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ABSTRACT

Electrical circuit designers scldom create really new topologies or use old ones in a novel way. Most designs
arc known combinations of common configurations tailored for the particular problem at hand. In this
thesis | show that much of the behavior of a designer engaged in such ordinary design can be modcled by a
clearly defined computational mechanism exccuting a set of stylized rules. Each of my rules embodices a
particular piece of the designer’s knowledge.

A circuit is represented as a hierarchy of abstract objects. cach of which is composed of other objects. The
leaves of this tree represent the physical devices from which physical circuits are fabricated. By analogy
with context-free languages, a class of circuits is generated by a phrase-structure grammar. of which cach
rule describes how one type of abstract object can be expanded into & combination of more concrete parts.

Circuits are designed by first postulating an abstract object which meets the particular design requirements.
This object is then expanded into a concrete circuit by successive refinement using rules of my grammar.
There arc in general many ridles which can be used to expand a given abstract component.  Analysis must
be dore at each level of the expansion to constrain the scarch to a reasonable sct. Thus the rules of my
circuit grammar provide constraints which allow the approximate qualitative analysis of partially
instantiated circuits. Later. more careful analysis in tcrms of more concrete components may lead to the
rejection of a line of expansion which at first looked promising. 1 provide special failure rules to direct the
repair in this case.

As part of this rescarch 1 have developed a computer program. CIROP. which implements my theory in the
domain of operational amplifier design.

This thesis describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of
~ Technology. Support for the laboratory's artificial intelligence rescarch is provided in part by the Advanced
Rescarch Projccts Agency of the Department of Defense under Office of Naval Rescarch contract
N00014-80-C-0622.
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FINTRODUCTION ' ' . «

1. Introduction

Flectrical circuit designers seldom create really new topologies or use old ones in a novel way. Most
designs are known combinations of common configurations tailored for the particular problem at hand.
Much of the behavior of a designer engaged in such ordinary design can be maodeled by a clearly 4dcﬁncd
computational mechanism cxecuting a sct of stylized rules. The implementation of this model. CIROP, can
design operational amplifiers such as the one in Figure 1. In this circuit. several commonly recognized
collections of objects arc circled. a differential pair, a _currcm‘mirmr. and the three main- stages of the
operational amplifier. Such a collection of objects can be considered a complex abstract object. made of
internal components, and can be usced as a component in a larger circuit. For example, Figure 2 shows typical
representation of an operational ampli.ﬁcr as a circuit composed of three parts; the first, second and third
stages.  Fach of these stages is a complex object composed of more primitive objects. A small sct of such

complex abstract objects can represent hicrarchically a large number of valid circuits.

CIROP docs suprisingly well at the task of circuit design. 1t designs circuits at the level of complexity
described in Solomon’s classic paper [1974). Thus, CIROP demonstrates an upper bound on the amount of

knowledge needed to achieve this level of competance.
1.1 Key Ingredients
Here are the key ingredients in the model of design that 1 present:

« Context-Free Hicrarchical Expansion
« Failure Dependent Redesign

« Circuit Knowledge Formalization

Dividing a complex task into several smaller casicr tasks is a well-known methodology for solving a
problem [Simon]. Design begins with an abstract concept describing the ultimate object to be synthesized.
The engineer proposes a method for building ihe_ object in terms of other known objects. This divides the
problem into several smaller subproblems which arc modeled naturally in a hierarchical fashion. The
context-free assumption implics that the solution to cach subproblem is independent of the other
subproblems.  Fortunately, the clectrical engineering world is particularly amenable to this hicrarchical

paradigm of design. as excmplified by the operational amplifier.. Its internal design can be characterized as a
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QOut

Fig. 1. Complex Opcerational Amplifier
Complex Amplificr that can be decomposed hicrarchically.

hicrarchy of objects, and the operational émpliﬁcr. itself, is usually a small picce in a larger design. The
hicrarchy is implemented as a phrase grammar, which is a set of rules that describe a spacc of possible circuit
topologics. Any circuit gencrated by this grammar is valid. The grammar rules cxpandA cach abstract

topological fragment (a non-terminal of the grammar) into a more concrete topological fragment. By
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First " Second Third
Stage Stage Stage
1 Vtol
V1 ltoV VioV - V
o
Input Gain Buffer
V2 =1 Gain

Fig. 2. Three Stage Operational Amplifier
Simple Representation of Three Stage Opcrational Amplifier

applying a scquence of these rules. one begins with an abstract topology and expands it until all the clements

in the opology correspond to physical objects and need not be expanded further.

A typical simple abstract object is the darlington pair in Figure 3 composed of two internal transistors
connccted as shown. The cquation in the figure is a constraint describing an aspect of the object’s behavior

and is uscd in the object’s analysis.

There may be several ways to expand cach abstract object in a hierarchy. Figure 4 describes two
different rules in a circuit grammar that together recursively define a filter. The simplest filter is created by
expanding the abstract filter goal using Rule 1. The next more complex filter is created using Rule 2 first.
This expansion creates another goal of designing a filter which‘ could be satisfied by using Rule 1. This

cxample also shows that hicrarchical descriptions of circuits applies to objects besides operational amplifiers.
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Fig. 3. Darlington Pair
A darlington pair is a virtual transistor that has higher 8 than a single physical transistor.

1.2 Formalizing the Domain
The concepts that must be formalized for design are as follows:

« Primitive Objects

» Composition Knowledge

« Analysis Knowledge

« Strategic Knowledge
Eliminating Candidate Circuits
Guiding Redesign of Circuits

As the physical basis of circuits, primitive objects are the vocabulary of the domain. ‘Transistors,
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Rule 1 L.

Filter —_—

Rule 2 - L,

G D oYY T e
Filter — - Filter

Fig. 4. Simple Recursive Circuit Grammar ‘
The top part of the figure represents one way to build a simple filter. The bottom of the figure shows another

way which is recursive.

resistors, and capacitors are typical primitive objects. Composition knowledge describes how to créatc complex
abstract objects from the combination of other abstract and primitive objects. The composition knowledge is
explicit in the phrase grammar rules. Each rule describes one way to combine objects to create an abstract
object.  Analysis knowledge verifics and tests the behavior of designed objects against the goals. .S'mz/d;ic
knowledge controls the design process and includes the knowledge necesary to make the control decisions.

Control is critical for both guiding the design towards a good proposal and guiding the redesign of an
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unsatisfactory circuit.
1.3 CIROP

CIRQOP embaodices vocabulary and composition knowledge in a hicrarchical phrase grammar that models
the hierarchical structure of circuits naturally. Each of its rules describes how to build a circuit object in terms
of more basic objects. Analysis knowledge is represented as a sct of constraints asserted with cach rule that
describes the behavior of the object and passes constraints o its component parts. Using these constraints, the
circuit is analyzed and compared to the sbcciﬁc;niuns given by the user. The constraints also represent
strategic knowledge that restricts the scarch space of possible circuits. Failure rules formalize the strategic

knowledge used by an engineer to correct the design of a circuit which fails to meet the specifications.

During expansion, strategic knowledge guides The design. Each rule proposed for expanding an object
is checked for strategic knowledge about its applicability. If the strategic knowledge determines that the rule
is not applicable. another rule is chosen to expand the current object. CIROP scarches the space of possible
circuits efficiently. When strategic knowledge shows that a rule is not applicable, CIROP avoids that entire

region of the space.

The phrase grammar rules assert cquations which describe constraints between the parts.  These
equations are used to analyze a rule’s applicability and to verify a completed circuit against the specifications.
If a specification is not met, CIROP determines which sections of the circuit do not meet specification. Then
onc of these scctions is redesigned to improve the specification.  Failure rules embody knoMcdgc used to
redesign circuits bgscd on their failure. From the applicable failurc rules. a rule is chosen. This failure rule
suggests an alternative method of designing a particular picce of the circuit based on the specification that

failed.
1.4 Control Flow in CIROP

The general procedure of CIROP is shown in Figure 5. The top level goal is a description of the
abstract object to build and a set of specifications to meet. CIROP finds an appropriate rule to expand the
abstract object and then analyzes the resulting circuit. If the circuit is not complete, CIROP goes back to the

first step to expand some abstract object. The circuit is complete when all the abstract objects have been
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expanded o physical objeets.  The complete circuit is compared with the original specifications.  If the
specifications are met, the circuit is finished. 1f not. a suggestion is made to improve the circuit. Suggestions
describe a piece of the circuit to replace and an abstract object to replace the bad picce. I no suggestions are

found. CIROP cannot design the specified circuit.

CIROP

Top Level Goal
Expansion of
Circuit Objects

Analyze

No
Complete

Circuit?

/N

No Suggest

Successful?

Improvement

l No Improvements

DONE Failed

Fig. 5. Flow Chart of CIROP
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1.5 Thesis Roadmap

Chapter 2 is a scenario of the design of a typical operational amplifier. It demonstrates that an
operational amplifier can be described hierarchically and that specifications influence the ereation of the
circuit.  Chapter 3 describes CIROPs phrase grammuar rules in detail. Chapter 4 describes the algebra
mechanism CIROP uses to analyz¢ the circuits produced by its phrase grammar rules. Chapter 5 describes
CIROP’s control mechanism for guiding the design and redesign of the circuit. Chapter 6 details the scenario
shown in Chapter 2. Chapter 7 discusses how CIROP relates o other rescarch in the arca of design. Chapter
§ summuarizes the work and discusses limitations of this approach. Appendix 1 enumerates CIROP’s phrase

grammar rules. For general information on operational amplifiers, see the book by Roberge {1975).
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2. Operational Amplifier Example

CIROP scems to do design in a human-like way because human designers can -understand the
knowledge it uses and the decisions it makes, The following scenario demonstrates a typical design by

CIROP.
2.1 Scenario

‘The initial goal is to build an operational amplifier with the following specifications.

gain 500000.
input-offset-current 10 panoamps

slew-rate 0.2 volts per micro-second
outpui-drive-current 15 milliamps
unity-gain-frequency 3 Mcgahertz
output-load-resistance 2 kohms
input-bias-current 0.2 microamps

Opectational amplifiers have two voltage inputs and one voltage output. The main goat of an amplifier is
to provide gain. The most common operational amplificr, shown in Figure 2. has three main stages. The first
stage converts the differential input to single-ended and provides ‘gain.  The middle stage provides any

necessary gain that the first stage cannot supply. The third stage buffers the output.

In general, CIROP has several choices for implementing cach stage of the 6perational amplifier. Figure
6 is a partial trec of the hierarchy showing some options. For instance, the first stage can be implemented as a
simple differential pair, a current cancellation differential pair. or a super beta differential pair. If the simple
differential pair is chosen, it has two internal parts: the load and the emitter coupled pair. The load can be
implemented as cither a resistive load or a current mirror. In this design example. CIROP proposes the
simple differential pair, shown in Figure 7, for the first stage, which is the simplest choice. Before proceeding
with the design, the constraint between the gain and the input bias current is checked to see if the proposed
first stage will be sufficient. Assuming that the sccond stage can provide lots of gain (maybe it will be a

* darlington pair) the first.stage will nced a transconductance (gm) of at least 0004 mhos. The
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OoP AMP

Simple Three Stage Operational Amplifier

First Stage || Second Stage || Feedback [] Third Stage

o

Ditferential Pair Current . Super Beta
Cancellation

Emitter
Coupled Pair

ST

Resistive Current Mirror Simple Pair Darlington

Load

Fig. 6. Partial Tree of Operational Amplifier Hierarchy
Partial tree of the hicrarchy implemented for designing operational amplifiers.

Load Stage

Current Mirror

A
'1

V —  Simple Diff Pair
1 .

Differential Pair

Fig. 7. Abstract First Stage
The first stage of an operational amplificr is usually composed of a differential pair with a load.
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transconductance of a difterential pair is related o the bias current as follows:!
qﬂlhias

gm ==

Total gain = g * Loading * Transresistance

‘Therefore. the bias current will be at least 0.2 microamps. which meets the bias specification. The

proposed first stage is adequate for now.

Figurc 8 represents an abstract differential pair. It uses a matched pair of transistors for the

emitter-coupled pair. A matched pair is a-pair of transistors with ncarly equal physical charactesistics. Figure

1 2
Collector-1 Collector-2
V >——Base-1 Matched Pair  Base-2 —— V,
Emitter-1 Emitter-2 ‘
Current
Source

Fig. 8. Abstract Differential Pair
The simplest diffcrential pair uses a matched pair and a load.

1 The values of the constants are as follows:
% = 0.025 Volts

B = 50 for pnp transistors
The ﬁ of a transistor is a propenty that depends largely on the device's physical characteristics.
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9 is a matched pair.

Collector-1 Collector-2
, Collector ' Collector
Base-1 Base PNPBJT PNPBJT = Base | Base-2
Emitter Emitter
Emitter-1 ) Emitter-2

Fig. 9. Matched Pair
The maiched pair is composed of two identical physical transistors.

Meanwhile. the second stage can be a simple common emitter stage, although a darlington pair may be

necessary later. Continuing in this manner, the rest of the circuit is designed. The final circuit is similar to

Figure 10.

However, a more careful analysis of the complete circuit reveals that the gain and the bias current
specification cannot be met simultancously. The first stage, the first stage matched pair, and the second stage

transistor are the direct causes of the gain as shown in Figure 11.

To improve the gain CIROP must rebuild one of these options. CIROP's first choice is to replace the
second stage’s single transistor with a darlington pair. The improved circuit as shown in Figure 12 is analyzed

and mecets the specifications.
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out

.V

EE

Fig. 10. Prototype Operational Amplifier
First Prototype for the operational amplifier being designed.

This example demonstrates CIROP using many of the types of design knowledge used by a human
engincer. The vocabulary and composition knowledge are used to construct a valid circuit. Strategic
know]cdgc- is used to determine which parts arc used to build the operational amplifier and how to rebuild an
unsatisfactory prototype operational amplifier. Analysis knowledge is used to determine the performance of

the circuit.
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Load Stage

Current Mirror
[{:'l

g Fi
] |
V _Simple Diff Pair
1

] air

Fig. 11. Amplifier Stages to be Improved
The stages that might be redesigned to improve the gain are circled.

Gain Stage

Buffer Stage

Output
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out

-V

EE
Fig. 12. Final Operational Amplifier

An amplifier designed by CIROP that required backtracking to improve the circuit by replacing a txmplc
second stage with a darlington pair transistor.
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3. Phrase Grammar , .
3.1 General Concept

A circuit phrase grammar is a sct of rules specifving a circuit language by recursive expansion. The
rules show how a (non-terminal) symbol may be expanded into 4 combination of symbols. This expansion
process is repeated until no non-terminals arc left (objects which could be cxp;mdcd).‘ The terminal clements
in the grammar arc physical objects, and the resulting mpblug.\: is a legal sentence of the grammar. The
grammar describes a set of topologices that pérfonn uscful functions. The grammar is cxtensible since new

rules can be added at any time.

In contrast to a language grammar, a circuit grammar specifics how to combine components to make
compound structurcs. In language grammars, the only method of combining parts in surface language is
juxtaposition, whereas in circuits one must specify the resulting topology. Figure 13 is an example of a simple

language grammar.

Grammar Rule
S:aS|a

Example derivations of scntences of above grammar where S is the top level object:
S=>a
S=>aS =>aa

Fig. 13. Context Free Language Grammar Example

CIROP’s phrase grammar rules have two main parts: the pattern and the body. The pattern describes
the main characteristics of the abstract object that it builds and determines if the rule is applicable when
building an object. The body is a list of assertions describing how the object is built and analyzed. There are

three types of assertions used. The new-part assertions describe internal components. The connection

1. For more information on language grammars sce Aho|[1979].
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assertions create the topology by connecting 'lhc internal components to cach other and to the abstract object.
The constraint-cquation assertions crp;uc constraints between the components and the abstract object.
CIROP's rules include the relations between the internal objects. that can be used to simplify analysis of the
resulting cireuit.

:; lypical structure of a phrase grammar rule.
(to-make-a name

pattern

new-parts

connections

constraint-equations)

3.2 Phrasce Grammar Pattern

Every phrasc grammar rule includes a pattern that is used to determine if the rule can create the
currently proposed object. The pattern includes the following three components: the fype property. the has
- properties, and the specification tradeoffs. The pattern for the simple differential pair is as follows:

{where (type amplifier)

(has (input differential))
(has (input voltage))

: (has (output single-ended))
(has (output current))
(has (sign ?sign))
(has (simplest 1))
(with-specs .
(= transconductance (* bias-current beta gq/kT)
(= offset-voltage simple-offset-voltage)))

The 1ype property says that the differential pair is an amplifier. The has properties list a variety of propertics

that a differential pair will have. The simplest property of 1 means that this is the simplest method of building
“ this type of object. The with-specs denotes a list of specification tradeoffs. In this example, the
transconductance is equal to the product of the bias-current and the constants beta and ¢Zk7. This is the

tradeoff used in the example in Chapter 2 to check if the rule was applicable.

A pattern may include variables which are denoted with a ™" as is the ?sign variable in the example.
When the pattern is matched, the variable will match anything in the corresponding position in the matching
pattern. This binds the value of the variable so that any place in the rule that uses the variable will have that

-value. In the example pattern the Zsign variable is used to pass the type of transistor to use inside the
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difterential pair.
3.3 New Parts

NEW-PART is the assertion that specifies a component of the rule currently being expanded. The
assertion’s three arguments are the name. pattern, and use. ‘The part name allows equation assertions in the
rule body to reference propertics of the object. ‘The pattern is used to match rules applicable to creating it
When matching a rule’s pattern, the npe property. must match exactly, and every has property in the
NEW-PART patiern must be in the rule’s pattern. Hus propertics in the rule’s pattern are not required to be
in the NEW-PART's pattern. Each NEW-PART may also have a use property. which is examined in the
analysis phase of CIROP. Following is an example of a NEW-PART assertion used in the rule for a
three-stage amplifier to specify a differential stage for its first stage. This NEW-PART assertion matches the
example uscd to describe rule patterns in section 3.2. In this example the sign property is pnp, so that the
value of the ?sign variable in the rule pattern from scction 3.2 will be pup.

{new-part first-stage
{(type amplifier)
(has (input differential))
(has (input voltage))
(has (output single-ended))
(has (output current))
(has (sign pnp)})
(use ((gain gm) (slew-rate gm))))

The process of finding a rule to expand a NEW-PART is more than simple pattern matching. ltis a
negotiation between the NEW-PART's pattern, which is an advertisement for a part, and a set of rules which
are the applicants for filling the job of that part. CIROP mediates between the applicants. First, CIROP
considers only the applicants of the right type. CIROP climinates any that do not have the specialtics (the has
propertics) required for the particular part so that the remaining candidates have the right properties. So far
all CIROP has done is simplc pattern maiching. Now it must determine the best candidate. Assuming that
the simplest is best, CIROP sorts the candidates. simplest 1o most complex. Finally. it asks each candidate,
starting with the simplest, if it thinks it can do the job. The first candidate that replies "yes™ is chosen for the

job. A candidate answers "no" if its specification tradeoffs cannot possibly mcet the specifications. Since
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CIROP can hacktrack. itis allowable for the candidate to reply "ves” even if at the end it is not sufficient.
34 Connections

Terminals of objects are connected using one of the assertions CONNECT. or RAIL-CONNECT.
These assertions are the glue that provides the topological structure to the circuit. The CONNECT assertion
states that a group of object’s terminals arc connected together. “This assertion automatically generates an
assertion corresponding to Kirchoff's Current Law (KCIL). which states that the sum of the currents flowing

into the mentioned terminals cquals zero.

The current’s direction is positive for current flowing into an object’s terminal. If a connection includes

terminals from an abstract object to one of its component terminals. it negates the current flow from the

_ abstract terminal when creating the KC1.! assertion. This is shown in Figure 14.

The RAIL-CONNECT assertion states that the mentioned terminals are connected to cither the power
or ground bus of the circuit. No KCL assertions are gencrated from the RAIL-CONNECT assertions since it

would violate the hierarchy for one rule to connect all the bus terminals together.

1. The examples in this thesis do not explicitly mention Kirchoff's Voltage Law (K VL), which states that the sumn of the voltages around
a closed loop is zcro. This is not indicative of a limitation in the theory, but that the particular examples did not need it for their analysis.
Most of the internal operation of an operational amplifier can be analyzed in terms of current flows with little reference to voltage loops.
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(Connect DE)

0 = (Current D) + (Current E)

(Connect ABC)

0 =—(Current A) + {Current B) + (Current C)

Fig. 14. KCL Assertions ‘ :
CIROP creates KCL assertions from the CONNECT assertions as shown. The current from terminal A is
necgated since it is from the surrounding abstract object.

3.5 Equations

The knowledge used for analysis is contained in the equation asscrtions, which assert relations between
propertics of the phrts. or propagate constraints from an abstract object to its internal parts. ‘T'o preserve the
creation rule’s hierarchical nature, the equations must refer only 1o the abstract object’s properties or any
part’s advertised propertics. An advertised property is a property of a part included in all methods for
building that part. For instance, if a virtual transistor is part of a circuit, the object requiring the virtual
transistor does not know whether the virtual transistor will be implemented as a single transistor or as a
darlington pair. Thercfore, the object cannot refer to a pafamcter such as the B of the first transistor in a

darlington pair implementation of the virtual transistor, but only to the 8 of the combination.

When CIROP solves these cquations, an cquation might nced to know which variables to leave as
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unknowns. and which variables to solve kur. immediately. For instance. solving for the g of a transistor. in
terms of the gm and the collector current, is useless. since B is a physical constant. To solve this problem,
CIROP uses "variable priority."] That is. in solving an equation. the system examines tjlc priority of cach
variable that it could solve for, and then solves for the highest priority variable. thn variables have the
same priority, CIROP can choose any onc. In general, a priority depends on the level of abstraction of the

associated object. An abstract object’s variable has higher priority than a less abstract object’s variable.

Sometimes, CIROP should solve for a specific variable, regardiess of priorities. In such a situation, the
rule specifics which variable should be solved. A typical example is as follows. where the variable
(transresistance second-stage) has the highest priority.

(equation-with-variable-priority
(= {transresistance second-stage)
(* (current-gain second-stage)

(input-resistance third-stage)))
(transresistance second-stage))

The cqinations uscd in the phrase grammar rules are similar to ones human designers usc. It is natural to
express s.uch equations in the form V = RA, B, C), where V is an abstract variable. and A. B, and C are more
concrete variables.2 It is natural to solve cquations in terms of the variable associated with most abstract
object. For instance, the S of a darlington pair is the product of' the Bs of the individual transistors. The
cquation 8 = By * B where B is the darlington’s 8 and 8 and B, arc individual transistors Bs is natural;
the cquation 8y = B / B, is not. Empirical results show that using variable priority improves the
performance of the algebra system. Without variable priority the following problem often appears. The
algebra system cannot factor the numerator of the following expression and cannot reduce it to "c + d".

ac + ad + be + bd
a+b

1. A simple form of variable priority is used in CIRCOM, a system developed for teaching electrical circuits in a computational context
by Gerry Sussman.

2. The most concrete variables are parameters associated with physical objects. The most abstract variables are specifications associated
with the top level abstract object in a design. :



3.6 Interpreting Phrase Grammar Rules

The creation of a circuit starts with a qucue of one NEW-PART assertion, which describes the

high-level abstract object to be designed. 'The procedure for expanding the rules is:
Repeat the following steps until the queue is ¢mpty.

1. Take the next assertion off the queue of NEW-PART assertions.

2. Find the rules that match the type in the pattern of the new part. This is done
by simple lookup since the rules are indexed by the type property.

3. Of the rules found in step 2. climinate those without the required has properties
mentioned in the NEW-PART s pattern.

4, From the remaining rules, find the simplest rule that mects the specifications.

5. Expand the rule. Each assertion in the rule-body is sequentially asserted, and
depending on the assertion type, an appropriate action is taken. Any
NEW-PART assertions in the rule's body are added to the end of the qucue;

" this causes the design space to be scarched in breadth first order.

1

For example, when expanding a NEW-PART assertion for a virtual~bjt—transistor . two rules are found

in step 2: onc for a single-transistor-bjt and one for a double-darlington-transistor-bjt. The rule names and
their associated patterns are as follows:
Single-transistor-bjt
(where (type virtual-bjt-transistor)
(has (sign ?sign})
(has (simplest 1)))
Double-darlington-transistor-bjt
(where (type virtual-bjt-transistor)

(has (sign ?sign}))
(has (simplest 2)))

In step 3, neither of the rules can be climinated since they have the same sign has property. In step 4,
the single-transistor-bjt is chosen since it has a lower simplest number. Then in step 5, the chosen rule is

expanded. In this example, the virtual transistor creatcs a single real transistor.

1. A BIT is a bipolar junction transistor.
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The following subscctions describe some of CIROP's typical grammar rules.!
3.7.1 Physical Transistor Rule

A physical transistor is a terminal node in the phrase structure grammar. 1t corresponds to a real
transistor and has properties. such as B. that depend on the transistor’s physical charactenistics. The transistor
is the main component in an integrated operational amplifier, since it can be used for applications other than
the normal transistor application. such as that of a diode or resistor. Here is the grammar rule that describes

an npn BJT. The rule includes cquations used to model the standard BJT.

(to-make-a simple-npn-bjt
;. Pattern to match:
1 (where (type bjt)
(sign npn)
2 - (has (simplest 1})))
2 (equation-with-variable-priority
(= (current {collector)) (* (beta) (current (base))))
(current (collector)))
(= (beta) npn-beta)
4 (= (gm) (* q/kT (current (collector))))
(= (rpi)(/ (beta) (* q/kT {current (collector)))))
5 (equation-with-variable-priority
(= (ro){(/ 200. {current (collector))))
(ro}))

6 (= 0 (+ (current (collector)) (current (base)) (current (emitter)))))

Simple-npn-bjt is the rule’s name. Linc 1 starts the pattern describing the type of object that the rule will
synthesize. Line 2 says that this rule will create thé simplest npn BIT. Lines 3 and 5 are cxamples of a
variable simplest assertion wrapped around an equation. Line 4 is the familiar relation between the gm and
the transistor’s collector current. Line 6 states the KCL relation for the transistor’s terminals. This rule

includes no NEW-PART or CONNECT assertions since it is a primitive circuit clement.

1. For readability, the nolation of the rules is modified slightly from the actual form used by CIROP. Appendix 1 contains the correct
forms for all rules used in CIROP.
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3.7.2 Virtual Transistor Rule

A virtual transistor is any circait that approximates a physical transistor's behavior. This object is
commonly expanded into a single physical transistor, the simplest tpe of virtual tansistor. When a higher
is required than can be produced by i single transistor implementation. the designer may choose o use a
darlington pair which is another virwal transistor. This is composed of two physical transistors connected as
shown in Figure 3. The rule that creates the darlington is;

(to-make-a double-darlington-transistor-bjt
;. Pattern to Match: :
(where (type virtual-bjt-transistor)
1 (has (sign ?sign)))
;. New Parts
(new-part q1 ((type bjt)(has (sign ?sign)
(new-part g2 ({type bjt)(has (sign .?sign)
;: Connections
4 (connect (base)(base ql))
(connect (collector)(collector gl)(collector q2))
{(connect (emitter)(emitter q2))
(connect (emitter ql) (base q2))
:; Equations governing analysis
(rpi) (* 2 (beta q1) (Ppi q2)))
{ro) (ro qZ))
(beta) (* (beta q1) (beta q2)))
(gm)  (* (/ 12) (gm q2))))

w N

)))
)

o

lincs 2 and 3 assert the two transistors that are used to build the darlington. Line 4 is 2n example of the
CONNECT assertion, which connects the base of the darlington w the base of the internal transistor 1. Line

5 is the familiar relation where the 8 of a darlington pair is the product of the internal transistors’ §s.

In Line 1, the symbol ?sign is a variable with the name sign. When matching the rule’s pattern against
the assertion’s pattern, a value of either npn or pnp should be matched against this variable. Since the body
of the rule is expanded within the cnvironment of the pattern match, the value found for Zsign is used
throughout the rule. Thus the sign of the darlington is passed to the physical transistors created in lines 2 and

3.
3.7.3 Three Stage Operational Amplifier Rule

The following rule is the top level rule used in CIROP to describe the simplest standard way to build an
operational amplifier. It creates the three main stages and the feedback stagc for the operational amplificr.

"The constraint equations pass the input specifications down to these stages.
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(to-make-a Lhree-stage-operational-amplifier
., Pattern to match:
(where (Lype amplilier)
(has (input voltage)(input differential)
(outlput voltage)(output single-ended)(simplest 1)))
Parts are:
1 (New-part firsi-stage
((Lype amplifier)
(has (input differential)(output single-ended)
(input voltage)(output current)(sign pnp)})
(use ((gain gm) (slew-rate gm)}})
(new-part feedback ((lype capacitor)))
(new-part second-siage
((type amplifier)
{has (inpul single-ended)(outlpul single-ended)
(input current)(output voltage)(s1gn npn)}))
(new-part third-stage
({(type buffer)(has (input voltage)(output voltage))))
:: Connections to outside are:
2 (connect (t+) (t+ first-stage))

(connect (t-) (t- first-stage))

(connect (ot) (ot third-stage)) .
;. lnternal connections are:

3 (connect (ot first-stage)(it second-stage)(tl feedback))

(connect (ot second-stage)(it third-stage)(t2 feedback))
;; Propagating specifications to parts:

(= (power-consumption)

(+ (power-consumption first-stage)

(power-consumption second-stage)(power-consumption third-stage)))
(slew-rate)(// (max (current (ot first-stage)))(capacitance feedback)))
(cutoff-frequency)(// (transconductance firsi-stage)(capacitance feedback)))
(offset-current) (offset-current first-stage})

(input-bias-current) (input-bias-current first-stage))
(input-offset-voltage) (input-offset-voltage first-stage))
(drive-current)(maximum (current (ot third-stage))))
(gain) (* (transconductance firsiL-stage)(loading second-Tirst-stage)
(transresistance second-stage)))
(equation-with-variable-priority
(= (transresistance second-stage)
(* (current-gain second-stage)(input-resistance third-stage)))
(transresistance second-stage))
(equation-with-variable-priority
6 (= (loading second-first-stage)
(// (output-resistance first-stage)
(+ (output-resistance first-stage)(input-resistance second-stage))))

(1oading second-stage first-stage))

(equation-with-variable-priority
(= (load-resistance second-stage)(input-resistance third-stage))
(1oad-resistance second-stage))

(= (distortion) (distortion third-stage))

(= (voltage-gain third-stage) 1))

(3,
o~ o~ —~ — o~
won oo

Line 1 is the NEW-PART assertion for creating the first-stage which will be a pnp differential pair with
aload. The use properties show that the stage has a major affect on the gain and the slew-rate. If the resulting
circuit fails and the tradcoff involves one of these specifications, then this part will be a candidate for
replacement with an appropriate failure-control-rule. Line 2 connects the t+ input terminal of the
operational amplifier to the t+ input terminal of the first stage differential pair. Line 3 connects the output

terminal of the first-stage to the input terminal of the second stage and t1 terminal of the feedback stage. Line
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4 asserts that the slew-rate is_lhc quotient of the maximum current flowing out of the first-stage and the
capacitance of the feedback stage. 'l'his assertion is dependent on several implicit assumptions.  First. the
slew-rate is limited by the churging of the feedback stage’s capacitor by the current anvailable from the first
stage, Second., it is assumed that all of the current flowing from the first stage is available to charge the
capacitor. Line § makes the assumption that the input bias current is directly dependent on the first stage. so
the constraint is passed unchanged to the first stage. Line 6 shows the relation of the loading on the output
resistance of the first stage and the input resistance of the second stage. ‘The loading is & necessary component
ol" the gain relation of the operational amplifier since it acts as a current divider and decreases the available

gain.
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4. Analyzing the Circuit
4.1 Hierarchical Equations

Fach rule tor ereating an object asserts cquations that are used to anabyze the object. These equations
state constraints between internal parameters and external parameters. For instance. the rule for building o
ph,\.\i‘cul transistor includes the device law that relates the g of the transistor to the current flowing into the |
collector terminal. The equations associated with phasical devices represent commonly used Liws of network
theory such as KVI., KCL. and device laws. The term b"}'licrarchicul F.Quutions" is used ‘hccuusc abstract
objects can also have equations to represent the behavior and analysis of the object. Thus, a hicrarchy of
cquations cxists constraining things from the highest level object to the lowest level object. The given

specifications influence circuit design since they are referenced in the equations of the highest level object.

High level cquations greatly aid the analysis process. For example, the top level rule of a typical

operational amplifier has the following list of equations describing the amplifier’s gain.

gain = (transconductance first-stage)
* (loading second-first)
* {(transresistance second-stage)

(transresistance second-stage) = (cufrent-gain second-stage)
* (input-resistance third-stage)

(loading second-f%rst) =
: (output-resistance first-stage)
{(output-resistance first-stage) + (input-resistance second-stage)

The variable gain is the name of the specification variable for the operational amplifier’s gain. The
cquations state that the gain is dependent on the following variables:
(transconductance first-stage)
(current-gain second-stage)
(output-resistance first-stage)

(input-resistance second-stage)
(input-resistance third-stage)

High-level equations can ignore details that are irrclevant to a variable’s solution, if including them
would complicate matters unneccessarily. Note that the operational amplificr’s gain is not dependent on the
third stage’s gain, which is usually close to one and thus affects the overall gain very little. By ignoring the

third stage’'s gain. the calculation of the overall gain can ignore possibly tedious calculations for the gain of the
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third stage. Of course, the third stage is then constrained to be a buffer stage with gain of approxinuely "1%.

Another advantage of hicrarchical cquations is the ability to by pass calculations o complex o sohve by
presolving some of the cquuli('m\ or using approximations [Roylanee?5]. Devices such as transistors hine
complex equations involving exponentials o describe their complete behavior. The current mirror depicted
in Figure 15 relies on symmetry 10 perform the goal of providing ncarly equal currents in the collectors, but

cannot be analyzed without using the exponential relationship of the emitter current to the base-emitier

Voltage. Fortunately. using an equation as part of the abstract current mirror's grammar rule. the currents in

the emitters can be stated to be identical. which provides the required constraint while bypassing the

cxponentials.

Hierarchical equations provide other advantages. Analysis results are more casily understood since the
high level equations provide structure to the answers. [f analysis were done at only the KVL and KCL level.

it would be difficult to track down the reason hehind a particular result.
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| \L Iout \l/ 'reference

Goal;

out = ‘reference

Complex cquations;

Vbel = Vbe2
qVv
I} = Lexpl ktzcl)_ 1)
Vhe
I2= ls(cxp( n )- 1)

Presolved Result used in Analysis:
Iy =1
1=72

Fig. 15. Current Mirror

The current mirror’s behavior is determined by a complex relationship involving exponentials. Hierarchical
equations allow CIROP to bypass caiculations involving exponentials by using results that have been
precomputed by the writer of the rules.
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4.2 ORACLE - An Incremental Algebra System

The ORACLE incremental algebra system is used to solve the equations in the analysis of the circuits.
As cach equation is presented 1o the algebra system one of the unknown variables in the equation is solved for
S lllh(fliczlll)‘. This value and information about the equations it depends on are retained in the ORACLE
Jatabase.  The equation’s assertion retains the name of the variable that was solved. The ORACLE is
incremental because it is given equations one at a time and solves the equation based only on the results

stored in a database of previously solved values.

‘The algebra system is a Truth Maintenance System [Doyle] for the solving of algebraic equations. The
algebra systemn can sclectively undo the cffects of equations that are no longer considered true while retaining
information derived from the equations that arc still considered true. Because of this when rebuilding a
circuit part. CIROP only needs to re-analyze the affected equations. The ORACLE is similar 1o other
systems. such as EL [Stallman & Sussman}k that use propagation of constraints to solve algebra and use truth
maintcnance to retract assertions.  1t's major difference is that it scparates the algebra and the truth
maintenance fror.n the svstem that uses it. This provides a clean interface so that implementation issues of

CIROP arc not affected by the implementation of the algebra solving mechanism.

4.2.1 Sample

The following example demonstrates the capabilities of the ORACLE to solve equations and undo the effects

of equations selectively. The following set of cquations are presented to the ORACLE in the order shown.

1.C=A+18
2E=B+¢C
3.3G=D+F
4H=C+D
5.M=D-K

Solve equation 1 for the result! that "C = A + B." Solve cquation 2; however, instcad of solving the
cquation "B + C = E", substitute the known value of C from cquation 1 so that equation 2 becomes "A +

2B = E." The solution of this cquation is "B = (E_- A)/2." Hercisa table of results so far.

1. To demonstrate how ORACLE works, it does not matter which variable is solved for. When analyzing circuits, the variable solved for
depends on the variable's priority. In this example the variable that is sotved for is underlined.
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Fquation I:quation Solved V Varuble-Value
1 C-A+8B C=A+8B C:A+B
2, =84+ C F=A+20 B:(E- A2

‘the items in the column lubeled Fyuarion are the original equations. The items in the column labeled
Lguation Solved are the equations after substituting the values of known variables. The items in the Variable

e column are the solutions of the equations. The complete table is as follows:

Fyuation Equation Solved \ariable-Value
1 C=A+8 C=A+B C:A+B
2 F=B+C E=A+2B Bl - A2
3. G=D+F Gg=D+F G:D+F
4 H=C+D H=QA+EV2+D A:2H-2D-E
5. M=D-K M=D-K | D:K+M

Whenever the ORACLE is asked for a variable’s value, it returns an expression that contains no
variables with a known value. Since equation 5 has solved for the variable D, if one asked for the value of G,
the result would be "G 1 F + K + M." Figure 16 shows a dependency network of the equations contained in

the above table. "The arrows point from known results to equations dependent on those results.

A+B —> C:A+B

O
"

2 E=B+C —m>>E=A+2B —m> B:(E-A)/2

D+F —/8>G:D+F

w
o
"

v
C+D ——>H=(A+E)/2+D —/8>A:2H-2D-E

H
I
"

D-K —>D:K+M

[4,]
=
]

Fig. 16. Algebra Example
‘This shows the dependencies of the equations solved.
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The interesting part comes when an equation is retracted. Suppose that equation 2 is a consequence of a

bad design decision and is retracted. Obviously, that affeets the value caleulated for the variable B since

cquation 2 was sohved for the variable B, It also affects the value of variable A calculated in equation 4.

Before equation 4 was sohved it was transformed using o substitution that depended on the result of equation

2. After retracting cquation 2 we get the following,

I'quation Equation Solved \ ariable-Vilue Fquation-Truth

1. C=A+8B C=A+1B C:A+B True
2, =B+ C F=A+2B . B:(li- A2 F-alse
3 GC=D+F GC=D4+F G:D+ I True
4. H=C+D H=@A+EV2+D A:2H-2D-E True
5. M=D-K M=D-K D:K+M True

Value-Truth
True
False
True
l-alse
True

The new column Eguation-Truth is the truth value of the equation. Since equation 2 was retracted. its

truth value is falsc while the other equations are still true. The new column Truth-Value is the truth value of

the value solved for with the equation. The value resulting from cquation 2 is false: therefore the value

resulting from equation 4 is false also. although equation 4 is still true. Figure 17 shows the same cquations as

the Figure 16. with the false information marked with large crosses.

1 C=A+B —> C:A+B

2 EXC —%EXZB —> B:([E-A/2

3 G=D+F —>G:D+F

N
C+D —>H:=(A€)/2+D —M—>A:2 D-E

H
o o8
n

(4]
=
"

D-K —m—>D:K+M

Fig. 17. Algebra Example
EFxample showing what ORACLE docs when cquation 2 is retracted.
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Fquatiyn 4 can be re-solved for a new valid result. The ordering in the following table reflects the fact

that equation § has alrcady been solved when cquation 4 s re-solved.

Fguetion Fquation Sohed Variable Value Fuigtion-Truth \alue- Fruth
H C. A+ B C=A+1B C:A+ B True . drae
N =B+ C F=A+28 B - A2 False l-alse
3 G=D4F G=D+1 G:D+F Trae True
A M D-K M=D-K DK+ M lrue - ‘True
4. H=C+D ' H=A+B-K1+M A H-M-K-B True True

Note the substitution for B is not made and B is not considered to have a know n value.

4.2.2 Fquation Solving . : .

The heart of the ORACLE is a data-basc which keeps track of the analysis results.  Fach entry in the
ORACLE dat_a-basc is a collection of fout p'rupcrtics associated with the solution of a variable’s value and
indexed by the variable's name.  ‘The four properties are the CURRENT-VALUE. TRUTH-VALUE.
REASOI\iS. and (‘ONSF.QUE‘N('ES. The (‘URRF,N'l'-\';\l,UI-I is the last value calculated for this variable.
The TRUTH-VALUE is IN if the current value is valid, and OUT if the variable’s value has been retracted
since it was last solved for. REASONS is the list of cquations used t;) calculate the variable’s value. The first
reason in the list is the name of the assertion that directly caused this variable to be solved for. The other
rcasons represent the dcpcn.dcncy of the current value on other variables Solvcd before this variable.
CONSEQUENCES is a list of assertions that used the current value of the variable when solving their

cquation.

CIROP maintains its own data-base of asscrtions which includes the equation assertions. Properties of
an equation assertion arc the cquation and the name of the solved variable. The assertions used in the

previous example are as follows:

ASSERTIONl:c=a+b
ASSERTION2: e=b +¢
ASSERTION3: g=d + f
ASSERTION4: h=c+d
ASSERTIONS : m=d-k

After solving these cquations the data base is as follows:
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Variable-Name Value Iruth Reasons Consequences

C A+ B IN  (ASSERTIOND) (ASSERTIONG ASSER IOND)
B Er2- A2 IN  (ASSERTION2 ASSERTIOND (ASSERTIONS)

G D+ F IN  (ASSERTIOND) None

A 2D -F 0 IN (ASSERTIONS ASSERTION? ASSERTIONT) None

b N+ M IN (ASSERTIONS) Nonc

The most interesting entry is the second entry.  This entry represents the solution of the equation
associated with ASSERTION? which was solved for the variable B, The value found was (E/2 - A72). 'The
S(;lllli()l) depended dn ASSERTIONI and ASSERTION2. ‘The solution of the equation associated with
ASSERTIONY dcpcndcd on u.ﬂs value of B. After equation 2 is retracted and equation 4 is re-solved the

data-basc looks like this:

\ ariable-Name Value Truth Rceasons Consequences

C A+ B IN  (ASSERTIOND) (ASSEERTIONS ASSERTION2)
B E72- A2 OUT (ASSERTION2 ASSERTIONTD) (ASSERTION4))

G D+ F IN  (ASSERTION3) None

A H-B-K-MIN  (ASSERTIONI ASSERTIONS ASSERTIOND None

D K+ M IN  (ASSERTIONS) (ASSERTION4Y)

4.3 Procedure used in ORACLE system
The general procedure of the algebra system is as follows:

Given a queuc of assertions representing equations and a data-base of known variables, repeat the following

steps until the queuc is empty.

1. Take the first assertion off the qucue and call it A. If the truth valuc of assertion
A is IN. get the EQUATION property of assertion A to be used in the
following steps. 1f the truth value of assertion A is QUT, ignore steps 2 and 3.

2. Until every variable in the cquation is unknown, substitute the value of the first
variable with a known value. For cach substituted variable, remember the
name of asscrtion A on the consequence list of that variable. Also, get the
name of the first reason associated with each substituted variable.

3. Solve the resulting cquation in terms of onc of the unknown variables V. Enter
this solution into the ORACLE databasc as the value of the variable V. Sct the
truth valuc of the entry in the ORACLE data-base to IN. Add the name of the
assertion A to the front of the list of rcasons collected in the last step and enter
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that new list as the reason property for variable Voin the ORACLE data-base.
Remember the name of the variable Voas the Sohved-Variable property on the
assertion A.

4.4 CIRCOM

The heart of the algebra svstem is a simple equation solver, writien by G. ‘Sussman as part of his
CIRCOM system. that does simple substitution and simplification. To solve equations. it chooses a variable
to solve for, and then tries to isolate that variable. Exprcssibns are reduced to a rational form which is a ratio
of two relatively prime multivariate polynomials. ‘The mathematical operators used arc the basic arithmetic
operators: add, subtract, multiply, and divide. The rational form is complete in that any two expressions that

arc equal have the same rational form,
4.4.1 Retracting Equations

To use the ORACLE algebra system in a non-deterministic system. it must be able to undo the affects of
invalidated equations. The system keeps track of the consequences for cach variable. Here is the procedure

for retracting an cquation.

To retract equation E with associated assertion A, do the following.

1. If this is the original asscrtion to be retracted. set the truth value of the assertion
to OUT: otherwise, add the assertion to a qucue to be re-solved after this
procedure is finished.

2. Get the name of the variable V that was solved for when the equation was
originally solved. This is the Solved-Variable property on the assertion A.

3. Find the cntry associated with the variable V in the ORACLE. Set the truth
value of this entry to OUT.

4. Get the list of consequences in the cntry. This is a list of asscrtions representing
other equations which depend on the now obsolcte value of variable V.
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5. Controlling the Design Process

An engineer uses strategic knowledge to control the design process. CIROP mimics the human
engineer by using strategic knowledge in two phases of the design process. Strategic knowledge guides the
design of the initial prototype.  If the prototype fails o meet its specifications. strategic knowledge suggesis

alternative ways o improve the circuit.
5.1 Guiding the Prototype

The experienced cngineer uses learned heuristics to guide the prototype design of a circuit.  Usually
more than one rule exists that can be used to cxpand an abstract object. The learned heuristics are used to
sclect an appropriate rule from the possibilities to expand the object. The primary hcurisiic is to keep the
design as simple as possible.  In some situations the simplest design may be obviously inadequate. The

reasons for preferring onc stage over others arc usually based on tradeoffs duc to the given specifications.
5.1.1 Siniplest First

The writer of the rules can include a subjective measure of the rules complexity. 'This measure is
distilled to a number by the writer, where a lower number represents a simpler object. When expanding an
object, the applicable rules are sorted based on this measure, simplest ones first. In practice, this mcasure can

be used to state a preference for using one rule over another regardless of their relative complexities.

5.1.2 TradeofTs

No design exists for an all-purposc opcerational amplifier. Many different operational amplifiers exist to
serve varying requirements. Each operational amplifier is thus designed with finite values for the important
specifications appropriate to the need for the amplifier. The differences between operational amplifiers are
bascd on tradeoffs between specifications. For instance, if input bias current is 2 high priority while the
slew-rate is not, that amplifier's design differs from an amplifier requiring a high slew-rate. This tradeoff
between the input bias current and the slew-rate of an operational amplifier results in differcnt operational

amplifiers, cach depending on their requirements.

Tradceoffs can sometimes be expressed as simple equations. These equations are approximate models of
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the behavior of the type of object that one is building and can be traced to the more detailed equations that
describe the circuit accurately. For instance. a front-end differential pair has an important tradcoff between
gain and the input bias current. Detailed analysis shows a direct tradeoff between the gain and input bias
current. because the gain depends on the gm of the transistors, which depends on the collector current. which

depends on the base current. which is the input bias current.

This type of dependence is valid for all normal varietics of differential pairs that use bipolar transistors.
cxcept for the current cancellation stage.! Thus onc can develop a feel for this tradeoff which determines
which object in a set of front end stages might be appropriate. These tradeoffs can be used when using a
differential pair to decide immediately whether it is worthwhile before expanding it. If the tradeoff is not

mect. the work of expanding an obviously inadequate circuit has been saved.

One should realize that these constraints arc only heuristics. and an applicable constraint may not exist
at cach level. For instance, the second stage of an operational amplifier will have little direct effect on the
input bias current in a well-designed amplifier.  Thercfore, the second stage would not use a heuristic to

constrain itself on the first pass of the design process.

Another problem is that of breaking down constraints. The gain of the entire operational amplifier
depends on the product of the gain of the first and sccond stages. Since one docs not know the gain of either
stage, it seems hard to pass along a rcasonable constraint to the lower stage. A constraint could be passed to
the first stage that contained the second stage’s coniribution to the gain symbolically. Then the first stage
would further constrain the second stage gain. When the second stage is created it checks to see if the gain is
rcasonable. At this point. it is unclear which stage should be replaced. How does CIROP know which stage is

at fault if the gain is not met?

Another method notices that the gain will be shared between the first and second stage nearly equally.
An approximate'constraim can be passed to each stage, which is the square root of the total gain. Then the
first stage has real numbers for gain and bias current. Using this, CIROP can check to sce if the first stage is

reasonable. If the first stage is not reasonable, CIROP goes to the next appropriate rule for building the first

1. The current cancellation stage purposely breaks the dircf:l connection between the gain and the input bias current.



S12ERADEOITS ' . a6
stage. .

Any analysis that occurs before the circuit is completely designed may be faulty since it is based on
assumptions of what the undesigned parts will do. {tis reasonable to assume that the analysis. while possibly
faulty. is nearly correct. At this phase of the design it is imporant that no possible solutions be clinﬁn;ucd
betore being given a fair chance. Faulty analysis could climinhtc good solutions. while allowing bad solutions
to be tricd. This may occur because certain heuristic constraints model the behavior oo exactly.  This
problem is solved by cnsuring that heuristic constraints always use optimistic models of the béhavior. thus
crring on one side only. The heuristics may allow bad solutions to be tried. without climinating good
solutions. For instance, using the gain example, the first stage gain is checked, assuming the second stage can
provide an optimistic amount of gain. Ahy doubts about the second stage contributing cnougjh gain arc well

founded, since the first stage is assumed to provide as much gain as possible.

The affect of the spcci‘ﬁcations on the design is illustrated in Figure 18. As the gain/bias-current
tradeoff increases, it is more difficult to satisfy for a given circuit.  With a low tradeoff. any circuits that
CIROP can synthesize will satisfy the tradeoff.  As the tradeoff increases. fewer circuits can satisfv the
tradeoff, until no circuits can satisfy the tradeoff. Note: the number of: possible circuits does not fall exactly to

-onc before hitting zero. Even when the tradeoff is very difficult to meet, there are several options. For
_instance, the biasing of the optput stage will have little effect on the gain. Therefore, several operational
amplifiers can be built using different biasing on the output stage, although they are identical otherwise and

barely meet the tradeoff.
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Fig. 18. Tradcoff of Specifications
The number of possible circuits that CIROP might design decrease as a tradeoff becomes more difficult to
satisfy.

5.2 Analysis and Testing

CIROP uses the ORACLE to solve the equation assertions made during the creation of the circuit.
During analysis, the ORACLE finds valucs for most of the variables. The top level specifications are
compared with the specifications of the proposed circuit. Since some of the specifications arc interdependent,
they cannot be chécked individually. The ORACLE can be queried for the circuit’s value of a specification.
If the valuc is a number, it can be compared directly with the goal specification. If the value is an arithmetic
expression, it depends on onc or more of the other specifications. Once by one. the other ’goai specifications
are asserted as necessary until the arithmetic expression becomes a number. 'The resulting temporary
assertions are retracted as soon as a numeric vatue is found for the original specification. For example. after a

simple operational amplifier is created, the gain and bias current have the following values.
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GAIN = (* -2.9990628¢7
LOAD-RESISTANCE
(CURRENT (BASE (Q (POS-Q (FIRST-STAGE OP-AMP))))))

BIAS-CURRENT = (* -1 (CURRENT (BASEA(Q (POS-Q (FIRST-STAGE OP-AMP))))

o check the gain specification. we must know the values of the variables 1 OAD-RESISTANCE and
(CURRENT (BASE (Q (POS-Q (FIRST-STAGE OP-AMP))). The variable LLOAD-RESISTANCE is a
specification and the variable (CURRENT (BASE (Q (POS-Q (FIRST-STAGE OP-AMP))))) depends on the
bias current specification. The gain can be found by asserting values for the unknown specifications as
follows:

assert LOAD-RESISTANCE = 2000.
assert (BIAS-CURRENT OP-AMP) = 2.0e-7

; the new values.
(CURRENT (BASE (Q (POS-Q (FIRST-STAGE OP-AMP))))) = - 2.0e-7
GAIN = 11996.

The circuit gain has been reduced to a numeric value and can be compared against the goal specification

for the gain. Each specification is checked in this manner.
5.3 Failure Rules

A designer’s response to failure depends on his experience. An experienced designer has learned
characteristic ways that circuits fail, and methods for improving circuits which do not work for well defined
reasons. An inexperienced designer analyzes in detail, hoping to find the error. Paradoxically, it is easier to
mimic the experienced designer than the inexperienced. Detailed error analysis of a circuit requires complex
qualitative thinking, which is not formalized well cnough to use in a program. Even human designers find it

difficult to analyzc circuits in detail and often resort to approximate models.

CIROP's failure control rules embody the strategic knowledge used by experienced designers to
improve circuits. A failure control rule has a pattern of applicability that specifies which phrase rule failed,
and which specifications were not satisfied. The body of the control rule directs the interpreter to try other
phrase rules based on the knowledge embedded in the control rule. The following example shows the

knowledge that indicates that if the gain and bias current cannot be met with a simple-differential-pair, the
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1. The elctrical masons behind tis ulc ase exphained in Section $5.2.




5.4 Backtracking with Failure Rules

Backtracking occurs when a specification is not met. A list of equation assertions which were used to
determine the specification’s value is contained in the ORACLE. From these equations, CIROP finds the
objects that assericd them. CIROP also finds the superiors of cach object. These objects rcprcsént the
possible parts of the circuit that may nced redesigning. For cach part. CIROP finds the applicable failure
control rules associated with the deficient specifications. ‘The use property of the pa‘rl is also cumpznrcd with
the failed specifications. From these a list of applicable failure rules is isolated. This process of finding

applicable failure rules is repeated on cach part that was found.

CIROP randomly chooses a failure rule from the applicable rules. The offending part.that the failure
control rule matched is revoked, and all the assertions dependent on that part are removed. Any objects that
were created by the offending part are also removed from the circuit. The phrase grammar rule suggested by
the failure rule is used to rebuild the part. If the part is not a terminal object, its internals are built by the

original procedure for creating objects.
5.5 The Knowledge used to Develop Failure Rules

The following subsections describe some of the knowledge that one must distill to create the failure

. rules.
5.5.1 Improving the Common Emitter’s Current Gain

The sccond stage of an operational amplificr ofien uses a common cmitter amplifier for current gain.
Figure 19 shows the difference between implementing a virtual transistor as a single transistor and as a
darlington pair. The current gain for the single transistor is only B, while the current gain for the darlington is
Bz. Based on simplicity, the single transistor is preferable, however, if it does not supply cnough gain. it can

be replaced with a darlington pair. Therefore, one can derive the failure rule described in Section 5.3.
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Fig. 19. Current Gain in Common Emitter Transistor
Current Gain in a Common Emitter Amplifier can be increased by increasing the 8.

5.5.2 Improving the First Stage Transconductance

The transconductance of an opcrational amplifier's first stage1 is usually dependent on the quiescent

collector current as shown in Figure 20.

The transconductance can be increased by increasing the collector current. Unfortunately, this also increases
the input bias current. To increase the collector current without increasing the input bias current, the
effective B can be increased. or the topology can be changed to break the direct dependence of the collector

current on the input bias current.2

Following are some ways the input bias current can be lowered.

1. This discussion assumes that the operational amplificr’s first stage is a bipolar differential pair.
2. This is not mcant o be an exhaustive listing of methods 1o increase the transconductance.
3. Unless specifically stated, the discussion of topologics assumes the first stage is a bipolar transistor emitter coupled pair (a differential

pair).
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Fig. 20. Input Bias Current Example
Simple Differential Pair for the first stage of an operational amplifier, showing relation between input bias
current, the quiescent collector current and the transconductance.

Since the base current is directly proportional to the collector current by the factor 1/8 of the transistor,
the input bias current is lowered mosl.casily by lowering the quicscent collector current of the input
transistors. This method works as long as the collector current is not too low for other specifications to be
met. For instance, a low collector current can lower the frequency response. The overall gain of an
operational amplifier has the gm of the first stage .as'a majoi' contribution, but this is directly proportional to

the collector current in the first stage.

Another method of Jowering the input bias current is to increasc the effective B of the first stage input
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transistors. 'This permits a lqwcr basc current for an equivalent collector current. The B can be increased by
using super-beta transistors. A super-beta transistor has a very narrow base region which improves its base
transport factor and its cmitier c_fﬁcicncy. ‘This increases the B by as much as a factor of ten. The narrow basc
region also causes the transistor to have a very low breakdown voltage across this region. All the transistors in
the operational amplificr circuit cannot be super-betas, because the circuit would not withstand the required
operating voltages. ‘Therefore, the super-beta transistor must be used in a configuration that prevents it from

sceing large voltages across its terminals.

& Super-Beta Devices

V) | (Greaterthan 1, )
. 2

Fig. 21. Super-beta Differential Pair

Super-beta transistors are used in the differential pair to increase the 8 of the first stage This can decrease
the Input Bias Current while keeping the stagc s gm constant.
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In the detailed example of a supcr-ﬁcta circuit in Figure 21, the clements D1, 2. QI and Q3 form a
loop. Therefore, KVI. forces Q1's collector to emitter voltage to be approximately the voltage drop across one
of the diodes. Since this averages six-tenths of a volt. the voltage across the input transistor is kept at a small
constant. - Super-beta transistor Q2 is protecied in the same way. Also, two buack-to-back paralicl diodes

connect the two inputs to protect the transistors from large input voltage differences.!

Output

-V

EE

Fig. 22. Darlington Differential Pair _
Darlington transistors can be uscd in the differential pair to increase the B similar to the super-beta

transistors.

1. The diodes are not shown to preserve clarity.
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6. Detailed Operational Amplifier Example
This chapter revisits the design example of Chapter 2. detailing CIROP's design decisions.
6.1 Detailed Scenario

‘The initial goal is 1o build an operational amplifier with the following NEW-PART assertion and

specitications.

(new-part op-amp
((type op-amp amplifier)
(has op-amp (input voltage))
(has op-amp (output voltage))
(has op-amp (input differential))
(has op-amp (output single-ended))))

gain 500000.
input-offset-current 10 nanoamps

slew-rate 0.2 volts per micro-sccond
output-drir ¢c-current 15 milliamps
unity-gain-frequency 3 Mcgahertz
output-load-resistance 2 kohms
input-bias-current (.2 microamps

The first action is to find the rules that match this NEW-PART assertion. For such a high level object,
different rules would probably describe major differences in the strategy if designing the circuit. For instance,
the rule used might describe the most common operational amplifier strategy with three stages, while others
might describe four stage operational amplifiers. The standard rule for creating an opcrational amplifier is as
described in scction 3.7.3. The following concepts arc implicit in the rule definition: The first stage will
convert the differential input to single-ended. The middle stage will provide any necessary gain that the first
stage cannot supply. The third stage will buffer the output. The feedback stage will be used to make the

operational amplifier stable at frequencies of interest.

The result of the top level rule is to add. four NEW-PART assertions to the queue, connect these new
parts to the abstract operational amplificr, and create several constraints between the objects. The original

NEW-PART asscrtion that created the top-level object has been removed from the queue.

The new first asscrtion on the queue is the assertion for the first stage of the operational amplificr as
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follows:
(new-part first-stage
((type first-stage amplifier)
(has (input differential))(has (output single-ended))
(has (input voltage))(has (outpul current))
{has (sign pnp)))
({use . ({(gain gm) (slew-rate gm)))
(with-specs
(= (transconductance (first-stlage))
(sqrt (* 2 (gain)))})))

This matches the patern of the following rules: simple-differential-pair. current-cancellation-pair. and
Supcr-bcta-diffcrcmial-pair.’ Since the simplest of these rules is the simple-differential-pair. it is checked
first. The simple-differential pair has a wirth-specs constraint that relates the transconductance to the gain.
This constraint is temporarily asserted and the specifications are checked to see if they could be mél with this
constraint. Since the constraint is satisfied the pr.oposcd simple-differential-pair first stage is adequate for

now.

The assertions in the simple-differcntial-pair’s body are asserted. which adds more parts to the end of
the gueuc and more constraints are created. The assertion used to create the first-stage is removed from the

queue.

The new first assertion on the qucue is the top-level rule’s NEW-PART assertion for the second stage as

follows:
(new-part second-stage

({type amplifier)
(has (input single-ended))(has (output single-ended))
(has (input current))(has (output voltage))
(has (sign npn)))

({(with-specs
(= (transresistance (second-stage ?op-amp))

(sart (* 2 (gain ?op-amp)))))))

The only rule that matches this is a common-emitter amplifier. The common-emitter amplifier is then
checked to sec if it mects the specifications. The rest of the second stage and the third sta‘gc are designed in
similar ways. The next few paragraphs concentrate on the design of the first stage down to the level of

physical transistors.

After building some of the rest of the circuit, it will cventually get to the NEW-PART asscrtions that

1. The rules for parts arc all in Appendix 1.
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were created by the simple-difterential-pair rule. “The first such assertion is the following:

(new-part matched )
((type matched-pair)
(has (sign ?sign))))

A matched pair is a pair of transistors that have been carefully manufuctured so that their physical propertics
are nearly identical. Using a matched pair for the two transistors in the emitter coupled portion of a
differential pair improves the symmetry of the stage. ‘The implementation of the matched pair transistors is a

patr of pnp bipolar junction transistors.

The rest of the circuit is designed in the same manner. The complete prototype is analyzed and
compared to the specifications. At this point in the design. the gain and input bias current arc the following:

GAIN = (* -2.9990623¢7
LOAD-RESISTANCE
(CURREN'T (BASE(Q (POS-Q (FIRST-STAGE OP-AMP))))))

INPUT-BIAS-CURRENT =(* -1 (CURRENT (BASE (Q (POS-Q (FIRST-STAGE OP-AMPY))))

Given the specified input-bias-current and load-resistance, the maximum gain will be 12000. This does

not meet the specification. CIROP must backtrack by redesigning some part of the circuit.

The calculation of the circuit’s gain is dependent on forty-three of the total constraints asserted. The
parts that created these constraints are found. Only three of these parts have a gain use property and also have
appropriate failure rules for improving the gain. These three parts are the first stage, the first stage matched
pair, and the sccond stage transistor. To improve the gain, one of these options must be rebuilt. The first
choice is to replace the second stage’s single transistor with a darlington pair. Associated with the second
stage’s transistor is the following failure rule:

(in-case-of-Tailure-of
single-transistor-bjt

((gain beta))
(try double-darlington-transistor-bjt))

The virtual transistor used in the second stage is removed from the circuit. This also removes the
physical npn transistor that was the only part of the virtual transistor. Removing the parts invalidates any
constraint cquations that they had asserted. As a result, only a few other cquations must be re-solved, those

that used the values derived from the now invalidated cquations.  After this, the failure-rule is invoked to
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7. Related, Work
7.1 FL

"EL™ is a rule-based system for computer-aided circuit analysis [Staliman). Given a circuit description.
El. determines the state of the active clements and the values of the voltage potentials and currents at all
nodes and branches of the circuit. El. uscs propagation of constraints and dependency-directed backiracking o
control the analysis. Since it is an analysis program. it does not need to understand the creation of topologies.

ftis given a fixed topology.

EL represents circuit specific knov\./lcdgc as asscrtions in a rclational data base. The general knowledge
about circuits is represented by "LAWS™, which ar.c demons subject to pattern directed invocation. A new
assertion into the data base triggers matching demons. Triggered laws are put onto a qucuce along with
information that tells what part of the circ‘uit' they will operate on. The demons are exccuted when taken off
the queue. Exccuting a demon has once of two usciul actions: it cither makes a new assertion into the data

base, which may restart the whole process by matching more demons. or it may discover a contradiction.

El. makes assumptions about the states of the active devices.” Since these assumptions are originally
guesses, they are frequently wrong. If an assumption is wrong a covmradiction will arise, which is a set of
asscrtions which can not all be true at the same time. When a contradiction is discovered, EL invokes a
method called dependency~directed backtracking. This automatic procedure removes one of the assumptions
associated with the contradiction, and tries another assumption. This Icads to more effective control of

combinatorial scarch than undoing the last assumption which was made.

EL nceds backtracking since it makes guesses about the transistor's states. CIROP neceds backtracking
since it makes guesses about how to refine abstract circuit objects. A combination of the use property and the
failure control rules are used to determine which assumption must be undonc when CIROP finds a
contradiction (a failure to mect spccifications). The failure rule also tells which option should replace the

faulty gucss.

CIRQOP's ability to solve algebraic equations provides the same function as propagation of constraints.

Propagation of constraints can be viewed as a system that solves equations by always solving the cquations
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with.the fewest unknowns. ‘This imposes an order on the equations to be solved. CIROP is more general than

that, since it does not require the equations to be sohved in a particular order.
7.2 SYN

SYN |dcKlcer-3] shows that propagation of constraints is useful in synthesis. as well as analysis of
clectrical circuits. EL assumes the component values arc known and calculates the voltages and currents of
interest. SYN shows that the calculations can go in the other dircction: given cnough constraints about
voltages and currents, one can solve for the component values. By stating goals such as gain or particular
currents and voltages. SYN synthesizes the circuit by finding the values for the components. For example, in
Figure 23, EL can solve for the current !1. given the voltage and the resistor values. SYN does that, plus

solves for resistor values. given the desired currents and voltages.

27
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Fig. 23. Example for F1. and SYN
El. can solve for the currents labeled 1) and I given the values of Ry, R5, and V. SYN can also solve for Ry

and R, given values for 1. 15. and V.

To manage the complexitics of synthesizing a circuit, an cngincer simplifics the problem by constructing
separate models of the circuit. Each model describes some aspect of the circuit’s behavior. Each model is a
new circuit that can be more easily analyzed theﬁ the original, although any onc by itself does not model the
complete behavior of the circuit. SYN creates separate models similar to that used by a human engineer. For

instance, cach transistor can bc modeled with a bias model or an incremental model as shown in Figure 24.
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Fig. 24. Transistor models used in SYN®
SYN simplifies analysis by using different models of devices for different regions of operation.

Although having different models simplifics the algebra required to synthesize a given circuit, SYN is

still limited by algebra when the circuit is large. ‘The circuit in Figure 23 is the largest circuit SYN successfully

synthesized.
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Fig. 25. Cascode Circuit Synthesized by SYN
~ One of the largest circuits succesfully synthesized by SYN.

7.3 A Simple Model of Circuit Design

Roylance’s Master's thesis [Roylance80] is onc of the first attempts to creatively design circuits. His
system models fundamental rules about capacitors, resistors, operational amplifiers, feedback and network
laws. These rules ;iescribc the device's causal behavior. The causal behavior of devices suggests strategies for
using them in design. Starting with a goal, the rules are used to decide what components to use and how to
connect them. The system has no memorized circuit fragments (combinations of more 'xhan one primitive

device). because it builds them dynamically.

Since the system builds the circuit from basic components, it is not limited in the topologies it uses. It
has the potential of creating and designing new topologies to solve a problem. Unfortunately, it cannot take
advantage of topologics that are alrcady known to solve specific problems. This approach may be limited in

the problems it can solve until a large portion of gencral circuit knowledge is incorporated as rules. For
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example, this,approach might have touble designing a complex current mirror. Although the current mirror
in Figure 26 is simple o understand. it is difficult to imagine the knowledge needed to synthesize it the first
time. CIROP can use the mirror since it need not know the origins of the circuit fragment to usc it effectively

and need not synthesize it from primitive clements.

\l/ I reference \l/ Iout

— I

Fig. 26. Current Mirror
Current Mirror that is hard to design from basic principles.

A good circuit design system will need the concepts developed in Roylance’s work as well as the
concepts used in CIROP. Using only CIROP, one could never design completely new circuits, but using only
Roylance’s system one must constantly re-invent the wheel. Often a new circuit rﬁay be a new twist to an old
circuit. CIROP could design the "old circuit” as a first approximation. A system similar to Roylance’s, that
could understand how the circuit worked and why it failed, could provide the necessary “twist” to improve

the circuit to meet the specifications. In this situation CIROP acts as a smart library of circuit fragments with
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the knowledge to compose complete circuit prototypes from the fragments,
7.4 Qualitative Analysis

The exact analysis of circuits is very difficult,. When a circuit does not meet the specifications it must be
analyzed to find the limitations. A simple answer of "No™ to the guestion of "Is the specification met?” is not
always sufficient. For instance. if an interaction between sub-parts of an object caused unexpected behavior it
would be useful o understand what was wrong,  Qualitative analysis of circuits {Williams{de Kleer] can
describe in high-level terms how a circuil'o'pcrmcs. CIROP would not be able to take advantage of such
qualitative analysis. However, a system that combined the ideas of Roylance and CIROP as described in the
previous section would understand how the circuit was supposed to operate. The expected behavior could be
compared with the behavior predicted by qualitative analysis. This could result in a system that understands

the knowledge that is the basis for the fzilure rules used in CIROP.
7.5 A Refinement Paradigm

The refinement paradigm [Barstow] is a technique that implements a high-level program specification in
alow-level language. Several similarities exist between the paradigm and CIROP. The paradigm starts with a
high-level program specification.  With coding and analysis rules. the specification is refined to a detailed

low-level program.,

The coding ruies are similar to CIROP’s phrase grammar rules in that they expand a programming
concept into a more concrete procedure. For any particular concept there generally exists more than one rule
applicable to expand it. Similar to the circuit grammar. the coding rules describe a refinement tree, which is a

space of possible programs.

The analysis rules know about cfficiency of implementations, and find upper and lower bounds on
alternate implementations of a given concept. These results arc used to choose the most cfficient coding rule
for the given goals. The analysis rules are similar to the with-specs constraints used in CIROP's grammar rule

patterns. Both affect the decision of which rule is applicable to expand the current abstract object.

The refinement paradigm can be stated as follows:
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1. Pick some node of the refinement tree to expand. based on cost estimates for the
active nodes (which are non-terminal leaves).

2. Pick some part of the program described by that node to refine. based on the
relative importance of different parts,

3. Find the coding rules that can be used to refine that part.
4. Prune those rules that fail to satisfy plausibility requirements.

5. Expand the tree by apphing cach of the remaining coding rules to create new -
program description nodces. ’

6. Compute cost estimates for the new nodes by applying the analysis rules.

The refinement paradigm uses rules which produce “cost estimates™ to decide which piece of the
- program should be refined next. CIROP doces not use this type of strategic knowledge for control, although
human engineers do. Some circuit designers like to work on the output stage and then work their way back to
the input stage. Other circuit designers choose to work on the input stage first. The philosophy is that one
should concentrate on the picce of the circuit that is the "most difficult” to build to mect the specifications.
'H:nc advantage to using such knowledge is that it may direct the designer to a solution more directly. In other
words. the designer may have to backtrack from bad solutions less often. CIROP does not use this type of
knowledge for two reasons. First, it is very difficult to formalize in the circuit domain. Sccond, with the
| failure control rules the amount of backtracking is small. CIROP expands its hicrarchy in a left-right

breadth-first manner.

Barstow’s use of the refinement paradigm doces not use backtracking. Since cach step of the refinement
uses correctness preserving transformations, cach program in the refinement sequence will satisfy the
functionality specifications. The efficiency rules guide the refinement so that each program in the refinement
sequence is more efficient than the next.  The only question would be “Is it the best program?” The
question’s answer can scldom be answered in a definite way, but if the aﬁswcr is a fuzzy "yes", that is

_probably good enough. In circuit design the answer is cither “yes” or "no™ because a circuit either meets the
~ specifications or it does not. Since one cannot verify the specifications exactly until a circuit is built in detail it
is possible for the question to be answered "no” cven though the next level abstract circuit scems to meet the

specifications. If the answer is "no” then the system must be able to backtrack to find a good solution. The
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refinement paradigm assumes that using the efficiency rules will at lcast guarantee a fuzzy “yes™ or betier.

Thas. it is not as important that it be able o backtrack.
7.6 Molgen

Molgen [Stefik] is a program that implements a theory of how o plan gene cloning experiments by
refining abstract plans. ‘The important issues in Molgen that relate to CIROP are its use of Constraini Posting
and Mecia-planning. Molgen views Constraint Posting as three operations. First. constraint formulation is the
process of crcatjng constraints. This occurs when abstract objects are refined 10 more concrete objects. The
more concrete object may have constraints that must be met.  For instance, when performing a
‘TRANSFORM operation, it is nccessary that the bacterium and vector, which are inputs to the
TRANSFORM operator, be biologically compatible. Therefore. refining an abstract MERGE operation 0 a
TRANSFORM operation places constraints on the values of the bacterium and vector so the TRANSFORM
will work properly. The cquations in phrase grammar rules in CIROP arc constraints that are formulated
when the rule is expanded. The expansion of a CIROP phrase grammar rule is similar to refining an object in

Molgen.

Sccond. constraint passing propagates the constraint across operations to other objects.  Subproblems
communicate by passing constraints, which is necessary since the subproblems may interact. The constraints
on objects are passed through operators. CIROP's objects correspond to the operators in Molgen. The

constraints in CIROP are passed when the equations are solved.

Third, constraint satisfaction is the process of looking for concrete objects that will satisfy the constraints
placed on an abslr;\ct object. 1f only one object can be found that satisfies the constraints, then Molgen can
refine the abstract object to that particular concrete object.  If no objects satisfy the constraint, then the
abstract object has been overconstrained.” CIROP also uses constraints to determine how an abstract circuit
object will be expanded. The fundamental difference is that Molgen is a least commitment planner. 1f
possible, it will not refine an object until the constraints are satisfied by only one concrete object. CIROP
docs not try to constrain an object until only one rule is applicable. in circuits, there usually are many ways

of satisfying a particular goal so it is not possible to create constraints that will climinate all but onc possibility.

Meta-planning controls the cvolution of the plan. Three levels of control are used in to model
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hicrarchical planning in Molgen.  The lowest level are Lab sieps. which are the basic operations in the
domain. The middle level are Design steps. which select and execute the Lab steps. The top fevel are strategy

steps. which select and exceute the Design steps.

The Laboratory space represents knowledge about objects and operations in a genetic laboratory, This
level is not a control level: it only represents knowledge about genetics. ‘The Laboratory space also contains

abstract objects and operations.,

The Design space contains knowledge about designing plans.  This defines a set of operators for
sketching plans abstractly and propagating constraints. Steps are executed in design space to create and refine

the laboratory plan. . .

‘The Strategy space contains simple knowledge about strategy for guiding the Design space. [t
represents two major problem solving philosophies: heuristic and least-commitment. ‘The intent is for
Molgen to operate in the least-commiunent mode whenever possible. I no steps may be taken without

making a choice on an underconstrained operation, Molgen will operate as a heuristic planner.
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8. Conclusions
8.1 Limitations of a Strict Hicerarchy

A hicrarchy of circuits can describe any circuit with a known topology. However. it does not always
capture the knowledge in a natural way. For instance. the general goal of a current cancellation stage for an
operational amplifier’s first stage is to dramatically reduce the input bias current. 1t does this with the clever
trick shown in Figure 27. ‘The two current sources labeled lbias supply the current needed to bias the input

transistors. which theoretically reduces the input bias current to zero.

The implementation of this trick samples the current necessary to drive the input transistors and

Ibia; @D éR R @) _lbias

PN

EE
Fig. 27. Current Cancellation Goal
‘The current cancellation differential pair breaks the direct link between the Input Bias Current and the stage’s
gm. This allows the designer to decrease the Input Bias Current substantially.
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supplies it awtomatically via the current so'urccs. Because of this. the inputs need not supply any current o
drive the input transistors. In Figure 28, Q1 is an input transistor. and Q3's collector current is assumed to be
approximately the same as Ql's collector current.  Assuming the s of Q1 and Q3 are Lh«,; same, the base
currents ol Q1 and Q3 should also be the same. Fransistors Q3 and Q6 are configured as & current mirror.
They take a reference current. which is the collector current of Q5. and create o matching current as the
collector current (')f Q6. This matched current approximately equals Q3's base current. which approximateh
cquals QI's base current.  This maiched current supplies the base current nécc»‘.ury for Q1. The above
technique assumes that the transistors” 8's are large and ncarly cqual. which is a reasonable approximation for

an integrated bipolar circuit.

Unfortunately, this clever trick does not appear in the circuit grammar representation of the current
cancellation stage.  Therefore, the entire circuit built around cach different use of this trick must be

represented in detail in the grammar,
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EE

Fig. 28. Details of Current Cancellation <
The dewails of the current cancellation show how the current mirrors sample the collector currents of the
differential pairs, and use that to create currents approximately cqual to the input transistors’ base currents.
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8.2 Transformations

Not all useful circuits can be described casily by a hicrarchy of construction rules such as CIROP's
phrase grammar rules.  For instance. the protection circuitry used in the output stage of an operational
amplifier is not really part of the circuit during normal operation,  Figure 29 shows a typical output stage

hefore and after protection is added to the top transistor.

\J

out out

in in

i
_.7'*\[__‘7?_
4 << |
N B —

IJ.
s

Before Transformation After Transformation

Fig. 29. Output Stage Protection by ‘Transformation
The output stage of an operational amplifier is protected by transforming a fragment of the circuit into a new
fragment that stili achicves the original goals, but now is protected.

Transformations are context-sensitive rules that can transform an existing part of the circuit into
something clse. They can help simplify a circuit after it is designed, as shown in Figure 30. The top circuit is
the product of the phrasc grammar manipulations. The bottom circuit is optimized because the two inductors

have been combined into one,
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Fig. 30. Inductor Transformation
‘The example circuits shows a simple optimization of combining two parts into one.

8.3 Algebra

Although circuit dcsign.ers must seldom solve complex equations, it may sﬁ]l be necessary to solve more
complex algebra than CIROP can. Its algebra system is limited because it does not understand inequalities
nor approximations, and cannot manipulate any mathematical operations, except the four basic arithmetic
operations. Incqualities are necessary since specifications are usually stated as incqualities. Since C lROP
treats inequalities as equalitics it may conclude that it cannot find a solution for a set of specifications, because
it may be harder to meet the specifications exactly. Human engincers use many approximations in design.

For instance, the following equation may scem complex:

C*((B+1D*A+D)
‘ B*A+D

In designing clectronic circuits, the variable 8 often is at least 50-100. 1t is usually valid to assume that

(8 + 1) approximatcly cquals 8. Therefore, the above equation can be simplificd to the value C. CIROP
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cannot make such simplifying approximations.  Without such approximations. a more powertul algebra

system is required.

Transistors and other components cannot always be descrihed and analyzed as lincar components. This
results in cquations with exponentials, requiring complex algebraic manipulations. The human engineer can

usually simplify cquations using knowledge that CIROP does not have.

The algebra system of the future should be able w0 manipulate more complicated cquations. make

approximations when uscful, and understand incquulitics..
8.4 Directing the Search in Circuit Space

The engincer uses his experience to guide him through a design. His experience usually prevents him
from going down incorrect paths, and instcad leads him to a good solution in a scemingly dircct manner.
CIROP has approximated this ability 1o avoid obviously crrant paths with the specification tradeoffs
mechanism. however, this does not capture all of the intwitive knowledge that humans usc. Humans also
categorize operational amplifiers into several classes. High-speed. low-power, high-power. and high accuracy
arc some catcgorics appropriate for operational amplifiers. The differences in the classes are represented by
the tradeoffs in the specifications. Knowing the class of a proposed amplifier can direct the scarch by
eliminating options that are ncver found in amplifiers of that class. CIROP does not usc this method,
although if the classification knowledge were formalized, it could be incorporated with the strategic

knowledge that determines the rules used in expansion.
8.5 Frequency Analysis

Analysis and reasoning about frequency response is so difficult that few human engineers do it well.
Reasoning about frequency response requires the ability to analyze the circuit from other viewpoints. Except

for slew rate analysis, this arca has been avoided in CIROP.
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8.0 Summary

The goal of CIROP has been o demonstrate a theory of ordinary design. CIROP does suprisinghy well
- at the task of ¢ircuit design, Tt designs circuits at the level of complexity described in Solomon's classic paper
[1974]. 'Thus. CIROP demonstrates an upper bound on the amount of knowledge needed to achieve this level

of competance.

A new grammar describing several varicties of operational amplifiers was developed for CIROP. The
phrase grammar’s rules were developed to describe the DC characteristics of operational amplifiers. These
rules show that cach of several common operational amplifiers can be modcled as a hicrarchy of abstract

objects. The analysis of these circuits was accomplished with the hicrarchical assertions of equations.

‘The representation used in CIROP is general and cextensible. New rules can be added that describe new
ways of building cxisting abstract objects and defining new abstract objects. The hicrarchical paradigm fits
many examples in the circuit domain. For instance, a radio’s tuner can be shown hicrarchically as a collection

of threc lower level objects: a converter, an JF strip, and a detector.

There is no direct limitation on the type of cquations. 1f more complex algebra is necessary, one could
interface it with a MACSYMA [MACSYMA]. The failure rules could have a more complex interpreter

implemented naturally with the rest of the system.

The topology and behavior of the devices are the main ingredients in a circuit. The representation of
these should be explicit, which is accomplished by the phrase grammar rules. The cquations that model the
behavior of the physical objects are the same equations used in models by engincers. The equations used in
the abstract objects are also similar to the cquulioAnS used by engincers and fit the domain naturally. Subject
to the limitations discussed. the representation is complete and concise.  The rules contain no extrancous
information that should confusc an engincer. CIROP accomplished its goal of demonstrating a theory for

design.
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Appendix I - Phrase Grammar Rules

L1 Summary of Types of Operational Amplifiers

The following kinds of circuits can be built with the given rules.
Standard Three stage operational amplifier with the following stages:
For the first stage:

Simple differential pair with resistive load

Simple differential pair with simple current mirror load
Simple differential pair with complex current mirror load
Darlington differential pair with résistive load

Darlington differential pair with simple current mirror load
Darlington differential pair with complex current mirror load
Super Beta differential pair with load

Current Canccllation Pair with load

For the second stage:

Simple common cmitter
Darlington common emitter

For the third stage:
Standard push-pull output stage with two diode drop biasing

Standard push-pull output stage with 1+ 1/2 diode drop biasing

With these possibilitics 32 different operational amplifiers can be synthesized.

78
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1.2 Abstract Objects in the Phrase Grammar
1.2.1 Three Stage Operational Amplifier

22 this is the normal vanilla flavor op-amp. differential front end :; simple amplifier for the gain stage, and

buffer output stage. (to-make-an ?op-amp three-stage-operational-amplifier
;. Pattern of applicability:
(where (type Top-amp amplifier)

{(has 7op-amp (input differential))

(has ?op-amp (oulput single-ended))

(has 7op-amp (input voltage))

(has ?op-amp (outputl voltage))

(has ?op-amp (priority 1))

(with-specs (gain-spec (voltage-gain Top-amp))
(slew-rate-spec (slew-rate 7op-amp))
(input-offset-current-spec

(offset-current Top-amp))
(input-bias-spec (bias-current ?op-amp))
(input-offset-voltage-spec (offset-voltage ?op-amp))
(drive-spec (output-drive ?op-amp))
(power-spec (power-consumption ?op-amp))))
;: Topology is as follows: ’
;; Parts are: :
(new-part (first-stage 7op-amp) . '
((type (first-stage 7op-amp)} amplifier)
(has (first-stage ?op-amp) (input differential))
(has (first-stage ?op-amp) (output single-ended))
" (has (first-stage ?op-amp) (input voltage))
(has (first-stage ?op-amp) (output current))
(has (first-stage ?op-amp) (sign pnp)))
((use . ((gain gm) (slew-rate gm)))
(with-specs
(= (transconductance (first-stage ?op-amp})
(sqrt (* 2 (gain Top-amp))}))))
(new-part (second-stage ?op-amp)
((type (second-stage Top-amp) amplifier)
(has (second-stage fop-amp) (input single-ended))
(has (second-stage ?op-amp) (output single-ended))
(has (second-stage ?op-amp) (input current))
(has (second-stage Top-amp) (output voltage))
(has (second-stage ?op-amp) (sign npn)))
((with-specs
(= (transresistance (second-stage ?op-amp))
(sgrt (* 2 (gain Top-amp)))))))
(new-part (feedback ?op-amp)
((type (feedback Top-amp) capacitor)))
(new-part (third-stage ?op-amp) )
((type (third-stage 7op-amp) buffer)
(has (third-stage ?op-amp) (input voltage))
(has (third-stage ?op-amp) (output voltage))))

;; Connections to outside are:

(connect (t+ ?op-amp) (t+ (first-stage 7op-amp)))

(connect (t- ?7op-amp) (t- (first-stage 7op-amp)))

(connect (ot fop-amp) (ot (third-stage. ?op-amp)))

;: Internal connections are: : .

{connect (ot (first-stage Top-amp)) (it (second-stage Top-amp))
(11 (feedback ?op-amp)))

(connect (ot (second-stage ?op-amp)) (it (third-stage ?op-amp))
(t2 (feedback Top-amp)))

;3 Propagating specifications to parts:

:: The gain of an op-amp is due to the product of the first two stages gain,
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(= (gain ?op-amp)
(* (transconductance (first-stage 7op-amp})
(loading (second-stage Pop-amp) (first-stage Top-amp)}
(transresistance (second-stage ?op-amp))))
{equation-with-variable-priority
(= (transresistance (second-stage 7op-amp))
(¢ (current-gain (second-stage ?op-amp))
(input-impedance (third-stage ?op-amp))))
(transresistance (second-stage ?op-amp)))
(equation-with-variable-priority
(= (loading (second-stage ?op-amp) (first-stage 7op-amp))
(// (output-resistance (first-stage ?op-amp))
(+ (output-resistance (first-stage 7op-amp))
(input-resistance (second-stage Top-amp})))))
(loading (second-stage ?op-amp) (first-stage fop-amp)))
(equation-with-variable-priority
(= (load-resistance (second-stage Top-amp))
(input-impedance (third-stage ?op-amp)))
(load-resistance (second-stage ?op-amp)))
i+ Power consumption is just the sum of the individual powers
(= (power-consumption fop-amp)
(+ (power-consumption (first-stage ?op-amp)) B
(power-consumption (second-stage Top-amp))
(power-consumption (third-stage ?op-amp))))
;. simple equation for determining the slew rate.
(= (slew-rate ?op-amp)
(// (max (current (ot (first-stage ?op-amp))))
(tapacitance (feedback ?op-amp))))
(= (cutoff-frequency ?op-amp)
(// (transconductance (first-stage ?op-amp))
.(capacitance (feedback ?op-amp)})))
The input offset current is one of the main specs given by the user,
(offset-current ?op-amp) (offset-current (first-stage ?op-amp)))
The input bias current is one of the main specs given by the user,
(bias-current ?op-amp) (* -1 (bias-current (first-stage ?op-amp)))})
The input offsel voltage is one of the main specs given by the user.
(offset-voltage 7op-amp) (offset-voltage (first-stage Top-amp)))
The drive current is the amount of current that the amp can deliver to
a load of a specified size. probably 2K ohms,.
(drive-current ?op-amp)
(maximum {(current (ot (third-stage ?op-amp)})))
;. assumption is that most of the distortion comes from the third stage.
(= (distortion ?op-amp)
(distortion (third-stage ?op-amp)))
;» might as well say what the third stage voltage gain should be.
(= (voltage-gain (third-stage 7op-amp)) 1))

Hoee W e
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1.2.2 Simple Differential Pair

(to-make-an 7dp simple-diff-pair
;s Pattern to match:

(where (type ?dp amplifier) e
{has ?dp (input differential)) (has ?dp (output single-ended))
(has ?dp (input voltage)) (has ?dp (output current))

(has ?dp (sign ?sign))
(has ?dp (priority 1))
;s something about a the sign
(with-specs

(= (transconductance 7dp)

(* (bias-current 7dp)
(eval (if (eq (quote ?sign) °"NPN)
(get-algebra-value 'NPN-BETA)
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(get-algebra-value 'PNP-BLTA)))
g/kiy)
{- {offset-voitage 7dp) simple-offsel-voitage)))
.. Parts are:
(new-part (pos-q 7dp)
({type (pos-q ?dp) virtual-bjl-transistor)
{has (pos-q 7dp) (sign ?sign})))
((use . ((gain gm)))))
(new-part (neg-q ?dp)
((type (neg-q ?dp) virtual-bjt-transistor)
(has (neg-q 7dp) (sign ?sign)))
((use . ((gain gm)))))
(new-part (load ?dp)
((type (load ?dp) differential-pair-load)))
{(new-part (source 7dp)
’ ((type (source ?dp) current-source)))

:; Connections to outside are:
{(connect (t+ ?dp)(base (pos-q ?dp)))
(connect (t- ?dp)(base (neg-q ?dp)))
(connect (emitter (pos-q ?dp))(emitter (neg-q ?dp))(tl (source ?dp)))
(connect (ot ?dp)(collector (pos-q ?dp)) (t2 (load ?dp)))
(rail-connect (t2 (source ?dp))(rail (negative ?sign)))
;s Propagating specifications to parts:
;. To calculate bias current, assume that we can cheat and assume that
:; the bias current is basically one of the transistors input current.
(= (bias-current ?dp) (current (base (pos-q ?dp))))
;; The offset current can be done by getting a delta-current from the
:; the load stage
(= (offset-current ?dp)
(// (delta-current (load 7?dp))
(beta (pos-q ?7dp))))
; The voltage offset for a given differential pair can be calculated
. once and then used as a constant.
(offset-voltage ?dp) (offset-voltage (pos-q 7d)))
The transconductance is the gain element in the diff pair,
It's value depends on the type of load used.
(transconductance 7dp)
(* (gm (pos-q ?dp)) (transresistance-factor {load ?dp))))
:; so that the slew rate can be calculated it must know this
(equation-with-variable-priority
(= (max (current (ot ?dp)))
(* -2 (current (collector (pos-q ?dp)))))
(max (current (ot ?dp))))
;: output resistance
(equation-with-variable-priority
(= (output-resistance ?dp)
(/7 (* (ro (pos-q ?dp)) (ro (t2 (load 7dp))))
(+ (ro (pos-q ?dp)) (ro (12 (load ?dp)}))))
(output-resistance 7dp))

e es e e e
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1.2.3 Simple Common Emitter

(to-make-an ?amp simple-common-emitter
;+ Pattern to match: ’
(where (type ?amp amplifier)
(has 7amp (input single-ended)) (has 7amp (output single-ended))
(has 7amp (input current)) (has ?amp (output voltage))
(has ?7amp (sign ?sign))
(has ?amp (priority 1))
(with-specs (transresistance-spec
(transresistance 7amp))
{power-consumption ?amp)))
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HR Parts'are:
(new-part (q ?amp)
{((type (g Tamp) virtual-bjt-transistor)
(has (q 7amp) (sign ?sign)))
{(use . ((gain beta)))))
.. Connections are:
(connect (it ?amp) (base (q Pamp)))
(connect (ot ?amp) (collector {q ?amp)))
.. some connection of emitter for biasing
(connect (dc-bias 7amp) (emitter (q 7amp)))
.. Specifications
(= (input-resistance 7Tamp) - (rpi (q ?amp)))
(equation-with-variable-priority
(= (max (current (ot ?amp))) (currenl (collector (q 7amp})))
(max (current (ot ?amp))))
(= (power-consumption ?amp)
(* voltage-range {(current (collector (q 7amp})))))
= (current-gain ?amp)
(beta (q ?amp))))

1.2.4 Simple Common Collector

(to-make-an ?amp simple-common-collector
;: Pattern to match: .
(where (type ?amp common-collector)
(has ?amp (inputl single-end®d)) (has ?amp (output single-ended))
(has ?amp (input voltage)) (has 7amp (output voltage))
(has ?amp (sign ?sign)) .
(has ?amp (priority 1)))
;; Parts are:
(new-part {q ?amp)
((type (q ?amp) virtual-bjt-transistor)
(has (q ?amp) (sign ?sign))))
;. Connections are:
(connect (it ?amp) (base (q ?amp)))
(connect (ot ?amp) (emitter (q ?amp)))
:: some connection of emitter for biasing
(connect (dc-bias ?amp) (collector (q Tamp)))
(= (current-gain ?amp) (beta (q ?amp))))

1.2.5 Simple Follower

(to-make-an ?foll simple-follower
;. Pattern to match:
(where (type ?foll follower)
(has ?fol1 (sign ?sign))
(has 7foll (priority 1)))
.+ Parts
(new-part (element ?7foll)
((type (element ?fo11) common-collector)
(has (element ?foll) (sign ?sign))))
;s Connections
(connect (ot ?foll) (ot (element ?foll)))-
(connect (it ?foll) (it (element ?foll)})
(= (currant-gain ?foll) (current-gain (element ?To11)}))

LN
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1.2.0 Differential Pair Active Load

{to-make-an ?load differential-pair-active-load
;. Pattern to match:
(where (lype ?load differential-pair-load)
(has ?load (sign ?sign))
{has ?load (priority 1))
(with-specs (delta-current-spec (delta-current ?load))
(transresistance-factor-spec
(transresistance-factor ?1o0ad))))
.. Parts are:
{new-part (cm ?load)
((type (cm ?load) current-mirror)))
+: Connections are:
(connect (t1 ?load) (reft {(cm ?lcad)))
(connect (t2 ?load) (outt (cm ?locad)))

(ro (t2 ?load)) (ro {outt (cm ?load))}))
(delta-current ?load) (delta-current (em ?load)))
2 (transresistance-factor ?load)))

(
(
(
1.2.7 Differential Pair Resistive Load

(to-make-an ?load differential-pair-resistive-load
(where (type ?load differential-pair-load)
(has ?load (sign ?sign})
(has. ?10ad resistive)
(with-specs (iransresistance-factor-spec
(transresistance-factor ?load))
(delta~-current-spec (delta-current ?10ad))))
;; Parts are: :
(new-part (rl1 ?load) ((type (r1 ?load) resistor)))
(new-part (r2 ?load) ((type (r2 ?load) resistor)))
;. Connections:
(connect (t1 ?load)(t2 (rl ?load)))
(connect (t2 ?load)(t2 (r2 ?load)))
(rail-connect (rail ?sign)(tl (rl1 ?load)))
{rail-connect (rail ?sign)(tl (r2 ?load)))
;s specifications
i+ the delta current is dependent on how accurate we can make resistors
for a simple load
(delta-current ?load) (* resistor-accuracy (current (t2 ?load))))
(ro (t2 ?load)) (resistance (r2 ?load)))
(ro (L1 ?load)) (resistance (ri ?load)))
1 (transresistance-factor ?load))
(resistance (rl ?load))(resistance (r2 ?load))))
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1.2.8 Simple Current Mirror

(to-make-an 7cm simple-current-mirror
;:» Pattern to match: '
(where (type ?cm current-mirror)
(has ?cem (priority 1))
(has ?cm (sign ?sign))
(with-specs (delta-current-spec (delta-current ?cm))))
:: Parts are: :
(new-part (diode ?cm) )
((type (diode ?cm) virtual-bjt-transistor)
(has (diode 7cm) (sign ?sign))))

83



28 SIMPEE CURRENT MIRROR ‘ .

(new-part (output-trans ?cm)
({lype (output-trans ?cm) virtual-bjt-transistor)
(has (output-trams Tcmj (sign ?sign))))
. Connect to output: .
.. Also make diode into a diode
{connect (reflt ?cm) {(collector (diode ?cm))
(base (diode ?cm)) (base (oulput-trans ?cm)))
(connect (outt ?cm) (collector {(outpul-trans ?7cm)))
.+ Internal connections:
(rail-connect (emitter (diode ?cm)) (rail (negative ?sign)))
(rail-connect (emitter (output-trans ?cm)) (rail (negative 7sign)))

:Specifications
(equation-with-variable-priority
(= (ro (outt ?cm)) (ro (output-trans 7cm)))
{ro {outt 7cm)))
(= (delta-current ?cm) (// (current (collector (output-trans ?cm)))
(beta (output-trans ?cm))))
(= (current (emitter (diode ?cm))) (current (emitter (output-trans ?cm)))))

1.2.9 Wilson Current Mirror

{(to-make-an ?cm wilson-current-mirror
.+ Pattern to Match:
(where (type 7cm current-mirror)
{has ?cm (sign ?sign)))
.. New Parts:
(new-part (diode 7cm)
((type (diode ?cm) virtual-bjt-transistor)
(has (diode ?cm) (sign ?sign))))
(new-part (output-trans ?cm)
((type (output-trans ?cm) virtual-bjt-transistor)
(has (output-trans ?em) (sign 7sign)))) ’
(new-part (q fcm)
((type (q ?cm) virtual-bjt-transistor)
(has (q 7cm) (sign ?sign))))
;; Connections:
1. conpect to output
(connect (reft ?cm) (collector (q ?cm)))
(connect (reft Tcm) (base (output-trans 7cm)))
(connect (outt ?cm) (collector (output-trans 7cm)))
;i internal connections
;: make diode into a diode
(connect (base (diode ?cm))(base (g ?cm))(coliector (diode ?cm)))
(rail-connect (emitter (diode ?cm))(rail ?sign))
(rail-connect (emitter (q ?cm))(rail ?sign}))
{connect (emitter (output-trans 7cm)){colltector (diode 7cm)))

(= (ro (outt 7cm)) (ro {output-trans ?cm)))
(= (delta-current ?cm) (// (current (collector (output-trans ?cm)))
(beta (output-trans ?cm))))
(= (current (emitter (diode ?cm))) (current (emitter (output-trans ?cm)))))
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1.2.10 Norimgl Op Amp Output Stage

(to-make-an ?buffer normal-op-amp-output-stage
;. Pattern to match:
(where (type 7b buffer)
{has 7b (input voltage))
(has 7b {priority 1))
(has ?b (output voltage))
(with-specs (power-consumplion-spec (power-consumption ?buffer))))
.. Parts are:
(new-part (input-stage 7b)
((type (input-stage 7b)
complement-pair-input-voltage-drop-input-stage)))
(new-part (output-stage ?b) -
((lype (output-stage 7b) complement-pair)
(has (output-stage ?b) (sign npn))))
;; Connections are:
(connect (it ?b) (it (input-stage ?b)) (it2 (output-stage 7b)))
(connect (ot ?b) (ot (output-stage ?b)))
(connect {topt (input-stage ?b)) (itl (output-stage 7b)))

{equation-with-variable-priority
(= (maximum (current (ot ?b)))
(* -1 (current-gain (output-stage ?b))
(current (it ?b))))
(maximum (current (ot ?b))))
(= (power-consumption ?b) .
(+ (power-consumption (input-stage ?b))
{power-consumption (output-stage 7b))))
; the distortion of this stage depends mostly on the type of
input stage used to bias the voltage drop across the output drivers.
(distortion ?b) (distortion (input-stage ?b)))
(input-impedance ?b)
(* load-resistance (current-gain (output-stage ?b)}))))-
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1.2.11 Complement Pair Input Voltage Drop Input Stage

(to-make-an ?cpvd complement-pair-input-voltage-drop-input-stage
;3 Pattern to match:
(where (type ?cpvd complement-pair-input-voltage-drop-input-stage)
(has 7cpvd (priority 1))
(with-specs (power-consumption-spec (power-consumption ?cpvd})))
;+ New parts:
(new-part (drép ?cpvd)
({type (drop ?cpvd) complement-pair-input-voltage-drop)))
(new-part (load ?cpvd)
((type (load ?cpvd) resistor)))
;: Connections:
(connect (it ?cpvd) (it (drop Tcpvd)))
(connect (ot ?7cpvd) (t1 (resistor ?cpvd)) (ot (drop 7cpvd)))
(rail-connect (t2 (resistor ?cpvd)) (rail ?sign})

(= (power-consumption ?cpvd)

(* voltage-range (current (load ?cpvd))))
(= (distortion ?cpvd) small-distortion)
(= (bias-current {input-stage ?b))

(current (t1 (resistor ?cpvd)))))
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[.2.12 Simple Complementary Pair

(to-make-an ?¢cp simple-complementary-pair
.. Pattern to Match:
(where (type ?cp complementi-pair)
(has “cp (sign ?sign})
{has ?cp (priority 1))
(with-specs (power-consumption-spec (power- consumptlon 7cp))))
;. Parts are: .
(new-part (pull-up ?cp)
({type (pull-up ?cp) follower)
{(has (pull-up ?cp) (sign ?sign))))
(new-part (pull-down ?cp)
{{type (puli-down ?cp) follower)
(has (pull-down ?cp) (sign (negative ?sign)))))
.; Connections are:
(connect {ot ?cp) (ot (puli-down ?cp)) (ot (pull-up 7cp)))
(connect (iu ?cp) (it (puli-up T7cp)))
(connect (1id ?cp) (it (pull-down 7¢cp)))

(current-gain ?cp) (current-géin {ptll-down 7cp)))
(power-consumption 7cp)
(* voltage-range (current (collector (pull-up ?cp))))))

1.2.13 Single Transistor Bjt

{to-make-an ?7v-bjt Single-transistor-bjt
;. Pattern to Match:
(where (type ?v-bjt virtual-bjt-transistor)
(has ?v-bjt (sign ?sign))
(has ?v-bjt (priority 1)))
{(new-part (q ?v-bjt)
((type (q ?v-bjt) bjt)
(has (q ?v-bjt) (sign ?sign))))
(connect (base ?v-bjt)(base (q ?v-bjt)))
(connect (collector ?v-bjt)(collector (q ?v-bjt)))
(connect (emitter ?v-bjt)(emitter (q ?v-bjt)))
(= (ro ?v-bjt) (ro (q ?v-bjt)))
(= (rpi ?v-bjt) (rpi (q 7v-bjt)))
(= (gm 7v-bjt) (gm (q ?v-bjt)))
(= (beta ?v-bjt) (beta (g ?v-bjt))))

1.2.14 Double Darlington Transistor Bjt

(to-make-an ?v-bjt double-darlington-transistor-bjt
; Pattern to Match:
(where (type ?v-bjt virtual-bjt-transistor)
{has ?v-bjt (sign ?sign))
(has ?v-bjt (priority 2)))
(new-part (gl ?v-bjt)
((type (ql ?v-bjt) bjt)
(has (g1 ?v-bjt) (sign 7s1gn))))
(new-part. (q2 Tv-bjt)
((type (g2 ?v-bjt) bjt)
(has (q2 ?v-bjt) (sign ?sign))))
(connect (base ?v-bjt)(base (ql ?v-bjt)))
(connect (collector ?v-bjt)
(collector (q1 ?v-bjt))
(collector (g2 ?v-bjt)))
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(connect (emitter ?v-bjt)(emitter (g2 ?v-bjt)})
(connect (emitter (ql1 7v-bjt)) (base (g2 7v-bjL)))
(= {rpi ?v-bjl) (* 2 (beta (gl Tv-bjL)) (rpi (42 ?v-bjL))))
= (ro ?v-bjt) (ro (q2 ?v-bjt)))}
(beta ?v-bjt) (* (beta (g1 7v-bjt)) (beta (g2 ?v-bjt))))

(
(:
(= (gm ?v-bjt) (* (// 1 2) (gm (qZ ?v-bjtL)))))

1.2.15 Super Beta Differential Pair

(lto-make-an 7dp super-beta-diff-pair

;: Pattern 10 Match:

(where (type ?dp amplifier)
(has ?dp (input differential))
(has ?7dp (output single-ended))-
(has 2dp (input voltage))
(has 7dp (output current))
(bas ?dp (signm npn))
(has ?dp (priority 3))
(with-specs (input-bias-spec (bias-current ?dp))

(offset-current-spec (offset-current ?dp))
(offset-voltage-spec (offset-voltage 7dp))

(gain-spec (transconductance ?7dp))))

;; State the components:
(new-part (pos-q 7dp)
({type (pos-q ?7dp) super-beta-bjt-transistor)
(has (pos-q ?dp) (sign ?sign))}))
(new-part (neg-q 7dp)
({type (neg-q ?dp) super-beta-bjt-transistor)
(has (neg-q ?dp) (sign ?sign))))
(new-part (pos-q2 ?dp)
((type (pos-g2 ?dp) virtual-bjt-transistor)
(has (pos-q2 ?dp) (sign ?sign))))
(new-part (neg-q2 ?dp)
({type (neg-q2 ?dp) virtual-bjt-transistor)
(has (neg-g2 ?dp) (sign ?sign}))))
(new-part (diodel ?dp)
({type (diodel ?dp) diode)))
(new-part (diode2 ?dp)
((type (diode2 ?dp) diode)))
(new-part (diode3 ?dp)
((type (diode3 ?dp) diode)))
(new-part (dioded ?dp)
((type (dioded4 ?dp) diode)))
(new-part (sourcel ?dp)
((type (sourcel ?dp) current- source)))
{new-part (source2 ?7dp)
((type (source2 ?dp) current- source)))
;: Connect to outside terminals
(connect (pos-it ?dp){base (pos-q 7dp}))
(connect (neg-it 7dp)(base (neg-q 7dp)))
(connect (pos-ot ?dp)(collector (pos-q2 7dp)))
(connect (neg-ot ?dp)(collector {neg-q2 ?7dp)))
(connect (pos-it 7dp)(tl (dioded ?dp)))
(connect (pos-it 7dp)(t2 (dioded 7dp)))
(connect (neg-it ?dp)(t2 (dioded ?7dp)))
(connect (neg-it ?7dp)(t1 (dioded ?dp)))
;; now internal connections
(connect (emitter (pos-q ?dp))(emitter {neg-q ?dp)))
(connect (base (pos-q2 ?dp)) (base (neg-q2 7dp))
{t1 (diodel ?dp)) (t2 (source2 ?dp)))
(connect (collector (pos-q ?dp))(emitter (pos-q2 ?dp)))
(connect (collector (neg-q ?dp))(emitter (neg-q2 ?dp)))
{connect (t2 {diodel ?dp))(tl (diode2 ?dp)))
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(connect (11 (sourcer ?7dp)) (t2 (dlodeZ ?dp)) (emitter (pos-q.?dp)))
(rail-connect (11 (source2 ?dp))(rail 7sign))
(raul connect (t2 (sourcel ?dp))(rail (negative 7sign}))
. Propagating specifications to parts:
(offset-voitage ?dp) simple-offset-voltage)
(transconductance ?7dp)
(* (gm (pos-q ?dp)) (transresistance-factor (load ?dp))))
(= (bias-current 7dp)

(* 2 (current (base (pos-q ?dp)))))
(= (bias-current ?7dp)

(* 2 (current (base (neg-q ?7dp))))))

(
{

L.2.16 Current Cancellation Differential Pair

(to-make-an 7dp current-cancellation-amp
(where (lype ?dp amplifier)

(has ?dp (input differential})

(has 7dp (output single-ended))

(has 7dp (input voltage))

(has ?7dp (output current))

(has ?dp (sign ?sign))

(has ?dp (priority 2))

{(with-specs (input-bias-spec (bias-current 7dp))
(offset-current-spec (offset-current ?dp))
(offset-voltage-spec (offset-voltage ?dp))
(gain-spec (tranéconductance ?dp))))

.. State the components:
(new-part (pos-q ?dp)
{((type (pos-q ?dp) virtual-bjt-transistor)
(has (pos-q 70p) (sign ?sign})))
(new-part {neg-q 7dp)
({type (neg-gq ?dp) virtual-bjt-transistor)
(has (neg-q ?dp) (sign ?sign))))
{new-part (g3 ?dp)
) ((type (93 ?dp) virtual-bjt-transistor)
(has (q3 ?7dp) (sign ?sign))))
{new-part (q4 ?dp)
({type (q4 ?dp) virtual-bjt-transistor)
(has (q4 7dp) (sign ?sign)})))
(new-part (g6 ?dp)
({type (q5 ?dp) virtual-bjt-transistor)
(has (g5 ?dp) (sign (negative ?sign)))))
(new-part (g6 ?7dp)
((type (96 ?dp) virtual-bjt-transistor)
(has (q6 ?dp) (sign (negative ?sign)})))
(new-part (q7 ?7dp)
((type (q7 ?dp) virtual-bjt-transistor)
(has (q7 ?dp) (sign (negative ?sign)))))
(new-part (g8 7dp)
((type (q8 ?dp) virtual-bjt-transistor)
(has (q8 7dp) (sign (negative 7sign)))))
(new-part (sourcel ?dp)
((type (sourcel ?dp) current-source)))
(new-part (sourcez ?dp)
((type (sourceZ ?dp) current-source)))
{new-part (bias-q 7dp)
{(type (bias-q ?7dp) virtual-bjt-transistor)
(has (bias-q ?dp) (negative 7sign))))
(new-part (d1 ?dp) ((type (d1 ?dp) diode)))
(new-part (d2 ?dp) ((type (d2 ?dp) diode))})
(new-part (load ?7dp)
((type (load ?dp) differential-pair-load)))
;(has (load ?dp) resistive)
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.. Now connect them to the outside

(connectl (pos-it ?dp)(base (pos-q ?dp)) (collector (qb6 ?dp)))
{(connecl (neg-il ?dp)(base (ney-g 7dp)) (collector (q8 ?dp)))
(connect (ot ?dp){collector (q3 ?dp)) (L2 (load ?dp)})
(connect (neg-ot ?dp)(collector (g4 ?dp)) (i1 (load ?dp)))

.. now the inside connections on positive side

{(connect (collector (pos-q 7dp))(emitter (g3 7dp)))

(connect (emitter (pos-q ?dp)) (t1 (sourcel))
(emitter (neg-q ?dp)) (base (bias-q ?dp)))

(connect (base (q3 ?dp)) (collector (g5 ?7dp))
(base (q5 ?7dp)) (base (g6 7dp)))

(connect (emitter (q5 7dp)) (emitter (q6 7dp))
(emitter (q7 ?dp)) (emitter (q8 ?dp))
(t2 (source2 ?dp}) (11 (d1 7dp)))

:: now the inside connections on neg side

(connect (collector (neg-q ?dp))(emitter (g4 7dp)))

(connect (base (g4 ?7dp)) {collector (q7 ?dp))
{base (q7 7dp)) (base (q8 ?7dp)})

.. bias connections

{rail-connect (t1 (source2 ?dp))(rail ?sign))

(rail-connect (t2 (sourcel ?dp))(rail (negative 7sign}))
(connect (t2 (d1 ?dp))(tl (d2 ?dp)))

(connect (t2 (d2 ?dp))(emitter (bias-q ?7dp)))

(rail-connect (collector (bias-q ?dp))(rail (negative ?sign)))

Propagating specifications to parts:

(= (current (emitter (g5 ?dp))}) (current (emitter (q6 ?dp))))
(= (current {(emitter (q7 7dp))) (current (emitter (q8 ?dp))))
(= (offset-voltage ?7dp) simple-offset-voltage)
(= (transconductance ?dp)

(* (gm (pos-q ?dp)) (transresistance-factor (load ?7dp))))
(= (bias-current ?7dp)

(+ (current (base (pos-q ?dp))) (current (collector (g6 ?dp)))))
The offset current can be done by getting a delta-current from the
the load stage
(offset-current ?dp)
{7/ (delta-current (load 7dp))
(beta (pos-q ?dp))))
;. so that the slew rate can be calculated it must know this
(equation-with-variable-priority
(= (max (current (ot 7dp)))
(* -2 (current {collector (pos-q ?dp)))))
(max (current (ot ?dp))))
;s output resistance
(equation-with-variable-priority
(= (output-resistance ?dp)
(/77 (* (ro (pos-q ?dp)) (ro (t2 (Yoad ?dp))))
(+ (ro (pos-q 7dp)) (ro (t2 (load ?dp))))))
(output-resistance ?7dp))) :

1.2.17 Cp Voltage Drop With Diode

(to-make-an ?vd cp-voltage-drop-with-diode
;. Pattern }
(where (type ?vd complement-pair-input-voltage-drop)
(has ?vd (priority 1))
(has ?vd (sign Tsign)))
;; Parts: .
(new-part (d1 ?vd) .
((type (d1 ?vd) diode)
(has (d1 ?vd) (sign ?sign))))
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(new-part (d2 ?vd)
({type (d2 ?vd) diode)
{has (d2 ?vd) (siyn Tsign))))
. Connections:
(connect (it ?vd) (it (d1 ?vd)}))
(connect (ot ?vd) (ot (d2 ?vd)))
(connect (ot (d1 ?vd)}) (it (d2 ?vd)))})

1.2.18 NPN Transistor Diode

(to-make-an ?d npn-irans-diode
.. Pattern
(where (type ?d diode)
(has 7d (priority 1)) .
(has ?7d (sign npn)))
. New parts:
(new-part (q 7d)
((type (g ?d) virtual-bjt-transistor)
{has (q 7d) (sign npn))})
;; Connections:
(connect (it 7d) (base (q ?d)) (collector (q 7d)))
(connect (ot ?d) (emitter (q ?d}))))

1.2.19 PNP Transistor Diode

(to-make-an ?d pnp-trans-diode
;; Pattern
(where (type ?d diode)
(has 78 (priority 1))
(has ?d (sign pnp)))
.. New parts:
(new-part (q ?7d)
({type (q 7d) virtual-bjt-transistor)
(has (q ?d) (sign pnp)))})
i+ Connections:
(connect (it 7d) (base (q ?d)) (collector (q ?7d)))
(connect (ot 7d) (emitter (q ?d))))
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L3 Primitivg Objects in the Phrase Grammar

L.3.1 Simple NPN BJT

(to-make-an 7bjt simple-npn-bjt
;. Pattern to match:
(where (tlype 7bjt bjt)
(has ?bjt (sign npn))
(terminal-device ?bjt)
(device-parameter (beta ?bjt))
(device-parameter (gm ?bjt))
(has ?bjt (priority 1))
(three-terminal-device (base ?bjt)(emitter ?bjt)(collector ?bjt)))
(equation-with-variable-priority ’
(= (current (collector ?bjt))
(* (beta ?bjt) (current (base ?bjt))))
{(current (collector 7bjt)))
(= (beta ?bjt) npn-beta)
(= (gm ?bjt)
(* g/kt (current (collector ?bjt))))
(= (rpi 7bjt)
(/7 (beta ?bjt) (* q/kt (current (collector %bjt)))))
{equation-with-variable-priority’
(= (ro ?bjt) (// 200. (current (collector ?bjt))))
(ro 7bjt)) .
(= 0 (+ (current (collector ?bjt)) (current (base ?bjt))
(current (emitter ?bjt)))))

1.3.2 Simple PNP BJT

(to-make-an ?bjt simple-pnp-bjt
;. Pattern to match:
{where (type 7bjt bjt)
(has ?bjt (signepnp))
(terminal-device ?bjt)
(device-parameter (beta ?7bjt}))
(device-parameter (gm ?bjt))
(has ?bjt (priority 1))
(three-terminal-device (base ?bjt)(emitter 7bjt)(collector ?bjt)))
(equation-with-variable-priority
(= (current (collector ?bjt))
(* (beta ?bjt) (current (base ?bjt))))
(current {(collector ?bjt}))
(= (beta ?bjt) pnp-beta)
(= (gm 7bjt) A
(* q/kt -t (current (collector ?bjt))))
= (rpi ?bjt) )
(// (beta ?bjt) (* g/kt -1 (current (collector ?bjt}))))
{(equation-with-variable-priority
(= (ro ?bjt) (// -80. (current (collector ?bjt)))) ; pnp-ro
(ro 7bjt))
(= 0 (+ (current (collector 7bjt)). (current (base 7bjt))
(current (emitter ?bjt))))) '
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1.3.3 Super Beta NPN BJT

(to-make-an ?v-bjt super-beta-npn-bjt

.. Pattern to Match:

(where (type ?bjt npn-bjt)
{terminal-device 7bjt)
(device-parameter (beta ?bjt))
{device-parameter (gm ?bjt})
(has ?bjt (priority 1))
(three-terminal-device (base ?th)(emILter 7th)(collector ?bjt})))

(= (current (collector ?bjt)) (* (beta 7th) {(current (base ?th))))
(= (beta ?bjt) super-npn-beta)
(= (gm ?bjt) (* g/kt (current (collector ?bjt})))
(= (rpi ?bjt) (// (beta ?bjt) (* q/kt (current (collector ?bjt)))))
(= (ro ?bjt) super-npn-ro)
(= 0 (+ (current (collector 7bjt)) (current (base ?bjt))
{current (emitter ?bjt))))) .
1.3.4 Standard Resistor . ' .

(to-make-an ?r standard-resistor

;. Pattern to match:

(where (type ?r resistor)
(terminal-device ?r)
(device-parameter (resistance ?7r))
. (has ?r (priority 1))
(two-terminal-device (tl ?r)(t2 7r)))

= (voltage ?r)

(* (current (t1 7r)) (resistance 7r)))
(= 0 (+ (current (t1 ?r)) (current (t2 7r)))))

1.3.5 Capacitor

(to-make-an ?c capacitor
;: Pattern to match:
(where (type ?c capacitor)
(terminal-device 7c)
(device-parameter (capacitance ?c))
(has 7c (priority 1))
(two-terminal-device (t1 7c)(t2 ?c)))
0 (current (t1 ?c)))
0 (current (12 ?c))))

(L]
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A circuit is represented as a hierarchy of abstract objects each of which is composea
of other objects. The leaves of this tree represent the physical devices from which
physical circuits are fabricated. By analogy with context-free languages, a class

of ciucuits is generated by a phrase-structure grammar, of which each rule describes
how one type of abstract object con be expanded into a combination of more concrete
parts.

Circuits are designed by first postulating an abstract object which meets the
particular design requirements. This object is then expanded into a concrete
circuit by successive refinement using rules of my grammar. There are in general
many rules which can be used to expand a given abstract component. Analysis must

be done at each level of the expansion to constrain the search to a reasonable set.
Thus the rules of my circuit grammar provide constraints which allow the approximate
qualitative analysis of partially instantiated circuits. Later, more careful
analysis in terms of more concrete components may lead to the rejection of a line

of expansion which at first looked promising. I provide special failure rules

to direct the repair in this case.

As part of this research I have developed a computer program CIROP, which implements
my theory in the domain of operational design.
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