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Abstract |

This thesis describes an implemented system called NODDY for acquiring procedures
from examples presented by a teacher. Acquiring procedures from examples involves
several different generalization tasks. Generalization is an underconstrained task, and the
main issue of machine learning is how to deal with this underconstraint. The thesis
presents two principles for constraining generalization on which NODDY is based. The
first principle is to exploit domain based constraints, NODDY demonstrates how such
constraints can be used both to reduce the space of possible generalizations to manageable
size, and how to generate negative examples out of positive examples to further constrain
the generalization. The second principle is to avoid spurious generalizations by requiring
justification before adopting a generalization. NODDY demonstrates several different ways
of justifying a generalization and proposes a way of ordering and searching a space of
candidate generalizations based on how much evidence would be required to justify each
generalization,

Acquiring procedures also involves three types of constructive generalization: inferring
loops (a kind of group), intcrring complex relations and state variables, and inferring
predicates.  NODDY demonstrates three constructive generalization methods for these
kinds of generalization,
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Title: Professor of Computer Science
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Chapter 1

Introduction

This thesis addresses a task and an issue. The task is to acquire procedures from
examples. The issue is how to constrain generalization in a rich domain. The thesis claims
that one should limit generalization by requiring sufficient justification before adopting
a generalization. It describes an implemented system called NODDY, based upon this
principle of requiring justification, that acquires procedures in a simple robot domain.
NODDY also illustrates three new generalization heuristics for finding loops, finding

complex relations and generalizing parameterized objects.

The acquisition of procedures is a variation of the more commonly studied task of
acquiring concepts from examples. A teacher shows NODDY several examples of how
to perform a certain task. NODDY must generalize these examples to come up with
a procedure that will cope with a wider range of situations than those for which the
teacher gave examples. A significant difference between procedure and concept acquisition
arises from the specific constraints on the structure of procedures. NODDY exploits these
constraints to guide the matching and generalizing in several ways. A second significant
feature is that there are several different kinds of generalization involved in acquiring
procedures, each requirihg different generalization methods, which must be cccrdinated

and combined.

The task of procedure acquisition has important applications for automation, industrial
and otherwise. A major advantage that human workers have over robots and computers
is that one can instruct them easily and flexibly, for instance, by demonstrating how to
perform some task. Although humans are likely to remain more flexible than machines
for a long time, robots and computers would become much more useful if they also were
instructable in a flexible manner. There are several kinds of reasoning and generalization
that an instructable robot would need to be able to do. NODDY is just a first step towards
one part of such a robot.

The prime purpose of NODDY, however, is not to be an instructable robot, but
rather to be a testbed for investigating the issues of generalization. Procedure acquisition
is a particularly good domain for this because of the varicty of kinds of generalization
involved.

Generalization arises in a variety of learning and reasoning tasks. It is central to

9



Chapter 1

any kind of acquisition from examples, where the concept, procedure, rule, efc., to be
acquired is a generalization of a set of examples. It is important to other learning tasks
such as discovering new theories or constructing classification hierarchies which involve
constructing general descriptions that explain or structure some data. But it is not confined
to learning tasks—it is also essential for any task that involves any kind of matching,
if partial matches are considered. If two descriptions match partially, then they have
something in common, without being exactly the same. What they have in common
is exactly a generalization of the two descriptions, so that finding a partial match is
equivalent to finding a generalization. Since matching is necessary for such tasks as
analogical reasoning, indexing, data retrieval, and rule based reasoning, these tasks also

involve generalization, either implicitly or explicitly.

Generalization is difficult because it is inherently underconstrained—in any rich domain
there are many possible descriptions that are valid generalizations of a set of examples,
The central problem of generalization is how to choose the “best” generalization from
among these candidates. Generalization can_therefore be viewed as a search through a
space of possible descriptions. From this viewpoint, the problem of generalization is how
to structure the space, what order to search it in, and when to halt the search. This thesis
will argue that a generalizer must be guided and limited, by considering the justification
for its choices. It will also argue that the appropriate search order on a space of possible
generalizations is based on the justifiability of the generalizations—how much data would

be needed to justify the choice of a generalization.

Qutline of Thesis

The thesis is organized as follows:

o Chapter 1 presents a scenario showing informally how NODDY acquires a procedure
from examples in a 2~dimensional robot domain. Section 1.2 places NODDY within
the spectrum of learning tasks by identifying the key dimensions along which learning
tasks vary. Section 1.3 discusses the central problems of generalization and compares
the two main approaches. The last section gives a brief review of the background of

this thesis in the literature.

o Chapter 2 defines the procedure acquisition task more precisely and describes NODDY's

representation of procedures. Scction 2.5 bricfly defines the 2-dimensional rebot do-

10



Chapter 1
main from which all the examples in the thesis are taken,

o Chapter 3 gives an overview of NODDY, characterizing the kind of generalization
that NODDY does, and using one of the procedures from the scenario to step quickly
through the several stages by which NODDY generalizes a procedure to account for

a new example,

o Chapters 4 - 6 present the workings of NODDY in more detail. Chapter 4 describes
the matching and generalization of the structure of procedures. Chapters 5 and 6
describe the matching and generalization of the actions and conditions of procedures

respectively.

o Chapter 7 discusses the principles arising from NODDY: : the role of domain constraints
in constraining generalization, three constructive generalization methods, and the

principle of justified generalization,

o Chapter 8 concludes the thesis with a summary of what has been accomplished and a

discussion of the directions for future work in procedure acquisition.

1.1 Scenario

The following scenario describes how NODDY acquires a simple procedure for a 2~
dimensional robot domain from a sequence of examples presented by a teacher. Although
the example is described somewhat informally, this is an example on which NODDY
has been run, and NODDY really does acquire the procedure in the way the scenario

describes.

The teacher wants NODDY to acquire a simple procedure, called RETRIEVE, for
retrieving a block from a warehouse area. Figure 1-1 }shows a warehouse area with blocks
arranged in rows of four, and a wall at the bottom and left of the blocks. The procedure
RETRIEVE (see figure 1-2) will take the robot from anywhere in the “work area” to the
“entry point” of the first row of the warehouse (step 1), along the first row (step 2) until
it hits something. If it has hit a block, (as in the example of figure 1-3 a), the robot will
grasp the block (step 4), move back to the entry point of the row (step 4), then back to
the starting position (step 5), where it will let go of the block (step 6) and stop. If, on the
other hand, after step 2, the robot has hit the wall rather than a block (as in figure 1-3 ¢,
d, or ¢), then the procedu're will take the robot back to the entry point of the current row
(step 3'), up o the entry point of the next row (step 4", then repeat from step 2 on the

1
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— — Figure 1-1 The Warehouse Setup for the RETRIEVE procedure, — —

The robot starts in the work area on the right, thea moves to the warchouse and scarches
the rows, in crder. It wkes the first block it finds back to where it started.

new row, until the robot finally finds a row with a block. The phrases enclosed in <...>
in the figure are informal descriptions of what are actually numbers and expressions. The
rest of the figures in the scenario will use these phrases rather than confuse the issues
with representation details that belong in chapter 2. The descriptions will be made slightly
more precise towards the end of the scenario.

NODDY acquires the RETRIEVE procedure from a sequence of five examples. Figure
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=)

’ (remember this position)
MOVE-TO <entry point of row 1>
ﬂ”" to next row 2 | MOVE-UNTIL-CONTACT <along row>
3 if: at <wall> & contact if: at <not wall> & contact 3
then: MOVE <back to entry point of row) then: GRASP
4' | MOVE <up to entry point of next row) MOVE-TO (entry point of row> | 4

MOVE <back to the starting point> | 6

UNGRASP |6

STOP |7

— — Figurc 1-2 The Goal Procedure: RETRIEVE, — —

NODDY must acquire this procedure from examples given by the teacher.

1-3 is a graphical rcpresentation of the examples, showing the path that the teacher led
the robot through to generate each example. The description of the exaniple actually
presented to NODDY is more like that of figure 1-4 — a sequence of patterns (position
and force feedback) and actions (MOVE, specified by the distance and direction to move,
GRASP, or UNGRASP).

There are a number of features in the RETRIEVE procedure that are just not present
in the cxamples given to NODDY. Therefore, to generalize the examples to obtain
RETRIEVE, NODDY cannot just extract compenents of the examples but must infer

these features. Tor instance. RETRIEVE has a loop and a fork. All the cxamples are

13
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— — Figure 1-3 The examples presented by the teacher, — —
This is a graphical representation of the sequence of steps the teacher leads the tobot
through o generate the examples. The actual example given w NODDY is the sequence
of actions performed and tive feedback pattern at cach step.
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at: (4,2)
MOVE 3.6 @ -146°

at: (1,0)
MOVE 1 @ 180°

at: (0,0) contact: 180°
GRASP

A
at: (0,0)

MOVE 1 @ 0°

at: (1,0)
MOVE 36 @ 34°

at: (4,2)
UNGRASP

at: (4,2)
sTOP

— — Figure 1-4 The First Trace,. — —

This trace is just example (a) of figure 1-3 cxpressed in a form closer to NODDY'’s
representation of it. ‘The details of the representation will be given in chapter 2, and are
not necessary for understanding this section. This is also NODDY’s first version of the
RETRIEVE procedure since NODDY does not geacralize from a single example,

straight line sequences, so NODDY must infer the presence of the loop and the fork itself.
The conditions in step 3 and 3’ (which are predicates on positions) are the branching
conditions for the fork at step 2. These conditions must be inferred from the particular

positions in the examples,
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Several of the actions are also generalizations of the actions in the examples. For
instance, step 1 has an absolute MOVE-TO action, ie, move to a particular point. This
must be generalized from the relative MOVEs of the examples—inove by a vector relative
to the current position. Step 2 has a MOVE-UNTIL-CONTACT-AT action, which involves
a new stopping condition. The actions of steps 4 and 5 are even more complex, though
the complexity is hidden in the descriptions of the parameters. The MOVE-TO of step 4
involves moving to a point, but which point depends on which row you are in, and step 5
moves to the initial position at the start of the procedure. In both cases, the parameters of
the actions must be expressed as a function of some position, and NODDY must not only
determine what the function is, but must also determine which position it is a function of.

None of this information is present in the examples.

NODDY does not acquire RETRIEVE all at once. The teacher presents the examples
one at a time, and NODDY uses each new example to generalize its current version of

the procedure to incorporate the new example.

The first example shows NODDY how to get the first block from the first row.
NODDY’s first version of RETRIEVE is identical to the first example (see figure 1-4)
since NODDY has no basis for any generalization. RETRIEVE-1 is only applicable when
the warehouse is completely full and the first block of the first row is present.

In the second example (figure 1-3 b), the teacher shows the robot how to get the
second block from the first row. The teacher also starts the robot in a different place.
Using this example, NODDY generalizes RETRIEVE-1 to obtain RETRIEVE-2 (figure
1-5). Neither of the first two examples involve the second row, so RETRIEVE-2 does
not include the loop of RETRIEVE, but NODDY has generalized the first two actions to
MOVE-TO (1,0), (the entry point for the first row), and MOVE-UNTIL-CONTACT-AT 180°,
respectively. NODDY also infers that step 4 involves moving back to the entry point of
the first row and step 5 moves back to the starting position. Because this last action is a
function of the position in step 1, NODDY notes in that step that the position should be
remembered for later reference. This position is a state variable of the procedure. The
robot does not need to remember any other other position and force-feedback information.

The third example introduces the second row. Given this example, NODDY generates
RETRIEVE-3 shown in figure 1-6. This procedure is actually more complex than the goal
procedure, RETRIEVE, since it not only has a loop for moving up to the second row,
but has an extra -branch—steps 47 and 5. RETRIEVE-3 has one branch for taking the

16
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@)

(remember this position)
MOVE-TO (1,0)

if: at (1,0)
then MOVE-UNTIL-CONTACT-AT 180°

3 | GRASP

4 | MOVE-TO (1,0

St
if: at (1,0)

then: MOVE <from (1,0) to remembered position>

UNGRASP

STOP

— — Figure 1-5 RETRIEVE-2 — —

NODDY’s version of the procedure after two examples. It wilt work for any block in the
first row and any starting position. NODDY has inferred that it should remember the
starting posiiion and that the MOVE of event 5 is a function of the remembered position.
NODDY has also inferred that the MOVE of event 2 is a MOVE-UNTIL-CONTACT-AT,

block out of the first row and returning to the starting position (stcps 4 and 5, taken
from RETRIEVE-2) and another branch for taking the block out of the second row and
returning (o the starting position (steps 4" and 5, taken from the third example). NODDY

has not seen enough about the second row yet. (o be able to find the gencral way of
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(remember this position)

MOVE-TO (1,0)
s ﬁ\

2 | MOVE-UNTIL-CONTACT-AT 180°

/

if: at (-4,0) & contact

3/
1% then: MOVE 5@90°
it: anywhere & contact 3
A then: GRASP
4' | MOVE 1@90° © N\
4 if: at (-1,1) if: anywhere 4
then: MOVE 2@0° then: MOVE-TO (1,0)
5" | MOVE 3.6@34° MOVE <from (1,0) to remembered position>
6 | UNGRASP
71 STOP

~— — Figure 1-6 RETRIEVE-3 — —
NODDY has inferred a preliminary version of the loop to move up to the next row, but
has not had enough examples o find the general way of returniag from a row with the
block and back to the start: hence the extra branch of events 4" and 5",
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taking a block out of any row. This extra complexity will disappear with the next example
when NODDY has been given a bit more information, However, NODDY has acquired
a preliminary version of the loop which takes the robot up to the next row. It noticed that
in the new example, the robot moved to the left two times, and each time ended up in
contact with something. NODDY inferred that the procedure must loop back to the same
MOVE-UNTIL-CONTACT-AT (step 2). The loop is still preliminary because the condition
for taking the left fork after step 2 (i.e, the condition of step 3') is specific to the first
row—being at the position (—4,0), (the wall is the column z = —4), since the example
only traversed that part of the loop once.

NODDY also notes that the fork after step 2 must be executed carefully. The
condition on step 3' is a special case of the condition on step 3. NODDY therefore
notes on RETRIEVE-3 that the robot must first test the applicability of the more specific
condition (step 3') and only when it is not satisfied, test the condition of step 3. NODDY
notes the same thing for steps 4” and 4. In figure 1-6, the order in which the conditions

should be tested is noted on the arrows leading to the conditions.

1 .
row 2 3 | GRASP row 1
4" | MOVE-TO (1,1) MOVE-TO(1,0) | 4
5" ’ j l 5
MOVE <from (1,1) to remembered position> MOQVE <from (1,0) to remembered position>
6 | UNGRASP

— — Figure 1-7 A fragment of the intermediate stage in forming RETRIEVE-4 — —

NODDY has started to gencralize RETRIEVE-3 to incorporate example 4, and has
generalized the left branch of the “return from row” part of the procedure so that it can
cope with a block anywhere in row 2.

The fourth example (figure 1-3 d) is another example of finding a block in the second
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S

(remember this position)

1
MOVE-TO (1,0)
S l
2 | MOVE-UNTIL-CONTACT-AT 180°
/ \
A 3 |if: at(-4,0) & contact if: anywhere & contact |
then: MOVE 5@90° then: GRASP

\ 4' | MOVE 1@90° 4 | MOVE-TO (1,<y-component of current position>)

5 | MOVE <from current position to remembered position>

l

6 | UNGRASP

e
‘ '
' '
[ —

7| STOP

°)

— — Figure 1-8 RETRIEVE-4 — —

NODDY can now grasp a bleck and return to the starting position from any row. In steps
4 and 5, NODDY has found the way the actions depend on the current position. The
onty deficit is the overly specific condition for entering the loop.

row. This example follows RETRIEVE-3 exactly until step 47, so that no change needs
to be made to the first part of RETRIEVE-3, Taking the block back to the entry point
and back to the (different) starting position is slightly diffcrent, however, NODDY is able
to use this new example to acquire a general way of returning with a block from the
second row (generalizing steps 47 and 5 ol RETRIEVE-3). Figure 1-7 shows the rclevant
fragment of the intermediate procedure that NODDY creates with this generalization,
NODDY then infers the general way of returning with a block from any row (merging
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steps 4" and 5" with steps 4 and 5). Figure 1-8 shows the new procedure RETRIEVE-4
after merging the two branches in the intermediate procedure of figure 1-7. The loop is
still specific to moving up to the second row because the condition for entering step 3 has
not changed from RETRIEVE-3.

However, the steps for grasping a block, moving to the entry point of the row, and
returning to the starting position will apply to any row, not just rows 1 and 2, even though
those are the only rows that NODDY has seen. ’

/ N\ J
2 | MOVE-UNTIL-CONTACT-AT 180°

if: anywhere & contact if: anywhere & contact 3
then: MOVE 5@0° then: GRASP

l {
4’ | MOVE 1@90°

— — Figure 1-9 A fragment of the intermediate stage in forming RETRIEVE-5 — —

The problem that NODDY notices is that the conditions on steps 3 and 3' are now overly
general, and NODDY must find conditions that will distinguish the two branches.

K3

The final example (figure 1-3 €), involves moving from the first row to the second row,
and then from the second row to the third row. NODDY recognizes that steps 2 — 8 of the
example go round the loop of RETRIEVE-4 twice, and uses the two iterations to generalize
the loop. First, NODDY generalizes the conditions on steps 3’ and 4' without considering
the rest of the procedure. The relevant fragment of the resulting procedure is shown in
figure 1-9. There is a problem because the conditions of steps 3 and 3' are identical.
Therefore, after step 2, the robot could never tell whether to take the right branch and
GRASP or the left branch and move to the next row. NODDY notices this indcterminacy,
realizes that it has overgeneralized the conditions and scarches for alternative conditions
that distinguish the two branches. Figure 1-10 shows the final procedure, with these
distinguishing conditions. This procedure is identical to the goal procedure of figure 1-2

(except that some of the informal descriptions of the actions and conditions are spelled
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&

(remember this position)
MOVE-TO (1,0)

/ 2 | MOVE-UNTIL-CONTACT-AT 180°

g |if: at x<—4 & contact ~ |if: x>-3 & contact 3
0 then: MOVE 5@0° then: GRASP
x 2
\ 4' | MOVE 1@90° 4 | MOVE-TO (1,<y-component of current position>)
: s

5 | MOVE <from current position to remembered position>

I
6 [ UNGRASP

Fufatie)
'

1 '
pa—l

71 sTOP

(t,0)

‘— — Figure 1-10 RETRIEVE-5 — —

The final procedure, which is the same as the goal procedure. From the five examples,
NODDY has learned how to find the first block, whatever row it is in, and take it back
to the starting point.

out in more detail). This is what the teacher was intending to teach, so NODDY has
“successfully acquired the procedure, with its loop, branch conditions, generalized actions,

and internal state variable, from (he five examples presented by thie teacher,
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.. Another Example: The TURTLE Procedure

The following chapters use the RETRIEVE procedure described above to illustrate
NODDY’s operation. 1t will be useful to have an additional example to illustrate certain
features of NODDY, so this section briefly describes the TURTLE procedure and the
traces from which NODDY can acquire it.

=)

move towards goai ( \
1

MOVE-UNTIL-CONTACT-TOWARDS (0,0)

/ \ try, Lagain
5 it: at (0,0) if: anywhere & contact [f] 3
STOP MOVE 0.1@(9 — 180°)

move back fromjobstacle

MOVE 0.5@(6 — 90°) | 4
AN move/‘o side

— - Figure I-11 The TURTLE Procedure — —-

The TURTLE procedure instructs the robot to move towards the goal until it is either at
the goal or has hit an bstacle. If it hits an obstacie, the robot backs off, moves to the
side, and tries again.

The TURTLE procedure, shown in figure 1-11, is a very simple procedure [or getting
to a goal position (0,0), and circumnavigating and obstacles along the way. The robot
moves toward the goal (event 1) until it is cither at the goal (J£2) or in contact with
some obstacle (#3). If it has hit an obstacle, it moves back perpendicutar to the obstacle
a step of 0.1 (£23): moves parallel o the obstacle a step of 0.5 (1£4), then heads for the
goal again (foops back FU), 1t wiil repeat this as many times as necsssary o get around

the obstacle, and can cope with muiriple obstacles. and obstacles with multiple faces.
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] at (6,0) . ] at (6,0)
MOVE 6@180° MOVE 2@180°
5 at: {0,0) 5 at: (4,0) & contact: 180°
STOP MOVE 0.1@0°
gocl.“f < —* l
: at: (4.1,0)
(a) | % | MovE 05@90°
at: (4.1,0.5)
4
MOVE 4.13@-173%>

N

-/(/.: at: (0,0)

gool
STOP

(b)

— — Figure 1-12 The First Two Traces of TURTLE Procedure — —

(a) When there is no obstacle, the robot goes straight to the goal position. (b) When there
is a small obstacle oriented vertically, the robot hits the obstacle, backs off horizontally,
" moves along the side of the obstacle, then heads for the goal again

NODDY can acquire this procedure from just three traces. The first trace (figure
1-12-a) has no obstacle, so the robot goes straight to the goal. The second trace (figure
1-12-b) has one small obstacle. From these two traces, NODDY acquires the procedure
in figure 1-13. NODDY has inferred that the first move should move towards the goal,
whatever the current position. The loop in this procedure enables the robot to step around
any object with a vertical face, no matter how many steps are needed. The third trace
has an obstacle oriented at 45°, and from it, NODDY is able to generalize the actions
in the loop to back away from the obstacle and step along the face, no matter what its
oricntation. This is the complete TURTLE procedure.
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/ <\

1 | MOVE-UNTIL-CONTACT-TOWARD (0,0)

—

if: at: (0,0)
STOP

N

if: at: (4,0) & contact:180°
MOVE 0.1@0°

MOVE 0.5@90° | 4 jh

+— — Figure 1-13 The Version of TURTLE After Two Traces — —

NODDY has inferred the loop, and can now handle any number of any sized cbstacles,
as long as the face that the robot hits is vertical. For example, it could handle the case
shown in the bottom left of the figure.

]
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S

at: (7.00,1.00)
MOVE 35@-172°

at: {3.5,0.5)& contact: -135°
MOVE 0.1@45°

at: {(3.5,0.5)
MOVE 0.5@135°

—

at: (3.2,0.9)
MOVE 3.3@-164°

at: (0,0)
STOP.

~— — Figure 1-14 The Third Trace for Acquiring TURTLE — —

With a small obstacle oriented at 45°, the robot does the same as in the sccond trace,
except that it backs off and moves to the side in a different direction. With this third
example, NODDY is able to generalize the version of TURTLE in figure 1-13 to the fully
general procedure of figure .
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1.2 Learning Tasks

“Learning” is a very vague term, and there many different problems and tasks that
could be classified as learning tasks. This section places NODDY within the broad area
of learning tasks by identifying a number of the dimensions along which such tasks vary
and giving the NODDY’s position along each dimension. '

A learning task can be characterized in terms of the given input and the desired
output—what the learner must learn from, and what the learner must acquire as a result.
The following two subsections address the nature of the output and input respectively.

1.2.1  What the Learner Must Learn

Parameters, Database Entries, Concepts:

The first dimension is the nature of what the learner must acquire. Early work in machine
learning, such as Samuel's Checker player [Samue! 1959] and perceptrons [Minsky and
Papert 1969}, was concerned with acquiring the values of parameters of a predetermined
structure, whether a set of rules or a vector of features. The major limitation of this
approach was that the weights were much less significant than the choice of rules or
features, so that the more interesting problem of acquiring the rules or features themselves

was not addressed.

A significant part of human learning is the acquisition of new facts that can then be
retrieved later. No-one is willing to say that a computer that simply stores entered facts
into a data base is really doing interesting learning, though therc are some significant
machine learning problems involved with having a machine construct its own indexing

and retrieval system based on the facts that have been presented to it.

NODDY is concerned with the third class of learning tasks—acquiring concepts, where
“concept” is used in the sense of a structured description that involves parts, properties
and/or relations expressing some internal structure. Most of the AI machine learning
work in the last 15 years has beén concerned with acquiring concepts. A key issue in
acquiring concepts is the representation language in which the concepts are expressed,
since this contains implicit or explicit constraints on what concepts could be acquired. A
later paragraph will distinguish several important subclasses of concepts on the basis of

the constraints on the representation language.
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Concepts, Rules, Procedures, Plans:

There are a variety of kinds of structured descriptions that a learning machine could acquire.
All of them can be viewed simply as descriptions in terms of nodes with properties and
relations between the nodes, but each subclass generally has certain constraints on what
is a valid description which should be exploited by the learner. Concepts, as used in
the general sense of unspecific structured descriptions, have very few constraints, and do
not assume any special properties of any of the relations, The representation for rules,
on the other hand, has a special relation between the set of preconditions and the set of
consequents of a rule. A rule acquirer should exploit this special relation, and any other

particular properties of rules.

Procedures, which NODDY acquires, are even more constrained than rules because of
their control structure which imposes a dominant sequential structure on the components

of the procedure.

Groups and Relations:

An important characterization of structured descriptions is whether the descriptions the
learner acquires involve explicit groups and/or relations that are not present in whatever
the learner learns from. Inducing groups is a particularly difficult induction task because
the boundaries of the group are “invisible objects” that the learner must create out of
nothing rather than select from the data. Inducing relations is similarly difficult because
the learner must not only discover a felation, but also determine which nodes might be

related.

The procedures that NODDY acquires have both groups and relations. An iterative
loop, which describes many iterations by a single “typical iteration” and an exit condition,
is a special kind of group. Proccdures may also have internal state, represented, for
example, by variables, and actions that depend bn the state. This dependency is a relation
between the variable and the action that the learner must acquire. In NODDY'’s case,
there are no variables present in the data, and NODDY must find both the variable and

the dependency.

Numerical Parameters versus Nominals:

A class of structured descriptions can also be characterized by the nature of the components
out of which the description is constructed. The components may be parameterized objects,

objects from a hierarchically structured set, objects from an unstructured sct, or even

28




Chapter 1

structured descriptions themselves. The nature of the generalization required to acquire
the goal descriptions from the examples depends upon the type of the components.

The procedures that NODDY deals with are structured descriptions whose components
are parameterized objects. Without parameterized components, several key features of
procedures (generalized actions and dependencies between actions and patterns) become
impossible, and procedure acquisition becomes relatively trivial. This is another interesting
feature of procedure acquisition because there has been less work done on generalization
of this type of description than on descriptions of the other kinds.

Single Theory versus Multiple Theories:

Another characterization of the output of a learner is whether it should produce a single
theory or a set of alternative theories (where a theory is a particular structured description
which accounts for the data). Mitchell’s version space method [Mitchell, 1982, 1983] is
specifically designed to produce the set of all theories that are consistent with the data
seen so far, represented in the most concise manner possible, Winston's arch learner, on
the other hand, kept only one description of the theory being acquired.

There are good reasons for either choice. A basic design decision underlying NODDY
is to insist on a single theory (the description of a procedure, in NODDY’s case) that
accounts for the data, and wait for more or better examples if there is not a single best
theory. There are two motivations behind this design decision. The first is that if the
representation language for the theories is rich, there may be very many alternative theories
that satisfy the data and it will be computationally expensive, both in terms of search
and storage space, to deal with all the alternatives. The second motivation is one of the
generalization principles outlined in the next section and addressed more fully in chapter
7, namely, that several alternative thcories are no thecory at all. NODDY woiks on the
assumption that if there is not one unambiguous theory to explain the examples, then it
has not seen sufficient examples to uncover the underlying regularitiés, and it should wait

for more examples before adopting a theory.

1.2.2  What the Learner Learns From

The input to the learner includes both the knowledge implicit or explicit in the learner
before it even starts to lcarn anything, and the data from which it explicitly learns. We

must consider the nature of this data, and where it comes from.
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Teacher Driven versus Self Driven:

The second dimension along which learning systems vary is the source and nature of the
input data. The most important distinction is between those that assume a cooperative
teacher is providing examples and those that generate their own examples in some way.
The learner’s task is much simpler if a teacher provides it with preclassified examples
in a pedagogically good order. One of the powerful ideas in Winston’s early concept
acquisition program was that the teacher should provide “near misses” along with the
positive examples—descriptions of structures that were almost, but not quite, examples
of the concept being acquired. Michalski’'s CLUSTER algorithm [Michalski, 1980, 1983]
must be given a set of descriptions, but it will find its own classification for them and a
description for each class. Lenat’s AM and Eurisko [Lenat, 1982a, 1982b] and Mitchell’s
LEX [Mitchell, 1983] generate their own examples, AM by applying modification heuristics
to the descriptions it has already constructed, and LEX by using a very simple, but general,
problem solver to solve problems, and analyzing the problem solver’s solution. However,
at least for learners such as LEX, generating the examples is quite separable from the
problem of acquiring the concepts from those examples, and can legitimately be viewed
more as a problem solving task than a learning task, even though the it is solving a

problem in order to acquire new knowledge.

NODDY is currently' teacher driven, because the purpose of NODDY is to investigate
issues in generalization rather than problem solving. The teacher must hand NODDY a
sequence of examples of the procedure. NODDY will learn much faster if the sequence
introduces just a few new aspects of the procedure in each example, and NODDY may

not be able to acquire the procedure at all if the order is very perverse.

However, procedure acquisition is particularly suited to automatic generation of exam-
ples, because running the procedure in a modified environment will produce a new trace,
and a promising avenue for future work is to reduce the role of the teacher by enabling
NODDY to generate its own examples. If NODDY were told the goal of the procedure it
is trying to acquire, it could classi{y any traces it generated as positive or negative instances

of the procedure and then use them to improve the procedure.
Instances, Situations, or Traces:

If the learner operates on examples of what it must learn (whether the examples are
provided by a teacher or self generated), the relation between the examples and the

concept to be leamed will depend on the nature of the concept. For instance, an example
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of a description of a table will be a description of a particular table, which will generally
contain all the structure of the general table, but more specific values for the properties of
the parts of the table. An example of a rule may be just a describtion of an entire situation
in which the consequences of the rule are valid, which will include many irrelevant parts.

One possible example of a procedure would be an overly specific procedure—a
procedure with all the structure of the procedure to be acquired (such as loops and forks)
but with overly specific conditions and actions. The most natural example of a procedure,
on the other hand, is a trace of the execution of the procedure in a particular situation.
Traces are “natural” because a human teacher can easily generate a trace of a procedure
by actually performing the task (or leading a robot through the task) and recording the
steps he actually took. The teacher does not even need to have an explicit formulation of
the procedure in order to generate a trace. Humans often teach procedures by “showing

how to do it,” rather than giving instructions.

A significant feature of traces as examples is that they do not have any of the interesting
structure of the procedure—they have no branching, no loops, and no explicit dependencies.
Acquiring procedures is therefore a particularly interesting acquisition task because the
learner must construct all of these structural components of the procedure rather than just

extracting them from the examples.

Currently, NODDY acquires procedures from from a sequence of traces presented
by the teacher. NODDY will also accept procedures as examples—traces with additional
structure such as loops—but it does not require them and all of the examples used in the

rest of the thesis are traces without any additional structure.

Domain Specific Knowledge versus Domain Independent Knowledge:

The second part of a learner’s input is the knowledge it uses to interpret and analyze the
data it is given. This may be explicit in a data base, or implicit in the workings of the
system. It may also be specific to the particular domain (for example, symbolic integration,
“or two dimensional geometry), or general heuristics that are domain independent (such as
the “drop condition” heuristic of [Michalski 1983]). If the Icarner is dependent on domain
specific knowledge, it will be more difficult to apply it to different domains, particularly if

the domain specific knowledge is implicit in the learner’s structure.

Knowledge about the structure of procedures and how they can be generalized is
implicit in NODDY’s algorithm. NODDY is therefore restricted to acquiring procedures
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rather than acquiring rules, structural descriptions, or plans. Although the principles
underlying NODDY could be applied to the acquisition of other kinds of concepts,
NODDY itself could not. NODDY, has currently been applied to a two dimensional
robot domain and uses some knowledge . specific to this domain. However, one design
principle for NODDY has been to keep this domain specific knowledge to a minimum
and to make it explicit. As a consequence, one could use NODDY to acquire procedures
in any domain by replacing the robot domain knowledge. Later chapters describe the

form that this domain specific knowledge must take,

Incremental versus Non-incremental Acquisition:

One can also classify the input data to a learner that lcarns from examples on the basis of
whether the examples are presented as a complete set or incrementally. If presented as a
group, the learner can analyze all the examples at once and may also assume that no other
examples are necessary, The learner is usually expected to produce the “best” theory of
the data, where “best” is defined according to some optimality criteria.

In incremental acquisition, the learner is expected to produce a theory after each new
example is presented, revising the theory when it is inconsistent with the next example, In
this case, the learner is not expected to produce the best theory, but rather to evolve the
theory “gracefully” to accommodate the new examples. VanLehn [1983] uses a modification
of incremental acquisition in which the teacher presents the examples as a sequence of
groups of examples. The teacher guarantees that the theory needs to be changed in only
one way to accommodate all the examples in each group. This overcomes the ambiguities
that may arise if the learner may only analyze one example each step.

NODDY is designed solely for incremental acquisition. The teacher presents the
example traces one at a time, and NODDY modifies its current version of the procedure

to incorporate the new example,

Positive Examples Only versus Positive Examples and Near Misses:

The final classification of the input data is determined by whether the data only includes
positive examples of the concept/procedure/rule/etc., or whether it also includes negative
examples. One can show quite readily that in the general case, it is not possible to acquire
concepts from positive data only (see [Gold 1967]), because there are too many possible
theories consistent with the data and no way of distinguishing between them. However, if

there are strong constraints on the class of theories under consideration, it may be possible
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to acquire a theory without any negative examples (see [Angluin and Smith, 1982] for set
of grammars that can be acquired from positive data only).

The procedures that NODDY acquires do have a strong constraint—that they be
deterministic. This constraint is sufficiently strong that NODDY is able to acquire many
procedures from traces of valid executions of the goal procedure (i.e, positive examples
only). It turns out that the determinacy constraint does not place any constraints directly
on the conditional tests in the procedure, and therefore the conditions cannot be acquired
without negative examples. However, NODDY can exploit the determinacy constraint
to generate positive and negative examples of the conditions from the traces (which are

positive examples of the procedure as a whole).

1.3 Generalization

The task of a generalizer is to take a set of example descriptions in some representation
language Lz, and construct a description (or set of descriptions) in a representation
language L¢ that is a generalization of the examples. A description G is a generalization
of another description S if G covers S—G describes everything that S describes and more.
If the set of examples includes both positive and negative examples, then the generalizer
must construct a description that covers all the positive examples but excludes all the

negative examples.

We can view generalization as a search through the space of all possible descriptions
in the language L¢ for a description or set of descriptions that account for the exam-
| ples([Mitchell 1982]). Clearly, the more expressive L; is, the larger the space that must be
scarched, and the more difficult the generalization task. It is very desirable, therefore, to
constrain or bius Lg to make the search space is as small as possible without eliminating
generalizations that may be needed to explain some sets of examples [Mitchell 1983). The

constraints on the task domain provide a basis for this bias.

The two defining characteristics of a generalizer are the order in which it scarches the
space, and the stopping criteria for either deciding on a generalization or abandoning the
search. One can classify generalizers into two broad classes according to their criteria for
ordering and halting the search. Both approaches are based on a version of the principle
of least commitment—make as conservative a choice as possible so that you will not need
to retract it later. The first approach is that of least generality—order the space according

to generality, and stop the search at the most specific description that is a generalization
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of the examples. This is most appropriate for a data driven search using generalization
heuristics to construct more general descriptions out of more specific descriptions. The
second approach is that of least complexity—order the space aécording to a complexity
measure and stop the search at the simplest description that is a generalization of the
examples. This approach is particularly appropriate for a top-down search through a
predetermined ordering on the descriptions. The rest of this section will describe these
two approaches, discuss the disadvantages of each, and present the unifying approach
upon which NODDY is based.

Least Generality

The simplest form of the least generality approach is to choose the most specific candidate
that satisfies the examples when there is just one maximally specific candidate, and wait
for better examples when there are several maximally specific candidates (e.g., [Winston,
1970]). This method works only when L can be constrained so as to ensure that there

can be just one maximally specific generalization, which is not the case in many domains.

A more sophisticated form of the least generality approach is to keep the complete set
of maximally specific candidates instead of insisting on a single candidate, since choosing
one over the others would mean making more commitment than necessary. If there
are negative as well as positive examples, then the least generality approach would also
keep the set of maximally general generalizations that exclude the negative examples (the
least commitment to what the concept is nof). The two sets together constitute a version
space ([Mitchell, 1982]), which is a concise representation of the complete set of all the
generalizations consistent with the examples—any generalization that is a generalization of
one of the maximally specilic generalizations and a specialization of all of the maximally
general generalizations is consistent with all the examples. The two sets effectively define
a region of generalization space by specifying the lower and upper bounds on the region.
A version space represents the least possible commitment since it covers all possible
generalizations that are consistent with the examples. With sufficient examples, the version

'space will narrow down to just a single generalization, as long as the space is not too
dense.

The least generality approach is particularly good for incremental acquisition since each
new version space for the concept can be an incremental generalization of the previous
version space so that what has been learned from previous examples can be used in

accounting for the new cxamplcs.
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There are a number of well known generalization heuristics that can be used for the
least generality approach. Each heuristic is applicable to different kinds of descriptions.
The set of heuristics chosen for a given generalization task will determine both the target
representation language (L¢), and the generality ordering on the generalizations.

Michalski [1983] gives a comprehensive list of the best known generalization heuristics
and also classifies them into two classes—selective and constructive methods. A generaliza-
tion method is selective if it only uses the descriptive elements in the example descriptions
(ie, Lg = Lg); and constructive if it introduces new descriptive elements that are not

present in the basic descriptions (i.e., Lg D Lg).

Least Complexity

If a generalization task is such that Lg cannot be constrained or biased to the point where
a least generality approach is applicable, (for example, when disjunctive descriptions must
be considered), one must use the least complexity approach. This approach searches the
space in order of complexity and stops at the simplest description that accounts for the
data,

The search method in this approach is usually a generate and test method in which
the generalizer constructs a sequence of descriptions in order of increasing complexity,
testing each description against the data, and halting at the first one that satisfies the data.

There are many possible complexity orderings for a a given generalization space.
An important issue is how one can choose an appropriate ordering. Michalski [1983]
discusses some of the effects of choosing one ordering over another within one particular
representation language and concludes that the choice of the complexity ordering will
depend, at least in part, upon the task to which the generalizations will be put. That is,
ihe generalizations are being acquired for some purpose, and this purpose governs the
desired characteristics of the resulting generalizations. This flexibility is an advantage that
the least complexity approach has over the least generality approach'.

Disadvantages

The least generality approach, even in its version space form, suffers from the problem of
requiring a constrained representation language: if L¢ is a very expressive language, the
version space will be too large to be useful. As long as Lg does not include disjunction,
then the upper and lower bound sets may be too large to represent or manipulate (for
example, the set of all curves in the plane that go through a set of example points). If
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L¢ includes disjunction, the search space become very dense and the maximally specific
generalization of a set of examples is just the disjunction of the set of positive examples
This disjunction is just a list of the examples, which is not a generalization at all. In fact,
the least generality approach fails completely if disjunctions are permitted, because the
upper and lower bounds of the space will never converge, no matter how many examples
are presented. Therefore, the least generality approach is only appropriate when Lg can
be severely constrained or biased to keep the space of all possible generalizations small.

An important disadvantage of the. least complexity approach is that it does not behave
well for incremental acquisition. When a new example is presented that does not satisfy
the current generalization, the complexity ordering gives no guarantee that the current
generalization will be of any use in constructing a new generalization that covers the new
example, since a small change in the extension of the description does not necessarily
correspond to a small change in its complexity. Therefore, incremental acquisition can
turn into a sequence of applications of a non-incremental acquisition method to a growing
set of examples, which both subverts the purpose of incremental acquisition and is likely

to be very expensive.

There is an additional problem with both the least generality and the least complexity
approaches: the stopping criterion never abandons the search for a generalization unless
no generalization exists at all. This is fine if there is a guarantee that there will be a useful
generalization of the set of examples, but this is not always the case. Especially in matching
tasks such as searching a data base for a description that is similar to one just input by
the user, part of the task may be to determine whether an acceptable generalization of
the examples exists or not. This determination may be very expensive, or not halt at all

uniess the generalizer can abandon the search at some point.

Justifiability

This thesis claims that generality and complexity are just two instances of a more fun-
damental ordering criterion—justifiability—and that designing a generalizer on the basis

of justifiability can overcome the disadvantages of both the least generality and the least

complexity approaches.

A generalization of a set of descriptions can be viewed as a theory of the set. A
proposed theory is unjustified if there are many other theories that are equally good. For
example, one generalization of a group of people would be “objects with noses”. However,

there are many other equally good theories relating to eyes, toes, ears efc., so there is no
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justification for picking one over the others.

Even if there is just one theory that'is better than any others, there may still be no
justification for adopting it if there is always a theory of that form that would account for
any such set of data. For example, if the data consists of three points on the plane, then
there must be just one quadratic that fits them. If we have prior knowledge that these
point are examples of some polynomial curve, then we would be justified in guessing that
the quadratic that fits them is that curve—a straight line would not fit them, and there are

an infinite number of higher order polynomials that fit the points.

But if we do not know whether the points are examples of a polynomial curve, or
even whether they have any property in common, then we would not be justified in
adopting the quadratic as a theory of the points since some quadratic could be fitted to
any three points by appropriately choosing the coefficients, It is only when we are given
(say) six data points that all lie on a quadratic that we would feel justified in believing
that quadratic really accounts for the data, since it is impossible to tailor a quadratic so as

to fit an arbitrary set of six points.
These obseivations can be summarized in the following principles:
e Do not choose any generalization if there are several equally good candidates.

e Do not choose a generalization if it is so tailorable that it could have explained any

set of data of the current form.
e Order and search the space of generalizations according to “justifiability”.

e Obtain some measure of confidence that there is a generalization of the data to be
found, and abandon the search when the generalizations cannot be justified by the

data.

The justifiability ordering will depend on the task domain and the nature of the
examples. The more justification a particular description would require in order to adopt
_it, the later it should be in the ordering. To choose a justifiability ordering, one should
take into consideration both generality and complexity, because both may contribute to the
ordering. Determining an appropriate justifiability ordering is the central design problem

in constructing a generalizer for a given task.

There are several different sources for justification. The justification for the quadratic

theory above depended on the relation between the number of data points and the degrees
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of freedom (the number of coefficients) of the theory. As long as the number of data
points was significantly larger than the degrees of freedom, we were justified in adopting

the theory.

A second source of justification is a guarantee from some “oracle” (for example, a
benign teacher) that a set of descriptions do have something in common. On the basis of
this knowledge, the generalizer may be justified in adopting a generalization, even when
the generalization has more degrees of freedom than can be justified on the basis of the

number of data points alone.

In the absence of an oracle, the generalizer may also derive justification for a general-
ization of a set of objects from the context of the objects—if the objects are very different,
but each occur in the same context, then the generalizer has justification for searching
harder for a generalization then if they occurred in different contexts.

The next four chapters describe NODDY’s generalization methods, which are based
on these principles. Building on the example of NODDY, chapter 7 will discuss the

principles more fully,

1.4 An Instructable Robot

The major problem with using robots at present is the difficulty of getting them to
perform some task. There are currently two alternatives: a teacher can lead a robot
through a sequence of steps that the robot will then remember and repeat indefinitely;
Or a programmer can write a program in some computer or robot programming language
which the robot will then execute. The first method is limited to very simple tasks of
minimal complexity. In particular, this method can only introduce the simplest sort of
tests or conditionals, since these must be specified as single steps. (see [Grossman, 1977;
Grossman and Summers, 1984]). The second method is not limited, but it is a difficult
and expensive dperation, and is only feasible for tasks that will be repeated many times.
A robot that avoided both of these problems would be a very desirable tool.

The ideal instructable robot could be instructed in several different ways so that the
instructor could use whichever method of instruction was the most appropriate to a given
task., One avenue would be to program the robot in a “task level” programming language
in which the instructor could specify the task and the goal of the robot, and the robot
would then create its own program to achieve that goal. Another avenue would be to
lead the robot through the task in several different situations from which the robot would
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generalize to create its program, These two methods could be combined so that the
instructor could describe the task and goal and give an example, and the robot would use
the task description to guide its generalization of the example arid would use the example
to interpret the task specialization. This combination would relieve the instructor of having
to provide a complete task description or a complete set of examples. The robot might also
provide the instructor with a description of its program in a suitable robot programming
language and allow the instructor to edit the program (while preventing him/her from

putting errors into the program).

Such an instructable robot would involve many different components. NODDY is but
a preliminary step towards one of these components. The different components would
include:

¢ Planning: constructing, analyzing, and debugging plans (reasoning about goals, sub-
goals, prerequisites, efc..) e.g., [Sussman, 1975; Sacerdoti 1974]

o Knowledge about the Robot world and robot actions. e.g., [Mason 1979]

e Reasoning about physical objects in the real world (collisions, support, insertions, etc.).
e.g., [Hayes, 1979; Forbus, 1984;]

e Path planning (a specialized form of planning). e.g., [Lozano-Perez, 1981]
e Constructing, manipulating, and editing programs. e.g, [Rich, 1981]
e Generalization from traces (e.g., NODDY).

e Generalization by analyzing an example. e.g, [Mitchell, 1983]

1.5 Background

There are three distinct areas related to the work in this thesis. The first is the work
in artificial intelligence on learning from examples; the second is the work on inductive
“inference; and the third is the work on instructing robots. Most of the work in artificial in-
telligence has been on the problem of acquiring concepts from examples. There have been
a variety of different approaches, summarized best in three survey articles [Michalski, 1983;
Mitchell, 1982; Deitterich, 19821, Winston’s thesis [Winston 1970] laid the groundwork
for acquisition of concepts from examples, and this thesis adopts Winston's incremental
acquisition task, but considers a more complex domain than the simple block-structures

world.
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The closest work in the artificial intelligence area is that of Van Lehn in his recent
thesis on learning the subtraction procedures, and Latombe’s work on acquiring robot
procedures. Van Lehn addresses the same question of how to acquire procedures from
examples as this thesis, though Van Lehn is primarily interested in understanding how
children learn and constraints on how best to teach them, whereas this thesis is primarily
concerned with the problem of generalization. Section 1.5.2 will discuss the relation

between his work and this thesis in greater detail,

The problem of ‘acquiring procedures from examples was inspired by J.H. Andreae’s
work on interactive, domain independent learning, implemented in the PURR-PUSS
system ([Andreae, 1977; Andreae and Andreae 1977; Andreae 1972-1984]). Both NODDY
and PURR-PUSS acquire procedural knowledge from traces (although NODDY does not
attempt to learn interactively), but NODDY uses a completely different representation and
acquisition method. In particular, PURR-PUSS does no explicit generalization, and its

implicit generalization is very limited.

15.1 Concept Learning in Artificial Intelligence

Michalski [1983] gives a list of basic generalization heuristics, which are an improved and
extended version of the heuristics that Winston’s Arch learner used. The use of these is
implicit in NODDY, particularly the extend range heuristic. Michalski {Michalski 77] also
addresses the problem of choosing between candidate generalizations. His generalizations
are always expressed as a disjunction of (almost) conjunctive terms. He allows the user to
choose between several different measures of complexity, such as the number of disjuncts or
the coverage of the lafgest term, and biases the search though the space of generalizations
to minimize the user’s complexity measure. This, however, does not address the question
of whether one measure is more useful than another for generalization. Another major
difference between Michalski's work and NODDY, apart from the difference in domains,
is that NODDY adopts an incremental approach, whercas Michalski assumes that all

examples are given at the start, and finds the best generalization of all examples at once.

Mitchell [1983] also addresses the problem of choosing between generalizations. His
solution, which works well for generalization spaces that are not too wide or too dense, is
not to choose—his version space keeps a specification of all possible generalizations that
are consistent with the éxamplcs and non examples that have been seen so far. Each

new example may reduce the version space, until there is just one option. Section 1.3
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discussed the problems faced by version spaces when the descriptions include disjunctions.
Mitchell is able to cope with disjunctions only by restricting disjunctions to the top
level of the expression, assuming a bias towards the minimum number of disjuncts and
keeping a separate version space for each disjunct needed. This essentially separates the
generalizer into one part that does disjunction-free generalization and another “meta-level”
that handles disjunction. Disjunction is not the only device that causes the version space
method to fail—any representation that allows a very wide generalization space and many
possible generalizations of a given description will have the same effect. Dealing with a
larger generalization space than version spaces can handle is a major gdal of NODDY.

Dufay and Latombe [Latombe, 1981; Dufay and Latombe, 1983; Dufay, 1983] ad-
dressed the problem of acquiring procedures from traces in a particular robot domain. The
basic algorithm was a simplified form of the propagation stage in NODDY, except that the
propagation started only at the start and end of the procedure and trace. It was therefore
able to acquire a procedure with a single loop. However, all the variables and branching
conditions were supplied within the traces, so that the algorithm did not address all the
other generalization issues that NODDY does, especially, the integrating of different kinds

of generalization.

Langley [1981a, 1981b; Langley et. al, 1983} approaches the problem of finding
functional relations between numerical variables. His system (BACON) must be handed
sets of values for several “observed” variables, and it will find a function relating the
variables. It therefore does constructive generalization of ordered sets of numerical
values, One component of NODDY also finds functional dependencies between variables.
However, the approaches are quite different in a number of ways, and there are things
that NODDY can do that Bacon cannot, and vice versa. BACON uses a set of heuristics
for incrementally constructing expressions, making intermediate terms out of pairs of
variables. The set of heuristics are quite domain dependent, and each new domain
[BACON1, BACON2, BACONS3,..] involved developing ncw heuristics, even though all
the domains were essentially numerical. NODDY’s algorithm is domain independent,
and only requires a small amount of type information on the operators out of which it
can construct expressions. Some of BACON’s heuristics are quite specialized, and can

therefore find some relations that NODDY cannot.

Berwick [1982] constructed a system (LParsifal) for acquiring grammar rules for English

from positive examples by exploiting the tight constraints on English as expressed in a
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particular parser ([Marcus, 1980]). The constraints were expressed in the representation
language for the grammar rules: each rule could have only one of 4 possible actions
(without parameters) and the condition of a rule was a vector of conjunctions of nominals
which were very simple generalizations of the state of the “window” of the parser at
the time the action was taken. If there was no rule that applied at any step of parsing
an example, LParsifal could create a new rule whose action was whichever one of the
possible actions was applicable, and whose condition was the state of the parser’s window.
If the example were ambiguous—two actions were applicable—LParsifal would ignore the
example. If two rules in the same rﬁle group had the same action, LParsifal created a
new rule by generalizing the conditions of the rules using the drop-condition heuristic.
This acquisition method works because English is constrained such that there are enough
unambiguous examples, and English grammar can be expressed in terms of rules having

a “local” scope.

1.5.2 Relation to Van Lehn’s SIERRA

Van Lehn [1983] constructed a system (SIERRA) that learned to perform multicolumn
subtraction from the same example sequences that school children learn from. This task
is similar to NODDY’s task in that they both acquire a procedure from examples of the

execution of the procedure.

A major difference between Van Lehn’s work and this thesis is that Van Lehn was
primarily concerned with understanding human leaming, so that SIERRA was designed
and evaluated on the basis of how it conformed to, and explained, children’s learning
behaviour, particularly the types of mistakes that they made and did not make. NODDY,
on the other hand, is concerned with the issue of generalization in machine learning. The

thrusts of the theses are therefore very different.

The most obvious difference between SIERRA and NODDY is the different rep-
rescntation for procedures. NODDY represents procedures as elements of a restricted
class of flow charts. SIERRA represents procedures by applicative And/Or Graphs. This
difference has many ramifications. For example, NODDY represents iteration explicitly as
loops, whereas SIERRA represents iteration implicitly as recursive calls to a parent node
of the graph in SIERRA, NODDY'’s procedures have explicit state variables and the data
flow is distinct from the flow of control. SIERRA's procedures, on the other hand, do not

have state variables, and the data flow is parallel with the flow of control.
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Van Lehn argues for these design decisions very convincingly on the basis of the
data from children’s learning. The arguments do not seem to carry across to the robot
procedure tasks, however. A crucial differences between SIERRA’s subtraction task and
NODDY'’s learning task is the nature of the pattern. A key feature of the arithmetic
domain which governed the design of Sierra is that all information necessary to make
a decision is always present in the current pattern—actions only add to the pattern and
nothing ever goes away. The data flow in Sierra’s procedures is the focus of attention
within this constantly visible pattern. The patterns of the robot domain, on the other hand,
are ephemeral—the pattern changes upon every action, and there is no way to recover a
previous pattern. The data flow in NODDY'’s procedures is the pattern values that must
be remembered because later actions depend on them. Finding and constructing these

dependencies is an important part of the generalization process that NODDY performs.

1.5.3 Inductive Inference

Angluin and Smith [1982] present an extensive review of the literature on inductive
inference. The goals of most of the work on inductive inference are related to artificial
intelligence work on learning, but the mcthods and approaches are very different. The
issucs that NODDY addresses do not seem to be addressed by the inductive inference
work. We therefore refer the reader to Angluin and Smith's excellent paper rather than

present any review.
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Task, Representation, and Domain

2.1 Procedures and Examples

NODDY’s task is to take a sequence of examples of a procedure and infer the procedure
from them. To teach NODDY a procedure, a teacher generates a set of examples or traces
of the procedure by executing the procedure several times and recordin‘g the sequence of
actions performed, along with any sensory input or feedback (the patterns) from the world
resulting from the actions. Each trace is a linear sequence of actions and patterns.

If the procedure ignores the sensory feedback or there is no feedback in a given domain,
then the procedure must generate exactly the same actions under all circumstances, so
that the traces will all have the same sequence of actions, and the procedure can be
trivially inferred from the examples since it is exactly the sequence of actions in any of
the traces. This is the way many industrial robots are currently “taught”. In this rote
“learning” the robot is led by the trainer through a sequence of actions which it then
repeats endlessly without variation. Though useful, this technique is severely limited in
the range of procedures that can be taught.

- The procedure acquisition task only becomes interesting when the procedures do take
into account the sensory feedback or pattern and specify different actions at different times
depending on the pattern. Such procedures may involve conditional branching, iterative
loops, or other dependencies between the patterns and the actions. Each trace will then
be different, resulting from a different path through the procedure, and the procedure
acquisition task is to find a procedure that is a generalization of all the traces. This
procedure will have constructs such as conditional branching or iterative loops which are

not present in any of the traces and must therefore be inferred from the traces.

Such procedures must contain several kinds of information: the descriptions of the
actions to perform, the “flow of control” specifying the order in which the actions must be
performed, the conditions at any choice points in the procedure, and other dependencies

between the actions and the feedback patterns.

The following three sections define these procedures more precisely by describing the

representation of procedures used in NODDY., Section 2.5 describes a simple robot domain
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which supports interesting procedures with these characteristics. NODDY has been tested

in this domain and all the examples in the thesis are taken from this domain.

2.2 Representation of Procedures

NODDY'’s representation of procedures is based on flow diagrams, and all the diagrams of
procedures in this thesis are shown in flow diagram form. A flow diagram consists of boxes
connected by arrows representing the flow of control. In general, flow diagram boxes may
contain many different types of information, but the boxes of NODDY’s procedures all
contain a description of a condition and a specialization for an action. Such a flow diagram
box with a condition and an action will be referred to as an event. One of the events of
a procedure is identified as the start event, and one or more as stop events. Each event,
except the stop events, has one or more arrows, or sequence links, proceeding from it. If
there is more than one sequence link proceeding from an event, the links may be labeled
with priorities which define a partial ordering on the links. The succeeders of an event
A are the events pointed to by sequence links out of A and the preceeders of A are the

events at the base of links that point to A.

)

E1 {cond1>
<act1}
/ \
£2 {cond2> {cond4> E4
{act2> <{act4>
<condd® ¥
E3 {cond5> E5

stop <acU

— — Figure 2-1 A Simple Procedure — —

A procedure with five events, and a single loop. Control will pass into the loop (cvents
E4 and I5) only when the pattern resulting from action <actl> dees not match <cond2>
(which is marked with a higher priority) and doces match <cond4>.
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For example, figure 2-1 shows a simple procedure with five events. There are two
sequence links proceeding from event El; the one pointing to E2 is labeled with a higher
priority than the one pointing to E4,

A procedure is executed by beginning at the start event and following the sequence
links to the succeeding events. Whenever an event is entered, the action it specifies is
performed. The feedback pattern that results from this action is then matched against the
conditions of each of the succeeders of the current event. If the links are labeled, then the
pattern is matched against the conditions of the higher priority events first. Control passes
to the first succeeder event whose condition matches the pattern. If no succeeder event
has a condition that matches, the procedure fails and halts. If a stop event is reached, the

procedure halts successfully.

For example, during the execution of the procedure in figure 2-1, when the robot
(or whatever is executing the procedure) enters event El, it performs the action <act1).
This will cause the world to return a new feedback pattern. Because the highest priority
link out of El points to E2. the new pattern will first be tested against the condition
<cond2>. 1f it matches, the robot will enter event E2, and perform the action <act2>. If
the pattern doss not match <cond2>, then it will be tested against <cond4>—the condition
of the next highest priority event. If it matches, the robot will enter E4. If the pattern
matches neither <cond2> nor <cond4>, the procedure will fail and halt. If the robot enters
E4, it will perform the action <act4>, which will result in a new pattern form the world.
As long as this pattern matches <cond5>, control will pass to ES5, the robot will perform
action <act5>, and then loop back to E1. The procedure will halt successfully only when
the pattern following an <actl> matches <cond2> and control passes to E2 and then E3

where the procedure halts,

Conditional branchiing is therefore represented by multiple links out of one cvent with
the conditions on the succeeding events being the branch conditions. The event with
multiple links is referred to as the fork event, (E1 in figure 2-1). A merge event is an event
with multiple links pointing into it. In figure 2-1, E1 is also a merge event. It is not
necessary for a fork event to be a merge event also, but is commonly so in simple ioops
such as that of the procedure in figure 2-1. A branch of a procedure is a linear sequence
of events, beginning at the start event, a raerge event, or an event immediately following
a fork event and continuing up to a stop event, a fork event, or an event immediately

preceding a merge cvent, The branches of a fork event are the branches immediately
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following it. The branch conditions of a fork are just the conditions of the first events in

its branches.

Iteration is represented by a loop in the flow diagram. There must be at least one fork
event in a loop, and one of the branch conditions of the fork event (the exit condition)
must be external to the loop if the procedure is to be able to halt successfully, since
control would otherwise circle the loop indefinitely. Note that this is a “DO UNTIL” type
of iteration, not a Fortran style “DO LOOP”—control will iterate around the loop until

the exit condition is satisfied and control exits.

4
<{cond0>
<actO>

E1 <{cond1> E2 {cond2> {cond3> E3 {cond4> E4
{act1> <act2> <act® <actd>
T ’ 1 T T
] ’ 1 ]

' f} 1 '

— — Figure 2-2 Deterministic Branching — —

A fork event with four succceders. Events El and E2 are marked to be at a higher priority
than cvents E3 and E4.

The procedures that we wili consider are constrained to be deterministic in that they
must specify exactly one possible action at each step. Onc consequence of this constraint
is that at a fork event, only one branch can be taken at any time. Therefore, there must
be no possible paticrn that could match more than one of the branch conditions at any
single priority. For example, in the procedure fragment of figure 2-2 this constraint would
mean that there must be no pattern that would satisfy both <cond1> and <cond2>, nor
both <cond3> and <cond4>. If some pattern satisficd both <cond1> and <cond3>, then
that pattern would always cause control to flow to El since the link to El has a higher
priority. This would be uscful if <condl> were to be considered a special case of a more
general condition <cond3>. ‘
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This determinacy constraint also constrains the space of allowed actions, but this will

be discussed in section 2.4.

Traées are represented in exactly the same manner as procedures but are further
constrained. A trace event may have no more than one succeeder and one preceeder, so
that there can be no forks, merges, or loops in a trace. Also, the events must be maximally
specific; ie., the condition of a trace event must be a pattern, defined in the next section,

and the action of a trace event must be a primitive action, defined in section 2.4,

2.3 Representation of Patterns and Conditions

The feedback pattern from the world will depend entirely on the particular domain chosen.
In general, the pattern may have a number of distinct components. In the robot domain
described in section 2.5, these components correspond to the different sensors—the position
of the robot, its orientation, and the signals from its force and grasp sensors. In other
domains, they would correspond to whatever aspects of the world that the executor of the
procedure can access and base its decisions on. NODDY currently requires a domain in
which each component of a pattern can be specified by a list of parameter values, whether
numerical or symbolic. The pattern will then be represented by a conjunction of the lists
of values specifying each component of the pattern. Not every component need be present
in every pattem, for example, the force feedback component of the pattern in the robot

domain will be present only when the-robot is in contact with something.

The condition of an event is a description of a class of patterns for which control
should enter the event.- It is therefore a generalization of patterns. A condition is
represented as an implicit conjunction of components corresponding to the components
of the pattern. A condition will match a pattern only if cach component of the condition
matches the corresponding component of the pattern, Each condition component, or node,

is represented by the name of a template, a list of parameter values and a set of past values.

The template contains, among other things, the specification of a predicate and its
parameters. A particular node represents an instantiation of its template with particular
values for the parameters. For example, the node [vertical-strip (3 4)] would be
an instance of the VERTICAL-STRIP template which has two parameters, P1 and P2 and
a predicate (LAMBDA (x,y) (AND (< x P1) (< P2 x))). (For convenience, we will
always print a node with a shortened form of the predicate from the template, so that

the above node will be given as [vert-strip:3 <z <4]) A condition will be satisfied
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by a pattern iff the instantiated predicates of each node in the condition are satisfied by
the corresponding component of the pattern. (A null node is only satisfied by a null
component of the pattern). The past values of the node are a set of the actual pattern
values of which the condition is a generalization. They are ignored during the execution
of a procedure, but NODDY uses them while generalizing the procedure to accommodate
a new trace. The disjunction of the past-values is the most specific generalization possible
of data, and is used somewhat as the maximally specific bound of Mitchell’s version space
algorithm. This will be discussed further in chapter 6.

Note that the space of conditions that NODDY can represent is limited by the set
of templates. Even with only one template, there may still be infinitely many possible
conditions since there may be infinitely many possible values for the parameters of the
template, but NODDY cannot represent a predicate for which it does not have a template.

2.4 Representation of Actions

The set of legal primitive actions, like the patterns, is determined by the domain. An
action may have a list of parameters associated with it. For example, one of the primitive
actions in the robot domain is the MOVE action which has two parameters specifying the
distance and direction that the robot is to move. NODDY represents actions by the type
of the action and a list of the values of the parameters, For example, MOVE {1, 60°}
would be a legal action in the robot domain.

Each action in a trace must be one of the primitive actions specified by the domain,
but the action descriptions in the events of a procedure may be generalizations of primitive
actions. The generalized actions are represented by the name of an action #ype and either
a list of parameter values (like the primitive actions) or a function expression and a list
of variables. Like the conditions, a generalized action also has a list of past values—the

parameters of the primitive actions from which it was generalized.

The generalized actions are somewhat different from the generalized patterns (ie.,
conditions). The conditions are predicates describing a set of patterns. A condition is
satisfied by any of the patterns it covers. An action, however, must be executed, not
satisficd. A generalized action, although it may describe a large set of primitive actions,
must specify just one of those primitive actions in any particular situation. For example,
the MOVE-TO {(1.0)} action covers any primitive MOVE action that will take the robot to
the position (1,0). However, at any particular time, the robot will be in just one position,
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and the MOVE-TO {(1,0)} action will specify just one primitive MOVE—the one that will
get from the current position to (1,0).

The type of an action refers to a template in a hierarchy of generalized action templates.
Each template contains a parameterized description of a generalized action. For example,
the MOVE-TO template specifies that any MOVE-TO action has a list of just one parameter
which must be a position, and that the action specifies the primitive MOVE that gets from the
current position to the position specified by the parameter. Each template also describes

its relation to other templates in the hierarchy.

The action hierarchy actually consists of several disjoint hierarchies, each corresponding
to one of the primitive actions. For example, the MOVE hierarchy contains templates
for generalizations of the primitive MOVE action. The class of a generalized action is the
particular hierarchy that it is in (named by the primitive action on which the hierarchy
is built). The action hierarchies will be described in detail in chapter 5. The action
hierarchies are clearly domain dependent and must currently be provided by the user, but
chapter 8 outlines how NODDY might construct some of its own action templates in the

future,

The simplest generalized actions are those with constant parameters, such as MOVE-TO
{(1,0)}, but the parameters may be replaced by é function that will evaluate to a list of
parameter values. The function is represented as a lambda expression and a list of variables
each referring to some pattern component in the procedure. We will refer to such actions
as functional actions. For example, the MOVE <from (1,0) to remembered position> action
of the RETRIEVE-2 procedure (event 5 of figure 1-5) is actually represented by the action

MOVE {(lambda (a1) (vect->list (-pos (first al) (1,0))))}
{(_VI: position component, event El)}

This specifies a MOVE action whose parameters are the result of applying the lambda
expression to the first element of the value of the variable V; which is the list of parameter
values of the position component of the pattern in event 1; ie, the MOVE action that
would take the robot from the position (1,0) to the position it was at during event 1.

If a variable refers to a component of the current pattern, it is a local variable, and
represented by just the component name. If all the variables are local variables, then the

action is called a local function. For example, the action MOVE <back to entry point of row>

r
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in event 4 of the RETRIEVE procedure (see figure 1-2) is the local function:

MOVE-TO{(lambda (a) (ncons (constr-pos 1.0 (y-part (first a)))))}

{<current-position>}

This specifies a move from the current position to the position whose z component is 1.0

and whose y component is the same as that of the current position.

Note: For clarity we will generally drop the braces around the parameters of an action,
and add some notation to distinguish the parameters when necessary, so that we will write
MOVE {1, 60°} as MOVE 1@60°, and MOVE-TO {(1,0)} as MOVE-TO (1,0). We will also
abbreviate functional parameters by writing only the body of the lambda expressions, and
substituting the variables in place of the lambda arguments, so that the MOVE action above
will be written as MOVE (vect->list (-pos (first <Vi>) (1,0))). Occasionally,
we will also omit the ncons’s and first’s in the function since thesc are just a result of

representing the parameters of patterns and actions as lists.

\3

at: anywhere [<V1)]
MOVE 5@0°

at: anywhere
MOVE {{lambda (a) {(vect-Jist (-pos (first a) (1,0)))) : <V}

!

— — Figure 2-3 A Functional Action — —

The action of event B refers to the position component of the condition of event A, but
this position comporceat is the generalized position [anywhere]. "The action is actually a
function of whatever position matches the [anywhere] node.

Note also that a functiona! action actually depends on a pattern, not the condition re-

ferred to by the variables, For esample. the variable in the MOVE <from (1,0) to remembered position?
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action above refers to the position component of the condition in event E1. However,
this position component (which is marked with the name of the variable) is actually the
node [anywhere], which has no parameters. The MOVE-TO action is not a function of
[anywhere],' but of the value of the position component of the pattern that matches the
[anywhere]. That is, If the robot is executing the procedure, it will assign the parameters
of the position that matched the [anywhere] node to the variable <V>; then, when it
reaches the MOVE-TO action, it will apply the lambda expression to the value of <V;> and

move to the resulting position.

The following table summarizes most of the terms defined in this chapter. It may be

useful for future reference.

Pattern

Primitive Action

Event

Condition

Component

Node

Condition Template

Generalized Action

The feedback from the world after every action.

One of the legal actions that the executor of the procedure may

perform,

The basic element of a procedure. Contains a condition and an
action. ‘

A predicate on patterns specifying when control may enter an event.
The predicate is the conjunction of the predicates specified by each

node in the condition.

A “slot” of a pattern or condition corresponding to one part of the
feedback. In the robot domain, there is one component for each
sensor. Each component of a pattern will contain an actual value
returned by the sensor. Each component of a condition will contain

a node.

The contents of one component of a condition. Represented by the
name of a condition template and a list of parameter values.

A description of a family of nodes, defined by a list of parameters
and their types and a parameterized predicate on patterns (actually

on the relevant component of patterns).

A specification from which the executor can determine a primitive

action at the time of execution. Represented by a template name
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and a list of parameter values or by a template name, a lambda

expression and a list of variables.

Action Template A description of a family of generalized actions. Contains a param-
eterized specification for computing a primitive action from the action parameter values

and the current pattern,

2.5 2-D Robot domain

The current implementation of NODDY acquires procedures for a simple robot domain.
The domain was designed to be sufficiently interesting to explore the issues of acquiring
and generalizing procedures, not necessarily to be a usefully realistic domain. It is also
intended to be easily extendable so that more realistic components could be introduced

later as appropriate.

The robot domain is a two dimensional world containing a point robot, i.e., the robot
occupies no area. In addition to the robot, there are two dimensional objects or obstacles
in the world which may take any shape and may be either fixed or movable. The robot
can move around the plane, rotate about its axis, bump into objects, grasp them, “carry”
the objects around, and let them go. Moving is always done in straight line segments, and
cannot be done concurrently with rotation, (no pair of actions may be done concurrently).
The robot cannot tell the difference between a fixed and a movable object except by
grasping it and trying to move it. The robot is not allowed to push objects without
grasping them—even movable objects remain fixed until grasped. Grasping is done by
“sticking"—since the robot has zerd size it cannot clamp onto an object. Rather, when
it is in contact with an obstacle it can simply stick to it, forming a rigid joint until it
UNGRASP’s the object.

251 Actions

The primitive actions of this robot domain are MOVE, ROTATE, GRASP and UNGRASP. The
GRASP and UNGRASP actions do not take any parameters and consequently do not have
any generalizations. '

The MOVE action is the most interesting action. It takes two parameters—the direction
to move in and the distance to move. The direction parameter is an essential parameter
of the MOVE action, in that it must be specified for the action to be begun. The distance

parameter, on the other hand, is a guard parameter. i.e., a stopping condition which which
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determines when the movement in the specified dircction should be stopped.* There are
other valid guard conditions such as hitting an object, so that the robot could perform
the action MOVE @90° until: [contact] which would mean stoppihg when the force sensors
indicate contact with an object. In executing a procedure, the robot will accept any guard
condition expressed in terms of the continuously monitorable features of the world, For
the 2-D robot world, these include the distance traveled and the state of the force sensors.

The position is not a continuously monitorable feature,

When the teacher is cntering a MOVE action while creating a new trace, the robot
cannot tell what stopping condition the teacher used and therefore expresses the move
as a MOVE <dis@<dir>. All the moves in traces are therefore MOVE <dist>@<dir>, and
NODDY must infer other stopping conditions the teacher intended, if any.

The ROTATE action is similar to the MOVE action, but less interesting because it is
constrained to one dimension. It takes two parameters, the direction to rotate, which is
positive or negatiye, and an angle specifying the amount to rotate. The former is the
essential parameter, and the latter is the guard parameter.

2.5.2 Patterns and Conditions

The sensory feedback cr pattern that the robot world returns in response to an action has
up to four components: the position, the orientation, the contact-angle, and the grasp-
angle. The position is the position of the robot in the plane, given in z-y coordinates.
The orientation is the direction the robot is “facing” in, given as an angle from the z-axis.
Both of these components are always present in the feedback pattern. The contact-angle is
the force feedback. It gives the direction of contact between the robot and an obstacle the
robot is touching. Since the robot is assumed to be of zero size, this direction is normal
to the edge of the obstacle at the point of contact. The direction is relative to the z-axis
and is not affected by the orientation of the robot, (this was an arbitrary choice of no
consequence). If the robot is not in contact with any obstacle there is no contact-angle
component of the pattern returned. If the robot is in contact with an obstacle, it may
grasp the obstacle. The grasp-angie of the following patterns is then the direction between
the robot and the object it is grasping and is identical to what the force angle would be
if the robot were not grasping the obiect.  There is no grasp-angle component of the

* The distinction between esseniial and guard parameters will be discussed more fully in
chapter §
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Chapter 3

Generalizing Procedures

This chapter gives an overview of NODDY’s algorithm for acquiring procedures. It
describes the interrelation of the three different types of generalization in NODDY that
are each described in detail in the following chapters.

3.1 Incremental, Syntactic Acquisition

Section 1.2 placed NODDY within the spectrum of learning tasks. Essentially, NODDY
acquires procedures incrementally from a sequence of teacher-provided traces, where each
trace is a positive instance of one path through a procedure. NODDY is incremental in
that the current description of the procedure being acquired is incrementally improved
with each new example. The initial version of the procedure is just the first example that
the teacher provides. This version is very specific—it applies to only one situation and
specifies exactly the same sequence of actions every time it is executed. NODDY uses
each succeeding example to generalize the procedure until the teacher is satisfied with
NODDY'’s procedure. The incremental approach allows the teacher to tailor each new
example to the deficiencies of the current procedure description, and to stop as soon as
a correct procedure is obtained, which is in contrast to the non-incremental approach, in
which the teacher must know beforehand exactly what examples should be given. This
approach also allows for easier extension to a system that generated its own examples by
experimentation. One consequence of the incremental approach is that NODDY should
not have to remember any previous traces—its current version of the procedure should
contain all the nccessary information for constructing the new version with the new trace.
Several of the key principles underlying NODDY's algorithm are based on the assumption

of incremental acquisition,

Another characteristic of NODDY is that it is syntactic—it only uses knowledge of
the syntax of valid procedure descriptions and does not use any knowledge of the goal
or purpose of the procedure, nor of the meaning or effect of any of the actions. A
“complete” procedure learner would certainly use the semantics of the procedure being
learned, perhaps in a similar way to Mitchell's LEX2 [1983] analyze a single example,
determine the purpose of the individual steps and then generalize the example on the
basis of the analysis. NODDY is an exploration of what can be achieved without using
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this sort of semantic information. NODDY’s algorithm is also as domain independent
as possible. All the domain specific knowledge is confined to two places—the action
and condition generalization hierarchies and a small data base of operators and type
information. NODDY accesses this information, but its algorithm is independent of the
content of the hierarchies and and operator data base specific to the domain. Future
work will address the problem of constructing the hierarchies themselves using syntactic

generalization.

3.2 Generalizing Structured Descriptions

A procedure is a structured description containing a set of nodes (the events) and relations
between the nodes (the sequence relations and the variable reference relations). Finding
a generalization of two structured descriptions involves matching the two descriptions,
identifying the differences, and generalizing the appropriate parts of the descriptions to
resolve the differences.

Matching two structured descriptions requires two different matchers: the structure
matcher, which will find the appropriate correspondence between the nodes of the two
descriptions and construct a new structured description by merging the nodes and relations
appropriately; and the node matcher which will determine whether a set of nodes could
be merged, and will create a new node that is a generalization of the nodes if necessary.

The structure matcher can generalize the descriptions in several different ways. For
example, in matching two procedures, the structure matcher will find a correspondence
between the events of the procedures. If there are events in each procedure that are not
paired with any nodes in the other procedure, the structure matcher could create a new
procedure with two branches instead of one (see figure 3-1). If the structure matcher pairs
an event in one procedure with several events in the other procedure, it could form one
of two other kinds of structural generalization—either forming a loop (which is a special
case of forming a group of nodes), or merging several branches into a single, more general

branch (see figures 3-2 and 3-3).

The node matcher will determine how similar two nodes are, and unless they do not
match at all, it will return a generalization of the two nodes. How thc node matcher
matches and generalizes the nodes will depend on the nature of the nodes—if the nodes
are themselves structured descriptions, it will be another structure matcher; otherwise it

will use whatever generalization methods are appropriate to the representation language

57




procedure 1 procedure 2 generalised procedure

— — Figure 3-1 Adding a Branch — —

The first two and the last events of procedure 1 and procedure 2 are paired, but the other
events do not match. The structure matcher merges the matched events, and forms two
alternative branches from the events that do not match.

for the node descriptions.

NODDY’s node matcher contains two separate matchers—ihe condition matcher and
the action matcher, which use different generalization methods, although they both do a

type of constructive generalization appropriate for descriptions in terms of parameters.

Given two structured descriptions, there will be many ways that the structure matcher
can put the nodes in correspondence, depending in part upon how tadical a node general-
ization it will accept from the node matcher. If it accepts very radical node generalizations
(eg, the generalized node “anything™), it will produce a new description with very few,
very general nodes. If, on the other hand, it insists on a perfect node match (no node
generalization at all), it will tend to produce a new description with many, very specific,

|
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procedure 1 procedure 2 generalised procedure

— — Figure 3-2 Forming a Loop ~— —

~Events B and C of procedure 1 are cach paired with two events from procedure 2. By
merging all the paired events, the structure matcher forms a new procedure with a loop.

nodes. Once it has fixed a pairing of the nodes, the structure matcher may still choose to

merge the nodes and their relations in different ways.

The bias [Mitchell 1983] of the matcher determines what choices the matcher will
make. NODDY'’s overall bias is to introduce a new branch into the procedure only when
forced to, and to make the branch as short as possible if onc must be introduced. (The
details of the bias will be given in the following chapters). The effect of this bias is to

prefer procedures with few branches, each of which is as gencral as possible.

32.1  Backtracking or Determinism

In constructing a matcher for structured descriptions, the major issue is how to search the

spacc of all possible pairings of nodes, subject to the various constraints on descriptions.
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procedure 1 procedure 2 generalised procedure

— — Figure 3-3 Forming a More General Branch — —

Events B, B, and B” of procedure 1 are all paired with event B of procedure 2. By merging
all the paired events, (which will require the node matcher to find a generalization of all
the B events), the structure matcher forms a more general branch in the new procedure.

There are two extreme approaches to controlling this search.

One extreme is to perform an exhaustive search of all possible ways of pairing nodes
from the two descriptions. The structure matcher would then construct a new description
from each set of pairings, and discard those that do not satisfy the constraints on valid
descriptions. The matcher would then choose the best description that was left according

to some measure.

If matching two procedures, this approach would generate the 2"'*"2 candidate
procedures generated by all possible pairings of procedure and trace events (where ny
and no are the number of events in the procedure and the trace respectively). Most of
these candidate procedures would probably be eliminated because they did not satisfy the

constraints on procedure descriptions—candidate procedures that did not have a single
start event, had no stop event, or were not completely deterministic. The remaining
candidates would be compared according to a measure perhaps based on the goodness of

the event matches and on properties of the structure, such as the fewest branches.

This approach does a large amount of backtracking, constructing many pairings and

candidate procedures which it later abandons.
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The approach at the other extreme avoids backtracking completely by analyzing the
descriptions being matched to determine which nodes ought to be paired, and creating the
new description on the first pass. The structure matcher would always propose pairings for
which the node matcher could form valid generalizations, and would only construct valid
descriptions. If it paired the nodes incrementally, it could use the partially constructed

description to determine the next nodes to pair.

While this approach would be very efficient, it will seldom be possible. At best, a
matcher could approach this end of the spectrum by exploiting the constraints on the
descriptions to guide the choice for the pairing and reduce the search. NODDY does
exactly this and is committed to minimal backtracking.

3.2.2 Justification Based Matching
The basic principles underlying the matching and generalization in NODDY are:

o Adopt a generalization only when there is sufficient evidence for the choice to be

unambiguous and untailorable.

e Abandon the search for a generalization when you no longer have sufficient evidence

to justify a generalization if you were to find one.

Applied to the structure matcher, this means that no two events should be handed
to the event matcher unless the structure matcher has justification for believing that they
might match, and no paired events will be merged in the new procedure unless the -
generalization of the events produced by the event matcher justifies merging them, If the
justification was well founded, there will be no need to retract the pairing.

A prime source of justification for the structure matcher is the context of two events.
If the preceeders of a trace event have been merged with the preceeders of a procedure
event, this provides some justification for the event matcher to pair the two events. If their
succeeders have also been merged, this is even stronger justification for pairing them, and

the event matcher can consider more powerful generalizations.

Applied to the event matcher, these principles mean that the matcher should only look
for gencralizations of a degree that is supported by the justification for trying to match
them. The space of possible generalizations of events is structured in several “levels”.
Searching for a generalization in a higher level requires more justification than searching

for a generalization in a lower level. When the event matcher is asked to match two
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events, it only considers generalizations in the levels that are consistent with the structure:

matcher’s justification for pairing the events.

Chapter 7 will discuss the various sources of justification in more detail.

3.3 Overview of the Matching Stages in NODDY

Following the principles of the previous section, NODDY's algorithm is built around a
structure matcher consisting of several stages. Each stage ﬁnds some candidate pairings of
events in the procedure and the trace, and invokes the event matcher to. match the events.
If the event matcher is able to match the events within the justification level specified by
the structure matcher, the structure matcher will use the generalized events to construct
more of the generalized procedure. Each stage of the structure matcher uses the result of

the previous stage to guide its search for new pairings.

Before trying to find any generalization of the procedure, NODDY first checks to see
whether the procedure already includes the trace. Because of the constrained structure
of procedures, NODDY need not do any search to check this, but simply “executes” the
procedure using the patterns of the trace as the sensory feedback, and checking that the
actions specified by the procedure are identical to the actions in the trace. If the procedure
does include the trace, there is no need to find a generalization, so NODDY proceeds to
the following stages only when there is at least one difference between the procedure and

the trace,

In the first stage—the Skeleton stage—of matching a procedure and a trace, NODDY
constructs a skeleton of the new procedure based around the key events of the procedure
and trace. The key events are those events that have some property that identifies
them as unique within the procedure or trace. For example, start events are always key
events because there is only one start event in any procedure or trace. Because of their
uniqueness, the key events of the procedure can be paired easily and reliably with key
events in the trace having the same property. This shared property is strong evidence
(but not a guarantce) for assuming that the events should be paired and merged, so the
structure matcher will only merge a pair of key events if the event matcher can match
them without any generalization, i.e., a perfect match. The pairs that do match perfectly

are merged and form the skeleton of the new procedure.

The propagation stage uses the context of the skeleton as the basis for choosing new
pairings. NODDY propagates forward and backward along the sequence links from the
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b
[at: (0,0)

STOP

— — Figure 3-4 Skeleton and Propagation Stages — —

Matching the first two traces for the TURTLE procedure. The skeleton stage pairs the
start cvents and stop events (solid lines). The propagation stage propagates forward and
backward from these pairs to find the two pairs involving cvent 2 of the first trace (dashed
lincs). The propagation halted at the dotted lines because the event matcher could find
no generalization of the events.

key event pairs, pairing the trace and procedure events it reaches. The event matcher
matches each pair of c¢vents as it is found. If they match, they are merged, and the
propagation continues; if they do not match, then the pair is rejected and propagation
along that path halts. Figure 3-4 shows the skeleton and propagation stages applied to the

first two traces of the TURTLE procedure from the scenario (section 1,1.1),

Each pair of events found in the propagation stage shares sone context justification—
either the preceeders or the succeeders of the events have been merged. Therefore, the
structure matcher has stionger justification for believing that the events should be paired
and asks the event matcher to consider partia! matches of the events corresponding to first

level event generalizations. This introduces the first (event) gencralization into the new
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procedure.

The grouping stage introduces structural generalization into the new procedure. If the
propagation stage paired one trace event with several procedure events, or one procedure
event with several trace events, the grouping stage attempts to merge all the events together

into a single generalized event, again using first level event generalization.

generalised event @ . loop
from grouped events f N \

1 | MOVE-UNTIL-CONTACT-TOWARD (0,0)

T

if: at: (0,0) if: at: (4,0) & contact:180°
STOP MOQVE 0.1@0°

MOVE 0.5@90° {4 j\

— — Figure 3-5 Introducing a Loop — —

The new procedure with a loop produced by the grouping stage from the pairs in figure
3-4, Event 1 is a generalization of event 1 of the first trace and events 1 and 4 of the
second trace which were grouped and generalized by the grouping stage. The loop resulted
from the combining of events 1 and 4 in the second trace.

One effect of the grouping stage is to introduce loops into the new procedure. For
example, when the grouping stage is applied to the pairs of events shown in figure 3-4, it
will group event 1 of the first trace with events 1 and 4 of the sccond trace. The effect of

this will be to introduce the loop shown in figure 3-5.

The final two stages analyze the procedure resulting from the grouping stage, and look
for two particular situations—parallel branches and nondeterministic forks—which provide

justification for event generalization at higher levels.

A set of branches of a procedure-are paralicl branches if they all start and cnd at the
same fork and merge events and the corresponding actions are all potentially generalizable

(i.e.of the same (ype). 1f there is a sct of parallel branches in the new procedure after
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the grouping stage, NODDY attempts to merge the branches into a single branch, using a
more powerful action generalization which will look for functional dependencies between
the actions in the parallel branches and a pattern occurring earlier in the procedure.

S

1 | MOVE-UNTIL-CONTACT-TOWARD (0,0) \
5 if: at: (0,0) 3 if: at: (4,0) & contact:180° if: at: (3.5,0.5) & contact:-135° g
‘ STOP MOVE 0.1@0° MOVE 0.1@45°. ~
4 | MOVE 0.5@90° MOVE 0.5@135° | 4'

NG </

Lo 7

— — Figure 3-6 Procedure with Parallel Branches. — —

The new version of the TURTLE procedure after the third trace, but before the parallel

branches stage. The propagation stage could not match events 3 and 3', nor events 4 and
4", The two branches are parallel because they start at the same event, and end at the

same cvent, both have 2 events, and the corresponding actions are of the same type

For example, the skeleton, propagation and grouping stages produced the procedure
shown in figure 3-6, which contains a pair of parallel branches. The parallel branches
stage attempted to merge the branches by generalizing the actions with the the more
powerful action generalization. The event matcher found that both pairs of actions
could be generalized to actions in which the direction to move was a function of the
pattern in event 3/3. The new, merged branch is shown in figure 3-7. To find such
generalized actions, NODDY searches backwards through the procedure from the actions
being gencralized, looking for the first pattern with a component for which it can find a

function relating the pattern component to the action.

A nondeterministic fork is a fork whose branching conditions do not satisfy the
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&
if: anywhere & contact [0]

MOVE 0.1@(0 — 180°)

4 | MOVE 0.5@(9 — 90°)
l

— — Figure 3-7 The Generalized Branch with Functional Actions — —

The actions in the new branch both depend (in slightly different ways) upon the contact
direction component of the pattern of the first event in the branch.

determinacy constraint. That is, two of the branch conditions are either identical or they
intersect one another—some patterns would satisfy both conditions, but neither condition
is a strict generalization of the other. If NODDY finds a nondeterministic fork in the
procedure after the parallel branches have been resolved, this is ironclad justification for
doing something because nondeterministic forks are invalid in the. procedures NODDY
acquires and cannot be left in the new procedure. For example, figure 3-8-a shows the
nondeterministic fork NODDY found when processing the fifth trace for the RETRIEVE

procedure,

NODDY first tries to resolve the conflict by merging the events containing the
conflicting conditions. If the event matcher cannot find a generalization of the actions in
the two events, as in the case of figure 3-8, NODDY assumes that the conditions have
been overgeneralized, and invokes the event matcher again to find more more powerful
generalizations of the conditions that do not conflict. In the example from the scenario,
the event matcher resolved the conflict by finding the new branch conditions shown in
figure 3-8-b. If the event matcher cannot find any conditions that do not conflict, NODDY

“abandons the trace as impossible to match and waits for another trace that is not as difficult.

NODDY’s final procedure is the one that issues from the final stage of nondeterministic
fork resolution. This procedure is guaranteed to be a syntactically valid procedure and to
cover both the old procedure and the new trace. If the teacher is satisfied with it, he will
conclude the training sequence, otherwise he will provide another trace which NODDY

will process like the previous one, generating a still more general procedure.,
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2 1 MOVE-UNTIL-CONTACT-AT 180°

— o~

g if: anywhere & contact: 180° if: anywhere & contact: 180° 3
then: MOVE 5@0° then: GRASP
I |
' (a) '
b

2 [-MOVE-UNTIL-CONTACT-AT 180°

- AN

3 if: at x<-4 & contact: 180° if: x>-3 & contact: 180° 3
then: MOVE 5@0° then: GRASP
r !
(b) '

— — Figure 3-8 A Nondeterministic Fork from the RETRIEVE.Pr(_)cedure —_—

(a) The two branch conditions of the fork are identical. To resolve the fork, NODDY
constructs new conditions, as shown in (b)
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Structure Matching and Generalization

The task of the structure matcher is to match NODDY’s current description of the
procedure against a new trace and generalize the procedure to account for the trace. There
are several different aspects of this matching and generalization:

e Identifying the parts of the trace that can be accommodated by the structure of the
current procedure and those parts that cannot,

e Choosing sets of events to generalize. The event matcher, described in chapters 5 and
6, actually constructs the generalized events, but the structure matcher must propose

the events to generalize,
e Introducing new loops, forks, and branches into the procedure when necessary.
o Identifying candidate state variables and the actions that may depend on them.

This chapter describes NODDY’s algorithms for these matching and generalization
tasks. As outlined in chapter 3, the algorithm is structured into several stages. Each stage
generates a partial match which provides the basis for the matching and generalizing of
the next stage. Figure 4-1 shows the dependencies of the several matching stages and is
also a roadmap for this chapter, Each of the following sections describes one of the stages
in detail and discusses the nature of the generalization that is carried out by that stage.

41 Stage 0: Include

The first stage determines whether the new trace actually adds any new information or
whether it is already covered by the current procedure. There is no point in proceeding

to the stages that generalize the procedure if it is already sufficiently general.

The include stage essentially executes the current procedure, using the patterns in the
trace as the feedback from the world, and checking that the each action specified by the
procedure is the same as that of the trace. If any of the actions are different or if a trace
pattern does not match any of the conditions at any step, then the procedure does not

cover the trace.

NODDY steps through the procedure and the trace together, beginning at the start
events of each, attempting to match each trace event to the corresponding procedure

event. At a fork-in the procedure, NODDY chooses the the first branch whose branch
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Current procedure & Trace

INCLUDE KEY-MATCH (= skeleton)

l

PROPAGATION (= pairings)
GROUPING (= loops, forks and branches)
PARALLEL BRANCHES (= functional dependencies)

NONDETERMINISTIC FORKS (== valid procedure)

— — Figure 4-1 Overview of the Structure Matcher, — —

This figure shows the relation between the various stages of the structure matcher, and
what each stage produces.

condition matches the pattern of the trace event, (the branches are searched according to
their priority, if the links are labeled). If there is no branch condition that matches, or
if the action of the branch event does not match the action of the trace event, then the
trace is not covered by the procedure and the include stage fails. The trace is covered if |

NODDY reaches and matches the stop event of the trace.

The include stage does not generalize the events, so it asks the event matcher to
determine only whether the procedure event is equal to or includes the trace event. The
match may fail either if the procedure event is different from the trace event, or if the
action of the procedure event is a functional action and it cannot be assigned a value. To
find the value of a functional action, the event matcher must find the variables of which
the action is a function; determine the procedure events to which the variables refer; then
use the patterns of the trace events that have been matched to those procedure events to
compute the value of the function (see figure 4-2). If the procedure events to which the
variables refer have not been matched to any trace event, then the function cannot be

computed, and so the match fails,
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— — Figure 4-2 Matching Functional Actions — —

NODDY has stepped through the procedure and the trace, matching the events as shown,
and is trying to match the procedure cvent E3 against the trace event T3. However, the
action of procedure event Eg is a function of variable ¥ that refers to the condition of
event 7y and variable Vs that refers to the condition of event Ey. Ey has been matched
to the trace event 71, so NODDY can obtain a value from Vy from the pattern of T, but
I5 has not been matched to any trace event, so NODDY cannot assign any value to Va.
Therefore, NODDY cannot determine the action of E3 and cannot match £3 to T3.

42 Stage 1: Skeleton

The include stage finds pairs of procedure and trace events by pairing the start events then
stepping through the procedure and trace along the sequence links. The start events should
always be paired, and are guaranteed to match, since all start events are identical. The
pairs found by stepping through the procedure arce justified by the context—two cvents
arc only paired when their preceeders have been paired and matched. The propagation
stage will use exactly the same principle of stepping along the sequence links to find pairs.

[t is not sufficient, though. to start stepping only at the start eveats. [For example, if there
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is an unresolvable difference between the procedure and the trace near the beginning of
the procedure, but the last parts are identical (see figure 4-3), stepping only from the start
events will halt when the difference is reached and will never find the appropriate pairing
of the rest of the events.

S S
O - o
(8) X

©

() ?
?
?

— — Figure 4-3 Blocking the Stepping — —

The trace and procedure have an unresolvable difference near the beginning which blocks
the stepping. Therefore, the stepper never finds the identical portions in the last half of
the procedure and trace.

OR0a0202020
O(-=
Oa0202020

For the procedure and trace of figure 4-3, it would be useful to step backwards along

the links from the stop events, as in figure 4-4. Key pairs in the middle of the procedure

“and trace will also be necessary to cope with traces that introduce dilferences near the
beginning and end that block the stepping in both directions.

To solve this problem, the skeleton stage finds a set of key pairs—pairs of procedure
and trace events that partition the matching problem into isolated blocks so that differences
in one block do not interact or interfere with differences in the other block. Without

this, NODDY would not be «ble to deal with traces that had more than one significant
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— — Figure 4-4 Stepping Backwards from Stop Events. — —
The same trace and procedure from figure 4-3 but zipping up from the bottom

difference from the current procedure. The new events constructed from the key pairs
form the skeleton of the new, generalized, procedure. The propagation stage will step
through the procedure and trace, starting at these key pairs.

It is important that the key pairs be correct pairings. All the later stages will build
on the skeleton of key pairs, and an incorrect pair will generate many other incorrect
pairings that will be difficult to undo. Therefore, NODDY rcquires strong justification

before constructing any key pair.

If a proccdure event is the only event in the procedure to have some property, and
a trace event not only has the same property, but is the only event in the trace with
that property, then there is good reason to believe that they occupy the same role in
the procedure. When they also match perfectly—they are either the same event, or the
procedure cvent is a generalization of the trace event—NODDY accepts this as suflicient
justification for merging them into a key pair. The events that are the only event in the

procedure to have sonie property are referred to as uniqgue events.

72




Chapter 4

The properties that NODDY currently considers are the action type of the event, so
that if there is only one ROTATE action in the procedure and only one ROTATE action
in the trace, the events containing those actions are good candidates for key pairs. The
START events always form a key pair since there is always just one START event in each
procedure. NODDY cannot always form key pairs out of the STOP events because a
procedure may have several STOP events (though a trace may only have one).

For example, in the second step of acquiring the RETRIEVE procedure of the scenario
(matching RETRIEVE-2 to the third trace, see figure 4-5), NODDY found four unique
events—the START, STOP, GRASP and UNGRASP events. The GRASP event was crucial in
isolating the differences due to looping up to the next row from the differences due to

returning from different rows.

In the first step of the skeleton stage, NODDY finds all the unique events of the
procedure and trace, indexed by the action class. NODDY invokes the event matcher on
the pairs of corresponding events, and rejects the pairs that do not match perfectly. It
constructs the skeleton of the new procedure from the key pairs, and hands the skeleton

to the propagation stage.

The only justification for key events that the current version of NODDY accepts is
the uniqueness criteria to suggest a pair of events, combined with a perfect match of the
events, There are several other options that could be tried. One is to extend uniqueness to
complete branches of the procedure instead of single events—if a branch is unique in the
sense that no other branches have the same sequence of action classes, and there is just
one series of events in the trace that match that branch, then NODDY could form key
pairs from all the events in the branch. Another option would be to relax the requirement
that the trace events in key pairs be unique, so that NODDY could find several key pairs
involving one unique procedure event. Experimentation is required to determine what
sort of justification is sufficient to prevent NODDY finding spurious key pairs.

4.3 Stage 2: Propagation

The propagation stage puts flesh on the skeleton of the key pairs and introduces the first
structurai generalizations of the procedure. In this stage, NODDY finds candidate pairs
by stepping along the sequence links, just as in the include stage but with thrce important
differcnces: First, NODDY begins stepping at each of the key pairs, rather than only from
the start events, and steps both forward and backwards {rom the key pairs. Second, it
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propagation stage can attempt to resolve each different separately.

— — Figure 4-5 Skeleton for RETRIEVE-3 — —

There are four unique events in RETRIEVE-2 and Trace 3—the START, STOP, GRASP
and UNGRASP cvents. The GRASP event isolates one different from the other so that the



Chapter 4

steps along all the branches at a fork (or a merge if stepping backwards) rather than just
one branch. Third, it considers first level event generalization rather than insisting on a

perfect match.

Finding candidate pairs by stepping’ through the procedure and trace ensures that
there is some justification for matching the procedure and trace events found: at least part
of the context of the trace event (its preceeder or succeeder) has already been matched to
the context of the procedure event. This suggests that the events play the same role in the
procedure and trace. On the basis of this justification, NODDY considers the first level of
event generalization in matching the events. It will actually merge the events and pass the
pair to the next stage only if the event matcher matches them, either as a perfect match

or a first level generalization.

There are two reasons for not considering more powerful generalizations. The first
is that, with only two data points, the more powerful generalization methods could
find spurious generalizations of many pairs of events, even when there is no underlying
commonality to the events. The partial shared context is not sufficient evidence that the
events really do have the same role in the procedure to justify an assumption that one of
the more powerful generalizations represents a genuine commonality. The second reason
is that the more powerful generalization methods are non local in that they must also take
into account events in the new procedure other than the ones being generalized. During
the propagation stage, NODDY has not constructed enough of the new procedure for

these non-local methods to be reliably applied.

NODDY steps through the procedure and trace, starting at each of the key pairs, and
stepping in parallel down all the branches at a fork (or merge, if stepping backwards).
When stepping from a pair of procedure and trace events, NODDY matches each succeeder
(preceeder, if stepping backward) of the procedure event against the succeeder (preceeder)
of the trace event. When the event matcher can match the two cevents, NODDY marks
the pair with the new, generalized cvent that the event matcher returns, and adds the pair
to the list of pairs to step from. If the event matcher cannot match the eveats, it does
not continue stepping from them. When there are no more pairs to step from, NODDY
collect all the pairs that it was able to match (along with the key pairs) and hands them
to the grouping stage. 1t also collects all the events that it could not pair with anything

and marks them to be copied directly into the new procedure.
Figure 4-6 shows NODDY stepping through the procedure and trace of figure 4-5.
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— —— Figure 4-6 Propagation — —

Propagating from the skeleton of figure 4-5, NODDY trics (o inatch seven pairs, but the
event matcher finds generalizations for only three of them.
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NODDY found only three more pairs than in the skeleton, two of them involving event
P2. Events P4, PS5, T3, T4, T7 and T8 were not paired, so they will be copied directly

into the new procedure.

The propagation stage must address the same problem with functional actions as the
include stage. To reduce the number of events with functional actions that are matched
before the events to which their variables refer, NODDY steps from the earlier key pairs
before stepping from the later ones. If any events fail to match for this reason, they are
reconsidered after all the other pairs have been found,

4.3.1 Generalizations in the Propagation Stage

The set of new events produced by the propagation stage implicitly contains four types of
generalization to the current procedure. '

e The unpaired trace events represent new branches to be added to the procedure. For
example, events T7 and T8 in figure 4-6.

e The pairs for which the event matcher had to create a generalization represent
a generalization of the branches already present in the procedure. For example,
RETRIEVE-2 (the procedure in figure 4-6) has just one branch which was generalized
from the first two traces.

¢ Multiple pairings involving a single procedure event represent a loop in the procedure,

which must be added if a loop was not already present. For example, in figure 4-6,
P2 has been paired with both T2 and TS. This will introduce a loop into the new

procedure.

e Multiple pairings involving a single trace event may either represent a loop, as in the
previous item, or represent consolidation of several existing branches into a single,

more general branch.,

These generalizations are only implicit in the pairs and unpaired events from the
propagation stage. It is the task of the grouping stage to make them explicit.

44 Stage 3: Grouping

The set of now events generated by the propagation stage may not be a coherent procedure
because the propagation stage generates a new event for each two procedure and trace

events that it pairs, regardless of whether either of the cvents has been paired with
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other events also. The grouping stage will remove this incoherence by grouping all the
overlapping pairs involving the same procedure or trace event, and either replacing them

by a single generalization, or eliminating some of the pairs to remove the overlap.

The grouping stage analyzes the set of pairings produced by the propagation stage to
find groups of pairs involving the same procedure and/or trace events. It will attempt to
merge all the events involved in the group into a single new event. The new event will

replace all the pairs out of which it was created.

NODDY finds groups of pairs by picking one pair, finding the pairs that share a
procedure or trace event with the first pair, then the pairs that share an event with one of
these pairs, and so on until there are no more pairs. Figure 4-7 shows a group involving

5 events.

' Final group: B,C,E, V,Y

- — Figure 4-7 Forming A Group from Pairs — —

Some procedure and trace evenis that have been paired by the propagation stage. The
grouping stage starts with one of the pairs (8—V) and follows the pairings through the
events, as shown by the numbering on the links, to find all the events involved in the
group.

=]

Having found a group, NODDY then altempts to meree all the procedure and trace

events of the group into a single new event. Currently, it does the same event matching as
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in the propagation stage. That is, it matches just two events at a time and only considers
first level event generalization. However, there are several differences from the propagation
stage which could provide justification for more powerful event generalization, as will be
discussed below. Currently, NODDY does not exploit this justification.

The event matcher matches only two events at a time.- The grouping stage creates a
new event by passing the events in the group, one at a time, to the event matcher which
incrementally constructs a new, generalized event. This is a standard generalization from
examples task, and, as usual, the order in which the examples (the events of the group)
are presented is important. If presented in the wrong order the event matcher may work
itself into a corner by constructing the wrong generalization from the first events. The
order that NODDY currently chooses is to match all the procedure events before the
trace events, and to start with the procedure event that has the most general action. The
rationale for this is that it is more difficult to merge the most general action once the other
events have been matched and generalized because the condition is likely to be generalized
and information needed for action generalization lost. Chapter 5 will discuss this in more
detail,

If the event matcher is able to create a generalization of all the events in the
group, NODDY replaces the events corresponding to the pairs from which the group was
constructed by the generalized event,

_If the event matcher cannot find a generalization of all the events in the group, then
NODDY must split the group into smaller groups by retracting some of the pairs found
by the propagation stage. The event matcher will construct a generalization of as many of '
the events in the group as it can. NODDY retracts any pair that involves one event that
did match the generalized event, and one event that did not. It removes from the group
(but does not retract) any pair of which neither event matched the generalized event and

looks again for new groups involving these pairs,

None of the examples given to NODDY so far required this backtracking—all the
groups that were found could be merged with no conflicts, This suggests that the
Justification required for the propagation stage was sufliciently strong to prevent spurious
pairs,

The grouping stage produces a coherent new procedure by collecting all the new
events corresponding to the groups, the pairs which were not in groups and the procedure
and trace events that were not paired at all. It connects all the new evenis by succeeder
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links by merging the succeeder links of the procedure and trace. That is, a new event
E5 will be a succeeder of E; if any of the procedure or trace events from which Eo was
constructed is a succeeder of any of the procedure or trace events from which £y was

constructed.

The new procedure may contain new loops, branches and forks. Section 4.4.2 discusses
loop introduction, which is a byproduct, rather than an explicit operation, of the grouping
stage. The new procedure may have unnecessarily many branches, and the parallel
branches stage will look for branches satisfying certain criteria that can be merged with
more powerful action matching. Furthermore, some of the forks may not be syntactically
valid forks because the propagation and grouping stages are strictly local in forming new
events and do not check the interaction with other events that causes non-deterministic
forks. The nondeterministic forks stage will check and correct any invalid forks.

Figure 4-8 shows the new procedure after the grouping stage has been applied to the

results of the propagation stage shown in figure 4-6,

44.1 Event Generalization in the Grouping Stage

Currently, NODDY does exactly the same level of event generalization in the grouping
stage as in the propagation stage. However, there are two differences which could allow

more powerful event generalization,

The first difference is that the grouping stage matches more than two events into a
single event. For the action generalization, this means that there are more “data points”
which might provide a basis for finding local functions when the actions could not be
matched using the action hierarchy. Because the structure of the rest of the procedure is
not fixed until the grouping stage is complete, there would not be sufficient justification

to consider non-local functions.

The second difference is the nature of the conditions of the events to be matched. The
propagation stage always matches a procedure event against a trace event and the trace
event always contains patterns, not generalized conditions. The grouping stage, on the
other hand, may match several procedure events, as well as trace events, which involves
matching generalized conditions. It is not as obvious what sort of condition generalization
. NODDY should do in this case.

There are three classes of conditions in procedure events: primitive patterns, which

represent no generalization at all; the always-satisficd condition, which means NODDY has
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Procedure RETRIEVE-3 is the result of the grouping stage applied to the pairings of
events in RETRIEVE-2 and trace 3 found by the propagation stage (figure 4-6). The
grouping has gencrated the loop by combining events P2, T2 and TS into the new event

2

only scen positive examples of the condition; and any other condition—more complex (and
also more specific) than the always-satisfied condition, The more complex conditions only
occur as the branch condition of some fork, where NODDY had to find a more complex
condition to keep the branch conditions disjoint. As will be described in section 4.6 and
chapter 6, NODDY constructs these conditions by using the other branch conditions as
negative examples. To do this, NODDY must consider all the branch conditions at once,

in contrast with the propagation stage which considers only the events being merged into

the new event,

The problen arises in maiching a specialized branch condition to some other condition,

— — Figure 4-8 Results of Grouping — —
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whether a pattern from the trace or a condition from the procedure. The grouping stage
could either find a local generalization of the two conditions, ignoring the other branch
conditions, or a less local generalization by taking into account the other branch conditions
and finding a generalization of the two conditions that is disjoint from the other branch

conditions.
) 4
anywhere anywhere
E1] 7 | e e o e e e e e — — E2
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— — Figure 4-9 Generalizing Conditions — —

Events £4 and E5 are part of a group for which the grouping stage is trying to find a
generalization. If the generalization is strictly local and ignores events £3 and E6, it will

~find the generalization on the left, which will cause NODDY to do more work later on.
If the genecralization takes £3 and E6 into account, it might find the generalization on
the right, which will save work later on.

For example, in the situation of figure 4-9, the grouping stage is trying to construct
a generalized event for a group that includes event E'4 and E5. The events are branch
events of different forks. If NODDY does the local generalization, ignoring the other
branch events E3 and E6, it will generalize the conditions of £4 and E5 to [anywhere].
The problem with this is that it throws away all the work that went into finding conditions
that did not conflict with events E3 and E6, and NODDY will have to do the work over
again in a later stage to find a new condition for the new that does not conflict with events
E3 and £6. If NODDY could take £3 and EG into account while generalizing 4 and
E5, it might find the generalization x> 1 Ay >1].* so that the later stage would not have

*  Whether this is the correct gencralization would depend on the past values of the conditions.
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to do the work all over again.

A more complex grouping algorithm, would take the other branch conditions into
account; and generalize the two conditions accordingly. In particular, if a group includes
one branch event of a given fork, it would determine whether the group includes all the
other branch events as well. If so, then the appropriate generalization will be the always-
satisfied condition, because all the branches will be merged and the fork will disappear so
there will be no conditions that have to be disjoint. If, on the other hand, the group does
not include all the branch events of the fork, then NODDY should find a generalization
of the conditions that is disjoint from the remaining branch conditions, as in figure 4-9.

Currently, NODDY is not this sophisticated, and throws away most of the information
and recomputes it in a later stage. The details of the condition generalization are in

chapter 6.

4.4.2 Introduction of Loops

The introduction of loops is a byproduct of the propagation and grouping stages—loops
“fall out” at the end of the grouping stage without NODDY explicitly representing or
looking for them. Matching two trace events to a single procedure event implies that the
two trace events are really the same event so that the goal procedure must have a loop in

order to repeat the event.

NODDY can infer a loop when the current version of the procedure and the new
trace cach contain a different number of iterations of the loop, and the key event stage
and/or the propagation siage is able to pair the procedure and trace events at the entry to
the loop and the events at the exit. Figure 4-10 shows such a case when the procedure has
one itcration of the loop and the trace has two itcrations. The propagation stage will then
propagate forward from the entrance of the lodp (the X events) and backwards from the
exit of the loop (the Y events), pairing the events of the procedure iteration with with the

~events of both the first and second trace iterations. The grouping stage will then merge

all the triples of events which will result in a loop.

Note that the loop is a “DO UNTIL” loop—execution will iterate around the loop as
long as the condition of event A is satisfied after the action of event B. When the condition

of event Y is satisficd instead, execution will exit the loop into event Y. NODDY cannot

Chapter 6 will discuss this in more detail
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— — Figure 4-10 Forming Loops — —

The procedure (on the left) has one iteration of the loop (A — B ---)and the trace has
two iterations. The propagation stage propagates forward from the matching X’s and
backward from the matching Y’s, to find the pairs A - - - A", B---D',and A - - - A",
B - - - B". The grouping stage merges the A events into a new A, merges the B events
into a new B, and merges all the succeeder links. The succeeder link between B' and A"
(*) is the link that forms the loop back from the new B to the new A.

currently infer any other kind of loop (such as a counted loop). The reasons for this are

given below.

If the procedure that the teacher is teaching NODDY has a loop of k& events, and the
current version of the procedure contains n iterations of the loop and the trace contains
m iterations, then this algorithm will infer a loop of |m — n| k events. For instance, if the
trace in figure 4-10 had had 3 iterations of the 2 event loop A - B, the new procedure

would have had a loop with |3 — 1] x 2 = 4 events, as in figure 4-11.

This means that NODDY will not necessarily find the shortest loop, but rather, the
most conservative loop—it will never assume that the loop can be broken into smaller
pieces than the evidence demands. - For example, in the situation of figure 4-11 the
sequence A — B occurs once in the procedure and three times in the trace. The resulting

loop generates any odd number of repetitions of A - B. It is currently important that
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— — Figure 4-11 An Odd Loop — —

Similar to figure 4-10, but the trace has three iterations instead of two. The final loop is
not the shortest loop, but is a more conservative generalization than the two event loop

NODDY generalize conservatively in this way rather than guess that the loop could be
further consolidated because it currently has no way of undoing an overgeneralization of
this kind.

This is not entirely satisfactory, and future work should address the issue of inferring
loops in a more general way, rather than letting them “drop out” of the matching.
This would involve explicitly representing loops and applying generalization methods that
exploit the constraints on iterative constructs.

At first glance, it looks as though NODDY inferred the loops in the TURTLE and
RETRIEVE procedures (figures 1-13 and 4-8) from 0 iterations and 1 iteration, which
would be a very unconservative generalization. In fact, the loop is a little odd in that the

loop is entered and exited by the same évent (the MOVE-UNTIL-CONTACT-TOWARD event).
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The loop contains 3 events (the entrance/exit and the two MOVE’s) but the final iteration
of the loop only passes through the MOVE-UNTIL-CONTACT-TOWARD event. The first trace
therefore contains half an iteration of the loop, and the second trace contains one and a
half iterations, so that inferring the loop is not as unjustified as might appear.

4.5 Stage 4: Parallel Branches

The parallel branches stage invokes a more powerful action matching method than
used in the previous stages to merge some events that should be merged but could not be
matched using only the action hierarchy. Part of this action matching may also introduce
state variables into the new procedure. Because its generalization space is larger, the
second level action generalization is more likely to find spurious generalizations. The
structure ﬁlatcher must therefore obtain stronger justification for invoking the second level
action matcher than it did in the propagation and grouping stages.

The prime component of this - justification is contextual. NODDY searches for a
particular construct—parallel branches—in the procedure produced by the grouping stage.
Two branches are parallel if:

o They both start at the same fork;

» They both end either at the same merge or at a STOP event;

e They have the same number of events;

o The conditions of the corresponding events in the two branches match;

e The actions of the corresponding events in the two branches match except for constant

values in the parameters,

Figure 4-12 shows the pair of parallel branches generated at one stage during the
match of RETRIEVE-3 and the fourth trace, shown in more detail in the scenario (section

1.1). The branches satisfy each of the five conditions above,

These properties are strong (syntactic) evidence that the two branches have the same
role in the procedure—that they perform the same function, NODDY uses this as
justification for trying to merge the branches using a more powerful action generalization

method than it used in the earlier stages.

NODDY attempts to merge the branches by merging all the corresponding events.
If the actions cannot be matched using the action hierarchy, NODDY appeals to the
function inducer to find a generalization that expresses the action as a function of some
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MOVE {vect->list (-pos V1 (1,1))) MOVE (vect->list {-pos V1 (1,0)))
6 | UNGRASP :
|

— — Figure 4-12 Parallel Branches — —

A fragment of the new procedure generated from RETRIEVE-3 and trace 4, part way
through the parallel branches stage. The two branches are parallel because they both start
ai the same fork (cvent 2), end at the same merge (event ) and the corresponding events
match. Events 4 and 4’ differ only in the value of the parameter of the MOVE-TO action.
The conditions of events 5 and 5' can be gencralized to [anywhere], and the actions differ
only in the constant in the function expression.

previous pattern. As long as NODDY can find generalizations for all the corresponding
events of the new procedure, it constructs a new branch out of the generalized events and
installs it into the new procedure in place of the parallel branches. If NODDY had to
appeal to the function inducer to match any of the actions, it may also have to create new
state variables for the procedure. If any of the actions cannot be matched, using either
the action hierarchy or the function inducer, then the merging of the parallel branches is

abandoned.

For example, NODDY was able to merge the parallel branches of figure 4-12 to form
the single branch shown in figure 4-13. To do this, NODDY had to find a function for
each pair of actions. The action of event 4 is a function of the current position, and
the action of event 5 is a (different) function of both the current position and the initial
position (KV'1>). The actions of the events out of which event 5 was formed were already
expressed in terms of a function of the initial position. To merge them, NODDY had
to determine that the functions were almost identical, and that the difference could be

expressed as a function of the current position. The details of the function induction are
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anywhere
MOVE-TO (ncons {pos-cons 1.0 {y-part <current-pos>)))

anywhere
MOVE (vect-list (-pos V1 {current-pos>))

W
6 | UNGRASP

3
]

— — Figure 4-13 Merged Branches — —
The branches of figure 4-12 after they have becn merged.

in section 5.2.

There may be several sets of parallel branches in a new procedure after the grouping
stage, and it can be the case that merging one set of parallel branches creates a new set of
parallel branches. To allow for this situation, NODDY finds one set of parallel branches,
attempts to merge them, then finds another set, and repeats the process until no new sets

of branches can be found.

This was actually the case in matching RETRIEVE-3 and the fourth trace. Figure 4-14
shows the emerging procedure one step before figure 4-12 above. The left hand branch
contains a fork followed by two parallel branches, cach with one event. When NODDY
merged these two branches by finding a generalization of the two actions, it created the

parallel branches of figure 4-12.

The key new step of the parallel branches stage is the second level action matching
which is invoked when there is a set of corresponding actions in the parallel branches
that cannot be matched using the action hierarchy. The actions differ in one constant,
either the list of parameters, or one constant in a function expression. If y; is the set
of the different constants, NODDY must find some function f and one component of

the condition of an cvent (the source componeni) such that y; == f(z;) where the z; are
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:
1
row 2 3 | GRASP fow 1
4 anywhere anywhere 4
MOVE-TO (1,1) MOVE-TO (1,0)
gt at: (1,1) at: (1,1) 5 at: (1,0) 5
MOVE 2.2@27° MOVE 3.6@34° MOVE (vect->list (-pos V1 (1,0)))
6 | UNGRASP

|

— — Figure 4-14 Nested Parallel Branches — —

This is the state of the cmerging procedure just before the state shown in figure 4-12,
Events 5" and 5" constitute two parallel branches. When NODDY merges them, the
result is the two parallel branches 4'—5' and 4—S5 of figure 4-12. NODDY found a
generalization of events 5" and 5" by discovering that the actions were a function of the
initial position (VD).

the past values of the component—the pattern values from which the source component
was constructed, (the actions and the past values of conditions pattern values are marked
with the traces from which they came, so that NODDY can establish the appropriate
correspondence between the z; and the y;). Finding the function f is a standard function
induction problem, except that NODDY has only the y; and must find both a function
f and a set of z;. Chapter 5 describes the function induction algorithm for finding f;
here we only describe the search for the source component, since that depends upon the

structure of the procedure.

Figure 4-15 shows three parallel branches being merged into a new branch, and three

events Ej, £} and Ej' being merged into a new event F3. Assume that the action

matcher cannot match the actions of Ej, E3 and Ej' using the action hierarchy. [t will
therefore search for a functional action. The source component for the function must
occur earlier in the procedure than the event E3 (when executing the action, NODDY
must have a value for the source pattern in order to compute the parameters of the new

action). There are three distinct places the source event could be:
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— — Figure 4-15 Inferring Functions in Parallel Branches — —

By By Bj arc parallel branches which NODDY is attempting to merge into the new
branch B on the right (which will be just part of a larger branch), NODDY is trying to
merge Ef, EY and EY' by finding a functional dependence between the actions of the
three events and an ecarlier condition. It will first consider the condition in E3, which is the
generalization of the conditions of E, E5 and Ef'. Tt will then consider the conditions
of F5 and E, then of earlier events—the fork event F and carlier.

s The condition of event Ej itself (which would make the function a local function).
e One of Ey, or Es, ie, an event of the new branch being constructed.

e An event earlier in the procedure the parallel branches (F' or earlier)

NODDY searches these three places in order: first considering Ej3; next, stepping
back along preceeder links to the events in the new branch, then starting at F, stepping
back along preceeder links in a breadth first fashion through the procedure (considering
all the preceeders of an event before considering the preceeders of any of them). If the
parallel branches are part of a loop, it will be possible to step back to the parallel branches
themselves or to events that occur after I in the loop. Currently, NODDY stops stepping
if it gets back to the pag':xlicl branches By, By or Bs, but does not do more careful pruning
of other events in the loop. At cach event that it reaches, NODDY hands the candidate
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source event, along with the actions to be merged, to the action matcher. The search ends
at the first source event for which the action matcher finds a function to merge the branch

events.

A consequence of this breadth first search is that NODDY is biased toward finding
the most recent source event for the action to depend on, rather than the one which gives
the simplest function. For example, if the action in event E3 can be expressed either as
a complex function of the position in event F, or as a simple function of the position in
the earlier event G, NODDY will always choose the later event (F), even if the function
is more complex. There are two reasons for this bias. One is that the resulting procedure
is more robust in that later changes to the procedure are less likely to come between the
source event and the action that depends on it. The second reason is that the search is
more efficient—NODDY has to consider fewer candidates than it would if it had to find

the best possible candidate.

A second consequence of the current search algorithm is that NODDY does not handle
functions for actions in loops very well. In particular, it can handle actions that depend
upon a variable set earlier in the current iteration, but not actions that depend on a value
set in the previous iteration. This would require explicit reasoning about the loop and
initializing the variable when first entering the loop. More powerful loop generalization is

an area for future work.

 When NODDY is able to find generalizations of all the events of the parallel branches,
it replaces the parallel branches with the new branch consisting of all the generalized events.

It must also mark the source components of the functions it discovered as state variables.

4.6 Stage 5. Nondeterministic Forks

The final stage of the structure matcher ensures that the new procedure is a valid procedure.
In particular, it checks whether all the forks are deterministic, and attempts to fix any that
are not, A fork is deterministic when, for any given pattern, the choice of which branch
to take is unambiguous. That is, each pair of branch conditions must either be disjoint, or
one condition may be a special case of the other and must be marked as having a higher
priority.

The new procedure before this final stage has no priority ordering on any of the
forks, and no guarantee that the branch conditions will be disjoint. This is a result of the

local nature of all the previous matchirg which only took into account the events being
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matched, not the surrounding events. NODDY checks each fork in turn by matching each
pair of branch conditions, to determine -whether they are disjoint, they conflict, or one

condition is a generalization of the other.

|
2 | MOVE-UNTIL-CONTACT-AT 180°

d ~

if: anywhere & contact: 180° if: anywhere & contact: 180°
then: MOVE 5@0° then: GRASP
] I

] 1
1 ]

3!

— — Figure 4-16 Nondeterministic Fork — —

The nondeterministic fork from the final trace for the RETRIEVE procedure. The left
branch condition should specify the condition for being at the wall and moving up to
the next row. The right branch should specify the condition for grasping the block and
returning with it. The two conditions are identical, therefore the choice is nondeterministic.

Figure 4-16 shows the nondeterministic fork that NODDY generated while processing
the final trace for the RETRIEVE procedure. Both branch conditions are [at: anywhere
contact: 180°], so there is a conflict between them.

There are three possible reasons why a fork might be nondeterministic:

(a) The branch events with the conflicting conditions should be merged, but the previous
stages did not do so;

(b) The branch conditions were overgeneralized; (the case in figure 4-16)

(¢) The fork in the goal procedure actually occurred earlier in the procedure, and NODDY

mistakenly merged two events that should have remained distinct.

When NODDY finds a fork with a pair of branch conditions that are not disjoint, it
first assumes that (a) above may be the cause, and attempts to merge the events. Currently,
it only uses the first level event generalization of the propagation and grouping stages.
However, there would scem to be sufficient justification to also search for a functional
generalization of the actions, if necessary, since the events appear to play an identical role
in the procedure to the point that NODDY cannot distinguish between the conditions for

performing the actions.
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When NODDY is able to merge the conflicting branch events, it rechecks the fork to

ensure that this removed the nondeterminacy, and then proceeds to another fork.

If one branch condition is a generalization of the other, but the events cannot be
merged, NODDY marks the fork as ordered, and gives a higher priority to the more
specific (special case) condition.

If the branch conditions conflict, ordering the branches is of no help, so NODDY
assumes that the earlier stages overgeneralized the branch conditions during a previous
stage if the events cénnot be merged (as in figure 4-16). This is very likely, since the
simplest generalized condition is the always-satisfied condition, and the event matching
of the earlier stages usually finds the simplest condition generalization, as section 4.4.1
discussed. However, in contrast to the earlier stages, NODDY now has justification for

considering more complex, and therefore more specialized, conditions.

To resolve a conflicting branch condition, NODDY must backtrack in the space of
generalized conditions to find another condition that satisfies all the patterns of the original
condition, but does not conflict with any of the other branch conditions. Each condition
contains, along with the description of the condition, a list of the patterns from which it
was constructed.* The patterns in a branch condition are therefore positive examples of
the correct branch cond'ition, and the patterns in all the other branch conditions negative
examples. The negative examples are essential for justifying the choice of a more complex
condition, so NODDY invokes the event matcher with both the positive and negative

examples.

If the event matcher is able to find new conditions that satisfy both the positive and
negative data, NODDY installs them into the branch events in place of the overgeneralized

conditions, and rechecks the fork.

If the event matcher cannot find new conditions, then NODDY assumes that the new
trace is too complex to be assimilated yet, gives up the attempt to find a valid generalization
of its current version of the procedure and the trace, and waits for the teacher to give
it a simpler trace. In the future, it should consider the third possible cause above—that

the real fork ought to occur earlier in the procedure. This situation can arise very simply

* It is not strictly necessary to keep all the patterns around, though NODDY may make
mistakes if it discards some of the patterns. None of the examples which NODDY has acquired so
far has been sufficiently complex that the tradeoff beiween the mistakes and the extra computational
cost needed addressing.
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if the past values of the branch conditions intersect—there is one pattern for which both
branches have been taken in the past. Such a conflict implies that the choice between the
two actions actually depends upon an earlier pattern, but NODDY found no need to form
a fork at that pattern because all the events matched.

NODDY should be able to resolve this situation by “unzipping” the branch leading
to the fork, effectively moving the fork to an earlier point in the procedure. This involves
undoing some of the merges of the previous stages. Some of the mechanism for doing
this backtracking is already in place, but the actual backtracking is not yet implemented.

When all the forks have been checked and either passed, ordered, or resolved, the

new procedure is complete, and NODDY waits for a new trace.
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Action Matching and Generalization

The task of the event matcher is to match a set of events and find a generalization of
them if they match sufficiently well. The structure matcher hands the event matcher a
set of events and a specification of what sort of match is required—for example, whether
the structure matcher will accept a generalization if necessary or just wants to know if the
events are exactly the same. The event matcher will return a measure of how well the
actions matched, if at all, and a new event that is a generalization of the set of events if
they did match.

The event matching and generalization consists of two, almost completely separable,
parts—the action matching/generalization, and the condition matching/generalization. This
chapter addresses the action matching/generalization and the following one will address

the condition matching/generalization.

There are two different generalization tasks that the action matcher must do. The first
is illustrated by the “move toward goal” action in the TURTLE procedure (see figure 1-11)
in which the action matcher determines that the three primitive actions MOVE 6@180°,
MOVE 2@180° and MOVE 4.1@-173° of the first two traces have the generalization MOVE-
UNTIL-CONTACT-TOWARD (0,0).

The second generalization task is illustrated by the “move to side” action. Here,
the structure matcher suggested that the MOVE 0.5@0° and MOVE 0.5@45° actions of
the second and third traces might be dependent on one of the components of the
pattern of the preceding event. The action matcher could find no relation between
the actions and the position component, but found that the direction of the MOVE was
90° to the right of the contact direction. The generalized action, therefore, was MOVE
0.5@(<contact direction of E3>—90°),

This chapter describes the two algorithms by which NODDY does these two types
of generalization. The first algorithm is based on a hierarchy of templates of generalized
actions and matches exactly two actions at a time. The second algorithm may be invoked

on two or more actions at once, and involves scarching a space of lambda expressions.

5.1 First Level Action Generalization
There are three ways that a pair of actions can match: they may be equal, one may

95




Chapter 5

include the other, or-there may exist a generalization of them both. The first level action
matcher checks each of these possibilities in turn, using the action template hierarchy to
check for inclusion or to construct a generalization. Section 5.1.1 describes the equality
testing; section 5.1.2 discusses the structure of the action template hierarchy, and sections
5.1.3 and 5.1.4 describe how the action matcher uses the action template hierarchy to test

inclusion and construct generalizations.

5.1.1 Equality testing

The first step of the first level action matcher is to determine whether the two actions are
the same action, and if not, whether a generalization is possible. If the actions are equal,
it will return a copy of the actions and a score of EQUAL. If no generalization is possible,
it will return a score of FAIL. Otherwise, the actions will be passed to the next step of

the action matcher,

If the actions are of different classes, (e.g., a MOVE-TO (0,0) and a ROTATE 60°), there
can be no possible generalization* and the action matcher will return a score of FAIL. If
the actions have the same type, the action matcher must check their parameters. There
are three cases:

o The parameters of the two actions are constants: The actions are equal if the param-
eter lists are identical,

¢ Both actions have functional parameters: The actions are equal if both actions are
functions of the same variables (or their variables refer to the same pattern component) -
and the two expressions are the same with the appropriate substitution of lambda
arguments,

e Only the first action has functional parameters: The actions are equal if the parameters
of the “eflective action” specified by the first action in the context of the current trace

are identical to the parameters of the second action.

To determine the effective action, NODDY must find values for the variables of
the action and apply the function expression to these values. The variables refer to

components of conditions in the procedure. The values of the variables are the values of

* It would be possible to to have an action that would move or rotate depending upon
the situation, but this would require a disjunctive description of the action. Rather than allow
explicit disjunctions in actions (which would introduce the full disjunction problem into the action
gencralization), the disjunction is left in the procedure structure: a fork will be placed in the new
procedure, and the two evenis will form the branches.
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the corresponding components of the trace patterns that matched the procedure conditions
(see figure 5-1). If NODDY can find values for the variables, it computes the parameters
of the effective action by applying the expression to the variable values. It can then check

whether these parameters of the effective action are equal to the constant parameters of

the second action.

¥ }
anywhere [V1] at: (2,2)
PUIMovE {1907} €~~~ ———————~ Amove {1.90°) | 1
| |
A A
at: (0,0) at: (0,0)
P2 | move (list (mag (-pos V1 (0,0)) 30°) [~~~ ?--> MOVE {2.8,30°} T2
i [
Procedure Trace
Vi =(22) =
(list (matching (-pos V1 (0,0))) 30°) = {2.8, 30°} =
effective action = MOVE {2.8, 30°}

— — Figure 5-1 Matching Functions to Constants — —

NODDY is matching the action on the left (event P2) which has functional paramcters to
the trace action on the right with constant parameters, The variable V1 of the action on the
left refers to the position component of the condition of event 1. Fvent P1 was carlier
matched to the trace event TL. ‘ihie position component of T'1's pattern is the position
(2,2), which is thercfore the value of Vi, Evaluating the expiession (list (mag (-
pos V1 (0,0)))30) produces the effective action MOVE 2.830° which is identical to
the action of event T2 on the right, The actions are thercfore equal.

5.1.2  Matching and Genvralizing with the Action Hierarchy

[f the two actions are not equal. then the first level action matcher checks whether one

action is a generalization of—includes—-the other. Otherwise, it looks for a generalization

of the actions.
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5.1.2.1 Generalizing Actions

Both of these steps—testing for inclusion and finding a generalization—involve reasoning
about the space of generalized actions. If NODDY could represent this space expiicitly
as a generalization hierarchy, NODDY could use the standard generalization method of
generalizing by climbing a generalization hierarchy: the include step would check whether
one action is a superior of the other, and the generalization step would look for the lowest

common superior of both actions.

However, the space of all possible actions is too large to represent or search explicitly,
even in a simple domain such as the 2-D robot domain, since the parameters of the
actions may range over infinite sets so that even the set of actions of a single type (e.g,
the MOVE-TQ actions) is too large to represent explicitly. Therefore, NODDY cannot use
the “climb hierarchy” generalization method. Nor can it use the method of breaking
actions into subcomponents and generalizing each component separately (e.g., by climbing

a hierarchy for each component), since the parameters interact with one another.

An alternative to searching an explicit generalization hierarchy is to dynamically con-
struct just the relevant part of the generalization hierarchy using data-driven generalization
heuristics. Given two actions to generalize, the heuristics would construct the relevant

generalizations of the actions until it reached a common generalization.

NODDY expresses these heuristics implicitly in a hierarchy of action templates. Each
template has its own form of the general heuristic specialized to the action type represented
by the template. The reason for expressing the heuristics this way is that the general
heuristics are quite expensive, and it is much more efficient to separate them into two
distinct parts—the generalization associated with the action type, and the generalization
associated with the parameters of a particular action—and to cache the results of the type

generalization in a template with specialized heuristics for generalizing the parameters of

actions of that type.

Any generalized action must satisfy the determinacy constraint—an action must specify
just one primitive action to perform in any given situation. For example, the action
MOVE {7} is a generalized action in the sense that it covers all MOVE's that move a distance
of 7 in scwe direction. However, it does not satisfy the determinacy constraint since it
does not specity which MOVE to do in any particular situation. This constraint greatly

reduces the space of generalized actions.

98




Chapter 5

There are two ways of constructing generalized actions that satisfy the determinacy

constraint—jfunctional generalization and guard generalization.

Functional Generalization

Functional generalization replaces constant parameters of an action (whether guard pa-
rameters or essential parameters) by a function of one or more components of previous
patterns. It requires that the actions have parameters that can be expressed as a function
of a previous state. If the generalized action is expressed as a function of the current state
(or pattern), the function is referred to as a local function. Local functions are particularly
important because the action matcher can construct a local functional generalization of the
events of two actions without referring to any other events. The structure matcher invokes
the first level action matcher on pairs of events that must be matched and generalized
independently of the the rest of the procedure and trace because the rest of the procedure
and trace may not be matched yet. Therefore, the first level action matcher can only do
local functional generalization, and the non-local functional generalization is left to the

second level action matcher.

The action MOVE (vect->1list (-pos (1,2) <current-position>)) action is an example
of a local functional generalization. The action specifies whatever primitive MOVE will take
the robot from its current position to the position v(l, 2). The MOVE-TO template expresses
a class of action generalizations of this form so that MOVE-TO (1,2) is an equivalent
(though simpler) description of the same action. The details of what is in a template, such
as the MOVE-TO template, are given in the next section.

The ordering on functional generalizations is determined by the number of variables
in the expression, so that one functional action is a generalization of another if the function
expressions are identical except that some constants in the expression of the more specific

action are replaced by variables in the expression of the more general action.

Guard Generalization

Guard generalization depends upon the distinction between two types of parameters—
essential parameters and guard paramelers. The essential parameters of an action are those
which detcrmine how to start performing the action. The guard parameters, on the other
hand, specify a stopping condition, or guard—specifying when an action should stop rather
than Aow it should start. For example. the direction parameter of a MOVE action must be

given before the move can start, clse the robot cannot determine which dircction to move
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in, and is therefore an essential parameter. The distance parameter, on the other hand, is
needed only to determine when the action should stop, and could conceivably be specified
after the action had already started. To be more precise, the MOVE {r,0} action should be
represented as MOVE {6 until [distance = r]} to make explicit that the r parameter is
actually the parameter of a stopping condition.

Guard generalization replaces a guard condition by a more general guard condition.

For example, one guard generalization of the action
MOVE {0 until [distance = r|}

is the action
MOVE {6 until [distance = r V contact]}

The MOVE-UNTIL-CONTACT-UP-TO template expresses this generalization, so that MOVE-
UNTIL-CONTACT-UP-TO {2, 50°} means MOVE {50° until [distance = 2 V contact]}.

Any element of the sensory feedback that is continuously monitorable during the
execution of an action could be the basis for a guard condition. Clearly, what these
elements are depends on the domain. Note that whereas the local functional generalization
involves an explicit dependency on the pattern immediately preceding the execution of the
action, the guard gencralization is related to the pattern immediatelyv Jollowing the action,
That is, the guard condition will generally be present, whether explicitly or implicitly, as
part of the following pattern. The action is not, however, a function of the following
pattern since it is not possible to compute a function of a pattern that has not yet occurred.

The ordering on the guard generalizations is strictly by generality of the guard
conditions, so that actions with the most specific conditions are always considered before

actions with more general conditions.

In the 2-D robot domain, the only elements of the feedback that are available for
guard generalization are the distance traveled aﬁd whether the robot is in contact with an
obstacle or not, There are therefore only a few possible guard generalizations, which are
discussed below. NODDY does not embody any strong theory of guard generalization.
Chapter 8 will mention some directions for future work in the area of guard generalization

and procedures with interesting guarded moves.

5.1.2.2 The Action Template lierarchy

The current version of NODDY cannot construct its own action template hierarchy, so it

must be provided by the user. The form of the templates will be the same in any domain,
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but the content is domain dependent. There is no domain dependent information in the
action matcher outside the action hierarchy. Chapter 8 will discuss the ways in which
NODDY could construct its own hierarchy in the future,

The hierarchy consists of a set of templates and relations between them. Each template
contains a specification of the parameters of an instance of the template, the specialized
generalization heuristics for instances of itself, and a set of pointers to other templates in
the hierarchy. Since the actions of one type are strictly incomparable with the actions of
another type, the hierarchy is actually a set of hierarchies, one for each action type. Action
types corresponding to primitive actions with no parameters have only one template, which
is the trivial one describing the primitive action.

Action templates cannot strictly be generalizations of one another since they specify
whole classes of actions rather than single actions. However, we will speak of a template
U being a generalization of a template L if any instance of L has a generalization
that is an instance of U. Each template has pointers to its immediate generalizations
and specializations. U is an immediate generalization of L if an instance of L can be
generalized directly to an instance of U without requiring an intermediate generalization to
an instance of a template between L and U. For example, two primitive MOVE’s cannot be
generalized to a MOVE-UNTIL-CONTACT-TOWARD without an intermediate generalization
to a MOVE-TO or MOVE-UNTIL-CONTACT-UP-TO.

The specialized generalization heuristics of each template are expressed as a set of
functions. Each function constructs an instance of the template that is a generalization -
of two instances of lower templates. These functions embody the local functional gen-
eralization and the guard gencralization described above. A template also contains a set
of predicates which determine whether an instance of the template is a generalization of
an instance of a lower template. The functions and predicates take a pair of actions as
arguments. They also refer to a component of either the current pattern (functional gener-
alizations) or a component of the pattern in the following event (guard generalizations), or
both. The predicates and functions are indexed according to the more specific templates

to which they correspond.

Figurc 5-2 shows the structure of the MOVE segment of the action template hierarchy

for the 2-D robot domain.

The hicrarchy does not contain all the templates that could be put in it. In particular,

it does not contain any of the many other local functional generalizations that exist. This
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MOVE-UNTIL-CONTACT-TOWARD {<position>}

N

MOVE-UNTIL-CONTACT-UP-TO {(direction), <distance>}

MOVE-TO {<positicn>}

MOVE-UNTIL-CONTACT-AT {<direction>}

e

MOVE {<direction>, <distance>}

— — Figure 5-2 The MOVE Template Hierarchy — —

The root of the MOVE hierarchy is the MOVE action which has one essential parameter
(the direction to move) and one guard paramecter (the distance to move). The MOVE-TO
template represents a functional gencralization of MOVE; the MOVE-UNTIL-CONTACT-AT
and MOVE-UNTIL-CONTACT-UP-TO templates represent guard generalizations, respectively
moving in the specified direction until contact with an obstacle, and moving in the specified
* direction up to the specified distance, or until contact whichever comes first. The MOVE-
UNTIL-CONTACT-TOWARD tcmplate combines both types of generalizations.

is not a significant limitation, for two reasons. The first is that, ultimately, NODDY will
be able to construct its own hierarchy, so that the hierarchy need not be complete because
NODDY will add to it when necessary. The second reason is that NODDY can find local
functional gencralizations with the second level action generalization, though not as easily,
and under more constrained circumstances, so that the lack of templates will not prevent
NODDY from acquiring a procedure, just slow the rate of acquisition and increase the
number of examples needed. The effect of having a small template hicrarchy is to bias
NODDY toward certain gencralizations, and increase the ease of finding generalizations
in the propagation stage. It is, in fact, desirable to keep the hierarchy small for this
reason, Therefore, when NODDY becomes able to augment the hierarchy, it should only
add “common” templates that are likely to be useful for many procedures, otherwise the
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increased range of the first level action generalization will be offset by the need for more

examples to determine which generalization is appropriate.

Thel guard generalizations expressed in the hierarchy are somewhat strange. Although
MOVE-UNTIL-CONTACT-AT is treated as a generalization of the primitive MOVE, this is
not strictly so, since the guard condition until [contact] is not a generalization of
until [distance = r]. Also the distance traveled never appears in the pattern of
the following event. Strictly, the primitive MOVE ought to have the most specific guard
condition possible. In the case of a primitive move ending in a contact, this would be the
conjunction of the distance traveled and the contact. NODDY’s representation for actions
and patterns was fixed before the issues involved in guard generalization were sufficiently
understood, and as a result, the generalization functions in the MOVE-UNTIL-CONTACT-AT
and MOVE-UNTIL-CONTACT-UP-TO templates are more complex and less consistent than
they shou!d be. Future versions of NODDY will need to have a cleaner representation of
guard conditions, particularly if NODDY is to generate its own templates based on guard

generalization,

5.1.3  Checking Inclusion

NODDY first tests for inclusion, checking whether the first action includes the second,
and then vice versa. There are several different cases that NODDY must test in different
ways depending on whether the actions are instances of templates in the hierarchy, have
functional parameters, or both. If neither action has functional parameters, then NODDY
finds whether the template of the first action is a superior of the template of the second
action. NODDY retrieves the predicate attached to the template of the first action
corresponding to the template of the second action and applies it to the two actions. If
there is either no predicate or the predicate is not satisfied, then the first action does not
include the second, and the action matcher proceeds to the next step of trying to construct
a new generalization. If the predicate is satisfied, then the first action includes the second,

and the matcher returns a copy of the more general action.

For example, to test whether the action MOVE-UNTIL-CONTACT-AT 180° includes an
action MOVE 4@180°, NODDY would retrieve the appropriate predicate from the MOVE-
UNTIL-CONTACT-AT template and apply it to the two actions. This predicate would check
that the directions of the two actions are the same and that the pattern following the MOVE

action involves a contact.
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When the first action has functional parameters and the second action does not,
NODDY computes the “effective action” (as in section 5.1.1) and determines whether the
effective action is a generalization of the second action. If both actions have functional
parameters, the first is a generalization of the second if its variables are a superset of the
variables of the the second action and the second action is identical to the second action
with the “excess” variables replaced by their effective values. (This last test is not actually
implemented, though it would not be hard to do so).

5.14 Finding Generalizations

If neither action is a generalization of the other, the action matcher will attempt to find a
new action that is a generalization of both actions, Currently, it will try first level action
generalization only when neither action has functional parameters. In other words, once
an action has been generalized using the second level action generalization, the first level
no longer applies. One area of future work is to improve the representation of generalized

actions so that the two types of generalization can be better integrated.

When both actions are simple instances of templates in the template hierarchy (possibly
different instances of the same template), NODDY climbs the hierarchy to find templates
that are common superiors of the templates of each action. For each superior template,
NODDY retrieves the specialized generalization heuristics for that template, and applies the
appropriate heuristic to the two actions. The action matcher returns the generalized action
from the first superior template whose generalization heuristic returns a generalization. If
there are no generalizations from any of the superior templates, the action matcher fails.

If the superior template represents a functional generalization, then the generalization
heuristic of the template must examine the relevant components of the conditions associated

with the actions.

For example, if the actions are MOVE 6@0° and MOVE 4@90°, NODDY considers
each of the action templates MOVE-TO, MOVE-UNTIL-CONTACT-AT and MOVE-UNTIL-
CONTACT-UP-TO since these are superiors of the MOVE template. The generalization
heuristic of the MOVE-TO template must consider the position components of the conditions
associated with each of the actions to determine whether both MOVE’s end at the same
point. If the positicn componeats were (-6,0) and (0,-4), then the actions would both end
at (0,0), so the generalization heuristic will construct the gencialized action MOVE-TO (0,0).

However, a problem niay arise if the assoctated conditions have been generalized. For
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example, if the position components of the condition associated with the MOVE 4@90°
action had been generalized to [anywhere], NODDY would not be able to determine
where the MOVE started, and therefore could not tell whether it ended at the same place
as the MOVE 6@0° action.

It would seem, therefore, that NODDY can only generalize actions if the associated
conditions have not been generalized. This is not, in fact, quite true, nor would it be
a significant restriction even if it were true. NODDY could only have generated the
[anywhere] condition by merging two events that had different positions, but the same
MOVE 4@90° actions. But if this were so, the MOVE’s must have started at different positions
and could not end at the same position. Therefore there is no MOVE-TO generalization of
the actions anyway. In general, an ungeneralized action could not be a function of any
generalized condition component since this would imply a many-1 relation between the

pattern parameters and the action parameters.

If the only types of generalized actions in the action hierarchy were functional
generalizations, there would be no problem at all—the constructor functions would not
apply unless the relevant part of the condition component was ungeneralized. However,

the guard generalizations complicate the issue.

For example, figure 5-3 shows a MOVE 2.8@45° action and a MOVE-UNTIL-CONTACT-
AT 90° action which can be generalized to a MOVE-UNTIL-CONTACT-TOWARD (2,2).
The MOVE-UNTIL-CONTACT-AT was generalized from two primitive MOVE's that started
from different positions, and hence its associated condition is [anywhere]. To find the
appropriate generalization of the two actions, the action matcher must determine that all
the primitive MOVEs were headed toward the same point.

It is quite possible for a MOVE-UNTIL-CONTACT-AT 90° with a condition of [any-
where] to be a generalization of MOVEs that head toward quite different points. For
example, if the MOVESs started at different points on the z-axis, they would all be parallel,
but would never intersect. Therefore, the action matcher cannot tell whether the MOVE
2.8@45° and MOVE-UNTIL-CONTACT-AT 90° actions can be generalized to MOVE-UNTIL-
CONTACT-TOWARD (2,2) just by looking at the parameters of the actions and the associated

conditions.

Currently, NODDY solves this problem by using the past values of the condition
node—the actual positions from which the [anywhere] was constructed. It determines

whether the point (2,2) lies on ¢ach line at 90° through one of thesc positions. If so, it
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(2,2)

at: (0,0)
MOVE 2.8@45°

. MOVE 1.5@90°

LALL Y at: anywhere
MOVE-UNTIL-CONTACT-AT 90°

(2'0.5) A MOVE 1@900

anywhere
(0,0) v (2,0)

MOVE-UNTIL-CONTACT-TOWARD (2,2)

— — Figure 5-3 Complications With Guard Generalizations. — —

NODDY must find a generalization of the action MOVE 2.8@45° and MOVE-UNTIL-
CONTACT-AT 90°. The MOVE-UNTIL-CONTACT-AT 90° action is a gencralization of the
two primitive actions MOVE 1@90° and MOVE 1.5@90°, shown in the center of the figure.
Clearly, the appropriate generalization is the action MOVE-UNTIL-CONTACT-TOWARD (2,2)
since all the primitive actions are moving toward the point (2.2) and either reach that
point or or hit an obstacle. However, the two MOVEs in the center started at different
positions, so that when the actions and the associated conditions were gencralized, part of
the information about where the MOVEs started and ended was lost. Therefore, determining
that MOVE-UNTIL-CONTACT-TOWARD (2,2) is a valid generalization is not straightforward.

guesses that all the primitive MOVEs of the MOVE-UNTIL-CONTACT-AT must have been
heading toward (2,2).*

Without using the past values of the conditions in this way, NODDY would become
much more dependent on the order of presentation of the examples—to teach an action that
involved both functional and guard generalization, the teacher would have to present traces
“that would introduce the functional generalization first, before the associated conditions

are generalized, and then traces 1o introduce the guard generalization.

For example, to tcach the MOVE-UNTIL-CONTACT-TOWARD action of figure 5-3, the

teacher would have to first present traces with the two MOVEs that reach (2,2), which would

* Ihis 5 an informed guess—an inductive inference—, because there is no way of telling
whether any of the MOVEs might have overshot (2.2) without keeping around a complete record of
all the MOVEs from-which the MOVE-UNTIL~CONTACT-AT was gencralized.
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be generalized to MOVE-TO (2,2), and then the third MOVE which hits an obstacle halfway
to (2,2) which would then enable NODDY to generalize the actions to MOVE-UNTIL-
CONTACT-TOWARD (2,2).

This would also mean that NODDY could only acquire the RETRIEVE procedure if
the traces were presented in the order shown in the scenario. However, because NODDY
can generalize actions, even when the associated conditions have been generalized, it can
acquire RETRIEVE with the first four traces presented in any order.

5.2 Second Level Action Generalization

The second level action matcher is invoked when the first level action matcher could
not find any generalization of the actions in the action hierarchy and there is sufficient
justification to search for a new generalization. The justification is a combination of the
contextual justification, described in section 4.5, and the internal justification that the
actions are of the same type and differ only the parameters. Unlike the first level action
matcher, the second level action matcher will match any number of actions at once. In
fact, the more actions there are, the bettér, for reasons discussed below. The second
level action matcher tries to find a functional dependency between the actions and one
component of a previous pattern. Its first step is to obtain a list of “input/output pairs”
of the function it has to find—the pattern values and the corresponding action values, If
there is a consistent set of input/output values, the second step is to search for a function

that explains those values.

5.2.1 Finding the Input/Qutput Pairs

The structure matcher hands the second level action matcher a set of actions, a partial
match of the actions, and the component of the condition of some event. The partial
match of the actions was generated by the first level action matcher and specifies the parts
of the actions that are identical. If the actions have constant parameters, the partial match
will just be the action type and the output values will be just the parameters of each
action. If the actions have functional parameters, then the the function expressions must
be identical except for some constant, and the partial match will be the action type and
the function expression, marked at the place where the actions have differing values for a
constant in the expressimi. The output values are just the different values of the constant,
which NODDY obtains from the actions using the specialization in the partial match.
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To construct the input/output pairs, NODDY must determine the input values from
the condition component, and the correspondence between the input and output values.
The condition component has two parts: the actual condition, which is an instance of
some template in the condition hierarchy, and the past values, which are the actual pattern
values from which the condition bound was generalized. The function that NODDY must
find is a function of the pattern value that matches the condition component, not of the
condition component itself, so the input values are just the past values of the condition
component. Inferring functions is one of the two reasons that the past values must be
remembered—they are also used in constructing more complex conditions, as described in

chapter 6,

To determine the correct correspondence between the input values and the output
values, NODDY needs to know which actions occurred after which pattern values. If
NODDY remembered all the traces and the relation of the events in the current procedure
to the traces, it could determine the correspondence by referring back to the traces. It is
not necessary, however, to remember everything about the traces: it is sufficient to mark
the actions and the past values of the conditions with the name of the traces from which
they came. NODDY can then pair the input and output values that are marked with the

same trace name and remove any duplicate pairs.

Once it has obtained the set of input/output pairs, NODDY checks the pairs for
consistency. If the same input value is paired with two different output values, the
output values could not be a function of the input values, and the matching is abandoned
immediately. For example, when NODDY was trying to generalize the “move back to
starting point” actions of the first two traces of the RETRIEVE procedure, it first looked
for a function relating the the MOVE parameters to the current position (see figure 5-4).
However, the position was the same—(1,0)—for each action, so this position component

was abandoned, and NODDY tried the condition of the previous event.

5.2.2  Searching for a Function

When the input/output pairs are consistent, and there are at least two pairs, NODDY
searches fcr a function that satisfies the pairs. The space of possible functions is implicitly
defined by the set of operators from which NODDY may construct expressions. The
functions are represented by the set of lambda expressions that can be built out of the
operators, lambda variables, and constants. NODDY does a breadth first search of the
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i |
at: (1,0 _ at: (1,0)
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-— — Figure 5-4 Abandoning a Condition because of Inconsistent Pairs — —

NODDY is looking for a sccond level generalization of the “move back to starting point”
actions of the first two traces of the RETRIEVE procedure. NODDY first considers the
position component of the current condition as the source of the functional dependency.
However, since the positions arc both (1,0), the different actions cannot possibly be a
function of this condition component. Therefore NODDY prunes this condition from the
search and steps back in the procedure to consider and earlier condition

relevant part of the space of expressions ordered by depth of nesting of operators. The
sct of operators is domain dependent and must be given to NODDY (figure 5-5 shows
the set of operators for the robot domain), but the algorithm for searching the space is

domain independent.

An essential part of the search algorithm is the use of t¢ype information. As shown in
figure 5-5, each operator must have associated with it type information on its arguments
and result, and a specification of its inverse (or inverses, if there is more than one).
NODDY incrementally builds expressions inwards from the input values and the output
values simultancously, using the type of the values to constrain the possible operators.

The precise algorithm is given in section 5.2.3. .

As long as the set of operators is small, as it is for the robot domain, the search space
~of expressions without constants is quite manageable,. When constants are introduced,
however, the space of expressions immediately becomes very wide and unmanageable
because it is not possible consider all possible values of the constants. (This does not
apply to domains in which the constants can only take on values from small sets such as
constants ranging over the primary colours or cven letters of the alphabet, but would apply
to constants ranging over large finite sets such as the sct of all words,) 'The algorithm

below avoids this problem by tightly restricting the consideration of expressions with
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OPERATOR

pos-cons
x-part’
y-part
vect-cons
mag
direction
list

ncons
first

cons

car

cdr

second
vect->list
list->vect
postvect
-pos
pos-vect
+vect
-vect
minus-vect
minus

+

+ang
-ang
~-dir
dir+ang
dir-ang

" DOMAIN

(num, num)
(pos)
(pos)
(num,dir)
(vect)
(vect)
(any,any)

" (any)

(11list)
(any, any)
(list)
list
(2list)
(vect)
(1list)
(pos,vect)
(pos,pos)
(pos,vect)
(vect,vect)
(vect,vect)
(vect)
(num)
(num, num)
(num, num)
(ang,ang)
(ang,ang)
(dir,dir)
(dir,ang)
(ang,ang)

RANGE

pos
num
num
vect
num
dir
2list
1list
any
list
any
list
any
list
vect
pos
vect
pos
vect
vect
vect
num
num
num
ang
ang
ang
dir
ang

INVERSE1L

x-part
pos-cons
pos-cons
mag
vect~-cons
vect-cons
first
first
ncons

car

cons

cons

list
list->vect
vect->1list
pos-vect
pos+vect
pos+vect
-vect
+vect
minus-vect
minus

+
-ang
+ang
dir+ang
dir-ang
dir+ang

INVERSE2

y-part

direction

second

cdr

-pos
pos-vect
-pos
-vect
-vect

-ang
-ang
dir-ang
-dir
-dir

— — Figure 5-5 Table of operators for the Robot Domain, — —

Each operator must specify the types of its arguments and range. These are used in the
expression building algorithm to prunc the candidate operators. It must also specify its

inverses which are used to build the cxpression from both ends at once.
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constants. It will consider expressions with one “new” constant, because one constant
can be found without searching all possible values for the constant (see step 3 of the
algorithm), but it will never introduce more than one new constant into an expression. It

will consider expressions with “old” constants—constants that are known from the context
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of the actions to be possibly relevant—since these also do not require searching the space
of constant values. These restrictions do limit the expressions that can be considered,
but the alternative is to make the search prohibitively expensive. By introducing very
domain specific knowledge into the algorithm, the space of expressions could be increased
somewhat (compare, for example, Langley’s production system rules for finding linear
relationships which involve two new constants[Langley et. al., 1983]), but this runs counter

to the domain independence of NODDY.

Since expressions may have arbitrarily deeply nested operators, there must be some
stopping criteria for the search. NODDY uses two separate stopping criteria. The first is
the number of constants in the expression, and the second is the depth of nesting. The
number of constants (both “old” and *“new”) at which cutoff occurs depends upon the
number of input/output pairs: the more constants in the expression, the more pairs are
required to justify it. For example, one can find a linear relation y = az + b to satisfy two
pairs of (z;,y;). However, since one can find such a relation for any two pairs, there is no
reason to believe that the fact that this particular linear relation captures any underlying
regularity or property of the values. One would only have confidence that the relation
was a genuine generalization if one had three, or preferably four pairs that all satisfied the
linear relation. Therefore, the number of constants allowed in an expression should be at
most one less than the number of input/output pairs. The current version of NODDY
has not addressed this issue very well, and uses a very primitive cutoff criterion. Future

work should address this question.

It is less clear how the second stopping criteria—depth of expression—should be
implemented. The depth of expression seems to have little relation to the number of data
points. The current version cuts off the search at a fixed depth of expression, regardless
of the amount of data. Effectively, this biases NODDY toward finding functions of the
condition closest to the action, no matter what the complexity (up to the fixed limit). A
more reasonable bias would be to trade off depth of expression against distance of the
condition trom the action so that a very simple function of a more distant condition might
be preferred over a complex function of a closer condition. This would require a more

complicated search strategy that dovetailed the search through the events with the search

‘through expression space, and has not been implemented.
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523 Expression Building Algorithm

The expression building algorithm is invoked with a single set of input/output pairs
{in;, oﬁti}, an initial expression, a list of known constants (constants that are known to
be possibly relevant to the function) that can be used in the expression, and the stopping
criteria—the maximum depth and maximum number of constants to be considered. The
initial expression contains a “gap” which the algorithm must fill. For the simplest case—the
actions being matched have constant parameters—the initial expression will be an empty
lambda expression: (A (a1) (<gap> ai)). If the actions had functional parameters,
the initial expression will be the expression in the actions with a gap where the differing

constant was.

The algorithm will try to close the gap in the expression. The gap represents some
function F' such that V;[out; = F(in;)]. The algorithm can close the gap if it can find
a single operator OP equivalent to F, in which case it can replace the gap by 0P: (A
(a1) (OP a1)). It can also close the gap if it can find a single operator OP such V;[(oP
out; in;) = <constand], in which case it can invert the operator to create an expression
equivalent to '—V;[out; = (0P~ in; <constan)] so that it can replace the gap by 0P~ L:
() (a1) (oP~! a1 <constant>)). ’

If there is not a single operator that closes the gap, it will construct a new set of
expressions, each of which partially close the gap by adding an operator to the inside or
outside of the gap. Along with each new expression, the algorithm will construct a new
set of input/output pairs obtained by applying the new operator to the input values (or
the inverse of the operator to the output values). After pruning duplicate expressions and
expressions corresponding to inconsistent input/output pairs, the algorithm repeats on the

remaining expressions.

Algorithm

1 IF: there are no expressions left on the queue,
THEN: exit with no expression,

2 ELSE: Consider the next expression on the queue:

2.1 IF: input/output values are inconsistent
THEN: Abandon this expression and return to step 1.

2.2 IF: all the output values are equal,
THEN: EXIT with the the gap and subexpression inside the gap replaced by that
value.
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e.g. if out; = {(90°),(90°),(90°) } (Kgap> a1)* = (90°)
2.3 IF: each output value equals its associated input value,
THEN: EXIT with the gap removed (implicit identity operator).
eg,. if out; = {3@90°,2@45°,} and in; = {3@90°, 2@45°,},
(vect->1list (<gap> (-pos a1 (0,0)))) => (vect->list (-pos al (0,0)))
24 IF: This expression has reached limit on either the depth or the number of
constants,
THEN: Abandon this expression and return to step 1
~ 3 IF: There is a binary operator OP such that applying OP to each of the input/output
pairs returns the same value (i.e., V;[(OP in; out;) = <consp)),
THEN: Replace the gap by the inverse of OP applied to <const> and the subexpression

inside the gap, and EXIT with the new expression,
e.g., if tn; are positions and out; are vectors, and (pos+vect in; out;) = (1,3),

then (<gap> a1) = (-pos (1,3) at)
4 ELSE: Construct new expressions from this expression and add them to the queue:

4.1 IF: The out; are a compound data type for which there is a constructor operator
(e.g., pos-cons for positions), and all but one of the corresponding components are
equal (e.g, out; = {(2.5,2),(2.5,0),(2.5,5)})

THEN: Make a new expression by replacing the gap with the constructor operator
applied to the constant components and the gap, replace the out; with the non-
constant components, and add the constant components to the list of known

constants, _
eg, (<gap> at) => (pos-cons 2.5 (<gap> a1)) and new out; = {2,0,5}.
AND

4.2 IF: The 2n; are a compound data type for which there are component operators
(e.g., mag of a vector)
THEN: For each component of the ¢n; that is not constant across the in;, construct
a new expression with the operator applied to the subexpression inside the gap,
and replace the ¢n; by their appropriate components. Add the value of each
component that is constant across the in; to the list of known constants.
eg, (Lgap> al) => ({gap> (mag a1)) and
replace in; = {1@90°, 2.8@45°, 2.2@63°} by in; = {90°,45°,63°}.
AND
4.3 FOR EVERY unary operator OP whose range matches the type of the out;,
construct a new expression with OP applied to the gap, and replace each out; by
(OP~! out;), where OP~! is the inverse of OP.
eg, (Kgap> al) = (ncons <gap> a1) and replace out; = {(90°), (45°), (63°)}
by out; = {90°,45°,63°},
AND A
44 FOR EVERY unary operator OP whose domain matches the type of the in;,
construct a new expression with the subexpression inside the gap replaced by OP
applied to the subexpression,-and replace each ¢n; by (OP in;).

* The actual expression is (A (a1) (<gap> a1)) but for clarity we will leave out the
(A (al)
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eg, (Kgap> a1) = ({gap> (minus-vect al))
and replace in; = {1@90°, 2.8@45°, 2.2@63°} by in; = {1@~-90°,2.8@—45°,2.2@ -
63°}

AND

4.5 FOR EVERY non-unary operator OP whose range matches the type of the out;,
and for which there are known constants of the correct type for all but one of the
arguments, construct new expressions with OP applied to the gap and the relevant
constants, and replace the out; by the appropriate inverse of OP applied to the
out; and the constants, '

e.g., if (0,1) is a known constant, then (<gap> al) => (pos+vect (0,1) <gap>
a1) and replace each out; by (-pos out; (0,1)), ,
ie, replace out; = {(1,1),(3,2),(2,2)} by out; = {1@90°,2.8@45°, 2.2@63°}

AND '

4,5 FOR EVERY non-unary operator OP such that the type of the «n; matchcs one
of the arguments of OP and there are known constants of the correct type for
all of the other arguments, construct new expressions with OP applied to the
subexpression in the gap and the relevant constants, and replace the in; by OP
applied to the ¢n; and the constants,

e.g., if 2.5 is a known constant, then ({gap> a1) == (gap> (+ a1l 2.5)) ie,
replace in; = {1,3,2} by in; = {3.5,5.5,4.5}

5 Add the new expressions (with their associated input/output pairs) to the end of the
queue of expressions, remove all duplicate expressions, and return to step 1. (NODDY
also removes a few expressions which are semantic, though not syntactic, duplicates
of expressions already seen, e.g., (lambda (al) (first (ncons (<gap> al)))) is identical to
(lambda (al) (<gup> al)). Removing all such duplicates would require more knowledge
of the operators than NODDY has, so NODDY is limited to removing expressions

- with a unary operator adjacent to its inverse.)

Figure 5-6 shows the trees of expressions that NODDY considered while deriving the
functional dependency for the “move back to entry of row” and “move back to initial
position” actions of the RETRIEVE procedure. To find the first function, the algorithm
derived one new constant: (1,0) by noticing that the input position minus the vector
output was the same for all input/output pairs—(1,0)—and inverting the pos-vect
operator to obtain the -pos operator, There are several expressions in the second example
(part b) that werc pruned by the cbnsistency constraint. For example, the input and output
values corresponding to the expression (<gap> (x-part (first al))) were in;: {0,
-1, -1, -3} and out;: {((1.0)). ((1,0)) ((1,1)) ((1,1))}. The second and third input values are
the same, but the corresponding output values are different. Since this is not consistent,
the expression was pruned. ‘
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(<gap> a1) n; ((42)  (35)
/ th.ﬂ (34° 36) (68° 5.4)
(vect-Jlist (<gap> at)) {<gap> (car at))
4.2

{vect-list (<gap> (gar a1)))
3

{vect-Dlist {-pos (car a1) 0.9

#xDONE*»

(a)
{<gap> al) in; ((00) (1.0 ((-1,1) (-3,1)
out; {(1,0) ((1,0) ((1,1) ((1.1)
(ncons ({gap> at)) (<gap> (car a1))
4.2 ya
; ((gap)( x-part (car a1)))
{ncons (<gap) {car a1))) 4.2 X 21

(<gap> (y-part (car a1)))
(ncons (pos-cons 1.0 (<gap> a1))) /
‘ 4.2

; // (ncons (<gap> (x-part (car a1))))

4.2 . Pie X 21

S, < > (y-
e ; (ncons (<gap> (y-part (car a1)))

(ncons (pos-cons 1.0 (<gap> {car a1))))

(ncons (pos-cons 1.0 (Kgap> {y-part {car a1)})))

2.3
{ncons (pos-cons 1.0 {minus {<gap> a1)))) (ncons (pos-cons 1.0 (y-part {car a1))))
» .DONE .

(b)

— — Figure 5-6 The Expression Building Algorithm at Work, — —

The figure shows the two trees of cxpressions that the expression buiiding algorithin
constructed to account for the input/output pairs next to the roots of the trees, The upper
tree is from the “move back to initial position™ action in RETRIEVE-2 (sec event 5 in
figure 1-5) and the fower tree for the “move o entry point of row” action in RETRIEVE-4
(see cevent 4 in figure 1-§). The labels on the links refer to the steps of the algorithm
that generated the lower expression from the upper one. Dashed links indicate redundant
derivations that were pruncd. The expressions marked with x were prancd because the
input/cutput values were not consistent.
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5.3 Future Improvements to the Action Matcher

There are several limitations to the action matcher in the current version of NODDY.

Future work should address these limitations.

The first problem with the action matcher is that the first level action generalization
(climbing the template hierarchy) is not integrated with the second level generalization
(finding functions). Some of the generalizations in the first level action generalization
(which uses the hierarchy of templates) are local functional generalizations, for which the
function expression is “hidden” in the template. The second level action generalization
may also find local functional generalizations for which the function expression is explicit
in the action. These two types of function generalization should be treated identically
by the action matcher, so that the matcher can determine that MOVE-TO (z,y) is the
same as MOVE (-pos (z,y) <current-position>). Currently, the template is opaque to the

matcher, and these two actions do not match.

Furthermore, the first level action matcher does not apply, currently, to actions with
functional parameters. The effect is that NODDY can never generalize an action using
the templates (and therefore cannot do guard generalization) once it has generalized it by

finding a functional dependency.

Both of these problems could be solved quite readily if the function that a template
represents were made explicit in the template. The action matcher could then be extended
to match equivalent actions whether they were expressed in terms of templates, functional
parameters, or both. The first level action generalization could also be extended to

generalize actions with functional parameters.

A second problem with the action matcher is that the function induction algorithm is
not completely implemented. One aspect that must be addressed is the stopping conditions
on the search. The search should abandon an expression when it reaches some complexity
limit. This limit should be a function of the number of input/output pairs—the more
input/output pairs, the greater the complexity of the expression that can be considered

without producing unjustified, spurious relations.

The other aspect that must be addressed is the introduction of “known constants”
into the expressions. It is not possible to search the space of constants, but there may be
particular constants from the procedure that are likely to be relevant to the function for

which it is searching. Two places the algorithm should look for such constants arc (a) the
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condition of the new event whose action it is trying to construct, and (b) the condition
of the following event. These conditions are a partial description of the state of the
world before and after the action. If any of the components of either of these conditions
have constant parameters, then it is possible that the expression describing the action may
involve these values. The algorithm might also use some of Langley’s techniques [Langley
1981] of finding constant properties of the set of input/output pairs. For example, it
could find the coefficients of a linear relationship between input and output values, by

constructing difference tables.

A more significant change that could be made to the action matching concerns the
different levels of generalization. Currently, generalizing with the template hierarchy is
the most constrained generalization, and is put in the first level, and generalizing by
searching for functional dependencies is put in a second level. However, searching for
local functional dependencies is much more constrained than searching for non-local
functional dependencies, in that there are fewer generalizations and less likelihood of
finding a spurious generalization. Furthermore, finding local functions does not require
that other events in the procedure be matched, whereas finding non-local functions does.
Therefore, NODDY should not require as much justification to consider a local functional
generalization as to consider non-local functional generalization. The next version of
NODDY should distinguish these two categories of generalization. It should also more
carefully address the question of what stages of the structure matcher should invoke what

levels of action matching.
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Condition Matching and Generalization

The second part of the event matcher is the condition matcher. The condition of an event
is a predicate on patterns which specifies when control may pass to the action of the event.
The task of the condition matcher is to construct the appropriate predicates from sets of

patterns.

For example, in the RETRIEVE procedure of the scenario, NODDY must construct
branch conditions by which it can decide whether it has hit a block which it should grasp
and take back to the start position or hit the wall and should go to the next row. It
must construct these branch conditions from a small set of feedback patterns—in the five
examples from which it acquires the procedure, it hits a block 5 times in five different
~ places, and hits the wall 4 times, in two different places. The branch conditions that
NODDY constructs are: if the z component of the position is > —3 then the robot
should grasp and return to the start; if the the = component of the position is < —4, it

should move to the next row.

The choice of these conditions is not determined by the data—there are many other
conditions that could have distinguished the two sets of positions. For example, if the
position is on the line z = —4, move to the next row; if the distance of the position from
the origin is less than 3.5, grasp and return, if the negative of the z component is prime
then grasp and return. All of these account for the data, and could have been generated by
some generalization algorithm. Since there is no “right answer” we need additional criteria
for choosing an algorithm. The following three criteria are appropriate for a generalizer

that acquires procedures incrementally from examples presented by a teacher:

e Lfficiency: The space of possible conditions is very large. It is therefore essential that
the algorithm search it efficiently. In particular, if a simple condition to explain the
data exist, NODDY should be able find a condition faster than if there are no simple

conditions.

o Good Incremental Behaviour: When NODDY is given new data that a current
condition does not account for, it should be able to use the current condition, and
the work that went into constructing it, to guide the search for a new condition that
accounts for the additional data, rather than throwing away the current data and

starting again from scratch.
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o Teachability: In order to teach NODDY a procedure, a teacher will try to generate
traces that will be useful for acquiring the procedure., The choice of useful traces
will be easier if NODDY’s generalizations are reasonably consistent with the teacher’s
expectations of what NODDY might infer from a trace. In particular, NODDY should
not find generalizations that the teacher considers to be unjustified by the data.*

The algorithm described in the rest of the chapter was designed to meet these criteria.
One important difference between the algorithm for generalizing conditions and the
algorithm for generalizing actions described in the previous chapter is that the condition
matcher must have negative examples in order to find any interesting generalizations. This
was not necessary for the action matcher because the space of generalized actions was so

constrained by the determinacy constraint that positive examples were sufficient.

In addition to constructing new conditions, NODDY must also perform two matching
tasks: it must determine when one condition is a special case of another condition, and it
must determine when two conditions intersect. These are necessary in order to determine

when the condition matcher needs to construct a new condition.

The first section of the chapter describes the ordering on the space of conditions that
is the basis of the matching and generalization algorithms. This ordering is based on an
account of what constitutes a justified generalization given in chapter 7. The remaining

sections describe the matching and generalization algorithms.

6.1 Ordering the Search Space

6.1.1 Patterns and Conditions

Chapter 2 described the representation of patterns and conditions.* NODDY must repre-
sent a condition as an implicit conjunction of nodes—instances of templates. A condition
does not have explicit conjunctions or disjunctions, nor does it have explicit descriptions
of predicates. The predicates are described in the templates, and the nodes have only the
name of the template and the valucs for the parameters of the template.

* This does not mean that NODDY should be a theory of human generalization (and there
is no claim that NODDY embodies such a theory), only that a human should not consider the

product of the generalization algorithm to be strange or unjustified.
* The reader may find it helpful to refer back to the table of definitions at the end of section

2.4 to refresh his or her memory of the meanings of the terms condition, component, node, and
template. ‘ : '
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The set of templates can be partitioned according to the component of the pattern to
which they correspond. Because nodes of different components are strictly incomparable,
for most of the chapter, we will talk of a single component-of a condition (and the
corresponding set of templates) as if it were the whole condition, and talk about conditions
with several components only when necessary. Most of the examples will be of position
components, since that is the component with the most interesting space for the robot

domain, but everything will also apply to the other components.
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— — Figure 6-1 Include and Conflict relations. — —

(a) [vert-strip: <z <4] includes [rect:2<z <3, 1<y <5], (b) [vert-strip:1<
z < 8] conflicts with [rect: 1<z <4,1<y<2)

There are two spaces that we must consider in scarching for a oeneralization of a
st of patterns: the space of actual conditions (nodes), and the space of templates. It
will be useful to define a different ordering on each of these spaces. The appropriate
ordering for the space of nodes is a gencrality ordering. A node A is more general
than (or includes) node B if the sct of pattern values that satisfy A is a superset of
the set of pattern values that satisfy B. For example, [vert-strip:1<z < 4] is more
general than [rect:2 < <3, 1 <y <2 (see figure 6-1). The space is very wide under
this ordering in the sense that there are many alternate generalizations of a given node.

The space is also very dense in that there are many nodes of intermediate generality
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between two nodes such as [vert-strip:2 <z < 3] and [vert-strip:2<z<4], eg,
[vert-strip:2 < z < 3.74). Another important relation between nodes is the conflict
relation; a node A conflicts with node B if A does not include B, and B does not
include A, and there is at least one pattern value that satisfies both nodes. Le., two nodes
will conflict if they have a common specialization. For example, [vert-strip:1<z<3]
conflicts with [rect:0 <z <4,1 <y < 2] because they have the common specialization
[rect:1<2<3,1<y<2] (see figure 6-1). '

To find a generalization of a set of patterns and/or conditions, NODDY must effectively
climb up the generality ordering on nodes. There are several difficulties with doing this
directly. First, the space is too large to represent explicitly, therefore NODDY must
construct the relevant parts of the space as it goes from some other description of the
space. Second, the space is too dense to climb one step at a time, so NODDY will have
to make larger steps and backtrack to less general nodes when necessary. And third, it is
too wide to determine which of many alternate direction to step in, so that NODDY will
sometimes have to backtrack from a previous choice and step in a different direction.

NODDY solves all three problems by stepping through the space of templates ordered
by a particular complexity measure. The complexity measure is such that stepping through
a sequence of templates of increasing complexity corresponds to searching the space of
nodes with the types of backtracking mentioned in the previous paragraph.

6.1.2  Complexity Ordering

The complexity ordering on the templates is based on the parameters of the predicates of
the templates. The templates are ordered, first, into layers by the maximum number of
interacting parameters, and second, within each layer, by the total number of parameters.
That is, template Ty is simpler than template To if T, has fewer interacting parameters
than Ty or if they have the same number of interacting parameters (they arc in the same

layer), but Ty has fewer total parameters than To.

Two parameters of a template interact if, when creating an instance of the template
that satisfies a set of pattern values, choosing a value for one parameter affects the choice
of the other paramcter. For cxample, the z; and z3 of [vert-strip:z; <z < =] can
be chosen quite independently—z could be chosen to be any value up to the minimum
z-component of the pat(ém values, and z9 any value over the maximum, On the other

hand, the <pos> and <r> of [circle:|(z,y) — <posd| < <P] interact because the minimum
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value for the radius <> depends on where the the center of the circle is placed.

The motivation for this ordering (which will be discussed more fully in chapter )]
derives from the fact that the number of data points required to determine the appropriate
instantiation of a template increases with the number of parameters, especially the number
of interacting parameters, in the template; and the number of possible templates of a given
complexity increases with the complexity. Therefore, searching according to increasing
complexity under this measure will ensure that a more complex templates will only be
considered when there are enough data points to: (i) eliminate all simpler templates;
(i), distinguish between the many templates of simpler complexity, and (iii), determine
the appropriate instance of the template. This complexity ordering is therefore based on
the complexity of constructing a description from the evidence, not on the complexity of
using the description once it has been created. The differences between these two types

of complexity will also be discussed in chapter 7.

One consequence of this ordering is that conjunction of predicates is a very “cheap”
operation. That is, a template whose predicate is just a conjunction of two other predicates
is considered only slightly more complex than the templates of the constituent predicates
since the parameters of the two conjuncts do not interact and the conjunctive template
will be in the same layer as the constituent templates (or the layer of the more complex
template if the constituents are in different layers). Adding a conjunct to a predicate
corresponds to specializing the condition, so that stepping along the complexity ordering
within one layer corresponds to the first type of backtracking in the generality ordering in
the space of nodes—specializing a node after overgeneralizing. Moving to a new layer of
the template space involves a larger step in complexity and corresponds to the second type
of backtracking in the space of nodes—abandoning one line of generalization and trying

a different direction.

Figure 6-2 shows the small part of the template space, ordered by complexity, that
NODDY currently knows about for the position component of conditions in the 2-D robot
domain. Notic that the template [anywhere], which has no parameters and therefore only
one instance, namely the conditibn that is always satisfied, has a special position at the
beginning of the ordering, There are many more templates that could be constructed using
the same set of operators, but this has not yet been done. There are many procedures
that could not be acquired with this limited set of templates, but it has been sufficient

for acquiring some procedures, and could easily be extended as needed. Clearly, both the
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No parameters [ANYWHERE]

[LOWER-HALF-PLANE yo]  [UPPER-HALF-PLANE ]
[RIGHT-HALF-PLANE zy]  [LEFT-HALF-PLANE ]

No interacting
parameters [VERT-STRIP zg, z1] [HORIZ-STRIP yo, 1]
Increasin
[RECTANGLE @0, 21, 90, 91 complexity
[CIRCLE (zg,%0),7]  [HALF-PLANE (zg, yo), 9] v

Two interacting
parameters
[HALF-CIRCLE (zo,yo),r,0]

— — Figure 6-2 The Template Ordering for the 2D Robot Domain, — —

templates themselves and the ordering of templates are dependent upon the language for

representing the predicates.*

6.1.3 Content of Templates

The defining information in a templaté is a specification of the predicate it represents and
a list of the parameters and their types. To use the templates to match and gencralize
conditions, NODDY needs other information about a template: its place in the complexity
ordering, predicates to determine the relations of instances of the template, and functions

for constructing instances of the template.

If NODDY could reason about the algebraic constraints in the predicate, it could
derive these other predicates and functions in the template from the description of the
basic predicate. However, the current implementation of NODDY cannot do this reasoning,
so the template must contain most of this other information explicitly,. NODDY is able

* Note that this particular template ordering may not conform very well to human intuitions
of a complexity ordering on the same rcgions of a plane because the primitive operators include
x-part and y-part which assume fixed cartesian coordinates for the plane. As a consequence, the
half plancs aligned with the axis are considered very simple regions. The teachability of NODDY
would probably be improved by a choice of primitive operators more compatible with the human
intuitions.
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to reason about conjunction, so that it can detive some of the predicates and functions
of templates representing conjunctive conditions from other templates. Much of the
complexity of the matching and generalizing algorithms described in the following sections

arises from this reasoning about conjunctive templates.”

Each template states explicitly which layer of the complexity ordering it is in. The
ordering within each layer can be trivially determined from the number of parameters,
The complexity ordering on the nodes (instances of the templates) is implicit in the
explicit relations between templates combined with predicates attached to the templates
that determine the relation between instances of the templates.

Templates come in two varieties: basic templates, which are the simplest templates
within each layer, and the derivative templates, whose defining predicate is derived from
that of other templates by conjunction or projection. Each template must state whether it
is a basic template, and if not, must state how it was derived, and what templates it was

derived from.

The predicate of a basic template cannot be expressed as a conjunction of simpler
predicates, and each parameter only occurs once in the predicate description. Each basic
template must have a selfinciude predicate to determine whether one instance of the
template is a strict generalization of another instance, For example, the CIRCLE template
is a basic template, with two parameters—a position and a distance—and it has a self-
include predicate that states that a circle node [circle:|(z,y) — <center;>] < <radius;d]

includes another circle node [circle:|(z,y) — <centerd| < <radiusy>] when

| (<center> — <centers>)| < (<radiusy> — <radiusy>)

The basic templates must also have predicates specifying the relation between instances
of it and instances of other templates. The final bit of information that basic templates
must have is a function that will construct the most specific instance of the template that

covers a given set of pattern values.

Other predicates can be constructed out of the basic templates by conjunction and

projection. A template C is a conjunctive derivative of T' if the predicate of C is a

* In retrospect, it would have been cleancr to separate the derivation of the predicates and
functions of conjunctive templates from the use of those predicates and functions once derived.
Future versions of NODDY should scparate them more clearly.
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conjunction, and one of the conjuncts is identical to the predicate of T. The self-
include predicate of a template that is a conjunctive derivative of other templates can be
simply derived from the conjunction of the self-include predicates of the constituent basic
templates. P is a projective derivative of T if its predicate is identical to that of T' except
that two or more of the parameters of T have been replaced by a single parameter in
P. Again, the self-include predicate of a projective derivative of a template T can be
trivially derived from the self-include predicate of T. NODDY can perform both of these

derivations.

For example, the [vert-strip:z; < z < o] template is a conjunctive derivative of
the [right-half-plane:z>x;] and the [left-half-plane:z <z,] templates.

With these relations and predicates, NODDY can determine whether a node that
is an instance of one template is a generalization or specialization of a node that is an
instance of any other template. Each derivative template must have one final predicate
that determines whether a particular set of parameter values represents a valid instance
of the template. The following sections describe the way the condition matcher uses this

template ordering and these predicates.

6.2 Matching Patterhs and Conditions

There are two modes in which the structure matcher invokes the condition matcher simply
as a matcher—first to determine whether two conditions are equal or one is a generalization
of the other, and the second to determine whether two conditions conflict, ie, whether
they have a common specialization (though the matcher does not have to construct the
specialization, just determine whether it exists). Both tasks involvc reasoning about the

generality ordering on conditions which is implicit in the information in the templates.

To match (or generalize) the conditions, NODDY considers each component of the
conditions separately. There are three trivial cases for matching two nodes (condition
components)—(a) the nodes are identical; (b) one node is the always-satisfied node (e.g.,
[anywhere], for the position comboncnt) which is more general than any other node, and
conflicts with nothing; and (c) one node is a primitive pattern node, which conflicts with
nothing, and is included by another node if it satisfies the basic predicate of the other
node. When the nodes are neither primitive pattern nodes nor the maximally general

node, the matching is more complex.
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6.2.1 Matching Condition Nodes: Include

To test whether a node A includes another node B, NODDY first determines the relation
of the templates of A and B (T4 and T’).

If A and B have the same templafe, then NODDY applies the self-include predicate
of the template to the two nodes. If the template is not a basic template, NODDY
will have to derive the predicate from the self-include predicates of the basic templates
of which the template is a conjunctive derivative. NODDY does not actually derive the
predicate explicitly, but breaks the node down into its constituents, as described in the next
paragraph, and checks that all the constituents of A include the corresponding constituents
of B.

If T is a conjunctive derivative of (or a derivative of a derivative of ...) Ty, then
Ty’s predicate is a conjunction of T'4’s predicate and some other predicate. NODDY
constructs a new instance of T4 from the node B by dropping out the parameters of B
that are irrelevant to Ty, then applying the self-include predicate of T4 to A and the new
node. If the predicate is satisfied, then A includes B.

For example, let A be [vert-strip:1<xz<4] and B be [rect:2<z<3,1<y<5]
(refer back to figure 6-1). The RECTANGLE template states that the first two parameters
of the RECTANGLE predicate came from the VERT-STRIP template, and the second two
from HORIZ-STRIP. Therefore, [rect:2<z<3,1<y<6] is effectively a conjunction of
the nodes [vert-strip:2 <z <3] aﬁd [horiz-strip:1<y <6]. NODDY constructs
[vert-strip:2<xz<3], and uses the self-include predicate of the VERT-STRIP template
to determine that [vert-strip:1<z<5] is a generalization of [vert-strip:2<z<3]

and therefore of [rect:2<2<3,1<y<86] also.*

A similar method would work for projective derivatives, but has not yet been imple-

mented.

If Ty is not a derivative of T4 then NODDY looks in T4 for a predicate for
determining the relation of nodes of type T'4 and type T'p. For example, the LEFT-HALF -
PLANE template might have a predicate for determining when a left-half-plane node
includes a circle node. If there is no predicate for T4 and T, NODDY assumes that A

docs not include B. This assumption may be wrong, but it is the safe assumption because

*  Note that nodes do not contain descriptions of the predicate, only a list of parameter values.
The predicate is given here as a mnemonic aid.
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the structure matcher takes more conservative actions if it believes the nodes do not match.
It may miss some key pairs that it could have found had it known more, but it will not
construct an invalid key pair. It will also think that some forks are nondeterministic
and do extra work to resolve them when the fork was actually an (ordered) deterministic
fork, but, again, this is a conservative choice which will not introduce errors into the new

procedure.

6.2.2 Matching Condition Nodes: Conflict

Two conditions conflict if there are any patterns that satisfy both conditions, and neither
condition is a generalization of the other. There are two ways in which two conditions,
C and D, can conflict. The first is that some nodes of condition C' are more general
than the corresponding nodes of condition D and other nodes are less general than
their corresponding nodes in D. For example, the condition [anywhere contact 90°]
conflicts with the condition [at: (0,0) any-contact-dir] NODDY can test for this
type of conflict readily by comparing the nodes as in the previous section, and comparing
the results for each pair of nodes.

Two conditions can also conflict if any pair of corresponding nodes conflict. For
example, [circle:|(z,y) — (0,0)] < 2] conflicts with [circle:]|(z,y) — (1,0)] < 2] since
the two circles overlap. Checking for this type of conflict is more complicated, and would
require a sophisticated algebraic or geometric reasoner to cope with the general case.
However, NODDY can cope with many cases by using information in the templates.

NODDY first checks that neither of the nodes (A and B) includes the other. If the
templates (T4 and T'g) of the two nodes are the same, the template may have a predicate
for determining when two instances of the template conflict, which can be applied to the
two nodes. T4 may also have a predicate for determining when an instance of T4 conflicts
with an instance of Tz (though there are no such predicates in the current templates for
the robot domain). If there is a template T which is a conjunctive derivative of both
T4 and Tg, NODDY can form an instance of T using the parameters of the two nodes.
If this new node is a consistent instance of Tec, then the two nodes have a common

specialization, and therefore conflict.

If none of these methods are available, NODDY checks whether any of the past values
of A are covered by B and whether any of the past values of B are covered by A. If
either is the case, the nodes conflict (see figure 6-3). If neither node includes any of the
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circle rectangle

r

— — Figure 6-3 Determining Conflicts between Condition Nodes — —

Conflicting circle and rectangle nodes. The ¢’s are the past values of the circle node—the
positions that the circle accounts for—and the #’s are the past values of the rectangle
node. Each node covers one of the past values of the other node, therefore the nodes
conflict, and the condition matcher must find new conditions that cover the same past
values without conflicting,

past values of the other node, NODDY assumes, for lack of information, that the nodes
do not conflict. There may, in fact, be an intersection of the conditions, but none of the
pattern values NODDY has seen so far have occurred in the intersection region. This
means that NODDY may leave a nondeterministic fork in the procedure without realizing
it, but this is not disastrous since it may be that there will never be a pattern value in
the intersection of the nodes, in which case the nodes are effectively disjoint, or a future
example may include a distinguishing pattern value, in which case NODDY will discover

the conflict, and will fix the fork.

When there is a conflict, NODDY checks that none of the past values of A are
identical to any of the past values of B. As long as the past values are all distinct, the
condition generalizer may resolve ille conflict by finding new conditions. If any past value
of A is identical to a past value of B, then the conflict is a more radical conflict: there is
at least one pattern value that both conditions must cover. This means that each of the
branches have been taken in the past with exactly the same pattern and it is not possible

to construct a predicate on the patterns that will distinguish the two branches. NODDY

128




Chapter 6

is not able to resolve such conflicts currently.

6.3 Generalizing Patterns and Conditions

When the structure matcher is trying to merge two events, and the conditions do not match
perfectly, or when there is a conflict between the branch conditions of a fork, the structure
matcher will invoke the condition matcher with the conditions and ask for a generalization
that resolves the difference or the conflict. The search strategy of the condition matcher is
to look for the most specific instance of the simplest condition that accounts for the data,
if there is an unambiguous choice, and to abandon the search and wait for more data if

there are several equally good choices.

There are two levels to the condition generalization. The first level, which is essentially
trivial, is invoked with positive data only. That is, the structure matcher hands the condition
matcher a pair of conditions and asks for a generalization of them. The second level is
invoked with both positive and negative data so that the condition matcher must find a
generalization of the positive data that excludes the negative data.

Both levels match the components of the conditions independently, and do not attempt
to generalize components which already match (whether equal or one including the other).

The rest of this section will speak as if the condition had only one component.

6.3.1  First Level Condition Generalization

The simplest condition is the always-satisfied condition—[anywhere] for the position
component—which will account for any set of positive data. Therefore the first level

generalization always returns the always-satisfied condition.

This means that the condition matcher can- always find a generalization of two condi-
tions, and, therefore, the conditions do not constrain the pairing of events at all during

the propagation and grouping stages—all the constraint comes from the actions.

There are two problems with the current implementation of NODDY. The first is
that the structure matcher is not sufficiently sophisticated during the grouping stage to
distinguish between two groups of conditions: those that can be generalized to the
always-satisfied condition because they are not branch conditions and do not have to be
disjoint from anything: and those that arc branch conditions, and cannot be so generalized

without introducing conflicts with the other branch conditions. Section 4.4.1 described
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this problem in more detail and outlined how NODDY should be modified. In particular,
the structure matcher should hand the condition matcher a list of positive examples and

negative examples when generalizing branch conditions.

In the current implementation of NODDY, the condition matcher tries to guess when
the condition might be a branch condition that should not be generalized to the always-
satisfied condition and do a more conservative generalization. This heuristic is not reliable,
but when it guesses wrongly, the only result is that the resulting procedure may be less

general than it needs to be.

When matching a generalized condition (other than the always-satisfied condition)
to a primitive pattern that is not covered by the condition, NODDY assumes that the
condition is a branch condition because the only reason for a generalized condition not
being the always satisfied condition is that it would conflict with other branch conditions.
NODDY guesses that the primitive pattern is not one of the branch conditions in conflict
with the other condition, and therefore assumes that it should not generalize the condition
to the always-satisfied condition, and, instead, searches for a more general instance of
the same template that includes the primitive pattern. For example, if the condition
were [vert-strip:2<z<5) and the primitive pattern were [at: (6,3)], NODDY would
construct the more general [vert-strip:2 <z <6] which is the most specific instance of
the VERT-STRIP template that accounts for the data.

This is consistent with the general search method because NODDY can assume that
there are no simpler templates that would account for the data without causing conflicts
with the other branch conditions. This generalization does not guarantee that the branch
conditions will remaih disjoint, since a more complex template may be necessary to
acccmmodate the new pattern without conflicts, but there is a chance that it does, and
the second level condition generalization will always have to do less work to resolve any
remaining conflicts than if the first level had simply generalized to the always-satisfied

condition.

The second problem with the first level condition generalization is that the current
representation of pattern components that may have null values (e.g., the contact direction
component, which is null when the robot is not in contact with anything) does not allow
the representation of a condition that is satisfied by a pattern of any value or a null
value. This means, for example, that NODDY cannot currently find a gencralization

of the conditions [at:(1,1)] and [at: (1,1) contact: 30°] becausc there is no way of
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representing an any-or-null-contact-direction node. The effect of this on the
TURTLE procedure (see figure 1-11) would be that if there were an obstacle at the final
position in any trace, NODDY would have to construct a proéedure with two separate
stopping conditions—one that stopped at (0,0) with no contact and one that stopped at
(0,0) and any contact. A future version of NODDY could resolve this issue either by
representing null pattern components explicitly or by extending the matcher to deal with
implicit null pattern components correctly.

6.3.2 Second Level Condition Generalization

The second level condition generalization always has negative data, as well as the posi-
tive data. The action generalization did not require negative data because the determinacy
constraint restricted the space of possible generalizations sufficiently. There is no such
determinacy constraint on conditions, so the negative data is essential for constraining the

candidate generalizations sufficiently to make an unambiguous choice.

When branch conditions of a fork conflict, the structure matcher invokes the condition
matcher on the conditions involved in a conflict. The reason a conflict arises is that
NODDY made an inadequate generalization at some earlier stage. In particular, some
of the conditions are more general than they should be, so the condition matcher must
backtrack in generalization space to find alternative generalizations that will not cause
conflicts. Each condition is always the most specific instance of its template that covers the
data, so it will not be possible to simply replace the conditions by more specific instances
of the same templates. Rather, NODDY will have to find instances of more complex

templates.

The structure matcher invokes the condition matcher separately on each condition
involved in a conflict. Along with the condition, which we will refer to as the current
condition, it also hands the condition matcher a list of all the other branch conditions
with which the current condition conflicts—the conflict conditions. The task of the second

level condition generalization is to find a new generalized condition to replace the current
condition that covers all the past values of the current condition, but does not conflict

with the other conditions.

The condition matcher does a breadth first search through the space of templates
ordered by their complexity, starting at the template of the current condition. At cach

complexity level, there will be a set of candidate templates. For cach candidate template, it
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will construct the most specific instance that covers the same data as the current condition
(i.e., the past values of the current condition). It then rejects as inconsistent any of these
new nodes that conflict with any of the conflict conditions, and rejects as redundant any
that are a generalization of any other candidate. If there is just one remaining new node,
this is the new condition, because it is unambiguously the most specific instance of the
simplest template that accounts for the data. If there is more than one remaining new
node, then the choice is ambiguous, so NODDY abandons the search and waits for more
data. If there are no consistent new nodes, the search proceeds to the next complexity

level.

The condition matcher need not consider all the templates in the same layer as
the template of the current condition (the current template)—it need only consider the
templates that are conjunctive derivatives of the current template, This is because the
current template was the only template of its complexity that could satisfy the previous
data, so that conjunctive derivatives of its neighbours alone could not satisfy the new data.
If none of the conjunctive derivatives of the current condition satisfy the new data, the
condition matcher searches in the next layer, which is unrelated to the current condition.
For example, if the current template is upper-half-plane, the lower-half-plane,
left-half-plane and right-half-plane must have been rejected as not satisfying
the data on which the current condition was based. Therefore, there is no need to consider
the the VERTICAL-STRIP template as a candidate for the new condition, because it could
not satisfy the old data, and therefore, not the new data either. The candidates that
the condition matcher would consider from this layer would be horizontal-strip and
rectangle because these are both conjunctive derivatives of upper-half-plane

In terms of the generality ordering on conditions, this search method is actually
backtracking from the current condition and choosing a more complex condition to
explain the new data. However, because of the structure of the ordering on the templates,
the search method looks as though it is overgeneralizing then specializing, until it cannot
specialize any more. It will then make a new jump in generality space, corresponding to

stepping to a new layer in the complexity ordering.
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Generalization Principles

This chapter discusses several key ideas that underlie the design of NODDY. Although
NODDY is concerned with acquisition from examples, these ideas apply to any task which
involves matching or generalizing descriptions. The difference between matching and
generalizing is one of emphasis, rather than essence: Matching is concerned with finding
a measure of the similarity of two descriptions, and perhaps determining their differences
also. If the descriptions have structure, a matcher may also produce a correspondence
between the parts of the descriptions. Generalization, on the other hand, is concerned with
producing a description which captures all the similarities of the descriptions and ignores
the differences. A matcher, therefore, must at least implicitly construct a generalization of
the descriptions, and a generalizer must determine how well the two descriptions match,
even if it does not place some measure on the goodness of the match. Therefore, the
following ideas apply equally well to a task centered on matching, such as reasoning or
learning from analogy, or a task centered on generalization, such as acquiring procedures

from examples.

The first key idea is the principle of exploiting the constraints of the domain. This is
a standard technique in Al, but it instructive to examine just how effective it can be in a
learning task. The second key idea is a set of three constructive generalization techniques.
The third key idea is the principle of using justification to limit generalization, This is the

most significant principle arising out of NODDY.

7.1 Exploiting Constraints

It is generally aécepted that a very powerful technique for solving many different problems
is to determine the constraints inherent in the problem domain and construct a solution
built around those constraints. (A classic example of the power of this technique was
Waltz's line drawing program. By analyzing the constraints on line drawings representing
real objects, Waltz was able to devise a simple algorithm that exploited the constraints to

interpret line drawings.)

Exploiting domain constraints is especially important for tasks involving generalization

since gencralization itself is usually underconstrained. Acquisition tasks which must
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generalize from positive instances only are particularly underconstrained, and one must

provide very strong constraints on the possible generalizations to acquire anything.

Angluin, [1980] and Berwick, [1982], among others, have explored this question from
a formal perspective in the area of language acquisition. They have shown that if the set
of candidate grammars is constrained to satisfy a certain condition, then one can acquire a
grammar from positive examples only just by choosing the most specific grammar consistent

with the examples.

This degree of constraint, though obviously desirable, is not available in all domains,
and a learning system must exploit less constraining constraints in different ways. NODDY
illustrates at least three ways in which a learning system can exploit domain based
constraints:

(a) Reduce the space of possible generalizations;
(b) Construct negative examples out of positive examples;
(c) Guide a structure matching process to eliminate combinatorial explosion.

7.1.1  Reducing the Generalization Space

If the major problem of generalization is how to choose between alternative candidates,
then any reduction of set of candidates will make the choice easier. The choice become
trivial if the set of candidates can be reduced to a single candidate or to a set of candidates
which can be ordered by generality such that there is just one most specific candidate.

The constraints on natural language that Berwick [1982] exploited in constructing
LParsifal were able to reduce the candidate rules to a single most specific rule in most

cases.

The constraints on procedures are not as tight as those on the syntactic structures of
natural language, and NODDY cannot exploit them quite as simply. However, determinacy
constrains the space of generalized actions very considerably. The effect is that, when there
are any at all, there is usually only one most specific generalization of a set of actions,
and frequently there are no generalizations at all. This is in sharp contrast to generalizing
conditions where there is always a generalization of any set of patterns, and there may be

very many most specific candidate generalizations.

The determinacy constraint eliminates generalized actions that cannot be expressed
either as a primitive action whose parameters are a function of a previous pattern, or as a
primitive action whose guard condition is a generalization of the features of the domain
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that are specified to be monitorable.

NODDY is critically dependent upon this constraint. Although the structure matcher
chooses candidate pairs of events on the basis of the contextual justification, this is not
sufficient evidence to guarantee that the events should be merged. The event matcher must
provide further justification for merging them by finding a generalization of the events, If
there were a generalization of any pair of actions, then any two events could be matched,
and the new procedure would degenerate to a single loop containing one very general
event. The determinacy constraint prevents this.

7.1.2 Constructing Negative Examples

There is no analogous constraint on conditions to restrict the space of candidate conditions,
and so there are many possible generalizations of a set of patterns. NODDY resorts to a
simplicity ordering on the space of conditions to govern the choice between candidates.
But even this is not sufficient—any set of patterns has a generalization which is also
the simplest condition, namely, the always satisfied condition. To find any more useful

condition, -the generalizer must have positive and negative examples.

A similar problem will arise in any domain where there is insufficient constraint to
create a narrow generality ordering on the generalization space and there are simple, very
general, generalizations. If the environment or the teacher do not provide any negative
examples, the matcher/generalizer must create its own. When the problem arises for
elements in structured descriptions, one method of creating negative examples is to exploit -

constraints on groups of the elements.

In the procedure domain, the determinacy constraint requires that not only each
action, but also the choice at each fork be deterministic. This is a constraint on the group
of branch conditions of the fork, which requires that each pair of conditions be disjoint.*
Therefore, when it is trying to construct a branch condition, NODDY can exploit this
constraint by using the patterns corresponding to the other branch conditions as negative
examples for the condition it is constructing. With these negative examples, and the
ordering discussed later, NODDY is able to find an unambiguously best choice from

* Actually, NODDY allows one condition to be a strict generalization of the other. 1t
satisfies the determinacy constraint by assuming that the more gencral condition contains an iniplicit
exception clause corresponding to the more specific condition. With the exception clause, the
conditions are actually disjoint, and the conditions are simpler than if the exception clause were
made cxplicit.
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among the candidate conditions.

In general, any constraint on groups of elements of a structured description can
constrain the generalization of those elements. If the constraint can be construed as
requiring the elements in the group to be disjoint in some sense, then the constraint can

generate negative examples for generalizing the elements,

7.1.3  Guiding Structure Matching

A third way that a matcher/learner can exploit constraints is in the matching of structured
descriptions. A central problem with matching two structured descriptions is to determine
the appropriate pairing of the nodes of the descriptions. There are exponentially many
possible pairings, so it would be very expensive, computationally, to consider cach possible
pairing.

If there is some constraint on the descriptions such that there are “important” relations
in the description which provide a “skeletal structure” to the descriptions, the structure
matcher can exploit these relations to guide the choice of pairings. The succeeder relations
in procedures imposé a very tight structure on the events of a procedure, which NODDY
exploits by tracing along the succeeder relations from paired events (o find other candidate
pairs.

Winston [1980] uses in the same principle in constructing analogies, where the cause
relation provides the “skeletal structure” to guide the pairing of nodes. The cause relation
not only suggests pairs of nodes to match, but also sclects the important nodes out of
the description—the nodes not involved in cause relations are assumed to be of secondary
importance, and the structure matcher does not pair them until it has paired as many of
the nodes involved in cause relations as possible. Gentner [1983] argues that any higher
order relations—relations between relations—could play this role, at least for analogical

matching,

7.2 Constructive Generalization Methods

The ways of generalizing a description depend on the nature of the representation languages
of the description and the generalizations. Michalski [1983] gives several generalization
methods for a variety of cases in which the representation language for the gencralizations
is either identical to, or just a small superset of the representation language of the

descriptions.
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NODDY embodies three generalization methods which produce generalizations in
a representation that has significant components not present in the descriptions being
generalized. The first involves inferring groups in structured descriptions, the second
involves inferring relations between nodes in structured descriptions, and the third involves

generalizing parameterized objects.

7.2.1 Inferring Groups in Structured Descriptions

Groups are a very powerful representational device for structured descriptions. For
example, without some type of group it is impossible to construct the general description
of the class of tables with 1-6 legs, since one must be able to talk about the group of legs
in order to talk about its cardinality.

Acquiring structured descriptions with groups poses a major problem for a learner
when the examples do not contain explicit groups. The first problem, given an example
description, (or several descriptions) is to determine the extent of the group—what items
belong to the group. For example, given a description of a table and four legs, the learner
must determine whether there is a group at all, and if so, whether it includes just two of
the legs, all of the legs, or the legs and the top. The second problem is to determine what
the typical member of the group is—is the group a group of pairs of legs (which would
ultimately exclude all tables with an odd nuraber of legs) or is it a group of single legs.
The third problem is to infer the constraints on the group, for example, a limit on the

cardinality of the group.

Groups arise in procedures in the form of iterative loops where the typical member
of the group is the sequence of events in one iteration. NODDY does not have a full
solution to the problem of finding groups. In particular, it has not addressed the issue of
finding constraints on groups (for example, the number of iterations in a counted loop),
and has only a partial solution to the problem of identifying the typical member of a

group.

The existence and extent of a group can be found from matching two examples by
allowing the matcher to pair a node in one description with more than one node in the
other description. Each set of multiple pairings will generate a group of nodes—all the
nodes paired with a single node, and all the nodes paired with them, and.... Several
groups of nodes may be combined into a single group of objects if each node of one group
of nodes is connected by the same relation to a corresponding node of the other group of
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nodes. For example, in matching an office chair with five legs against another office chair
with four legs, the matcher might construct a group of all the legs and another group of
all the casters. It would then notice that each caster is connected to a leg and construct a

group of caster-and-leg’s.

Allowing multiple pairings increases the complexity of the matching task consider-
ably* so that the matcher must use some method of controlling the matching to prevent
an inordinately expensive match. One such method is NODDY’s propagation technique
which limits the pairings to those that can be justified by the context of the evolving

match.

For finding loops, this method has a bias towards finding the largest typical member
possible, (the loop with the most events). This means that the teacher must identify
the boundary of the the intended group by presenting examples that differ by just one
element of the group (one iteration of the loop). It would be possible to eliminate this
requirement by using a simple exhaustive search to find the smallest typical element once
the boundaries of the group have been found. Assuming the number of elements in the

groups will be small, the search need not be expensive.

7.2.2  Inducing Relations

An essential component of structured descriptions is the relations between the nodes in the
description. A difficult type of generalization is inferring relations that are not explicitly
present in the input data. One class of relations are those that hold between parameterized
objects—objects whose description includes a fixed set of slots whose values are taken from
structured domains——zind can be represented by expressions applied to the parameters of

the objects.

Inducing these relations involves determining which nodes may be involved in a
relation (discussed in section 7.3) and finding the relation by searching through the space
of expressions. The expressions are built out of constants taken from the domains of the
parameters of the parameterized objects, and a set of operators that can be applied to

parameters, constants, or results of other operators.

If the set of operators is small (relative to the domains of the parameters) the space

* There are n! ways of pairing each node of an n node graph with cxactly one node of
another n node graph, but 2" ~ (n!)”/ lzn ways of pairing cach node with any number of nodes
of the other graph!
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of expressions without constants can be searched quite simply by incrementally composing
operators and expressions into more complex expressions. When the space includes
expressions with constants as well as operators, the search space becomes infinite and
cannot be searched directly. The problem of finding constants for the expressions is
another form of the “invisible objects” problem. For example, given a set of pairs of real
valued parameters (z;, y;), which all happen to be related by a linear function y; = az; +b
the values of @ and b are not present in the (z;,y;) pairs, and are therefore “invisible” to
the generalizer in the input data. To find the expression y = az + b the generalizer must
either consider all possible values for a and b (impossible if the constants are real valued),
or determine their values by some special means. It is not possible to have heuristics
for finding these “invisible” constants in all possible expressions, but one could construct

heuristics for a small set of common expressions.

NODDY addresses this problem in inferring functional relations between actions and
earlier patterns. NODDY does a breadth first search through the space of expressions by
building expressions “from both ends” of the data. It is able to find one invisible object
for each expression by exploiting the restriction that all the operators must be invertible. It
also uses the context from which the data was drawn to suggest good guesses for possible
constant values which can be used to build expressions without having to scarch the entire
domain of the constanté. This algorithm is very general, and applies equally well to
numerical and non-numerical parameters, given that the operators and their inverses can

be provided.
An alternative method of ﬁnding the invisible objects is that of Langley [1981a,b 1983]

which uses domain specific procedures for determining the values of the constants for
specific types of expressions that are known to be likely for that domain. For instance,
Langley has a heuristic that will determine whether the z; and y; are linearly related, and
if so, what the values of a and b are. Clearly, this particular procedure would not apply
to a non-numerical domain, and a different set of procedures would be needed. However,
this method can find many more invisible objects, essentially by knowing exactly where

and how to look for them.

This method of building expressions also applies to generalizing parameterized objects
by constructing expressions representing predicates on the objects. NODDY does this
kind of generalization in generalizing the branch conditions of procedures, but instead of

constructing the expressions directly, it uses the method described in the next section.
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7.2.3  Generalizing Parameterized Objects: Climbing the Template Hierarchy

Searching through expression space by building expressions incrementally is a very
general method for generalizing parameterized objects, but it is also very expensive. A
cheaper generalization method uses aihierarchy of templates representing parameterized
classes of expressions. To find a generalization of a set of parameterized objects, the
generalizer climbs the hierarchy to find a template containing an instance that is a
generalization of the objects. The templates must contain not only the parameterized
expression, but also the predicates or functions necessary for constructing an instance of
the template that is a generalization of a set of examples. The selective generalization
method of climbing an AKO hierarchy is superficially similar to this method, but the
nodes of an AKO tree are descriptions rather than templates, so computing an instance is
trivial,

NODDY uses the climb template hierarchy method for both generalizing conditions
and for the first level action generalization. There are two issues to address in using the
climb template hierarchy method: Ordering the templates and constructing the hierarchy.
For constrained domains such as actions in the robot domain, a generality ordering on the
templates is sufficient. For more complex domains, a generality ordering is not sufficient.
The next section will discuss the template ordering used in the condition generalization.

The template hierarchies in NODDY are small and were constructed by hand. Once
an ordering criteria and a language for the expressions have been established, constructing
the template hierarchy by hand is straightforward. NODDY has not addressed the issue
of constructing the hierarchy automatically. It is a relatively simple task to construct
the parameterized expression represented by the template, by building expressions out
of operators and variables, instead of operators and constants, but it is much harder to
construct the various predicates and functions based on this expression that are necessary

for actually constructing instances of the templates.
1.3 Justification

The third key principle embodied in NODDY is that of requiring justification to limit
generalization. The task of a generalizer is to find a generalization of a given set of data.

This task is underconstrained because there are always many possible generalizations of a
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given set of data. A generalizer must have some basis for either choosing one of them or

rejecting them all.*

A generalization of a set of data can be viewed as a theory of that data. A key
consideration for choosing or rejecting a theory is whether the theory is justified. Intuitively,

there are several ways in which a theory may be unjustified:

e If there are many equally good theories, an arbitrary choice of one of them would be
unjustified. For example, a group of a suitcase and a watering-can could be explained
by their both being made of plastic, both having handles, both containing stuff, both
standing on the floor, or ... Since there are so many possibilities that all seem equally
good (in the absence of any other information), there is no way to choose one over

the others.

o If the best theory is so tailorable that it could have been made to fit any similar set
of data, then the theory is unjustified by the data. For example, if the data consists
of three points, then there is a circle that can be put through those three points,
However, we have no basis for believing that the circle explains the data, since the

parameters of the circle could have been tailored to fir any three points.

To account for these intuitive perceptions of when a theory is jusﬁﬁed, we must give
a basis for the idea of the “goodness” of a theory, and an account of what justifies or does
not justify adopting a theory. We claim that these are both found in the degree to which
the data constrains a theory, and how much data a theory needs to constrain it.

7.3.1  An Ordering on Generalizations

Any theory or generalization must be described in some language which will have a set
of terms and relations and a sct of conventions for composing the terms and relations,
We can partition the space of all possible descriptions into classes based on the form of
the description—a description will belong to the class corresponding to that description
with each term or relation replaced by a formal parameter. Choosing a gencralization
involves choosing a class of descriptions, then choosing values for the parameters. The
number of parameters {(and their ypes, if they arc typed) determines how tailorable the

theory is—how many degrees of frecdom it has. In the absence of any special ordering on

* In rejecting all the possible genvralizations, the generalizer need not throw away all the
information it has gained in the process—-it could keep the partial results around to use when it
acquires more data.
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the terms, all the generalizations in the class would be considered equally good, and the
choice of a generalization from this class could not be justified unless there were sufficient
data and other information to select just one member of the class by determining the
parameters uniquely. The more degrees of freedom a class has, the more data will be
required to determine values for all the parameters, and the less the justifiability of the

member of the class.

This measure of justifiability immediately leads to an ordering on the space of general-
izations—the generalizations with few degrees of freedom, and hence high justifiability,
should occur earlier in the ordering than those gencralizations with many degrees of
freedom, and hence low justifiability. This ordering is closely related to syntactic complexity
orderings. In fact, if the degrees of freedom of a class of generalization are directly
proportional to the number of parameters in an expression (which may not be the case
in“fuzzy” non-mathematical domains), the justifiability ordering will be equivalent to a
syntactic ordering based on the number of terms in an expression. However, the motivation
is not based on syntactic complexity but on the difficulty of constructing and justifying

generalizations,

7.3.2 A Search strategy

To use this ordering for constructing a generalization of a set of data, we must define a
search strategy and also elucidate the different sources of j ustification that the strategy will

use.

The basic search strategy using this ordering is to consider each level of justifiability
in turn, starting with the highest justifiability. The search prunes the generalizations that
are not compatible with the data (or, alternately, generates the ones that are compatible).
If there is a unique generalization consistent with, and justified by the data, the search
halts with this generalization. The search will halt without an answer if there are many
possible generalizations at the current level because there is no justification for choosing
one over the other. If there are no generalizations consistent with the data in that level,

the search will proceed to the next level.

If the justification from the data and other sources can be quantified and compared to
a measure of the justifiability of the next level, it may be possible to halt the search before
proceeding to the next level when there is insufficient justification to justify any theory of
the next level. A less efficient method is to search the next level and discover that there
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is insufficient justification.

133  Sources of Justification

There are several sources of justification which are either necessary for the basic search

strategy, or which modify the strategy:

e The data: The examples, positive and negative, which the generalization must account

for.
e The context: The occasion that generated the set of data.

o Previous Theories: For incremental acquisition, the theory that explained the data
before the last bit of data was added.

There may also be additional constraints on the space of generalizations derived from

other sources of information about the particular generalization task:
e Perspective: Assumptions about what is relevant or important.

¢ Purpose: What the generalizatidn will be used for.

Data

The data is the primary justification for adopting a given theory. A prerequisite for
even considering a theory or generalization is that the theory or generalization must be
consistent with the data. If the data is just positive examples, the theory must cover all
the examples, If the theory includes both positive and negative examples, the theory must

also exclude the negative examples.

The amount of data also provides an important justification, in conjunction with the
tailorability of the theory: a set of data can only justify theories from a class if the
amount of data can completely constrain the values of the parameters of the class. For
some domains, this can be quantified very exactly as a relation between the number of

parameters of the theory and the number of data points.

For example, in fitting polynomials to sets of points on the plane, the data over-
constrains the theory when the number of data points is greater than the number of
coefficients of the polynomial (the parameters of the theory), and just constrains the theory
when the number of data points equals the number of coefficients. In this borderline
case (for example, fitting a quadratic o three points), the theory is only partially justified
because the theory could have been tailored to account for any values of the data points
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by adjusting adjusting the coefficients.

For domains other than this very precise, mathematical domain, the amount of
constraint that the data places on the theory will not be as clear cut. Even if we
just extend the set of possible curves in the curve fitting problem to include all curves
expressible as differentiable functions of z, one would now need many more than three
data points to justify a quadratic curve over a sine wave, hyperbola, efc.. Extending the
representation language to include these other curves has extended the set of terms in
the language to include not only the constant coefficients of a polynomial, but also the
operators such as addition, and raising to a power. The quadratic is now a member of a

class with more parameters, and therefore more data points are required to justify it.

In common sense domains, such as describing groups of household objects, the
representation language may be very large and the boundaries on the classes of theories
are less precise than in a formal, mathematical domain. The borderline at which a set of
data just constrains the theory is therefore more fuzzy. It is not well defined how large the
class containing the theory is, and therefore it is not well defined how much the theory
could be tailored to account for different sets of data.

Nevertheless, one can still identify cases where the data clearly does or does not
constrain the theory. For example, in most situations, 25 household objects of different
functions, sizes and materials that are all bright purple would clearly provide sufficient
constraint to justify the theory that the group consists of bright purple objects. The param- -
eters of this theory (which cannot be much more than the property being considered—the |
colour—and the value of the property—bright purple) could not have been tailored to

account for any set of 25 objects.

The borderline cases are those in which there is enough data to determine a unique
choice of values for the parameters of the theory, but the theory could have been tailored
to account for any variations in the data. There is therefore a question whether the theory
captures a real regularity of the data or whether the data is just a random set and the
class of theories was large enough to cover any random set, regardless of whether there
was a real regularity or not. In the borderline case, the generalizer must obtain additional

justification from other sources in order to justify a particular theory.

Context
The set of data does not arise in a vacuuin—there must have been somc context that
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generated the set of data. One context is that of a teacher presenting a set of examples to
the generalizer. In this case (assuming the teacher is not trying to confuse the generalizer),
the teacher guarantees that the examples have sométhing in common and therefore there
is a generalization of the examples to be found. This is justification for believing that
there is a genuine generalization of the data. A very different context arises in matching
tasks, for example, matching the current situation against many remembered situations in
a large database. In trying to match the current situation to a remembered situation, the
generalizer looks for a partial match, i.e., a generalization of the two situations. The context
then gives no guarantee that the situations will match—no justification for believing that

there is a genuine generalization to be found.

The context may also provide partial justification, between the guarantee provided
by a teacher and the uncertainty of the database task. For example, in matching two
structured descriptions, there is more justification for considering a generalization of two
nodes if all the nodes to which they are connected match well (suggesting that the two
nodes occupy the same role in the description) than if none of the nodes to which they

are connected match at all.

Justification from the context is particularly important for the cases in which the data
itself provides only borderline justification for a theory. If the context gives no additional
justification, the generaliier must assume that the theory is a spurious result of a tailorable
class of theories. If, on the other hand, the context does give justification for believing that
a genuine generalization exists, the generalizer will have sufficient justification for guessing

that the theory it has found may represent a genuine regularity to the data.

For example, if the teacher guarantees that there is a polynomial that fits a set of 3
points on the plane, the generalizer would be justified in choosing the parabola that fits
them. Of course, if there were a straight line through the points, it would have even more

justification for choosing that because the three points overconstrain the line.
Perspective

A second, very significant, type of information that the generalizer may use to justify
its choice of a generalization is the perspective from which the generalizer should view
the data. The context, as used above, is the local setting of the data, The perspective
is provided by the more global setting of the whole task and domain in which the data
arises. The perspective selects certain properties, terms, or relations in the representation

Janguage as relevant or important. This may have two effects on the generalization. By
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declaring certain properties or terms as irrelevant, the perspective will eliminate many
possible generalizations from consideration. This will simplify the generalization task by

reducing the search space, in the same way as exploiting constraints from the domain,

The second effect is to create an additional ordering criterion on the space of gener-
alizations according to the relevance or importance of the terms. properties, and relations

of the generalizations.

For example, from the perspective of putting away the items from a grocery bag, a
can of baked beans and a can of caviar are both instances of the general class of canned
items, and are quite different from a wedge of brie cheese. However, from the perspective
of preparing a meal, the property of being in a can or needing refrigeration is much less
important than the type of food, so that the brie and caviar now match best as instances

of the class of gourmet foods.

The generalizer can use this additional ordering to decide on generalizations that
could not be justified without it. In particular, if there are many generalizations of equal
justifiability that account for the déta, the data alone could not justify a choice between
them. However, the relevance ordering imposed by the perspective may distinguish one
of the generalizations as the most relevant generalization, and the géxleralizer would then

by justified in choosing it.

Purpose

One other kind of information that the generalizer may use is the purpose or function of
the generalization or theory. This may also place an ordering on the generalizations. For
example, NODDY finds generalizations of sets of patterns whose function is to be the
branch conditions of the procedure. It is important that the branch conditions at a fork
be disjoint so that the choice of which branch to take is deterministic. It is also safer for
the procedure to not specify what the robot should do in unknown circumstances than to
specify the wrong thing to do. This consideration places a preference on more specific
“conditions. Therefore, when the set of patterns will justify many possible conditions, the
gencrality ordering will justify the choice of the most specific of those conditions, if there
is just one such condition. This is the basis of the algorithm of NODDY’s condition
matcher which finds the most specific instance of the simplest template, if there is just one

such tcmplate.
Many common sense tasks share this property of placing a preference on the most

146



Chapter 7

specific condition. A monitoring task, such as looking for a particular restaurant while
driving down the street, on the other hand, may place a preference on the most general
condition if it is safer to have many false alarms than to miss a real alarm.

734 Summary

In summary, any system that generalized from examples based on the principles above

would:
e Define languageé to represent the examples and the generalizations.
e Exploit any constraints from the domain to restrict the space of valid generalizations.

e Further restrict the space, if possible, according to constraints from the perspective of
the current situation (in some domains, this might change according to the situation).

e Determine what terms/properties/relations of the representation language can be
viewed as parameters and order the generalizations into levels of justifiability according

to their number of parameters.

e Order. the generalizations within each level according to any bias from the purpose
of the generalizations (e.g., according to generality) or from the perspective (eg.,

according to relevance or importance).

o Given a set of examples, search each level of the ordered space for generalizations that
are consistent with the examples until a level with consistent generalizations is found.

e If there is a single best generalization (using the additional ordering from the purpose ‘

or perspective if appropriate), choose this generalization.

e If there is not a single best generalization, abandon the search and wait for more data
(possibly remembering the set of generalizations to guide the search when more data

is presented.
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Conclusion

8.1 Summary

This thesis addressed a task and an issue. The task was to acquire procedures from
examples, and the issue was how to constrain generalization in rich domains. The thesis
has described an implemented system called NODDY that is able to acquire procedures

from examples.

One significant feature of the procedure acquisition task is that the procedures to be
acquired have several components that are not present in the the examples: loops; forks and
branching conditions; and generalized actions involving dependencies on other components
_of the procedure. NODDY is able to infer procedures with all these components from
examples which are linear traces of an execution of the procedure and have no loops,
forks, conditions or ‘dependencies. Inferring each of these components from the traces

involves a different kind of generalization.
NODDY employs three generalization methods to infer procedures from examples:

e NODDY infers loops and forks by matching a procedure to a new trace and allowing

multiple pairings of the events of the procedure and trace. It finds the appropriate
match of the procedure and trace events by identifying a skeleton of key pairs—pairs
of events with unique positions in the procedure and trace—and propagating through
the structure of the descriptions from the skeleton to find new pairs.

e NODDY finds generalized actions involving dependencies on previous patterns by
searching a space of expressions built out of operators and constants. It uses infor-
mation about the inverses and the types of the range and arguments of an operator
to prune the search to manageable size and to find expressions involving constants

without having to search though all possible values of the constants.

e NODDY generalizes conditions (described by a condition type and a list of parameter
values) by climbing a hierarchy of templates—parameterized descriptions of families
of generalized conditions. The ordering on the templates is determined by their
justifiability. This search method enables an efficient search of a very large space of

conditions, and also provides a way of halting the search when there is insufficient
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evidence to justify any generalization.

Another significant feature of the procedure acquisition task is that a procedure must be
acquired from positive examples only. NODDY is able to acquire procedures under these
circumstances because it exploits the determinacy constraint on procedures in two ways:

e The constraint limits the search space of generalized actions to a manageable size.

e The constraint enables NODDY to construct negative examples for acquiring condi-
tions by finding groups of conditions that do not satisfy the determinacy constraint

and using elements of the group as negative examples for each other.

The key‘ new idea arising out of NODDY is the principle of justified generalization: one
should only choose a generalization of a set of data when there is sufficient justification from
the data and the context of the data to determine the choice uniquely and untailorably—
when there is only one best generalization and it could not have been tailored to fit an

arbitrary set of data.

Generalizations with many parameters are more tailorable than generalizations with
few parameters. Therefore, generalizations with many parameters require more justification
from the data. The appropriate ordering on the search space is therefore to consider the
generalizations with few tailorable parameters before those with many parameters.

The principle also provides a halting criterion by which a generalizer can determine
when to abandon a search for a generalization: search the space according to the jus-
tifiability order until there is insufficient justification from the data and the context to
justify generalizations from later in the ordering. The justification for a choice is primarily
from the data—the positive and negative examples—but the context generating the data,
the perspective determined by the task and the domain, and the purpose to which the
generalization will be put, may all provide additional justification for searching further in

the search space or for choosing one generalization over another.
8.2 Future Directions

8.2.1 Justification

One important direction for further research is to explore the application of the justified
generalization principle to other domains. In particular, it is important to consider non-
mathematical domains in which it is not as clear how one can identify the tailorable
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parameters of a description, since this is essential for determining where a generalization

should be placed in the justifiability ordering.

A related issue is determining the appropriate use of the context of a set of data to
provide additional justification for a generalization. In the procedure domain, the context
for generalizing a set of events consisted of the surrounding events that had already been
matched and generalized. This type of context would apply to any generalization task that
involved matching structured descriptions. However, it is not as clear how this context
should be used. NODDY used a simple criterion for determining what context would
justify what kind of generalization. The criterion relied on the fact that there is only one
kind of link between the events in a procedure. In other domains where the descriptions
may have many kinds of relations, the criteria for evaluating a context will be more

complicated.

8.2.2 Extensions to NODDY

Another area for future work is to extend the current version of NODDY in various
directions.. Several possibilities are:
o Enabling NODDY to construct its own template hierarchies.
e Extending the loop induction method to find counted loops as well as DO UNTIL
loops.
e Applying NODDY to procedures in other domains, both robot domains (for example,
procedures for robots with visual input), and non-robot domains (for example, procedures

for common sense tasks such as washing the dishes).

Constructing Template Hierarchies

Constructing a new template for the action or condition hierarchy involves two distinct
problems. The first problem is to construct the defining expression of the template—a
function from patterns to action parameters for an action template, and a predicate on
patterns for a condition template. The second problem is to construct the predicates and
functions associated with the template that determine the relation of instances of the new

template to instances of the same and other templates.

Constructing the defining expressions involves making explicit the generalization meth-
ods for generalizing actions and conditions, using these methods to construct generalized
actions or conditions, then parameterizing these gencralizations to obtain descriptions of

families of generalizations.
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For the action templates, the functional generalization method is already explicit in
expression building algorithm of the second level action generalization. NODDY could
create new action templates simply by parameterizing any local functions it found in
the second level action generalization. Creating action templates for guard generalization
and condition templates could be done with a modified form of the expression building

algorithm which would build expressions representing predicates on patterns.

The second problem of deriving the other predicates and functions associated with the
template is more difficult because it involves reasoning about the defining expressions. The
particular kind of reasoning would vary according to the domain. For the robot domain,

it would involve algebraic manipulation and reasoning about inequalities.

One issue to address in augmenting the hierarchies is when a template should be added.
When the hierarchies are small, they represent a bias in favour of certain “common” or
“expected” generalizations which can be found easily and require less justification than
the generalizations not in the hierarchy. Indiscriminately adding templates would remove
this advantage. It would probably be appropriate to add a new template to the hierarchy
only when instances of the template had been found to be useful in several different

procedures.

Guard Generalization

NODDY has not addressed the issue of guard generalization significantly. In a domain
with a rich representation for guarded actions (e.g., [Lozano-Perez et al. 1984]) it is
possible to express all or most of the control structure of a procedure in the guards,
eliminating the need for forks and and most loops. Such procedures are essentially plans
described by a sequence of subgoals to achieve. The guard of each action is the subgoal,

and the executor will apply the specified action until the goal is reached.

Acquiring this kind of procedure from examples will require more sophisticated
reasoning than NODDY has. In particular, it involves inferring the goal or purpose that the
teacher intended for a particular action. This will almost certainly require some knowledge
of the domain and the types of tasks that are possible in the domain. Combining the
syntactic generalization methods of NODDY with more semantic generalization methods
appropriate for inferring goals and subgoals from examples is a very interesting direction

for future research.
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Loopé

In the current version of NODDY, DO UNTIL loops “fall out” of the structure matching
algorithfn. However, this method of finding loops is dependent on carefully chosen
examples to identify the boundaries of the loop. The problem is that NODDY does not
look for groups explicitly. Future work on this problem should develop more powerful
loop generalization methods that deal with loops explicitly to overcome the limitations of

the current algorithm,

A more difficult problem is finding counted loops-—loops in which the exit condition
is the number of times around the loop rather than a condition on the input pattern. The
major problems are deciding that a loop may be a counted loop and determining what
the count depends on if it is a counted loop. This is an instance of the “invisible objects”
problem, because the count is not present in the examples, so that one must guess at both
its existence and its properties. One may be able to exploit the determinacy constraint
again to solve this problem: a loop is a candidate for being a counted loop when NODDY
is unable to construct a deterministic fork to exit the loop (the exit condition does not
appear to depend on anything in the current pattern). NODDY would then search for
some other part of the procedure on which the count could depend. The way in which it

could do this is an open question.

Interactive Procedure Acquisition

The current version of NODDY is not an interactive learner in that it does not interact
significantly with the teacher and not at all with the world. The acquisition of procedures
is a particularly good task for developing an interactive learner, because the learner can
interact very easily with the world simply by executing the procedures it has inferred
and observing the effects. This interaction could reduce the burden on the teacher of
generating all the examples, and would introduce other kinds of learning tasks, such as

learning by discovery and learning by analysis.

There are several ways in which NODDY could be turned into an interactive learner,

The following scenarios suggest some of them.
e Scenario 1: Partial Trace Generation,

The teacher leads NODDY through a task once or twice for NODDY to acquire a
basic procedure, as it does at present. The teacher then allows NODDY to execute this
procedure in several diffcrent situations. When NODDY'’s current procedure docs not
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handle some situation—the pattern it receives does not match the conditions of any of
the succeeding events—NODDY either guesses the event with the “closest” condition,
or simply waits for the teacher to take over. If NODDY makes a mistake—performs
an action when it should not have, the teacher intervenes, backs up and leads NODDY
through the task until it is back at a point that matches NODDY’s procedure.

NODDY would not have to be extended significantly to do this, since all the gener-
alization is identical, but the teacher would only have to lead NODDY through the new
parts of the traces rather than having to generate a complete trace, even when most of it

was identical to previous traces.

e Scenario 2: Ascribing Blame,

After the teacher has shown NODDY the first few examples, it attempts the task in
different situations. When the procedure does not match the situation, it either guesses the
next move or asks the teacher for help. If NODDY has made a wrong move, the teacher
tells it that it has made a mistake. If NODDY just does not know what to do next, the
teacher leads it through enough action to get it back to a part of the procedure that it
knows. If 'NODDY completes the procedure, the teacher tells NODDY whether it did it
right or not. If it was wrong, NODDY uses the trace it has just genérated as a negative
example of the procedure, to specialize the procedure so that it will not make the same

mistake again.

Using negative examples involves the very difficult problem of assigning blame—the
negative trace matches the procedure perfectly (because that is how the trace was generated)
and NODDY must determine which of the events in the procedure were wrong or too
general and should be modified so they do not match the trace. Assigning blame is an

open research question.

e Scenario 3: Goal Based Reasoning.

The most extensive extension of NODDY would be to introduce goal based reasoning
into NODDY. The teacher would again present one or two traces of the procedure.
NODDY would then analyze the examples to determine what the goal of the procedure
was. It would then generalize the procedure by reasoning backwards through the procedure
from the goal. This would involve all the components of the instructable robot described

in section 1.4.
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