Technical Report 794

Presentation
Based User
Interfaces

Eugene C. Ciccarelli IV

MIT Artificial Intelligence Laboratory

Tius blank page was inserted to preserve pagination.

PRESENTATION BASED USER INTERFACES
by |
Eugene Charles Ciccarelli 1V

B.S., Massachusetts Institute of Technology
(1975)

M.S., Massachusctts Institute of 'Technology
(1978)

Artificial [ntclligence Laboratory
Massachusetts Institute of Technology

August 1984

(C) Massachusetts Institute of Technology 1984

This is a revised version of a thesis submitted to the Department of Electrical Engineering
and Computer Science on August 27, 1984, in partial fulfiliment of the requirements for the
degree of Doctor of Philosophy.

This report describes rescarch done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technotogy. Support for the laboratory's artificial intelligence
rescarch is provided in part by the Office of Naval Research under Office of Naval
Rescarch contract N00014-75-C-0522, in part by the System Development Foundation, and
in part by Wang Laboratories.

PRESENTATION BASED USER INTERFACES
by

Eugene Charles Ciccarelli 1V

Abstract

A prototype presentation system base is described. It offers mechanisms, tools, and ready-
made parts for building user interfaces. A general user interface model underlics the base,
organized around the concept of a presentation: a visible text or graphic form conveying
information. The base and model emphasize domain independence and style
independence, to apply to the widest possible range of interfaces.

The primitive presentation system model treats the interface as a system of processes
maintaining a semantic rclation betwecn an application data base and a presentation data
base, the symbolic screen description containing presentations. A presenter continually
updates the presentation data base from the application data base. The user manipulates
presentations with a presentation editor. A recognizer translates the user’s presentation
manipulation into application data base commands. The primitive presentation system can
be extended 1o model more complex systcms by attaching additional presentation systems.
In order to illustrate the model’s generality and descriptive capabilities, extended model
structures for several existing user interfaces are discussed.

The basc provides support for building the application and presentation data bases,
linked together into a single, uniform network, including descriptions of classes of objects as
well as the objects themselves. The base provides an initial presentation data base network,
graphics to continuously display it, and editing functions. A variety of tools and
mechanisms help create and control presenters and recognizers, To demonstrate the base’s
utility, three interfaces to an operating system were constructed, embodying different styles:
icon, menu, and graphical annotation.

Thesis Supervisor: Professor Carl Hewitt
Title: Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Dr. Richard Waters
Title: Principal Rescarch Scientist, Artificial Intelligence Laboratory

Acknowledgments

My thesis committee, Carl Hewitt, Dick Waters, and Hal Abelson, have been helpful and
encouraging. They have all aided significantly in shaping this thesis and improving its

quality.

Norton Greenfeld and Martin Yonke introduced me to the world of the presentation
concept. It was while working in their group at BBN that I began to think that the concept

could serve to explain what was going on in various user interfaces.

Several people have helped with discussions and suggestions at various stages in the
development of the ideas, including Lee Blaine, Ron Brachman, Charles Davis, Jeff
Gibbons, Earl Killian, Henry Lieberman, Fanya Montalvo, Chuck Rich, Jan Walker, Bill
Woods, and Frank Zdybel.

Dan Halbert and Bruce Roberts provided information and the sample screen images for

the Xerox Star and Steamer systems, respectively.

Table of Contents

Chapter One: Introduction and Overview 8
1.1 The Primitive Presentation System Model 9
1.2 Constructing Larger Presentation System Models 16
1.3 Describing Prescntation Systems 17
1.4 PSBase: A Prescntation System Base 18
1.5 Constructing User Interfaces 20
1.6 Related Work 21
Chapter Two: The Primitive Presentation System (PPS) Model 28
2.1 PPSCalc 28
2.2 The Application Data Base 32
2.3 The Presentation Data Base 35
2.4 The Presentation Editor 39
2.5 The Presenter 39
2.6 The Recognizer 43
2.7 The Representation Shift Model and Dircct Manipulation 48
Chapter Three: Coﬁstructing Larger Presentation System Models 54
3.1 Adding a Planned Data Base 54
3.2 Adding a Data Basc of Commands 58
3.3 Adding Interfaces to PPS Components 60
3.4 Shared Screen Space and Presentation Structure 62
3.5 Concluding Remarks 66
Chapter Four: Describing Presentation Systems 67
4.1 Emacs Dired 68
4.2 Zmacs 74
4.3 Xerox Star 80
4.4 Steamer 90
4.5 Summary of Structural Features 97
Chapter Five: PSBase: A Presentation System Base 100
5.1 Data Base Mechanisms 103
5.2 Graphics Redisplay 114
5.3 Presentation Editor Functions 115
5.4 Presenter Support 115
5.5 Recognizer Support 124

5.6 Basic Style Packages
5.7 Summary

Chapter Six: Constructing Presentation Systems

6.1 The User’s View of the Three Interfaces

6.2 Common Implementation Details

6.3 Icon-Style Interface Implementation

6.4 Menu-Style Interface Implementation

6.5 Annotation-Style Interface implementation
6.6 Other Style Possibilities

6.7 Summary

Chapter Seven: Areas for Further Research

7.1 PSBase Limitations

127
141

142

142
167
173
178
181
183
134

187
187

Table of Figures

Figure 1-1: A Rudimentary User Interface

Figure 1-2: The Representation Shift Model

Figure 1-3: The Primitive Presentation System (PPS) Model
Figure 1-4: Structure of PSBase

Figure 2-1: The Primitive Presentation System (PPS) Model
Figure 2-2: PPSCalc -- Formula Display

Figure 2-3: PPSCalc -- Value Display

Figure 2-4: PPSCalc -- After Editing

Figure 2-5: PPSCalc -- After Recalculation

Figure 2-6: PPSCalc -- New Formulas

Figure 2-7: PPSCalc -- Valucs of New Formulas
Figure 2-8: World Model

Figure 2-9: Presenter Parts

Figure 2-10: Recognizer Parts

Figure 2-11: PPSCalc -- Value Moved

Figure 2-12: PPSCalc -- Formula Moved

Fignre 2-13: PPSCalc -- Preparing to Copy Formula
Figure 2-14: Representation Shift Model

Figure 2-15: Functional Mapping in the PPS Model
Tigure 3-1: Planned Data Base Extension

Figure 3-2: Extension with Both Planning and Immediate Changes
Figure 3-3: Command Data Base Extension

Figure 3-4: Presenter Interface Extension

Figure 3-5: Presenter Commands Extension

Figure 4-1: Dired Model

Figure 4-2: Zmacs Model

Figure 4-3: Zmacs Scroll Bar

Figure 4-4: Xerox Star -- Desktop Display

Figure 4-5: Xerox Star -- Opened Folder

Figure 4-6: Xerox Star -- Property Sheet

Figure 4-7: Xerox Star -- Delete Confirmation
Figure 4-8: Xerox Star Model

Figure 4-9: Sample Steamer Schematic

Figure 4-10: Steamer Menu Console

Figure 4-11: Steamer Model

Figure 4-12: Sample of Steamer Icons

Figure 5-1: PSBase Support of PPS Components
Figure 5-2: Stiucture of PSBase

Figure 5-3: A Class Description Network

11
13
15
19
29
30
30
31
31
31
32
34
40
44
45
46
46
49
52
56
57
59
61
63
72
75
81
83
84
86
87
88

91

93
94
95
101
102
105

Figure 5-4: Sample Presentation Data Base Structure
Figure 5-5: Inter-Presentation Relationships

Figure 5-6: Command Description Support

Figure 5-7: Reference Resolution

Figure 5-8: Result of a Presentation Style

Figure 5-9: Result of Phrasal Presenter

Figure 5-10: Beforc Curve Recognition

Figure 5-11: After Curve Recognition

Figure 6-1:
Figure 6-2;
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:
Figure 6-10

Figure 6-11:
Figure 6-12:
Figure 6-13:
Figuie 6-14;
Figure 6-15:
Figure 6-16:
Figure 6-17:
Figure 6-18:
Figure 6-19:

Icon-Style Interface
Icon-Style Interface
Icon-Style Interface
Icon-Style Interface
Icon-Style Interface
Icon-Style Interface
Icon-Style Interface
Icon-Style Interface
Menu-Style Interface

: Menu-Style Interface

Menu-Style Interface
Menu-Style Interface
Menu-Style Interface
Menu-Style Inteitace
Menu-Style Interface

Annotation-Style Interface
Annotation-Style Interface
Annotation-Style Interface
Application Data Base Management

107
108
110
113
122
131
133
134
144
145
147
148
149
151
152
153
155
156
158
159
160
161
163
165
166
168
171

Chapter One

Introduction and Overview

Building good user interfaces is a slow and difficult process. Good user interfaces are
generally l'arge, complex, and hard to understand, and these characteristics tend to be
exacerbated when the interface is modified. All too often, interfaces are built that lack
flexibility in their use, lack some functionality, or lack uniformity with interfaces to different

applications.

The primary result of this research is the development of a prototype presentation system
base, called PSBase. PSBase contains tools, mechanisms, and ready-made parts for the
construction of user interfaces. Independence of particular interface styles and application
domains is emphasized, in order to maximize the generality and utility of the base. PSBase
also provides a conceptual framework for user interfaces. Underlying the base is a general
model of user interfaces, called the presentation system model. The report claims that, with a

presentation base, interface construction is easier and quicker, and the results are better.

To demonstrate the utility of PSBase, a user interface was constructed on top of it, and
three different styles were implemented for this interface. A presentation system base
should be independent of any particular application domain or any particular interface
style. It should support the construction of (and experimentation with) many different

kinds of applications and styles.

For example, consider the following spectrum of styles. At one end is direct manipulation
[Shneiderman 83]: the object of intcrest is continually displayed, and the user’s actions
appear to be manipulating the object with no intervening command language. An
alternative style is preparing a desircd future version. (This style looks the same as direct
manipulation, but the object of interest is not continually changing -- the specification of the

future version is.). Another style is annotating the current view with commands for how to

change the object. At the other extreme from direct manipulation is a separate command
language for describing the manipulation. Examples of these alternative styles can be seen
when readers request changes in a draft paper: sometimes the original file is edited,
sometimes a new file is created, sometimes the (paper) draft is annotated, and sometimes the

changes are discussed scparately.

Another result of this research is the presentation system model itself. This is a general
model of user interfaces, and it is the foundation of PSBase. Even by itself, however, it has
benefits. It aids the understanding of user interfaces in general by providing a unifying set
of concepts for thinking about user interfaces. There are two ways that it helps someone
building a user interface in the absence of a presentation system base. It serves as a checklist
of the possible kinds of functionality in a user interface. The structure of the model serves

as an architectural framework for the interface.

The model may also be of aid to people studying interface styles in general. One problem
in such a study is the large number and diversity of possible styles. The model defines
various classes of general parameters for interfaces. One can define styles as patterns of

these parameter specifications.

The following five sections provide an overview of the five major chapters in this report.
These chapters divide into two groups. The first group, comprising chapters two, three, and
four, discusses the presentation system model that underlies the presentation system base.
The second group, comprising chapters five and six, discusses the presentation system base

and its application.

1.1 The Primitive Presentation System Model

This section introduces the primitive presentation system (PPS) model of user interfaces,
which is discussed further in chapter two. Two simple modcls of a data base interface will
first be introduced. They will be used to focus attention on certain aspects and to motivate
the development of the full PPS model. The first model focuses on the data base,

considering a rudimentary interface to it. The sccond model, the representation shift model,

focuses on the user’'s nced for a more uscful and coherent representation of the data base
information and commands. The representation shift model is also uscful in itself, as it is a

special case of the full PPS model and applies to some common interface styles. The PPS ‘
model extends the representation shift model to allow more tlexibility in the relationship

between the screen and the data base.

A Rudimentary User Interface. Figurc 1-1 shows the basic interface to an application data
base and a rudimentary user interface constructed from it. The data base has three cxternal
inputs and outputs. Commands change the state of the data base (adding, changing, or
deleting information). Queries allow the state of the data base to be examined, producing

the relevant information at the observables output.

These inputs and outputs are not directly usable by a person -- they are in a format
designed for usc by programs. (The user is not the only one using data bases, after all.) In
order to provide cven a rudimentary user interface, some simple kind of transducers must be

placed on cach input and output line.

The transclucer on the command input, for example, might convert a text version of a
command to the binary form required by the data base. The transducers do not provide a
different overall model of data base use -- the user still must use the commands and queries
provided by the data base. The language used to express them has been changed slightly so
that it is printable and mnemonic, much the same kind of translation that a simple

assembler performs.

The rudimentary interface is usable, but suffers from two basic problems from the user’s
point of view. First, the user must express the data base modification in terms of the data
base commands available. Second, the results of such modification, as well as any viewing

desired, must be explicitly requested via queries.

Representation Shift. Figure 1-2 shows an expanded user interface. Here, two data bases
are involved, the application data base as before and a new one, called a presentation of the

data base, introduced to allow the user more direct modification and viewing. The

10

User

n

presentation data base contains the same information as the application data base, but it is
represented in a way that is directly viewable, i.e., in terms of text and graphic forms. 1t is
continuously displayed (on the user’s terminal), so that the user does not have to explicitly

request information to be viewed.

The presentation -- or, loosely speaking, the screen -- can be directly edited by the user,
by means of the presentation editor. The editor allows the user to manipulate the forms on
the screen, creating new forms or changing or decleting existing ones. Conceptually, it
combines capabilities of a text editor with those of a graphics (diagram) editor. As these

changes are made, their results are immediately visible.

In addition, the commands for presentation editing are chosen to be convenient for the
user. For example, they might include a base of general text-editing and graphics-editing
commands, so that the user does not have to learn a special language for each particular

application data base.

The presenter creates the presentation data base from the application data base. At
appropriate times as the user cdits the presentations, the recognizer creates a new version of
the application data base from the presentation data base. In the representation shift model
the presentation contains all and only the information contained in the application data
base. The presenter uses a single application data base query (labeled get-db in the figure)
to get a representation of the entire application data base, converts the representation, and
then uses a single presentation data basc command (labeled /oad-db) to load the entire
presentation data base. Similarly, the recognizer gets the entire prescntation contents,

converts it, and loads the entire application data base.

In the representation shift model, the presenter rclation must be invertible, since the
recognizer must be able to specify the entire application data base from the presentation
data base. In general the presenter relation is a subset of the recognizer relation, or in other
words. the recognizer will recognize several different variants of the same presentation,
allowing the user more latitude. For example, the recognizer might allow the user to create

any of "12", "12.0", "12.000", ctc., whereas the presenter might always choose "12.0".

12

Figure 1-2: The Representation Shift Model

C°“‘Mand
(ton>-pB) All
< n DB

~
P tatio q'“(’_ - » . .
eJ[‘fn;‘j Editor Base J Base

Comminds

13

The representation shift model is a direct manipulation interface [Shneiderman 83]. The
screcn continuously displays the data base. Whenever the data base changes, the screen is
updated. Similarly, the user manipulates the data base by manipulating the forms on the

screen, and the data base is continually updated from this.

The major restriction of the representation shift model is that the entire application data
base be viewed (and in an invertible presentation). This can lead to inefficiency. It can also
lead to the inconvenience of visual clutter -- the user cannot view just a relevant subset of a
complex data base. The ability to control the selection of information to be viewed and the

way it is to be viewed can be crucial to the successful use of the data base.

The Full PPS Model. The full PPS model, shown in figure 1-3, relaxes the restriction that
the entire application data basc must be viewed. The presentation, i.e., the visual data base,
may convey only a small part of the information in the application data base. The screen
thus can no longef be recognized in a simple manner as specifying all the information in the
application data base. This necessitates a generalization in the recognizer from that in the
representation shift model: the recognizer translates editing actions into data base
commands, rather than translating editing results into data base data. (The term editing
actions includes both the editing command and the editing result. Therefore, the PPS
recognizer includes, as a special case, the possibility of just having to examine the editing

result.)

The presenter is responsible for making the screen continually show the relevant part of
the data base. It crcates the initial display and updates the display when the data base
changes. The presenter collects the relevant information from the application data base,
converts that information to text and/or graphics, and organizes the layout of this visual

information on the screen.

The recognizer causcs the data base to change to reflect the user’s editing of the
presentation. Specifically, in addition to affecting the screen, the user’s editing operations
are recognized as -- i.c., translated into -- operations on the data base. Thus, the PPS model

is also a direct manipulation interface: the data base is continually presented on the screen,

14

Bese

actliows

415”

with screen following data base changes (by presenter action) and data base following screen

changes (by recognizer action).

1.2 Constructing Larger Presentation System Models

The primitive presentation system model can be extended to model more complex
presentation systems as discussed in chapter three. The basic technique for extending the
presentation system model is to attach an additional presentation system to it, cither
replacing or augmenting some part of it. The resulting presentation system may thus
contain several smaller presentation systems. The extensions discussed in this section are

suggested by examining the major limitations of the PPS model.

Adding a Planned Data Base. In the PPS model changes to the data base are immediate.
To avoid this, a second application data base can be added to a presentation system: a
future (i.e., planned) version of the original data base. The user can edit the planned
version's presentation, separate from the presentation of the current state of the data base.
When the planned version looks acceptable, the user gives a do it command that causes the

actual data base to be updated.

Adding a Data Base of Commands. In the PPS model the user cannot sce a description of
the changes or the commands to effect them presented explicitly. (Only the data base that
results from these commands is seen.) Using a technique similar to the previous one of
adding a planned version of the data base, a data base of commands can be added. In this
extension, the planned changes are represented in the new data base explicitly, and can be

presented in a style different from the style for the application data base.

Adding Interfaces to PPS Components. In the PPS model the editor, presenter, and
recognizer are not presented; the user only has an interface of primitive signals to them
(e.g., keystrokes or a pointing device). To circumvent this limitation, presentation system
interfaces to these components can be added. One technique involves adding a data base
for the particular component's state, e.g., some options controlling the presenter’s style, and

constructing presenters and recognizers for showing and manipulating it. Alternatively, a

16

data base of commands for the component can be added, just as in the previous section a

command data basc was added for the application data base.

1.3 Describing Presentation Systems

The presentation system model can be used as a descriptive tool. The model provides a
set of concepts for enumerating and categorizing basic functions and interactions in a user

interface, even when that interface was not designed with the model in mind.

In chapter four several uscr interfaces will be described using the presentation system
model. The selection exhibits a variety of interface styles in order to illustrate the model’s
generality. In cach example the focus will be on those presentation system mechanisms that
play the most important part in defining that particular style. Two interfaces, drawn from

those described in chapter four, are sketched below.

Xerox Star / Apple Lisa. The Xerox Star [Smith, Irby, Kimball, Verplank & Harslem 83]
and the Apple Lisa [Lisa 84] systems offer an interface using icons -- pictorial presentations
of commands and data. Some recognition is simple reference resolution such as pointing to
an icon that prescnts a particular command. Other recognition involves more complicated
inter-icon relations such as proximity. For example, in Lisa the user dcletes a file by
moving the file’s icon to a trash can icon. In both Star and Lisa the user prints the file by

moving its icon to the printer icon,

Emacs Dired. A subsystem of the Emacs editor [Stallman 81}, Dired is used to perform
various directory operations. It is an example of an extended presentation system that
provides both direct munipulation of the data base (the directory being edited), e.g., when
certain file propertics are changed, and planned operations, e.g.. when files are marked for
later deletion, The planned deletions are presented as annotations to the prescntation of the

current directory.

17

1.4 PSBase: A Presentation System Base

Chapter five discusses PSBasc, the prototype presentation system base that was

implemented in the course of this rescarch.

PSBase explicitly incorporates the presentation system model structure. It includes tools,
mechanisms, and ready-made parts for building an interface consisting of an application
data base, presentation data base, presenters, recognizers, and presentation cditor. Domain-
independent and style-independent mechanisms are provided and may be combined largely
independently. These characteristics cause PSBase-to be useful in constructing a wide range

of interfaces.

Figure 1-4 shows the overall structure of PSBase. The data base mechanisms provide
support for building application data bases structured in a network somewhat similar to
knowledge representation networks. The network includes descriptions of the classes of
objects as well as the objects themselves, and class inheritance is supported. An important
presentation and application data bases are linked together into a large, uniformly
structured data base. This uniformity is an important factor in the power of the PSBase

mechanisms. PSBase predefincs a large part of the presentation data base class network.

PSBase also provides mechanisms that accompany the presentation data base: Graphics
redisplay ensures that the presentation data base is continuously displayed on the terminal.
Several presentation editor functions are provided; the interface builder may select these, as

desired.

The presenter support and recognizer support modules provide a variety of tools and
mechanisms for creating and controlling presenters and recognizers. Most important among
these mechanisms is a language for describing presentation styles and gencral presenters
that interpret these languages. The interface builder neced only describe how the
presentation structure relates to the application data base structure, and the presenters

perform the actual creation and updating of the presentations.

18

Figure 1-4: Structure of PSBase

BAasic STriLe Pckages

PRESENTER RECOGN/ZE'R
SvpPorT SupporT
G RAPHICS EDIToR
RenisPLAY FunCTIONS
. A\

DATA BAsSE MECHANISMS

A number of basic style packages offer specific components of domain-independent
interface styles that the interface builder may choose to include. Some general presenters
and recognizers are provided. For example, a presenter is provided to produce command
menus. As another example, a recognizer is provided to interpret simple rule descriptions
in order to recognize icon movement, similar to the Xerox Star and Apple Lisa systems (see

section 1.3).

No claim is made that PSBase would serve as a production presentation system base. It is
a prototype, and needs more and improved features of many kinds. It provides only a part
of the presentation editor functions that would be needed. Many more domain-
independent presenters and recognizers could be included. The presentation style
description language could be improved and used to drive rccognition as well. This would
result in more uniformity in what the system can present and what it can recognize,

providing the user with increased consistency and power.

1.5 Constructing User Interfaces

In order to demonstrate the utility of PSBasc, three interfaces were constructed using the
PSBase mechanisms and tools. The three interfaces share the same application data base,
but embody diffcrent styles. The first style uses icons, similar to the Xerox Star and Apple
Lisa system described in section 1.3, The second style uses text displays with accompanying
command menus. The third style is a graphical annotation style, an extension of the Dired

style described in section 1.3.

Some of the work was done once and shared between the threc implementations, namely,
the style-independent development of the application data base. Once that work was
completed, implementing a particular style was largely a matter of writing a few small pieces
using PSBase tools and choosing some standard PSBase ready-made parts from the basic

style packages module.

20

1.6 Related Work

This report discusses two developments, a domain-independent, style-independent
presentation system base for building user interfaces, and its underlying model of user
interfaces. This section discusses characteristics of the base and the model that distinguish it
from other research. Two characteristics of both the base and the model are particularly

important:

First, the model and the base attempt to concentrate on general mechanisms, independent
of any particular domain and independent of any particular style. The intent has been that
they should be free of value judgments concerning styles. Discussing what constitutes a
good style or developing new styles are separate efforts; this research offers a conceptual
vocabulary in which such a discussion can be phrased and offers a base for experimenting

with or combining alternative styles,

Second, the model and the base center about the high-level concept of the presentation.

The model is structured to show how the presentation is used as a medium for
communication between the user and the application. The emiphasis in both the model and
the presentation systcm base has been on the system aspects: how the system of processes
and data bases are structured and interact regarding the presentation relationship. This
rescarch has not emphasized any one particular part of this system: several other studies
emphasize the application data base, or the presentation data base, or presenters, or

recognizers.

Other research that this work resembles can be classed into three broad areas: human
factors, systems and techniques, and presentation systems. Although this rescarch is related
to these areas. the author knows of no other research that directly addresses the same goals
of studying and providing support for a system of general user interfaces mechanisms.
Rather than being an alternative approach, this work complements the others that are
mentioned. The third area, presentations systems, is the closest to this rescarch, in that its

includes systems for aiding user interface construction, based on concepts similar to the

21

presentation concept used here.

Human Factors. At the psychological end of the spectrum, there have been several
efforts to which this rescarch is somewhat related. Two major kinds of work is described,
first, user modeling and, second, interface specification techniques and guidelines. Some

representative rescarch is mentioned.

There have been efforts to develop models of user behavior, user performance, and user
understanding of systems. Often these studies concentrate on particular classes of users or
interface styles. Shneiderman, for example, has cxamined a class of interface styles that he
terms direct manipulation [Shneciderman 83]. These interfaces are marked by "visibility of
the object of interest; rapid, reversible, incremental actions; and replacement of complex
- command language syntax by dircct manipulation of the object of interest.” He discusses
direct manipulation style, and its affect on and acceptance by different kinds of users, in
terms of a semantic/syntactic model of user behavior [Shneiderman & Mayer 79]
IShneiderman 80]. According to this model, two kinds of knowledge about user interfaces
reside in long-term memory, syntactic and semantic. Syntactic knowledge includes details
of command syntax; it has an arbitrary character and is easily forgotten unless frequently
used. Semantic knowledge includes the hicrarchically-structured concepts of functionality
and processes for performing various tasks. Semantic knowledge is largely independent of
particular systems and is more easily retained. The success of the direct manipulation style
follows from the fact that “the object of interest is displayed so that actions are directly in

the high-level problem domain,” requiring little need for syntactic knowledge.

Modeling the user can be a tool for evaluating the behavioral style of an interface, by
studying the match between the interface behavior and the user behavior. The presentation
system model, on the other hand, complements the user model by approaching the problem
from the other end, discussing the kinds and internal structures of interface mechanisms

that will by their interaction produce the particular overall behavior as seen by the user.

Some guidelines and formal techniqucs have been developed for specifying user interface

dialogs, a part of the user interface style. Formal grammars (or, equivalently, state transition

22

networks) are one technique for describing and designing the dialog between user and
computer [Reisner 81] [Reisner 82] [Bleser & Foley 82] [Jacob 82] [Brown 82]. Formal
grammars describe the interaction between user actions and system responses. Some
grammars include cognitive information, describing what a user has to learn and remember.
A grammar can be used as a design tool, evaluating designs for consistency and simplicity.

Problems users might have and mistakes they might make can be predicted.

As with user models, dialog descriptions are complemented by the work reported here.
One may identify three layers of study. all requiring models and description techniques:
general user interface mechanisms (presentation system model), overall user interface style

(dialog specifications), and the user (user models).

Systems and Techniques. The second area of related work is the building of systems,
from cooperative user interfaces to graphics systems, and the development of techniques to
use in such systems. Some of these projects tend to concentrate on one side or the other of
the presentation relation: on representing the knowledge in the application data base or on
manipulating and displaying the presentation data base. Others tend to concentrate on the

development of particular interface styles.

Research into cooperative user interfaces, such as the Cousin effort at CMU [Hayes 84]
and the Consul/Cue effort at Information Sciences Institute [Kaczmarek, Mark &
Wilczynski 83] [Mark 81)], study various ways that user interface can be more easily
constructed to actively aid the user. An important part of such systems is the provision of a
uniform view of the applications and a helpful assistant, based on an extensive description
of those applications or the interface styles. Such an assistant might try to understand why

the user is having difficulty or try to understand requests madc in an unexpected form.

A large part of the Consul/Cue work concentrates on the representation of knowledge
about the application and its commands (services). The different applications are described
in a uniform manncr. This is separated from the particular choice of styles used to interface
to these applications, such as windows/pointing, command languages, or natural language.

The user interface assistant understands the data base representation and uses it to provide

23

explanations, flexible recovery from command language errors, and assistance in using

several different applications by understanding their functionality.

The rescarch reported here is closer to the Cousin project. The Cousin project does not
concentrate on incorporating knowledge about application semantics, but rather on
developing a uniform interface style to support a user interface assistant. The assistant
corrects erroncous or abbreviated input, interacts with the user to resolve errors, and offers
integral and automatically generated on-line help and documentation. The Cousin system
provides a common interface base, separate from the application, that interprets an interface
definition provided by the application builder. This definition expresses the user interface

as a set of forms, with fields that convey information between the user and the application.

There is an emphasis in these research efforts on developing cooperative styles,
developing techniques for them (such as more intelligent recognizers), and for Consul/Cue,
investigating the problems of representing knowledge about the application’s functionality.
The work reported in this report also relies heavily on the separation and uniformity of the
application data base mechanism. But this work has not studied the issues of knowledge
representation involved. Nor has it been involved with developing particular styles. And
unlike the cooperative systems projects, this work attempts to be able to model and support

arbitrary existing interface styles.

There are several research efforts studying different uniform styles of information
presentation and interaction, and several efforts at developing presentation and interaction
techniques for specific domains. For example, spatial data base management systems
[Herot 80] [Donelson 78], the Boxer system [diSessa 85], the Xerox Star [Purvy, Farrell &
Klose 83] [Smith, Irby, Kimball, Verplank & Harslem 83], and the Query-by-Example-
based office systems [Zloof 82] [Zloof & de Jong 77] all offer the user a consistent way of
interacting with a variety of applications. In a spatial data base management system, the
user accesses information by "moving through" the data base -- information from many
different domains is organized spatially, with related information nearby. Retrieval is

something like flying over a land of information: information is found by moving to it, and

24

detail is controlled by zooming. In the Query-by-Example systems, on the other hand, the
user accesses different kinds of information by providing an cxample of the kind of
information desired. Several systems have been developed that offer complex presentation
techniques and styles for particular domains. Simulators are perhaps the most widely
known; the Stcamer system [Stevens, Roberts & Stead 83), discussed in chapter four, is one
example. Another arca of increasing interest is the presentation of the organization and
execution of programs, such as the Computer Corporation of America’s program
visualization system [CCA 79], Henry Lieberman’s Tinker system [Licberman 84]
[Lieberman 83], and the Brown University system for program animation [Brown &
Sedgewick 84a] [Brown & Sedgewick 84b] [Brown & Sedgewick 84c]. The intent of the
work reported in this report is to develop a model and system that can be used to describe

and build any of these kinds of styles.

The books by Newman and Sproull [Newman & Sproull 79] and Foley and Van Dam
[Foley & Van Dam 82] primarily discuss low-level drawing and interaction techniques for
Brajniics sysicinis. 1 of Uic Most pait, they are conceried with only oue Kind of application
data base -- geometric models of solids, surfaces, etc. Within the framework of the model of
this report, their books discuss detailed techniques for building presentation editors and
presentation data bases. However, concerning the presentation data base, their cmphasis is
more on representation at a low level, suitable for display processors, and does not attempt
to offer a general representation technique. This is in contrast to the presentation system
base of chapter five, for example, which uses a general description mechanism for both the
presentation data base and the application data base. The standard graphics systems are less
in need of such a scheme, as they are not involved with any sort of "reasoning” about the
data bases, and instead need to perform computations efficiently. Thus, the graphics system
should be viewed as a low-level component of a presentation data base as described in this

report.

Information Presentation Systems. The rescarch reported in this report most closely
resembies research developing what have been called information presentation systems or

systems for automatically synthesizing graphics environments, for example the Bharat system

25

[Gnanamgari 81], the View system [Friedell 83], and the AIPS system [Zdybel, Gibbons,
Greenfeld & Yonke 81][Zdybel, Greenfeld, Yonke & Gibbons 81]. 'These systems all
emphasize a knowledge-based approach to creating what this report would call intelligent
presenters. The systems explicitly incorporate concepts similar to the presentation concept
uscd here, particularly the AIPS system. All three systems have interesting and individual
aspects, but from the point of view of this research, it will suffice to discuss the AIPS work
as represehtative. (It was while working with the AIPS group that the author first started

thinking about the presentation’s use as an organizing concept for modeling user interfaces.)

The goal of AIPS as an information presentation system is to provide an interface to a
large knowledge base or knowledge-based system. The system autqmatically generates
displays from content-oriented (i.e., domain) specifications. (E.g., "display the ships in the
Mediterrancan.”) AIPS is itself a knowledge-based system. Using a large knowledge base
describing how structures of domain information can be related to structures of graphical
displays, the system automatically selects or constructs an appropriate presentation style. A
full fnforimation presciitation systcm would diclude Kiowlcdge about the usei, geincial
domains, a wide variety of presentation styles, and human factors decisions involved in

graphical display.

There are three aspects in which the work reported in this report differs from the AIPS
research. First, this report addresses a more general class of interfaces than information
presentation systems. Information presentation systems currently exist only in prototype
form; there are many other kinds of interfaces to be supported now and, presumably, even
when full information presentation systems are available. Most interfaces do not have
intelligent or automatic presenters, One reflection of this difference is seen in the general

model of interfaces developed in this report.

Second, this report emphasizes the system aspects of the interface, rather than
concentrating on any one component of the system. This is one reason why this research
and the others are complementary: the AIPS work considers presenters in detail; this work

considers the relationship between presenters and the rest of the user interface system.

26

Third, the most distinguishing characteristic of the AIPS work is its emphasis on issues of
knowledge mpresenmnon This report does not address those issues, again because the
emphasis here is not on mtelﬁgem presenters or on techniques ofdscribing pmeatation
styles. Relatively simple description techniques suffice for the PSBase system. However,
 the results of research into the representation of knowledge about graphical display could be

 incorporated into a production version of a presentation system base 1o great effect.

Chapter Two

The Primitive Presentation System (PPS) Model

This chapter discusses the PPS model in detail. Figure 2-1 reproduces figure 1-3 of
chapter one, except that here two new primitive-signal inputs are added, controls for the
presenter and recognizer. Each of the components of the PPS model will be discussed in

turn in sections below,

2.1 PPSCalc

The sections in this chapter use an example program called PPSCalc. This is a simple
spreadsheet program, a trivial version of VisiCalc [Beil 82]. PPSCalc was desigined
specifically for this explanation -- its behavior strictly follows the PPS model. PPSCalc is

liustrated in figures 2-2 and 2-3.

The spreadsheet consists of cells, organized in rows and columns. Each cell may be
empty, contain just a numeric value, or contain a formula and a numeric value. In a cell
with a formula, the numeric value is computed by the formula from the values in other cells.
Cells which just have a numeric value -- no formula -- are called independent cells. Their
values are set by the user. Cells which have a formula are called dependent cells. Their
values are recomputed periodically, as will be discussed below. Cells with neither a formula

nor a valuc are empty.

PPSCalc has two display modes, formula display and value display, illustrated by the two
figures. Figure 2-2 shows the mode that displays the dependent cells’ formulas. Figure

2-3 shows the mode displaying the dependent cells’ values computed by those formulas.

PPSCalc is shown in figure 2-2 with an assignment of cell formulas for computing a

simple bill, based on the prices for two Kinds of items and the numbers of the items

28

“igure 2-1: The Primitive Presentation System (PPS) Model

.’PI..CQU A YRV m,\...J.m._

ﬂmdM—
d.u.dﬂ
we13v21ddy & 5q0m,
Md._ Jd)th JO

40.._ Jued o U.*cdm‘v\. L

- FP3
SRRy

I I
1| 100 | 20 | A1*B1 |
| -mmmmmmensees [mmmmm e | -=ommmennneee |
2 | 75 | 5 | A2*B2 |
|--mmmemmeeee | -mmmmm e | --emmemmnees |
3 | | c1+c2 |
| |

A B C

| =mmmmesenenes |--mmmmmmenes |- mmmmmmmees |
1| 100 | 20 | 2000 |
|---mmooeeees R | --mmmsnooooe |

2 | 75 | 5 | 375 |
|--mmmmnoens | --mmmemeeees |--mmommmenee |
3 | | 2375 [

I l

Figure 2-3: PPSCalc -- Value Display

purchased. The Al and A2 independent cells specifv the prices, and the Bl and B2
independent cells specify the number purchased. Dependent cells C1 and C2 compute the
amount to be paid for the two items, and dependent cell C3 computes the total amount to

be paid. Cells A3 and B3 are empty.

In both display modes, the visible contents of the cells can be edited, using the text editor
Emacs. After a certain amount of editing, typically just changing the contents of one cell,
the user types the return key. This signals PPSCalc to update the spreadsheet based on the
edits to the visible text. Recalculation is then performed: each dependent cell, from left to
right, top to bottom, has its formula evaluated and its numeric value recalculated. After

that, the visible text is updated to display any of the cells that changed.

For example, the user might edit the "S" in the B2 cell display to be "11", in order to
indicate that 11 items of the second kind are being purchased, instead of 5. The display now

looks like figure 2-4.

The user types a return, and PPSCalc recalculates the dependent cells C1, C2, and C3. C2

30

| |
1| 100 | 20 | 2000 [
|--mmommomeee | --emmmmm e | --mmmmmoeees |
2 | 75 | 11 | 375 |
|--mmmmmoees | =mmm e |-=mmmmmmenees |
3 | | 2375 |
I I

Figure 2-4: PPSCalc -- After Editing

changes its value because of B2, and C3 because of C2. PPSCalc redisplays the spreadsheet,

showing the new bill, as in figure 2-5.

A B C

| --mmrmeees | -=mmmmmmmmee e | ==mmmmmmeens !
1| 100 | 20 | 2000 |
| -mmmm e | -mmmmn e Pt |

2 | 75 | 11 | 825 |
|-=mmmmmenens | -mmmmmmeeeees |-mmmommmeee |

3 | | | 2825 |

I I

Figure 2-5: PPSCalc -- After Recalculation

The user now decides to change the cell formulas, to add accumulation of a 5 percent
sales tax. The user requests the formula display mode, types formulas into the previously
empty A3 and B3 cells, and edits the formula in the C3 cell. Cell A3 totals the amounts, cell
B3 computes the sales tax, and cell C3 computes the total charge. This is illustrated in figure
2-6.

A B c
|-mmmrmmneees |-=mmmmmmmnee | -=rmmemenene |
1| 100 | 20 | A1*B1 |
|======mmmmm e | =-mmmm e |======mmmmm-- I

2 | 75 | 11 | A2+B2 |
f=-=mmmmm e | === ittt |

3 | c1+C2 | A3/20 | A3+B3 |
e | -=mmrmmmneee e | -=mmemme e |

Figure 2-6: PPSCalc -- New Formulas

31

When the uscr switches back to displaying the dependent values, these new formulas

result in the display shown in figure 2-7.

A B c
| === | ==~==m=mmm e | === I
1] 100 | 20 | 2000 [
|=====mmmmmme | ========-- el et I
2 | 75 | 11 | 825 |
f=mmmmmm e [--==mmmmmmm e | === I
3| 2825 [141 | 2966 |
[I

Figure 2-7: PPSCalc -- Values of New Formulas

A question arises as to what should happen when dependent values are being displayed,
and the user edits a dependent value to a different numeric value. PPSCalc has two modes
regarding this. In one mode PPSCalc will ignore the edit -- when the user types return,
PPSCalc beeps, recomputes the dependent value normally, and displays the result. In the
other mode PPSCalc interprets the edit as changing that dependent cell to be an

independent cell with that value.

PPSCalc will be further discussed in the sections below as it is used to illustrate issues in

presentation system modeling.

2.2 The Application Data Base

A user interface does not exist by itself -- its whole purpose is to provide the user with the
ability to use something, typically a program or system of programs. It may also be
something that the user does not consider to be an active agent -- for example, a collection
of values, or in general a data base. In some applications the user’s view is of a passive data
base, even though in the background (external or internal to the data base) there is some
active agent managing the data basc. For example, typically a user will view a file system as
passive, though in the background various operating system programs maintain the integrity

and reliability of the file system. (Backup and salvager programs are examples.)

Any application can be viewed, from the perspective of the user interface, as a data base.

32

In other words, interfacing to a data base, besides being an important case in itsclf, can
simulate the situation with other applications. For example, consider a user interface to an
application program where there is no obvious data base in the implementation. One such
example is a process control system, allowing the user to monitor and control the state of a
power generator, say. Here, much of the state is not in the program but in the physical
world: temperatures, pressures, etc. However, from the point of view of the user interface,
the behavior of the application program is similar to the behavior of a data base. The system
can thus be treated as a system that maintains a data base describing this world state and the
control options. In the model the job of the user interface system is to let the user view and

manipulate this world description,

Since any application can be viewed as a data base, for the model developed in this report
we will treat the user interface as providing the user with access to a data base. The user’s

task will be to view and manipulate the contents of the data base.

The PPSCalc spreadsheet can be considered a data base. It has an active component.

namely recalculatio'n, which determines the values of the dependent cells in the spreadsheet.

World Models, The basic data base model being used does not specify anything about
the internals of what is being called the application data base. It only matters that the data
base takes commands and queries and returns observables. Nothing is said about whether
the data base is implemented by information records, or by computation, or by connection

to the physical world. Its external behavior is that of a data base.

It may well be reasonable to implement an application that connects to physical objects
by having a world model, i.e., an explicit description of the world. This situation is really
just an extension of the primitive presentation model proposed for the user interface. Here
the world model data basc is a representation of the outside world. Figure 2-8 shows this

modularization of the implementation,

In this approach programs (and not only programs of the user interface system) deal with

a data basc describing the relevant parts of the physical world. Separately, the world model

33

- | | P 14:Word Mot

cLStrv‘Ll”

\Jérllbﬁ.‘d |
Dats Base |

0!"”(r)n"‘w-(:[-g

presenter and recognizer perform the job of keeping the world model up to date and
effecting changes to the physical world as the world model is manipulated. The interface to
the physical world is much like an interface to another data base. Instead of queries, there
are commands to sensors; instead of data base observables, there is the information returned
by those sensors. Instead of data base commands, there are commands to effectors, the

hardware that performs some physical-world action,

Cascaded Interfaces. This approach to modularizing a system can just as well apply to the
case where there is another data base, instead of the physical world. In this casc one set of
programs (user interface programs in the special case) view and manipulate one data base,
which is a representation of a second data base, viewed and manipulated by another set of

programs,

This is not a symmetrical communication between two groups of programs. The second
set of data base programs arc generally unaware of the first set -- the first data base is
intended to serve as an extended interface to the second, i.c.. main, data base. In the special
case of the user interface, ideally the application programs are unaware or at least not
dependent on the structure, style, or operation of the presentation data basc and its

associated programs,

As a final note on this asymmetry, consider the presenter and recognizer in the user
interface. They are not under shared responsibility of user and application program -- both
are acting entirely for the user, under the user’s control. The entire user interface subsystem
is an internal agent of the user, not an impartial intermediary between two equal

communicators.

2.3 The Presentation Data Base

We now consider the other components of the PPS, those strictly within the user interface
system. The presentation data base is the symbolic description of the screen comprising
presentations and their propertics and relations; it conveys information about the data base.

Though it is not the purpose of this research to study in detail such representation issues,

35

this section will identify the basic properties of presentation structurc that concern a

presentation system.

The Simplicity of Two Data Bases. An interface containing two data bases, the
presentation data base and the application data base, may at first seem to be more complex
for the user than the rudimentary data base user interface discussed in chapter one.

However, the situation for the uscr is actually much better in a PPS user interface.

Many of the details of the application data base’s interface are hidden from the user. The
application data base still has an interface of commands, queries, and observables, but the
user does not deal with that interface -- only the presenter, recognizer and any outside
programs do. The user is no longer concerned with the access and organization of the

application data base -- the user deals only with the presentation data base.

The presentation data base has a more direct interface than the rudimentary data base
model did. The presentation editor has taken the place of the command transducer. The
commands for presentation editing are chosen to be convenient for the user. For example,
they might include a base of general text-editing commands, so that the user does not have

to learn a special language for a particular application data base.

Also, as mentioned above, the presentation data base is in a form directly viewable by the
user. There is essentially no need for queries to the presentation data base, since the
presentation is directly and continuously viewed. There are only a few vestigial queries,

remaining in the form of viewing commands to scroll the screen, for example.

Name Presentations. Name presentations are the most fundamental of presentations,
conveying no other information other than the identity of a data base object. Complex,
structured presentations are built out of name presentations. In PPSCalc, column names
{e.g., "A") arc examples of name presentations presenting a particular column. Single digits
are name presentations presenting the numbers 0 through 9. Formula operation symbols

(e.g., " +") arc name presentations presenting particular arithmetic operations.

36

Name presentations do not have parts or properties that arc also presentations. A name
presentation may have structure, ¢.g.. smaller text or graphical forms that are part of it, but
any parts are not in themsclves presenting domain information. For example, from the
point of view of a map, the letters in the name "Boston", while parts of the text string, do

not individually present information.

Composite Presentations. Composite presentations, on the other hand, have graphical
structure in which a larger presentation is constructed from smaller presentations. The
composite presentation as a whole presents some domain information, and in addition some
of its parts or propertics present domain information as well. Generally, the hierarchical
structuring of sub-presentations into a composite presentation follows a similar structure of
the information in the data base. For example, the entirc PPSCalc text table is a
presentation of the spreadshect. The presentation is composed of text string presentations

for the values and formulas of cells, and those cells in turn are parts of the spreadsheet.

In PPSCalc the presentation "A2" is composed of the name presentations "A" and "2",
presenting column and row. The presentation "A2" as a whole presents a particular cell or
the value contents of it. Similarly the numeral presentation "75" is composed of digit
presentations. However, the presentation 75" is generally not just a presentation of the
number 75 -- in figure 2-2 on page 30, for example, it is a presentation of the number in the
A2 cell, i.c., a presentation of a property of or fact about the A2 cell. It is the value of this
property that is the number 75. The presentation style here presents the property by
presenting its value. It is essentially a composite presentation composed of just one sub-

presentation,

Composite presentations, as well as name presentations, may have parts or properties that
are not in themselves presentations. For example, the overall PPSCalc presentation has the
grid as one of its parts. The grid, however, is not a presentation. It serves a purpose in the
overall presentation -- it makes the communication more effective -- but it is not itself
presenting anything in the data base. It is a kind of template, in which presentations are

placed. A common example of template presentations is a bibliographic refercnce, such as

37

"[Carroll65]". The brackets are a part of the composite presentation, but do not present

anything. The parts "Carroll" and "65", on the other hand, are presentations.

Relations and Propertics. Relations between presentations and properties of
presentations can themselves convey information. Presentation style frequently imposes
strong conventions on such "non-object” presentations. A relation between two
presentations, such as nearness, alignment, or comparative size, can be chosen to convey
information, frequently reinforcing information presented in some other way. A property
of a presentation, such as its size, color, font, position, or direction, can similarly present
information. The information presented by the property is usually very closely related to
the information presented by the presentation form, just as composite presentation structure

generally follows domain structure.

PPSCalc as shown above has no example of property presentations. However, if it were
to display dependent values in a manner different from independent values, e.g., in a
different font. the font of the text would be a property presentation. Many examples of
property presentations can be found in road maps. A line, for example, presents a particular
road, and the line's color presents the class of road (highway, street, dirt road). Frequently,
a property presentation presents a property of the object presented by the presentation
form. For example, the color of an area of a map may present the amounti of rainfall in the

geographical area presented.

Onc common relation presentation is alignment used to present some kind of similarity.
In other words it shows that the domain objects presented by the aligned presentations
share some common property. In the PPSCalc example, the fact that "75" is aligned with
"100" above indicates that the cclls whose contents are presented are both in the same data

base column,

38

2.4 The Presentation Lditor

The presentations can be directly edited by the user by means of the presentation editor.
It allows the user to manipulate the forms on the screen, creating new forms or changing or
deleting cxisting ones. It combines capabilities of a text editor with those of a graphics

(diagram) editor. As changes are made, their results are immediately visible.

Graphics Redisplay. The screen is continually updated to reflect changes in the
presentation data base, in a process called graphics redisplay. 1t is this process that involves
traditional graphics (drawing) routines. Graphics redisplay is in effect another presentation
system, taking the information in the presentation data basc, expresscd in terms of symbolic
graphic forms (text, circles, lines, etc.), and converting it to a data base of pixels, for

instance.

This report will not concentrate on this level of presentation system, for two reasorns.
First, it has been studied extensively elsewhere [Newman & Sproull 79} [Foley & Van Dam
871 Second, it is nenally not the level at which the user is interacting conceptually. The
user typically does not think about or use commands that are defined in terms of pixels, but
rather in terms of symbolic forms. These symbolic forms are the ones that present the
application data base. A presentation style presents a number as text, for example, but it
does not matter whether the graphics system chooses a bitmap or vector display tcchnique

to present that text on the screen.

2.5 The Presenter

The presenter process models the decisions and actions of constructing or updating a
presentation. The presenter can be divided into three major parts, the domain collector, the

semantic presenter, and the organizational presenter, as shown in figure 2-9.

This division of the presenter allows the identification and study of its basic functions and
the interactions betwecn them. They can be classilied by the kind of knowledge the
functions depend upon: knowledge about the structure of information in the application

data base, knowledge about the mapping between domain information and the presentation

39

“igure 2-9: Prescnter Parts

d M
=°Q
wo13od| %{

9372172

N

LU‘P{ UWN\&
J..,_.TOS-NH

Lﬁ%:dmﬁt.m.
(ru_,_,dﬂ.rch,LQ

m\ O.LL(S oD Ld@\i\v $94 &.

LUMQ

data base, and knowledge about purely visual considerations.

The domain collector finds and interprets the relevant part of the data base. The domain
collector understands the organization of the application data base, the query language, and
the format of the observables. It is the part of the presenter that connects with the data
base. Given the specification of what is to be selected, it constructs the needed queries and
passes them to the data base., The obscrvables (or parts of them) are then assembled into

the information needed by the semantic presenter.,

The domain collector thus has knowledge about the kind of domain information that will
be relevant for the user interface, and about the way that information is represented in the
application data base. It does not, on the other hand, know anything about the way such
information will be presented to the user. In PPSCalc the domain collector accesses the
internal variables that implement the data base cells, collecting the formulas or cell values

for use by the semantic presenter.

The semantic presenter embodies the primary mapping from data base domain to visual
domain, the kind of mapping specified by a map legend, for example. It specifics the
particular visual elements (text strings, circles, lines, etc.) to be used, and those relationships
between them that directly convey data base information. It may partially specify some of
these relationships, e.g., that some text string (a label) should be near some other object,
leaving the organizational presenter to specify the exact position (taking into account purely

spatial relationships, such as overlap and clutter).

In PPSCalc the semantic presenter converts the numeric values and formulas (formulas
are stored in the data base as small programs) to text strings. It also creates the text strings

that label the rows and columns.

The organizational presenter imposes purely visual organization on the presentation. The
* organizational presenter, unlike the semantic presenter and the domain collector, is domain-
independent. 1t uses knowledge about spatial layout and, more generally, about improving

the effectiveness of visual communication. [t uses various tabular layouts, alignment,

41

positioning to avoid clutter, fonts, spacing, and highlighting. The semantic presenter might
sometimes partially specily some of these, e.g.. specifying that some text or graphic form
should be highlighted. The organizational presenter, however, has the job of pinning down
these specifications. It typically takes into account the other forms that will be on the
screcn. Once the semantic presenter has made its typically local decisions about visual
styles, the organizational presenter reasons about the larger groups of forms and their visual

interactions.

This view, that the presenter stages successively restrict the specification of the visual
presentation, can be extended into the presentation data base itsclf. Part of the job of the
presentation data base is to maintain a screen image reflecting the presentation information.
As discussed in section 2.4, this is a task of traditional graphics packages. They too restrict
the specification of the visual presentation, e.g., determining which pixels are to be set or

choosing fonts if not otherwise specified.

In PPSCalc the organizational presenter uses a tabular layout for the overall presentation.
The organimtional'presentcr also is responsible for creating the table’s grid. (Some much
more intelligent organizational presenter might decide whether or not to use a grid,
embodying various kinds of human factors knowledge. The decision is fixed in PPSCalc.)
Within the grid cells, numeric values are aligned in one style {right ends of the number

strings aligned), and formulas are aligned in another style (left justified in the cell).

One issuc not discussed in chapter one is user control of the presenter and recognizer.
The presenter has an input, called presenter control. This is a primitive command signal
interface to the presenter that controls the style it uses and what it will present from the data
base. In PPSCalc there is just one such control, a key that toggles whether formulas or
dependent values are presented. In general, there may be different presenter control inputs,

affecting the three components of the presenter.

42

2.6 The Recognizer

The recognizer process observes the user's editing of the screen presentations and
interprets this as manipulation of the data base. As with presenters, recognizers are divided
into three major parts, namely, the organizational recognizer, the semantic recognizer, and

the domain changer, as shown in figure 2-10.

The organizational recognizer identifies the spatial relationships, presentations, and
actions upon them that are relevant. It imposes a syntactic structure on these.
Organizational recognition is generalized parsing. Text parsing is a special case; the more
general organizational recognition works with text, graphical forms, visual properties and
relationships, and editing actions. In general, the organizational recognizer is looking for

changes to the presentation structure from the user’s editing.

The semantic recognizer translates the syntactic structure into a semantic structure

describing changes to the data base information. Generally this involves assigning

internretations to th forms, graphic forms, spatial properties, spatial relationships,

P A

D
-
T
=
e d

editing actions, and the syntactic relationships among these elements,

The separation of recognition of presentation structure from recognition of the semantic
structure can be seen in the division of natural language parsers and compilers into syntactic

and semantic modules.

The domain changer translates this description of changes into the actual data base

commands necessary to effect those changes.

In PPSCalc the organizational recognizer, when considering the presentation structure for
the presentation of the C2 cell’s formula, for instance, starts by finding the position where
this presentation is located within the grid presentation. It then parses the formula from the
surrounding spaces and decomposes it into tokens (e.g., "A2", "*", and "B2"). The
semantic recognizer converts this into the program required for the data base cell. The

domain changer performs the actual modifications of the internal variables.

43

M‘.V L) U.e. OU I .. u h,SsUN&

SPvvwway

Recognizer Parts

Curypa

LvhS

Unlm 10..*1& Unde d#‘dp
wor H‘U.Jn—h(So..._..dA_.I UwU\.&

gure 2-10

-
Fi

// > LUP.\UWNL&

The PPSCalc example just given illustrates only a special case of recognition, namely
recognition based on just the visible presentations, the results of whatever editing took
place. This special case is very similar to the representation shift model discussed earlier,
and is an inversc operation to that of the presenter. However, the morc general kind of
recognition takes account of the editing actions as well. Different edits that produce the
same result might be recognized as different changes to the data base. (Whether such
recognition is performed, or the extent to which it is performed, depends on the particular
application and user community. But a general model should be able to account for such

behavior.)

Consider some examples in PPSCalc. Suppose that the spreadsheet is currently in the
state corresponding to figures 2-2 and 2-3 on page 30. The user is viewing dependent
values, as in figure 2-3. Consider the possible recognition when the user moves the "2375"
in the C3 cell to the A3 cell, e.g., by deleting the text in the C3 cell, and undeleting it into

the A3 ccll. The presentation that results is shown in figure 2-11.

A B C

| mmmmmeeees | -mmmm e | |
1] 100 | 20 | 2000 |
|-=mmmmmmeee | --mmmmsmeeees | --mmmsmmeees |

2 | 75 | 5 | 375 |
|-=mommomeeees | -mmmmmeeees |-ommmm e |
3| 2375 | | |

l |

Figure 2-11: PPSCalc -- Value Moved

One possible recognition style is similar to the representation shift model in that it only
depends on the visible result. It would recognize this as two changes, tirst that the C3 cell
become empty, and sccond that the A3 cell be given an independent value of 2375. This case
is indistinguishable from that where the user typed "2375" into the A3 cell instead of

moving that text into the A3 cell.

However, another rccognition style might treat that move of "2375" as moving what the

"2375" presents -- the dependent valuc computed by the formula C1+ C2. Thus moving

45

the "2375" from the C3 cell to the A3 cell might be recognized as the two actions, first that
the A3 cell be given the C3 cell's formula C1+C2, and second that the C3 cell be emptied
(as before). The visible result is as in figure 2-11 above. However, switching into the mode

displaying formulas shows the different effect of the recognition:

A B C

|mmmem e R e |

1 100 | 20 | A1*B1 |

| -mmmmmem e | -mmeem e |-omoommemmee |

2 | 75 | 5 | A2*B2 |

-------------- e B

3 | c1+C2 [| [
I |

Figure 2-12: PPSCalc -- Formula Moved

A similar kind of recognition, providing an effect found in commercial spreadsheet
programs such as VisiCalc, is to recognize certain copy actions as meaning that the formula
be partially copied -- but with changes based on the row or column. For instance, say

during the initial creating of the spreadsheet the user had:

A B C
|-=mms e | --mmm e |-=mmmmennee |
1| 100 | 20 | A1*B1 |
| --mmmmm e |- mmmmmsme e | ---mmmmenn s |
2 | 5| 5 | |
|- mmmmm e | --mmmmmmene e | -=mmmmmmne |
3 | | | !
| |

Figure 2-13: PPSCalc -- Preparing to Copy Formula

If the user now uses a copy-with-changes command to copy the "Al*B1" formula
presentation from the C1 cell to the C2 cell, recognition would interpret this as putting the

formula A2*B2 into the C2 cell. (The references to tow 1 have been changed to row 2.)

Reference and Recognition. An important class of presentation editor commands are
those providing the user with the ability to refer to text, graphic forms, areas, or positions on

the screen. Examples include pointing devices such as tablets and "mice.” There are other

46

possibilities, such as using arrow keys to move a pointer around the screen, or keyboard
commands that refer to positions, quadrants, etc. by name or coordinates. The reference
capabilitics provided by a pointing device can be extended by tracking the pointer, thus
achieving the ability to refer to areas or groups of forms, for instance. Although reference
does not change the visible presentations, it is an important editor action since it undergoes

recognition,

PPSCalc could be extended to include reference recognition. For example, a reference to
an independent value presentation could be recognized as a command to increment that
value. As another example, a reference to a cell containing a formula and then to a blank
cell could be recognized as a command to copy the formula to the second cell. (This could

perhaps include changes to accommodate different columns and rows as mentioned earlier).

When Recognition Happens. In the PPS model recognition happens continually and is in
offect over the entire screen (i.e., over the entire presentation data base). The intent is that
the screen continually present the state of the data base, providing the user with direct
manipulation of the data base by continual presenter and recognizer action. Some
presentation editor command sets may allow such continuity at the granularity of single
commands, i.e., allow recognition to happen after every single command. However, in
general there may be groups of commands that, taken together, form a larger atomic unit

from the recognizer’s point of view,

For instance, in PPSCalc the recognizer is not be ablc to act upon a partially typed,
syntactically incomplete formula such as ")+ A2". (It would be possible, though, to have a
more tolerant organizational recognizer -- in this case parser -- that allows this string and
assigns some sort of interpretation to it, such as the interpretation for "(0)+A2") 'In
PPSCalc typing the return key signals the end of an atomic edit. After each return, the
recognizer is invoked, the data base changed, the presenter invoked, and the presentation

data base updated.

Recognizer Controls. Figure 2-10 on page 44 shows recognizer controls, a primitive

command signal that affccts the operation of the recognizer. In PPSCalc a single-key

47

command toggles how the recognizer will treat edits of a dependent value (for the mode
when dependent values, not formulas, are displayed). One choice is to treat the edit as an
error and just ignore it. The other choice is to treat the edit as changing that cell to be an
independent cell with that value. (The formula is erased.) In general, there may be

recognizer control inputs for each of the recognizer components.

2.7 The Representation Shift Model and Direct Manipulation

The representation shift model, introduced in chapter one, is a special case of the PPS
model. It is shown in figure 2-14. In the representation shift model, the prescntation data
base contains all and only the information in the application data base. As a result, the
presenter and recognizer have simpler, more restricted tasks. The presenter gets a
representation of the entire application data base, converts it, and loads the entire
presentation data base. The recognizer has the opposite operation: the recognizer gets a
represcntation of the entire presentation data base, conveits it, and loads the entire

apnlication data bage,

The representation shift model and the PPS model embody different metaphors. In the
representation shift metaphor the presenter creates a picture of the data base. The user edits
the picturc. At the end of an atomic edit, the recognizer makes the data base be what is
depicted. In the PPS metaphor the presenter creates a picture of typically a small view of a
subset of the data base. The user edits the picture. The recognizer watches how the user

makes the changes and changes the data base in the same way.

In the representation shift modcl, the presentation data base must contain all the
information in the application data base. This is equivalent to saying that the entire
application data basc be viewed. (And because of this restriction, the converter can simply
load the entire application data base from its translations of the presentation data base.)
This restriction can be incfficient for large data bases or when rapid user interaction with
the application is desired. The restriction is unacceptable when the size of the data base gets

so large that the time to perform the translation cycle between the application and

43

._ oL+:oU S v ﬂouuL

A&A:..(OIQ LUﬂwih}OUUM
pyowiios “ M'MW:J
Y
. ﬁm.a-pww
So Fo20b pXads] S0y
P33
or nmﬁr_ -139 S _ wooUIsa J25Y)
cro._u.du.a._ { ﬂLUN.r SOW#dy.tduNL&‘

Figure 2-14: Representation Shift Model

(89 -qvo)
PuYwwos

Q¢ w
°Fvr v

Josques Jajussasd

49

presentation data bases is slower than the desired interaction time. It also leads to
inconvenient visual clutter; the user cannot view just a relevant portion of the data base.
This is a serious problem for complex data bases. The ability to control the sclection of
information to be viewed and the way it is to be vicwed can be crucial. However, for small
application data bases, the representation shift model can be advantageous by virtue of its

great simplicity.

Because of the no-formula display mode, PPSCalc is not presenting all the information in
the application data base. (The data base is the collection of spreadshect cells). PPSCalc is
therefore not simply a representation shift user interface, and must be modeled with the full
PPS model. However, if the display of spreadsheet cells were modified to show both the

formula and the value, PPSCalc could be modeled as a representation shift interface.

Because of the restriction that the presentation data base convey all the information in the
application data base, the representation shift model has another difference from the PPS
model -- the representation shift recognizer need only look at the current state of the
presentation data base, not the sequence of editing operations that produced it. The cditing
operations cannot matter: if two editing actions result in the same visual data base state,

they must be equivalent,

For example, there can be no difference between (1) moving a presentation from one
place to another and (2) first deleting that presentation and then creating at the second
position a new presentation that looks exactly like the first one. Similarly, there can be no
such thing as renaming an object by editing its name. Editing its name must be equivalent
to deleting the object and then creating a new one with the second name. In fact renaming
really has no meaning for the application data base, since it is produced completely from the

recognizer’s data. In other words, alf the objects are created anew,

For the full PPS model we assume that the presentation data base convcys only a subset
of the information in the application data base, often a siall subsct. The representation
shift model can be slightly extended to apply to some cases of subset presentation. When

the subset of the application data base is separable from the rest of the application data base,

50

i.e., there are no references into or out of the subset, the presentation data base can show all
the information of that part of the application data base. In effect, that subset is being

treated as an entire application data base in its own right.

The restriction of the PPS model that produces the representation shift model can be
summarized by examining the functions between the presentation and application data
bases, as defined by the presenter and recognizer operations. Define the presenter function
to be the mapping of presentation data base states from application data base states as
produced by the presenter. Similarly, define the recognizer function to be the mapping of
application data basc states from presentation data base states as produced by the

recognizer.

The presenter function must be invertible, so that the prescntation data base conveys all
the information about the application data base. The recognizer function is an extension of
the presenter’s inverse, The recognizer generally extends the inverse for the convenience of
the user: the user can create any of several variations on the form that the presenter would
have chosen, For example, the PPSCalc recognizer allows latitude in positioning of
formulas within cell presentations, even though the presenter always aligns the formulas
with the left edge of the cell. We can say that there are generally sets of presentation data
base statcs that are equivalent: the presenter produces only one of these states, but the user

and the recognizer interpret the others as conveying the same information.

In the PPS model, however, the presenter and recognizer functions are of a different
nature, because of the nced to allow operations on only partial presentations. The major
difference is that the domain of the recognizer function is not the range of the presenter
function. The presenter maps from application data base to presentation data base. The
recognizer, however, maps from sequences of prescntation editing commands to scquences
of data base commands. Figure 2-15 shows a schematic form of the PPS model that

highlights these mappings.

A restriction is placed on the decoupling of the presenter and rccognizer functions in the

full PPS model. This restriction gives the PPS model a direct manipulation style similar to

51

Figure 2:15: Functionsl Mappin i the PPS Mo

ﬂ-‘zsé»tﬁl"t"ck |
Dota.

Base F‘r

Sats Se.zucn..ée-’ :

52

the style of the representation shift model. The restriction can be stated by expanding the
notion of inverse presenter and recognizer functions, as discussed for the representation

shift model:

Consider sequences of presentation editing commands as functions, mapping one
presentation data base state to another. Similarly, sequences of data base commands map
one application data base state to another. If P is the presenter relation, R is the recognizer
relation, and C is any particular atomic presentation editing command sequence, the
restriction can be stated in the following form (using "*" for function composition and

"= =" for equivalence of two presentation data base states due to recognizer tolerance):
C*P == P*R(C)

In other words, the editing commands C acting on a presentation data base created by the
presenter P should result in the same presentation data base as would result from the
presentation of the application data base that results from recognition of those editing

commands.

There are interfaces where the style of recognition is very different from the style of
presentation -- i.e., the above rule is not even approximated. In such an interface the editing
action may directly but temporarily result in a presentation data base state very different
from what the presentation data base will be after recognition and presenter update. This
report does not attempt to argue whether such a user interface style is good or bad, nor does
the restriction on the PPS model eliminate such a user interface from consideration. Rather,
the restriction changes the way the user interface would be modeled -- it cannot be modeled
as a PPS. The techniques discussed in chapter three can be used, however, to model such a
user interface as an extended presentation system. In particular it will be modeled as a
combination of one PPS capturing the presentation and another PPS capturing the
recognition. By modeling the user interface as an exicnded system, the very different nature

of presentation and recognition is highlighted.

53

Chapter Three

Constructing Larger Presentation System Models

This chapter shows how the primitive presentation system (PPS) model can be extended
to model more complex presentation systems. Chapter four contains several examples of
complex presentation system models of existing user interfaces. The basic technique for
extending a presentation system model is to attach an additional presentation system to it,
either replacing or augmenting some part of it. The resulting presentation system may thus
contain several smaller presentation systems. The particular extensions discussed in this

chapter are suggested by an examination of the major limitations of the PPS model:

*The user can only make immediate changes to the data base -- there is no
planning,

* The ncer can anly see the current state of the anplication data base reculting
from the commands to change it -- there is no presentation of the commands
themselves or the differences between states.

*The user can only interact with the presentation editor, presenter, and
recognizer through primitive signals -- there are no presentation system
interfaces to thesc components.

Fach of these limitations suggests a particular extension, The limitations and the

extensions are discussed in the following sections.

3.1 Adding a Planned Data Base

The first major limitation of the PPS model is that it only allows immediate changes to the
application data base. In the PPS model, as the user edits the presentation, continual
recognition causes the application data base to change accordingly. This can be
inconvenient if the user would like to sce what the result looks like before committing to it.

Immediate change can also be a more serious problem if the application data base changes

54

are irreversible. This is often the case when an application program or physical process is
being controlled through the data basc. Thercfore, if the presentation system model is to
support the construction of user interfaces where the user can postpone the effects of

commands -- i.c., where the user can plan changes -- the PPS model must be extended.

One method of postponing changes is to add a new, second, data base that is a future (i.e.,
planned) version of the original data base. This is illustrated in figure 3-1. The user can edit
the planned version’s presentation, separate from the presentation of the actual data base,
and when the planncd version looks acceptable, give a "do it" command that causes the
actual data base to be updated. The "do it" command, like the other commands affecting
the application data base, emanates from the recognizer. The user may cause this to happen
either by a dircct recognizer control signal or by performing some presentation editing

command that is recognized as a "do it.”

In general the planned version of the application data base will behave similarly to the
actual data base, ideally reproducing all the active components. ‘For example. in PPSCalc a
planned data basc ideally would include all the recalculation capabilities of the actual data
base. When this is the case, the user does not lose power or convenience in manipulating

the planned version over what the user would have had manipulating the actual data base,

As with the other extensions discussed in this chapter, this is only an illustration of the
technique of extending a prescntation system to achicve some goal. This extension

technique may be used in combination with other presentation system structures.

For example, figure 3-2 shows a combination of the straightforward PPS model and the
future data base model discussed above. This combination allows the user (o0 have two
presentations at once, one showing the future version of the data base, the other showing the
current version of the data base. With two separate presentations and presentation editors,
the user can interact with both, plahning some changes and effecting some changes

immediately.

55

Pmscntnfion
‘ Date
Base

Fl"tfe nt&tl.or\

Deta

BO.SQ

57

Q

Ref-ﬂjn" ter

Figure 3-2: Extension with Both Planning and Immediate Changes

| APP[\ c‘att‘b)\

Dete
Base

F-u.tu(‘e
Data
Beasea

Do 1t”

3.2 Adding a Data Base of Commands

The second major limitation of the PPS model is that the user cannot sce a description of
the changes or the commands to effect them presented explicitly. The PPS model offers the
user a feeling of direct manipulation of the application data base contents. However, it is
sometimes safer or more convenient to see and edit a command or a description of the
change to be made. So, although direct manipulation is becoming more and more common
and is undeniably useful, a complete model must support the construction of interfaces in
which change is described or seen. Some systems may offer a combination of direct
manipulation and command cditing. Others may offer the ability to see or prescribe the
kinds of changes desired -- goals -- without specifying the particular operations needed to

achieve these goals.

Instead of adding a planned version of the data base, with content and presentation style
mirroring the actual data base, a data base of the plans or commands themselves can be
added. In this extension, the planned changes are represented in the new data base

explicitly and can be presented in a styie different from that of the actual data base.

Figure 3-3 shows an extended presentation system in which the user can interact with the
application data base directly, via the PPS at the top of the figure, and also indirectly, by
giving commands to the application data base via the PPS at the bottom of the figure. The
bottom PPS has a data base containing commands for the application data base above. The
user can see and edit these commands presented in the presentation data base in the bottom
PPS. When the user gives the "do it" command, these data base commands are passed to

the application data base.

Thus this extension also gives the user a planning capability, and is similar in structure to
the previous extension in that a new data basc has been added as a buffer. The difference is
that the data base in this case has commands, whereas in the previous case it was a copy of

thic application data base.

As in the future data base extension, the figure shows two copies each of the presentation

58

Presel\-tc\.{io;\ g
Editor

: Presen"("ot wn
Edl.to r

Figure 3-3;: Command Data Base Extension

Data
Buse

PrcSe/ltaf (on

Presentation

Data

Base

Re.wjm Rer

59

AP‘ol/‘cqtl.on
Data
,Ba..re
Recogqnizer ‘t“t"*
j CO:::\Q.AJ:
DO\.tQ

Base N
Cemmands J(
*Do TL”

editor, presentation data base, presenter, and recognizer. Though their general purpose is
the same and they arc labeled the same, they are in general different. In this extension this
is especially the case for the presenters and recognizers. The application data base in the top
PPS, and the data base of commands in the bottom PPS, have very different kinds of
information in them. The presentation and recognition styles will therefore in general be

quite different.

3.3 Adding Interfaces to PPS Components

The third major limitation of the PPS model is that the presentation editor, presenter, and
recognizer are not presented. The user controls them through presentation editing
commands, presenter controls, and recognizer controls. There are two aspects to this

problem in the PPS model:

First, these controls are only primitive signals, such as keystrokes. There is no ability to
sce the commands the user is typing, edit them, or get help in their use. Thc only thing

being scen and edited (i.e., presented) is the application data base.

Sceond, the user must give commands to affect the editor, presenter, and recognizer. The
user cannot directly see the state of those processes, their modes, control variables, etc. As
the user interface becomes more powerful and complex, the user interface components, as
well as the application data base, become important objects to present. The text editor
Emacs, for instance, has nearly fifty options variables in its simplest, initial form. Many

systems have many option variables controlling presenter style, modes, etc.

Instead of primitive signals to control the presentation editor, presenter, and recognizer,
and no ability to present their state, PPS interfaces to these components can be added. This
involves adding a data base for the particular component’s state (e.g., a data base of the
presenter’s options controlling its visual style) or using the previous technique of adding a

data base for the component’s commands.

Figure 3-4 shows one such interface, providing a representation shift interface to the

60

Figure 3-4: Presenter Interface Extension

Preseatatio t
User sy Tresentation Data Fresenter
’I?QSM-tQ.\"

—R‘ESen’t‘o:b'ay\ APP Lication
Datq Do-‘tq
Rase " Base

Use

Prescn‘t,;f(m
Editor

recoqnirer
u.a:kL

61

presenter. The presenter's state has been expanded into a data base presented by the
representation shift presentation system at the top. As with all the additional presentation
systems in this chapter, there are many possible presentation systems that could be added.

A PPS could have been used instead of the representation shift, for example.

In this extended presentation system the user can interact with the application data base,
via the main presentation system at the bottom. The user can also interact with the
presenter, via the presentation system at the top, which has replaced the original presenter
control input. The user can change the way the presenter behaves by editing the presenter’s
state presentation. For instance, this might include changing the amount of detail shown in
the presentation of the application data base. It might include changing how the presenter
shows diffcrent kinds of domain information, e.g., whether tables or graphs are used.
Finally, it might include changing what parts of the application data base are being
presented. (Recall that the PPS model allows that the application data base to be only

partially presented.)

Figure 3-5 shows an alternative extension for controlling the presenter. Here, instead of
editing the presenter’s state, the user edits commands to the presenter, just as in the
previous section the technique was used to allow the user to give commands to the
application data base. The top presentation system (again a representation shift model, but
as before it could be any kind of presentation system) hooks directly into the presenter

control input to the presenter.

This technique of adding a presentation system to allow the user to interact more
conveniently with the presenter can be applicd to the other presentation system components

as well, e.g., to the presentation editor and rccognizer.

3.4 Shared Screen Space and Presentation Structure

This section examines three kinds of sharing that can occur in presentations systems. In
general, sharing occurs when some part of a presentation system, e.g., a particular part of the

screen space or a particular presentation, simultancously fulfills two different roles. There

62

Figure 3-5: Presenter Commands Extension

Pf&s‘cm'ra‘f, en : PQSC«\TQ [

Dute Bose 'Y\\ Commands

Presenlat
?mxnf«t{m. 5 FQDS:/.-Z-‘Q twh
Edtor Bose

63

Pruenfer
CNT\"&L

|

PfQ—S@mT&r‘

,Re(ojn izer

A?Pt{ca‘tubn
Data
Base

are tradeofTfs between benefits of compactness and costs of ambiguity.

The first kind of sharing is sharing of screen space between two presentation systems, €.8.,
two PPS components in a larger, extended presentation system. Presentations that
conceptually belong to the different presentation systems arc often intermingled within the
same space. For example, in the Emacs Dired system to be discussed in section 4.1, a
directory listing (a presentation in one PPS) is annotated with "D"s, which are presentations
of plans to delete files and which belong to a separate, command-planning PPS. This is
contrasted with an interface that has two such presentation systems occupying completely

scparate areas of the screen, €.g., different windows.

The second kind is sharing of one presentation form between two presentation systems.
The shared presentation presents two different pieces of information, in the two different
application data bases. Consider, for example, a directory listing. An interface could use a
directory listing for more than just presenting a directory: it could also use it as a means of
controlling the directory listing presenter. The user could trim the directory listing to
inform the presenter that certain files should not be included. This editing, and recognition
of it, conceptually occurs in a separate PPS. The directory presentation is shared between
the two PPSs. In the presenter-control PPS, the directory listing functions as a presentation

of the presentcr’s state.

A third kind is sharing of one presentation between two presented domain objects in one
PPS. This occurs when one domain object is presented in order to present another domain
object. A typical case is presentation of a file’s creation-date property in a directory listing.
To present the property, the value of that property is presented, namely, the particular date.
(And the process may continue: to present the month property of the date, the particular
month is presented.) Thus, a single presentation form (e.g., the text "3/4/83") presents

both the creation-date property and the particular date (3/4/83) that satisfies that property.

Sharing of screen space or presentation structure can provide convenience to the user
because it results in a compact presentation. Sharing can achieve what might be called

visual locality: two presentations of related domain objects are located near each other.

64

Unfortunately, sharing can also lead to ambiguity, both for the user and for the
implementor. The user may not know which editing functions apply to presentations
shared between two presentation systems. When screen space is shared, the user may not
know what kind of recognition to expect when editing the different presentations. The
implementation must also keep the two kinds of presentation distinct, so that the proper
editing and recognition happen to each. When presentation structure is shared, the user
may not be aware how prescntation editor functions are recognized differently by the
recognizers in the two presentation systems. The implementation must include a means for
selecting the recognizer based on the kind of editing performed. The ambiguity is most
severe when the capabilities of the presentation editors overlap. The choice between the

two recognizers then must depend on context or user choice.

The designer should identify ambiguities in the proposed presentation system, and decide
which ones to resolve. Such a decision must take into account the prospective users,

conventions in the style of the interface, the particular tasks to be performed, and the

-

e PY - | . | JURPS %
it ue LNPOSeu Oii Uie

mamam B m D a

kinds of sharing and the mcthods of user or system resolution.

However, regardless of the outcome of the decision, the designer must consider that there
is always ambiguity due to potential sharing. The user cannot tell, merely by viewing the
directory listing, whether deleting a line in a directory listing, for example, will mean don’t
present that file (manipulating the presenter), or whether it will mean delete the file
(manipulating the application data base). Ambiguity of presentation structure, unlike
ambiguity of shared space, is an inherent possibility of the view. Resolving an ambiguity by
eliminating sharing of presentation structure does not make the presentation appear
different. (However, another presentation may be introduced nearby to perform the

eliminated function.)

Sharing of presentation structure within a PPS, such as arises from presenting a property
by presenting its valuc, is less troublesome. Its ambiguity can be resolved by the recognizer,

by deciding which of the possibilitics is appropriate for the command being recognized.

65

For example, if user editing of the creation-date presentation for a file is recognized as a
change command, then only the creation-date property fits the recognition -- one cannot
change a date. (By changing the property, one is selecting a different date to be the value of
the property. The original date value is left unchanged.) This technique is offered by the

PSBase system, and so further discussion of this technique appears in section 5.1.

3.5 Concluding Remarks

This chapter has discussed only a few examples of how presentation systems can be
constructed by hooking primitive prescntation systems together. There arc many more
possibilities, including combining these extensions and creating new kinds of extensions
using similar techniques. (For example, a system might offer cascaded presentation
systems, presenting the presentation data base.) In modeling actual user interfaces, the next

chapter illustrates several of these possibilities.

66

Chapter Four

Describing Presentation Systems

This chapter illustrates the use of the presentation system model as a descriptive tool.
The model provides a set of concepts for enumerating and categorizing basic functions and
interactions in user interfaces, whether or not those interfaces were designed with this model
in mind. The behavior of four different user interfaces will be described in terms of the
presentation system model. In each example the focus will be on those presentation system

mechanisms that play the most important part in defining the style of interaction.

A secondary aim of this chapter is to offer support for claims of the model’s generality,
i.e., that the model applies to a wide range of user interfaces. The selection of user
interfaces described here has been chosen to show the descriptive process by example. The
reader should then be able to apply this process to other interfaccs and thereby gain

confidence in the model’s gencrality.

The selection thus emphasizes different approaches in user interface techniques. At the
same time, an effort was made to choose user interfaces that exemplify different aspects of
user interface research and development. Part of that effort was an informal poll of people
involved with developing, studying, or just interested in user interfaces. They were asked to
name three "cxemplary user interfaces.” The interfaces used in this chapter all have
followers. There were many favorites and strong opinions, but nothing near a consensus
except on the Xerox Star [Purvy, Farrell & Klose 83] [Smith, Irby, Kimball, Verplank &
Harslem 83] and Apple Lisa systems [Lisa 84).

PPSCalc was discussed and modeled in chapter two. Because PPSCalc is a simple version
of VisiCalc [Beil 82], VisiCalc has already been treated (o some extent. Actually modeling
VisiCalc would involve describing extensions to the main PPS. Such extensions will be

suggested by those used in modeling the user interfaces of this chapter. To avoid this

67

redundancy, VisiCalc or other spreadsheet programs will not be discussed further.

4.1 Emacs Dired

Dired is a subsystem of the Emacs editor that allows the user to perform several directory

operations by manipulation a directory listing. The version of Dired described here is the

one in Emacs on the ITS operating system [Stallman 81].

Dired is an extended presentation system, allowing both immediate changes to the

application data base (the file system directory) and planned operations. Annotations to the

directory’s presentation present the planned operations. Dired has two other component

presentation systems. One recognizes presentation editing as changing the state of the

presenter. The other confirms the user’s planned operations by offering an alternative

presentation of the planned operations.

Dired Scenario.

scenario, the presentation system model of Dired will be discussed.

The following scenario will illustrate the use of Dired. After the

The user invokes Dired, initially viewing the full dircctory listing shown below:

MC NSR

FREE BLOCKS #0=1666 #1=625 #13=1163 #15=1461 #14=1549 #16=1149

0 BABYL
13 BABYL
FIXLIB
MAINT
QUEUE
TEST
TMSG
TMSG
TMSG
TMSG
TMSG
TS

[k
w

b [pd b b b b e e

The user wishes to restrict attention to those files

BUGS
INFO
209
BABYL
NOTES
VALUES
2

3

4

5

6
NSRMAC

5 TSNSRM 1320

26 +486 4/02/84
27 +488 8/31/83
==> EMACS1;FIXLIB
5 +27 2/18/84
2 +83 3/10/84
0 +69 1/17/84
1 +34 § 3/28/84
1 +20 ! 4/03/84
1 +248 ! 4/03/84
2 %4} 4/03/84
2 +86 ! 4/03/84
==> NSR;TSNSRM >
13 +463 8/19/83

14:

14
>

17:

10

19;
11:
21:
21:
22:
23:

20

.MAIL.

09:26 (4/02/84)
:37:09 (11/16/783) .MAIL.
(56/06/83)
01:42 (3/01/84)
:20:13 (3/23/84)
20:14 (4/03/84)
03:39 (4/03/84)
53:21 (4/03/84)
57:45 (4/03/84)
14:15 (4/03/84)
34:36 (4/03/84)
(2/24/84)
:44:23 (2/24/84)

that might plausibly be dcleted or

moved to a secondary disk pack. In particular, several files are related to the maintenance

of the mail reader Babyl and should definitely not be considered for deletion. Using the

68

Emacs command Delete Matching Lines, lines containing the text "BABYL" are removed.
This does not delete those files -- it only affects the view the user has of the directory,

resulting in the trimmed directory listing shown below:

MC NSR

FREE BLOCKS #0=1666 #1=625 #13=1163 #15=1461 #14=1549 #16=1149
L FIXLIB 209 ==> EMACS1;FIXLIB > (56/06/83)
1 QUEUE NOTES 2 +83 3/10/84 10:20:13 (3/23/84)
1 TEST VALUES 0 +69 1/17/84 19:20:14 (4/03/84)
1 TMSG 2 1 +34 $ 3/28/84 11:03:39 (4/03/84)
1 TMSG 3 1 +20 ! 4/03/84 21:53:21 (4/03/84)
1 TMSG 4 1 +248 ! 4/03/84 21:57:45 (4/03/84)
1 TMSG 5 2 +94 ! 4/03/84 22:14:15 (4/03/84)
1 TMSG 6 2 +86 ! 4/03/84 23:34:36 (4/03/84)
L TS NSRMAC ==> NSR;TSNSRM > (2/24/84)
15 TSNSRM 1320 13 +463 8/19/83 20:44:23 (2/24/84)

Deciding that the file named "QUEUE NOTES" is no longer needed, the user moves the
Emacs cursor to that line in the directory and types a "D", marking that file for deletion.
The file marked for deletion is shown by annotating that line in the directory listing with a
"D". There are scveral versions of the "TMSG" file, and using the "H" (Delete Help)
command instructs Dired to mark old vorsions for delction. The "IH" comimand gondialiy
marks all but the two most recent versions. However, in this case the version "TMSG 2"
has a property protecting it from automatic deletions or migrations to tape (indicated by the
"$" in the listing). Dired will therefore leave that version alone. The resulting directory

listing is shown below:

MC NSR

FREE BLOCKS #0=1666 #1=625 #13=1163 #15=1461 #14=1549 #16=1149
L FIXLIB 209 ==> EMACS1;FIXLIB > (5/06/83)

D 1 QUEUE NOTES 2 +83 3/10/84 10:20:13 (3/23/84)
1 TEST VALUES 0 +69 1/17/84 19:20:14 (4/03/84)
1 TMSG 2 1 +34 §$ 3/28/84 11:03:39 (4/03/84)

D 1 TMSG 3 1 +20 ! 4/03/84 21:53:21 (4/03/84)

D1 TMSG 4 1 +248 ! 4/03/84 21:57:45 (4/03/84)
1 TMSG 5 2 +94 ! 4/03/84 22:14:15 (4/03/84)
1 TMSG 6 2 +86 ! 4/03/84 23:34:36 (4/03/84)
L TS NSRMAC ==> NSR;TSNSRM > (2/24/84)
15 TSNSRM 1320 13 +463 8/19/83 20:44:23 (2/24/84)

Next, the user moves the file named "TEST VALUES" from the primary to the

secondary disk pack with the "S" command, changing the line

69

1 TEST
to
13 TEST

VALUES

VALUES

0

0

+69

+69

1/17/84 19:20:14

1717784 19:20:14

(4/03/84)

(4/03/84)

The leftmost "1" and "13" in these two lines indicate the disk pack numbers (0 and 1 are

primary packs, 13 is the secondary pack). The "S" command takes effect immediately,

moving the file to the sccondary pack when the "S" is typed.

In this respect, the "S"

command is unlike the "D" and "H" commands, which mark the files for later deletion.

The "$" command changes the property protecting against automatic deletion. The user

moves the Emacs cursor to the "TMSG 6" line and types "$". That immediately sets that

property and updates the display, changing the line

1 TMSG
to
1 TMSG

6

6

2

2

+86

! 4/03/84 23:34:36

+86 !$ 4/03/84 23:34:36

The full directory listing now looks like:

MC NSR

(4/03/84)

(4/03/84)

FREE BLOCKS #0=1666 #1=625 #13=1163 #15=1461 #14=1549 #16=1149
==> EMACS1;FIXLIB >

L FIXLIB 209

D1 QUEUE NOTES
13 TEST VALUES
1 TMSG 2

D1 TMSG 3

D1 TMSG 4
1 TMSG 5
1 TMSG 6
L TS NSRMAC
15 TSNSRM 1320

2
0
1
1
1

2
2

+83
+69
+34
+20
+248
+94
+86

3/710/84

1/17/84
$ 3/28/84
! 4/03/84
! 4/03/84
! 4/03/84
1$ 4/03/84

==> NSR; TSNSRM >

13 +463

8/19/83

10

19:
11:

21
21

22:

23

20

:20:
20:
: 39

03

:63:
157
14:
134

144

13
14

21

:45

15
36

123

(5/06/83)
(3/23/84)
(4/03/84)
(4/03/84)
(4/03/84)
(4/03/84)
(4/03/84)
(4/03/84)
(2/24/84)
(2/24/84)

The user types a "Q" to indicate that the deletion plan is complete, and is offered the

following alternative display of the deletion plan for confirmation:

Deleting the following files:
TMSG

QUEUE NOTES

ok?

! TMSG

70

4

The confirmation shows only the files to be deleted and some of their important
properties. For instance, "!" indicates that a file has not yet been backed up on tape. In this
case, that is all right for "TMSG 3" and "TMSG 4", since those are not the most recent
versions of the file. (If the user had marked the most recent version of a file for deletion, a
">" would indicate that fact.) Typing "YES" causes the plan to be cxecuted and the files are

thereby deleted.

Dired Presentation Model. Figure 4-1 shows the structure of the extended presentation
system model of Dired. It has four component presentation systems, labeled "Presenter

Control," "Directory Listing,”" "Delction Planning,” and "Confirmation."”

Directory Listing PPS. The main PPS presents the directory and recognizes the
immediate commands, such as "S" (move file to secondary pack) and "$" (change property
protecting against automatic deletion). The presentation data base PDB1 comprises the text
that makes up the directory listing. A line of text is a composite presentation presenting a
file or link: the text within the line presents properties of the file. such as the file’s name
("QUEUE NOTES"), creation date ("3/10/84 10:20:13") and last-reference date
("(3723/84)"). Several of these presentations are in turn composites of smaller

presentations (e.g., "3", "23", and "84" are components of "3/23/84").

The presentation editor PE1 offers the "S" and "$" commands, both of which are
references to the current file presentation within the directory, as well as Emacs commands
for moving the cursor and scrolling text. Recognizer R1 immediately translates the "S"
command into the command to the file system to move the file. Prescenter P1 then updates
the directory listing to show the "13" presenting the disk pack. Similarly, the "$" command
is translated by the R1 into the file system command to change the file property. P1 then

changes the directory listing to show the "$" presenting this property.

Presenter Control PPS. The PPS at the top of the figure is an interface to the presenter
P1 of the directory listing PPS. The application data basc of this extension is the state of P1
describing which files are to be listed. The presentation data base of the extension, PDB2, is

shared with the directory listing PPS. In other words, the same presentation data base is

71

Figure 4-1: Dired Model

Rresenter

Cortrol PL StaTE

PDB2
Line-deletes

+ St, Py
, B

Commands

G

Directo Y ADR
PDBL L"S't\."\j (ﬂ(.{ Sjstzm)
(R ——
Deb.t(on PLO\Y\ ni ng
Delete
Commands
“DaTt"

CO v\'F'. | ' a~+(on Pps

>

72

involved in both presentation systems.

The cxtension’s prqscntation editor, PE2, however, is not the same. [t does share Emacs
cursor movement and scrolling commands, however. The primary editing commands for
PE2 are those Emacs commands that delete lines, such as the Declete Matching Lines
command mentioned in the scenario above. The recognizer R2 translates these line
deletions into changes to the directory presenter P1, informing it that certain files (those

liles whose presentations were deleted) are no longer to be presented.

Since this extension shares the presentation data base of the directory listing PPS, P2 is an
implicit presenter, tied to P1 in that P1's output (the presentation data base) is itself a
presentation of P1. In general, the output of a process can serve as a presentation of the

state of that process.

Deletion Planning PPS. The third PPS is an extension of the main directory listing PPS
using the technique of adding a data base of planned commands. A delete command is
presented by an annotation to the directory listing presentation: a "D" placed at the left of
the line presenting the file to be deleted. Again there is a close relationship between the
presentation data base of the deletion planning PPS, PDB3, and that of the directory listing
PPS, PDBI, although the two are not the same in this case. They share some of the same

screen space, but the component text presentations are different.

The deletion planning PPS is a represcntation shift presentation system: the state of the
presentation data base conveys all the information about the delete commands. The
presentation editor PE3 contains the Dired "D" and "H'" commands discussed in the
scenario, as well as a wide range of other Emacs editing commands. The user can use "D"
or "H" commands to create the annotation presentations. They simply insert "D"
annotations on file presentation lines. Alternatively, the user can use any Emacs editing
method of inserting a "D" at the beginhing of a line, and that "D" will be recognized as a

delete command.

Confirmation PPS. The presentation system at the bottom of the figure is an extension to

73

the deletion planning presentation system. The job of the confirmation system is to give the
user a different presentation of the planned delete commands, and recognize the "do it"
signal for the deletion planning commands. When the user types "Q" after creating the
plan of deletions, the deletion planning PPS is suspended, and control passes to the
confirmation PPS. (If the user does not confirm the deletion plan, control will pass back to
the deletion planning PPS.) The planned delete commands are presented by presenting the
files to be deleted -- their names and those propertics most frequently useful for checking

the plan.

Unlike the other presentation data bases, PDB4 is a completely separate presentation data
base. It has a trivial presentation editor, PE4, which allows the user to type in the
confirmation answer. Recognizer R4 watches for these answers, and signals "do it” if the
answer is "YES". (Other than the "do it," R4 sends no commands to the delete-commands

application data base.)

4.2 Zmacs
Zmacs [Zmacs 84] is the text editor for the MIT Lisp machine [Weinreb, Moon &

Stallman 83]. Zmacs has many capabilities, and a complete model of its presentation system
behavior would be very large. This section will describe the major presentation systems

aspects and sample the rest.

Buffer PPS and Screen PPS. Figure 4-2 shows the most important structure of the
presentation system model of Zmacs. The PPS labeled "Buffer PPS" and that labeled
"Screen PPS" model the primary presentation. In the buffer PPS the application data base
ADB is presented as text in the buffer, i.e., PDB1. (Text files are treated here as long-term
storage of presentation data bases. Thcrefore, this section will concentrate only on the
buffer.) The application data base can be of many forms and is frequently not realized as
any explicit set of programs or information. For example, when PDBI1 contains English
text, the application data base would comprise language constructs (words, sentences,

paragraphs, etc.) and the subject matter they discuss. These things do not exist in the

14

Figure 4-2: Zmacs Model

Auu R

ki) Ay D

e JL°

Sdd 37 voyndme) ¢

(rvz)

\s\u-.lH ndi

309 md))
€94qd I*°

Sdd 2209y

W:GSEO.U

D .\.NL‘U,WJL

(ua305)

Sdd o

LV@Q‘)m

(-34479) |}
TaqQd

T s,
CUULUM:

75

computer anywhere, but they are nevertheless being presented. When the text is a Lisp
program, on the other hand, the application data base is the Lisp machine’s computational

environment,

The screen PPS cascades with the bulfer PPS, further presenting the buffer as the text
that appears on the screen. Most user interfaces can be modeled with this extra stage, but
often the operation at this level is trivial. For Zmacs, however, it is useful to discuss the
screen PPS, as certain Zmacs commands depend on the distinction of PDBI (the buffer) and

PDB2 (the screen).

The buffer contains text (a large amount possible -- much more than fits on the screen).
It has an associated current position called point; uscr-typed text is inserted at point, for
instance. There is sometimes another position called the mark, and the interval between

point and the mark is called the region.

Presenter P2 presents a window of text around point, i.e., a contiguous section of PDB1
text that will fit on the display window. Point is presented by the cursor. The region is
highlighted on the screen, cither by underlining or by reverse video. This choice is made by
a user option, i.e., a P2 presenter control. In addition to choosing the window of text P2
must also consider what to do with lines of text that are too wide for the window. In Zmacs
these lines are wrapped, so that they continue on the next screen line, with an exclamation

point to present the fact that wrapping has occurred.

Buffer PPS commands. To a large degree, the operation of a text editor concerns only
PE1 and PDBI1, with most user editing going unrecognized until much later. Zmacs is,
however, more than just the combination of PE1 and PDBI (and the screen PPS) -- there

are several commands whose behavior involves recognizer and presenter action.

For instance, consider the Fill Paragraph command to P1, which edits the paragraph of
text around point to have lines that achicve a good fit within the margins. As the user types
and edits the text of the paragraph, R1's organizational recognizer determines the block of

text presenting the paragraph, creating that paragraph in ADB. The Fill Paragraph

76

command signals P1's organizational presenter to perform the filling, updating the
presentation data base to present the ADB paragraph in the filled style. Finally, P2 updates

PDB?2, the screen, and the user sees the result.

Similarly, consider the Indent For Lisp command, which indents the current line of a
Lisp expression according to its syntactic structure. Recognition has been proceeding (in
effect) as the user edits, constructing and editing the Lisp object in the Lisp environment
ADB. Up to this point, P1's organizational presenter has followed the user -- i.e., done
nothing to change the text. The Indent For Lisp command signals the organizational
presenter to update the presentation according to the presenter’s indenting style. P2 then

updates the screen to reflect the PDB1 changes.

The Mark Thing command sets the region around some presentation at point, the kind of
presentation being determined by exactly where point is. If point is in a word or Lisp
symbol presentatibn, that presentation is marked. If point is at the start of a Lisp
expression, the whole expression presentation is marked. Recognition of this command
translates into a mark of the object in the ADB followed by presenter update. The PDB1
region is sct to present that selected ADB object. This illustrates the need to consider more
than just text as presentation forms -- the region, and also point and mark separately, can

present informatien in the application data base.

Finally, consider the Evaluate Region and Evaluate Into Buffer commands. Evaluate
Region causes the Lisp expression recognized from the region text (or if there is no region,
then the Lisp definition around point) to be evaluated in the Lisp computational
environment. The value is presented in a small window at the bottom of the screen.
Evaluate Into Buffer takes its text to be recognized from a different area (a minibuffer, to be

discusscd below), and after evaluation, presents the resulting Lisp value in PDBI as text.

Screen PPS commands. Most Zmacs user commands go to PEL, the presentation editor
for the buffer PPS. Commands to the screcn PPS components involve the screen
appearance as opposed to the underlying buffer text. Such commands concern mouse

references, window scrolling, window reshaping, and any text commands that depend on

77

whether lines are wrapped. (For instance, such a command might move the cursor down
one screen line, moving forward in the buffer text line to a point presented on the screen as

dircctly below.) Window movement and reshaping commands go to the presenter P2,

Consider the PE2 mouse command to move point. The user points to a buffer position
presented on the screen and clicks a mouse button. Recognizer R2 translates the reference
in screen coordinates to a reference to the position within PDB1’s text, the position which is
presented by the referenced screen position, and a command to move point to that position.

Presenter P2 then updates the screen so that the cursor presents the new position of point.

Consider also the PE2 mouse command to mark the thing at the mouse position. The
user points to a presentation, e.g., a word or Lisp expression, and clicks a mouse button,
Again R1 must translate a screen coordinate reference into a buffer text position reference
and a command to move point to that position. In addition the teference translation
includes a mark-thing command. That mark-thing comimand is further recognized, within
the buffer PPS by R1. as described above. Thus, the mouse command to mark a thing

requires action by PE2, R2, R1, P1, and P2.

Command Minibuffer and Completion. The lower half of figure 4-2 shows the model for
the Zmacs extended command minibuffer, by which Zmacs commands can be given by
name. Many Zmacs commands are connected to keys, so that they may be invoked by a
single keystroke. However, all commands may be invoked from the minibuffer, relieving
the user of the need to remember infrequently used keys. Thus, the minibuffer offers a
presentation system to the Zmacs commands. (For simplicity, we will consider only PE1

commands.)

The minibuffer is a two-line buffer at the bottom of the screen and is edited almost
entirely as is the main buffer; i.e.. PE3 is almost a duplicate of PE1. PE3 does have some
additional commands, primarily concerning command completion [Zmacs 84]. As the user
constructs the command name, the command name recognizer, R3, attempts to determine
the possible commands that have the user text as a partial string. The user can signal the

command presenter P3 to aid in constructing the command name by filling in more of the

78

name -- as much as can unambiguously be completed. (E.g., if the user has typed "L Mo",
and the only command whose first word starts with "L" and second word starts with "Mo"
is Lisp Mode, then "L Mo" can be completed to "Lisp Mode".) The user causes the

command Lo be executed by typing Return; this causes R3 to signal the "do it."

[n addition, the user can invoke a command that lists the possible completions of the text
constructed so far. This command triggers the presenter P4 in the command completion list
PPS. It creates a new presentation data base PDB4 on the screen, a window of the
completions. The command minibuffer PPS and the command completion list PPS both
interface to the same application data base of PE1 commands. PE4 allows the user to select
a completion from PDB4 with the mouse. That reference is recognized by R4 as choosing

that particular PE1 command and signalling the "do it.”

Other Presentation Aspects of Zmacs. This section will briefly discuss two of the many
other presentation and interaction mechanisms in Zmacs. Most of those not discussed here

are very similar to the ones that are discussed.

Mode Line. One of the constant features of the Zmacs screen is the mode line, a small
one-line window near the bottom of the screen that presents important information about

the state of Zmacs and the buffer of text being displayed.

For instance, the mode line presents a list of the control modes that affect the action of
presenter P1, recognizer R1, and some of the connections of keystrokes to commands. One
of these is the major mode, which describes the kind of application data base information:
text, lisp programs, etc. There are also a set of minor modes, with more localized effects; an
example is a mode causing lines to be continually filled as they are being typed. The mode
line’s text presents these modes, and thus presents the states of PPS components, with labels
such as "Text" and "Fill". The mode line as described thus far would be an example of a
representation shift except that it can.not be directly edited. (For example, one cannot

change the major mode by editing its presentation in the mode line.)

The mode line also contains a presentation of the screen PPS presenter, P2, and PDB2’s

79

relation to PDB1. Small arrows pointing up or down can appear at the right of the mode
line. An upward-pointing arrow, for example, presents the fact that P2 has chosen a

window with more of PDBI1 above it.

Scroll Bar. The scroll bar is a small display that appears inside the left edge of the Zmacs
window when the mouse moves to that cdge. (See figure 4-3.) The scroll bar consists of a
vertical line segment juxtaposed against the left window border. The linc scgment, by its
position along the border and its relative size compared with the border, shows the size and
position of the PDB2 window relative to the size of PDBI1. In figure 4-3 thc PDB2 window

is about one fourth the size of PDB1 and is at about the two thirds position in PDBI1.

The line segment presents PDB2; the border line presents PDB1. By presenting PDB2
and its relation to PDB2, the scroll bar is presenting the state of the presenter P2. (In
general, the state of a process can be presented by presenting the state of its inputs and/or

outputs.)

The user can interact through the scroll bar using the mouse. For instance, the PDB2
window can be scrolled by a quarter of its size by making one kind of mouse reference to a
position a quarter of the way down the line segment (PDB2 presentation). Or, the PDB2
window can be repositioned within PDB1 by pointing to the relative position along the
border (PDB1 presentation). The scroll bar thus offers a simple PPS interface to the

presenter of the screen PPS, P2.

4.3 Xerox Star
The Xerox Star [Purvy, Farrell & Klose 83] [Smith, Irby, Kimball, Verplank & Harslem

83] and the Apple Lisa[Lisa 84] systems offer an interface organized around the
manipulation of icons -- pictorial presentations of commands and data. The two systems are

similar in many respects, so only the Xerox Star will be discussed.

Xerox Star Scenario. The Xerox Star models the user's environment after an office

desktop. (The desktop is, in effect, a clirectory.) Arranged about the desktop are various

80

Figure 4-3: Zmacs Scroll Bar

Rlways do right. This will gratify
some people, and astonish the rest.

- Mark Twain

Lhen angry, count ten before you
speak; if very angry, an hundred.

- Thomas Jefferson

LMhen angry, count four;
when very angry, suear.

- Mark Twain

Nothing so needs reforming
as other pesople’s habits.

- Mark Twain

ZMACS (Text Fi11 Abbrev) SAMPLE.TKT PS:

81

documents, in-boxcs, out-boxes, and folders. These are depicted on the screen by icons,
small pictures. A document icon looks like a piece of paper with a title on it. An in-box
icon looks like an in-box. Folders contain documents, and their icons look like manila

folders. (Folders are, in effect, sub-directories.) Figure 4-4 shows a sample desktop display.

Also on the screen are icons for more things than would normally appear on a real desk,
such as printers and file-drawers. File-drawer icons look like small file cabinets and indicate

directories on remote file servers.

Interaction involves a mouse and command keys. The user selects something, such as a
document icon, by pointing to it with the mouse and clicking the left mouse button. The
selected icon is highlighted. The user then gives a command that affects the selected icon.

Special keys are provided for several commands.

One important command key is open. 1t causes the contents of the selected thing to be
displayed. For example, opening a document displays the text of that document. Opening
a folder displays the documents within that folder. Figure 4-5 shows a display after the user

opens the folder Backup.

There are four universal command keys. move, copy, delete, and properties. These
commands can be applied to any Xerox Star object. In its simplest usage the move
command allows the user to reorganize the visual desktop. The user selects the document
icon and gives the move command. Then, as the user moves the mouse, the document icon

follows it. Clicking again releases the icon from the mouse.

Another important use of the move command is to manipulate the document itself, not
just the organization of the visual display. The document is printed by moving the
document icon to a printer icon. The document is moved into a folder by moving its
document icon into the display of the opened folder. A document is moved to a directory

on a remote file server by moving the document icon to the file-drawer icon.

Typing the properties command key produces a property sheet for the selected item.

82

Xerox Star -- Desktop Display

Figure 4-4

souewo) |

aogauok

13quang

Arosiqeag

34ppy
e

-9

swoy
PEITET]

s1say)

oydess

uRqIeH

=

83

Xerox Star -- Opened Folder

gure 4-5:

uenolf

ADJBUO

JaquaAND);

L4
adey>

43p(o4

drixpeg

sydeat
fngasr

a0 L1 ¢8I0TIVO
€141 #8000
STv1 #8/90/40
SZ'91L #8440

abed 1
sabeq /
by |

su03j Aul)
[SENTINET IR O
MO0

¢ aaydeyd

LEISE #8/LTHE0
9€:5L PE/LTIEO

40 NOISY3A

sabed ;

sabed 0}

zZIs

soanpdeyn

z snndeyd
L andey)

JNWYN

OaOmc a0

84

Figure 4-6 shows the part of the desktop displaying the property sheet for the document
named Chapter 7. The property sheet is a table, displaying properties such as the
document’s name, creation date ("'version of:"), and whether to display a cover sheet when
the document is opened. (A cover sheet contains ficlds that help in mailing the document,

such as _from. to, subject, and an accompanying rcmark.)

The user may modify the name and show cover sheet properties. Editing the name

property is the way onc renames a document.

A document or folder is deleted by sclecting its icon and then typing the delete command
key. (Similarly, a sclected section of document text in an opened document is deleted with
the same command.) Because deletions are currently not retractable, Xerox Star requires
confirmation from the user. A one-line message is displayed at the top of the screen,
together with a yes/no choice. The uscr confirms the deletion by choosing "yes" with the

mouse. Figure 4-7 shows the upper part of the screen during a delete of the Backup folder.

Xerox Star Presentation Model. Figure 4-8 shows the presentation model for the part of
the Xerox Star systein discussed in the previous scenario. The model comprises four PPS
components. As in the model for Zmacs, a window-display PPS cascades with the primary

PPS.

Desktop PPS. The desktop PPS is the primary PPS. The application data base ADB
contains documents, folders, remote file servers, in-boxes, out-boxes, and printcrs. These
are presented by icons and windows in the presentation data base PDB1 (the picture of the
desktop). Windows present domain objects, such as documents, by presenting their

contents or properties.

Icons have little presentation structure, but even icons are not primitive, i.e., they are not
name presentations. Two kinds of presentation structure occur. Icons present the name of
the document, printer, ctc., and the appearance of the icon presents the type of the object,

by depicting a stylized typical example.

85

Figure 4-6: Xerox Star -- Property Sheet

Usetul
graphics

DOCUMEMT PROPERTIES

Show COVER SHEET

Version Of; 03/27/84 16:25 By: Daniel C, Halbert;O5BU North:Xerox

5ize as of LastPaginate: 1

= —

86

Figure 4-7: Xerox Star -- Delete Confirmation

.re you sure you want to DELETE that object? m YES I NO |

=
Halbert

Backup Usatul
B i graphics

87

“igure 4-8: Xerox Star Model

4 *H OQ//

Sdd

MO W.G/LL..Y:.OU AomQA_

<D

¥

17

w‘vcdr‘ w0y

Hea>g 4y

®qQd

Y

Sdd
\3({. vosy mm

34

*gqd

88

Windows are composite presentations with many sub-presentations. Folder windows, for
example, present the collection of documents and sub-folders in the folder by presenting

them as icons within the window.

Consider the move command discussed in the scenario, an operation provided by the
presentation editor PE1. The move may go unrccognized, merely changing the position of
icons on the desktop. However, when a document icon is moved next to a printer icon,
recognizer R1 translates the move into a print command. When a document icon is moved
into a window presenting an opened folder, R1 translates the move into a command to
move the document into that folder. In other words, spatial adjacency to a printer icon
presents the fact that a document is being printed; spatial containment within a folder
window presents the containment of a document within a folder. The user can create these
spatial relations using PE1, and R1 implements the commands to create those presented

conditions.

The delete command in the scenario refers to a selected document icon. Recognizer R1
translates this into a delete-document command, but does not immediately send it to the
application data base. The delete-confirmation PPS is used to allow the user to first confirm

the deletion.

Delete-Confirmation PPS. The application data base of the delete-confirmation PPS
contains two rccognizer control commands: a confirmation ("do it") and an abort. These
commands are presented in PDB2 by presenting the delete command in the question and by

prescnting the choice between the two commands as a yes/no box.

The user references the yes/no box with the mouse, using presentation editor PE2.
Recognizer R2 translates this into the confirmation or abort command and sends the

command to R1. If confirmed, R1 proceeds to send the delete command to ADB.

Window PPS. Some text and graphical objects in PDBI1 are within windows for opened
documents, property sheets, etc. From these PDBI1 objects, presenter P3 sclects those

objects that will appear in the window. These visible icons and text are the contents of the

89

presentation data base PDB3.

Mouse refercnces to text or icons within the window arc made with presentation editor
PE3 and translated into references to the presentation data base PDB1 by recognizer R3.

These are then further recognized by R1 as commands to the application data base.

P3-Con(rol PPS. The window presenter P3 accepts presenter control commands for
scrolling the window. Scroll commands are presented by arrows in the margin of the
window, i.e., in presentation data base PDB4, by presenter P4. The user can point to those
arrows with presentation editor PE4. Recognizer R4 translates those refcrences into

selection of scroll commands, together with a "do it" causing them to be sent to P3.

4.4 Steamer

Steamer is a prototype system designed to help train operators of U.S. Navy steam
propulsion systems, incorporating color graphics, knowledge-based instruction, and
comprehensive simulation models [Stevens, Roberts & Stead 83] [Stevens & Roberts 83].
Only the user interface aspects of the graphics and its connected simulation model will be

considered here.

Steamer uses a simulation model that consists of about eight thousand state variables,
together with updating functions, which are processed once a second. (The simulation
proceeds in real-time.) The user watches an animated schematic view of the simulation.
There are several such views, one of which is shown in figure 4-9. The schematic is
continually updated, producing an animated view of the system. Certain elements in the

system can be made to fail (e.g., a valve sticks open), to provide training for emergencies.

The user controls the system by pointing to various parts of the schematic with a mouse
and by using menus. Pointing to a valve icon changes its state, opening or closing it.
Throttles are sct by pointing to the position within them that indicates the new value. Fluid
levels are changed by pointing to a new level position within the fluid tank icon. In addition

to pointing, another console displays different menus of operations and choices for

90

Figure 4-9: Sample Steamer Schematic

MERE-UR & ECETS FEED

3-4E-E-H

FORT EMERG
FEED TANK

FRam
ENSGINE R0t

FRIOM @il
CONDENSERT FROM HF

ORAIN 5T TEM
SO

HP-E41

MM COND

16 FWD PUME

MAKE-1IP
LRLLE

COOLER
TH FLD FUME

N FROM FRESH
T WHTER DREIN
TWITEM 10 EOOSTER BUMESD

TTED EMERG
FEED! TANK

3-92-1-1

91

controlling the simulation and choosing displays. Figure 4-10 shows a sample display of the

mcnu console,

In what follows, two kinds of users will be mentioned, the student and the instructor.
Both use Steamecr’s schematic editor. The instructor uses the schematic editor to build the
schematic views of the system. The student uses the schematic editor to build controllers for

a process.

The Feedback MiniLab [Forbus 81] is an extension to Stcamer designed to teach control
system concepts. For instance, one exercise is to ensure that the temperature of oil in a
sump remains at a specified value. The student builds a controller by selecting graphical
icons of a measurement device, comparator, actuator, etc., and connecting them together on
the screen. Steamer builds the underlying simulation for this device and connects it into the

main simulation model so that the student can study the resulting operation.

Steamer Presentation Model. The heart of the Steamer user interface is the continual
schematic view of the state of the simulation. This view is modeled by the PPS labeled
"Simulation Schematic PPS" in figure 4-11. The application data base ADB1 contains the
set of simulation state variables and various functions of these variables. The presentation

data base PDB1 is the color graphics schematic.

Steamer schematic presentations are constructed from icons, e.g., symbols for valves,
gauges, pipes, etc. Figure 4-12 shows a sample of these icons. These present state variables
or functions of state variables. Each kind of icon presents information in a particular way.
Valve icons are green to present an open valve, red to present a closed valve. Dials have
indicators that point to the presented values. Pipe presentations (rectangular pathways
between other icons) use color map techniques to show animated fluid, with small colored
blocks moving through the pipes. The apparent speed of movement presents the speed of
the fluid, as computed from state variables. The kind of fluid (e.g., steam, water, oil) is

presented by the color of the moving blocks.

The schematic presentation is updated by presenter P1 after cach cycle of the simulation,

92

Steamer Menu Console

.
.

gure 4-10

.
‘4

-330UI Ay D0TE a0,

-

W
in

SHIDOT EFRCTL

43 Z5igE S/E7 /80

Goong
‘p3yE S1odwnd 4By G F0LF 43I 34y 40 UR1ZIuylds] 437109 9} yaodsy oo
} =53 S SANES3 3 POt uEm ._@u.u:.m, 11 130} 2uang J37109 4 lazp g
B THelSYE g aaTod3ueld aojow dwnd 3y jaels gl
Toyne PRUnt pisod S0 J0yEIIpU [EIYNQUEY ATEA m:.un_uT&.. dwnd 3ansuy c g
r,.,.an._.. 36053 1p dund ay3 u3dp ¢
ATESA UOLyINs dund 34y uadg ¢
.ﬁ_m:._m._um_ =T ﬁm ynan: _._ pinE aanssaad dwnd 3ansuy c 2
TRPSUBTE S0 5504 W3S0S 3314435 110 [N} A1 a3p "1
(LYVIS) WAO4 aunpasoay u:a:oﬁu:_oo
seajiag Bl WAy (517) poady
13
10HS
SNy

sa1j1ense)
sdojepw
uaaudg

dyay
snjeag
ajey

&ar__ RN 45
b BLEE

93

“PD8§
] (Fevm)

PDB;\

Schematc

Figure 4-11: Stecamer Model

PD B4
(S\;kematuc_)

Schematic-
Ed cten

PPs

Tep Ry
PRS C«.‘/-\qud

¥ Select \

Menu
Co,Mtan

Py Select-
Eé-he et G

314

Ps

(s

PDB4

. hl\.l«(c\tlbﬂ
S he r‘\(,\t ,~c_

94

S (24 YEN Lf)\t\ [a 2V

SC, hem ((t N

PPS

Ar%\

ADB

Simanlatvon
VT (o bies

)

Figure 4-12: Sample of Steamer lcons

— < — . — - —

valve ragulator valvegualtor

digital bar

L

suare

FCOk SARMPLER

diamond

triangie

force bar

_

3
(T

[N T T

L AR S S S B S S

DA gon

Tuit ch

column

:—:ﬁi:

p watve

-= 7H

Foo 1o

multi-plot graph

AREEENENE

1oz
M a0
— &0
:-QU
— 210
T 0

95

when the set of state variables is consistent. Thus the user sees an animated presentation of
the ongoing process. This is a different situation from the other user interfaces discussed in

this chapter.

There are two kinds of animation in this presentation. First is the overall schematic
animation just mentioned, produced by continually updating a presentation of a changing
process. The other kind of animation, however, is an explicit graphics technique used as a
presentation itself -- the presentation of fluid flow within pipes. This animation is produced
by graphics routines from a static description of the process, i.e., computed from a single,
instantaneous simulation state. (The pipe flow animation continues even when the
simulation is halted -- just as other information about that single state is still visible, such as

dial readings or valve colors.)

Presentation editor PE1 lets the user interact in the simulation schematic PPS by mouse
references. Recognizer R1 interprets these references in many ways, depending on their
positions within the different kinds of icons, translating the references into changes to state

variables.

Presentation editor PE1 in the Feedback MiniLab also lets the user create, move, connect,
and edit icons for the process controller. Recognizer R1 translates these created controller
presentations into commands to create the simulation for that controller and connect it to

the rest of the Steamer simulation.

Steamer Menus. Steamer has many menus, occupying a second screen. Several of these
are modeled in figure 4-11. The select-schematic menu PPS models the menu that lets the
user select which schematic to view. This PPS is an interface to thc presenter P1, with an
application data base of P1 commands to sclect the various schematics. Presentation data
base PDB2 is a menu, a set of text presentations, each naming a schematic. Prcsentation
editor PE2 models the user’s selecting a menu item with the mouse. Recognizer R2 then
translates that into a choice of the presented select-schematic command and sends it to

presenter P1,

96

The casualty menu PPS is another interface to the main application data base ADBI, the
set of simulation variables., With this menu, the student or instructor chooses a casualty,
recognized as a command to change some set of variables to simulate the particular device

failure.

Creating Views. The instructor schematic-editing PPS enables the instructor to build and
alter the main presenter P1's schematic views of the simulation. The schematic editing
offered by presentation editor PE4 is similar to what the student has when creating a process
controller, except for this PPS the simulation is not being changed. Instead, the style of

schematic presentations that P1 builds of the simulation is changed or extended.

The PPS labeled "Tap PPS" extends the instructor’s interface to the recognizer, R4, of the
schematic editing PPS. As the instructor builds a schematic presentation for a new view, R4
must be able to determine what simulation variables or functions on them these new icons
will present. (In Steamer terminology, R4 has the job of establishing faps from the icons to
the statc variables.) Presentation data base PDB6 in the tap PPS offers a form for the
instructor to fill in, e.g., specifying a expression of some state variables. R4 combines this
information with mouse references to the new icons by PE4 to establish the icon-simulation

specification for the P1 style.

4.5 Summary of Structural Features

This section summarizes the features characterizing the structures of the extended
presentation system models used in this chapter to model the computational behavior of the
different user interfaces. Although the interfaces discussed appear very different, there are
some strong underlying computational similarities, and the presentation system model
highlights these. The overall appearance to the user, the use of icons versus menus, etc., is
certainly very important to the success of the interface. However, these arc questions of
interface style: the presentation system model looks below the style to identify common
components and behavior. The success of the presentation system base concept, as

developed in chapter five, depends on this commonality.

97

The primary structural feature to be discussed is the way in which one PPS is attached to

another. There were several kinds;

PPS to a Presenter. In Dired, the main presentation data base, the dircctory listing, is
also used as a presentation of the directory presenter’s state. Editing the directory listing is
recognized as controlling the presenter's state. Presenter scroll commands are presented by
icons in Xerox Star and the scroll bar in Zmacs. Steamer has two kinds of presenter
interfaces: a menu allows sclecting schematics, and schematics can be edited by the
instructor to change the schematic style. The latter capability is similar to Dired’s use of the

directory listing,

PPS with Commands. A PPS with commands to a component in some other PPS allows
planning -- to postpone the action while the action is being specified. Dired includes an
annotation interface to the main application data base in order to plan delete commands.
The Zmacs minibuffer interface allows the user to compose a presentation editor command.
Star and Steamer include command interfaces to recognizers, the delete confirmation PPS

in Star and the tap PPS in Steamer.

Multiple PPS Interfaces. An application data base can be presenied in two or more
separate PPS interfaces. In Dired, the deletion planning PPS and the deletion confirmation
PPS present the same data base of delete commands. In Zmacs, the command minibuffer
PPS and command completion list PPS both present the same data base of presentation
editor commands. In Steamer, the main (simulation schematic) PPS and thc casualty menu

PPS both offer interfaces to the main (simulation) application data base.

Cascaded PPS Interfaces. Zmacs and Xerox Star both include a similar cascade of
screcn/window PPS and main (buffer/desktop) PPS. The screen/window PPS provides
such features as clipping, scrolling, line wrapping, and mouse reference. Some user
commands operate within the scrcen/Window PPS, others within the main PPS, depending

on whether they depend on the visual aspect within the window.

Sharing. Section 3.4 discussed the kinds of sharing that can occur within presentation

98

systems. Two important examples have occurred in this chapter. First, Dired and Steamer
include a presentation shared between two PPS interfaces, the main presentation data base
(directory listing or schematic) and a PPS interface to the main presenter. By editing the

directory listing or schematic, the user controls the main presenter’s presentation style.

Second, in Dired, screen space is shared: directory annotations are intermingled with the
parts of the directory listing. Somewhat simpler, hierarchical space sharing occurs in the
Xerox Star, where windows appear within the overall desktop area, and such things as scroll

icons control the window presenter appear within the windows.

99

Chapter Five

PSBase: A Presentation System Base

A presentation system base is a collection of mechanisms and tools for building user
interfaces whose architecture follows the structure of the presentation system model. A
prototype, called PSBase, has been implemented on the MIT Lisp machine [Wcinreb, Moon
& Stallman 83] and will be discussed in this chapter. With a presentation system base, the
job of building good uscr interfaces becomes much easier. Chapter six illustrates the utility

of PSBase by discussing the implementation of an interface built on top of PSBase.

In certain respects the architecture of PSBase resembles the presentation system model
proposed in chapters two and three. Some of the PSBase modules support particular PPS
components, and in general, domain-independent and style-independent mechanisms are
isolated. This structure in turn cncourages good modularity in the user interfaces
constructed. Figure 5-1 shows the fundamental support of PSBase modules for PPS
components. Figure 5-2 shows the overall structure of PSBase, with arrows indicating uses
relations. The reason the PSBase architecture does not exactly resemble the PPS model (see
figure 2-1 on page 29) is due to the different goals of the model and the base. The PPS
model analyzes the activity of a user interface. PSBase is structured to cmphasize the
sharing of knowledge; information is not redundantly represented. Also, figure 5-1 shows
only some of the PSBase support: the basic style packages module supports the

construction of combinations of PPS components and PPS extensions.

Each PSBasc module will be discussed in a section below. There are three layers in the
structure: The data base mechanisms module at the bottom of the figure is (to a large
extent) a general support package, not specific to user interfaces. The four middle-layer
modules represent gencral presentation-system support, i.e., tools and mechanisms used to
construct various interface styles. The basic style packages module at the top of the figure

comprises specific components of interface styles that the interface builder may or may not

100

Figure 5-1: PSBase Support of PPS Components

Rrsentatio ”n
Dtltc\
BQS‘Q

\

P r‘csenfatt ;n A
. Ec[Lto r

APP(lca‘l'lon

Da

Base

GRAPHICS

| RZE‘SEAJT/;R
REDISPLAY SvrPPORT

Rezocn/1 2€R
SOPPOSR T

EDiTorR
FuncTrions

DATA Base Mecyavisms

101

Figure 5-2: Structure of PSBase

BAsic StrLe Pckages

Presenrer Recoanizewr
SvpPorT SurporT
G RAPHICS £DrToR
/Qé‘ostLAy /C;JNCT/ONS

DATA BASE MECHANISMS

102

choose to include. These packages, however, are independent of any particular application

domain.

5.1 Data Base Mechanisms

PSBase includes support for building data bases structured as networks of objects. Much
of this support is provided by thc Lisp machine's flavor system for object-oriented
programming. PSBase imposes certain conventions, provides an existing flavor structure for
the descriptions, and provides tools for manipulating and extending the network structure.
The Lisp machine flavor mechanism allows multiple inheritance of classes of objects
(flavors). PSBase extends this slightly to allow limited inheritance and description of

properties of objects (instance variables of flavor instances).

The basic data base mechanism is used for building application data bases (descriptions of
files, directorics, mail, and commands, for example) and the presentation data base (various
kinds of presentations, their properties, and their relationships). An important point is that
the presentation and application data bases are linked together, so that in effect they are
both part of a large, uniformly structured data base. Many of the PSBase mechanisms rely
strongly on the fact that the same data base mechanism is used throughout. Because of the

importance of the data base mechanisms, they will be discussed in detail in this section.

One example of the benefits of having a uniform representation technique is that the
presenter’s domain collector and other domain-dependent modules can be minimized and
more presentation mechanisms can be shared. The interface builder can experiment and
change the implementation more easily, changing the presentation styles or adding new

presentations, for example. Uniformity facilitates the construction of presenters.

This research did not attempt to build a state-of-the-art knowledge representation system.
However, the data base mechanisms in PSBase are inspired by such systems (e.g., KL-One
and its successors NIKL and KL-Two [Brachman 78] [Brachman & Schmolze 85] and
Omega [Attardi & Simi 81] [Barber 82]), and a full-scale presentation system base may very

well benefit from such a system.

103

An important capability of the data base mechanism is allowing the description of classes
of objects and the relationships between classes -- particularly specialization and the
inheritance of properties of objects of a class. Figure 5-3 shows an example, part of an
application data base network describing files and directories. The application data base

contains both class descriptions and also instances of them.

The style of the figure is based on that used for drawing KL-One networks. Ellipses show
class descriptions; shaded ellipses show instances of classes. Double-stemimed arrows show
the containing class. Small boxcs connected to cllipses show properties; these properties are
inherited by more specialized classes. (In addition, as will be seen later in this chapter, other
mcchanisms in effect "hang off" of particular classes of the data base, and these also

undergo a sort of inheritance.)

For example, the class file is shown by the ellipse labeled "file"; it is a specialization of
the class (i.e., a kind of) generalized file, which in turn is a specialization of the class
operating system object and domain object. A file link is also a kind of generalized file. The
network shows that generalized files have several properties: directory, pathname, etc. Files

and links inherit these properties.

Each particular file in the application data base would bc represented by an instance of
Jile. One such instance is shown. lIts reference date property is shown, linking that file
instance with a particular instance of the class date. The file instance also has several other
properties (directory, path, etc.), linking the file instance to directory, pathname, etc.,

instances, though they have not been shown in this figure.

Single-stemmed arrows from a box shows the value of that property, or for classes, the
type of such a value. Some propertics are specified as having a list of values; directories, for
instance, have a property whose value is a list of files. A list property is shown as a box with
a circumscribed circle. (One of the lihitations of PSBase is that these type-restriction links
are not fully implemented in the current implementation. They are shown here to better
document the relationships of classes when instantiated. However, PSBasc does include a

simplified type restriction mechanism used for certain parts of the data base.)

104

Figure 5-3: A Class Description Network

105

PSBase also offers a rudimentary ability to classify propertics. This ability is not reflected
in these figures, in the intcrest of clarity. For instance, circles, text, and other presentations
typically have propertics defining their positions. The description mechanisms allows these
properties o be labeled as defining positions. One examplc of the benefit of such a scheme
occurs in the implementation of the presentation cditor function that moves presentations:
the function can cxamine the description of the presentation to find its position-defining
properties and change them, without any knowledge about the particular kind of

presentation,

Presentation Data Base. PSBase provides a mechanism for building the presentation
data base. This includes an already-constructed part of the data base network structure that
defines several classes of presentations, inter-presentation relationships, and the properties
that connect the presentation data base with the application data base. (As already
discussed, they are not really separate data bases, but rather different parts of the same,
overall data base network.) Each presentation can have a record of the presented data base
objcct and the picscatation siyle uwsed. Mosi of tlie moduies it FSDase {(presenicets,
recognizers, graphics redisplay, etc.) depend on the known organization of the presentation

data base and on the fact that it is part of the overall, uniform data base structure.

Figure 5-4 shows part of the presentation data base and its relation to the application data
base. The main class is presentation. All presentations have a property called presented
domain object, which records the domain object being presented. For example, text
presentation 77 (an instance of the text presentation class) is shown presenting the file
OZ:<NSR>QUEUE.NOTES. This is recorded by 7'I’s presented-domain-object property

linking 7' with the file instance.

Figure 5-5 illustrates three kinds of inter-presentation relationships supported by the
presentation data base network structure. First, composite presentations may be
constructed; these have a property whose value is a list of sub-presentations. Second, a
connecting arrow joins two presentations; the arrow’s end positions (x1, yl, x2, y2) are

derived from its end presentations’ positions. Third, two presentations may be attached.

106

Figure 5-4: Sample Presentation Data Base Structure

,S3LON 30300

hfb.lrd.w

»S3Lop
EE N

107

Figure 5-5: Inter-Presentation Relationships

Prt%u‘hlk ‘e

/

)&,
3.3

x, O

"A‘Pl
Oend - 2.

108

C. Su b~ presey\“Coi\ ens

Connecting arrows cause themselves to be attached to their end presentations; in general,
any two presentations may be attached. The attachment relationship is asymmetric and has
the following meaning: p/ attached to p2 implies that pl is repositioned or deleted whenever
p2 is repositioned or deleted, respectively. In the figure connecting arrow CA/ is shown
connecting Text! and Text2. If Textl, say, is moved, CA/ will have its cnd positions
rederived. The arrow will be redrawn, and the arrow will remain connected to the two

pieces of text.

The important fact about this scheme for structuring the presentation data base is that the
general data base mechanism is being used, rather than a representation tailored to
particular kinds of pictures. ‘The presentation data base fits within an overall data base

network with a uniform method of organization.

This has four implications. First, the data base mechanisms can be shared. Second, the
data base mechanism does not limit the kinds of presentations that can be used -- the
network can be extended by the interface builder to add new kinds. Third. ancillary
information about the presentation can be recorded; such information can be useful to
presenters, recognizers, and presentation editing commands that need to make decisions
about the presentation. Fourth, the presentation data base can itself be treated as an

application data base -- it can be presented.

The last of these is important for matching the structure of the implementation to the
structure of the model. One kind of example is the cascaded presentation systems of Zmacs

and Xerox Star as modeled in chapter four.

Command Description Support. PSBase has a mechanism for describing commands in
the data base and connecting these descriptions to the actual Lisp machine functions. User
options (Lisp variables) can also be described, and command documentation can refer to
these variable descriptions. Variable descriptions themselves can have associated

documentation,

The classes of description involved are shown in figure 5-6. The primary kinds of objects

109

Figure 5-6: Command Description Support

DL"vv\Cki n
OLJ ect

Command

ryvednts § Application

Compands

L-\s‘a
F‘ur\c;‘tnor\

S'?ggsc\c kinds

of Pa. ramelter thQS

110

are commands, describing Lisp functions, command sets, describing groups of related
functions, and command applications, describing the invocation of a Lisp function with a list
of arguments. A command application has a state, which specifies whether the function has
not yet been invoked on these arguments, is currently being executed, or has completed.
Functions may be invoked by building a command application description and then, using
the Lisp machine’s flavor-system message-passing, sending the command application object

an execute message.

In addition to the properties shown in the figure, commands also include properties
specifying the name, documentation, sub-commands, variables used, and the verbs that may

be used to describe the command.

Each command description includes a list of parameter descriptions, which must match
the arguments given to the command application. The command application object checks
its arguments for validity when it is formed. Each command parameter description includes
properties specifving name, documentation, and a description of the type of the argument
required. There are several specializations of command parameter type, one for each kind of

arguraent that may be supplied to user commands.

For example, one of the Lisp functions printing files takes two arguments: a file and a
printer, which is to say two instances in the application data base, a file instance and a
printer instance. The command instance for this function includes a list of two parameter
descriptions that describe these restrictions: the first parameter speciﬁes the type file, and
the second parameter specifies the type printer. To invoke this function, a command
application instance is created, its argument list containing the particular file and printer
instances. As the command application is formed, the arguments are automatically checked
against the parameter types for validity. The command application is then sent the execute

message, causing the function to be applicd to the arguments, and the file is printed.

Execution Monitor. The command description mechanism is cxtended by automatic
connections to the Lisp environment, for use by the PSBase execution monitor. When a

command instance is created, the Lisp function it corresponds to is automatically modified

111

so that the exccution monitor is notified when the function is invoked and when it returns.
The exccution monitor maintains a stack indicating the current execution state in terms of
the described procedures. In addition, command application descriptions are placed on the

stack while they execute.

Reference Resolution. Presenters and recognizers must often resolve a presentation
reference to an instance in the data base of a particular type (or, in general, to an instance
that satisfies some predicate). In the simple case, the value of the presentation’s presented
domain object property is of the correct type and no resolution is needed. For cases when
this is not true, PSBase includes a mechanism for finding a related data base instance that is

of the correct type.

An example will serve to introduce the three kinds of resolution provided. The user
invokes a command that requires a directory as one of its arguments; the user selects a
presentation as this argument. In the simple case, the presented domain object property
links the presentation to a directory. and the resolution is trivial -- just follow the presented
domain object link. Figure 5-7 illustrates this case and the others to be discussed. The
dotted arrow indicates the path followed by the resolution mechanism in order to reach the
directory instance. (It is the directory instance in all cases that will be returned by the

resolution mechanism.)

The first (and most common) kind of resolution applies when the presented domain
object is a property, and the property’s value is of the desired type. Resolution is to the
property’s value. 1n the case illustrated in the second part of figure 5-7, the user has selected

a presentation of the directory property of a file.

The second kind of resolution applies only to certain kinds of properties, termed essential
properties. 'These are properties for which the value is, in some sense, equivalent to the
object owning the property -- equivalent in terms of its use as a referent. The pathname
property of a file is essential -- any name property is. (Specifying which properties are
essential is part of the task of defining the application data base class network.) For

essential propertics, the resolution mechanism walks to the owning object. In the case

112

Figure 5-7: Reference Resolution

pdo -
L 3

- — fo— — - — — — —

-

Ref{’.r‘e.-nCQ S‘MFQQ case r ano (—CSOLJf(.OV\\

s e e e e

RQSC (e ll,t;.

Reflmnce_ /Dr‘oi)Q_(‘ tj/S V(LLUQ..

o RQ‘SO l Ve 'é‘,

Keference. Pf0/3t—lrt\7/§ Cwrler

——

Re—Sc‘{-UQ to
FCU'Qnt ‘s /D/'ESk’-r"t‘Z—i
dorie on a‘,/b\}'e.ct .

Fc[o = ’DFQ.S&;\—[QJ
C[c;vrc\ Lru
e bJ’e,ch

113

illustrated in the third part of figure 5-7, the user has selected a presentation of the name of

the directory.

The third kind of resolution walks up the presentation hierarchy, from the referenced
presentation to the composite presentation that contains it, looking for a satisfactory
presented domain object. [n the case illustrated in the fourth part of figure 5-7, the user has
selected a presentation that is a part of a directory presentation, but which does not itself

present something that can be resolved to a directory.

5.2 Graphics Redisplay

This section discusses the next PSBase module shown in figure 5-2, an incremental
graphics redisplay mechanism that has the responsibility for continually displaying the
presentation data base. The graphics redisplay module maintains a description of the forms
drawn on the screen. It continually compares this with the presentation data base
description. Those prescntations whose defining properties have changed are redrawn and

the screen description is updated, new presentations are drawn, and deleted ones crased.

Each presentation instance has a timestamp that is automatically set whenever any change
is made to that presentation. Graphics redisplay restricts its attention to thosc presentations
that have changed since the last graphics redisplay. Composite presentations are marked
changed whenever one of their sub-presentations is changed. Therefore, the search for
changed presentations is substantially reduced: entire composite presentations can be

skipped by a single check of the composite presentation’s timestamp.

Graphics redisplay connects the presentation data base to the Lisp machine’s graphics
package (extended slightly for PSBasc). The defining propertics of the forms to be drawn or

erased are passed as arguments to the appropriate drawing procedures.

114

5.3 Presentation Iditor Functions

PSBase offers a sct of presentation editing functions that as a whole can be used as a
general presentation editor, or the functions can be selectively combined as part of a specific
user interface. The presentation editor functions are independent of the data base domain,
presenters, recognizers, and their styles. The editor functions aiso have a history-kecping
mechanism that records commands used and the presentations affected. This history is used
by some editor functions (¢.g.. the command to undo a previous erase command) and by

other PSBase modules if needed (e.g., a recognizer may need to inspect the editing history).

The presentation editor is a combination of a text editor and a diagram editor. The user
can place text at any point on the screen and use Emacs-like commands to edit the text.
There are only a few such text-editing commands in PSBase. However, this is due to the
limited nature of the project, and not to any inherent limitations. A full-scale presentation
system base following this approach would include a much larger editor module, The

diagram-editing capabilities in PSBase include the following:

* Creating lines and arrows between two positions or between (two presentations
* Creating ellipses, ciicles, and rectangles

* Creating an ¢llipse or rectangle around a given presentation, computing the size
and position from the presentation

* Moving a presentation to a new position
* Erasing a presentation or undoing an erase
* Attaching or unattaching two presentations and presenting attachments visually

* Aligning onc presentation with another, by center or edge positions

5.4 Presenter Support

This section discusses three kinds of presenter support provided by PSBase: first, a data
base mechanism for describing ceriain propertics of prescntation styles, second, three

general semantic presenters that are driven by these style descriptions, and third, some

115

organizational presenters that may be independently combined with the semantic presenters

in order to specify a style’s layout method.

Presentation Style Descriptions. A presenter has an associated style, which describes how
the presentation is structured and related to the presented information. There arc four basic

classes of style descriptions in the current PSBase implementation:

Primitive presentation styles do not refer to other presentation styles, nor do they describe
the structure of the presentation. Instead, they specify a proccdure that creates it (a
"canned" presenter). One goal of PSBase is to reduce the number of primitive presentation
styles that must be written, as they require considerably more effort than do the other styles

discussed here.

Graphical presentation styles do not refer to other styles either, but do include a
specification of the presentation forms and their properties. These properties may be
computed from properties of the presented domain object and from properties of the

composite presentation being constructed.

Sequence presentation styles specify how to present sequences of objects in the
application data base. For instance, a directory contains a/ sequence of files, along with
other properties of the dircctory, such as its name and protection. Sequence presentation
styles specify a presentation style to use for the element presentations. They also optionally
may specify prefix, infix, and suffix presentations to separate the presentations of the

elenicnts of the sequence.

Template presentation styles build larger presentation styles out of a fixed number of
smaller ones, interspersed with text presentations that do not prescnt any domain

information, but merely scrve as the template.

Each kind of style description also specifies a style name, the class of domain object (in
the data base network) for which this style is appropriatc, a flag specifying whether this is

the default style for that class, information concerning semantic redisplay, and an

116

organizational presenter. Since domain object classes can be specialized, styles can apply to
a wide variety of objects or to just a specific few. One can think of presentation styles as
being attached to classcs in the data base. These attachments drive the process of sclecting a

suitable presentation style.

For example, PSBase provides a very general presenter, called the phrasal presenter. This
presenter produces (in most cases) noun phrases for a given domain object. This style
description for this presenter specifies that it applics to the class domain object, i.e., it applies
to any instance in the data base. This applicability derives from the fact that the phrasal
presenter can always produce something -- at least something of the form "a" followed by
the name of the domain object class, e.g., "a file". Furthermore, it takes advantage of the
uniformity of the description mechanism and inspects the properties of the object to see if it
has any property that is a kind of name. If so, it uses the name, e.g., "the file
0Z:<NSR>QUEUE.NOTES.1". The phrasal presenter will be more fully discussed below.

On the other hand. another presentation style applies to the specific class time of day.

producing text prescntations such as "02:04:46".

The presentation style mechanism supports two major operations, finding a named
prescntation style and finding the most specific presentation style applicable for a given
instance in the data base. Typically, several styles have a matching class, i.e., attach to
classes to which the instance belongs. The one with the most specific matching class is
chosen. (E.g., time of day would be preferred over domain object if both match.) If there are
two or more styles with the same, most-specific class, the default is chosen. Styles that are
not defaults are invoked specifically by name. In a larger presentation system base the
comparison could be more involved, taking into account specific propetities of the domain

object to be presented.

Style-Driven Semantic Presenters. PSBase offers three semantic presenters whose
behavior is determined by the kinds of style descriptions described above. It also provides a
semantic redisplay mechanism that periodically invokes the presenters so that they update

existing presentations. Examples of the three major kinds of style descriptions will be used

117

to discuss the action of their associated presenters,

The first example is a simple clock presentation. The presented domain object is the
current time of day instance in the application data base. Here, the presentation is a
composite of two sub-presentations, a circle (the face of the clock) and a vector (the hour
hand). In this simple clock there is no minute hand and there are no text labels on the face.
The following is what the interface builder would write to construct this presentation style
(the small function angle-from-hours-and-minutes, which performs the simple trigonometric

calculations, would also have to be written):

(def-graphics-presentation-style CLOCK TIME-OF-DAY nil t 120
((NIL
(circle-presentation
:x (relative-to-parent-x 25)
:y (relative-to-parent-y 25)
:radius 25))
(: HOURS
(vector-presentation
:length 14
:angle (angle-from-hours-and-minutes
{(send presented-dumdin-object ':hours)
(send presented-domain-object ':minutes))
:x1 (relative-to~parent-x 25)
1yl (relative-to-parent-y 25)))))

The first line specifies five general parameters: the style name, the applicable domain
object class, a flag specifying whether this is the deflault style for that class (nil here
indicating that it is not the default), and two parameters for semantic redisplay. The first of
the two, ¢, is a flag specifying that this is an active presentation and therefore should be
updated periodically. The second, 120, specifies how often it should be updated, every 120

seconds. (This updating will be discussed belew.)

Next is a list of presentation specifications. The first one specifies the circle. The nil
indicates that the circle docs not present any domain information. Then comes a Lisp
property list, (circle-presentation ...), specifying that this presentation is a circle and
specifying its properties. For instance, the first property specified is the x coordinate of the
circle's center. lts value is given by a form to evaluate, which relates the circle’s position to

the composite’s position (which generally is its upper-left corner).

118

Next is the specification of the hour-hand vector. The first item gives the property this
presentation presents, namely, the hours property. The property list for the vector is similar
to the one for the circle, except that it has a more complicated form to specify the angle. In
particular, it has two message-passing forms that access propertics of the presented domain
object. (The symbol presented-domain-object will be bound to the composite presentation’s
presented domain object.) The first, for example, (send presented-domain-object ’:hours),

retrieves the value of the hours property of the presented time of day object.

The following is what the interface builder would write to create a presentation style,

named ser-notation, for presenting instances of the object-sequence class:

(def-sequence-presentation-style SET-NOTATION OBJECT-SEQUENCE
nil nil nil
l'{ " " , " "} "

just-name
thorizontal-layout
:border-box)

An object-sequence has an elements property containing a list of objects. For example, if
this were a list ot objects with the names UNE, 1'WU, and THKEE, the sequence would be

presented in this style as

l{ONE. TWO, THREE}

The first five arguments are the same as for the graphical presentation style. (In this case,

the last two nils indicate that the style is not active, i.e., it will not be periodically updated.)

The third line of the definition specifies that there will be prefix ("{"), infix (", "), and
suffix ("}") text presentations. The fourth line, just-name, names the style to use for
presenting the elemcnts. The fifth fine, :horizontal-layout, names the organizational
presenter to use, so that in this case the element presentations will be laid out horizontally
(with the infix presentations interspersed). The last line, :border-box, specifies that a

rectangle should be created. fitting around the presentation.

The following is an example of the last of the three style descriptions, a template style for

119

prescenting objects of the class time:

(def-template-presentation-style DEFAULT-TIME TIME t
((:date default-date)

" 1"

(:time-of-day default-time-of-day))
:horizontal-layout)

The presenter constructed produces composite presentations that look like
"04/15/84 14:22:65". The name of the presentation style is default-time. The ¢t after the

name indicates that this is the default style for class time.

The next three lines specify the domain collector and semantic presenter, building the
template and spccifying the sub-presentations’ presenters. The domain collector is
described by naming the properties of the zime object whose values should be collected. (In
more complicated presenter specifications, this can be a list of properties, "walking" from

one domain object to another, starting from the object being presented.)

The first snecification, £>date defanli-dnte), causes the dute nroperty of the time obiect to

S e

be presented as the first sub-presentation, using the style default date.

The second specification is a text string containing a single space. This causes the
composite presentation to contain that text as a constant sub-presentation. (L.e., it does not

present any domain object -- it is just part of the template.)

The third specification, (:7ime-of-day default-time-of-day). causes the time of day property
to be presented as the third sub-presentation, using the style default time of day.

The last form specifics the organizational presenter, namely horizontal layout. This takes
the presentation structure created and positions the three sub-presentations within the

composite presentation, juxtaposed horizontally.

The template below illustrates the use of the property-walking capability that can be used
in presentation styles. The examples given previously have all specified a direct property of

the presented domain objcct, e.g., the hours of the time, or the elements of the object-

120

sequence. However, in general it is necessary to specily a property path, a list of properties

to follow, starting from the presented domain object.

Here, a presenter is created for the class wuser-at-host, and the style is named
RFC733-User-At-Host. ("RFCT733" is the name of a network protocol, which includes this
format for specifying recipicnts.) This produces a form of electronic mail address, such as:
"Norman S. Rafferty <NSR at MIT-OZ>". Figure 5-8 shows a sample section of the data

base network.

(def-template-presentation-style USER-AT-HOST
RFC733-USER-AT-HOST

nil
(((:user :personal-name) default-name)
" <"
(:self simple-atword-user-at-host)
ﬂ)")

thorizontal-layout)

The specification ((-user :personal-name) default-name) tells the domain collector to walk
frorn the user at host object to its user and from there to the user’s personal name, The
result is presented in the default name style; for the example in the figure, it is the string
"Norman S. Rafferty”. The :self "property” in the sccond domain collcctor specification
means that the user at host itsclf is to be presented, rather than one of its propertics. Thus,
the composite presentation, which presents the user at host, will have a sub-presentation that

also presents that user at host, though in a simpler style: "NSR at MIT-OZ".

Organizational Presenters. PSBase provides four general organizational presenters, and
these may be combined with any of the semantic presenters by the style description. Each
organizational presenter positions the sub-presentations of a composite presentation

according to a specific layout method.

The first has already been mentioned above: the horizontal organizational presenter
positions the sub-presentations in a horizontal line, each presentation juxtaposed against the
right edge of the previous one. This organizational presenter, as well as the others, takes
advantage of a facility provided by the presentation data base mechanism: each

presentation can be asked for its extent, a specification of the upper-left and lower-right

121

Figurc 5-8: Result of a Presentation Style

122

'Normqn S
Re ffe r‘f:)

Pdo = I'>fé$€tl‘t€c/
oMacna

OfaJ‘act

<

corners of a rectangle that would enclose the presentation. In addition, the presentation
editor mechanism offers a gencral facility for moving presentations. Using these
capabilitics, the organizational presenter does not need to consider the particular kind of
presentation: the presentations are moved so that their extent boxes are juxtaposcd. Note
that the extent box technique works as well for sub-presentations which are themselves
composites of further sub-presentations: the entire composite has an extent computed from

those of its sub-presentations.

Similar to the horizontal layout presenter is the vertical layout presenter. It juxtaposes

sub-presentations vertically, again using the extent boxes as a guide.

The third organizational presenter uses a tabular layout method. The composite
presentation is assumed to have sub-presentations which will be the rows of a table. These
row presentations wiil be laid out vertically. Furthermore, each row presentation is itself a
composite (in general). whose sub-presentations are the elements of the row. These element
presentations are positioned so that those presenting the same kind of propertv are aligned
under each other, For example, in a directory listing, those presentations presenting file-

length propertics appear aligned under each other.

The fourth organizational presenter is a paragraph filler, positioning the sub-

presentations (generally single-word text presentations) within a rectangular area.

The PSBase graphics presentation style descriptions do not use standard organizational
presenters. Instead, the styles define their own layout in the style description itself by

explicitly positioning the component presentations.

Semantic Redisplay. Each presentation style specifics whether presentations created in
that style will be active, i.c., whether it is to be periodically updated, and if so, how often it is
to be updated. Thus, for example, an active scquence presentation will be updated to reflect
changes in the elements or in the order of the clements of the prescnted sequence. Or, for
the clock example given above, the properties of the vector presentation (the hour hand)

will be recomputed from the presented current-time-of-day object.

123

Each time an active presentation is created, a semantic redisplay task is created for it and
added to a list of all current semantic redisplay tasks. Each task specifies the presentation,

its presentation style, and the next time that the presentation should be updated.

A background process manages these semantic redisplay tasks. When a task’s semantic
redisplay time has arrived, the presenter for its presentation style is invoked on the
presentation. This invocation is similar to, but slightly different from, that for creating the
presentation in the first place. Hcre, emphasis is on retaining presentations that can be
re-used and avoiding computation for presentations that do not present anything. After
updating the presentation, the prescntation style’s organizational presenter is invoked again

to adjust the presentation’s layout.

5.5 Recognizer Support

PSBasc provides two kinds of support for recognizer control: First is a mechanism that
records the presentations on which a particular recognition depends. The dependency
mechanism allows some recognition to be retracted if changes occur in the presentations

that recognition was based upon. Second is a recognizer-invocation mechanism.

PSBase divides recognizers into three kinds, differing in how and when they are invoked.
Continual recognizers have the effect of acting continually as the user gives commands.
General recognizers are invoked on demand, by particular commands. Invocation of general
recognizers is slower than for continual recognizers, and the invocation involves
consideration of a larger portion of the presentation data base. PSBase offers two
invocation mechanisms, one for continual and one for general recognizers. The remaining
recognizers are invoked specifically by other recognizers, to perform particular sub-tasks in

the recognition process.

Recognition Dependencies. Fach recognition depends on a set of presentations. For
example, section 4.1 described the Emacs Dired style of annotations to a directory listing:
the user places a "D" by files to mark them for later deletion. Recognition of a "D" (as a

plan to delete a particular file) depends on two presentations: the "D" and the file

124

presentation. If the user moves that "D" to a different line, however, its original recognition
must be retracted and new recognition performed -- it now presents a plan to delete a

different file,

The PSBase recognition dependency mechanism allows recognizers to record the
presentations on which they depended, together with the actions necessary to retract that
recognition. Recognizers specify this information as they build the application data base

commands.

Invocation of Continual Recognizers. The interface builder specifies a list of continual

recognizers. Each is invoked immediately after each keystroke or mouse command.

Each continual recognizer has two phases. First, it quickly decides whether it is in fact
applicable to the command that the user just gave. Second, if applicable, it triggers and

performs whatever recognition is necessary.

The recognizer has access 1o Lhe presentation editing history entry for the command just
completed. It also has access to the list of recognizers triggered so far, if any. The latter
allows the recognizer to trigger dependent on whether or not others did. The presentation
editing history entry specifies what kind of editing function was performed and which
presentations were affected by it. This information allows the recognizer to quickly
determine whether it is applicable, without performing a scarch of the presentation data
base. If the recognizer triggers, it too creates an entry in the presentation editing history,

specifying that a recognition was performed, its kind, and the presentations it affected.

Currently, the mechanism for invoking continual recognizers does not use the recognition
dependency mechanism, because of efficiency reasons and because the continual

recognizers do not in general benefit as much from the possibility of recognition retraction.

Invocation of General Recognizers. A second kind of recognizer invocaticn mechanism is
provided by PSBase for gencral recognizers. In contrast to the invocation of continual

recognizers (including their quick checks for applicability), which considered a fixed set of

125

recognizers and a small, given set of presentations (those affected by the latest presentation
editing function), invocation of general recognizers involves searching the presentation data

base and a larger set of potential recognizers,

PSBase supports two kinds of general recognizers. Both are invoked upon a particular
presentation, though they may (and typically will) examine other presentations and related
domain information in the data base. The first kind of general recognizer interprets user
cdits to presentations that were created by presenters. These recognizers are typically
simple, taking advantage of the existing links from the presentation to the presented domain
object. For example, one such recognizer might interpret a change in text presenting the
reference date property of a file. This recognizer simply parses the text, creates a new date
instance, and changes the value of the file property. Note that it docs not need to decide
between recognition as a date and as something else -- it already knows that it should be a
date presentation from the presenter-recorded information, namely, the presented domain

object property that links it to the file's reference date property.

The second kind of general recognizer is invoked upon presentations for which there is no
presented domain object link, i.e., presentations whose mcaning is unknown. This kind of

recognizer must determine the kind of recognition to be performed.

Both kinds of gencral recognizers arc attached to classes of presentations in the
presentation data base. For example, the parser for a file's reference date property would be

attached to the text presentation class.

The invocation mechanism begins by scanning the cdit history, determining which
presentations have changed since the last recognition. Any recognition that depended on
those changed presentations is retracted if possible. This has the effect of allowing the user
to make changes in a plan (such as the Dired plan of deletions): the effect is incremental
recognition of the changes, but no specific recognizers for incremental changes need to be

provided.

Second, all presentations that had been created by presenters, but edited by the user

126

(since the previous general recognition), are collected. For each of these presentations, a
general recognizer (of the first kind discussed above) is invoked. Selection of this recognizer

is based on the class of the presentation and the kind of property (such as reference date).

Third, recognition is performed on all presentations with no presented domain object
property value, i.c., those prescntations that are unrecognized. (Note that some
presentations may have been previously recognized, but are now unrecognized because of
recognition retraction.) These recognizers are also invoked based on the class of the

presentations they are to recognize.

5.6 Basic Style Packages

PSBase offers a supply of presenters, recognizers, and combinations that the user
interface builder may choose to use as components in a user interface. In a sense, one such
component has already been mentioned: the presentation cditor functions, taken as a

whole,

Presenters. Three presenters are provided, for presenting command sets as menus, for
presenting the execution monitor’s current state by highlighting the current command, and
for presenting any domain object by a noun phrase. Like the other components described
here, these are all independent of any particular application domain. (This is not strictly
true, as the first two deal with the domain of commands; however, that domain, like the

domain of presentations, is universal in that it is always included in any user interface.)

Command Menus. This component is very simple, consisting of a few style descriptions.
Since a command set is a specialization of object-sequence, where the elements property is a
list of command descriptions, a scquence presentation style can be used. The following is
the description for a vertical command menu style. (The style definition for horizontal

menus is similar.)

127

(def-sequence-presentation-style VERTICAL-COMMAND-MENU
COMMAND-SET t

nil nil ; Not active.
nil nil nil ; No prefix, infixes, or suffix.
just-name

:verticat-layout :border-box fonts:cptfontb)

Execution State Presenter. PSBase provides a simple presenter for the execution monitor
discussed on page 111. The presenter is invoked whenever the execution monitor places a
command or command application instance on its stack, i.e., when the command is
executed. The presenter examines the presentation data base to determine whether the
command or command application is being presented. If it finds a presentation, it

highlights it.

For cxample, when the user invokes the erase presentation editing command, the
execution state presenter might find the command presented in a menu of editor
commands. Whether the user invoked the command by referencing that item in the menu

or by typing the delete key, thec menu item is highlighted to present the current state,

There are other possibilitics. Consider the following scenario: A command’s
documentation is currently being presented. The documentation comprises three
paragraphs, each presenting a step in the command. As that command executes, the
exccution state presenter will highlight the three paragraphs in sequence. (The presentation
of the documentation is not strictly a presentation of the command. The presenter will still
consider the documentation presentation as a suitable reference, using a special version of

the mechanism for resolving references to essential properties discussed in section 5.1.)

Phrasal Presenter. The phrasal presenter produces a phrase describing a domain object,
in most cases a noun phrase such as "the file OZ:<KNSR>LOGIN.CMD.4", "a plan to deléte
the file OZ:AANSR>DEMO.TXT.1", or "the reference date of the file
OZ:<KNSR>QUEUE.NOTES.1, Friday, March 23, 1984".

The presentations have composite presentation structure that follows the semantic and

grammatical structure. The user can therefore reference part of the phrase to indicate a

128

domain object other than the one presented by the entire phrase. For example, given the
reference-date presentation mentioned above, the user could reference just the sub-phrase
"the file OZ:KNSR>QUEUE.NOTES.1" and thercfore indicate the file, instcad of its

reference-date property. Similarly, the user could reference just the date.

The interface builder provides a set of dictionary entries, templates used by the phrasal
presenter. The phrasal presenter and its dictionary entries are simple in comparison with
those developed in natural language systems (e.g., [McDonald 83]). They should, however,
give an idea how natural language presenters would fit into a more powerful presentation

system base, and the scheme used here is quite useful as it is.

In essence, the dictionary entry hangs off a class node in the data base network. The most
specific entry for a given instance is chosen. This section illustrates the phrasal presenter by
showing a sample entry for the class of date instances. Each date instance has four
properties: day of month, month, year, and day of week. The dictionary entry for date refers

to dictionary entrics for the values of these properties.

The entry is written as the phrasal-presenter-dictionary-entry method for the Lisp flavor
date, the flavor implementing the date class in the data base. The Lisp details below can be
largely ignored, since the definition is simply a template. The template has slots that are
filled in by evaluating Lisp expressions; these slots are indicated by commas. The values
filling the slots may be other filled-in dictionary entries. The result is a grammatically

structured tree of text. The tiee is annotated with the domain objects being presented.

The definition therefore drives the domain collector and semantic presenter, but has left
the text positioning details up to a standard organizational presenter. (The organizational
presenter used is the one that fills a rectangular area with the text, as a paragraph would be

filled.)

The following is the dictionary entry as the builder would write it, to produce text such as
"Thursday, August 9, 1984."

129

(defmethod (DATE :PHRASAL-PRESENTER-DICTIONARY-ENTRY) ()
"(:SAY ,self

(: FURTHER-INFO

(“SAY-PROPERTY (,self :DAY-OF-WEEK)
,(phrasal-presenter-dictionary-entry day-of-week)))

(:SAY-PROPERTY (,self :MONTH)
,(phrasal-presenter-dictionary-entry month))

(:SAY-PROPERTY (,self :DAY-OF-MONTH)
.(phrasal-presenter-dictionary-entry day-of-month))

" "

(:SAY-PROPERTY (,self :YEAR)
,(phrasal-presenter-dictionary-entry year))))

The tree produced has the following items:
* An identifying symbol, :say
* The presented domain object -- the date instance, since self will be bound to it
* A sub-tree, flagged as carrying non-restrictive further information, that accesses
the dictionary entry for the day of week property, labeled as presenting the day
of week property

* A sub-iree liat avcosses thie dictionary eniry for iiie month properiy

* A sub-tree that accesses the dictionary entry for the day of monih, similarly
labcled as a propcrty presentation

* Some template text, a comma

* A sub-tree that accesses the dictionary entry for the year property

The sub-trees invoke other phrasal dictionary entries. For the case of "Thursday, August

1" "

9, 1984.", the sub-tree entries would produce, respectively, the text "Thursday", "August"”,

"9". and "1984". (Thesc are single words; in general, the sub-trees might themsclves specify

more complex phrases.)

The general phrasal semantic presenter takes this specification tree and produces a

composite presentation structure. Figure 5-9 illustrates the resulting presentation structure

and its relation to the data base network. Some very simple anaphora processing is

performed if possible (not possible here). Commas are added around the non-restrictive

130

Figure 5-9: Result of Phrasal Presenter

ALI‘:’ c‘F MCn\T{'\
9

Pc(o

\\ﬂursd&;j;.

@ Text

\\)‘/ “l(?z?'iL ¢

FJo - Prese‘n—f<</ |
C‘Y"ICKL‘Y\,

o JQC’C

131

further-info structures. The first letter is capitalized, and a period is added at the end. The
presenter can optionally be invoked to produce a briefer presentation, in which case it

ignores the sub-trees marked as further information.

Recognizers. The next two sub-sections describe particular recognizers and recognizer
frameworks that PSBasc provides, for recognizing presentation editor commands from

sketches and for recognizing commands from the movement of presentations.

Curve Recognizers. Presentation editor commands may be invoked in two general ways,
by primitive command signals (such as keystrokes or mouse clicks) and by recognition.
Section 4.2 showed examples of Zmacs editor commands invoked by recognition: the user

can type command names or select commands from a menu.

PSBase offers another kind of extension to the presentation editor: recognition of
presentation editor commands by "sketching curves”. Figure 5-10 shows the screen’s
display as the user "sketches” an arrow {rom the cllipse to the rectangle. The user sketches
by moving the mouse, holding a mousc button down until the curve has been completed.
The curve is displaycd as a set of dots while the user is drawing it. When the button is
refeased, an immediate rccognizer interprets the creation of this curve as a presentation
editor command, in this case a command to connect the ellipse to the rectangle by an arrow.

Figure 5-11 shows the result.

Note that these sketched curves are not just recognized as presentations, €.g., not just an
arrow. They are recognized as presentation editor commands. This has two advantages.
First, the user can understand the semantics of the recognition, since the results are just as if
the user had invoked the editor command directly (assuming that the interface provides the
user with that editor command). Second, recognition can be more powerful -- it can do
more than just create a presentation. For example, one could write a curve recognizer that

interpreted a sketched line through a presentation as a command to delete that presentation,

The curve recognizers are, in a simple sense, a series of rules. (This is not a complex

rule-based system -- there is no iteration over the set of rules, for instance. Also, these rules

132

Figure 5-10: Before Curve Recognition

Edit Commands:
Need Menu

Line

Arrow

Box Around
Ellipse Around

Move
Erase
Present Directory ' o’

Recognize g
Change Style

133

Figure 5-11: After Curve Recognition

Edit Commands:
Need Menu

Line

Arrow

Box Around
E1lipse Around

Move
Erase
Present Directory

Recognize
Change Style

134

do not have declarative patterns, but instead arc implemented by special procedures.) The
rules are simple, and the success of the recogrﬁzcrs. is due to four, inter-related facts. First,
there are few possibilitics to distinguish. These will be listed below. Seccond, the
recognition is fast enough to be usually preferred over other ways of invoking the same
commands. Third, the user can sce the result and change it if the recognizers were
mistaken. Fourth, the recognizers are able to usc the presentation data base to great

advantage. A discussion of the curve recognition rules will clarify the last point.

There are three functions that examine only the list of positions defining the curve.
(These functions do not examine the presentation data base.) They arc largely responsible
for determining the kind of presentation the curve appears most like: line, arrow, circle,
ellipse, or rectangle. The first function determines whether the curve is open or closed. The
second determines, for open curves, whether there are arrowheads at one or both ends. The
third produces a ranked match to a circle, ellipse, and rectangle, specifying the decfining

parameters (e.g., center and radius for a circle).

These functions are not necessarily always invoked -- they are invoked by the rules,
depending on the presentation data base structure. As these determinations are made, a
description of the curve is built up and can be used by later rules. The current set of rules
first invokes the function to determine whether the curve is open or closed. If open, a rule
asks whether the end positions lie within presentations; if so, the curve is an object of class
connecting thing (line or arrow). If open, another rule determines whether there are
arrowheads, and extends the description to distinguish between line, single-headed arrow,
or two-heading arrow. Finally, if open and connecting, a rule examines whether the ends
can be "pulled out", i.e., whether there is a surrounding ellipsc or box. If so, the line or

arrow will be connected to that outer form,

If the curve is closed, a rule asks whether the curve cncloses a presentation. If so, the
recognized command will be ellipse around or rectangle around. The type is determined
either by the style of the diagram (e.g., only ellipses surround text) or by the rule that

classifies closed curves. In the latter case, the default parameters for the form are ignored;

135

the command will compute these from the circumscribed presentation.

There are a few other rules, which deal with particular styles of diagrams. These rules

produce editor commands to create particular patterns of presentations.

Move Recognizer Mechanism. PSBase offers a framework for implementing continual
recognizers that interpret movement of presentations as commands, in the style of, for
example, the Xerox Star and Apple Lisa systems. Section 4.3 illustrated some kinds of move
recognition; for example, moving a document presentation to a printer presentation is

recognized as a command to print that document.

A move recognition driver (or just driver when the context is clear) is a predefined
continual recognizer; it proVides the first phase of a continual recognizer, checking for
applicability. 1t checks for a move command and, if so, determines the presentation being
moved and the (possibly several) presentations to which it has been moved. [t then matches

these possible candidates against a sct of patterns that attach to the data base network.

Fach pattern has an associated second-phase recognizer, which is invoked if that is the
pattern that matches. (In this implementation there is no consideration of multiple matches
-- the first entry whose pattern matches is used.) It is this associated recognizer that
performs the actual recognition of the move as a data base command. This division of the
recognition process follows the division described in section 2.6: the driver is the

organizational recognizer, and the selected recognizer is the semantic recognizer.

A sample definition of one of these pattern-to-recognizer associations is the following, the

one for recognizing movement of document icons to printer icons:

(def-move-recognition-rule move-document-to-printer
(:overlap (file (document-icon))
(printer (printer-icon)))
irecognize-printer-movement)

The sccond and third lines specify the pattern, which consists of three parts. The first part
specifies the kind of overlap between the presentation being moved and the candidate

destination presentation. This can be, ir order of increasing restrictiveness, near, overlap, or

136

within. This relation is determined from the presentations’ extent boxes.

The next two elements of the pattern specify the class of presented domain object and the
presentation styles. This entry spccifies that the presentation being moved must present a
file in the document-icon style. (Each presentation has properties connecting it to both the
presented domain object and the presentation style used to create the presentation.) The
entry also specifies that the destination presentation must present a printer in the printer-

icon style.

The fourth line specifies the recognizer that will create a command application for

printing the file.

Combinations. The next three sections describe modules that combine presenters and

recognizers into larger control structures.

Mouse-Tracking Reference. This module provides a mouse-based reference and
documeniation facility. A simpie fast recognizer continuaily watches the movement of the
mouse and determines whether the mouse cursor is within any presentation. This check is
made using the presentations’ extent boxes; in the case of more than one presentation
containing the mousc, the one with the smallest extent box is selected. The presentation

data base records this choice.

At the same time, the current choice is presented by being highlighted on the screen.
Thus, as the user moves the mouse, the highlighting continually shows what presentation

contains the mouse cursor.

In addition, about once every second (i.¢., at a rate considerably slower than the operation
of the tracking recognizer and presenter just described), a documentation line at the bottom
of the screen is updated. It presents the current choice by using the phrasal presenter,
described earlier. This can help to disambiguate some cases where the highlighting box
alone would be insufficient. [t can also be helpful in providing documentation about the

presentation style -- e.g., to find out that a particular number in a directory listing is the

137

length of a file. No presentation structure is created for the documentation line -- the result
is simply a text string -- though the anaphora and other processing is performed. Further-

information sub-trees are eliminated if the resulting string is too long.

An additional reference mechanism is provided that allows the user to move the selection
choice up and down the hierarchy of presentations, e.g., moving from a text presentation in
a directory listing up to the row presenting a file or to the entire directory presentation.
Again, this choice is reflected by the highlighting and phrasal presenters automatically:
these commands affect the presentation data base’s record of the current choice, which is

continually and automatically presented by them.

Open/Close Mechanism. Like the move recognition driver discussed above, this
mechanism provides a general framework for implementing opening and closing of domain
objects, like that used in the Xerox Star and Apple Lisa styles (see section 4.3). In those

systems, opening a document icon, for example, causes the text of the file to be displayed.

Opening and closing domain objects can be thought of as changing presentation styles.
The interface builder specifics links between the domain object class and the opened and

closed presentation styles. The following specification is typical:

(def-open-close-presentation-style file-document
file
document-icon
text-file-contents
fonts:cptfont)

This specifies that for instances of class file the document icon style will be used for the
closed presentation and the text file contents style for the opened presentation. The default

font for the opened style is also specified.

The open command is given a presentation as an argument and a position. [t finds the
entry for the presentation, based on the presented domain object, and invokes the presenter
for the opened presentation style specified by the entry. The presenter creates the opened
presentation at the given position. The original presentation is erased but remembered as a

property of the opened presentation. This allows the original presentation to be redrawn

138

when the opened presentation is later closed, if possible, for efficiency and so that its

original position is restored.

The decisions to erase and record the original presentation are a matter of style and are
easily changed. This style attempts, by having only one presentation of a domain object at a
time, to give a feeling of directness -- that the visual presentation is the domain object, and
opening is a "physical™ act. However, this always-erase rule is probably too simple: there
are probably certain kinds of presentations, e.g., icons, that do seem "to be” their presented

domain objccts, while others, e.g., phrasal presentations, may merely "talk about" them.

Earlier it was mentioned that opening and closing can be considered to be a matter of
changing presentation styles. However, there is another consideration that must generally
be made: signalling the application data base that more detail is needed from the outside
world or that it is time to save such detail. This issue is raised when the application data
base is a model of some outside world. An opened presentation typically involves
presenting much more domain information than a closed presentation. (For example. a
document icon may only be labeled with the file name, while an opened presentation

contains the file’s text.)

Therefore, the open command also sends a message to the presented domain object to be
sure that its contents are fully described and updated. For a file, this may involve getting
the file’s text. Each class of domain object can provide its own method for handling this

message, or inhcrit a more general one. The default method is to do nothing.

Closing an object requires two actions in addition to the presentation style change. First,
recognition of cditing changes to the open presentation must be performed. Thus, in
gencral, the user may have changed some of the parts of the opened presentation, and these
changes are reflected in changes to the presented domain object’s contents in some way.
Second, the domain object is senit a méssage to save its contents. For a file, this involves

saving the file’s text. Again, the inherited default is to do nothing.

Top-Level Control Structures. PSBase provides two alternative control structures that

139

processes command signals (keystrokes and mouse clicks), invoke immediate and other
recognizers, and cause graphics redisplay to be performed. They differ primarily in the
method of command invocation and command argument selection. In the first top-level
style, the user first specifies a command, then selects its arguments; in the sccond style, the

user selects the arguments first, then specifics the command.

The first style has the benefit of the command's description while selecting the arguments
for the command. The parameter descriptions have control of the selection, prompting the
user with the parameter name and documentation, and checking that the argument selected
is of the proper type. For example, if the parameter specifics that a file must be selected, it
will immediately reject any sclection that is not a file, letting the user make the selection
again. Though the style as provided does not do this, it would be a relatively simple matter
to tailor the mouse-tracking mechanism so that only presentations of the correct type would

be sensitive to selection, i.e., only those being highlighted as the mouse moved across them,

The second style collects selected arguments. prescnting them by keeping them
highlighted until the command is chosen, and then when a command presentation is
sclected, creates a command application for it, letting the command application check that

the arguments are of the proper type.

Each style allows two kinds of mouse clicks to be made: a left-button click selects a
presentation or its presented domain object, and a right-button click selects a position, In

the second style, positions are highlighted with a small circle-cross mark.

Both styles select commands (as opposed to their arguments) similarly. If the user types a
key, that key is translated into a command, using a standard dispatch table. On the other
hand, when the user selects a presentation, the top level checks whether its presented
domain object can be resolved to a command -- i.e., a simple command recognition is
performed. This is, for example, what happens when the user selects an item in a command

menu.

Similarly, when the user sclects a presentation of a command application, that command

140

application is executed. In this case, however, the command application already supplies

the arguments.

After each selection, whether argument or command, immediate recognizers are invoked,
and graphics redisplay is performed if there is no typeahead to process. In addition, the
second top-level style executes any command applications that have been accumulated, by
recognizers such as move recognizers. On the other hand, the first style allows command
applications to be accumulated without, in general, immediate execution. This is the case
when those command applications are presented, as just mentioned above. Section

4.1 illustrated such "plan presentations™ in Emacs Dired.

5.7 Summary

This chapter opened with some general comments about the benefits of a presentation
system base, and in particular, PSBasc. Summarizing these briefly: The structure of PSBase
is based on the structure of the general presentation system model. This is the source of
much generality and modularity, in both PSBase and the interfaces built on top of it. In
particular, domain-independent and style-independent parts can be identified and provided
in the base. Furthermore, most of the modules in PSBase rely heavily on the uniformity of
the data base network, which is used to implement both the presentation data base and the

application data base.

141

Chapter Six

Constructing Presentation Systems

This chapter illustrates the utility of the presentation system base, PSBase, by discussing
three user interfaces constructed on top of the base. The interfaces differ in style, but share
the same purpose, to provide an interface to the Tops-20 operating system top level [Tops20
80], as does the Exec, Tops-20's normal top level. The sections below will describe how
these interfaces arc constructed, emphasizing how much of the PSBase mechanisin is shared
between them and how relatively little needs to be written by the interface builder.
(Throughout this chapter, thé term user refers to the user of the constructed interface. The
term interface builder or just builder refers to the person who constructs the interface using

the PSBase tools and mechanisms.)

6.1 The User’s View of the Three Interfaces

The sections below will bricfly illustrate the three interfaces by discussing scenarios in
which the user views directories, files, mail, and user information; edits some of these;
prints and deletes files; and sends messages. Each scenario has the same fictitious user,
Norman S. Rafferty, whose login name is NSR. The host computer is MIT-OZ. The
discussion will be accompanicd by diagrams showing the screen at various points during the

scenarios. In order to save space, not all steps in the scenarios will be shown.

The first interface incorporates a style similar to the Xerox Star discussed in chapter four,
emphasizing the manipulation of icons. The second interface incorporates a style
emphasizing the use of text displays with associated command menus. The third style
incorporates a style emphasizing the usé of graphical annotations, an extension of the Emacs

Dired style discussed in section 4.1.

‘The annotation interface is somewhat less complete than the other two in that it offers an

142

interface to the file system only. This is not an inherent limitation, but instead reflects the
fact that the current implementation of PSBase offers less support for building the

annotation interface than for building the others.

It is not the intention of this report to argue that these particular interface styles are ideal
or even good as implemented here. The styles represent three different, important classes of
styles. The important point is how these interfaces can be designed, constructed, and

changed more easily given a presentation system base on which to construct them.

Icon-Style Interface. The initial screen display of the icon-style interface scenario is
shown in figure 6-1. At the top left is a clock, updated every minute. Below it are icons for
an in-box (received mail), out-box (for sending mail), two printers (the Dover laser printer
and a line printer), and a campfire (used for deleting filcs). Across the top arc icons
showing the users currently logged in. (One of the user figures is not in his chair, This
indicates that the user has not typed anything within the last twenty minutes and is perhaps
away from the terminal.) The user display is updated every few minutes. Below the users
are three folder icons, presenting NSR's three dircctories, NSR, NSR.R, and NSR.R.T.
(These happen to be hierarchically nested directorics, the directorics owned by this user,

though any set of directories can be displayed.)

The user opens the NSR.R.T folder: First, the folder icon is selected, by pointing to it
with the mouse and pressing a mouse button. While selected, the icon is displayed in
reverse video. The mouse is used to select a position for the opened presentation. The user
types a special open command key. The folder icon disappears and a new display showing
the contents of the directory appears at the sclected position, as shown in figure 6-2. This
display shows the files in the directory, as a set of document icons, the full directory name,
and disk space information. The "6/20221" indicates that this directory uses 6 disk blocks,

and 20221 disk blocks remain free.

While this opened directory is displayed, it will be periodically updated. If the number of
free disk blocks changes, the "20221" will be replaced by the new amount. Also, the

document icons will change if the set of files in the directory changes.

143

Figure 6-1: lcon-Style Interface

‘. é's

&=
A4

RS

144

Figure 6-2: Icon-Style Interface

O

NSH
R

. 0Z : < NSR.R.T > 6720221
e oo |pesa JITesT
sin flnon [Jixe ™t

)

145

Next, the user opens the file MSG.TXT. The process is the same as before: the
document icon is selected, a position is selected, and the open command key is typed.
Figure 6-3 shows the screen at this point. The MSG.TXT icon no longer appears in the
directory display, since it has been brought out to the desktop area and opened. When

closed, it will retake its place in the directory display as a document icon.

Figure 6-3 also shows a change in the logged-in user display: the set of users has

changed.

The user edits the text of the MSG.TXT file. A position within the text is selected, and
the set edit point command key is typed. A text-editing cursor appears at that place in the
text. Editing takes place by using simple Emacs-like command keys. For instance, typing
letters inserts them, and typing certain control-characters moves the cursor or deletes

characters.

The user also edits the 7o field (i.e., destination specification) at the top of the opened file
display. This indicates the user who will receive this file if it is mailed (put in the out-box).
This editing is performed in the same manner as the text editing just discussed. The resul,
shown in figure 6-4, is that the user ECD at MIT-OZ will receive a copy of this file when

mailed.

The user now closes MSG.TXT, by selecting it and typing the close command key. The

opened file display disappears, and the document icon rcappears in the opened directory.

Next, the file TEST.TXT is printed. The document icon is selected, a position at the
Dover icon is selected, and the move command key is typed. The print icon is highlighted to
show that the print command has been understood and is underway. (The backgrou'nd
process sends a request is made to the host computer to print the file.) The highlighting is
then turned off, and the document icon is positioned adjacent to the printer icon. See figure
6-5.

After printing, the user deletes the file by moving the TEST.TXT document icon to the

146

Figure 6-3: Icon-Style Interface

—
E:

EE

NSR NSR
R
[

: < NSR.R.T > 6720221

AN S D
FMAC | J1OGH ST
SiN NCM T

MSG.TXT.1 To: 7?77
Ed,
I saw the article., Ccould ycu please

send me a copy of the report it
mentions? (TM-132, I think.)

-~ Norm

147

Figure 6-4: Icon-Style Interface

12

SRS

NSR NGR
]

b A D
FMACT IO TFST
SN N.CM IXT

0Z : < NSR.R.T > 6/20221

== Norm

MSG.TXT.1 To: ECDGMIT-0Z
Ed,
I saw the article. Lculd you plaase

send me a copy of the report it
mentions? (It was TM-132, I think.)

148

Figure 6-5: Icon-Style Interface

@): BBt i in

[NSR
R

0Z: < NSR.R.T >
OOV
o] e
WY NN D)
FMAC [110G [MGG
SN NCM T

6720221

149

campfire. The campfire is highlighted as the file is deleted. The highlighting is then turned

off and the document icon disappcars.

The user moves the MSG.TXT document icon out of the directory to the desktop, i.e., the
open part of the screen. The user now closes the directory; the original folder icon is

displayed, instead of the opened directory display. See figure 6-6.

Mail is viewed by opening the in-box icon. This opened presentation shows the messages
in the mail file as summary lines, shown in figure 6-7. A summary line can be opened,
showing the text of the message. This process is similar to that for viewing directories and

files.

The user can send the contents of a file in two ways. First, he can move the document
icon to one of the user icons at the top of the screen. This causes the text of the message to
appear as a message on that user’s terminal. Second, the document icon can be moved to
the out-box. The user takes the latter action, moving the MSG.TXT document icon to the

out-box, causing the contents of the file to be mailed to the user ECD.

Finally, the user opens the ASR icon representing himself, displaying information about
his terminal location and personnel information, such as office, supervisor, etc. This is
shown in figure 6-8. He updates the office information, using the same text-editing process

described above, and then closes the display.

150

=

~ Figure 6-6: Icon-Style Interface

RA

OEOE

ol

151

Figure 6-7: Icon-Style Interface

12

O]

=)

:n)wR

»

)

e

QDA OAg-0O0

i ATty
lSR :'}R :Q‘f’n
MAIL.TXT.1

21 13-Aug Your cadr has a EHLOMIT-0Z » NSR@MIT~0Z
11 13-Aug That was a mess EHLG@MIT-0Z » NSR@MIT-0Z

152

Figure 6-8: Icon-Style Interface

> Yo et

6

NG NS NSR
o RT
b
ST MG
TXT

=)
= UName: NSR Fork: FINGER
Idle: Location: MIT-LISPM-2 (Chaos)
Norman S. Rafferty (Norm)
B Office: NE43-809, x3-5871, working for HENSON .
)

»
At

153

Menu-Style Interface. Figure 6-9 shows the initial screen display at the start of the
scenario for the menu-style interface. Across the top is a display of current information
about the status of the host computer: the time, the time-sharing load, and the number of
jobs. (The time-sharing load on Tops-20 is represented by three load averages, the first
specifying the load at the current time, the second, the average load over the past 5 minutes,
and the third, the average load over the past 15 minutes.) This display is updated every few

minutes.

Two command menus are displayed below the host information. The top menu contains
commands for choosing what to present and for updating the host’s information from user
editing of the presentations. (The latter is the perform changes command.) The bottom
menu contains presentation editor commands. These commands are invoked by command

keys in the icon-style interface.

The scenario starts with the user invoking the present directory command (the result of
which is shown in figure 6-10): The user first points to the menu item and selects it hy
pressing a mouse button. A small window appears at the bottom of the screen, requesting
that the user type the directory’s pathname. The user types the pathname "<NSR.R.T>"
(and can edit it using the text-editing commands). When the user types the End key, the
small window disappears, and the user is prompted for the next argument, the position for
the directory presentation. The interface displays these prompts (for domain object,
presentation, and position selection) briefly, in a line at the bottom of the screen (not shown
in these pictures), by specifying the kind of command argument expected. Here, the
prompt is "Position”. The user selects a position with the mouse, and the directory is
displayed as shown in figure 6-10. While the command is being executed, i.e., until the
directory display appears, the present directory item in the menu is highlighted by reverse

video.

The directory display is accompanied by a menu of commands that view, delete, and print
files. The user invokes the present file command from that menu, and then selects (as an

argument to the command), the MSG.TXT file. This selection can be done by pointing to

154

Figure 6-9: Menu-Style Interface

Host MIT-0Z Time: 21:19 ;. Load Avgs: 4.07 3.26 3.28; 6 jobs. |

Present Directory
Present User Jobs
Present Mail
Perform Changes

Erase
Move
Set Point

155

Figure 6-10: Ménu-Style Interface

[Host MIT-0Z Time: 21:23; Load Avgs: 4.07 3.26 3.28 ; 6 jobs. |

Presant Directory
Present User Jobs
Present Mail
Perform Changes

Erase

Move

Set Point

Present File 0Z : < NSR.R.T > 6719053

Delete File

Dover Print File EMACS.INIT.374 3 07726784 10:34:567 777 NSR 7?7

Line-Print File LOGIN.CMD.34 1 07/03/84 02:47:05 7177 NSR 777
MSG.TXT.1 1 08/13/84 20:58:27 08/13/84 NSR ECDBMIT-0Z
TEST.TXT.1 1 08713784 20:39:15 08/13/84 NSR 7?7

156

just the text presenting the name of the file, "MSG.TXT", the entire filc row, or even the
presentations of the file's propertics (such as the "1" presenting the file length). The user

also selects a position for the file display.

The user at this point can edit the file and its To field, just as in the icon-style scenario.

See figure 6-11.

The user prints the file LOGIN.CM D by selecting Dover Print File and the file entry in
the directory. (Note that if the user wished to print MSG.TXT at this point, he could either
seicct its entry in the directory or select the file display.) As before, while the command

executes, its item in the menu is highlighted.

The user next deletes LOGIN.CMD. Now, in addition to the highlighting of the delete
command menu item, the LOGIN.CMD line is removed from the display, as shown in
figure 6-12.

The user now erases the directory listing. ([his 1S not a delete command -- 1t Just removes

the directory display from view.)

A display of the current user jobs is next displayed, illustrated in figure 6-13. From left to
right, the ficlds in this display are: login name, user name, currcnt job, and terminal
information. The terminal information starts, in some cases, with the time the terminal has
been idle (1:17 for one user, 1 minute for another here) and follows with the terminal
location. The user can get the identification of these fields by pointing to them with the
mouse: the documentation line at the bottom of the screen (not shown here) shows a phrase
identifying the field. For example, pointing to the text "MIT-LISPM-2 (Chaos)", the user
sees "the location of the terminal of the user NSR, Norman S. Rafferty”. The user edits this
field to add more information, changing it to "LM2: 7th floor". He makes this change take
effect by invoking the perform changes command from the menu at the top left. See figure
6-14.

The user next erases the user display and invokes present mail, resulting in the display

157

Figure 6-11: Menu-Style Interface

[Host MIT-0Z Time: 21 :24 ;. Load Avgs: 4.07 3.26 3.28 ; 6 Jobs.
Present Diractory
Present User Jobs
Present Mail
Perform Changes
Erase
Move
Set Point
Present File 0Z : < NSR.R.T > 6/19053
Delete File
Dover Print File EMACS . INIT.374 3 07/26/84 10:34:57 177 NSR 777
Line-Print File LCGIN.CMD.34 1 07/03/84 02:47:05 ?r? NSR 777
MSG.TXT. 1 1 08/13/84 20:58:27 08/13/84 NSR ECDBMIT-02
TEST.TXT.1 1 08/13/84 20:39:15 08/13/84 NSR 7?77
MSG.TXT.1 To: ECDOMIT-0Z

td,

I saw tha article.

Could you please

send me a copy of the report it
mentions? (It was TM-132, I think.)

-~ Norm

158

Figure 6-12: Menu-Style Interface

Host MIT-0z Time: 21:26; Load Avgs: 4,07 3.26 3.28 ; 6 jobs?j

Present Directory

Present User Jobs

Present Mail

Perform Changes

Erase

Move

Set Point

Prosent File 0Z : < NSR.R.T > 6719053

Delete File

Dovar Print File EMACS.INIT.374 3 07/26/84 10:34:57 177 NSR ?777?

Line-Print File MSG.TXT.1 1 08/13/84 20:58:27 08/13/84 NSR ECDAMIT-02

TEST.TXT.1 1 08/13/84 20:39:15 08/13/84 NSR 777

MSG.TXT.1 To: ECDBMIT-0Z

La,

I saw the article.
send me a copy of
mentions? (It was

-- Norm

the report it
TM-132, I think.)

Could you please

159

Figure 6-13: Menu-Style Interface

[Host MIT-0Z Time: 21:29 ;. Load Avgs: 4.07 3.26 3.28 ; 6 jobs. |

Present Directory
Present User Jobs
Prasent Mail
Perform Changes

Erase

Move

Set Point
User jobs:
PHW Patrick H. Winston EXEC 1:17 MIT-NE43-8A-HUB (Chaos)
FONER Leonard N. Foner VDIREC x8-38260: Dialup
BERWICK Robert C. Berwick ZEMACS 1 x8-8268: Dialup
SECRETARY Jerry Roylance LISP 7?7 77?
NSR Norman S. Rafferty FINGER MIT-LISPM-2 (Chaos)

160

Figure 6-14: Menu-Style Interface

Host MIT-0Z Time: 21:30; Load Avgs: 4.07 3.26 3.28 ; 5 jobs. |

Present Directory
Present User Jobs
Present Mail
Perform Changes

Erase
Move
Set Point

User jobs:

PHW Patrick H. Winston EXEC 1:17 MIT-NE43-8A-HUB (Chaos)
FONER Leonard N. Foner VDIREC x8-8260: Dialup
BERWICK Robert C. Berwick ZEMACS 1 x8-8268: Dialup
SECRETARY Jerry Roylance LISP 7?77? 77

NSR Norman S. Rafferty FINGER LM2: 7th floor

161

shown in f‘gure 6-15. The mail summary display haémpaniedbyamenu of eommahds
forvnewmgmessagesorsendiugmecmtemsofﬁhsamm The user can mail or
- gsend (i.e., sendtoatermmal,sothempmtm&ewqmckly)byselecnngme
~ command, the MSG.TXT fite, and then a user. ‘There are a number.of ways of selecting the
recnpwntuser becausetherecanbeanumbcrofmmm&phyed intheToof
aﬁledmplay,madxsplayofaserjohs.mdinmmmwm ‘

162

Figure 6-15: Menu-Style Interface

Host MIT-0Z Time:

21 :32; Load Avgs: 4.07

3.26 3.28 ; b6 jobs. |

Present Directory
Present User Jobs
Present Mail
Perform Changes

Erase
Move
Set Point

Presant Message
Mail File
QSend File

MAIL.TXT.1

21 13 -Aug Your cadr has a
11 13-Aug That was a mess

EHL@MIT-0Z » NSR@MIT-0Z
EHL @MIT-0Z » NSR@MIT-0Z

163

Annotation-Style Interface. The initial screen display for the annotation-style interface is
very similar to that for the menu-style interface. A new command, recognize, appears in the
top menu, and the presentation editor menu has been expanded to include commands for
drawing lines and arrows. In addition, the interface offers the user the curve-recognition
facility for creating lines and arrows. This expanded menu reflects the larger role the
presentation editor plays in this style of interface: the user creates graphical annotations to

presentations displayed by the system. See the upper left portion of figure 6-16.

The user starts by presenting the directory <NSR.R.T). As with the menu-style interface,
the user selects the menu item and is prompted for pathname and position. The directory

display in this interface, however, does not include an associated menu of commands.

The user first decides to correct some information in the directory, namely, that the
author of the file EMACS.INIT.374, currently NSR, really should be EAKX. To do this, the
user invokes the set point command to place the text-editing cursor in an area above the
display and then tvpes the text "CHANGE". The text "EAK" is created nearby in a similar
manner. The user then connects "CHANGE" to the author presentation by a line, and

connects "CHANGE" to "EAK" by an arrow. The result is shown in 6-16.

To check that the system will correctly understand this annotation command, the user
invokes the recognize command. Up to this point, the text, line, and arrow created by the
user had not been recognized by the interface. The recognize command specifically invokes
the annotation recognizer. The menu item is highlighted while the recognition is being
performed. The user then checks the result of the recognition by pointing to the text
"CHANGE?". The documentation line now displays "a plan to change the author of the file
OZ:<KNSR.R.T>EMACS.INIT.374, NSR, to EAK." This change has not yet been made

-- the user has only had the system confirm the meaning of the planned command.

The user next makes several more annotations, as shown in figure 6-17. These tell the
system to set the reference date of the file EMACS.INIT.374 to be the same as its creation
date, delete the file LOGIN.CM D.34, and print the file TEST.TXT.1.

164

Figure 6-16: Annotation-Style Interface

{Host MIT-0Z Time: 21:45; Load Avgs: 2.64 2,83 2.94 ; 6 jobs, |
Present Directory
Present User Jobs
Present Mail
Recognize
Perform Changes
Line
Arcow
Erase
Move
Set Point
EAK
CHANGE
0Z : < NSR.R.T > 6/18561 l
EMACS.INIT.374 3 07/26/84 10:34:57 777? NSR 7?7
LOGIN.CMD, 34 1 07/03/84 02:47:05 08/13/84 NSR 7
MSG.TXT.1 1 08713784 20:58:27 08/13/84 NSR £ECD@MIT-0Z
TEST.TAT, 1 i 08713764 20:39:15 08/13/84 NSR ey

165

Figure 6-17: Annotation-Style Interface

Host MIT-0Z Time: 21:48;. Load Avgs: 2.64 2.83 2.94; 6 jobs.]
Present Directory
Present User Jobs
Present Mail
Recognize
Perform Changes
Line
Arrow
Erase
Move
Set Point
EAK
CHANGE
CHANGE
0Z : < NSR.R.T » 6/18561 / I I
EMACS.INIT.374 3 07/26/84 10:34:57 777 NSR ?77?
DELETE F=LOGIM.CMD.34 1 07/03/84 (02:47:05 08/13/84 NSR 777
MSG.TXT.1 1 08/13/84 20:58:27 08/13/84 NSR ECDOMIT-0Z
LINC-PRINT — > VEST.TAT. 1 1 08713784 20:39:15 yy/13/84 NSR (481

166

The user now tells the system to perform these commands, by invoking the perform
changes command. The command’s menu item is highlighted. The first thing the interface
must do is recognize the new annotations, so the recognize command is automaticaily
invoked by the interface. The user sees that this is taking place: the recognize menu item is
now highlighted. After recognition, the commands are executed one by one. As with the
highlighting of the recognize command, thc user sees the progress of the perform changes

command: the annotation commands are highlighted while they are being executed.

When the annotation commands have all been performed, the display is updated in two
ways. First, the line in the directory presenting the file LOGIN.CMD.34 is removed, since
the file has been deleted. Second, the annotation verbs are changed to past tense. The

resulting display is shown in figure 6-18.

6.2 Common Implementation Details
The basic order of development of the user interface was as follows:

* Create application data base network and a background process to connect it
with the operating system,

* Define some initial presentation styles so that further development can be tested
with them (e.g., icons).

* Enable selected PSBasc basic style packages, cspecially top-level control
structure, cdit functions, and the mousc-tracking reference mechanism,

* Define and describe commands and comniand sets, select menu presentation
styles.

* Specify move recognition and open/close rules.
* Write recognizers as necded (move recognizers, direct-edit recognizers).

* Define and change presentation styles as desired.

Common Implementation. Certain parts of the user interface implementation are shared

between all three of the styles. These parts, once constructed, are invariant under further

167

Figure 6-18: Annotation-Style Interface

Host MIT-0Z Time: 21 :49; Load Avgs: 2.64 2.83 2.94 ; ngobs.]
Present Directory
Present User Jobs
Present Mail
Recognize
Perform Changes
Line
Arrow
Erase
Move
Set Point
EAK
changed
changed
0Z : < NSR.R.T > 6/18561 / I |
EMACS.INIT.374 3 07/26/84 10:34:57 7?7 NSR 777
MSG.TXT.1 1 08/13/84 20:58:27 08/13/84 NSR ECDBMIT-0Z
1 08/13784 20:39:15 08/13/84 NSR 777

| TEST.TXT.1

168

development and experimentation with intcrface styles.

The most important of these parts is the application data basc, whose development will be
discussed separately in the following sub-section. ‘The application data base models the
operating system, and at first it scems redundant. Yet it is well worth the modest effort to
construct it: ‘The uniformity of the data base network is vital to the utility of the PSBase
mechanisms. In future systems, applications may be built from the first with this kind of
data base, completely relieving the interface builder from this work. (The benefits of a
uniform data basc mechanism in modeling the application are not limited to the
mechanisms of the user interface.) A sub-section below discusses the continual updating of

the application data base in more detail.

A number of simple parsers are provided as part of the general recognizer mechanism
that recognizes user edits of property presentations. These are called direct edits and are

also discussed in detail in a sub-section below.

Finally, all the styles share a number of PSBase components. Since these components are
simply selected and enabled, requiring almost no work on the part of the interface builder,

the components that appear in the three style implementations will be listed here:

*The two top-level control structurcs (argument-first for the icon-style
implementation; command-first for the menu-style and annotation-style
implementations)

* The command execution presenter (for highlighting commands as they execute)

* The mouse-tracking/refercnce mechanism

* Vertical command menu presentation styles (for the menu-style and annotation-
style implementations)

* Presentation editor functions; all styles include move, set text cursor position,
and text-cditing commands; menu style adds erase; annotation style adds line

and arrow

* Curve recognizers for the annotation style.

169

The Application Data Base. Like PSBase, this interface is implemented on the MIT Lisp
machine. The Lisp machine acts as the user's terminal; the Lisp machine communicates
with the host computer via network connections. The user of the interface, however, does

not need to be aware of these connections.

The large scale structure of this system is shown in figure 6-19. The application data base
models the current state of relevant parts of the host computer, using the uniform data base
mechanism provided by PSBase. A background process maintains the application data base
by periodically polling the host computer, getting information about the users currently
logged in, the time-sharing load, the contents of relevant directories, and the contents of the

user’s mail file ("in box").

Some host information is retricved or saved upon demand, rather than by regular polling.
For instance, when the user opens a document icon, the presented file instance in the
application data base receives a make-contents message: the file instance must expand its
description to include the text contents of the file. At this point. therefore. the file is read
into the Lisp machine from the host computer. Similarly, when the file instance receives a

save-contents message, the text of the file is written back to the host computer.

Recognizers for Direct Editing. Three instances of direct editing of a presentation occur
in the icon-style interface scenario: editing of the file text, the file destination field, and
fields in the user information display. All such direct editing is handled in the same
manner. The PSBase recognizer control structure finds those presentations created by
presenters and cdited by the user. For each of these, it invokes a spccific recognizer to
handle that kind of presentation; currently, only text presentations have such a recognizer.
This recognizer, still part of the general mechanism, checks for a parser specifically for the

kind of presented domain object and invokes it.

The interface builder must therefore provide such parsers for those kinds of application
data base instanccs that are specific to this interface. The following are two sample parsers.
Note that both are specified not by the class of domain object, but by the property name.

Text presentations that are directly edited are presentations of properties (since they are

170

Figure 6-19: Application Data Base Management

APPLICcATION
DA TA
Base

/

BACKGROUND
PROCES‘:

Lisp Macu ne |

N & 'TWORK

7
CC/V/VfC Tiovs

HosT
ComPUTER

171

parts of a larger style). This approach is clearly limited; for instance, even if based on the
property name, the specification really should include the kind of owning object or the kind

of property value, since property name alone may be ambiguous.

(defmethod (TEXT-PRESENTATION
:PARSE-WORK-PHONE-PRESENTED~DOMAIN-OBJECT) ()
string)

(defmethod (TEXT-PRESENTATION
:PARSE-REFERENCE-DATE-PRESENTED-DOMAIN-OBJECT) ()
(make-instance 'date

':universal-time (time:parse-universal-time string
0 nil nil)))

The first parser simply returns the string of the text presentation as the string to use for
the value of the presented domain object’s property. In fact, most of the parsers for these
interfaces have such trivial parsers, since most of these properties have string values. Here,
for example, the user instance in the application data base has a work phone property; its

value is not a data base instance, but is simply a string.

The second parser is only slightly more complicated. The reference date property of a file
instance has a value that is a date instance. The date instance in turn has a universal time
property, enceding a time or date as a number. The Lisp machine provides a package of
functions for manipulating such time representations, including the parsing function used
here that returns a universal time given a string. Thus, there are two phases, the actual
parsing of the string and the creation of the data base instance. (These phases are simple
cases of what section 2.6 described as the semantic recognizer and domain changer parts of

the recognizer.)

The number of parsers to be specified varies with the number of properties in the
application data basc that will be edited. It does not depend on the number of presentation
styles presenting these properties. Thus, the interface can become quite extensive without
requiring much additional work in this regard. For example, the icon and menu styles both
show a user's terminal location, but they embed this in different styles, one in a display of

information about a single user, and the other in a table of information about all the users.

172

However, once the parser for the location property has been created, both presentation

styles immediately offer the user the ability to edit this field.

6.3 Icon-Style Interface Implementation

This section and the following two describe the implementation of the interfaces just
described, building on PSBase. The icon-style interface implementation consists of five
major parts: presentation style descriptions, open/close mechanism, move recognition,

recognizers for direct editing, and simple use of various PSBase components.

Presentation Style Descriptions. In general, the icon-style interface uses a graphical
presentation style to define the icons, and template and sequence prescntation styles to
define the opened presentations. Examples of these styles’ specifications will be given

below.

The icon style descriptions are simple, though somewhat verbose (as each line, circle,
rectangle, etc., must be specified by listing its properties). These descriptions are easily
generated, though one would expect a full-scale presentation system base to provide more
tools for creating icons by editing pictures. (Whether the pictures are constructed from
lines, circles, etc., as here, or from bitmap, or a combination, is an independent issue. The

non-bitmap approach used here was chosen because it used existing PSBase facilities.)

The presentation style description for the document icon is shown below:

173

(def-graphics-presentation-style DOCUMENT-ICON FILE nil
nil nil
((nil .
(LINE-PRESENTATION ; Top
:x1 (relative-to-parent-x 0)
:yl (relative-to-parent-y 0)
:x2 (relative-to-parent-x 16)
:y2 (relative-to-parent-y 0)))
(nil
(LINE-PRESENTATION ; Left
:x1 (relative-to-parent-x 0)
:yl (relative-to-parent-y 0)
:x2 (relative-to-parent-x 0)
:y2 (relative-to-parent-y 30)))

((:PATHNAME :STRING-FOR-EDITOR)
(TEXT-PRESENTATION
:x (relative-to-parent-x 2)
:y (relative-to-parent-y 9)
:font 'fonts:hi6
:mouse-trackable-p ':no-track
:string (substring-or-null-string
(send presented-domain-object ':component-waik
'(:pathname :string-for-editor))
0 4)))
((:PATHNAME :STRING-FOR-EDITOR)
(TEXT-PRESENTATION
:x (relative-to-parent-x 2)
:y (relative-to-parent-y 19)
:font 'fonts:h16
:mouse-trackable-p ':no-track
:string (substring-or-null-string
(send presented-domain-object ':component-walk
"(:pathname :string-for-editor))
4 8))))
nil)

Just as with the example shown in section 5.4, the first two lines of this style description
specify the name, document-icon, the application data base class to which it applies, file, and
flags specifying here that it is not the default style for filcs, nor is it an active presentation.
The first presentation description in the following list specifies the line across the top of the
icon. The nil that starts the specification indicates that this line alone does not present
anything. The description for the line down the left sidc of the icon is similar, as are the five

line descriptions that have been elided.

The style description ends with entries for the two lincs of text presenting the file name,

174

Each starts with a specification of the presented domain object, (:pathname
:string-for-editor). This means that the text is computed from the string-for-editor property
of the filc's pathname. (A pathname has scveral string properties, specifying different ways
of writing the pathname.) The strings for the two text presentations are computed by forms

that extract the first four letters for the first line, and the second four for the second line,

The text presentation entries also specify mouse-trackable-p properties. A :no-track value
informs the mouse-tracking mechanism that these text presentations should not be mouse-
sensitive. The intent of the style is that an icon be an atomic unit, and thcrefore no smaller
part of it should be mouse-sensitive. By default these presentations would be mouse-
sensitive, since they present something. The lines, on the other hand, would not be mouse-

sensitive by default.

The following are representative of style descriptions for opened presentations, using
template and sequence presentation styles. There are three primary styles here: a template
stvle for the directory label and disk usage line. a sequence style for the row of document

icons, and a template style that combines the label and row styles.

The following is the template for the directory header. This style is also used by the other

dircctory styles, those used in the other two interfaces.

(def-template-presentation-style TOPS20-DIRECTORY-HEADER
DIRECTORY nil
((:self tops20-directory-name fonts:cptfontb)

(:disk-space-used active-text)
"//"
(:free-disk-space active-text))
thorizontal-layout
nil)

Two other styles are referred to by this template. The tops20-directory-name style simply
presents ihe directory’s host and name in a text template of colon and brackets, e.g.,
"OZ: <NSR>". The active-text style is a simple graphical prescntation style that defines a
text presentation whose string is the same as that it presents, and which is specificd as being

active, updated every minute. Unlike most graphical presentation styles, it only specifies

175

one presentation, the text presentation. The reason for having it is simply to specify its

active nature,

The following is the presentation style description for the row of document icons in the
directory display:

(def-sequence-presentation-style
ICON-DIRECTORY-FILE-GROUP-STYLE
(LIST-PROPERTY DIRECTORY :FILES FILE)
nil t 999999
nil nil nil
document-icon
thorizontal-layout)

The third line of this description, (list-property ...), specifies the property of the directory
being presented, namely, the files property, and the kind of objects in the list, namely, file
instances. The fourth line specifies that this is not the default style for such properties, and
that, while it is an active presentation, it should not (in effect) be periodically updated -- it
will instead be updated automatically whenever the directory instance in the application

data base is changed.

This sequence has no prefix, infix, or suffix presentations (fifth linc). The style used to
present the clements of thc files list is document-icon. The document icons will be

positioned in a horizontal row.

Finally, the following is the template style description that composes the above two styles

into the overall opened-directory style:

(def-template-presentation-style
TOPS20-DIRECTORY-ICON-LISTING-STYLE DIRECTORY nil
((:self tops20-directory-header)

"n

(:files icon-directory-file-group-style))
:vertical-layout
:border-box)

The third line of this template specifies that the directory (self) will be presented both by
the whole composite and by the header line. The null string in the fourth line effectively
produces a blank line scparating the header from the document row. And, as mentioned

previously, the files property of the directory, a list of files, will be presented in the style

176

which lines them up as a row of document icons. The header, blank line, and document row

are laid out vertically, and a border box is placed around the entire directory presentation.

Opening, Closing. The PSBase mechanism for opening and closing presentations is
driven by a set of specifications linking domain object classes and the presentation styles for
their opened and closed presentations, These are easily provided; the following is one of

these spcecifications (there are four others, all similar):

(def-open-close-presentation-style message-open-close
message
message-summary
full-message
fonts:cptfont)

Move Recognition. Chapter five described the general move recognition mechanism
provided by PSBase. To use this mechanism, the interface builder must provide the move
recognition rules and some small semantic recognizers to handle the recognition, once the
general organizational recognizer has determined that it applies. The following specifies the
move recognition rule used for recognizing movement of a document icon to a directory
(either a folder icon or an opened directory display) as a command to move the file to that

directory (there are four other similar rules specified for the interface):

{def-move-recognition-rule move-document-to-directory
(:overiap (file (document-icon))
(directory (folder-icon
tops20-directory-icon-listing)))
:recognize-file-directory-movement)

The semantic recognizers for move recognition are all very similar. The following is a

sample:

(defmethod (PRESENTATION :RECOGNIZE-MAIL-FILE-MOVEMENT)
(out-box-presentation edit-history-entry)
(let* ((file (send self ':resolve-presented-domain-object
#'typep 'file))
(command-application
(make-command-application
(intern-command 'send-file-as-mail-1)
(list file))))
(send command-application ':execute)
(send self ':move-next-to-presentation
out-box-presentation edit-history-entry ':right)})

177

This recognizer is invoked by sending a recognize-mail-file-movement message to the
presentation being moved, the document icon. [t is given the out-box icon as one of its
arguments. The first binding form in the Jer* resolves the presented domain object to a file
instance. The second binding form creates the command application, specifying the

send-file-as-mail-1 command and an argument list with the filc as the single argument.

The body of the let* executes the command application (the general PSBase command
execution presenter will take care of the highlighting automatically) and ends by moving the

document icon to a standard position to the right of the out-box.

The other move recognizers are about this simple. Unfortunately, some need to specify
highlighting themselves because of inadequacies in the general command execution
presenter. (Specifically, the presenter looks for presentations of the command or the
command application. However, moving a document to a printer does not involve a
command presentation -- the printer icon presents a printer, not a command. The out-box,
on the other hand. presents the mail command. Perhaps the command execution presenter
could be improved to handle such cases. In any case, the highlighting is a simple matter to

specify.)

6.4 Menu-Style Interface Implementation

The implementation of the menu-style interface consists primarily of presentation style
descriptions. For example, the host information at the top of the screen is produced by the

following template style:

 (def-template-presentation-style HOST-INFO HOST nil

("HOSt "
(:name nil)
" Time: "

(:current-time digital-clock-no-border)

", "
’

(:load-averages hoét—info-]oad-averages)

", "
9’

(:number-of-jobs nil)
" jobs‘")
thorizontal-layout :border-box)

178

This style is similar to the other template styles discussed. One distinguishing feature
here is the presentation style specified for the name and number of jobs properties: nil
indicates that the data base network should be searched for the best applicable default style.

The two other sub-styles named are straightforward templates.

Implementing displays with associated menus has two parts: specifying the relevant
command .set in the application data base and defining the presentation styles. The

directory presentation will be used here as an example.

The directory presentation and menu combination is a template-style composite
presentation, and as a whole it presents the directory. It has two sub-presentations, the
menu and the directory display. These must, by the nature of PSBase template presentation
styles, present properties of the directory (or the directory itself again -- the directory
display falls into the latter category.) Thus, the interface builder must be sure that a
command set is deﬁned, consisting of the relevant commands (present file, delete file, etc.),
and that this command set serves as the value of some property of the directory to be
presented. Since all directories will share the same command set, this is a property of the

entire class, inherited by each directory instance.

This is implemented in the current PSBase data base mechanism by defining a method
for directory. (All properties are accessed by the message passing. Some properties are
defined by the contents of slots in the instances; but the Lisp machine message-passing
system automatically creates methods to retrieve these as well. Thus, the property accessing

is uniform.) This method is shown below:

(defmethod (DIRECTORY :FILE-COMMAND-SET) ()
short-file-command-set)

This defines the file command set property for directories. [t returns the command set
instance in the data base network that the variable *short-file-command-set* is bound to.
That variable and the command set instance in turn are created from the following

specification:

179

(defvar *SHORT-FILE-COMMAND-SET*
(make-command-set-from-spec
"(present-file
delete-file
dover-print-file
line-print-file)))

This specification defines a command set instance by simply listing the names of the
commands to be included. These commands are defined individually clsewhere. (They
may be included in several different command sets. The PSBase command description
mechanism interns command instances in the data base network based on their Lisp
function specifications.) For example, the command description for the present-file

command is written as follows:

(def-command PRESENT-FILE
carglist ((parameter :select :domain-object
:domain-object-type file
:presentation-type t)
(parameter :select :position)))

The interface builder must also write the functions for the prescntation commands that

appear in these menus. The definition of the present-file function is as follows:

(defun PRESENT-FILE (file-instance position)
(send file-instance ':make-contents)
(present file-instance
(position~x position) (position-y position)
nil
'text-file-contents))

This function (like the open mechanism discussed in chapter five) first ensures that the
file instance includes the current contents (the text of the file). The file is then presented:
the present function is a general one that takes as arguments the application data base object
(the file instance) to be presented, the position for the presentation, the default font (none
specified here), and the name of the piesentation style to use {(text-file-contents). Since
these present-... functions all tend to have this same structuie, there is potential for
converting this task of writing functions to simply describing the action, as is done with

open/closc mechanism.,

Some of the presentation styles were shared with the icon-style interface. (In the icon-

style interface these were all used as opened presentations.) These shared styles are, first,

180

the presentation of files showing pathname, destination, and text contents; second, the
presentation of the mail file by showing message summary lines; and third, the presentation

of the text of mcssages.

The recognition of direct cdits is exactly the same as in the icon-style interface. In fact, no
additional work was done at all here, since all the parsers for the properties had already

been defined.

6.5 Annotation-Style Interface Implementation

The annotation-style interface uses the same presentation styles as the menu-style
interface, differing only in the choice of the command sets and top level presentation style
for the directory. (In the annotation-style interface the top-level directory presentation is

just the directory listing, without the associated menu.)

The command execution presenter provides the facility whereby the annotation verbs are
changed to past tense (in addition to providing the command highlighting). The annotation
recogniier only needs to record the presentation style (namely, the annotation presentation
style) in the annotation presentation instance. The command execution presenter checks
the cbmmand presentation (which it has been highlighting) for being of that style; if so, the

verb is changed to past tense.

The bulk of the effort was devoted to writing the annotation recognizer. Unlike the other
mechanisms discussed in these interface implementations, the annotation recognizer is fairly
large and is both style-specific and domain-specific. [t did not prove very difficult to
modify at various times, as parts of the structure seem almost descriptive. However, a better
approach for future development would be to abstract a general PSBase mechanism driven
by a set of interface-specific annotation descriptions. This seems to be plausible, judging

from the final structure of the programs.

Recognition of the annotations works by matching structural patterns against the

presentation data base structure and checking presented domain objects of eligible

181

presentations. For example, consider the case of an arrow connecting the text "delete” with
a presentation of a file. The recognizer starts by checking that the text presentation is a
command verb. Its job is now to verily that this is indeed a presentation of a delete

command application and to determine its arguments.

The organizational recognizer collects lines and arrows attached to the text presentation

and collects the presentations at the other ends; here, only one arrow is collected.

The semantic recognizer part checks that the presentation at the other end of the arrow
matches (by reference resolution if necessary) something that can be deleted. In this case,
the domain object is a file, and the command application can be created, with the file as its

single argument.

Even though the annotation recognizer is a fairly large and complex, hand-written
program, compared with the other interface-specific parts of the project, the annotation
recognizer still benefits from PSBase support. Its recognition task is simplified by having a
structured presentation data base: it does not have to do any work to find arrows and lines
connected 1o the verb text. And because the presentation data base records presented
domain objects for the rich structure created by the dircctory presenter, recognition is an
incremental task -- only the annotations to the directory need be recognized, and the
recognizer can easily check that presentations at the ends of delete arrows present files, or

those at the end of change lines present properties that may be changed, for instance.

These checks are aided too by the PSBase reference resolution mechanism: whether the
presentation at the end of the change arrow presents a date, a time-and-date, a property
whose value is one of those, etc., is immaterial -- when the recognizer checks a change-
reference-date annotation, it need only ask the resolution mechanism to check for a date

instance.

Part of the previous two points, and a more general benefit as well, is the fact that the

application data base is constructed from a uniform data base mechanism.

182

And finally, the larger, interactive nature of the interface benefits from the general
PSBase recognition dependency and retraction mechanism. The annotation recognizer does
not need to consider changes in the annotation structure from a previously recognized state
-- any such changes cause the previous recognition to be retracted automatically. The
recognizer only needs to consider the recognition from an unrecognized state and to inform
the dependency mechanism of the presentations on which the recognition depends and how

to retract the recognition it specifies.

6.6 Other Style Possibilities

Combinations. These interfaces do not have to be (and were not in this project)
constructed separately. The interface builder can develop them together, combining them
at various times, experimenting with combinations of presentation styles in order to develop
a desired overall style, and so on. One command that PSBase provides in this regard is the
change presentation style command. The command is given a presentation as its argument.
The set of all nresentation styles apnlicable to the nrecentation’s presented domain object is
collected. The user selects one of the applicable styles from a menu, and the presentation is
replaced with a new one, of the same domain object, in the selected style. Thus, the builder
or user can be offered control over the way the objects in the application data base are

prescuted.

Planning. In the interfaces developed here, only the annotation-style included planning
-- the separation of accumulation and recognition of commands from their exccution. The
other styles appear to inherently be more of a direct manipulation style of interface.
However, one can imagine developing extensions of those styles, adding features of the

annotation style to add planning.

The user could create arrows between presentations in the icon-style interface to present a
planned move -- and thercfore a planned command using the move recognizer. For
instance, the user could draw an arrow from a document icon to a printer icon. This could

be recognized as a plan to print that file. The user could see this recognition documented,

183

as in the annotation-style interface, and accumulate a sct of move-arrow plans before giving

the command to execute them.

Similarly, some commands could be planned by drawing arrows in the menu-style
interface, an arrow from the delete file menu item to a file presentation, for example. Some
menu commands might require more than one input, which would require a somewhat
more complicated visual style to distinguish and group the different inputs to a planned

command application.

6.7 Summary

This chapter has described the construction of a user interface on top of the PSBase
system described in chapter five. Threc alternative styles were implemented. The

implementation comprised two major phases:

The first phase was style-independent, primarily the creation of the application data base
(and the background process that periodically updates the application data base). Other

style-independent work is the writing of the simple dircct-edit recognizers.

The second phase (for the icon-style and menu-style interfaces, at least) primarily
consisted in using the PSBase-provided tools for defining and describing presentation styles,
commands, command sets, move recognition rules, and presentation styles for opened and
closed domain objects. These definitions have been illustrated in this chapter, and each is
small and can be quickly and independently written. The examples given in this chapter are
representative: the others are of about the same difficulty and size. The annotation-style
interface required significant additional work in writing its recognizer. An improved
PSBase would reduce this work to the scale of the other styles: the builder would simply

write a few simplc descriptions of the annotation style.

In other words, once the style-independent work has been completed, implementing a
particular style is generally a matter of writing a relatively few small pieces using PSBase

tools and choosing some standard PSBase components. This project has demonstrated that

184

even the small number of features provided by PSBase, a prototype presentation system
base, covers a substantial amount of ground, enhanced by the ability to combine

mechanisms in an independent manner.

Some rough statistics on the project reported here may help to support the claims about
the ease and speed with which interfaces can be built on top of a presentation system base.
(This discussion primarily covers just the icon-style and menu-style interfaces, since the
annotation-style interface was developed together with PSBase at an earlier stage.) Of the
roughly thirty days spent on the project, more than half were devoted to further work on
PSBase itself. About five or six days were devoted to creating the application data base, the
background management process, and the other common parts of the implementation. The
background process took most of the time, more than anticipated, partly due to the
problems of getting information from a distant host via communication network
connections. (A few days involved determining the network scheme best suited for this

experiment.)

About seven days were required to build the icon-style and menu-style interfaces (and the
parts of the annotation-stylc interface that had not yet been completed -- the parts other
than the annotation recognizer). This includes time spent at the end changing styles to

experiment with the look of things.

Thus, six days were required for style-independent work and seven days for the style-
specific work on the three different style implementations. An interesting note is that, while
many interface builders will be constructing only one interface, some builders will want to
experiment with different styles. This project illustrates how the experimentation process is

helped too: the style-independent work, nearly half the effort here, is done just once.

Another statistic is the number of presentation styles. At the project’s end there were
about 80 styles defined. Several of the PSBase tools evolved during the project, and this
number would be less if the presentation styles were defined from scratch now -- the
number might be closer to 50 or 60. This chapter and chapter five have shown seven of

these. Thcse numbers, in any case, are not very large, and the definitions are simplified by

185

the fact that they do not have complex interactions. (They have few interactions, in fact

-- merely the static inclusion of one style within another.)

Similarly, though only one move recognition tule and one open/close rule have been
included here (and one of each in the previous chapter), there are only about five others in

each category. The total in both categories is no more than a page of definitions,

The characteristics and statistics discussed lend credence to claims that a presentation
system base greatly cases and speeds the development of a user interface. These are not
flawless arguments, unfortunately. First, this has only been one project. It benefits in
generality by including different styles, but there are a few categorics that have not been
included; one such is command completion [Tops20 80] [Zmacs 84] (and see section 4.2,
page 78). Second, the project is a demonstration, not a user interface that will really be
used. It lacks many features that would be required. The intent was to pick a representative
sample of these features and to attempt to at least mimic styles and characteristics that are
used in good-quality user interfaces. However, one cannot say that a good-quality.
production user interface has yet been constructed on a presentation system base. More
work needs to be done, to build more substantial presentation system bases and to discover

just what benefits they can provide.

186

Chapter Seven

Areas for Further Research

This report discusses presentation based user interfaces in two major phases: first,
discussion of the presentation system model and its use in describing existing user
interfaces: and second, discussion of PSBase, the prototype presentation system base for
building uscr interfaces. Each area can be further studied; both the model and PSBase have

the character of a framework and need to be fleshed out,

The presentation system model could be developed further, its structure refined. More
general parameters could be identified, kinds of presenter and recognizer control, for

instance, or gencral ambiguities in recognizer action,

There s currently human factors ioscaich into what user interfaces shiviuid Jo for
particular user groups, for instance, what properties they should have, what the structure of
dialogs should be, and what error messages should say. Howcver, there needs to be more
work done from thc opposite end, determining what user interfaces can do -- what the range
of possible styles is. In terms of the definition of styles as patterns of presentation system
parameters, the possible fundamental structures for these patterns should be determined,

thus defining broad classes of styles.

7.1 PSBase Linitations

PSBase has several limitations, PSBase is a prototype, not a full-scale production system.
Several parts of its implementation are patchy or somewhat inconsistent, resulting from the
evolution of its dcsign and the pressure of time. It provides examples of various features
that a presentation system should have, enough in fact to build the interface discussed in the
next chapter. However, more features in each category need to be provided, the existing

mechanisms need to be improved, especially in order to better match the structure of the

187

presentation system model, and various mechanisms could benefit from being unified.

More Features Offered. Although this chapter has not fully enumerated all the features
offered in each major catcgory, most of the features have been illustrated. The following

lists what would be required for a full-scale presentation system base:

* Morg kinds of presentations, presentation relations

* More presentation editor functions

* More curve recognizers

* More command argument parameter types

* More (and cleverer) organizational presenters

* More presenters

* More recognizers, recognizer drivers

Better Mecharisms. In addition to providing more each kind of feature or mechanism,

those that have been provided could be improved, by being made more general, more
cificient, or more intelligent. The following lists the most important improvements needed,

the first three are important in a general sense, in that they are requirements that PSBase

match the structure of the model more closely:

* Allow specification of semantic presenter style separate from domain collector,
so it can be shared between styles, as organizational collector is

* Allow identification of parts of prescntation data base as PPS units

* Allow recognizer invocation to depend on presentation context, or vary between
PPS units

* Improve the data base mechanism: richer structure, knowledge representation
language, perhaps; better matching procedures

* Have move recognizers driven more from descriptions, so interface builder does
not need to write the semantic recognizers

188

Unified Mechanisms. Two major kinds of unification needs to be achieved in PSBase
mechanisms. First is the invocation of continual and general recognizers. The distinction
between the two kinds of recognizers does not seem to be an inherent one, nor is it a sharp
distinction even in the current implementation. Perhaps there could be a single recognizer

invocation mechanism.

Second, the various presentation style descriptions should be unified into a single
language for describing presentation styles. The three kinds of descriptions shown in
section 5.4, for defining graphical, sequence, and template presentation styles, are very
similar, Making a single description language that merges the capabilities of these three

kinds of defining forms should not be difficult.

Beyond that, however, the description of presentation style might be interpreted by more
than just a presenter. Perhaps it could be interpreted by a recognizer as well. This would
then ensure that many presenters and recognizers would be inverscs, allowing the interface
builder to provide greater uniformity in the interface style. between the presentation stvle
used for output (constructed by presenters) and the presentation style used for input

(recognized from user constructions).

189

References

[Attardi & Simi 81]
Attardi, G., and Simi, M.
Semantics of Inheritance and Attributions in the Description System Omega.
In Proceedings of IJCAI 81. 1JCAL, Vancouver, B.C., Canada, August, 1981,

[Barber 82]
Barber, G.
Office Semantics.
PhD thesis, Massachusetts Institute of Technology, February, 1982.

[Beil 82]
Beil, D.H.
The VisiCalc Book.
Reston Publishing Co., Inc., Reston, VA, 1982.

[Bleser & Foley 82]
Bleser, T. and Foley, J. D.
Towards Specifying and Evaluating the Human Factors of User-Computer
Interfaces.
In Human Factors in Computer Systems, pages 309-314. ACM, March, 1982,

{Brachman 78]
Brachman, R. J,
A Structural Puradigm for Representing Knowledge.
Report 3605, Bolt Beranek and Newman, Inc., May, 1978.

[Brachman & Schmolze 85]
Brachman, R.J., and Schmolze, J.G.
An Overview of the KL-ONE Knowledge Representation System,
Cognitive Science, 1985.
To appear.

[Brown 82]
Brown, J. W,
Controlling the Complexity of Menu Networks.
Communications of the ACM 25(7):412-418, July, 1982.

[Biown & Sedgewick 84a]
Brown, M. H. and Sedgewick, R.
A System for Algorithm Animation.
Technical Report CS-84-01, Brown University, January, 1984.

190

[Brown & Sedgewick 84b]
Brown, M. H. and Sedgewick, R.
Techniques for Algorithm Animation.
Technical Report CS-84-02, Brown University, January, 1984.

[Brown & Sedgewick 84c]
Brown, M. H. and Sedgewick, R.
Progress Report: Brown University Instructional computing Laboratory.
In 15th Annual Technical Symposium on Computer Science Education (ACM
SIGCSE). ACM, February, 1984,
Also available as Brown University Technical Report No. CS-83-28

[CCA 79]
Program Visualization Concept Paper.
Computer Corporation of America.
Cambridge, MA

[diSessa 85]
diSessa, A.
A Principied Design for an Integrated Computational Environment.
Human-Computer Inieraction 1{1), January, 1985.
To appear.

[Donelsén 78]
Donelson, W.

Spatial Management of Data.
ACM, Atlanta, GA, 1978.

[Foley & Van Dara 82]
Foley. J. D. and Van Dam, A,
Fundamentals of Inieraciive Computer Graphics.
Addison-Wesley, Reading, MA, 1982.

{Forbus 81]
Forbus, K. D.
An Interaciive Laboratory for Teaching Control System Concepts.
Report 4752, Bolt Beranek and Newman, Inc., September, 1981,

[Friedell 83]
Friedell, M.
Automatic Graphics Environment Synthesis.
Technical Report CCA-83-03, Computer Corporation of America, 1983.

191

[Gnanamgari 81|
Gnanamgari, S.
Information Presentation through Default Displays.
Computer and Information Sciences technical report 81-05-02, University of
Pennsylvania, 1981,

[Hayes 84]
Hayes, P. J.
Executable Interface Definitions Using Form-Based Interface Abstractions.
In H. R. Hartson, editor, Advances in Computer- Human Interaction. Ablex, New
Jersey, 1984,

[Herot 80]
Herot, C. F.
Spatial Management of Data.
ACM Transactions on Database Systems 5(4):493-513, December, 1980.

[Jacob 82]
Jacob, R. J. K.
Using Formal Specifications in the Design of a Human-Computer Interface.
In Human Fuctors in Computer Systems, pages 315-321. ACM, March, 1982.

[Kaczmarek Mark & Wilczynski R3]
Kaczmarek, T., Mark, W., and Wilczynski, D.
The CUE Project.
In SoftFair -- Software Development: Tools, Techniques, and Alternatives, pages
383-389. IEEE, July, 1983.

[Lieberman 83]
Lieberman, H,
Designing Interactive Systems from the User’s Viewpoint.
In P. Degano and E. Sandewall, editors, Integrated Interactive Computer Systems,
pages 45-59. North-Holland, Amsterdam, 1983.

[Lieberman 34]
Lieberman, H.
Sceing What Your Programs Are Doing,.
International Journal of Man-Machine Studies , July, 1984,

[Lisa 84]
Apple Lisa reference manual.
1984.

192

[Mark 81]
Mark, W.
Representation and Inference in the Consul System.
In Proceedings-of IJCAI 81, pages 375-381. 1JCAI, Vancouver, B.C., Canada,
August, 1981,

[McDonald 83]
McDonald, David D.
Natural Language Generation as a Computational Problem: an introduction.
In Brady & Berwick, editors, Computational Models of Discourse, pages 209-264.
MIT Press, 1983.

[Newman & Sproull 79]
Newman, W. M. and Sproull, R, F.
Principles of Interactive Computer Graphics, 2nd edition.
McGraw-Hill, New York, 1979.

[Purvy, Farrell & Klose 83]
Purvy, R, Farrell, J., and Klose, P.
The Design of Star’s Records Processing: Data Processing for thc Noncomputer
Professional.
ACM Transactions on Database Systems 1(1):3, January, 1983.

[Reisner 81]
Reisner, P.
Formal Grammar and Human Factors Design of an Interactive Graphics System.
IEEE Transactions on Software Engineering SE-7(2):229-240, March, 1981,

[Reisner 82)
Reisner, P.
Further Developments Toward Using Formal Grammar as a Design Tool.
In Human Factors in Computer Systems, pages 304-308. ACM, March, 1982.

[Shneiderman 80]
Shneiderman, B,
Software Psychology: Human Factors in Computer and Information Systems.
Little, Brown, and Co., Boston, MA, 1980,

[Shneciderman 83]
Shneiderman, B.
Direct Manipulation: A Step Beyond Programming.
[EEE Computer , August, 1983.

193

[Shneiderman & Mayer 79]
Shneiderman, B., Mayer, R,
Syntactic/Semantic Interactions in Programmer Behavior: A Model and
Experimental Results,
International Journal of Computer and Information Sciences 8(3):219-239, 1979.

[Smith, Irby, Kimball, Verplank & Harslem 83]
Smith, D.C,, lrby, C., Kimball, R., Verplank, B., and Harslem, E.
Designing the Star User Interface.
In P. Degano and E. Sandewall, editors, Integrated Interactive Computer Systems,
pages 297-313. North-Holland, Amsterdam, 1983.

[Stailman 81]

Stallman, R. M.

EMACS Manual for ITS Users,

Al Memo 554, Massachusetts Institute of Technology Artificial Intelligence
Laboratory, April, 1981.

Now only available as report AD-A093-186 from the National Technical Information
Service, U.S. Dept. of Commerce, Reports Division, 5285 Port Royal Road,
Springfield, Virginia 22161,

[Stevens & Roberts 83]
Sievens, A., and Robeiis, B,
Quantitative and Qualitative Simulation in Computer Based Training.
Journal of Computer-Based Instruction 10(1,2):16-19, summer, 1983.

[Stevens, Roberts & Stead 83]
Stevens, A., Roberts, B., and Stead, L.
The Usc of a Sophisticated Graphics Interface in Computer-Assisted Instruction.
IEEE Computer Graphics and Applications :25-31, March/April, 1983.

[Tops20 8C)
TOPS-20 User’s Guide.
Digital Equipment Corporation, Marlboro, MA, 1980.
Order no. AA-4179C-TM. Sections 2.2-2.4 discuss command completion.

[Weinreb, Moon & Stallman 83]
Weinreb, D. L., Moon, D. A., and Stallman, R. M.
Lisp Muchine Manual,
Fifth cdition, Massachusetts Institute of Technology Artificial Intelligence
Laboratory, Cambridge, MA, 1983.

194

[Zdybcl, Gibbons, Greenfeld & Yonke 81]
Zdybel, F., Gibbons, J.. Greenfeld, N. & Yonke, M.
Application of Symbolic Processing to Command and Control: An Advanced
Information Presentation System.
Report 4752, Bolt Beranek and Newman, Inc., August, 1981.

[Zdybel, Greenfcld, Yonke & Gibbons 81]
Zdybel, F., Greenfeld, N., Yonke, M. & Gibbons, J.
An Information Presentation System.
In Proceedings of JCAl 81. 1JCAI, Vancouver, B.C., Canada, August, 1981.

[Zloof 82]
Zloof, M. M.
Office-by-Example: A Business Language that Unifies Data and Word Processing
and Electronic Mail. .
IBM Systems Journal 21(3):272-304, 1982,

[Zloof & de Jong 77]
Zloof, M. M. and de Jong, S. P. .
The System for Business Automation (SBA): Programming Language.
Communications of the ACM 20(6), June, 1977.

[7macs R4]
Zmacs Manual.
Symbolics Inc., Cambridge, MA, 1984.

Tius blank page was inserted to preserve pagination.

CS-TR Scanning Project - J
Document Control Form Date: [/% /96

Report # Al- TR —ﬁ‘f '

Each of the following should be identified by a checkmark:
Originating Department:

\ﬂ. Artificial Intellegence Laboratory (Al)
O Laboratory for Computer Science (LCS)

Document Type:

j&rechnical Report MR) [Technical Memo (TM)
O other:

Document Information Number of pages: 135 (8-00-macts)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
ﬂ Single-sided or O Single-sided or
O Double-sided jﬁ\Double-sided
Print type:
[J Typewriter [J offsetPress] Laser Print
[J inketPrinter [] Unknown] other:

Check each if included with document:

\B[DOD Form (J\) O Funding Agent Form)2(Cover Page
J spine (O Printers Notes O Photo negatives
O Other:

Page Data:

Blank Pageswy pege numbes:

Photographs/Tonal Material ey page numben:

Other (s descriptionpage number);
Description : Page Number:

ITMAGE mp!(1-195) 1~ 199 _ e
(196 - 403,)5 AWeodTTROL |, caifgR 0002 L TRGTY3 J

Scanning Agent Signoff:
Date Received: | /& / 76 Date Scanned: _! (2019 Date Retuned: Al 19

[} / i
Scanning Agent Signature: ()’VWJM/?‘ /i/V ‘ C‘m&

Rev 8/84 DSALCS Document Control Form cstrform.ved

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

'. REPORT NUMBER 2. GOVT ACCESSION NO.

AI-TR-794 AD-A/5D51/

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

Presentation Based User Interfaces

5. TYPE OF REPORT & PERIOD COVERED

technical report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)

Eugene Cicarelli

8. CONTRACT OR GRANT NUMBER(s)

N00014-75-C-0522

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

10. PROGRA

ELEMENT, PROJECT, TASK
AREA & N

M
WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS
Advanced Research Projects Agency
1400 Wilson Blvd

Arlington, Virginia 22209

12. REPORT DATE
August 1984

13. NUMBER OF PAGES

t4. MONITORING AGENCY NAME & ADDRESS(if difterent from Controlling Oftice)
Office of Naval Research
Information Systems

Arlington, Virginia 22217

16. SECURITY CLASS. (of this report,

UNCLASSIFIED

1Sa. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

.

Distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 1! different from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side if neceseary and identify by block number)

user interfaces
presentation systems
programming tools
display

editor

20. ABSTRACT (Continue on reverse eide if necessary and identity by block number)

face model underlies the base,

possible range of interfaces.

A prototype 'presentation system base" is described. It offers mechanisms,
tools, and ready-made parts for building user interfaces.

A general user inter-

organized around the concept of a "presentation"
a visible text or graphic form conveying information. The base and model em-
phasize domain independence and style independence, to apply to the widest

The "primitive presentation system model"
treats the interface as a system of processes maintaining a semantic relation

FORM
JAN 73

DD , 1473

EDITION OF | NOV 65 1S ONSOLETE
S/N 0102:014-6601 :

UNCLASSIFIED

(OVER)

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Bntered)

Block 20 cont.

between an "application data base" and a "presentation data base", the symbolic
screen description containing presentations. A "presenter' continually updates

the the presentation data base from the application data base. The user manipulates
presentations with a "presentation editor'". A "recognizer'" translates the user's
presentation manipulation into application data base commands. The primitive
presentation system can be extended to model more complex systems by attaching
additional presentation systems. In order to illustrate the model's generality

and descriptive capabilities, extended model structures for several existing

user interfaces are discussed.

The base provides support for building the application and presentation data
bases, linked together into a single, uniform network, graphics to continuously
display it, and editing functions. A variety of tools and meclanisms help

create and control presenters and recognizers. To demonstrate the base's utility,
three interfaces to an operating system were constructed, embodying different
styles: icon, menu, and graphical annotation.

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

