Technical Report 793

Switching Between

Discrete and Continuous
Process Models To
Predict Genetic Activity

Daniel Sabey Weld

MIT Artificial Intelligence Laboratory



Tius blank page was inserted to preserve pagination.




SWITCHING BETWEEN DISCRETE AND CONTINUOUS PROCESS MODELS
TO PREDICT MOLECULAR GENETIC ACTIVITY
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Daniel Sabey Weld

ABSTRACT

Two kinds of process models have been used in programs that reason about
change: discrete and contintous models. We describe the design and
implermentation of a qualitative simulator, PEPTIDE, which uses both kinds of
process models to predict the behavior of molecular genetic systems. The
program uses a discrete process model to simulate both situations involving
abrupt changes in guantities and ihe actions of small numbers of molecules. It
uses a continuous process model to predict gradual changes in quantities. A
novel technique, called aggregation, allows the simulator to switch between
these models through the recognition and surnmary cf cycles. The flexibility of
PEPTIDE’s aggregater allows the program to detect cycles within cycles and

predict the behavior of compiex situations.

This report is a revision of a thesis submitted to the Department of Electrical
Engineering and Computer Science on May 11, 1934 in partial fulfiliment of the
requirements for the degree of Master of Science.

Copyright (C) Massachusetts Institute of Technology 1984.
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1. Introduction

A number of Al programs perform some type of qualitative simulation -- they
predict the future behavior of a system in qualitétive terms. Two fundamentally
different models of change underly these simulations: discrete and continuous
process models. STRIPS [Fikes 71], for example, uses a discrete model, in which
actions were atomic; they have add and delete lists which define the action’s
effect on the state by an abrupt change. Qualitative Process Theory [Forbus 83],
on the other hand, describes continuous process models, in which actions take
periods of time and gradually change the value of quantities such as the level of

fluid in a centainer.

In this thesis we explain what makes a domain well suited to using either a
discrete or continuous process model and we present a new technique,
aggregation, that can be used to unify the two models of change. A program
called PEPTIDE" has been written to test these ideas in the domain of molecular
genetics. PEPTIDE starts its simulation using a detailed discrete model.
Whenever it notices a repeating cycle of discrete processes, it aggregates the
cycle into one continuous process by determining the net changes on all varying
quantities. The program then switches to its continuous simulation mode and
determines what values the influenced quantities will have "in the limit", i.e. at
the time when currently active discrete processes will stop or an inactive one will
start. Once these quantities have reached their limiting values, PEPTIDE
switches back to discrete simulation. By noticing cycles, determining the limit
points of these cycles, and performing the continuous simulation in one step,
PEPTIDE sidesteps the time consuming work of simulating every iteration of a

“cycle.

'pEPTIDE is a system for the "Prediction of Enzymatic Process inTeractions from Individual
Descriptions of Enzymes."



Weld Switching Between Discrete and Continuous Process Models

1.1 A Simple Example

Imagine a test tube filled with two kinds of molecules: A, which is small, and E,
which is larger and has an active site that can grab an A. Initially, there is only
one E, but there are very many A’s. Suppose that there are three things (discrete

processes) that can happen:

1. If E's active site is empty, it will grab an A.

2. If E is holding an A, E will chemically change the A to another small
molecule, B, which will still.be bound in E’s active site.

3. If E is holding a B, E will drop the B, causing both molecules to float
free.

What would the tube contain if left for a very long time? Clearly, all the A’s would
be replaced by B’s. But how did you arrive at that answer? It is certain that you
did not simulate E’'s molecular level behavior for all the A’s. We didn’t even tell
you how many A’s there were. More likely, you simulated E’s behavior for a short
while, then realized that the "same" things were happening repeatedly, in a cycle |
that would end only when all the A’s were gone.

This is exactly how PEPTIDE solves the problem. The initial situation is displayed

in figure 1-1.

D)

One E Many A's
Figure 1-1: Initial Situation

The program starts simulation by predicting the effects of the individual discrete
processes. First, the E grabs one of the A’s; the result is shown in figure 1-2.
Then E changes the A into a B, producing the situation shown in figure 1-3. Next,
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0,

One E, A Many A's

Figure 1-2: Situation After E Grabs an A

(%)

One E, B - -  Many A's

Figure 1-3: Situation After A is Transformed to B

E drops the B, leaving the active site ready to grab another A. The resulting

situation is shown in figure 1-4.

0

One E Many A's One B

(&

Figure 1-4: Situation After E Drops B

PEPTIDE prepares to simulate the first process again, then stops when it notices
that it is the "same" as a previously simulated process. PEPTIDE determines that
there is a cycle: the three discrete processes can be repeated many times.
Instead of doing this slow, laborious simulation, PEPTIDE aggregates the cycle of

discrete processes into a continuous process and simulates that.

- A continuous process is a collection of influences produced by one iteration of
the cycle--in this case, there is an increase in the number of B’s and a decrease
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in the number of A’s. PEPTIDE simulates the continuous process by anticipating
how the influences will affect the preconditions of the discrete processes--in this
case, the first discrete process (the binding of E to A) will stop when there are no
more A’s for E to bind. This analysis allows PEPTIDE to quickly predict that all
the A’s will eventually get transformed into B’s, as shown in figure 1-5.

One E Many B's

Figure 1-5: Final Situation After Continuous Simulation

1.2 Discrete and Continuous Process Models

The distinction between discrete and continuous processes is a result of our
temporal model. We assume that time is composed of instants and intervals.
Instants are infinitesimal, while intervals are extended. There are an infinite

number of instants in the shortest interval.

Some types of change are naturally modeled as happening in an instant. The flip
of a light switch is a good example, as are many biochemical mechanisms. We
use a form of situation-action rules, which we call discrete processes, to model
these instantaneous changes. Continuous processes, on the other hand, are
used to represent changes that are extended over time. The flow of water from a
faucet to a tub is an example of a change that might be best modeled as
continuous. Continuous processes are defined by the set of influences that they
cause; fluid flow causes two influences: a decrease in the level of water in the
source and an increase in the level of water in the destination. Regardless of the
representation of change, discrete or continuous, we assume that all quantities
(i.e. all parameters of the system being modeled) are defined at all times.
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From the assumption that discrete processes act instantaneously, we can
conclude that they are atomic--they either happen fully or not at all. We make no
restrictions on the magnitude of change produced by a discrete process.
Continuous processes, on the other hand, we assume act strictly monotonically.
If a quantity is being influenced by a single continuous process during an interval,
then the value of that quantity must be monotonically increasing or decreasing
during the entire interval. This implies that the influenced quantity must take on

different values for each instant in the interval.

From this monotonicity assumption and the assumption that there are an infinite

number of instants in an interval, we can conclude that only quantities with an

infinite number of possible values, infinite range (IR) quantities can be
influenced by a continuous process.? Quantities with finite number of possible

values (e.g. the possible positions of a light switch, on and off) are called finite

range (FR) quantities. Although continuous processes can only affect IR

quantities, discrete processes can affect both FR and IR quantities.

Because of their atomic action, discrete process models are useful for modeling
situations where mutually-exclusive actions are possible [Habermann 76].
Discrete processes are also required when modeling a system in which certain
parameters are best represented as FR quantities. In the domain of molecular
genetics, for example, discrete processes are the most convenient way to model

enzymatic reaction mechanisms.

Continuous process models are best for reasoning about long gradual changes.
These extended changes occur frequently in biochemistry; they are usually
caused by the combined effects of many molecules, or the effect of one molecule

which repeats its action many times.

2PEPTIDE uses a qualitative arithmetic in which very large numbers are considered "infinite”.
Thus there were an infinite number of A’s in the initial situation in the example of section 1.1.
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1.3 Aggregation: Switching Between Discrete and Continuous
Models

With two fundamentally different ways of thinking about how a system behaves,

an important problem is how to choose which one to use at a given time. We

solve this by making the discrete model the default and using the continuous

model only when cycles are detected.

The system starts by simulating the effects of discrete processes until it
recognizes a cycle in which ali discrete processes are being repeated. It then
aggregates the trace of a single iteration of the cycle of discrete process
executions, producing a continuous process. The resulting continuous process is
simply a list of the net influences on IR quantities produced by one iteration of the

cycle.

The recognition of cycles (i.e. repeating sequeinces of processes) depends on the
definition of process sameness. How did we detect the cycle in the example
above? Although the situation was different the two times the first process was
active (because of the change in the number of the molecules A and B), the

situation was the same "in some sense”.

Our definition of "in some sense"” is to consider two processes the same if they
are equal once they have been generalized with a set of domain-dependent

abstractions. For the domain of molecular genetics, these abstractions are:

* The number of molecules. This is the abstraction used in the
example above; the two instances of the first process are the same
because only the number of A’s and B’s has changed.

* The length of chains. This abstraction is required when reasoning
about processes which cause the length of a polymeric chain (e.g.
DNA or RNA) to grow or shrink.

* The position of binders on a chain. This abstraction is required
when reasoning aibout molecules which grab a chain at a specific
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position and then move (e.g. RNA Polymerase or ribosomes).

Once a cycle is recognized, the aggregator generates a set of influences that
summarize the net changes to IR quantities which result from one iteration of the
cycle. In a sense the aggregator uses an inductive technique to generate a
continuous process abstraction of the cycle of discrete processes. In the
example above, the overall influence of the cycle was a decrease in the number

of A’s and an increase in the number of B’s.

When the aggregator passes the newly generated continuous process to the
continuous simulator, the continuous simulator determines what change will stop
the process, i.e. what is its limit point? A limit point is a value of a IR quantity
where a currehtly active discrete process3 will stop, or an inactive discrete
process will start. The continuous simulator examines all such limit points for the
IR quantities being influenced and selects the one nearest to its Guantity’s
current value. The continuous simulator assumes that when the choseh quantity
reaches this limit point, the situation will become more complex, so it updates the
state with the limit values and returns to the discrete simulator. In the example
above, there was only one limiting value to choose from: that when the number of
free A’s reached zero. This was a limit point because the E can no longer bind an
A when all the A’s are gone; if one of the cycle’s discrete processes becomes
inactive, then the continuous process is inactive. When PEPTIDE switched back
to the discrete simulator at that point, no discrete processes were active, so the

simulation was finished.

3I.e. a member of the cycle which was aggregated to form the continuous process.
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1.4 Overview

Chapter two contains a brief summary of biochemistry and molecular genetics. In
chapter three we discuss PEPTIDE’s representation of molecules and the
discrete process model. Aggregation, the focus of the thesis, is presented in
chapter four. Chapter five explains what PEPTIDE does with the continuous
processes that are generated by the aggregator. Chapter six is a description of
five different examples, all of which run. In chapters seven and eight we discuss
related work and suggest future directions for research. Chapter nine is our

conclusion.
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2. Biology Background
The following concepts from molecular biology will clarify the aims of this
research. For the sake of simplicity, we give a highly abbreviated description; for

more detail, see [Wood 81] or [Watson 77].

2.1 Biochemistry

To reasoh about biochemical systems, PEPTIDE needs a model for two classes of
chemicals, proteins and nucleic acids, which form the foundation of the
molecular mechanism of life. Proteins are long sequences of amino acids linked
together end to end. Once formed, each protein folds into a specific three
dimensional shape called a conformation. Although proteins have other
functions, we will be most interested in the class of proteins, called enzymes, '
which catalyze chemical reactions. Enzymes often form conformations with
neatly shaped holes or clefts, called active sites, into which other molecules
may fit. When a substrate molecule (which could be another protein, DNA or any
other molecule) fits into the active site (a process called binding) the enzyme
may change its conformation by folding differently or catalyze some reaction.
Enzymes speed up chemical reactions so much that by comparison uncatalyzed

reactions just do not happen.

The nucleic acids, DNA and RNA, are very long strings of units called
nucleotides. In both cases only four nucleotides are used to form the chains. DNA
is a very stable molecule which is uniquely suited to store vital information for
long periods of time by encoding it with its alphabet of four nucleotides.
Whenever a cell divides, it must copy its DNA (through the action of enzymes) by

a process called replication. See figure 2-1.

To influence the actions of a cell, the information stored in the DNA must be
converted into protein. This action is called gene expression and is

accomplished with a two-step process. The first step, called transcription,
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transcription translation

DNA  ~-=---- tmmmmmmmmmme—— > RNA ---------e- > protein_
|

* |

I I

$rmmmmm——— +

replication
Figure 2-1: Gene Replication and Expression
copies an individual message, or gene, from DNA into RNA. This process is
carried out by the enzyme RNA Polymerase (RNAP) by a multi-step process. First
RNAP binds to a specific region of the DNA (called a promoter) that is adjacent
to the gene. Then the enzyme slides towards the gene until it recognizes the start
of the gene. The RNAP enzyme then slides along the gene, at each step adding to
the RNA chain it is building, by appending a nucleotide which matches the
nucleotide at its cufrent position on the DNA template. Finally, when the enzyme
recognizes the gene’s end, it drops off the DNA and frees the RNA it has

constructed.?

The second step, called translation, takes the RNA transcript and from it builds
a protein. Ribosomes execute this function by dividing the transcript into small
subsequences, called codons, formed of three nucleotides each and associating
each codon with a specific amino acid. The protein is constructed by appending
the amino acids with a mechanism that is more complicated than that of

transcription and will not be explained here.

2.2 Regulation of Gene Expression

The products of different genes are needed in different amounts at different
times. To meet these needs, cells have evolved methods of both analog and
digital control of transcription and translation. One such method, called negative
repression, involves the addition of a new region of DNA, an operator, between

the promoter and the gene (figure 2-2).

4The example in section 6.3 is a simplified version of transcription.

10



Switching Between Discrete and Continuous Process Models Weld

promoter operator gene
DNA: ---|-~------ |=======- === ==~

Figure 2-2: A Repressible System

An enzyme called a repressor acts like a watchdog, monitoring the cell’s need
for the product of the gene. If the concentration of the gene’s product rises above
a threshold, the repressor binds to the operator region of the DNA and blocks
RNAP from transcribing the gene. This is just one simple example of a series of
regulatory mechanisms which have been discovered; there are many others.

11
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3. The Structural and Discrete Process Models

Discrete processes are PEPTIDE’s most detailed description of change.
Understanding the mechanistic nature of discreté processes requires knowledge
of PEPTIDE’s structural model including the representations of molecules, IR
quantities and histories. Before presenting these models, we explain the

simplifying assumptions which cause PEPTIDE’s models to diverge from reality.

3.1 Model vs. Reality

We believe that experts in molecular genetics, like experts in many other fields,
reason with multiple models, each at a different level of abstraction. These levels
delineate the curve of a power/accuracy tradeoff peculiar to the domain. When
reasoning at a more abstract level, an answer is easier to reach but more likely to
be incorrect. For the field of molecular genetics, we suspect the existence of the

following levels:

1. CHEMISTRY LEVEL
This level supports concepts such as equilibrium, entropy, acids, and
electrophilic attraction which are useful in understanding detailed
enzyme reaction mechanisms.

2. TINKERTOY LEVELS
Models at this level make biochemical systems resemble a complex
factory. Enzyme machines step down polymeric chains, building
parts, clamping subassemblies together and swinging them about,
etc. This is the level of reasoning that PEPTIDE uses.

3. OPERON LEVEL
We suspect that when experts consider the behavior of large genetic
systems, such as phage A, they use models built from control cliches
such as negative and positive repression, induction, attenuation, etc.
This type of knowledge closely resembles the programming cliches
described in [Rich 80].

Although each of these levels is useful in predicting the behavior of some genetic

5Also called the mechanochemical level.

13
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system, the construction of a program which moves between levels was deemed
too difficult for the present. As a result, PEPTIDE models only at the tinkertoy
level. Although the tinkertoy level is quite powerful it suffers from a coarse spatial

representation and lack of statistical understanding.

3.1.1 Coarse Spatial Representation

Since two things can not happen at once in the same place, some molecular
processes are mutually exclusive. A realistic mechanism for determining spatial
contention would be to model the size, shape and orientation of the molecules
involved and calculate whether the two processes would cause any collisions.
Since we feel that this type of spatial reasoning, appropriate at the chemistry
level, is too complex for the tinkertoy level, we use a much simpler model and
define a "place" to be a connected group of molecules. Thus only one process
may act on a molecule or connected complex of molecules in a single time unit.
The cost of ihis simplicity is an overly restrictive model. Although it ailows
unrelated molecules to be modified independently, it restricts large molecules -
unnecessarily. It means, for example, that only one molecule can bind to a DNA
chain at a time, no matter how long the chain or how small the binders; this is

clearly unrealistic.

3.1.2 Lack of Statistical Understanding

In situations where two mutually-exclusive processes are competing for a
molecule, there is no fair arbitration in our model. The lack of statistical
reasoning frequently causes PEPTIDE to repeatedly select one of two mutually-
exclusive processes, allowing the other to starve (i.e. a livelock situation
[Habermann 76]). As a partial solution to these problems, the tinkertoy level
does rank mutually-exclusive processes by priorities in order to choose the
process most likely to obtain the scarce resource. Section 3.3.3 contains more
details. Also (if desired) the user can manually select which process PEPTIDE

will choose.

14
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3.2 Structural Model
In this section we discuss PEPTIDE’s representations of molecules, IR quantities,
and histories. Both the discrete and continuous process simulators use these

structural representations.

3.2.1 Molecules )

For PEPTIDE to simulate a biochemical system, it must know what kind of
molecules exist in the system and what the initial conditions are. The types of
molecules are defined first, in a step akin to defining user types in a conventional
programming language. Since groups of molecules are represented by a
representative member and the group’s size, the second step is to state how

many molecules of each type are initially present.

Each molecule type is described with respect to possible views, i.e. different
ways that the molecule can ka trcated. There are three possible views: the
bindee, binder, and chain views. Aside from the restriction that no molecule
may have both a bindee and a chain view, molecules may have one of each view,

or no views at all.

A bindee view corresponds to a named set of handles, which each have a
conformation or "shape". If a molecule has a bindee view, then any handle may
be bound (grabbed) by another molecule through the actions of a BIND process.
In the example in section 1.1, molecule A has a bindee view which gets bound by
E.

A molecule with a chain view is similar to one with a bindee view because it can
be bound by other molecules, perhaps at multiple places. A chain view imparts’
additional structure, however, in the form of an ordering and metric among these
handles. While a molecule with a bindee view is considered a clump with
unrelated handles sticking out at random, a molecule with a chain view (e.g. a
strand of DNA) has a linear chain of handles. Chains have endpoints, but can be

15
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arbitrarily dense. Since positions on a chain are modeled as IR quantities, they

are further described in section 3.2.2.

A molecule with a binder view has a set of active sites. These sites are termed
"active" because they can bind molecules with bindee or chain views and they
can change conformations. To specify an active site, a user lists (by name) the
possible conformations of that site; it must have at least one. The molecule, E, in

the example of section 1.1 has a binder view with one active site.

Since three dimensional shapes are not modeled at our level of abstraction (the
tinkertoy level), PEPTIDE can not calculate which conformations are
complementary. Instead, PEPTIDE reasons about conformations symbolically,
and the user asserts which ones are complementary as part of the structural
description. For PEPTIDE to know that the conformation of E’s active site
matches the conformation of A’s handle in the exampie of section 1.1 for
example, the user must tell PEPTIDE that they are complementary. |

3.2.2 Infinite Range Quantities
The number of molecules, positions on a chain, and the length of chains are all IR
quantities. There were three major constraints that directed our representation

of these IR quantities:

* The representation must facilitate the task of locating limit points
during continuous simulation. Thus it must be easy to determine the
relationship between the current value of a quantity and
distinguished points and also the relationship between different
distinguished points.

* Since we wanted PEPTIDE to simulate underspecified and partially
ambiguous systems, the representation must allow ambiguity.

* Finally, because IR quantities in biochemistry can take on such a vast

range of values, we wanted PEPTIDE to be able to qualitatively
represent when two values differed by several orders of magnitude.

16
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Inspired by Forbus’s representation of quantity spaces [Forbus 83], we represent
IR quantities as partial orders. To capture the diverse types of relationships
(including different orders of magnitude) we have developed a vocabulary of
qualitative relations with which we describe differences in a quantity’s possible
values. If two quantities, p and q, are related then one of seven relations is true
between them: EQ, 1GT, FGT, MGT, MLT, FLT, 1LT. EQ implies that p and q are
equal. 1GT means that p is "one greater than" q; in other words, q plus the
smallest positive quantity, one, EQ p. This implies that there is no quantity
between p and g. The notation, p FGT q, means p is "finitely greater than" q. In
other words, there is a finite length sequence of quantities, Xys Xoy vee s Xy such that
p 1GT Xys X 1GT Xi .10 and X 1GT q. If p MGT q, then p is "much greater than" q;
in other words they differ by orders of magnitude. Figure 3-1 gives the complete
semantics for MGT. The most important quality of the relation is:

*1f p MGT q and (x 1LT p or x FLT p), then x MGT q. This implies that
there can be no finite length sequence of quantities, each 1GT from
the other, bridging the gap between p and q (as there was when p
was FGT q).

If the MGT relation were not included, the possible values of IR quantities would
be isomorphic to the integers. Although the inclusion of MGT in our qualitative
algebra adds complexity, the ability to consider one value insignificant compared
with another is quite powerful. The remaining relations, MLT, FLT, 1LT are
analogous to the ones we just described, but they specify that p is less than q to

some extent.

The partial order which relates the values of IR quantities is implemented as a set
of rules in a simple forward-chaining propositional constraint propagator. The
rules of figure 3-1 cause the constraint propagator to fill out all possible relations
according to symmetry and transitivity laws. To increase the speed of
propagation, we store the assertions for each IR quantity in a separate group
called a truth module (TM). |

17



Weld Switching Between Discrete and Continuous Process Models

;; notation: symbols that start with a question
;; mark ("?") are considered to be variables.

i+ equality stuff
(and (EQ ?7a tb) (EQ ?b 7c))

=> (EQ ?a 7c)
(and (16T ?a ?z) (1GT ?b ?z)) => (EQ ?7a ?b)
(and (16T ?z ?a) (1GT ?z ?b)) => (EQ 7a ?7b)
(EQ 7?a ?b) => (EQ ?b ?7a)

;; one greater than transitivity
(and (1GT ?a ?b) (EQ 1?b 7c)) => (1GT ?a ?c)
(and (1GT ?a ?b) (1GT ?b ?c)) => (FGT ?7a 7c)
(and (EQ 7?a ?b) (1GT ?b ?c)) => (1GT ?a 7c)

;3 finitely greater than transitivity
(1GT ?a 7b) => (FGT 7a ?b)
(and (FGT ?a ?b) (EQ 7?b ?c)) => (FGT ?7a 7¢)
(and (FGT ?a ?b) (1GT ?b ?c)) => (FGT ta ?c)
(and (FGT ?a ?b) (FGT ?b ?c)) => (FGT ?a ?c)
(and (1GT ?a ?b) (FGT ?b ?c)) => (FGT ?a ?c)
(and (EQ 7?a ?b) (FGT ?b ?c)) => (FGT ?a ?c)

;; much greater than transitivity
(and (MGT ?a ?b) (FGT ?c ?b)) => (MGT ?a ?7c)
(and (MGT ?a ?b) (EQ ?b ?c)) => (MGT ?a ?c)
(and (MGT ?a ?b) (FGT ?b ?c)) => (MGT ?7a ?c)
(and (MGT ?a ?b) (MGT ?b ?c)) => (MGT ?a ?c)
(and (FGT ?b ?a) (MGT ?b ?c)) => (MGT ?7a ?c)
(and (EQ 7?a ?b) (MGT ?b ?c)) => (MGT ?a ?c)
(and (FGT ?7a ?b) (MGT ?b ?c)) => (MGT ?a ?c)

Figure 3-1: Quantity Relation Rules

3.2.3 Histories

PEPTIDE records the change in molecules over time as a set of interconnected
histories, as suggested in [Hayes 83]. The history of a groub of molecules is a
sequence of snapshots of the group, called nodes, connected together by
change links which represént changes to the group caused by discrete or
continuous processes. For example, figure 3-2 shows the history of the molecule

E in the example of 1.1.

Histories are not always simple uhbranching chains. When multiple processes
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| free E | <--E drop B-~ | E-B |

Figure 3-2: The History of Molecule E

are acting on a group of molecules (i.e. a node), the history splits; some of the
molecules are affected one way and some the other. Because different
sequences of processes can cause identical changes to molecules, split histories

or even two unrelated histories can merge together.

Whenever PEPTIDE needs to consider the global state of the system at a
particular time, ‘it creates a situation by going through each history and
collecting the node which represents each group’s state for the required instant.
For example, the situation after the first process (E bind A) in the example of
section 1.1 contains three nodes: one representing the large group of free A's,
one representing an A molecule bound in E’s active site, and one representing

the E molecule that is binding an A.

3.2.3.1 Nodes

A node represents a group of identical molecules at one instant of time. Nodes
represent a group by depicting the state of a representative individual and saying
how many such individuals are in the group. To completely describe a group’s
representative individual, the node records information about each view:

* For a bindee view, the node notes whether any of the handles are
bound. For each handle that is bound, the state records the binder
and the active site involved.

* For a chain view, the node contains information about the the
positions on the chain and a record of all binders including each
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binder’s active site and position of attachment.

* For a binder view, the node records the status of each active site.
This status includes the conformation of the site, whether the site is
binding another node, and if it is, the bound node and the handle or
position of attachment.

For example, the initial situation in the system described in section 1.1 was a
collection of two nodes, one for A and one for E. The A-node represented "many
molecules" which means that the number slot of the node contained a number
which was much greater than (MGT) zero. The sample indfvidual of the A-node

was of type A, and had only an unbound bindee view.

3.2.3.2 Merging Histories Together by Fusing Nodes

The nature of biochemistry is such that different processes can independently
result in identical molecules. PEPTIDE notices that this has happened when a
situation contains iwo or more nodes with identical representative individuals.
Whenever PEPTIDE detects this redundancy, it fuses the two nodes together to -
create a single new node in which the number of the new node is equal to the
sum of the old nodes. By merging histories in this way, PEPTIDE keeps the

description of a situation from getting fragmented.

Nodes that represent an empty group, i.e. nodes whose number slot is zero, are

always removed from the current situation.
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3.3 Discrete Process Model
Discrete processes form a detailed tinkertoy-level description of the mechanical
behavior of a molecular genetic system. Users define a discrete process by

instantiating one or more generics.

3.3.1 Generics _

To describe specific discrete processes, users need a vocabulary of possible
types of action. We had three main goals in mind when we devised this
vocabulary: simplicity, orthogonality and coverage of known biochemical
mechanisms. Because molecular mechanisms are spatially complex, these goals
are difficult to satisfy. As a compromise between goals, we chose a set of five
generics: BIND, DROP, FOLD, SLIDE, and REACT. Although there are some real
life mechanisms that can not be encoded (e.g. phage A's recombination in
lysogeny [Herskowitz 80]), the set chosen is quite simple, orthogonal, and covers

many cases.

Each generic is specified by three parts, its pattern, a set of' preconditions, and
a set of postconditions. The pattern is a list of formal parameters that must unify
with the actual parameters. The preconditions are a set of predicates that are
‘anded’ with any user-specified conditions to determine when a user process is
active. PEPTIDE supplies about a dozen built-in predicates which may be used in
the preconditions of a process. These predicates test qualities in the current
situation such as the relative size of numbers, the complementarity of
conformations, the relative positions on a chain, the length of a chain, and
whether a molecule is bound to another. The postconditions summarize the
changes that would be caused if a user process containing this generic were

active.
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3.3.1.1 BIND

The BIND generic takes as parameters the active site of one molecule and a
handle (or chain position) on some other molecule. To be active, there must be at
least one binder and at least one molecule to be bound, the active site must be
empty, the handle must be free, and the conformations of the active site and the
handle must be complementary. After the BIND generic has been simulated, the
handle of the bindee molecule will be bound by the active site of the binder.

Knowledge of the following notational conventions will help understanding of the
summary in figure 3-3. Functions whose name end in a question mark ("?") are
predicates that return true or false. Symbols that start with a question mark
denote variables that may be unified to any value. Arrows ('">") separate
molecule specifiers from view specifiers; for example, "?binder>?site”" denotes

any active site of any molecule with a binder view.

(BIND ?binder>?site ?bindee>?handle)

(and (gt? (number-of ?binder) zero)
(gt? (number-of ?bindee) zero)
(not (bound? Tbinder>?site Tmoleculel))
(not (bound? ?molecule2>?site2 ?bindee>?handle))
(complementary? ?binder>?site ?bindee>?handle))

(bound? ?binder>?site ?bindee>?handle)
Figure 3-3: BIND Pattern, Preconditions, and Postconditions

3.3.1.2 DROP
The DROP generic is the inverse of BIND. To be active, there must be two
molecules bound together. After DROP simulation, the two molecules are no

longer bound. See figure 3-4.
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(DROP ?bindee>?handle ?binder>?site)

(and (gt? (number-of ?binder) zero)
(gt? (number-of ?bindee) zero)
(bound? tbinder>?site Tbindee>?handle))

(not (bound? ?binder>?site fbindee>?handle))
Figure 3-4: DROP Pattern, Preconditions, and Postconditions

3.3.1.3 FOLD

FOLD is the simplest generic because it requires only one molecule. It is active
whenever there is a molecule whose site is not already in the specified
conformation. Simulation of FOLD causes the conformation of the binder’s

active site to assume the new value. See figure 3-5.

(FOLD tbinder>?site fconformation)

(and (gt? (number-of ?binder) zero)
(noct (has-conf? ?binder>?site ?conformaiion)))

(has-conf? ?binder>?site ?conformation)
Figure 3-5: FOLD Pattern, Preconditions, and Postconditions

3.3.1.4 SLIDE

The SLIDE generic captures the ability of binders to move along linear chains. As
specified in figure 3-6, SLIDE is only active when there is nothing blocking the
sliding movement. Thus the binder can not slide if it is already at the end of the
chain, nor can it slide if there is another binder directly in its way. The effect of
simulating SLIDE is the movement of the binder to a new position one unit from

the starting position in the direction specified.

3.3.1.5 REACT
REACT has two parameters: the active site of a binder, and the specification of a

new molecule that will be created by the process. See figure 3-7.

Because REACT is a very complicated generic capable of specifying arbitrary
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(SLIDE ?binder>?site ?chain ?7dir)

(and (gt? (number-of ?binder) zero)
(gt? (number-of 7?chain) zero)
(bound? ?binder>?site ?chain>?start-pos)
(not (at-end? ?start-pos ?dir ?chain))
(next-pos? Tadjacent-pos ?dir 7?start-pos)
(not (bound? ?blocker>?bsite ?chain>?adjacent-pos)))

(bound? ?binder>?site ?chain>Tadjacent-pos)

Figure 3-6: SLIDE Pattern, Preconditions, and Postconditions

(REACT ?binder>?site 7Tadd-spec)
(gt? (number-of ?binder) zero)

<<{see text for postconditions>>

Figure 3-7: REACT Pattern and Preconditions

chemical reactions (at the tinkertoy level of detail), we can not easily describe its
effects with predicate calculus; so we substitute an English description for the list
of postconditions.6 Whenever REACT is active, the molecule bound in the
binder’s active site (if any) is destroyed. Depending on the value of the ?add-spec
variable, one of three things can be placed in the binder’s active site: 1) nothing,
2) any defined molecule, or 3) if a molecule with a chain view was just destroyed,
a modified version of that molécule with a slightly longer or shorter chain.
Although it might seem strange to provide a generic which does not conserve
mass, this is essential: biochemists frequently use abstractions which violate

conservation, so the tinkertoy level must support them.

6Due to the graph representation of the history structure, the postconditions of all of the
generics are implemented procedurally rather than in logic.
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3.3.2 User Defined Processes

PEPTIDE users describe the behavior of a system by creating discrete processes
from generics. Three kinds of modification are possible: combination,
specialization, and the addition of preconditions; all three are common, and all

may be combined.

Specialization is used to restrict the pattern of a generic. Figure 3-8 shows a
simple BIND process in which the binder molecule and active site have been
specialized. Whenever site1 of enzyme1 is empty and there is any complementary
molecule around, this process will be active. Note that there is no restriction on
what can or can not be specialized.
(def-process specialized-bind
(BIND enzymel>sitel ?bindee>?handle))

Figure 3-8: Process Definition with Specialization

To restrict the times when a process is active, one can add preconditions which
get added to the default preconditions of the generic. Figure 3-9 shows a simple,
unspecialized process with é single precondition. This process says that
whenever there are two molecules of the same type that can bind each other,
they will.

(def-process self-bind
(if (equal? ?tbinder ?bindee)
(BIND ?binder>?site Tbindee>?handle)))

Figure 3-9: Process Definition with an Additional Precondition

More complex types of behavior can be defined by combining several generics
into one process. The process defined in figure 3-10 is active whenever the union
of the default preconditions of the two generics are satisfied: If slider is bound to
the middle of DNA and RNA and no other binders are blocking it, then slider will
move along both DNA and RNA at the same time.
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(def-process double-slide
(SLIDE slider>sitel dna right)
(SLIDE slider>site2 rna right))

Figure 3-10: Process Definition with Combination and Specialization

3.3.3 Active Processes

When the preconditions of a process are satisfied, then that process is said to be
active; it will have an effect. Before a process can be tested for activity, it must
be associated with an environment that binds all free variables; we call the
discrete-process, environment pair a PIE. Given a situation at some time, t,
PEPTIDE generates the set of PIES by computing all combinations of variable

bindings for each process, and then tests the PIEs for activity.

The first step in the test for activity is the evaluation of the preconditions in the
environment. Even if all the preconditions are satisfied, however, the PIE is not
necessarily active--two or more active PIEs may be mutually exclusive. As we

mentioned in section 3.1.1, only one PIE at a time may access a molecule, or a |
connected complex of molecules. Whenever contention is detected, one of the
PIEs must be chosen. Since both choices are possible, it is important to allow the
user to see all possible outcomes; PEPTIDE provides this ability by optionally
letting the user select the PIE to run next.” If the user decides to let PEPTIDE
select between competing PIEs, the PIEs are priority ranked (by a method
explained below), and the best is chosen. In the event of a tie, the choice is

arbitrary.

As detailed below, the ranking system is motivated by a simple qualitative model
of diffusion: the highest priorities are awarded to PIEs that are very local. PIEs

that are catalyzed by molecules that are very plentiful are also favorably ranked.

7This facility could be easily extended to one that generated all possible futures by
backtracking.
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* Any PIE that modifies only one molecule (i.e. is a specialization of
the single generic FOLD) has the highest priority.

* Any PIE that involves only molecules that are connected together (via
active site binding) has second priority.

* Any PIE that involves molecules that are not connected has the
lowest priority. Since many PIEs are in this priority class, PEPTIDE
uses a secondary priority scheme to distinguish amongst PIEs at this
level: the number of the least plentiful of the required molecules.

3.3.4 Simulation

Discrete simulation is straightforward. For each active PIE, PEPTIDE determines
which groups of molecules contain members that will be modified by the PIE. The
size of each of these groups is decremented. Then PEPTIDE creates new groups |
each containing the one member molecule that is being modified by the PIE and
updates the state of the representative molecules in the new groups to reflect the
effect of the PIE. The history structure is updated by connecting the nodes
representing the new groups to the nodes representing the old groups using a
change-link which lists the PIE and records that the change occured in an

instant.

3.3.5 An Example

Many biochemical pathways are regulated by negative feedback systems; when
the concentration of a product molecule reaches a certain threshold, the
processes which produce the molecule are shut off. In this section we will show
how to describe such an enzyme and we will follow PEPTIDE as it simulates the
discrete processes. In chapters four and five we will show how the aggregator
recognizes a cycle and how the continuous simulator predicts the long term.

behavior of the system.

First we define the molecules; there are three in this example. Both substrate and
product have a single bindee view with one handle. Frobase has a binder view
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with two active sites: the catalytic site has two possible conformations, active and

inactive, but the control site has only one.

(def-obj substrate (bindee))

(def-obj product (bindee))

(def-obj frobase (binder (cat-site active inactive)
(control-site on)))

We declare that the active conformation of frobase’s catalytic site is
complementary to substrate’s handle, the inactive conformation of the catalytic
site is not complementary to anything, and the frobase’s control site is always
complementary to product’s handle. We define two qualitative numbers, million
and threshold; threshold is much greater than zero, and million is much greater
than threshold. Initially, there are a million substrates, no products, and one

frobase:

(def-qrel (complementary frobase>cat-site>active
: substrate>bindee))
(def-qrel (complementary frobased>control-siteden

' product>bindee))
(def-qrel (mgt threshold zero))
(def-qrel (mgt million threshold))
(def-qnum substrate million)
(def-qnum product zero)
(def-gqnum frobase one)

Now we define the discrete processes. The first says: whenever frobase’s
catalytic site is in the active conformation, it will try to bind a substrate. Since
each user process inherits the preconditions of the generics from which it is

defined, when we write

(def-process bind-sub
(bind frobase>cat-site substrate>bindee))

it will be expanded to
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(def-process bind-sub
(if (and (gt? (number-of frobase) zero)

(gt? (number-of substrate) zero)

(not (bound? frobase>cat-site Tmoleculel))

(not (bound? ?molecule2>?site2
frobase>cat-site))

(complementary? frobase>cat-site

substrate>bindee))
(bind frobase>cat-site substrate>bindee)))

If a substrate molecule is bound in the catalytic site, a reaction will change it into

a product molecule:

(def-process react
(if (bound? frobasedcat-site substrate>bindee)
(react frobase>cat-site product>bindee)))

If frobase has a product molecule bound in the catalytic site, it will drop the

product molecule:

(def-process drop-nrod
(drop product>bindee frobase>cat-site))

If the number of product molecules is ever greater than threshold, frobase will

bind one of the product molecules in the control site:

(def-process bind-prod
(if (gt? (number-of product) threshold)
(bind frobase>control-site product>bindee)))

If a product is bound in frobase’s control site and frobase’s catalytic site is in the
active conformation, frobase will change the conformation of the catalytic site to

become inactive:

(def-process repress
(if (bound? frobase)contro] site product>b1ndee)
(fold frobase>cat-site inactive)))

PEPTIDE starts simulation in discrete mode. A set of PIE’s are formed from the
set of processes, and preconditions are tested. The only active PIE is bind-sub
acting on the free frobase and one of the million free substrate molecules; it is
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simulated. The resulting situation has a million minus one free substrate

molecules, and a single frobase/substrate complex.

At this point, the sole active PIE is the react process acting on the frobase and
the bound substrate; it is run. Now the situation contains a million minus one free

substrate molecules, and one frobase bound to a single product molecule.

A PIE formed from the drop-prod process acting on the solitary frobase and
product molecules is active, so it is simulated. The resulting situation consists of
a group of a million minus one free substrate molecules, one free frobase

molecule, and one free product molecule.

PEPTIDE tests all possible PIE's for activity again, and finds that a bind-sub PIE is
active. Before it is simﬁlated, however, the aggregator checks and finds that a
cycle has been formed--further discrete simulation would be repetitious. As a
result, the aggregator converts the cycle of three PIEs (bind-sub, react, drop-
prod) into a continuous process so that the net effect of many iterations can be
computed directly. The technigues involved in this transformation are the subject

of our next chapter.
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4. Aggregation

Many mechanical systems are repetitious--certain patterns of behavior fepeat.
Since these cycles continue for some time, it is nétural to reason about them with
a continuous process model. Aggregation is a technique for converting a
recurring cycle of discrete processes into a continuous process for more efficient
simulation.8  PEPTIDE’s aggregator consists of two parts: a cycle recognizer
which compares and classifies discrete PIEs, and an influence generator, which

produces a continuous process from a set of cycles of discrete PIEs.

4.1 Recognizing Cycles
A cycle is defined as a sequence of discrete PIEs such that the starting PIE is the
same as the ending PIE. To recognize a cycle, the aggregator must be able to

tell when two PIEs are the same.

4.1.1 Sameness

The intuition that we are attempting to capture is that two PIEs are thé same if
they represent an identical action on groups of molecules whose FR quantities
are identical but whose IR quantities may have changed. Only these cycles are
useful to aggregate, because only these will result in a continuous process with

no discrete effects.

Two PIEs are the same if they are instantiated from identical processes and the
corresponding groups of molecules specified in the PIE’s environments are the
same. We check for sameness between two groups of molecules by computing
abstractions of the two groups and comparing the abstractions for equality. For
the domain of molecular genetics, two groups are declared to be the same if they

are identical after:

8The reader may find it useful to consider the aggregator as an inductive process abstractor. It
computes a cycle's induction formula and generates a more abstract description of the ongoing
behavior in the form of a continuous process. It would be useful to explore the applicability of our
techniques for the analysis of programs with loops.
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* Ignoring the number of molecules in the groups;
* Ignoring the length of chains;

* Ignoring the position of binders on chains.

In different domains, different parameters are usefully considered as IR
quantities. This implies that the sameness abstractioné are necessarily domain-
dependent. Since cycles can only change the IR quantities in a system, the IR
guantities can be used to derive a new set of abstractions. When reasoning
about internal combustion engines, for example, variables like temperature and
pressure will be important IR quantities. A new abstraction will be necessary to
recognize cycles that change the temperature of the system. Because of the
direct link between the abstractions and the common IR quantities of the domain,
we suspect that it will be relatively easy to develop cycle recognizers for other

domains. .

In conclusion, two objects (e.g. PIEs) are tested for sameness recursively:

* Two values for a FR quantity (e.g. a molecule type, a conformation, a
direction, or a bindee handle) are the same if and only if they are

equal.

* Two values for a IR quantity (e.g. the size of a group, the position of a
binder on a chain, or the length of a chain) are always considered the
same.

* Two values for a composite object are the same if all attributes are
the same. :

4.1.1.1 Example Continued

When we left the example of section 3.3.5, the discrete simulator had run three
PIEs in a row: bind-sub acting on the solitary frobase and a member of the group
of a million free A’s, react acting on the frobase and the bound A, and drop-prod

acting on the frobase and the bound product. At this point the simulator
determines that there is one active PIE: bind-sub acting on the frobase and a
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member of the group of a million minus one free A’s. Before the PIE can be
simulated, however, the cycle recognizer notices that this new PIE is the same as
the first PIE that was simulated--both PIEs are instantiated from the process bind-
sub, and the environments of both PIEs specify two groups that are the same.
The two groups of one free frobase are clearly the same, because there are no
differences, discrete or continuous. The group of a million free A’s is the same as
the group of a million minus one free A’s, because the only difference is a change
in the IR quantity, the size of the group.

4.1.1.2 When Groups Are Not Recognized as the Same

Although these abstractions allow the detection of many common cycles, it is

possible to create examples in which PEPTIDE will not recognize a repeating .
cycle and will never halt. To create a situation which will cause PEPTIDE to fail, it

is necessary to deviee a new IR quantity that PEPTIDE will not recognize as such.

For example, although PEPTIDE considers the length of a chain to be a IR

quantity, it requires that the chain view of a molecule be predeclared; PEPTIDE

can not recognize chains that form spontaneously.

Consider a situation with many G molecules that each have a bindee view with
one handle and a binder view with an active site complementary to the handle.
There is one discrete process defined: if a G has an empty site, it will grab {he
free handle of another G. PEPTIDE will not realize that a complex of two G's is the
same as a complex of three and will not shift to the continuous simulation mode
to predict that eventually all G’s will be connected in a single linear complex.

In fact, there is no way to extend PEPTIDE to recognize all of these new IR
quantities and generate the necessary abstractions dynamically, because’
arbitrarily complex situations can be devised. The chains could include three
binders: -A-B-C-A-B-C-, or form lattices in two or more dimensions. In fact,
PEPTIDE’s representation language is powerful enough to specify an arbitrary
type O (unrestricted) grammar. Since this implies that we could use the discrete
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model to build a Turing machine, it becomes quite clear why PEPTIDE can not

always decide whether the simulation will halt.

4.1.2 What Is Being Repeated?

Once the cycle recognizer notices that two PIEs are the same, it still needs to
discover what cycle of discrete processes is being repeated. There are two kinds
of cycles that could be causing the PIE to repeat: serial and parallel cycles.

* Serial Repetition
When the two PIEs both require a single molecule that is repeating its
actions over and over the cycle is repeating serially. The two bind-
sub PlEs, which were declared the same in section 4.1.1.1, are serial
because both required a single frobase molecule. Serial cycles
usually contain several PIEs, three in this case: bind-sub, react, drop-
prod.

* Parallel Repetition

When the two PIEs modify physically different but otherwise identical
molecules, then the PIEs are repeating in parallel. For example,
consider a beaker with many A’s and the same number of E’s. Each
A has a bindee view with one handle, and each E has an active site
that is complementary to the handle of an A. Assume that one
discrete process, called bind-a, is defined--if an E’s active site is
empty, bind an A. Left alone, eventually all the E’s will be bound to
A’s. Each of the bind PIEs is the same, but the repetition is parallel,
because no one molecule binds more than once. Because the PIEs
in p%rallel cycles are independent, all parallel cycles are of length
one.

PEPTIDE’s cycle recognizer detects both kinds of cycles, serial and parallel; the
program differentiates between the two types of cycles by analyzing the history
record. Once a newly active PIE is found to be the same as a previously run PIE,
the cycle recognizer looks back through the history structure to see if any of the
molecules modified by the PIEs are are physically the same (i.e. are connected by

9Sometimes several parallel cycles start one after another, giving the appearance of greater
length.
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intervening PIEs).

If the PIEs are connected in the history structure, then the cycle is repeating
serially. PEPTIDE marks the first iteration of the cycle as beginning at the first of
the two PIEs that were the same followed by the sequence of intervening PIEs.10

This is how the recognizer concluded that the cycle in the example in section
4.1.1.1 was composed of three PIES: bind-sub, react, drop-prod.

If the PIEs are not connected in the history structure, then the PIEs are repeating
in parallel. PEPTIDE lists the first PIE as the first iteration of the cycle.

4.2 When to Aggregate
PEPTIDE can not always aggregate a cycle of discrete processes into a

continuous process immediately after detecting the cycle.

Suppose the cycle recognizer has found a serial cycle of three discrete
processes that converts P’s into Q’s. If that is all there is to the situation, it is safe
to aggregate. But if there is another discrete PIE active, PEPTIDE can’t know
how the PIE will change the system’s state without simulating the PIE discretely.
Perhaps the PIE will modify some FR quantity that inactivates the previously

recognized cycle.

The aggregator can only generate influences from a set of cycles when it knows
that all the discrete preconditions to the members of the the cycles are satisfied.
It is safe to aggregate when all the active PIEs are members of some recognized
cycle, and each cycle has conipleted an iteration since the time when the

10This is not strictly correct, since sorhe of the intervening PIEs could be independent of the
cycle and unrepeatable. A more thorough implementation would do a planner-style analysis of the
proposed cycle to remove unrelated PIEs.

35



Weld Switching Between Discrete and Continuous Process Models
discrete simulator ran a PIE which is not part of a cycle."

4.3 Pruning Redundant Cycles
There are two kinds of cycles that are redundant and should be pruned before
the aggregator generates influences: repeating cycles and subsumed singleton

cycles.

4.3.1 Repeating Cycles

Recall the cycle discovered in section 4.1.1.1. There were three processes: bind-
sub, react, drop-prod. In this example, the aggregator recognized the (bind-sub,
react, drop-prod) cycle. But suppose that there were some other unrelated active
PlEs; PEPTIDE would have to continue discrete simulation (looking for more
cycles) until the other PIEs stopped, or formed a cycle of their own. After
simulating for another three time steps, the cycle-recognizer would find a second
cyule: (bind-sub, react, drop-prod, bind-sub’, react’, drop-prod’). This repeating

cycle is clearly redundant and is pruned.

PEPTIDE also prunes cycles which are shifted copies of earlier cycles. If (bind-
sub, react, drop-prod) is a cycle, the program will prune a cycle of the form:
(react, drop-prod, bind-sub).

4.3.2 Subsumed Singleton Cycles
The problem with subsumed singles is related to that of repeating cycles.
Consider what would happen if the example had many frobases instead of one.

11Even this criteria is not strictly correct. If two cycles with different lengths can deadlock,
PEPTIDE might not detect this within the first few iterations. This problem could be solved by
noticing when two cycles have intersecting histories (i.e. could possibly deadlock) and simulating
discretely for a number of time units equal to the lowest common multiple of the lengths of the two
cycles; at this point all possible interactions will have been checked. But this type of compulsive
rigor does not seem reasonable given the inherent inaccuracy of the assumption that all discrete
processes act at the same speed.
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PEPTIDE would start simulation by predicting the effect of bind-sub. One frobase
would be bound to one substrate, but many substrates and frobases would still be
free. During time step two, react would be acti\)e, but so would bind-sub. The
aggregator would recognize the singleton cycle (bind-sub) due to parallel
repetition, but simulation would continue with the discrete model. At time three,
all three processes would be active. At the start of time four, the cycle recognizer
would have found four cycles: (bind-sub), (react), (drop-prod), and (bind-sub,
react, drop-prod). Since the singleton cycles formed by parallel repetition are

subsumed by the serial cycle, the singletons are pruned.

4.4 Influence Generation

For each active cycle, PEPTIDE generates a set of influences that correspond to
the net effect of one iteration of the cycle. Since we assume that the time
required to perform one iteration of a cycle is roughly the same for every cycle,
we can sum the intluences for the active cycles to determine the total influences

for this set of cycles.

Although this procedure is cbnceptually simple, complications arise from the |
need to deduce certain infiuences and modify others.

4.4.1 The Origin of Influences

Almost all influences are generated by the activity of a process, either a discrete
PIE, or a continuous process. Whenever a process is simulated and the system
state is updated, a record is made of the influences that have occured. In the
interests of simplicity, however, we chose not to mode! diffusion explicitly; as a
result the influences corresponding to diffusional movement are not recorded

and must be deduced.
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4.4.1.1 Influences From Discrete PIEs

Whenever a discrete PIE is simulated, PEPTIDE records the influences it causes
IR quantities such as the size of a group. Currently, an influence is represented
by of the quantity being influenced and the direction of movement, but eventually
we hope to add a qualitative measure of magnitude to each influence (see section
4.4.2). These influences are generated when PEPTIDE runs the code that

enforces generic process postconditions.

4.4.1.2 Influences From Continuous Processes

As discussed in section 4.5, cycles may contain other cycles, and hence
continuous processes, as elements. Continuous processes generate influences
in much the same manner és do discrete PIEs. However, when aggregating a

cycle containing another cycle, it is sometimes useful to shift representations.

When the continuous simulator predicts that the length of a chain will change by
a large amount, the natural influence to record is a change in length. But when
the aggregator needs to analyze the influences of this continuous process for an |
enclosing cycle (for example, see section 6.3), it is often useful to consider the
new molecule as completely distinct from the original, in which case different
influences should be recorded: a decrease in the size of the group containing the
original molecule and an incréase in the size of the new group.

There are also cases for which it is essential to. eonsider the molecules as the
same except insofar as having different lengths. The difference between the two
cases seems to hinge on the relation between the molecules being modified in
subsequent iterations of the loop. If it is the physically identical molecule with
different state, which is being modified both times, then the length influences are
likely to be cumulative and it is best to reason in terms of influenced lengths. If
the two different molecule’s states are equal, however, then there is no
cumulative effect, and the aggregator should recognize the net flow of molecules

from one group to another, i.e. convert to number influences.
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The distinction is clearly related to the question of identity, which is a tricky issue
when old molecules get REACTed to form new molecules and new molecules get
grouped with old molecules. Consequently, we have not yet implemented logic
which automatically selects when to convert length influences to number

influences.

4.4.1.3 Deduced Influences from Implicit Diffusion

In the interests of simplicity, PEPTIDE’s discrete representation does not
explicitly model the diffusion of molecules from one place to another. This
movement is allowed to occur implicitly, however: whenever a binder drops off a
given position on a chain and later rebinds the same chain at a new position,

there has been an implicit influence which must be deduced. The aggregator .
calculates these influences by scanning through each cycle, looking for
drop-bind paiis. A drop-bind pair is a pair of PIEs, 1 and 2, such that PIE1

caused a binder to drop off a chain, PIE2 caused the same binder to reattach the
chain, and PIE1 voccured before PIE2.

Not all drop-bind pairs cause implicit influences, however. A IR quantity (such as
the position of a binder on a chain) can only be influenced if it is defined. If the
binder of a drop-bind pair is not bound to its chain when the aggregator is
deducing diffusion influences, then the position quantity is not defined and there
is no influence. If the position quantity is defined (i.e. the binder is currently
bound), the implicit influence is generated by computing the direction between
the position before the drop and the position after the bind.

4.4.2 Canceling Influences

Currently, when the aggregator detects two or more influences which are acting-
on the same quantity, but in different directions, it cancels them. This approach is
wrong in principle, but frequently results in the right answer because of the
simplicity of our qualitative arithmetic; unless two opposing influences are of
different magnitudes, the correct answer is generated. We anticipate rectifying
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this problem by adding a more sophisticated influence simplifier which will

reason about the magnitudes of various influences when canceling influence

pairs.1?

In addition to opposing influence pairs, regular position influences are canceled

when the position quantity is undefined at aggregation time, i.e. when the binder

has dropped off the chain.

4.4.3 Example Continued
It is quite simple to generate influences for the cycle detected in our example of
section 4.1.1.1. The cycle has three elements all of which are discrete PIEs. The

influence generator collects the influences resulting from these PIES:

* Influences from the bind-sub PIE:
A decrease in the number of free substrates.
A decrease in the number of free frobases.
An increase in the number of substrates bound to an E.
An increase in the number of frobases bound to an A.

* Influences from the react PIE:
A decrease in the number of substrates bound to an E.
A decrease in the number of frobases bound to an A.
An increase in the number of products bound to an E.
An increase in the number of frobases bound to a B.

* Influences from the drop-prod PIE:
A decrease in the humber of products bound to an E.
A decrease in the number of frobases bound to a B.
An increase in the number of free products.
An increase in the number of free frobases

The aggregator completes the construction of the continuous process by
canceling conflicting influences. Once this is done, only the following influences

12Ranking influences with magnitudes will also aliow PEPTIDE to be able to describe situations
where certain processes really are happening faster than others. For example, consider the
enzyme E which converts A’s to B's, and the enzyme F which converts A’s to C's. We would like
PEPTIDE to be able to reason about situations where there are many more E’s than F’s.
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remain:

* Final influences generated by aggregator:
A decrease in the number of free substrates.
An increase in the number of free products.

4.5 Cycles Within Cycles

PEPTIDE’s aggregator is flexible; it can recognize cycles which contain other
cycles as members. This ability is quite useful since many examples contain
nested cycles, and a simulator which could not aggregate these complex cycles
into a continuous process would thrash between discrete and continuous models
without determining the final limit. The following example, although artificial,

demonstrates PEPTIDE's ability to recognize complex cycles.

Consider a series of processes, catalyzed by enzyme P which converts an A into
a B (as in the example of section 1.1). Assume that there is another series of
processes, catalyzed by Q, which convert a thousand B’s into a single, mammoth
C. We define a thousand to be MGT zero and a million to be MGT a thousand.

Initially, there are a million A’s, one P, one Q, and no B’s or C’s.

The first series of discrete processes will run converting an A to a B. Then the

aggregator will notice that there is a cycle and will produce a continuous process
which is decreasing the number of A’s and increasing the number of B’s. There
are two possible limit points: the first set of discrete processes will stop when the
number of A’s reaches zero, and the second set of processes will start as soon as
the number of B’s hits a thousand. Since a thousand is closer to zero than a
million is, PEPTIDE predicts that the number of B’s will go to a thousand.

" Simulation returns to discrete mode.

At this point both sets of discrete processes are active: one more A is turned into
a B while a thousand B’s get transformed into a single C. Now only the first set of

processes are active.
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But instead of recognizing the same cycle as before and again predicting a limit
of the number of B’s going to a thousand, PEPTIDE detects a larger cycle which
consists of the first cycle, the continuous process, another simulation of the first
cycle and a simulation of the processes which turned the B’s into a C. The regular
influences in this cycle are decreasing for the number of A’s and B’s and
increasing fqr the number of B’s and C’s. Once the aggregator cancels opposing
influences, we are left with a negative influence on the number of A’s, and a
positive influence on the number of C’s. There is only one limit point. So the

continuous simulator predicts that all the A’s get converted to C’s.

At this point PEPTIDE switches back to the discrete simulator, but no more

processes are active.

Although this example is somewhat artificial, cycles containing subcycles are
guitc common when reasoning about chains. See the examples in sections

6.3 and 6.1.
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5. Continuous Process Model

While discrete processes are specified by the user before simulation commences,
continuous processes are generated dynamically by the aggregator during
simulation.  Although PEPTIDE’s continuous processes were inspired by
qualitative process theory [Forbus 83], they are much simpler. We represent a
continuous process as a list of influences. Each influence specifies a IR quantity

that is changing and the direction of change.

The continuous simulator predicts the effects of a continuous process by
computing how much the influences will change the system state before the
continuous process reaches a limit point, a value in the range of IR quantities at
which the structure of active processes changes, necessitating the end of
continuous simulation. The continuous simulator selects the limit point which will
be reached first and updates the state to reflect the effect of the influences. Then

PEPTIDE returns to discrete simulation mode.

5.1 Generating Possible Limit Points

A limit point is a value in the quantity space of a IR quantity at which a currently-
active discrete PIE (i.e. a member of an aggregated cycle) could stop or a
currently-inactive PIE could start. Whenever a IR quantity passes a limit point,
the structure of discrete process activity changes. Since the aggregated cycle

may no longer be repeating, continuous simulation must stop.

5.1.1 Analyzing Process Preconditions ,

Many limit points can be derived by scanning through the preconditions for all
defined discrete processes. Whenever a predicate tests the value of a IR quantity‘
with a constant, the constant is a possible limit point. For example, if a process

had the predicate
(gt? (number-of glucose) threshold)

as one of its preconditions, then theshold would be a possible limit point for the
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IR quantity, the number of glucose molecules.'3

However, the preconditions of some processes are not so simple. The interaction
between multiple predicates can cause limit points which are more difficult to

detect. Consider the preconditions specified in figure 5-1.

(and (bound? ?binder>?site ?chain>?pos)
(next-pos? Tbpos 7dir 7pos)
(not (bound? ?blocker>?bsite ?chain>?bpos)))

Figure 5-1: Three Predicates Which Together Specify a Limit Point

These predicates are part of the preconditions for a slide generic. The predicates
work together to specify that the slide process is active only when the binder is
bound to the chain at a position which is not adjacent (in the direction specified)

to another binder, blocking the first binder’s way.

it is beyond the scope of our research 1o deveiop a general algorithm that would
detect limit points that result from multiple interacting predicates.’® To allow the
continuous simulator to run real examples which contain these kinds of limit
points, we wrote special purpose code which recognizes certain common
patterns of multiple preconditions (such as the one in figure 5-1) and generates
the correct limit points. However, PEPTIDE will not catch every possible multi-

predicate limit point.

For the example defined in section 3.3.5, PEPTIDE would generate potential limit

points for each of the IR quantities listed below:

* Number of free substrates: zero.

* Number of substrates bound to frobases: zero.

13The technique is a bit more complicated than this. Because of the existence of variables, the
preconditions must be checked after they have been instantiated in all possible environments.

14Qualitative process theory will provide just such a facility [Forbus 83].
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* Number of free frobases: zero.

* Number of frobases binding to substrates: zero.
* Number of frobases binding to products: zero.
* Number of products bound to frobases: zero.

* Number of free products: threshold.

5.1.2 Filtering Out Irrelevant Limit Points

Although analysis of process preconditions has produced a large number of
potential limit points, most of these are irrelevant. Unless the IR quantity is
influenced by the continuous process, no potential limit point for that quantity
can be real. In section 4.4.3, the aggregator concluded that this continuous

process has only two influences:

*A decrease_. in the number of free substrates.

* An increase in the number of free products.

This means that of the potenﬁal limit points, only two could really be reached

during this continuous process. The continuous process will stop if:

* The number of free A’s reaches zero, or

* The number of free B’s reaches threshold.

in more complex situations, the precondition analyzer will often generate several
possible limit points for each IR quantity. When this happens, additional filtering
is often possible. If a quantity is being increased by the influence, only the limit
points that are greater than the present value for the quantity need be
considered. If the possible limit points are ordered, only the point nearest the

quantity’s present value need be considered.
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5.2 Selecting the Closest Limit Point

To determine the effect of the continuous process, PEPTIDE must choose which
influenced quantity will reach its limit first. i none of the quantities has a limit
point, then the continuous process will continue influencing the system forever,
and if more than one guantity has a limit point, then the simulation is potentially
ambiguous.15 To simplify the reasoning, we make the assumption that all

quantites are being influenced at the same rate.

The first step in the selection procedure is to determine, for each quantity, the
distance between its current value and the limiting value. Next PEPTIDE
discovers what the shortest distance is. Since all quantities are being influenced
at the same rate, only quantities that are as near to their limit point as is the

nearest are contenders; the rest are eliminated.

Before continuing, PEPTIDE checks to see if this shortest distance is qualitalively
finite or infinite. If the distance is finite, the program reverts back to the discrete -

simulation mode to ensure accuracy.

If the distance is qualitatively infinite, PEPTIDE must now choose a limit point. [f
there is only one possibility, then the choice is clear. If there are several
possibilities and they limit IR quantities with different ranges, then there is no way
to make an unambiguous choice. However, if all the influenced quantities have
the same range (e.g. they are all numbers or all positions on a single chain), then
there is a chance that PEPTIDE can make an unambiguous choice. If two
influenced quantities, A and B, have the same range and the situation matches
one of the possibilities shown in figure 5-2, then PEPTIDE can conclude that A
will reach its limit first. Each horizontal line in figure 5-2 represents the range of a
IR quantity. The arrows above the line indicate the directions that the two

15As with the choice between mutually exclusive PIEs, there is a flag which allows the user to
manually select the desired limit point.
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Figure 5-2: Resolvable Limit Analysis Situations

quantities, A and B, are being influenced. Possible limit points are displayed
beneath the line. If the situation matches one of the ones in figure 5-3, however,
there is no way for PEPTIDE to resolve the ambiguity.

5.3 Simulation

Simulation of a continuous process with a known limit proceeds similarly to
simulation of a discrete process (section 3.3.4). PEPTIDE makes new copies of
modified groups of molecules and updates the values of the influenced IR
quantities. For the quantity going to its limit point, it is easy to determine the new-
value: it is the limit point. However, it is not clear how far the other quantities will
have moved towards their limit points during the interval. In the interest of
simplicity we assume that all other quantities move part way towards their limit

point (but two quantities never reach their limit at the exact same time).
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Figure 5-3: Ambiguous Situations for Limit Analysis

5.4 Example Concluded

At last, we know enough to conclude the example that we started in section 3.3.5.
The aggregator detected a three member cycle consisting of the bind-sub, react,
and drop-prod PIEs, and aggregated it into a continuous process with two
influences: a decrease in the number of free substrates and an increase in the
number of free products. The limit point generator produces two possible limits--

the continuous process will stop whenever the number of substrates reaches
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zero or the number of products reaches threshold.

It turns out that PEPTIDE can choose unambigusissly between the two possible
limit points in this case, because the definitiorr irs section 3.3.5 specified that the
number million was greater than threshold which was greater than zero. Since
there are still nearly a million free substrates and barely more than zero products,
PEPTIDE matches the situation with the first pattern in figure 5-2. Assuming that
both quantities are influenced at the same rate, the number of products will reach

threshold before the number of substrates hits zero.

Once the continuous simulator has made this prediction, it updates the state, and
PEPTIDE shifts back to discrete simulation. The situation now contains a group
of free substrates with size somewhere between zero and a million molecules, a

group of free products with size equal to threshold, and a single free frobase.

At this point the discrete simulator computes that two PIEs are active: bind-prod -
acting on the frobase and one of the free products, and bind-sub acting on the
frobase and one of the free substrates. Because both these PIEs require the sole
frobase molecule, only one can run. Since PEPTIDE does not know the relative
numbers of free substrates and free products, it has no deterministic way of
choosing between the PIEs. ' For this discussion, we shall assume that bind-prod
is chosen. Once bind-prod runs, the situation is as follows: there is one product
bound to the control site of the frobase, a large group of free substrates and a

group of threshold minus one free products.

Again there are two PIEs active: repress acting on the bound frobase, and bind-
sub acting on the frobase and a free substrate. Because the repress PIE is
internal to one molecule, it is of higher priority and is chosen to run. The situation
that results has an indeterminate number of free substrates, threshold minus one
free products, and one product bound to the control site of frobase. The

resulting situation is shown is figure 5-4. Since frobase’s catalytic site is inactive
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as a result of the repress PIE, no more PIEs are active. The simulation is

complete.
Conirelsi7e Cot-sire: .
Inaciive ConformaTron

\ N
SSRE &y A

One Frobase, Product Many Substrates Threshold
Figure 5-4: Final Frobase Situation

5.5 Deficiencies

PEPTIDE’s continuous simulator satisfies ‘its design goals: it is simple, fast and
flexible, but it does have deficiencies. Because the technology for the design of
continuous simulators is not yet well understood, we felt it wise to accept these
problems and concentrate on the issue of linking the discrete and continuous
styles of reasoning rather than attempt to fully duplicate the work of Forbus on
QP thebry [Forbus 83]. In this section we will discuss the two major problems
with PEPTIDE’s continuous simulator: moving limit points and the lack of loop

induction.

5.5.1 Moving Limit Points
Interacting processes can cause situations in which limit points move. Two errors
can result from moving limit points: unreal limit points, and erroneous limit

points.

For an example of a unreal limit point, imagine a situation consisting of two
molecules: a binder and a chain. Assume that the binder was bound to the
rightmost end of the chain. Suppose that the aggregator had composed a
continuous process from a cycle composed of the following two discrete
processes: '

1. If the binder is at the rightmost end of the chain, add another unit to

Products
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the chain, increasing its length, and leaving the binder attached one
position to the left of the right end.

2. lf the binder is not at the right end, slide right.

Two influences are caused by this continuous process: the length of the chain is
increasing on the right end and the position of the binder on the chain is moving
right. If the two processes above are the only ones defined, then infinity is the
nearest limit point for the length of chain quantity; the position quantity, however,
has a limit point (the end of the chain) that is only 1GT away.

Since PEPTIDE’s continuous simulator does not realize that the limit point is
moving along with the position and thus the limit will never be reached, it defers

to the discrete simulator (the limit point is only 1GT away after all).

For an example of a moving limit point which causes an erroneous prediction,
consider a situation with two binder molecules and one chain molecule. Initially
the binders are attached on opposite ends of the chain and are sliding towards
the center. Rather than conclude that they will collide and stop someplace in the
middle of the chain, PEPTIDE’s continuous simulator would predict that one of
the sliders would go all the way to its limit, the position adjacent to the starting
position of the other (right by the opposite end), and the other will go part-way
towards its limit, resulting in a position near the middle of the chain. This is a
serious error the implementation of our continuous simulator which has no
simple solution. '

5.5.2 Loop Induction

Since continuous processes are formed from cycles, there are often constraints
between quantities being influenced. For instance, in the first example (section
1.1), an enzyme is converting A’s into B’s. Although PEPTIDE correctly predicts

16Limit analysis in QP theory does not sUffer from this deficiency.
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that all the A’s will be turned into B’s, the continuous simulator can not conclude

that the eventual number of B’s is equal to the initial number of A’s.

When one attempts to use PEPTIDE to predict the behavior of RNA Polymerase
(RNAP), one becomes reminded of this deficiency. RNAP copies a DNA gene into
a complementary segment of RNA, unit by unit. Although PEPTIDE’s language is
fully capable of describing RNAP, and the continuous simulator will predict that
the net result is to produce a piece of RNA, it can not recognize that the RNA
segment is even the same length as the DNA gene, much less that it is

complementary.

We feel that this loop induction problem is a good topic for future research.
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6. More Examples

In this section we present three more examples: the degenerative effect of
exonuclease, the cannabalistic action of protease, and a simplified, tinker-toy
model of transcription of a DNA gene to an RNA copy. All of the examples have
been tested and run; PEPTIDE correctly predicts the system’s behavior in every

case.

6.1 Exonuclease .
Exonuclease is an enzyme which degrades pieces of DNA by biting off chunks

from one of the ends.

There are only two molecules in this example. DNA has a chain view with one
subinterval, gene, made up of nucieotides. Endonuclease has a binder view with
one site, active-site, which is complementary to the left end of DNA. There is one

piece of DNA and one endonuciease:

(def-obj dna (chain (gene)))

(def-obj exonuclease (binder (active-site conf)))

(def-qrel (compliementary exonuclease>active-site>conf
dna>?position))

(def-qnum dna one)

(def-qnum exonuclease one)

Whenever exonuclease’s active site is empty and the left end of DNA is free,

exonuclease will try to bind it: |

(def-process bind
(if (at-end? ?x left dna)
(bind exonuclease>active-site dna>7?x)))

Whenever the left end of DNA is bound to the active site of exonuclease,
exonuclease will destroy the leftmost unit of the DNA and ending up floating free

with its active site empty:
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(def-process snarf
(if (and (bound? exonuclease>active-site dnad>?x)
(at-end? ?x left dna))
(react exonuclease>active-site
(*decr-chain left))))

At first only a bind PIE is active; so exonuclease binds to the DNA. Then a snarf
PIE runs, eating a segment of DNA and causing exonuclease and DNA to unbind.
At time 3, a bind PIE is active once more, but before it runs, the cycle recognizer
detects a cycle: (bind snarf). Since all active PIEs, i.e. bind, are members of a
cycle, the cycle is aggregated, producing one influence: the length of DNA is
decreasing from the left hand side.

The continuous simulator realizes that the only limit is when the length of the
chain reaches zero, i.e. when the DNA has been completely destroyed. When
PEPTIDE simulates this and returns to the discrete simulation mode, no more

processes are active.

If we specified that there were many pieces of DNA initially, then the bind PIE
would be active when PEPTIDE shifted back to the discrete level. In this case the
aggregator would detect a repeating cycle that contained another cycle as a
member:  (bind snarf continuous-process). Since PEPTIDE knows that a
molecule has been destroyed when its length goes to zero, the net influence of
this cycle is a decrease in the number of DNA. PEPTIDE correctly predicts that

the limit will be reached when all the DNA is gone.

6.2 Protease

Protease is an enzyme (found in the digestive organs) that breaks down proteins.
Since protease is itself a protein, it acts like cannibal when left by itself. Although
our definition of protease is just as simple as that of exonuclease, its behavior is

somewhat more complex.
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In this example, there is only one type of molecule, but it has two views. In the
bindee view, protease has one handle, bindee. In the binder view, protease has
one active site, site. The conformation of the active site is complementary to that

of the handle. There are many proteases present initially:

(def-obj protease (bindee)
(binder (site)))

(def-qrel (complementary protease>sited>normal-conf
protease>bindee))

(def-qrel (mgt million one))

(def-gqnum protease million)

Whenever protease’s active site is empty, it will bind any molecule with a free

handie:

(def-process bind
(bind protease>site 7target>?conf))

Whenever protease has something bound in its active site, it will datroy it, leaving

no remains:

(def-process kill
(if (bound? protease>site ?target>?place)
(react protease>site *nothing)))

For this example environments are important, so we will distinguish between
processes and PIEs. We also need to distinguish between groups of protease
moleules with different state. The initial, unbound, protease is called proteaseO.

Initially, only one PIE is active: protease0 can bind another protease0O; we shall
refer to this PIE as PIEO. After simulating PIEO, the situation contains three
groups: many proteaseQ’s, and one protease1 which is bound by the active site of
one protease?2. See figure 6-1 to visualize the various states of protease.

At time two there are several candidate PIEs in contention for the scarce
protease1-2 complex: PIE1: protease2 could kill protease1, PIE2: protease1 could
bind protease2, PIE3: proteasel could bind a proteaseO, or PIE4: a protease0
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Figure 6-1: The States of Protease0, Protease1-Protease?2

could bind protease2. PIE1 and PIE2 have priority two, since they only involve
molecules in the connected complex, but the other PIEs have priority three.
Since the priority of PIE1 and PIE2 are the same, PEPTIDE chooses between the
two at random. Suppose it picks PIE1. Then at time two, protease2 will kill

proteasel, resulting in another protease0 which gets merged in with the others.

Also at time two, PIEQ is active again: a protease0 will bind another protease0,
resulting in new proteasel and protease2 molecules. The cycle recognizer
detects this parallel repetition, and produces the single element cycle
((proteaseo bind protease(>), but simulation continues discretely because of the

activity of PIE1 (above) which is not a member of a cycle.

The result, after simulating time unit two, is many proteaseQ’s, and one protease1

bound to the active site of protease2.

At time three PIEQ, protease0 binding protease0, is again active. And again there
are the same series of PlEs competing for the protease1-2 complex; the two with
highest priorities are PIE1, protease2 killing proteasel, and PIE2, proteasei
binding protease2 to form a doubly-bound complex. Suppose that once again
PEPTIDE chooses PIET.

Before the discrete simulator can simulate the two PIEs, the aggregator notices a
cycle which contains both active PIEs: (<protease0 bind protease0> <protease2

Kill protease1>). The aggregator computes the net influence of one iteration of
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the cycle as a decrease in the number of protease0, and shifts control to the
continuous simulator. The continuous simulator determines that the cycle will
continue until the number of protease0 is zero, then switches back to the discrete
simulator. The situation at this point is: no protease0, one proteasel bound to

the active site of protease?2.

Again there are two high-priority competing PIEs. Again we will assume that
protease2 will kill protease1. Discrete simulation of this PIE results in a state with
one protease0 molecule. There are no active processes so simulation is
complete. The final result is a single protease0 molecule--all the others have been

cannabalized.

6.3 Transcription

Transcription is the process by which cells create RNA copies of their DNA
genes. We present a simplified version of that process here. To coivectiy piedict
the behavior of this system, PEPTIDE has to recognize cycles which contain

other cycles as members.

This example has three types of molecules: DNA has a chain view that consists of
one large gene, RNA is a chain of length one, and duplicase is a binder with two

active sites, dna-site and rna-site:

(def-obj dna (chain (gene)))

(def-obj rna (chain first-nuc))

(def-obj duplicase (binder (dna-site)
(rna-site)))

Duplicase’s dna-site is complementary to the left end of DNA’s gene, while the
single unit RNA fits in duplicase’s rna-site. Initially, there are many short RNA

pieces, one strand of DNA, and one duplicase:

57



Weld Switching Between Discrete and Continuous Process Models

(def-qrel (complementary duplicase>dna-site>normal-conf
dna>left-gene))

(def-qrel (complementary duplicase>rna-site>normal-conf
rna>first-nuc))

(def-qrel (gt million one))

(def-gqnum duplicase one)
(def-gnum dna one)
(def-gnum rna million)

We define four discrete processes. Dup-bind is active whenever both active sites
of duplicase are empty, nothing is already bound to the left end of the gene, and
there is a free piece of RNA of Iéngth one. When dup-bind is active, duplicase
grabs the left end of the gene in its dna-site and the short RNA element in its

rna-site:
(def-process dup-bind
(if (same-length? (length-of rna) one)
(bind duplicase>rna-site rna>first-nuc)
(hind duplicase>dna-site dna>left-gene)))

The dup-add-step process is active whenever duplicase is binding DNA at some
point on the gene and duplicase is binding RNA at its right end. The effect of this
process is to increase the length of the RNA chain at the right end, leaving

duplicase bound to the RNA one unit left of the right end:
(def-process dup-add-step
(if (and (bound? duplicase>dna-site dna>?x)
(bound? duplicase>rna-site rnad>?y)
(at-end? ?y right rna))
(react duplicasedrna-site (*INCR-CHAIN right))))

Dup-slide is active when both the gene and the growing RNA chain are bound by
duplicase at positions to the left of their right ends. If dup-slide is active,

duplicase will move one position to the right on both chains:

(def-process dup-slide
(if (and (bound? duplicasedrna-site rna>?x)
(not (at-end? ?x right rna)))
(s1ide duplicase>dna-site dna right)
(s1ide duplicasedrna-site rna right)))
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Whenever duplicase is bound to the right end of the DNA gene, dup-drop will

become active, and duplicase will drop both DNA and the new RNA chain:

(def-process dup-drop
(if (and (bound? duplicase>dna-site dna>?x)
(at-end? ?x right dna))
(drop rna>?y duplicase>rna-site)
(drop dna>?x duplicase>dna-site)))

Initially, dup-bind is active, so the discrete simulator predicts that duplicase will
grab an RNA fragment in its rna-site and attach to the DNA at the left end of the
gene. The resulting duplicase-DNA-RNA complex is shown in figuré 6-2; in
addition there are many single element RNA fragments still floating free.

Duplicase
RNA
/L
A AY AR
//

DNA [~ <~ < <

Figure 6-2: Duplicase State After Dup-bind Process

Since the RNA is only one unit long, duplicase must be at the right end and dup-
add-step is active. The RNA chain grows to length two, but duplicase is still
binding RNA and DNA at their left ends. The situation is as shown in figure 6-3.

Dﬁplicase

RNA

DNA [ < ~ ~ N7 [CS

Figure 6-3: Duplicase State After First Dup-add-step Process

At this point, dup-slide is the sole active process, so it is simulated: duplicase
moves right one unit on both the DNA and RNA chains. Duplicase is now at the
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Duplicase
RNA F___—(/{e

DNA N ~ o3 <7/ < <

Figure 6-4: Duplicase State After First Dup-slide Process

right end of the RNA, as shown in figure 6-4.

Since duplicase is back at the right end of RNA, dup-add-step is active once
more. But before the discrete simulator can predict its effects, the aggregator
notices that the current duplicase-DNA-RNA complex is the same as the one two
time-steps ago (only the position of duplicase on the chains has changed). We
must have a cycle: (dup-add-step dup-slide). The aggregator analyzes one
iteration of the cycle and determines that the net influences are: an increase in
the length of RNA,'an increase in the position of duplicase on RNA, and an
increase in the position of duplicase on DNA. Simulation shifts to the continuous

mode.

The continuous simulator locates two possible limits: the position of duplicase on
DNA could increase until it reached the end of the gene, or the position of
duplicase on RNA could increase until it reached the right end of the RNA. Left to
its own devices, the continuous simulator would choose the later limit because
duplicase is closer to right end of RNA than the right end of DNA.

This choice is incorrect, however, because it does not take into account the fact
that the limit point (the right end of the RNA) is moving away from duplicase at the
same speed that duplicase is moving towards it.'” To obtain a reasonable

1-,Fixing this bug would require a complete overhaul of the continuous simulator, duplicating
much of Forbus’ work on QP theory [Forbus 83]). For more information on the limitations of
PEPTIDE’s continuous simulator, see the discussion is section 5.5.
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simulation the user must manually select the first limit point. Once this is done the
continuous simulator updates the state and switches back to discrete simulation.

The duplicase-DNA-RNA complex now resembles figure 6-5.

/ Duplicase
RNA Z 7// Z Z yd Z W |

//
DNA I Y y/// Y hN AN Y

4

Figure 6-5: Duplicase State After First Limit Analysis

The discrete simulator determines that dup-drop is the sole active process.
Simulation of it leaves duplicase, DNA and the new long RNA chain floating free.
In addition there are still a lérge number of short RNA fragments.

Next the discrete simulator realizes that the dup-bind process is active. But
before it can be simulated, the aggregator recognizes a cycle. Since the current
situation is the same as the initial situation (only the number of RNA molecules
has changed), the sequence (dup-bind, dup-add-step, dup-slide, continuous-

process, dup-drop) must be a cycle.

Determination of the net iﬁfluences for this cycle is somewhat difficult. The
position influences generated by dup-slide and continuous-process are canceled
because neither quantity is currently defined.'® This leaves a single increasing
influence on the length of RNA. As explained in section 4.4.1.2, there are times
when length influences must be changed to number influences. This is one of

those times.

18A position quantity is only defined whén the binder is actually bound to the chain. That is not
currently the case: dub-bind has not been simulated, so duplicase is bound to neither DNA nor
RNA. Since the two position quantities are undefined, they can not be influenced.
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The net influences for the cycle are: an increase in the long RNA strands, and a
decrease in the short RNA fragments. Since there is only one possible limit, the
continuous simulator predicts that the resulting situation will contain zero RNA

fragments and many long RNA gene transcripts.

When the simulator shifts back to discrete mode, there are no active processes,

so the simulation is complete.
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7. Related Work

PEPTIDE has been influenced by other programs which do qualitative simulation,
existing representations for changing systems, énd previous attempts to write
programs which use multiple models. However, PEPTIDE has evolved

considerably with respect to these influences.

7.1 Qualitative Simulation

There are several reasons to study qualitative simulation. Many aspects of plans
can be checked by simulating them qualitatively. Qualitative simulation is also
useful when generating explanations, especially when describing the mechanism
of a complex device [Weld 83, Forbus 81]. Finally, qualitative simulation can help
predict dangers in an underspecified and dangerous world. Consider the can of
hair spray that your companion just threw into your blazing living room fireplace.
What is your instinctive reaction? Even in the absence of numeric information
about the temperature of the fire and the pressure of the hairspray, you can
predict that there is likely to be a heat flow from the fire to the contents of the can,
and that the pressure of the can is going to rise, perhaps to a value that will cause

the can will explode. This kind of qualitative reasoning is clearly useful.

Many people have worked on predicting the behavior of qualitatively-specified
systems. As a result, the terminology has become quite confusing. "Envisioning"
was introduced in [de Kleer 75] and meant taking the qualitative description of a
physical system and predicting its future behavior. Since a qualitative description
may be under-constrained, the predicted behavior could be ambiguous. Thus the
envisioner returned the list of all possible behaviors [de Kleer 79a]. In recent
papers, however, de Kleer and Brown have changed the definitions. In [de Kleer
82a] they describe it as the first step of qualitative simulation: envisioning takes a
structural device description and produces a functional description called a
causal model (also called an envisionment). Then a technique called running

takes the causal model and generates the specific behavior of the device,
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completing the qualitative simulation. But in[de Kleer 82b], they say that
qualitative simulation is a degenerate form of envisioning; apparently, this is
because a form of qualitative simulation is a useful tool for (as well as the goal of)
envisioning. To further complicate matters, envisioning is equated with qualitative
simulation in [Kuipers 82]. Because of this confusing terminology, we avoid the
word. Instead we prefer the phrase, qualitative simulation, which we take to
mean the act of producing one possible behavior of a system given its qualitative

description.

7.2 Representations of Physical Change

We classify models of change as either discrete or continuous. Discrete models
only define the state at the beginning and the end of the change (either because
the change takes but an instant, or because the state is undefined during the
change). Change takes finite, nonzero time in continuous models and the state is

always defined.

7.2.1 Continuous Models

Considerable work has been done on programs which reason about continuous
change [de Kleer 75, Rieger 75, Rieger 77, Hayes 83, de Kleer 79b, de Kleer
82a, Patil 81a, Forbus 83, Kuipers 82, Williams 84, Doyle 84]. Our continuous
model is based on a simplified vérsion of qualitative process theory [Forbus 83].

Qualitative process theory is a very general, domain-independent framework for
representing and reasoning about continuous change. Processes are the most
important idea in QP theory; processes only cause change when they are active.
A process is defined by specifying a group of individuais which must be present
for activity, a set of preconditions and quantity conditions which must all be
true for activity, a set of relations which are true during activity, and a set of
influences which are generated by aptivity. As the following comparison show,
PEPTIDE’s continuous processes are very similar to those of QP theory.
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* Individuals

In QP theory, the set of required individuals is stated explicitly, but
PEPTIDE deduces them during aggregation. Determining the set of
individuals is achieved by computing the union of all the groups of
molecules that unified part of the pattern of one of the discrete
processes that formed an aggregated cycle. Since the cycle of
discrete processes is equivalent to a continuous process, they both
require the group of individuals.

* Preconditions

QP theory preconditions are conditions that can not be expressed
within QP, yet must be true for a process to be active. These
conditions refer to structural information, spatial information, and the
value of FR quantities (which QP theory does not represent). For the
process of fluid flow from one container to another, the
preconditions might be the existence of a pipe connecting the
containers and a valve being open. Activity of our continuous
processes may also be dependent on the condition of FR quantities
and structural state, but, unlike QP theory, PEPTIDE has a discrete
model which it uses to explicitly model changes in this type of
information. The aggregator could produce the set of preconditions
for any continuous process by analyzing the discrete processes
which form the aggregated cycle. This is not necessary, however,
because by detection of a cycle, the aggregator has already verified
that the preconditions are true, and (as we discussed in section 1.2)
can not be changed by the actions of a continuous process.

* Quantity Conditions

All conditions necessary for process activity than can be expressed

in QP theory (i.e. conditions that depend on IR quantities) are called

quantity conditions. A fluid-flow process might have the following

quantity condition: the fluid’s pressure at the source must be greater

than the pressure at the destination. Activity of PEPTIDE’s
continuous processes are also often dependent on the values of IR

quantities.

* Relations *
QP theory allows the specification of relations that are true during
the activity of a process. Continuing the fluid-flow example, a new
variable called flow-rate might be introduced and declared
proportional to the difference in the pressures of the source and
destination. In the interests of simplicity, PEPTIDE does not support
relations that hold through the activity of a continuous process.
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* Influences
Influences cause change. QP theory allows a process to influence IR
quantities by variable amounts. Fluid flow might negatively influence
the level of fluid in the source container by an amount proportional to
the value of the flow-rate quantity. Influences in PEPTIDE’s
continuous processes are more restricted. They can increase or
decrease any IR quantity, but only at a single rate.

From QP theory we have also taken an important simplifying assumption about
the nature of IR quantities--their actual value is irrelevant; all that is important is
the value’s relation to the distinguished values that are mentioned in quantity
conditions (i.e. values at which a process’ activity starts or stops). This suggests
that IR quantities can be represented with a partial order.

Finally, we use QP theory’'s technique of limit analysis as our sole continuous
simulation technique. Since the method is fully described in section 5, we will not

discuss it here.

QP theory is quite large, and we chose not to implement all of it. Chief amongst
the eliminated features are individual views and qualitative proportionalities

between quantities.

7.2.2 Discrete Process Models
However, it is not always convenient to consider processes as continuous; some
processes (such as collisions) are best considered instantaneous or

discontinuous.

Forbus reasons about these discrete changes with encapsulated histories,
which are historical records of two sequential processes héppening back to
back. For example, a collision can be represented by an encapsulated history
composed of an interval in which the ball is moving towards an obstacle followed
by an interval in which it is moving away. Encapsulated histories are not
processes, because although relations from the first process are true during the
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first interval and those of the second process hold during the second interval,
there is no set of relations that are true during both intervals. Since many of
Forbus’ techniques depend on relations holding uniformly through a process’
active interval, encapsulated histories may not be considered processes.
However, Forbus shows how they can facilitate certain types of reasoning such
as energy analysis. Forbus’ hypothetical analysis of an oscillator closely

resembles aggregation.

Since encapsulated histories were not powerful enough to support the types of
discrete reasoning that we reduired, we chose to adopt a primitive set of discrete
processes which we could use to model any of the discrete biochemical
mechanisms that we expected. We were influenced in this by a general corpus of
knowledge (probably founded by the work on STRIPS [Fikes 71]) about the

implementation of situation-action rules.

7.3 Multiple Models
There have been a number of programs which used multiple models of the same

data‘ to simplify or speed up reasoning. In this section, we shall consider some of

these systems and discuss whether the models used the same representation and

how the program chose which representation to use.

MACSYMA [MACSYMA 83, Moses 71] uses three different representations for
polynomials. By coverting a polynomial into the correct representation for a given

manipulation, the program achieves increased efficiency.

The database for the Programmer’s Apprentice project [Rich 82] uses two
different representational frameworks for program plans, predicate calculus and
plan diagrams. As with MACSYMA, the choice of representation is linked to the
function being performed. Operations such as maintaining type consistency are
easily implemented using the pfedicate calculus representation, but other
operations, such as analysis by inspection, are better performed using plan
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diagrams.

ABEL, a program for diagnosing acid base disorders [Patil 81a, Patil 81b], is
interesting because it represents patient models with five views of the same data
at different levels of abstraction using the same representational framework. At
each level of the model, causal relations among normal or abnormal states are
represented in a semantic network. The models’ different levels provide a
remarkable breadth of coverage: depending on the level, a causal link could
signify an empirical disease aséociation or the interaction between ion transport
systems which cause the association. ABEL’s control structure is different from
the other programs we are discussing. Instead of switching between levels to
answer different questions, ABEL diagnoses diseases by building several
consistent multilevel models from input data, and then rating them on how well

each explains the data.

PEPTIDE represents biochemical processes at a single abstraction level, the
tinkertoy level, with two different representational frameworks: discrete and
continuous. PEPTIDE’s means of switching from one model to another,
aggregation, is unique among Al programs, but it resembles an independently-
developed, psychological theory of evaporation [Collins 83, Collins 82]. From
detailed protocol analysis, Collins and Gentner postulate that human reasoning
about evaporation is performed uéing mental models at three abstraction levels:
macroscopic models, aggregate models, and molecular models. Collins and
Gentner claim that there are multiple models at each level, and that each high-
level model is supported by multiple models at the next lower abstraction level
(i.e. a macroscopic model is supported by several aggregate models, etc.) As yet,
they have not advanced a mechanism for information flow between models at

different levels or a trigger for reasoning shifts from one level to another.
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7.4 Other Applications to Biochemistry

MOLGEN and GENEX are two recent Al systems with molecular genetics as a
problem domain. MOLGEN [Stefik 81a, Stefik 81b] is a system for planning
experiments in molecular genetics. Through the use of hierarchical planning and
least commitment operator selection with constraint propagation, it worked for a
small number of examples. But MOLGEN uses a very simplified domain model:
proteins, for example, are not modeled at all. MOLGEN seems to assume that the
biochemical objects it works with are static; there is no representation of
processes. Operators are the only causes of change, and they are modeled
discretely.

GENEX [Koton 83] hypothesizes operon-level mechanisms of regulation of a
mutated system, given a description of the system before mutations and data on
observed expressional behavior. The program reasons backwards using high-
level rules to determine an initial model of an experimental system. It then
attempts to justify this model as a change from the known structure given
uncertainties introduced by any mutations. Next it makes a set of assumptions
about the nature of the mutations, and then simulates the postulated structure as
a test. Since much of GENEX’s reasoning is of a high-level diagnostic sort,
GENEX uses a large set of empirical production rules. GENEX’s forward
simulation of proposed structures is less detailed than PEPTIDE’s, and consists

solely of discrete simulation.

69






Switching Between Discrete and Continuous Process Models Weld

8. Future Work
As is often the case with research, our work on aggregation raises more

questions and suggests more possibilities than it resolves.

8.1 Qualitative Simulation of Other Domains
For aggregation to be useful as a qualitative simulation technique, two conditions

must hold for the domain in question:

* It must be possible to characterize interesting parts of the domain by
continuous processes and IR quantities. Some processes must occur
gradually over an interval, and some quantities must have an infinite
range of possible values.

* Some processes must repeat their actions cyclically. These
repetitious actions can be either discrete, continuous or both.

There may be other domains in which aggregation could be useful. For example,
aggregation might be helpful for reasoning about complex machinery. Internal
combustion engines have many cyclic processes: the strokes of the pistons, the
movements of valves, the rotation of gears and differentials. These repetitious
processes affect numerous interesting IR quantities. For example, the friction
from each piston’s stroke increases the engine temperature, and the spurt of fuel-
injected gas lowers the level in the tank and increases it in the combustion
chamber. A major advantage of using aggregation to generate the influences on
these IR quantities (rather than hard-wiring them in to the domain model) is the
ability to model the effects of malfunctioning parts. To simulate the behavior of an
‘engine with broken spark plugs, one could simply substitute a new process

description for the plugs.

There are two steps necessary to apply aggregation to a new domain:

* A vocabulary must be selected for describing the primitive
processes, discrete and continuous. Although PEPTIDE’s vocabulary
for molecular-genetics processes consists exclusively of discrete
processes, there is no reason why this will be true for other domains.
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Some domains may require primitive continuous proc:esses.19

* A set of abstractions must be selected for use in the cycle
recognizer. Since almost no loop returns the system to exactly the
same state, we identify cycles by testing the state for equality with
respect to certain abstractions. Although it would be nice if the
aggregator could learn these abstractions dynamically, a more
practical solution is to provide the program with a set that is useful
for each domain.

We suggest that useful abstractions can be found for other domains by
considering the set of IR quantities. One would probably wish to consider the
state of an auto engine to be the same at time t and time s, if the the only
difference was the temperature of the engine block. By considering all important
IR quantities (e.g.' temperature, fuel level, etc.), the critical abstractions will

become apparent.

8.2 More Compiicated Biochemical Reasoning

There are many possibilities for future work in automated biochemical reasoning
even while sticking with the task of qualitative simulation. One promising
approach would be to combine PEPTIDE with systems which reasoned at the
éhemistry and operon levels. The abstraction difference between those levels
and PEPTIDE’s tinkertoy level presents challehging problems for the control of

reasoning and the possibilites for a very powerful reasoner.

19]f PEPTIDE modeled diffusion explicitly, it might be represented by a primitive continuous
process.
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9. Conclusions

We have attempted to integrate two distinct process models in a program,
PEPTIDE, which performs qualitative simulation of tinker-toy models of molecular
genetic systems. PEPTIDE uses a discrete process model to reason about
changes that occur very quickly, and a continuous process model when dealing
with gradual changes that happen over a time interval. A novel technique, called
aggregation, has been developed to switch between the two models.

PEPTIDE starts by simulating discrete processes. Whenever the aggregator
notices a cycle, PEPTIDE produces a continuous process that has the same
effect as multiple iterations of the cycle. Simulation now proceeds at the
continuous level as PEPTIDE determines what changes will cause the cycle to'
terminate. Once the limit analysis is complete, PEPTIDE switches back to the
discrete simulator. The use of two process models provides simulation accuracy
when it is necessary yet allows PEPTIDE to quickly predict large, gradual
changes in the target system.

Since aggregation’s model switching powers are critically dependent on the
recognition of cycles, the ability to detect when two situations are the same is
very important. We define two situations to be the same when they are equal
relative to a set of domain dependent abstractions. For the domain of molecular
genetics, the abstractions are: the number of molecules, the length of a chain,
and the position of a binder on a chain. PEPTIDE’s aggregator is so flexible that it

can recognize cycles which enclose other cycles.

73



Weld Switching Between Discrete and Continuous Process Models

References

[Collins 82]
Collins, A., Gentner, D.
Constructing Runnable Mental Models.
In Proceedings of the Fourth Annual Conference of the Cognitive Science
Society. August, 1982.

[Collins 83]
Collins, A., Gentner, D.
Multiple Models of Evaporation Processes.
Technical Report, BBN Labs, July, 1983.

[de Kleer 75]
Johan de Kleer.
Qualitative and Quantitative Knowledge in Classical Mechanics.
Al-TR-352, MIT Al Lab, December, 1975.

[de Kleer 79a]
de Kieer, J.
The Origin and Resolution of Ambiguities in Causal Arguments.
In Proceedings of the Sixth IJCAI. 1979.

[de Kleer 79b]
Johan de Kleer.
Causal and Teleological Reasoning in Circuit Recognition.
Al-TR-529, MIT Al Lab, September, 1979.

[de Kleer 82a]
de Kleer, J., Brown, J.
Assumptions and Ambiguities in Mechanistic Mental Models.
Cognitive and Instructional Sciences Series CIS-9, Xerox PARC, March,
1082.

[de Kleer 82b]
de Kleer, J., Brown, J.
Foundations of Envisioning.
In Procceedings of the AAAI. August, 1982.

[Doyle 84]
Doyle, R.
Learning How Things Work.
Master’s Thesis, MIT Al Lab, In Publication, 1984.

74



Switching Between Discrete and Continuous Process Models Weld

[Fikes 71]
Fikes, R., Nilsson, N.
STRIPS: A new Approach to the Application of Theorem Proving to
Problem Solving.
Artificial Intelligence 2(3/4), 1971.

[Forbus 81]
Forbus, K., Stevens, A.
Using Qualitative Simulation to Generate Explanations.
Technical Report 4490, Bolt Beranek and Newman Inc, March, 1981.

[Forbus 83]
Forbus, K.
Qualitative Process Theory.
Al Memo 664A (revised), MIT Al Lab, May, 1983.

[Habermann 76]
Habermann, A. :
Introduction To Operating System Design.
Science Research Associates, Inc., 1976.

[Hayes 83] .
Hayes, P.
The Second Naive Physics Manifesto.
URCS 10, University of Rochester Cognitive Science Department,
October, 1983.

[Herskowitz 80]
Herskowitz, |., Hagen, D.
The Lysis-Lysogeny Decision of Phage Lambda: Explicit Programming
and Responsiveness.
Ann. Rev. Genetics 14:399-445, 1980.

[Koton 83]
Koton, P.
A System to Aid in the Solution of Problems in Molecular Genetics.
MS Thesis, MIT Laboratory for Computer Science, May, 1983.

[Kuipers 82]
Kuipers, B.
Getting the Envisionment Right.
In Proceedings of the AAAI. August, 1982,

75



Weld Switching Between Discrete and Continuous Process Models

[MACSYMA 83]
The Mathlab Group.
MACSYMA Reference Manual.
MIT Laboratory for Computer Science, 1983.

[Moses 71]
Moses, J.
Algebraic Simplification: A Guide for the Perplexed.
Communications of the ACM 14(8), August, 1971.

[Patil 81a]
Patil, R. .
Causal Representation of Patient lliness for Electrolyte and Acid-Base
Diagnosis.
TR-267, MIT Laboratory for Computer Science, October, 1981.

[Patil 81b]
Patil, R., Szolovits, P., Schwartz, W.
Causal Understanding of Patient lliness in Medical Diagnosis.
In Proceedings of the Seventh IJCAI. 1981,

[Rich 80] -
Rich, C.
Inspection Methods in Programming.
Al-TR-604, MIT Al Lab, June, 1980.

[Rich 82]
Rich, C. :
Knowledge Representation Languages and Predicate Calculus: How to
Have Your Cake and Eat it Too.
In Proceedings of the AAAI, pages 193-196. 1982.

[Rieger 75]
Rieger, C.
One System for Two Tasks: A Commonsense Algorithm Memory that
Solves Problems and Comprehends Language.
Working Paper 114, MIT Al Lab, November, 1975.

[Rieger 77] ‘
Rieger, C., Grinberg, H.
The Declarative Representation and Procedural Simulation of Causality in
Physical Mechanisms.
In Proceedings of the Fifth IJCAl. 1977.

76



Switching Between Discrete and Continuous Process Models Weld

[Stefik 81a]
Stefik, M.
Planning with Constraints (MOLGEN: Part 1).
A. I. Journal , 1981.

[Stefik 81b]
Stefik, M.
Planning and Meta-Planning (MOLGEN: Part 2).
A. I. Journal , 1981.

[Watson 77]
Watson, J.
Molecular Biology of the Gene.
The Benjamin/Cummings Publishing Company, Menlo Park, CA, 1977.

[Weld 83]
Weld, D.
Explaining Complex Engineered Devices.
Technical Report 5489, Bolt Beranek and Newman Inc, November, 1983.

[Williams 84]
Witliams, B.
Qualitative Analysis of MOS Circuits.
Artificial Intelligence , To Appear, 1984.

[Wood 81] :
Wood, W., Wilson, J., Benbow, R., Hood, L.
Biochemistry, A Problems Approach.
The Benjamin/Cummings Publishing Company, Menlo Park, CA, 1981.

77



Tius blank page was inserted to preserve pagination.




CS-TR Scanning Project » o
Document Control Form Date : &/ é 1 1€

Report # AI:TP\‘7O‘Q ‘

Each of the following should be identified by a checkmark:
Originating Department:

Artificial Intellegence Laboratory (Al)
0] Laboratory for Computer Science (LCS)

Document Type:

x Technical Report (TR) O Technical Memo (TM)
O Other:

Document Information = Number of pages: §1(37 1 mACES)

Not to include DOD forms, printer intstrtictions, etc... original pages only.

Originals are: Intended to be printed as :
Bf Single-sided or O Single-sided or
[0 Double-sided jﬁ\ Double-sided
Print type:

O Typewriter [0 offsetPress  [] Laser Print
[] inkletPrinter [] Unknown >21 Other:
Check each if included with document:

O poD Form O Funding Agent Form )XI Cover Page
jZL Spine [0 Printers Notes Photo negatives
O other:
Page Data:

Blank Pagesey page numoen:

Photographs/Tonal Material ey page numbeq

Other (e descrictonipage aumben.
Description : Page Number:

Tmace MaC2 (- 71) nB’so TTLE PRCC =11,
U €0 AckNowLEocé’mm‘rs ") i
(3237 -)J<AHC01~T\'D~0LCO\/§R. S(F.:JE

WET Y

Scanning Agent Signoff:
Date Received: J\‘/ 6 /14 Date Scanned: A rYRIais 76 Date Returned: } 1S 17€

Scanning Agent Signature: (}V\A/CAMD ?'V*(eﬁ‘g v o104 DSLCS Contot Form cetfom v




Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the ML.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94



