

in Y and t, within the area of interest for Vg and I;. (For proof, see below).

'Sec the proof of claim (1.1), where h¢ is such a chart.

203

Recall that £; is the value (or level) of f; on the intersection manifold Ij. Then
h:E*¥ X I' - ¥ is a homotopy between g and ¢’, that is, h continuously deforms
It into Vi(€y), where we use Vi(€y) C Vi to denote the Voronoi manifold restricted

to level £y, i.e.,

Verify that

WE*, 1) = f7(&)
= }k)

and that

KE0) = /7 (ev)
= Vi(Ly).

We have shown that Iy == Vi(€y) (= denotes homotopic equivalence) for all

achievable £y. We must now show that Vi(€y) =~ Vi(£y + €).

We are interested in continuous deformation within ¥. Hence Vi may be
multiply connected within 7, so long as it does not wrap around obstacles. Vi must
be contractible to a point (within #). This is guaranteed by the construction of A
(definition (1)) and Vg, i.e., by the choice and domains of the functions f;. To see
this, consider that if V, did wrap around an obstacle in C-Space, then the value of
some f; would have to go negative. Hence, it would become redundant, and could
not be used in the construction of V.. Note that the C-Voronoi diagram, which is
the union of Voronoi manifolds such as Vi, will, in general, wrap around obstacles

and be multiply connected.

Furthermore, we can choose ¢ such that the topology of V. does not change
too drastically between Vi(£y) and Vi(€y + €). (This is possible since Vi is
finite-branching). So

201

I* p Vi(€y) =5 Vi(8y +€1) =n Ve(€y + €2) ==p - -+ = Vi(fy + &).

What we have shown is that I; is homotopically equivalent to the “easy” parts
of Vi (where the level of the Voronoi manifold is constant). We next showed that
because the topology of V; is simple, we can paste together these restricted Voronoi

manifolds. 1

Proof of Claim I.1: The existence of a continuous chart family for the intersection
manifold is based on our knowledge that the manifolds exist at certain levels, and
from our ability to demonstrate such a chart for the intersection manifold. In

chapter 4, we exhibited C-functions of six variables for the C-Space R3 X SO(3):

fi:(z,y,z,i/),o,gb)——)?R

which are continuous, affine in z, y, and 2, and multilinear in the sines and cosines
of the angles 9, 0, and @. The Linear Form for a C-function f; : ®* X SO(3) — R,

is an equivalent expression

f(z,9,2,0) = 11(0)z + Ba(O)y + E5(©)z + Ex(6), (6.1)

where E; : SO(3) — R (for j = 1,2, 3, 4). Now,

1) = ¥er((2,3, 2,9, 6,) — £).

A chart for f;!(¢) may be found by solving

fi(zay;z)¢)0;¢) —{=0
for z (or y, or z) in terms of the other variables and ¢:

205

_E2y+E32+E4 —Z
E, '

(We have dropped the ©, since the functions E; are constant with respect to z, y,

z, and £). If E; = 0, then the solution for y or z may be employed. This yields the

obvious chart

C: E5 - %3 X SO(3)

Eyy+ Esz+ Eq— £
(4,79, 0,8) = (=== ———4,2,4,0,9)

which we presented in chapter 4. C is affine in £, and can be used to construct a

family of charts

he : (Y, 8 = R X SO(3)

for thé C-surfaces

1710 = 7 (st + (1= 0ty).

which is continuous in ¥ = (y, 2,¢, 0, ¢) and £. h¢ is clearly a homotopy between
level C-manifolds for f;.

Chapter 4 also derives charts for f7'(&)N f7'(¢), 7 &) N7 (&)N Fi' (&),
(and so on) by solving the C-functions simultaneously for the intersection manifold.

For example, a chart for the intersection manifold of degree three

AREG
i=1,2,3
can be constructed by solving three simultaneous equations with the form of (6.1).
For arbitrary coeflicients I; and levels £;, this intersection may not always exist.
However, we know a prior: that it exists for the specified levels ¢; and £y. Irom

the form of (6.1), it is clear that if the intersection manifold exists for some levels

206

¢; (and if the coeflicient functions F; are independent), then it will exist for all
levels. We omit a discussion of intersection manifolds of higher degree: the reader

is referred to chapter 4 for further details. g

Corollary: For every Voronoi manifold V;, there exists a strongly equivalent

intersection manifold I;.

Corollary: If F; is the set of constraints used to construct V;, let NR(F;) denote
the region in free-space where all of the constraints in F; satisfy definition (1). If
V; exists, then in every connected component of NR(F;), there exists a strongly

equivalent intersection manifold I; built out of Fj.

Proof of corollaries: All f € F; exist within NR(F;). Pick any X € NR(F;).
Evaluate all the functions in F; at X to obtain a set of levels. The intersection
manifold must exist at these lcvels, since we have demonstrated that X is on the
intersection manifold. The intersection manifold from the C-surfaces at these levels

is by definition and by theorem (Ij strongly equivalent to V;. 1

Next, observe that for all 1 < ¢ < k, either V; C V;y1 or Vi1 C V. In other

words, to move from V; to V;,;, we either add or remove one or more constraints:

Vi={X|filX)="- = fr, }
Virr ={X | f(X) ="+ = fe;\, }

and either k; > k;y or k; < ki1 We call k; and k;, | the degree of the Voronoi

manifolds.

We have shown that for a Voronoi chain Vy,..., Vi, a sequence of intersection
manifolds Ij,..., I may be constructed such that each I; is strongly equivalent
to V; (for 1 < 7 < k). However, the sequence of intersection manifolds may
be disconnected. We now furnish a theorem demonstrating that the intersection
manifolds may be constructed in such a manner that they can be connected together

by a series of special intersection manifolds, called bridges.

Theorem II: The intersection manifolds Ij, I, ..., I, may be constructed such

that each pair of intersection manifolds I; and I;, | can be connected by a sequence

207

of “bridges.” Each bridge is an intersection manifold equivalent (but not strongly

equivalent) to V;.

Proof: Let I be a strongly equivalent intersection manifold to Vj, constructed
with C-functions Fj. Along I, all constraints in F| are non-redundant. Let V
be the next Voronoi manifold after V; in the Voronoi chain, and let F» be the

constraints constructing Vs.

Case (1): If Fy C Fy, then V) is lower in dimension that V. We can construct
I, a strongly equivalent intersection manifold to Ve, which is connected with I,
be removing one or more constraints in Fj. (We remove exactly the constraints

Fy — F). This is possible because if F C Fy, then NR(F) C NR(F}):

5= N £7'(c)

LieRn

E= N /7 (62)

Fi€EF

Strictly speaking, equation (6.2) should employ the subset notation (C) instead of
equality (=), since I| and Iy are restricted to where the intersection is applicable and
non-redundant. However, the equality makes the construction more transparent.
Note that the construction still works with the subset notation, since NR(F}) is a
subset of NR(I"). Since Fy C Iy, I} and Iy agree on the levels for C-functions in
Fy. Since I} C Iy, I{ and I are connected.

Case (1i-a): Suppose, however, that Fy C F,. Then V), is lower in dimension

than Vi, and NR(F;) C NR(F}).

We know that I} C NR(F). If I; N NR(F3) 5~ 0, then we can construct Ip
from Fy such that Iy C NR(F), I C I, and in addition, Iy and Iy agree on the
levels in Fy. Construct I as follows: pick a point Xy € I} N N R(F3). Evaluate each
f; € Fy — I at Xy, to obtain a level ¢; = f;(Xg). Construct:

12=flﬂ(N f}’(ﬂj))-

[i€EFe—I

208

MR CE)

el

NR(:\

Figure 6.3. Case where I} [\ NR(F3) # 0.

We showed earlier that Iy may be constructed in this manner.

Case (it-b): The hard case is when I} N NR(F2) = 0. In this case, we must
construct some strongly equivalent (to V2) intersection manifold Jo C NR(F2) with
different levels from J; with respect to the C-functions Fj. We then build a sequence
of bridge manifolds, entirely within NR(F}), between I: and I, connecting them

together.

The bridge intersection manifolds are constructed out of some subset Fg C Fi,

and each bridge manifold is equivalent (but not strongly equivalent) to V;. The

bridge manifolds are formed by relaxing one or more constraints in Fy to be able

to move from N R(F\)— N R(F3;) into N R(F3). The motions slide along intersection
manifolds constructed from the remaining constraints. Once inside NR(F3), we
construct I there, and Iy is strongly equivalent to Vs. Note the levels at which Ip

is constructed, (with respect to the constraints in F}), are typically different from

209

T,
o,
[
Beivge
manifalng N R(F;\
L

C NR(F)

Figure 6.4. Case where I} (N NR(F;) = 0.

the levels at which I; is constructed. The existence of bridge manifolds is covered

in theorem III. 1§

We will use the dot notation for the Riemannian inner product on the tangent
space at X. The normal to a level C-surface f~!(€) is Vf, and depends on the
inner product. We assume throughout that the normals are unit vectors. A basic
concept in these proofs is that of general position, or transversalily (see Hirsch,
1976). Two submanifolds M, N of a manifold V are in general position if at every
point of M NN the tangent spaces of M and N span that of V. If A and B are
not in general position, then arbitrarily small perturbations of one of them will put
them in general position. In our case, M and N correspond to level C-surfaces and
their intersection manifolds, and V to R3 X SO(3). The proofs still work even if
M and N are in gencral position only at “many” points of M NN. We will write

the condition of gencral position for two level C-surfaces f~!(£1) and g7!(£;) as

Vf Vg #1.

210

Theorem II The Erzistence of Bridge Manifolds: (Bridges of dimension five).
Let S be a path-connected component of NR(F}), Xy, X € S, and f,g € Fy. Note
that S lies with in the domain of f and g, and that by construction, ¢(S) is an
open set. Then if Vf - Vg £ 1 within S, then there exists an infinite sequence of

five dimensional bridge manifolds within S, connecting Xy and Xj.

Proof: Each bridge manifold will be of the form f~!(cy) or g Y(cy), for different
levels of ¢; and ¢4. Note that as we vary cy, Y (cs) covers S (similarly for g).
Let Ty denote the six dimensional tangent space at X. If ¢g = f(X), the level
C-surface f~!(co) is a five dimensional submanifold of ®* X SO(3), with a five
dimensional tangent space, Tf(. That is, identifying Tff with a subspace of Ty,

T4 ={veTx |v - Vf(X)=0}.

It is easy to show that T{;{ UT% spans Ty, for all X where Vf(X) Vg(X) # 1.

Let N& denote the normal space at X with respect to f, such that

N ={veTx|v=1aVf(X)},

for all scalars a € R. So Ty = Nf\(&P va. Clearly, if Vf(X) - Vg(X) 5 1, then
N/ is spanned by Tﬁ} UTY%. Hence Iy = T{r +T%.

Since the space of differentially tangent directions to the two level C-surfaces
at X is equal to the space of all directions, there exists an infinite sequence of
differential moves along level C-surfaces for f and g, at different levels, to realize

any path within S. Since S is connected, there exists such a path from Xp to Xj.
i

Corollary I1I.1: (Bridges of dimension four). A direct result is the cxistence
of a sequence of bridges which are four dimensional intersection manifolds. Let fi,
f2, f3, f4 € Fy. Suppose that within S, Vf(X) - Vf;(X) 5 1 (for ¢ # 7). Then
there exists an infinite sequence of bridges between Xy and X, where each bridge

is of the form

\
|
l‘ Lovefs of £

ef -

\/ﬁ,,‘}/&

Figure 6.5. A finitc path iterating along levels of f and levels of g.

Ip(3,5) = f7 Y e) N £5(es)- (¢ # 5)

This is reasonable, since each Ip(4,7) is a four dimensional manifold. If the
normals are all independent at X, then the direct sum of the tangent spaces to all

possible intersection manifolds Ip(s, 5) is clearly T'x:

Ty = (TENTY + TLNTE +--- +TENTH +- +(TENTH).

(Of course, ¢ 5% j for all terms in this sum). 1

Corollary II1.2: (Existence of a finite sequence of bridges). We now argue that if
there exists an infinite sequence of bridges from X to X within S, then there also

exists a finite sequence.

212

Informally, we argue that it is always possible to to move a certain distance ¢
along each level C-surface, and that this ¢ cannot grow arbitrarily small. First of
all, note that S is not infinitesimal, and that (S) is an open set. (If it were not,
it might be necessary to make an infinite number of differential motions to remain

within S).

We also appeal to the well-behaved structure of the level C-surfaces, and their
intersection manifolds. The level C-surfaces are smooth, with normals that change
continuously. (If the normals changed discontinuously, we might not be able to
take finite steps). Thus we can move a finite (i.e., not infinitessimal) distance along
the surfaces to a point where the normals are still independent, and where the
surfaces are “similar” (i.e., having normals in almost the same direction as before).
Furthermore, for any two levels of f within S, there exists a homotopy between
them. These cbntinuity arguments indicate that it should be possible to move in
finite steps along the intersection manifolds, and hence we can reach X from Xp

in a finite number of bridges.

Suppose from Xy to X; there exists an infinite sequence of bridge manifolds,
but no finite sequence. Then either (1) #(S) is not an open set (and therefore
only differential motions can stay within it), or (2) for a subset P C S, whose
cardinality is that of the continuum, the entire tangent space is not available along
the level C-surfaces. In both cases, our initial hypotheses are violated. (1) violates

the assumption 2(S) is an open set, and (2) the assumption of general position.
We formalize this argument as follows:

Definition: Let U be a metric space, and p, p' : I' — U be paths in U. Let { Uy }
be an open cover of p(I') in U, where each U, is a ncighborhood of radius < 7,
and UaNp(I') 5% 0. We say that p' approzimates p at resolution r if {Uq } is an
open cover for p'(I') also; that is, if p'(I') C Ug Uk

Claim (II[.2.1) shows that an arbitrary curve in some neighborhood U of
free-space can be approximated by a path within U along a finite sequence of
intersection manifolds. The proof of Cor. (11[.2) then employs the fact that the curve

is compact, and therefore can be covered by a [inite number of such neighborhoods.

213

Figure 6.6. Let ¢ = f(Xo) and ¢; = f(X,). Xo lies on f—l(co)_ﬂg"l(col), and X, lies on
YN g—l(cf). The path segment between Xy and X | may be approximated by a path sliding
first along g"(c({) from Xj to X', and then from X' to X along f~!(c;).

Claim II1.2.1: Any path within a neighborhood where f and g are defined, may
be approximated to an arbitrary resolution by a finite sequence of motions along

level C-surfaces of f and g.

Proof: We will regard level C-surfaces of f and g as trivial intersection manifolds.
Consider how one can approximate a path from X to X; by a path along
intersection manifolds. Let d be a metric on ®3 X SO(3), and f, g be C-functions
with inverse images covering a neighborhood containing Xy and Xj. Let ¢ = f(Xo)
and ¢; = f(Xl).*XO lies on the intersection manifold f~'(co) N g‘l(cg), and X lies
on f~lc;)N g"l(cl/). Construct f‘](cl)ﬂg‘l(co/) (refer to fig. 6.6), and choose X'
to be the any of the closest points to Xy on this manifold. We can construct a path
which slides from Xp to X' along g“l(co/), and then slides from X' to X along
fY(c1). We wish to demonstrate that by choosing X sufficiently close to Xy, X'

can be made to lie arbitrarily close to Xjp; that is, for all € > 0, there exists a

and cO' = g(XO), cl' = g(Xq).
214

8 > 0 so that d(Xo,X') < e whenever d(Xy, X)) < §. This is definitional, since

limXp-»Xo f_l(cl) == f—l(co).

Thus for every neighborhood B,(Xj) of radius r about Xj, there exists an X €
B,(Xy) such that X' € B,(Xj) also. Furthermore, d(Xg, X ') is finite (and non-zero).
Of course, a similar argument holds for the path segment between X; and X'. Thus
any path within a neighborhood where f and g are defined, may be approximated to

an arbitrary resolution by a finite sequence of motions along intersection manifolds.

Clearly, similar arguments hold for intersection manifolds of higher degree.

Proof (Corollary II1.2): (Sketch) Let p(I') be a path within ¢(S) from Xp to X
along an infinite sequence of intersection manifoldsf In short, p(I') C #(S). Choose
an open cover { U, }, relative to R3 X SO(3), for p(I!) such that U, Us C #(S).
p(I!) is compact, hence there exists a finite subcover, i.e., for finitely many indices

ai, ..., ,, We have

p(I") C Uay U+ U U C 4(S).

Now, for each U,,, we can construct a path p’(I!) along a finite sequence of
intersection manifolds approximating p(I') N Uy, (Clé,im I1.2.1). That is, p/(I') is
also contained within the closure of Ua'..- Furthermore, it is not hard to construct
p' such that it leaves the neighborhood Uy, at the same points as p, that is, so
that p(I')N 8U,, = p'(I') N AU.,;. Since this is true for all Uy,, then p(I!) can be
approximated by some path contained within Uy, U:-:UU,,, and which lies on

some finite chain of intersection manifolds. g

Theorem (IV) is almost immediate, and its proof similar to that of Theorem
(D-

Theorem IV: For every connected chain of Voronoi manifolds Cy = Vy,..., W,
there exists an equivalent (in the sense of theorems (I—III)) connected chain of
intersection manifolds C; = Ij,..., It/ such that the entire Voronoi chain Cy is

homotopically equivalent to the intersection chain C;. That is,

215

U V; ==, U I;.

V:i€Cy Lec;

Proof: Simply apply the fact that ecach equivalent pair (V,I) (where V is a
Voronoi manifold and [is an equivalent intersection manifold) must lie in the same
non-redundancy region. Hence if one chain wraps around an obstacle, so must the

other; furthermore, each chain must wrap around the same obstacles. &

FFuture Research

There are several interesting problems which are left open. They include the

following:

(i) We have demonstrated an equivalent chain of intersection manifolds for any
connected chain of Voronoi manifolds. Show whether or not a strongly equivalent
chain exists also.

(i) Show whether or not for every Voronoi chain Cy there cxists a (strongly)
equivalent intersection chain exhibiting a bijective correspondence to Cy.

(iii) Devise an effective procedure for constructing a chain of intersection manifolds
to realize any class of paths in free space.

(iv) Derive complexity bounds on the construction of the C-Voronoi diagram and
the equivalent intersection chains.

(v) Other configuration spaces, such as those arising in the hinged body problem,
should be considered.

(vi) To extend these results to configuration spaces generated by real space
constraints which are not polyhedral (for example, algebraic surfaces), a
generalization of the GVD such as smoothed local symmetries (Brady, 1982b)
could be considered.

216

7

Conclusion

In chapters 1 through 6, we developed representations and algorithms for
automated spatial planning with six degrees of freedom. To demonstrate the
compétence of the representation and the feasibility of the algorithms, a planning
system for the classical find-path problem with six degrees of freedom was
implemented. The planner is of considerable intrinsic interest, in that it is complete
(for a given resolution). Experiments have demonstrated that this algorithm can
solve find-path problems requiring six degree of freedom solutions that were beyond
the competence of earlier, approximate planners. The mathematical framework
developed here impacts a class of geometric planning problems for three dimensional

objects.

The planning algorithm may be explained by analogy with the Point Navigation
Operators. The C-Space transformation reduced the motion planning problem to
the task of navigating a point in ®3 X SO(3). Since the path for the point must
avoid the C-Space obstacles, which are curved, six dimensional manifolds with

boundary, clearly paths can be found in C-Space by the closure of three opcrators:

(i) slides along 1- to 4-dimensional intersections of level C-surfaces;
(ii) slides along 5-dimensional level C-surfaces;

(ii1) jumps between 6-dimensional obstacles.

217

However, these simple operators could not be implemented until a series
of representational and algorithmic questions were solved. The fundamental
representational issues centered on the structural properties of the defining C-
functions. By deriving their domains, and by proving theorems about the topology
of these domains, it was then possible to address the intersection problem for
high-dimensional configuration spaces. By solving these open problems, developing
representations for the C-functions and their domains, and designing decomposition
algorithms in C-Space, it became possible to represent the constraints on motion
“completely,” and to exploit the complete representation in implementing a planning
algorithm. Next, we presented new theoretical results on the C-Voronoi diagram.
By showing that for every connected chain of Voronoi manifolds, there exists
an cquivalent chain of intersection manifolds of level C-surfaces, a theoretical
completeness result for planning along the intersection manifolds was obtained.
This result is also of interest since while the charts for the Voronoi manifolds are as
yet unknown, charts for the intersection manifolds are straightforward (given our
representational framework). Thus it is possible, in principle, to devise a planning

algorithm with all the advantages of a planner along the CVD.

There is much work to be done. Ultimately, decomposition algorithms such as
those we present in chapter 5 will become increasingly important in partitioning
C-Space into regions where the set of applicable (or alternatively, relevant)
constraints is invariant (see also Schwartz and Sharir (1981)). The representations
and algorithms we have developed may make other geometric planning problems—
such as fine-motion, and planning with uncertainty—more feasible, and should now
be applied in these applications. The find-path algorithm can be easily extended
to robot manipulators with six degrees of freedom in which translations can be
decoupled from rotations. This class includes Cartesian manipulators (for example,
the IBM RS/1). The adaptation of this work to a production environment presents

intercsting engineering challenges.

In principle, the 6DOF representations can be extended to revolute-joint, linked
arms with six degrees of [reedom. However, the C-Space of the linked-arm problem

is the six dimensional torus,

218

Sl ...x 8 (to6)

which has a very different structure from R2 X SO(3). It is our hope that this thesis
can present a methodology for formulating the geometric constraints for arbitrary
configuration spaces, and that a similar structure will be found for constraints on

the 6-torus.

Our planning algorithm is complete (at a resolution), in that the representation
employed is complete, and in that the search is guaranteed to find a path if one
exists at that resolution. However, since it is a search algorithm, we cannot provide a
polynomial time bound. Our motivation has been to address the completeness issue
first, by resolving fundamental representational questions; now, one of the most -
important remaining tasks is to develop complete, polynomial-time algorithms which
can actually be implemented. We do not believe that the worst-case exponential
behavior of the 6DOF planner is inherent in the representation, and conjecture
that a polynomial-time algorithm which plans paths along intersection manifolds
can be devised. Indeed, the theoretical results on the CVD are suggestive that the
limiting complexity of the approach may be the complexity of constructing the
CVD or an equivalent chain of intersection manifolds. More research is needed on
the topology of the CVD. A fast planning system might determine what constraints
construct the CVD, and, using these constraints, construct a chain of intersection
manifolds which could attain the goal. The first step in this effort would bound the
complexity of the CVD and the intersection chains.

219

Appendix I

Details of the Intersection Problem, and Related Problems

This appendix contains the detailed equations from chapter 4, which are
relegated to an appendix because of their excessive length. Some definition of terms

is repeated, so that the interested reader will not have to flip back and forth too

much.

1.1. Intersecting Two C-surfaces in R2 X S1

By applying trigonometric reductions we can express type (a) and (b) constraints

as follows (only (al) and (b1) are shown):

cos(X\;)Sy + C'sin(\;)y — sin(X\;)Sz + C cos(r;)z
+ sin(x; — 75)l[6;11S — [lasl| cos(hi — 74)
— Ccos(n; — ;)14 (a1)

sin(g,)y + cos(;)z — [las]| sin(4; — 7)S
— Cllail cos(; — ms) — 1] cos(j — ;) (b1)

Where
C = cosf and S =sin0.

Now, we can consider a pair of these equations as a system in four variables,

(z,y,C,S), and proceed to solve (al) and (b2), (b1) and (b2), and (al) and (b1) for

220

z and y. For example, the intersection of two type (a) surfaces, (al) and (a2) is a

curve
. 2 1
P-'ﬁ;]ﬂﬂﬁ"’m X S

where 741 N7e2 C S' denotes the intersected applicability constraints for (al) and
(a2). Although the solutions are in the variables C and S, we can use C == cos@ =

cosr and S = sin § = sinr to generate the curve of intersection in 2 X S'.

After much simplification, the parametric solutions for the intersection curves
for type (a) and (b) constraints in £2 X S! are as follows:
The intersection of two type (a) Surfaces: (al)N(a2)

polr) =1,
palr) = D(—(S(lafll cos(n{ + X = N) + llaf] cos{nf = X =\

— llail] cosON 4 ms = No) = llail] cos(=N; + 1 — Xs)

+ C(2cos(\ + N — y)II6fll — 2cos(N] + Xi — 1;)l1b;ll))
+ C(lla/]| sin(n} + Xi = \]) — |la/]| sin(n] — \i = X;)

— |laill sin(\] +n; — Xg) + |las]| sin(=N] + 7 = \:))

+ C*(2sin(\] -+ Xy —)|l — 2sin(\] + i — 75)llb;]))
+ (—sin(\] + N — ’y;) —sin(\] — \; — fy]'))“b;”

+ (sinN +) = 77) = sinO\ = X +) 61D/2),

py(r) = D(—(S(Hafll sin(n! + XN — \)) —|la/||sin(n{ — N\ = X;)
— lall sin(\] + 75 — Xg) + |lag|| sin(=N] 4+ 7 = \;)
+ C(2sin(\] + Ni — y))Ib5]] — 2sin(N] + X — 7;)[6511))
+ C(—llaf]| cos(n! + N = N]) = |la/]| cos(n{ = X\; = \])
+ llagll cos(N] 4+ 1 — o) + Jlas]| cos(—=XN] + 15 — \;))
+ C*(2cos(N] + X; — 7,)l|b;1l — 2cos(N] + Xi — 7/)lI5;]])
+ (cos(N] +Xi = 1}) = cos(N] = Xy = v))lIbj]

+ (cos(N\] — X; + ;) — cos(\} + X\; — "/j))”bj”)/z)r

where

D = csc(\! —\;).

The Intersection of type (a) and (b) Surfaces: (al) N(b2)

where

Po(T) =T,
polr) = F(SCClall| cos(8} — ni =)

+ [165] cos(@} + Xi — 7)) — l1bjll cos(¢; + Ni — ;)

+ |165]} cos(@) — Xi —) + |16l cos(¢] — N + ;)
+|la/|| sin(} — 0] + Xi) — 2C%||a/|| sin(g] —n{ —X;)
+ llaf|l sin(@} — n} — N;) = |las|| sin(¢; + m: — Ns)

— |las]| sin(dJ]'- —n; + N\;)

+ C(II6fl] sin(} + Ni — 15) — llbjl| sin(d; + Xi — ;)

— |lb}ll sin(@) — Xi — 7f) = ||b;| sin(¢; — X + w))),

pu(r) = —F(SECllafl| sin(8} - nf = %)

— 1B}l sin{@} -+ Xi — 7}) + [1b5]] sin(#] + Ni — ;)

+ 1]} sin(@} — X — 7}) — 1ol sin{¢} — N + ;)

+ laf]| cos(¢} — nf + Ns) + 2C%||af| cos(b; — nf — M)
— ||af|| cos(é) — n! — X)) — llaill cos(] + ms — N.)

— |lai|| cos(¢; — n: + Ni)

+ C(||6}]] cos(¢5 + Xi — v5) — lIb;ll cos(bf + Ni — ;)

+ [l cos(8f = N = 1) = 1bjl cos(8} — Xi + 7)),

1
(2 cos(¢) — Ni)S — 2C'sin(g! — X\y))
csc(0 — qﬁ; + ;)

5 .

F =

222

The Intersection of two type (b) Surfaces: (b1) N(b2)

po(r) =r,
p(r) = B((S(lall| cos(8] + 65 —n!) ~ lall cos(6] + 65

— lla{l|cos(@) — b; — n{) + ||as|| cos(¢; — ¢; +n:))

+ C(—lla!||sin(8} + &; — n{) + ||as|| sin(¢] + ¢; — n:)
+ [la!|| sin(8} — ¢; — n{) + ||as|| sin(¢} — ; + n:))

— |16l sin(@} + ¢5 — 7}) + [|6;1] sin(é; + é; — ;)

+ ||b5]| sin(¢) — @5 — 7}) + ||b;| sin(é; — &; + ’71))/2),

py(r) = B((S(lalllsin(8} + 5~ nf) ~ llai}sin(8] + 6 —)
+ llaflsin(g — 85 — nl) + lladl|sing — 5 + 1)
+ O(lal]l cos(8] + 65— n) — llall cos(8} + &5 =)
+ llaf| cos(8] — 85 — nl) = llaillcos(8} — &5 +n3)
+ 11l cos(8] + b5 = 1) — llesl cos(+ 85 = %)

+ ||b5|| cos(é} — #; — 15) — 1651 cos(d) — ¢; + “/j))/2):

E = csc(¢; — ¢;5)-

223

1.2. Related Problems in %2 X S!

1.2.1. Techniques for Moving Along C-Surfaces in %% X S!

In this section we present techniques for moving along a C-Surface. We could
imagine using these methods to move to the nearest “edge” (C-Surface intersection),
for example. A level C-Surface is defined via a function f(z,y,0) = k for k constant.
f is exactly of form (al) or (b1) (above), and the level surface in %% X S! is all

points
L={XeR Xr;|f(X)=k},
where vy C S is the @ applicability range for f.
Define a hyperplane in ®2 X S as the set
P={XeRXS"|X -H=-h},
where H == (hy, ho, h3).

We intersect the level surface L with the hyperplane P to obtain the intersection

curve:
p0(t) =r,
palt) = G (S(cos(ki)(—hg,t — ha) + hasin(\ — ;)16
+ C sin(X\;)(—hst — hq) — hallas|| cos(X; — n3)
— Cha cos(hi =)byl — hak),
py(t) = ——Gl(S(sin(ki)(hgt + ha) + Ry sin(n — ;)16
+ C cos(N;)(—hst — ha) — hilag]| cos(h; —)
— Chy cos(n; — ;)|lbs]] = hlk), (PN(al)
where
1

1= (hasin(\;) + hy cos(\;))S + (h1 sin(\;) — k2 cos(N\;))C”

224

po(t) =r,
ps(t) = —-Gz(sin(qu)(h;;t + hy) + hallag|| sin(¢; — n:)S
+ Chyl|a;|| cos(¢; — m:).
+ bl cos(; = 25) + hak),
py(t) = 02(008(¢1')(h3t + ha) + hallas]| sin(¢; — m:)S
+ Chiyllas|| cos(é; —)
+ hallbsl cos(; — ;) + hak), (PN(b1))

where

1
TRy sin(¢;) — ho cos(qﬁj) ’

G2

1.2.2. Characterizing Clearance to a C-Surface

It would be very useful to characterize the minimum clearance to a C-surface.

We would like to answer the question:

e For a point by € R?, at what orientation is b,y closest to a C-surface, and
what is minimum directed clearance vector at thal orientation?

Using Lagrange multipliers, we can minimize a function f(z,y,) subject to a

constraint g(z,y,8) = 0 by constructing the auxiliary function

}I(ib, Y, 01 E) - f(.’L‘, Y, 0) - Kg(:z:, Y, 0)
and solving the partial derivatives

oH

Mo W
% =0 2)
o
o =0 (4)

In our case, g will define a C-surface, for example, a type (a) surface:

9(z,y,0) = sin(0 + N\;)y + cos(0 + \;)z — ||b;|| cos(8 + X; — '73-) — |lai]| cos(Xi — m:)

225

and f will be a distance function. Now, the rotational dimensions cannot be treated
uniformly in establishing a metric, so we will define distance in Euclidean space.

Minimizing the square of the translational distance suffices for our purposes. Hence,

f(z,y,0) = (z— bz)Z +(y — by)z'
Differentiating H gives us the following equations:

oH

— = 2(x —b;) — T

32 (z — by) — Lcos(0 + \;) (1)

OH _ oy —b,)— tsin(0 +) (2)

dy

oH] .

50 = —£(cos(8 + N;)y — sin(8 + X\;)z + ||b;]| sin(8 + N — 7;)) (3)

oH

T (—sin(0 + N;)y — cos(8 + X\;)z + ||bs]| cos(8 -+ XNy — ;) _
+ ||asl| cos{n; — X)) (4)

Solving these équations for z, y, 8, and £ is not trivial. However, the following

observations make it easier. First of all, we note that solving

oH
- 5
to7 =0 (5)

is equivalent to solving (4) as long as £ = 0 is not a solution. We next solve (1) and
(2) for £cos(0 + ;) and £sin(0 +)\;) and substititute this value in to (3) and (5).
(5) then becomes a linear equation in z and y while (3) is quadratic in z and y and
linear in £. Our rewriting of (4) into (5) has thus eliminated £ from (5), and we can

solve for z in terms of y:

—2y% + (21|65 sin(v;) + 26y)y — 22° + (21|65 cos(v;) + 2b5)=

+ £llas]| cos(n; — %) — 2b,lb;1] sin(v;) — 2b.][b;]| cos(;) (3)
(26, — 2I[6,]| cos(1;))y + (21lb;1l sin(7;) — 2b,)z
— 2, b1 sin(y;) + 26,[t5l| cos(;) (5)

We nced one additional constraint: this is obtained by observing that
sin(f + X;)? -+ cos(0 -+ X\;)? = 1. (6)

Since the trigonometric terms can be expressed in z, y, and £, we can obtain £2 in

terms of z and y. (3), (5), and (6) then result in a quartic in = with the roots:

226

= Gl(%y”bjnz sin(27;) + 2bx|lb1'||2 cos(27;)
— (26 + 267)115511 + 211b511*) cos(;) + 2bzlb;|?

£ Gaf llallibsl cos(mi = Ni + 1)

+ lallfesl] cosn: — N = 37) ~ 2belasl| cos(n: ~ xi)))’

where

1

2(26y sin(r;) + 2ballosl cos(r3) — 1112 — 8 — 82)

Gy =

and

Gz = \/—2b,|b;]| sin(v;) — 26,161 cos(;) + [[b]|? + b + b2.
Given z, y is found from (5) :

(118511 sin(-v;) — byjw — bejibjli sin{rz) + by[lb;]] cosivy)
ll65l cos(v;) — be

£ can be found from (3) as a linear function of z and y. To determine 0§, we calculate

sin(f + X;) and cos(6 + \;) from

sin(+ ;) = ggy—;—l-)y—)
cos(f + X;) == —2—(3:——;—-—@

and use a two argument arctangent function Atan2 : ®2 — S! to determine 8 + ;.
The 0 value must be checked against the applicability constraints for surface g;
if it falls outside the range, then endpoints will yield the minimum clearance.
Naturally, it is possible that for certain orientations, (b, by, 0) will lie on or inside
the C-surface. These cases may be disambiguated by the sign of g(b;, by, 0). Finally,
given the closest point (at some orientation @) on the C-Surface, the minimum

clearance is simply the vector

(z,9) — (bz’ by)'

227

The Minimum Clearance to a type (b) C-surface

To find the minimum clearance to a type (b) surface and the orientation at
which the clearance occurs, we let g be a type (b) constraint (equation (b1)) and

solve the system of partial derivatives of H.

oH

5o = 2z —bs) — Leos(g;) (1)
S = 2y —b) — tsin(g) ?)
o =t sin(0 — 85 +) (3)
?513‘ = —-g(m, Y, 0) (4)

The solution is considerably casier because the form of the constraint surface is
less complicated. Since H /3¢ = —g, 6 may be found in terms of = and y using an
arccosine. Substituting this value of 6 into (3) yields a quadratic equation in =z, y,

and £, which when solved with (1) and (2) for the following roots:

z = ||b;|| cos(¢;) cos(d; — ;)

— by cos(¢;) sin(6;) — bz cos(d;)” — [las| cos(4;) + bs,
y == ||b;]| sin(¢;) cos(¢; — ;)

— (by cos(@;) £ ||as|) sin(¢;) + by cos(¢;)?,
£ = 2l cos(; — 15) — 2by sin(;) — 2ba co(6) 2l

228

Appendix 11

The Connectivity of Configuration Space

II.1. A Review of Elementary Homotopy Theory

In this appendix we review some elementary homotopy theory, and address
the connectivity of configuration space. See Hocking and Young (1961) for a more
extensive review, and Donald (1983a) for an analysis of the relation between
channels and homotopic equivalence classes. Let I' denote the unit interval. A
parameterized family of mappings from a space X into a space Y is a continuous
function h: X X I' — Y. Consider the mappings f and g from X to Y: we say
that h is a homotopy between f and g if for each point z in X,

h(z,0) = f(z) and h(z, 1) = ¢(z).

Intuitively the existence of h implies that f can be continuously deformed into g

without leaving Y.

The homotopy relation between mappings from X into Y is an equivalence
relation on the function space YX. Hence the homotopy relation partitions YX
into disjoint equivalence classes, which are called homotopy classes. We write the
homotopy relation as f == g. These homotopy classes capture our intuitive notion
of classes of paths. The homotopy classes of YX can be shown to be precisely the

arcwise-connected components of Y X (Hocking and Young (1961)).

229

To take a concrete example, consider configuration space for the two-dimensional
mover’s problem to be the product space of the 2-dimensional Euclidean plane %2
and the one-dimensional sphere S! to obtain 2 X S!, and denote the configuration
obstacles as CO C R? x S!. Now two paths f and g in the same equivalence class

must belong to a parameterized family of mappings such that:

h: X XI' - R x S —Co.

and h{z,0) = f(z), h(z,1) = g(z) as before.

Now, let y be a point in Y. The y neighborhood of cyclic paths in ¥, C(Y, y)
is the collection of all continuous mappings f : I! — Y such that f(0) = f(1) =y,
i.e., the set of all continuous curves that begin and end at y. If f and g are curves
in C(Y,y), we say that f is homotopic to g modulo y if there exists a homotopy
h:I' X I' -» Y continuously deforming f into ¢ without leaving Y.

Clearly, homotopy modulo y is an equivalence relation, and decomposes C(Y, y)
into disjoint equivalence classes which are exactly the arcwise-connected components
of C(Y,y). The set of these equivalence classes is termed the first homotopy group,
or fundamental group of Y. We say a path-connected space Y is stmply-connected
if the fundamental homotopy group for X is the trivial group of one element
(for some, and hence for all y in Y). See also appendix III, section “Topological

Constraints.”

I1.2. The Connectivity of Configuration Space

The configuration space %2 X S! (for the two-dimensional mover’s problem)
is not simply-connected, since S! is not simply-connected. The function space
(®" X SY¥ contains several homotopy classes. (®% X §')*X may be envisioned as
a cylinder on which there are clearly two classes of paths: those that bound a
2-dimensional region and are contractable to a point, and those that go around the

cylinder.

The configuration space %3 X SO(3) is not simply connected, because SO(3)

is not simply connected. To see this consider the following: geometrically, SO(3)

230

is homeomorphic to P3, the 3-sphere with antipodal points identified. As is well
known (see Massey (1967), p. 166) the fundamental group for P" is cyclic of order

2, and hence P" is not simply connected.

General configuration spaces (other than that for the classical Mover’s problem)
are not always simply-connected. For example, the C-Space for a manipulator with

six revolute joints is the 6-torus, S' X S X ... X S! (to 6).

Let II be the half-open interval [—x, 7). II can be used to approximate s,
if we are willing to tolerate singularities in the representation. It is instructive to
generate a configuration space which is simply-connected. Since this is not possible
for the general product space R” X S! we will instead consider the product space of
R" and II. Thus for the two-dimensional mover’s problem we consider the product

space

C =R xII

For a manipulator with m revolute joints, the C-Space may be approximated

by II"™, where

MM =0OXIX...XI (tom).

The three dimeansional rotation group SO(3) can be approximated by a
hcmisphere of the 3-sphere (which is simply connected), or by 3. O™ is
homeomorphic to the interior of the m-cube. This new product space C is simply
a restricted configuration space where the piano is not allowed to spin around
wildly. The approximation of SO(3) by a hemisphere of S8, iﬁcidental]y, is closely
related to the employment of unit quaternions to represent rotations. The space of
unit quaternions is precisely S3; the two quaternions ¢ and —q construct the same
rotation, although they represent antipodal points on S®. When all antipodal points
g and —q are identified, the projective 3-sphere, P3 is obtained. P? is isomorphic
to SO(3). It is of interest that Euler angle space, @* (see chapter 2) is essentially
an approximation of SQ(3) by R (mod 27), which is isomorphic to the 3-torus,

231

when equi%alent rotations are identified. If eqmvdent rotations are not identiﬁed,
then @3 is isoinorphic to N3, While the approximation of SO(3) by _R’“yields a
simply—conneéted configuration space, from the point of view of an automated
planner it has the undesirable effect of introducing an infinite number of goals in
the rotational dimensions of configuration space, for every single goal in the space

of Euclidean motions. For this reason the Qpprmmam pfm&ed by the $torus »

may be coundered pre&uble

Appendix 1T

Integrating Local and Global Algorithms for the Find-Path Problem

In Donald (1983a), we have discussed the integration of a global channel
algorithm with a local C-space algorithm to form a planning system for the
find-path problem in %2 X S!. How can a three dimensional global, or channel
algorithm be coupled with the planning system in R3 X SO(3) described in previous
chapters? More generally, what are the fundamental issues in integrating local and

global geometric planning algorithms? In particular,

(i) How can a global algorithm suggest paths, or equivalence classes of paths to a
local algorithm?

(i) How can the relevant geometric constraints be identified and exploited by
the local algorithm? Conversely, how can irrelevant geometric constraints be

effectively ignored?

(iii) How can global topological constraints, such as those arising from analysis
of homotopy classes and fundamental groups, be propagated onto the (local)
geometric structure examined by the local algorithm?

In general, the design of a global algorithm will depend on the geometric
constraints exploited by the companion local algorithm with which it will be
coupled. Hence when we consider extending the channel algorithm of Donald
(1983a) to the three dimensional find-path domain, we must specify what “target,”
local algorithm to use. A natural candidate is the local algorithm for find-path in

N3 X SO(3), which we describe in chapters 1-2.

233

Path Suggestion. A problem which must be solved in any local/global find-
path integration is how a global path may be suggested to a local algorithm. In
two dimensions this was accomplished by segmenting the find-path problem into
a sequence of sub-problems. The Suggestor strategy {chapter 2) is designed with
this in mind. The verified points along the suggested path become planning islands
in configuration space. The job of the local algorithm is then to connect up the

planning islands and find a continuous path to the goal.

Choosing Subgoals in Rotation Space. In a three-dimensional rotation space,
the problem of selecting good rotational subgoals becomes more difficult. Much
of the path-planning literature has been guilty of overlooking this difficulty. Such
subgoals can be used in path-suggestion as we have described above. Even when
the companion local algorithm is complete, a strategy for choosing good rotational

subgoals is desirable, since it would allow the algorithm to converge faster.

We have derived experimental strategies which consider alignments of the robot
polyhedra with the faces and edges of obstacles. Every polyhedron’s boundary
contains alignable generators (faces and edges) which have an orientation, and
non-alignable generators (vertices) which have no orientation. Two generators are
said to be aligned when they are parallel, and the rotations in which they are
aligned form connected alignment regions in SO(3). For example, two cubes are
aligned when two faces are parallel, or an edge and a face are parallel. The channel
construction is useful for identifying the obstacle surfaces which bound the proposed
channel (in real space). Call this set of faces F¢. Let Fi denote the faces of the

robot. The alignment regions can be considered for the generator pairs

G ptign = (713 % 7,<)U(7R % éfK)L J(é?}g % fK).

We are only interested in applicable alignments, that is, an alignment of two
(or more) generators where the generators can be brought into contact through
some translational motion (this is our definition of applicability: see chapter
3). Applicability may be detcrmined by examining the applicability constraint

functions (ACFs) introduced in chapter 3. Furthermore, in chapter 5, we showed

234

that alignments of edges and faces occurred exactly at the boundary of the

applicability regions for C-functions.

Every C-function is a partial function f; on the configuration space R3 X SO(3),
whose domain is R3 X A; for A4; C SO(3). The set of alignment regions is obtained

by the union of the boundaries of these applicability regions

Ralign = U aﬂz
i

for every C-function f;. Every point in R,ig, lies in the kernel of some ACF
gij : SO(3) — M for a C-function f;. In chapter 4 we showed how to derive charts

for these boundaries and their intersection manifolds.

In most find-path probléms, the alignment regions in Ry, are complete as
subgoals in rotation space—i.e., no other rotational subgoals need be considered in
order to find a solution path (if one exists). This makes a certair intuitive sense:
one might try aligning a large box with a narrow door-frame in order to squeeze
it through.! However, in general there exist pathological cases in which this is not
true (imagine a robot which looked like a polyhedral sea urchin), and the set of
alignments is not complete as a set of subgoals. Furthermore, it is unsatisfying that
the alignment analysis exploits strong constraints in the polyhedral domain of the
classical Movers’ problem, and does not appear to generalize well to linked-arm

problems.

We believe that it may be possible to overcome the problem of “star-shaped” robots
by considering additional alignment regions obtained from faces and edges of the
convex hull of such objects. Such an algorithm would have to deal similarly with
“star-shaped” obstacles. Even these additional alignments may prove incomplete;

however, they may have heuristic value.

The problem of how a global algorithm can infer good rotational subgoals from
the structure of real-space is onc of the most interesting open problems in spatial
planning. We conjecture that an answer may lie in the structure of the boundaries

We are not making any claims about human spatial reasoning here.

235

%//////////1
E\\\\\\\\\\\

Figurc I1.1. Pathological example showing a robot A whose alignment regions do not include a
rotation which helps get through the tight passage.

of the applicability regions in SO(3). The algorithms we provide in chapter 5 for
obtaining the applicability set decomposition may prove useful in computing this
structure. Such a planner might slide along the intersections of ACF boundaries
or level ACFs in rotation space,2 much as our planner slides on the intersections
of level C-surfaces in configuration space. The advantage of such an approach lies
in reducing the (infinite) search for rotational subgoals to a finite combinatorial

search along the ACF boundaries.

Topological Constraints. Ideally, the global strategy should enforce the
path-class criterion® for each sub-problem: no straight-line approximation for a
subproblem may cross more than one equivalence class of paths. We begin by defining
what a straight-line approximation means in R3 X SO(3). This requires some way of

forming “linear combinations” of rotations. The definition of “linear combinations”

2Level ACFs are defined in section 3.11.
38ce and appendix 1L

236

in SO(3) relates to a definition of convexity for 83 X SO(3). In particular, we wish
to determine whether C-space obstacles are convex. For if C-space obstacles are
convex, then we could trivially bound the number of intersections any straight-line
trajectory can make with any one obstacle. We present a conjecture that the
C-space obstacles are non-convex. Finally, we discuss basic topological notions for

formalizing our analysis of equivalence classes of paths.

We require some way of forming “linear combinations” of rotations. The
requisite algebraic structure is much like a module (over the reals), except that
the group operation cannot be commutative.!. The group operation is composition
of rotations. Let R(#,8) denote rotation about the three dimensional vector A4 by

angle 6. Scalar multiplication by a € R may be defined by

aR(#,0) = R(A, af).

By substitnting the (non-commutative) composition of rotations for the group

operation -+, we obtain a natural definition for linear combinations,

aR(#,0)+ (1 —)R(7',0") = R(A, a0)R(7', (1 —)0) (1I1.1)

for 0 < a < 1. R, of course, may be conveniently expressed by a unit quaternion.

Suppose @3 is a three-dimensional parameter space for SO(3)—that is, the
domain of a chart for rotation space. For example, @3 might be the space of Euler
angles (see chapter 2). It is possible to define linear combinations in the parameter
space ! X @3. This scems unsatisfactory, since it makes the definition of linear
combination—and more disturbingly, of convexity—dependent upon the chosen
parameterization for SO(3). Observe that definition (III.1) for linear combinations

is invariant for all parameterizations.

Open Question: Under a definition of convexity invariant for all parameteriza-

tions, show whether or not the C-space obstacles in %% X SO(3) (and R2 X S1)

1Recall that a module is defined as follows: If R is a commutative ring with identity, then M
is a module over R if (M, +) is a commutative group, and scalar multiplication (r, M) M of
elements M in M by r in I is associative and distributive (over +), and if 1M = M

237

are convex. Conjecture: We conjecture that C-space obstacles are non-convex.
When %2 X S! is approximated by R2 X [—,) and embedded in N3 the cor-
responding C-space obstacles are non-convex using Euclidean linear combina-
tions. Furthermore, in both ®% X S! and R? X SO(3), each obstacle manifold
is the intersection of a finite number of half-hyperspaces of R X SO(3).
Each half-hyperspace is in turn defined via a real-valued partial function
f: ® X SO(3) — R. Using partial functions, arbitrary non-convex manifolds
can be constructed. Showing that the obstacle manifolds could be represented
by means of smooth, total functions would suggest convexity. Our analysis
suggests that these functions must be partial, which in turn leads to the

conjecture that the obstacle manifolds are non-convex. &

The homotopy relation (see appendix II) partitions the function space of paths

into equivalence classes. The image of one such equivalence class [f] is the region

in C-space covered by the union of all the path images in [f]. The equivalence

by the C-space obstacles. Intuitively, the fundamental group® in a space Y is a

topological invariant corresponding to the set of equivalence classes of paths in

Y. The group operation corresponds to path composition (“pasting”), and for two

paths f, g : I' — Y where f(1) = g(0),

o f(2t), for t € [0, 1]
fra(t)= {g(2t —1), fort € [—%, 1].

We think of f * g as the path whose first half is f and whose second half is g.

The pasting operation * is well defined on path homotopy classes:

(] o] = If *),

and exhibits groupoid properties. When an obstacle makes a hole in free-space, it

augments the fundamental group for the space by adding an infinite (cyclic) number

5Sce appendix II for a review of elementary homotopy theory and a formal definition of the

fundamental group.

238

(5)

Figure I1.2. Pasting together of paths f and g. Some paths in the homotopic equivalence classes
[f] and [g] are also shown.

of equivalence classes. (For example, by puncturing the plane at the origin 0, we
obtain the classes of paths (1) not looping around O, (2) looping around O once,
..., (n) looping n—1 times around O, ...). The topology of the underlying C-space
may be predetermined (see appendix II), but each new find-path environment
generates different path homotopy classes. We wish to infer the equivalence classes
in the fundamental group by their generators, i.e., the C-space obstacles. Since the
C-space obstacles can be constructed from the real-space obstacles, we are actually

attempting to compute path classes in C-space from the structure of real-space.

In general, if free-space is connected, the image in C-space of even a single class
of paths can cover all of free-space. However, we can impose a stronger condition
which subsumes the path-class criterion. Let p be an injection of I' into C-space
, which will represent some approximation of a solution path for a subproblem 5.

We wish to know whether the image of p can be expressed as the union of two

239

% I

Figure 11.3. The plane with a puncture (or obstacle) at the origin, showing paths f and g from
To to z;. f and g are not homotopically equivalent, and hence in different equivalence classes.

sets of points, those lying in the image of one equivalence class of paths, and those
lying in C-space obstacles bounding that image. In chapter 4, we showed how to
intersect trajectories with C-surfaces in 2 X S and N3 % SO(3). We can intersect
p(I') with all C-surfaces, and determine the intersection points. These intersection
points indicate where it penctrates C-space obstacles, and are determined from its

zero-crossings from free-space to forbidden space.

Claim: That the image of p contains either no region or one connected region
lying within any C-space obstacles is a sufficient (but not a necessary) condition

satisfying the path-class criterion for sub-problems.

Constraint Relevance. Another issue concerns how a global algorithm can
characterize the relevant constraints for a local algorithm, and if necessary, impose
additional, artificial constraints on the problem so that irrelevant constraints in

the initial domain will be ignored. Because of the difliculties in maximizing channel

240

breadth in three dimensional channel construction, the artificial faces introduced
by the current implementation may prove too restrictive, especially if the robot is
large or non-convex. However, the channel construction is useful for identifying the
obstacle surfaces which bound the proposed cii=nel (in real space). Call this set of
faces Fx. The C-surfaces generated by these faces may be exploited by the sliding
and intersection experts (sce chapter 2). Let 7 denote the faces of the robot. These

preferred C-surfaces are identified with their generator pairs, namely

Slide = (712 X Uert(}’;()) U(g)}’lg X 37;() U(vert(?}g) X S’K).

The identification of good C-surfaces to slide along addresses a central issue in
local/global integration. At present, the sliding and intersection experts exploit only
local geometric structure and planning history. The channel algorithm introduces
a global criterion for selecting which C-surfaces to slide along, and for constructing
intersection manifolds. The set of C-surfaces Slide specifies an implicit volume in
configuration space which is closely related to the channel volume (in C-space).
This volume is obtained by extending the hyperplanes containing the C-surfaces
past the obstacle boundaries until they intersect. Furthermore, Siide lies on the
boundary of the image of the hypothesized equivalence class of paths. By choosing
these interior surfaces as candidates for the sliding and intersection experts, global
advice on constraint relevance is provided to the local C-space algorithm by the

global channel algorithm.

241

Appendix IV

A Listing of Macsyma Code

In this appendix, we provide a listing of the Macsyma code to produce optimized
Lisp procedures for computing the coefficient {unctions of the canonical linear
forms and trigonometric quadratic forms of the type (a), (b), and (c) C-functions,
and type (a) and (b) ACF clauses for 3 X SO(3). Using these forms, the
intersection manifolds, type (¢) ACFs, and disambiguating applicability constraints

are constructed in the manner described in the text.

We also list (in Macsyma) the resulting combined forms for the C-functions and

ACFs. Note that the type (¢) C-function is “over a page long.”

Rotations are specified by means of the Macsyma functions RotateVector(x :
vector) and Transform(z : plane or wvector). Rotations are implemented using
the Euler angles. However, by changing these two functions, any representation
for rotations—such as quaternions, spherical angles, or wrist angles for a cartesian
manipulator-may be employed. This corresponds to reparameterizing SO(3), and
results in different charts for the level C-surfaces, intersection manifolds, and ACF

manifolds.

242

/* Display and Grind function. 1f OPTIMIZE_FLAG is TRUE then
we actually store the OPTIMIZED expression ¢/

print("Setting Grind to TRUE...")$
Grind:True$

Optimize_Flag: TRUES

TAd OPIMPREFIX: % */

Display_and_Grind(exp):=
Block{[1abel],
if OPTIMIZE_FLAG THEN
(print(EXP).
Print(~ Optimizing...%),
Exp: Optimize(Exp)),
label:Ldisp(exp).
if Grind then
(print(” Ground, becomes:
=, label[1]." : ").
grind(exp)).
print{(" ").
1abel[1])$

/* Utility function. Is the expression EXP free of all the VARS (8 1ist?) */

Free_Of_vars(vars, Exp) :=
block([freedom],
freedom:true,
(for var in Vars unless freedom = false do
(if Not FreeOf(var, Exp) then freedom: false)).

if Not freedom then

Print{"[Exp contains Major variables. Recursively Analyze...]"),
freedom)$. :

/* here we define Canonical Linear Form to be simply the
expression of the constraint as a linear function
in X, Y, and 2 %/

Canonical_linear_variables: [X, ¥, Z]$

Canonical_linear_form(Exp) :=
IsolateN(Exp, Canonical_linear_variables)$.

243 -

/* Bruce Donald (BRDEOZ) analyze hairy expressions -%- MACSYMA -*-
a little bit */ :
/* Analyze Bilinear Forms : given the =chief vars” in RATVARS,
generate intermediate 1abels for all the coefficients
of these vars and return the »simplified” bilinear form.
Recursively Calls ANALY2E_BILINEAR_FORM So that the intermediate
Yabels are truly “constants”™ relative to the Ratvars */

/% typically. ratvars:[x.y.z.psi.theta.phi] ./

/* 1IsolateN works like I1SOLATE but for N variables in a Yist,
on a bilinear form ¢/ .

I1solateN(Exp, Nvars) :=
Block([Save_Ratvars, Iform],
Save_ratvars: ratvars, '
Ratvars: Nvars,
Iform: Ana1yze_Bi1inear_form([xp).
Ratvars: Save_Ratvars, =
Iform)$

simple_Analyze_depth: 43

AnaIyze_Bi]inear_Form(exp) :®
block([power, Coef, Rat_Exp, Left, 7lose, Sum, Label].
print("Analyzing:').
1disp(revea1(Exp.simp1e,ana1yze_6epth)).
teft: rat(exp). Sum: O,
for var in Ratvars do
(Power: Hipow(Left, var),
if power > 2 then
(lose: var-power,
Error("Warning: Not 8 Bilinear form because of *, lose)),
Coef: ratcoeff(Left, var, 2).
if not (Coef = 0) then
(Print("The coefficient of ", var<2,” is ")
Labe1:Dispiay_and_grind(toef).
if not free_of_vars(ratvars, Coef)
then Label: Ana1yze_Bi1inear_form(Coef).
Sum: Sum + label ® Var-2,
teft: rat{left - Coef * (Var 2.
print{"Mixed terms: "),
for var in Ratvars do
- (for var2 in Ratvars do
if var #var2 then)
(Coef: ratcoeff(Left, var®var, 1),
4f not (Coef = 0) then
(Print("The coefficient of =, var®var2,” i).
labei:Display_snd_grind(Coef),
4f Not Free_Of_vars{Ratvars, Coef)
then Label: Ana)yze_8i1inear_form(Coof).
Sum: Sum + label * var® varZ,
Left: rat(left - Coef * (Var e var2))))).
print(" Linear Terms: “).
for var in Ratvars do
(coef: ratcoeff(left, var, 1).
if not (coef = 0) then
(print("The Coefficient of ",var,” s).
label:Display_and_grind(Coef),
if Not Free_Of_vars(Ratvars, Coef)
then Label: Ana1yze_Bilinear_form(Coof).
Sum: Sum + label®var,
Left: rat{left - Coef® var))).
if Left # 0 then
(Print(" And the constant term is 7).,
Label: Display_and-grind(1eft).
sum: Sum + Label), ,
Print(" Yielding :"}. Display_and_grind(Sum), Sum)$

244

/* Bruce R. Donald. (BRDROZ) -¢- Mode:Macsyma -°-

Attempt to express applicability constraints for

C-surfaces in R~3 \cross $°3 ¢/
/* PRODUCTION VERSION -- {.e., for production of LISP code ®/
BTHETA: [phi. theta, psils

"§f .Euler_Rotation_equations_loaded = TRUE then "OK"
else Batchload ([rotate.mac]):

shorten(exp):= subst{ S,sin, subst(C, cos. exp))3
ratvars:[sin(phi).cos(phi),sin(theta).cos(theta). sin(psi).cos(égi)]:
7/‘ Each constraint is of the form */ ’
/* vectors: */
u(i) := fux[iJ.uy[i).02[i]):
v(i) := [vx[i].vy[1].v2[1]):
/* Normal for plane eq */
n(i) := [nx[i].ny[i].n2{i].na[i]]:
/* Here we define functions to generate the applicability constraints.

the arguments are: Bn : a vertex in 3-space, which we use to
measure distance to the plane.

v : a vertex which we insist must be ON the plane.
N : a plane (4-vector)
¢ : the "height™ of the level surface in §~3.
§f 0. corresponds to the maximim boundary
of the applicability clause (eg edge-face
contact).
./
R3_projection(vec) := [vec[1]., vec[2], vec[3]]$,

Type_B_Clause(N, bn, v, c) := /

simp_3(

(R3_Projection(N) . Rotate_vector(Bn))
- (R3_Projection(N) . Rotate_vector(v))
- c).-

Type_A_clause(N, bn, v, c) :=
Block ([N_THETA],
N_THETA: part(transform(Euler_Inverse,), 1),
simp_3(
(R3_Projection(N_THETA) . bn)
- (R3_Projection(N_theta) . v)
-¢)):

Midp(a,b) := 8 + (b-a)/2$

Type_Ci_Clause(nl, n2, al, 82, ci, ¢c2) :=
simp_3(
- type_b_clause(nl, al, midp{el,82), ci1)
¢ type_b_clause{nZ, al, midp(al,a2), €2)):

Type_C2_Clause(N1,N2, b1, b2, cl, c2) :=
simp_3(
- type_a_clause(nl, bl, midp(b1,b2), ¢1)
* type_a_clause(n2, b2, midp(b1,b2), €2)):

7% tev[] is just a CONSTANT to construct 8 Level surface on §5-3 which
is applicable ¢/

245

/* XC., YC, IC, WC are Coordinate"accessor functions (MACROS) in LISP ®/

type_B_Aciause[1]:

type_B_Clause([xc(N). YC(N). ZC(N). WC(N)].
[xc(u). ye(u). zc(u)),
Exc(v). ye(v). ze(V)].
Level);)

7* b[1] : type_b_clause(n{¥1), v(J1). u(kl), tev[1])
6[2] : type_b_clause(n{i2), v(j2), u(k2). lev[2]) */

Type_A_Aclause[1]: .
type_A_Clause([xc(N). YC(N), IC(N), WC(N)].
[xc(u). yc{u). ze{v)].
[xe(v). yc(v). zc(v)].
Level):

/* a[1] : type_a_clause(n{11), v(ml), v(pl1). 1ev[3])
af2] : type_a_clause(n(12), u(m2). «{p2). lev[4]) */

/¢ C_1[1] : type_ci_clause(n{b1). n{b2), v(ail). v(ai2), Yev[5]. lev[6])
C_2[1] : type_c2_clause(n(al), n(a2). u(bj1), u(bj2). tev[7], lev[8]) ¢/

/* Grind the results... */

print(”
Type_A_Aclause[1] :")§ Grind(Type_A_Aclause[1])$

print(”
Type_B_Aclause[1] : ")$ Grind(type_B_Aclause[1])$

246 -

/* bruce r. donald. cspace constraints in 3-dimensions. -®- macsyma -e- o/

/* production-version: i.e. produce lisp code...
xC, yc and zc are baccessor macros for components of vectors */

/* this next section contains the equations for c-surfaces in
r~3 x s-3. see aim 605, tomas®' spatial planning paper for details. */

/* 1oad euler rotation equations */
if euler_rotation_equations_loaded = true
then "ok"
else (batchload{"usrd$:[brd.prod]rotate.mac™),
evler_rotation_equations_loaded:true):
/* a vector in r-3: ¢/
avec : [x. y. 2]:
ratvars: [x. y. z,
sin(phi), cos(phi), sin(theta), cos(theta),
sin(psi). cos(psi) J:
/* a vertex on a , and a(i+1) */

ai : [xc(ai) . yc{ai), zc(ai)):
aione: [xc(aione), yc(aione), zc(aione)]:

/* a vertex on b , and b(j+1) */

bj: [xc(bj). ye(bj), ze(bj)]:
bjone: [xc(bjone). yc(bjone), zc{bjone)]:

/* the normal to a face fi on & */

nfi: [xe(nfi), yc(nfi), zc(nfi), we(nfi)]:
/* the normal to & face gj on b ¢/

ngj : [xc(ngj). yc(ngj). zc(ngj). we(ngi)]:
/° type a surface. rotate the normal: */
Ri_projection(vec) := [vec[1], vec[2]. vec[3]]$
Rot_Nfi: part(Transform(Euler_Inverse,nfi),1);
N_a: R3_Projection(Rot _Nfi); |
Inner_Product_Term: (Rotate_vector(ai) + bj);
A_S5: N_a . Xvec - (N_a . Inner_Product_Term);
/* Type B Surface */

N_b: R3_projection(Ngj):

B_56 : N_b . Xvec - (N_b . Inner_Product_Term);

7° Type C surface (1) */

Edge_a: rotate_vector(aione) - rotate_vector(ai);
Edge_b: Bjone - bj:
N_C: Cross(Edge_a, Edge_b);

C_5: N_C . Xvec - (N_c . Inner_Product_Term):

247

/o Simplify {f possibler */

7 Grind the forms have *

T opeiet(®
© type ACsurface[1] :7) $ gring(A_S)S

r

(" :
Type_S_Csurface[1] :")$ Gring(B 0)8

Priat{”
Type C_Csurface{1] :*)8 Gring(C_8)8

-

248

“Simp 1(Exp, ﬁir) 1o ratsud ﬁ:v. Hs{ur)*;io_m(im)‘ll. .
simp_3(Exp) = Rat(Stmp_1(Stem3{ Sten.1(Esp. PAt). TN
a8 Step d(retstn(A8)): | |
a8t Simp_3(reratue(8.8));
LG8 Simp_ 3 ratsimp(C8)):

_[renpta{aB). Tength(b_B), Yength(C 5)]:

-

/% -*- MODE: MACSYMA -*-

(HLRE ARE THE DEFINITIONS OF TYPE (A} (B) AND (C) C-SURFACES FOR
THE 6DOF MOVIRS PROBLEM, AND TYPE (A) AND (B) APPLICABILITY
CONSTRAINTS . Output of CSPACE and APFLIC under PRODUCE for
production run.) */

Type_A_Csurface[1] :

(({XC(NFI)*X-XC(BJ)*XC(NF1))*COS(PHI)+(XC(NFI)*Y-YC(BJ)*XC(NFI))*SIN(PHI))
*COS{ THETA)
+(~XC(NFI)*Z+2C(BJI)*XC(NFI))*SIN(THETA)+(YC(NFI)*Y-YC(BJ)*YC(NFI))*COS(PHI)
+(-YC(NFI)*X~XC(BJ)*YC(NFI))*SIN(PHI)-YC(NFI))

*COS(PSI)
+({{~YC(NF1)*X+XC{BJ)*YC(NFI))*COS(PHI)
+(~YC(NFT)*Y+YC(BJ)*YC(NF1))*SIN(PHI))
*COS({THETA)
+(YC(NFI)*2-2C(BJY*YC(NFI))*SIN(THETA)+(XC(NFI)*Y-YC(BJ)*XC(NFI))*COS(PHI)
+(-XC(NFI)*X+XC(BJ)*XC(NFI))*SIN(PHI)-XC(NFI))
*SIN(PST)+(ZC(NF1)*Z-2C(BJ)*ZC(NF1))*COS(THETA)
+({ZC{NFI)*X-XC(BJ)*ZC(NFI))*COS(PHI)+(2C(NFI)*Y-YC(BJ)*ZC(NFI))*SIN(PHI))
*SIN(THETA)-ZC(AT)*ZC(NFI)-YC(AT)*YC(NFI)-XC(AI)*XC(NFI)$

Type_B_Csurface[1] :

({~XC{AI)*XC(NGJ)*COS(PHI)-XC({AT)*YC(NGJ)*SIN(PHI))*COS(THETA)
+XC(AI)*2C(NGJI)*SIN{THETA)-YC(AT)*YC(NGJ)*COS(PHI)+YC(AI)*XC(NGJ)*SIN(PHI))
*COS(PSI)
+{(YC(AI)*XC(NGJ)*COS(PHI)+YC(AT)*YC(NGJ)*SIN(PHI))*COS(THETA)

~YC(AI)*ZC(NGJ)*SIN(THETA)-XC(A1)*YC(NGJ)*COS(PHI)+XC(AI)*XC(NGJI)*SIN(PHI))
*SIN(PSI)-2C(AI)*ZC{NGJ)*COS(THETA)
+(~ZC(AI)*XC(NGJ)*COS(PHI)-2C(AT)*YC(NGJI)*SIN(PHI))*SIN(THETA)
-YC(NGJ)*COS(PHI)+XC(NGJ)*SIN(PHI)+ZC(NGJ)*Z+YC(NGJ)*Y+XC(NGJ)*X
-2C(BJ)*ZC(NGJI)-YC(BJ)*YC(NGJ)-XC(BJI)*XC(NGJ)$

Type_C_Csurface[1] :

(({((XC(ATONE)=-XC(AI))*YC(BJONE)+(~XC(ATONE)+XC(AI))*YC(BJ))*Z
+((~XC(AIONE)+XC(AI))*2C(BIONE)+(XC(AIONE)=XC(AT))*ZC(BI))*V
+(XC(ATONE)-XC(AI))*YC(BJ)*ZC(BJIONE)+(-XC(AIONE)+XC(AT))*2C(BJ)*YC(BIONE)
+(-YC(AI)*ZC(AIONE)+ZC(AT)*YC(AIONE))*XC(BJONE)
+(YC(AI)*ZC(AIONE)-2C(AI)*YC(AIONE))*XC(BJ))

*COS(PHI)
+({(~XC(ATONE)+XC(AI))*XC(BJONE)+ (XC{AIONE)-XC(AT))*XC(BJI))*Z
+((XC(ATONE)-XC(AI))*ZC(BJONE)+(-XC(AIONE)+XC({AI))*ZC(BJ))*X
+{~XC(ATONE }+XC(AI))*XC(BJ)*ZC(BIONE)
+(~YC(AI)*ZC(AIONE)+ZC(A1)*YC(AIONE))*YC(BJONE)
+(XC(ATONE)-XC(AI))*ZC(BJ)*XC(BJIONE)
+(YC(AI)*ZC(AIONE)-2C(AI)*YC(AIONE))*YC(BJ))
*SIN(PHI)+(XC(AIONE)-XC(AI))®ZC(BJIONE)+(-XC(ATONE)+XC(AI1))*2C(BJ))
*COS(THETA)
+(((XC(AIONE)=XC(AT))*XC(BJIONE)+(-XC(AIONE }+XC(AI))*XC(BJ))*COS(PHI)
+((XC(AIONE)-XC(A1))*YC(BJONE)+(-XC(AIONE)+XC(AT))°YC(BJ))*SIN(PHI)
+((~XC(ATONE)+XC(AI))*XC(BIONE)+(XC(ATONE)-XC(AI))*XC(BJ))*Y
+((XC{ATONE)-XC(AI))*YC(BJONE)+(-XC(AIONE }+XC(AI))*YC(BJ))*X
+(YC(AT)*ZC(AIONE)-2C(AI)*YC(AIONE))*ZC(BJIONE)
+(-XC(ATONE)+XC(AI))*XC(BJ)*YC (BJIONE)+(XC(AIONE)=XC(AI))*YC(BJ)*XC(BJIONE)
+{~YC(AI)*2C(ATONE)+2C(A1)*YC(AIONE))*ZC(BJ))
*SIN(THETA)
+({(~YC(AIONE)+YC(AI))*XC(BJONE)+(YC(AIONE)-YC(AI))*XC(BJ))*Z
+((YC(ATONE)-YC(AI))*ZC(BJONE)+(-YC(ATONE)+YC(A1))*2C(BJ))*X
+(~YC(ATONE)+YC(AI))*XC(BJ)*2C (BIONE)
+(XC(RI)*2C(AIONE)-2C(A1)*XC(AIONE))*YC(BIONE)
+(YC(AIONE)-YC(AI))*ZC(BJ)*XC(BJIONE)
+(-XC(AI)*ZC(AIONE)+2C(AI)*XC({AIONE))*YC(8J))

249

| *YC(BJ))°Z
. " YC(AIONE)'YC(“)). BJ))*Y
+(??f$'c"?3°~f>*‘%zﬁ3222%3‘33?51<fvﬂ“i’czz;:s::mctﬁg),zzcw»-vcmo»n
*((YC(MONE):zE A]))‘YC(BJ)‘ZC(BJONL):xc(BJONE)
‘('Yc(:}?fgé(AISNE)+2C(A12‘éc£;éﬁg§;zxc(aJ))
+§;é%§x).ZC(AIONE)-ZC(AX) XC(
*SIN(PHI)) -YC(A1))*YC(BJ))*Z
. + YC(AIONE) - J))*Y
e e I o
*' - 1) . NE)+(Y
$((YC(AIONE) YE(:I))’YC(BJ) 2C(BJO S SC(BIONE)
+(-YC(A10NE)*YIé“E)¢ZC(A1)'xC(AIONE)z*C(BJ))
+(~XC(AT}*ZC(AIC -ZC(A1)*XC(AIONE)) o
¢ AI)QZC(AIONE) . Al).XC(BJ)).
YC(ATONE)-YC(AI)) «7C(BJONE }+(YC(ATONE)
*(((-YC(AIONE)+YC(AI)) 2 *IC(BJONE)
+((c AIONE)—YC(AI))’XC(BJ).xC(AonE))'YC(BJONE)
:(!xé(Al).ZC(AIONE)*fgétég).xc(aJoni)
i’yc‘“l°"tzz¥8§2§2;C(A1)‘XC(AIO"E}%;ES&?iézuxous)-YC(‘))‘ZC(BJ))
+(XC(A1)"ZC ONE)+YC(AT))*2C(*COS(PHI)
*SIN(PHI)+(-YC(AI -YC(AI))*XC(BJ))*CO
~cgé?§ﬂf'“) oxC(BJONE)+(YC(“°"E),IE§:1;;-YC(BJ))°51"(P"I)
+ (('YC(AIONE)*YC(AI))'YC(BJONK)*(YC(AIONE) YC(RI))*XC(BJ))°®Y
' i(('YC(“IONE)+YC(AI)EXC(BJONE)*('YC(AIONE)+VC(AI))’YC(aJ))'*'
YC(AIONE)-YC(Al)) *YC(BJONE)+(YC(AIONE)- £ *XC(BJONE)
Ifﬁ-vc(A1°""Iéﬁ§§3%2(Ix,.xc(nxous);'zcgggggogs)+Yc(,;))-vc<sa) xc(
+(XC(R1)*ZC(A A1))*XC(BJ)*YC(BJIONE +.;c(aJ)) '
+(YC(AIONE)-YC(E)+ZC(A1)*XC(AIONE)) .
-XC(AI)*ZC(AIONE) -XC(A1))*XC(BJ))*Z
:glz(gﬂfT‘) *XC(BJONE)+(XC{AIONE) :EE:;;;°ZC(BJ))‘l
~XC{AIONE)+XC(AI)) RIONE)+ (-XC(AIONE)+
+(((xc(nons)-xc(“))‘ZC(BJ)'ZC(BJO"E) i
:E£XC(AIONE)*xgg:égl;éigl)oyc(AIONE))'YC(BJO“E)
*IC(AIO . ONE
IE;Efﬁ?é%s)-§cg;g;>;g§g§§2,éf£?8us>3-vc<aa>> a3z
C(AI)*2C(AIONE)- -XC(A1))*YC(BJ))*
:é;sﬁvﬂl) ovc(aaons)+(XC("°"E’+§E§:x;§'ZC(8J))‘V *YC(BJONE)
+((('xc(Aloug);égg?ggch(BJONE)*(‘xcé;i?:EzAIONE)'XC(AI))'ZC(BJ)
e A TONE)+ XC (AT})*YC (82)*2C (BION *XC(BJONE)
L (VT{M)SZE(AIOUE - 2C(A1) YC (RO “RC B0
:gzsé(Ax)'ZC(AlonE)*lC(AI) (HI)
*SIN(PHI)) . *XC(8J))*COS
.5§:?£SI) .xc(aJONE)+(ZC(A1°"E)_§E§:§;;-vc(ad))’SI“(P“l)
O L)) +vC(BIONE) +(ZC(ATONE) 2C(A1))*XC(BJ))*Y
£((-ZC(AIONE’;éfﬁ?igsz(saouf)+(°§§§:§g:§;fic(Ax))'YC(BJ))'*
E -
o KN
*(-XC(AI)‘YC(”gl))-xc(BJ)‘VC(BJONE):ZE(“))
"’(ZC(AIONE)-ZCS"E)-YC(AI).xC(AIoNE)) o2
+(XC(AT)*YC(AI E)42C(A1))*YC(8)))
. A . -2C(AIONE) *2C(BJ))°Y
B R i R —
e e 2L (AL}) YT (Bd)*2C (BIONE }4XC(BIONE)
+(1C(“°"E)'chou£)+YC(Al)‘xc(“long)zxc(sJ))
+(-XC(AI)*YC(A E£)-YC(AI)*XC(AIONE)) 2
XC(AI)*YC(AIONE) ~2C(AI)‘XC(BJ)).
:éosgPHI) oxc(BJONE)*(ZC(AIONE)‘éEE“;)OZC(BJ)) X
(~2C(AIONE)+IC(AT)) C(BJONE)+(-2C(AIONE)
*i((zc(Alo"E)"c(“l))-z (82)°2¢ (BI0NE) NEY
+f—1£(n10nt)zigg::;)Yéfﬁl).xc(Axouzg)‘YC(°J°
-XC(A1)*YC . *XC(BJONE
Ifzéfg?ozf)'lggﬁég1y§f§?§3x§f§10~5)ggjﬁffiézgxons)+zc(A1))'1C<””
:§§:E232;15§2(A10u£)'ZC(‘I))'ZC(BJO
*SIN(THETA)S

/ H refr T he A pl.cabi" on Ll.l"ts I/
ere

250

Type_A_Aclause[1] :

(((XC(U)-XC(V))*XC(N)*COS(PHI)+(YC(U)-YC(V))*XC(N)*SIN(PHI))*COS(THETA)
+(~2C(U)+ZC(V))*XC(N)*SIN(THETA)+(YC(U)-YC(V))*YC(N)*COS(PHI)
+(~XC(U)+XC{V))*YC(N)*SIN(PHI))

*COS(PSI)
+(((~XC(U)+XC(V))*YC(N)*COS{PHI)+(=YC(U)+YC(V))*YC(N)*SIN(PHI))*COS(THETA)
+{2C(U)-ZC(V))*YC(N)*SIN(THETA)+(YC(U)-YC(V)) *XC(N)*COS(PHI)
+(~XC(U)+XC(V))*XC(N)*SIN(PHI))

*SIN(PSI)+(ZC(U)-ZC(V))*2C(N)*COS(THETA)
+((XC(U)-XC(V))*ZC(N)*COS(PHI)+(YC(U)-YC(V))*ZC(N)*SIN(PHI))*SIN(THETA)-LEVELS

Type_B_Aclause[1] :

(((-XC(N)*XC(V)+XC(N)*XC(U))*COS(PHI)+(~YC(N)*XC(V)+YC(N)*XC(U))"SIN(PHI))
*COS(THETA)
+(ZC(N)*XC(V)-ZC(N)*XC(U))*SIN(THETA)+(=YC(N)*YC(V)+YC(N)*YC(U))*COS(PHI)
+(XC(N)*YC(V)-XC(N)*YC(U))*SIN(PHI))

*COS(PSI)

+{((XC(N)*YC(V)~XC(N)*YC(U))*COS(PHI)+(YC(N)*YC(V)-YC(N)*YC(U))*SIN(PHI))
*COS(THETA)
+(~ZC(N)*YC(V)+ZC(N)*YC(U))*SIN(THETA)+(=YC(N)*XC(V)+YC(N)*XC(U)) *COS(PHI)
+(XC(N)®XC(V)-XC(N)*XC(U))*SIN(PHI))
eSIN(PSI)+(-2C(N)*ZC(V)+ZC(N)*ZC(V))*COS(THETA) :

+((-XC(N)*ZC(V)+XC(N)*ZC(U))*COS(PHI)+(-YC(N)*ZC(V)+YC(N)*ZC(U))*SIN(PHI))
*SIN(THETA)-LEVELS

251

/‘ -*- mode: macsyma -®-
(Bruce Donald. Here we Express a Constraint (C-surface or
Acf) in Canonical Linear Form and Canonical Trig form.

Given a CONSTRAINT which is either a
C-surface or an ACF (applicability clause function)
and a8 variable (VAR) we solve for the variable) */

Load_up():= /* load necessary files */
block(f]. /* for solving */
if ALL_DEFS_LOADED = TRUE then "OK"
else batchload("usrd$:[brd.prod}defabc.mac"),
batchload([intabc.mac]),
batchload(”usrds:[brd.prod]ana1yze2.mac").
Ratvars: [x, y, z,
sin(phi), cos(phi). sin{ theta), cos(theta).
sin{psi), cos(psi) J.
Angles: [Phi, Psi, theta])$

Load_up()$S
/% give us an "explicit”™ tangent space */

s(var) := sin(var)$
c(var) := cos(var)$
Build_Manifold()$ /® Rebuild Manifold ¢/

solve_for_angle(exp,var):s= /* Solve for COS(var) */
block([Rats, R1, Rz, R3],
rats: ratvars,
Ratvars: [c(var), s{var)].
print("Simplifying..."),
R1: IsolateN({exp, Ratvars),
Print("Eliminating “, s(var),"..."),
R2: Eliminate[1](R1, Var),
Ldisp(R2),
Print("Solving for ", c(var),"..."),
R3: solve(R2,c(var)),
gisplay_and_grind(R3),
ratvars:rats,
r3)$

Solve_for_X(Exp, Xvar):e /* Solve for Any Var */
Block([Rats, r1, R2],
Rats: ratvars,
Ratvars: [Xvar],
print("Simplifying..."),
Ri: IsolateN(Exp, Ratvars),
print(" Solving for ", Xvar,"...%),
r2: solve(R1, Xvar),
Display_and_grind(r2),
ratvars: rats,
R2)$

Solve_test():= /* Test the Solution Routines ®/
block([].

grind(solve_test),

grind:false,

Solve_for_angle(Cs1, Phi),

Solve_for_X(CS1, X),

/* SOlve 8 type (8) surface for PSI and Y */

AS1: SinCos_to_CS(type_A_CSurface[1]).

Solve_for_angle(AS1, Psi),
Solve_for_X(AS1, y).

/* SOlve 8 type (B) surface for PSI and Y */

252

BS1: SinCos_10_CS(type_B_CSurface[1]).

Soive_for_angle{BS1, Psi),
Solve_for_X(BS1. y).

Notify()
)8

/% CExpress expresses things Canonically */

Cexpress(Exp, Type) :=
BLock([]. ’
If Type = C_Surface then
(Print{"Canonical Linear form M)
Canonical_linear_form{Exp)).
Print("Solving for Angles...").
for var in Angles do
(Solve_for_angle(Exp. var)))$

/* Here we Do the Expression. Now to get Ground forms, just change GRIND, etc. */

DO_CExpress():=

BLock([].
Grind: False, /* Here it is.. ¢/
kil1(Vabels),

CExpress(type_A_Csurface[l]. *C_Surface),
Cexpress(type_B_Csurface[1]. *C_Surface),
CeExpress(type_C_Csurface[1], *C_Surface),
CExpress(type_A_Aclause[1], *ACF).
CExpress(type_B_AClause[1]. *ACF))S

253

7* -*- Macsyma -*- BRD@DZ (Bruce R. Donhald).
Sove intersections of C_surfaces and A_clauses,
for the 6dof movers problem. */

Angles: [theta, Phi, Psi]$

/* allow some simplification into C and S terms */

SinCos_to_CS (exp) :=
Biock([E].
E: exp,
for var in Angles Do ‘ . .
E: ratsubst{s[var}, sin{var),
ratsubst(c[var], cos(var), E)).
rat(E))$

/* permit the inverse */

CS_to_SinCos (exp) :=
Block([E].
E: exp,
for var in Angles Do
£: ratsubst(sin(var), s[var],
ratsubst(cos{var).c[var], E)),
E)S

/* The Tangent Space Manifold */
/* DO it yourself, pal!l batchload([defabc,mac, "usrd$”, brd]) */
/* Short form functions ¢/

s(var) := s[varl$
c(var) := c[var])$

/* Slmplify 1f possible? use the s/c[var] form though. */
Simp_1(Exp, Var) := ratsubst(1, s(var)-2 + c(var)~2, exp)$,
simp_3(Exp) := Rat(

Simp_1(Simp_1(Simp_1(Exp, Phi), Theta), Psi))$

manifold(var):« s(var)~2 + c(var)-2 = 13

Build_manifold() :=

Block({].
Man{theta]: manifold(theta),
Man[Phi] : Manifold(phi),
Man[Psi] : Manifold(psi))$

Build_manifold()$

/* Eliminate[1] eliminates the dua) trig term. S~1 is parameterized by
one variable (var). Eliminates SIN(VAR) from EXP */

eliminate[1])(exp, var) :=
block([].
Templ: rat{part(
eliminate([exp, Man[var]]. [s(var)]).1))
)$

/* Eliminate[2] calls eliminate[1] twice, and eliminates the resultants.
Hence the intersection of two level surfaces on §°3 is
parameterized by a one param. family. Eliminates Sin/cos vari/var2
from Exp. */

USE_CS_FORM: True$

eliminate[2](expl, exp2, varl, var2) :=

254

tlock({ [R1, R2, R3, R4, R5, b, /* Temp results ¢/
Lri, Lr2, Lr3, Lr4, Lr5, 1r6], /® Their Labels */
Ratvars: [x, ¥y, 2z, '
s(phi). c(phi), s(theta), c(theta),
s(psi), c(psi) J.
if Use_CS_FORM then
(expl: SinCos_TO_CS(expl),
exp2: SinCos_To_CS(exp2)).
print(“Eliminate ",s(varl),” from expression 1:%),
r1: eliminate[1]{expl, varl),
Lri:1disp(rl). .
print(“Eliminate ",s(varl),” from expression 2:%),
r2: eliminate[1])(exp2, varl),
Lr2:1gisp(r2),
print("Eliminate ".c{varl),” from ", append{LR1, LR2)),
r3: rat(eliminate{[r1,r2]).[c(var1}])).
Lr3: Ldisp(R3),
print("Eliminate ", s(var2),” from ",Lr3),
R4: eliminate[1](R3, varl},
Lra: Ldisp(R4),
Print(" Solve ", 1rd," for ", c(var2)),
R5: rat{Solve(R4, c(var2))).
Le5: Ldisp(RS).
print("Finally, solve ",Lr1," for ",c(vari)).
R6: rat(solve(Rl, c(varl))),
Lr6: 1disp(R6),
Append(1r2,1r2,7r3,1r4,1r5,1r6))$

Test():=
eliminate[2](type_A_Aclause[1],
type_A_Aclause[2],
Phi,
Psi)$

255 .

/* -e- Mode: macsyma -°®-
(File to Run Production of 3d Space equations.
8ruce R. Donald, MIT AI LAB) */

/* Define the type ABC constraints. ®/

-Define_ABC():-
block([].
batch("USRDS:[brd.prod]Cspace.mac”))$

/* Define the appllicability Constraints */

Define_Applic():s °
Block([]. '
Batch(“USRDS:[brd.prod]Appiic.mac™))$

/* Define Both */

Produce_Defs():=

block([].
Writefile("usrd$:[brd.prod]Produce.log"),
Batch(“usrd$:[brd.prod]Rotate.mac™),
Define_ABC().
Define_Applic().
Closefile{).

"Notify())$

Cold_Restart():=

biock([].
batchioad("sys$login:utils.mac"),
batchioad("usrd$:[brd.prod]produce.mac™),
Produce_defs())$

/* Here's a function to save labels for you. */

Save_labelis(file):=
block([].
70pen_output_file(file),
for Label in Append(reverse(labels(e)), reverse(labels(d)))
DO
(?6rind_TO_FILE(Label), Print(Label)),
?Close_Output_file())$

/* Produce the EXPRESS file, parsing into solutions and coefficients. ¢/

Produce_Express():»
block([]. »
writefile(~usrd$:[brd.prod]Express.Tog").,
batch(“usrd$:[brd.prod]Express.mac”),
DO_CExpress().

Print(" Saving Labels in LSP file..."),
Save_Labels("USRDS:[brd.prodJEXPRESS.LSP"),
Notify())$

/* this function produces EVERYTHING. ®/

Produce_ALL():*=

BLOCK([].
Produce_Defs().
ALL_DEFS_LOADED: TRUE,
Ki11(Nfi, Ngj. Ai, Aione, Bj, Bjone),
Type_A_Csurface[1] : AS,
Type_B_Csurface[1]): B_5,
Type_C_Csurface[1]: C_S,
Produce_express().
closefile())$

256

/* Bruce R. Donald (BRD@0DZ) Euler Rotations for Macsyma. See

Paul, p 45 ¢/

c(angle):= cos(angle)$

s(angle):* sin{angle)$
Rot_z_psi:

matrix(
[c(psi), -s(psi). 0, 0].
{ s(psi). c(psi)., 0. 0],
o 0. 1, 0],
{o. 0. 0. 1))

Rot_y_theta: matrix(
[c(theta). 0. s{theta), 0],

[o. 1, 0, 0].
[-s(theta), 0, c(theta). 0].
[o. 0, 0. 1]):

Rot_Z_Phi: Matrix(

[c(phi), ~-s(phi)., 0. 0],

[s(phi). c(phi). 0. 0],

{o. 0. . 0],

Lo, 0. 0, 1]):

Euler_temp: Rot_Y_Theta . Rot_I_Psi;
Euler_matrix: Rot . Z_Phi . Euler_temp:
homogenize(X):= [x[1])., x[2]. x[3]. 1]:

UnHomogenize(X) := [x[1]/x[4]. x[2]/x[4]. x[3])/x[4]]:

-*- MACSYMA -°-

Rotate_vector(X) := UnHomogenize(Euler_Matrix . Homogenize(X)) ;

/* Cross Product ®/
Cross(A,B) :=
[(af2)°b[3] - a[3]°b[2]).
(a(3)*o{1] - a[1]°b[3]).
(af1]J*b[2] - a[2]*b[1])]:

/* Slmplify if possible? ®/

Simp_1(Exp, Var) :e ratsubst(1, sin(var)~2 + cos(var)*2, exp);

simp_3(Exp) := Rat(
Simp_3(Simp_1(Simp_1(Exp, Phi), Theta), Psi)):

/* General Transformation function. A 4-vector is assumed to be a plane,
and a 3-vector a 3-vector. hence the 3-rector is ROTATED anc¢ a 4-vector

plane is also rotated... See PAUL ¢/

Transform(Transformation_matrix, X) :e
8lock([Hom, Trans.ans],
Ans: "Whoops!®,
4f length(X) = 4 then
Ans: x .Transformation_matrix
Else
if length (x) = 3 then

Ans:Unhomogenize{Transformation_matrix . Homogenize (X))
Eise Print{~ But ".x,” Must be a 3-vector or 4-vector!i®™),

Ans);

7* Now Compute Inverse of the Euler Transformation ®/

E_Adj: simp_3(rat (adjoint(Euler_matrix))):

257

References

Baer, A., Eastman, C., and Henrion, M. “Geometric Modeling: A survey,”
Computer-Aided Design 11, 5 (1979).

Binford, Thomas “Visual Perception by Computer,” IEEE Systems Science and
Cybernetics Conference , Miami, 1971.

Brady, J. M. et al. Robot Motion: Planning and Control , MIT Press, Cambridge,
MA, 1983.

Brady, J. M. “Criteria for Representations of Shape,” Human and Machine
Viston eds. Rosenfeld A., and Beck J., 1982.

Brady, J. M. “Smoothed Local Symmetries and Local Frame Propagation,” Proc.
Patt. Rec. and Im. Proc. , Las Vegas, 1982b.

Brooks, Rodney A. “Symbolic Error Analysis and Robot Programming,”
International Journal of Robotics Research 1, no. 1 (1982).

Brooks, Rodney A. “Solving the Find-Path Problem by Good Representation of
Free Space,” IEEE Transactions on Systems, Man, and Cybernetics SMC-13

(1983a).

Brooks, Rodney, A. “Find-Path for a PUMA-Class Robot,” AAAI, Washington,
DC, 1983b.

Brooks, Rodney A. and Lozano-Pérez, Tomas “A Subdivision Algorithm
in Conliguration Space for Findpath with Rotations,” International Joint
Conference on Artificial Intelligence , Karlsruhe, Germany, 1983.

Brou, Philippe Finding the Orientation of Objects in Vector Maps, Ph.D Thesis,
Department of Electrical Iingineering and Computer Science, Massachusetts
Institute of Technology, 1983.

Burke, G., et al. “The NIL Reference Manual,” Laboratory for Computer Science,
Massachusctts Institute of Technology, 1983.

Canny, John “On Detecting Collisions Between Polyhedra,” European Conference
on Artificial Intelligence , Pisa, Italy, To be presented October, 1984.

Chatila, Raja Systém de Navigation pour un Robot Mobile Autonome: Modelisation
et Processus Décisionnels, Ph.D. Thesis, L’Université Paul Sabatier de Toulouse,
1981.

Chazelle, Bernard “Computational Geometry and Convexity,” Department of
Computer Science, Carnegie-Mellon University, CMU-CS-80-150, 1980.

Dobkin, David P. and Kirkpatrick, David G. “Fast Detection of Polyhedral
Intersections,” Department of Electrical ENgineering and Computer Science,
Princeton University, 1980.

Donald, Bruce R. “The Mover’s Problem in Automated Structural Design,”
Proceedings, Harvard Computer Graphics Conference , Cambridge, July, 1983b.

Donald, Bruce R. “Hypothesizing Channels Through Free-Space in Solving the
Findpath Problem,” Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, A.I. Memo 736, June, 1983a.

Donald, Bruce R. Local and Global Techniques for Motion Planning, S.M. Thesis,
Department of Llectrical Engineering and Computer Science, Massachusetts
Institute of Technology, May 10, 1984.

Drysdale, Robert L. Generalized Voronoi Digrams and Geoweiric Searching,
Department of Computer Science, Stanford University, 1979.

Erdmann, Michael On Motion Planning with Uncertainty, Department of
Elcctrical Engineering and Computer Science, Massachusetts Institute of
Technology, August, 1984.

Foley, J. D. and van Dam, A. Principles of Interactive Computer Graphics ,
Addison-Wesley, Reading, Mass., 1982.

Forbus, Kenneth D. “A Study of Qualitative and Geometric Knowledge in
Reasoning about Motion,” Massachusetts Institute of Technolegy Artificial

Intelligence Laboratory, AI-TR-615, 1981.
Giblin, P. J. Graphs, Surfaces, and Homology , Chapman and Hall, London, 1977.

Gouzenes, Laurent “Strategies for Solving Collision-Free Trajectories Problems
for Mobile and Manipulator Robots,” Laboratoire d’Automatique et d’Analyse
des Systemes du CNRS, Toulouse, France, 1983.

Griinbaum Convezr Polytopes , Interscience Publishers, L.ondon, 1967.

Hamilton, W. R. Elements of Quaternions , Chelsea Publishing Co., New York,
1969.

Hirsch, M. Differential Topology , Springer-Verlag, New York, 1976.
Hocking, J. and Young, G. Topology , Addison-Wesley, Reading, Mass., 1961.

Hopcroft, J., Joseph, D., and Whitesides, S. “On The Movement of Robot
Arms In 2-Dimensional Regions,” Cornell University, TR 82-486, 1982.

259

Ilopcroft, J. and Wilfong, G. “On the Motion of Objects in Contact,” Cornell
University, Computer Science Department, TR 84-602, 1984.

Hopcroft, J. and Wilfong, G. “On the Motion of Objects in Contact,” Cornell
University, Computer Science Department, TR 84-602, 1984.

Kalay, Yehuda E. “Determining the Spatial Containment of a Point in General
Polyhedra,” Computer Graphics and Image Processing Vol. 19 (1982), 303-334.

Kane, T.R. and Levinson, D. A. “Successive Finite Rotations,” Journal of
Applied Mechanics 5 (1978).

LCS Mathlab Group “MACSYMA reference Manual, Volumes I-1,” The Mathlab
Group, Laboratory for Computer Science, Massachusetts Institute of Techno-
logy, 1983.

Lozano-Pérez, Tomas “Spatial Planning: A Configuration Space Approach,”
IEEE Transactions on Computers C-32 (February, 1983).

____ “Automatic Planning of Manipulator Transfer Movements,” IEEE Transactions
on Systems, Man, and Cybernetics SMC-11, No. 10 (1981).

Lozano-Pérez, T., Mason, M., and Taylor, R. “Automatic Synthesis of Fine-
Motion Strategies for Robots,” Massachusetts Institute of Technology Artificial
Intelligence Laboratory, A.I. Memo 759, 1983.

Lozano-Pérez, T. and Wesley, M. A. “An Algorithm for Planning Collision-
Free Paths among Polyhedral Obstacles,” Communications of the ACM 22, 10
(1979).

Mason, M. T. “Compliance and Force Control for Computer-Controlled Manipulators,”
SMC-6 (1981).

Massey, Wm. S. Algebraic Topology , Springer-Verlag, New York, 1967.

Moraveec, H. P. “Visual Mapping by a Robot Rover,” Proceedings Sizth
International Joint Conference on Artificial Intelligence , Tokyo, Japan, 1979.

Nguyen, Van-Duc “The Find-Path Problem in the Plane,” Artificial Intelligence
Laboratory, I\’I;mssachusetts Institute of Technology, A.I. Memo 760, 1983.

Nievergelt J. and Preparata, F. “Plane-Sweep Algorithms for Intersecting
Geometric Figures,” Communications of the ACM 25, 10 (1982).

Nilsson, Nils Principles of Artificial Intelligence , Tioga Publishing Co., Palo-Alto,
1980. :

é’Dﬁnlaing, C. and Yap, C. “The Voronoi Diagramm Method of Motion Planning:
I. The Case of a Disc,” Courant Institute of Mathematical Sciences, 1982.

6’Dﬁ111aing C., Sharir, M, C. and Yap, C. “Retraction: A New Approach to
Motion Planning,” Courant Institute of Mathematical Sciences, 1982.

O’Neill, B. Elementary Differential Geometry , Academic Press, New York, 1966.
Paul, L. Robot Man:pulation , MIT press, Cambridge, MA, 1981.

260

Popplestone, R., Ambler, A., and Bellos, I. “An Interpreter for Describing
Assemblies,” Artificial Intelligence 14, no. 1 (1980).

Preparata, F. and Hong, S. “Convex Hulls of Finite Sets of Points in Two and
Three Dimensions,” Communications of the ACM 23, 3 (1977).

Preparata, F. and Muller, D. “Finding the Intersection of n Half-Spaces in Time
O(nlogn),” Coordinated Science Laboratory, University of Illinois, Urbana,
Ill., R-803, 1977.

Reif, John H. “The Complexity of the Movers Problem and Generalizations,”
Proceedings, 20" Symposium on the Foundations of Computer Science , 1979.

Requicha, A. A. G. “Representation of Rigid Solids: Theory, Methods, and
Systems,” ACM Computing Surveys 12, 4 (1980).

Schwartz, Jacob and Sharir, Micha “On the Piano Movers Problem, I: The
case of a Two-dimensional Rigid Polygonal Body Moving Amidst Polygonal
Barriers,” Courant Institute of Mathematical Sciences, Report No. 39, 1981.

Schwartz, Jacob and Sharir, Micha “On the Piano Movers Problem, II: General -
Techniques for Computing Topological Properties of Real Algebraic Manifolds,”
Courant Institute of Mathematical Sciences, Report No. 41, 1982a.

Schwartz, Jacob and Sharir, Micha “On the Piano Movers Problem, III:
Coordinating the Motion of Several Independent Rodies: The Special Case
of Circular Bodies Moving Amidst Polygonal Barriers,” Courant Institute of
Mathematical Sciences, 1982b,

Sechrest, Stuart and Greenberg, Donald “A Visible Polygon Reconstruction
Algorithm,” ACM Transactions on Graphics Vol. 1, No. 1 (1982), 25-42.

Spivak, M. A Comprehensive Introduction to Differential Geometry , Publish or
Perish, Inc, Berkeley, CA, 1979.

Sutherland, Sproull, et al. “A Characterization Of Ten Hidden-Surface Algorithms,”
Acm Computing Surveys 6, 1 (1974).

Symon, K. R. Mechanics » Addison-Wesely, Reading, Mass., 1971.

Udupa, 8. Collision Detection and Avoidance in Computer-Controlled Manipul-
ators, Ph.D Thesis, Department of Llectrical Enginnering, California Institute
of Technology, 1977.

Widdoes, C. “A Heuristic Collision Avoider for the Stanford Robot Arm,” Stanford
Artificial Intelligence Laboratory, 1974,

Wingham, M. Planning How to Grasp Objects in a Cluttered Environment, M.
Phil. Thesis, Department of Artificial Intelligence, Edinburgh, 1977.

Winston, P. H. and Horn, B. K. P. LISP Addison-Wesely, Reading, Mass.,
1981.

261

Tius blank page was inserted to preserve pagination.

CS-TR Scanning Project .
Document Control Form Date: S~/ & 1 1€

Report# _AT-TR /9]

Each of the following should be identified by a checkmark:
Originating Department:

"5 Artificial Intellegence Laboratory (Al)
[0 Laboratory for Computer Science (LCS)

Document Type:
Technical Report (TR) O Technical Memo (TM)
O Other:

Document Information Number of pages: L6 1 (868, nncES)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: intended to be printed as :
. Single-sided or O Single-sided or
O Double-sided XX Double-sided
Print type:

O Typewriter [] oftsetPress [] Laser Print
[inkletPrinter [Unknown " Other:
Check each if included with document:
:X[DOD Form(o7~) (O Funding Agent Form ﬁ Cover Page
O spine O Printers Notes O Pnoto negatives
O other:
Page Data:

Blank Pagesey see numben

Photographs/Tonal Material ey eage numbes.

Other (ots descriptonpage numben’
Description : Page Number:
ImAGE MAP f [- A6/) J- L6 (i pelia) vG TTLE PACK)
(162 - 9C8 D Seance STrol CodFR, Dol (1)
TRGTS (3) ’ ’

Scanning Agent Signoff: A
Date Received: <~ /.S | 54 Date Scanned: & /6 . 1 Y6 Date Returned: 2115176

Scanning Agent Signature: (ZMAE,/‘AA/‘/ %z Gyd-/ik Rev Y04 DSILCS Form cetriom.ved

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE © B FOR™ COMI I ETING FORM
. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECH IENT'. Cn. ALCS NUMBER
AI-TR-791
4. TITLE (and Subtitle) 5. T(PE OF REPORT & PERIOD COVERED

Motion Planning with Six Degrees of Freedom technical report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 9. CONTRACT OR GRANT NUMBER(s)
N0O0O14-81-K-0494
Bruce R. Donald N0O0014-80-C-0505
NO0Q14-82-K-0334
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

HE P H AREA & WORK UNIT NUMBERS
Artificial Intelligence Laboratory

545 Technology Square
Cambridge, Massachusetts 02139

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORY DATE

Advanced Research Projects Agency MAY 1984

1400 Wilson Blvd 13. NUMBER OF PAGES

Arlington, Virginia 22209 261)
'4. MONITORING AGENCY NAME & ADORESS(I! different from Controlling Office) 15. SECURITY CLASS. (of this report,

Office of Naval Research UNCLASSIFIED

Information Systems o .

. . .. A S T T PR G
Arlington, Virginia 22217 ‘ : e QESE RS A C IO DOWRGRADIN

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 1 dilterent from Repert)

Distribution is'unlimited

18. SUPPLEMENTARY NOTES

None

19. XEY WORDS (Continue on reverse aide if necessary and identify by block number)

Motion planning path planning geometric planning
configuration space robotics) collision avoidance
generalized Voroni diagram spatial reasoning .
piano mover's problem geometric modelling N L
computational geometry obstacle avoidance

20. ABSTRACT (Continue on reverse eide Il necessary and identity by block nush.r)

The motion planning problem is of central importance to the fields of robotics,
spatial planning, and automated design. In robotics we are interested in the
automatic synthesis of robot motions, given high-level specifications of tasks
and geometric models of the robot and obstacles. The "Mover's" problem is to
find a continuous, collision-free path for a moving object through an environ-
ment containing obstacles. We present an implemented algorithm for the '"clas-
sical" formulation of the three-dimensional Movers' problem: Given an (OVER)

DD |, 52:"‘73 1473 EDITION OF 1 NOV 65 15 OBSOLETE UNCLASSIFIED

S/N 0:102-014- 6601 -

SECURITY CLASSIFICATION CF THIS PAGE (When Ders Bntered)

Block 20 cont.

arbitrary rigid polyhedral moving object "p" with three translational and three
rotational degrees of freedom, find a continuous, collision-free path taking "P"
from some initial configuration to a desired goal configuration.

This thesis describes the first known implementation of a complete algorithm (at
a given resolution) for the full six degree of freedom Movers' problem. The al-
gorithm transforms the six degree of freedom planning problem into a point navigation
problem in a six-dimensional configuration space (called C-Space). The C-Space
obstacles, which characterize the physically unachievable configurations, are
directly represented by six-dimensional manifolds whose boundaries are five
dimensional C-surfaces. By characterizing thase ‘a s d et .orgections,
collision-free paths may be found by the closure of three operators which

(i) slide along 5-dimensional level C-surfaces patrallel to C-Space obstacles;

(ii) slide along 1- to 4-—dimensional intersections of level C-surfaces; and

(iii) jump between 6-dimensional obstacles.

Implementing the point navigation operators requires solving fundamental repre-
sentational and algorithmic questions: we will derive new structural properties
of the C-Space constraints and show how to construct and represent C-surfaces
and their intersection manifolds. A definition and new theoretical results

are presented for a six-dimensional C-Space extension of the generalized

Voronoi diagram, called the "C-Voronoi diagram", whose structure we relate to
the C-surface intersection manifolds. The representations and algorithms we
develop impact many geometric planning problems, and extend to Cartesian
manipulators with six degrees of freedom.

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the ML.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

