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Abstract:

This thesis describes a new representation for two-dimensional round regions
called Local Rotational Symmetries. Local Rotational Symmelries are intended as
a companion to Brady's Smoothed Local Symmetry Representation for elongated
shapes. An algorithm for computing Local Rotational Symmetry representations
at multiple scales of resolution has been implemented and results of this imple-
mentation are presented. These results suggest that Local Rotational Symme-
tries provide a more robustly computable and perceptually accurate description
of round regions than previous proposed representations.

In the course of developing this representation, it has been necessary to modify
the way both Smoothed Local Symmetries and Local Rotational Symmetries are
computed. First, grey-scale image smoothing proves to be better than boundary
smoothing for creating representations at multiple scales of resolution, because
it ia more robust and it allows qualitative changes in representation between
scales. Secondly, it is proposed that shape representations at different scales of
resolution be explicitly related, so that information can be passed between scales
and computation at each scale can be kept local. Such a moedel for multi-scale
computation is desirable both to allow efficient computation and io accurately
model human perceptions.
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Chapter 1: Introduction

The goal of this thesis is to develop a computer model of how people represent
shape. People analyze sensory data, including visual images, into representations
of 2-dimensional and 3-dimensional shapes. These representations can then be
used for guiding motion planning, for practical reasoning about objects and ac-
tions, and for representing the meanings of natural language terms that refer to
objects or to aspects of the shape of ohjects. These representations are computed
extremely quickly and robustly, Most existing systems for representing shape are
a relatively poor match to human capabilities for representing shape: they cannot
be robustly computed for natural shapes, nor do they produce analyses of shapes
which match human judgements.

The starting point of this work is the Smoothed Local Symmetry represen-
tation described by Brady (1983) and Brady and Asada (1984). A Smoothed
Local Symmetry representation of a 2-dimensional shape picks out the axes of
elongated regions in the shape and produces descriptions of these regions. For
example, consider the grey-scale camera images of familiar objects shown in Fig-
ure 1 (top). Smoothed Local Symmetry representations are computed from the
boundaries of regions, rather than directly from the grey-scale image. Thus, in
order to analyze the shapes of these ohjects, we first extract the boundaries of
regions in the image, as shown in Figure 1 (bottom). Figure 2 shows the axes
found by a Smoothed Local Symmetry analysis of these figures. This analysis cre-
ates intuitively reasonable representations for elongated or pointed regions such
as the handles of the spanner wrench and the teaspoon, the pointed jaws of the
wrench, and the main axes of the gourd, the pear, the squash, and the bow] of
the teaspoon. The figure shows the axes of these regions. as well as other smaller
axes that will be removed in later analysis (see Connell 1085),

Smoothed Local Symmetry representations of an object can be computed at
coarser and finer degrees of resolution, thus capturing both the overall shape of
an object and fine details such as edge texture. Coarse-resolution versions of a
grey-scale image are obtained by repeatedly smoothing the image with a Gaussian
and sampling the result. The boundaries are then extracted from each of these
progressively smoothed versions of the original image.! For example, Figure 3
shows the original and smoothed versions of the lemon image, as well as the

' This is a change from what is described in Brady and Aszada [1984) which will be explained in
maore deiail later.
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Figure 1-1. Top: grey-scale camera images of six familiar obhjects: a spanner wrench (top left], a
gourd (middle left), a pear {bottom left). a reaspoon (middle), a squash {top right}, and a leman
(bottom right]. Bottom: Boundaries of regions in these grey-scale images These houndaries are
lecations of sharp changes in intensity found by the edge finder described by Canny (1983)



Figure 1-2. A Smoothed Local Symmetry analysiz of the images from Figere 1.1, The thick
lines are the region boundanes from the images. The thin lines are the axes of Smoasthed Locsl
Symmetry regions. Smoothed local symmetry regions include elongated regions such as the handle
of the spanner wrench and the main axes of the goord, squash, and teaspoon, and alss pointed
regions such as the end of the prar and the jaws of the spanner wrench

boundaries obtained from these images.* For a shape with fine-scale texture,
the fine-scale and coarse-scale representations may be qualitatively different. For
example, Figure 4 shows an image of an oak leaf, the region boundaries in the
image, and a Smoothed Local Symmetry analysis of the leal at two scales of
resolution, one finer and one coarser. The fine-scale analysis picks up the axes of
the lobes of the leal and the coarse-scale analysis picks up the main axis of the
leal, which is obscured by details at the fine scale.

However, the Smoothed Local Symmetry representation does not provide in-
tuitively acceptable analyses for round regions, such as the lemon and the round
ends of the gourd, pear, and squash in Figure 1. Furthermore, although it pro-

% In fact, the Smoothed Local Symmetry analyses shown in Figure 2 use boundaries from slightly
smoothed versions of the images, rather than from the original fine-scale image.



Figure 13, Top: The grey-scale image of the lemon, repeatedly smoothed with a Gaussian and
sampled. Bottom: Boundares of regions extracted from the smoothed images.



Figure 1-4, Top: a grey-scale image of an oak leal and region boundaries extracted from it by
the edge Bnder. Bottom: Smoothed Local Symmetry analysi= of the image at a fine scale and
at & coarse scale. The fine-scale analysis finds the axes of the lobes of the leaf. The coarse-scale




vides an interpretation of the ends of the wrench and the bowl of the teaspoon in
terms of an axis, it does not capture the fact that these regions can also be de-
scribed as round. without a distinguished axis. Furthermore, the Smoothed Local
Symmetry representation is unstable on such regions. Therefore, | propose a com-
panion representation, Local Hotalional Symmetries, to represent round regions
in 2-dimensional images, Later in this thesis, | will discuss detailed criteria for a
good representation of round regions and argue that Local Rotational Symmetries
are more robustly computable than other representations for round regions and

more closelv model human perceptions of shape.

I have implemented an algorithm for computing Local Rotational Symmetry
representations. Figure 5 shows the regions that found by the program for the
images in Figure 1. The program identifies the bowl of the teaspoon, the body and
round tips of the lemon, and the round ends of the spanner, the pear, the gourd,
and the squash, as well as a few round regions of spectral reflection on the spoon.
The program also finds the squarish cut-outs of the wrench and the squarish
end of the gourd, all of which are also more round than elongated. These round
regions can also be computed at a variety of scales of resolution. For example,
Figure 6 shows a grey-scale image of a cog, the region boundaries in the image,
and the Local Rotational Symmetry regions computed for this image at a fine
scale of resolution and at a coarser scale. The coarse-scale analysis represents the
overall shape of the cog as one round region (with a small round region in the
center). The fine-scale analysis finds the teeth of the cog and the small half-round

regions between them,

In the course of developing this representation for round regions, 1 have had
to re-think various aspects of the design of local symmetry representations for
shape. My implementation of Local Rotational Symmetries uses image smooth-
ing. rather than boundary smoothing to produce representations of an image at
multiple scales. This change in the smoothing method allows gualitative changes
in representatiion between scales and makes analysis of natural images more ro-
bust. Furthermore, unlike current implementations of Smoothed Local Symme-
tries, analyses at different scales of resolution are explicitly related. Information
[rom coarser scales can be used to guide analysis at finer scales, allowing the algo-
rithm for computing symmetries to be strictly local. Further, the explicit relation-
ships between scales could be used to relate symbolic representations at adjacent

scales and perhaps produce a representation of regions in an image across scales



Figare 1-5. Local Retational Symmetry amalysis of the images in Figure 1. The thin lines show
the region boundaries found in the fnest-scale version of these images. The boundary of each
round region is shown as a thicker line and selected radii from the center of the region to the
boundary are also displayed. For example, four regions are found for the teaspoon: the bowl, the
round end of the handle, and four small round regions in edges from spectral reflections on the
bowl,

analogous to the scale-space analysis of inflections in a one-dimensional signal pro-
posed by Witkin (1983). These ideas could also be applied to a re-implementation
of Smoothed Local Symmetries.

A roadmap for the rest of the thesis is as follows:

¢ In Chapter 2, I discuss what properties a shape representation should have in
order to accurately model human perceptions.

# In Chapter 3, | review the definition of a Smoothed Local Symmetry, discuss
problems with using Smoothed Local Symmetries to describe round regions,
and present the definition of a Local Rotational Symmetry. In addition to the
local geometry of symmetry regions, | discuss how to evaluate regions, choose
the perceptually best regions to describe a shape, and join disconnected pieces
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Figare 1-6. Top: a grey-scale image of a cog and the region houndaries in the image, Hottom:
Local Rotational Symmetry regions computed for the image at a fine srale and ab & coarser scale
of resolution. The coarse-gcale analysis represents the overall shape of the cog a5 one round region,
whereas the fine-scale analysiz finds the small half-round regions in the teeth of the cog. Only
some of the regions in the teeth are located, because the teeth are mear the lims of resclution of
the current implementation. The teeth toward the lower righthand edge of the cop are slightly

larger and 20 more of them have been Tound.



of boundary te form connected regions.

In Chapter 4, 1 discuss details of the implemented multi-scale algorithm for
computing Local Hotational Symmetries and presents resulis of that alge-
rithm. This chapter contains more detailled descriptions of the algorithms
used to compute LRS regions, as well as examples of program output (Section
4.7). '

In Chapter 5, | compare local symmetry representations to other shape rep-
resentations and discuss issues in representing images at & fixed scale of res-
olution. lmportant issues discussed include: how to build high-level shape
descriptions from the raw symmetry regions, why the represeniational system
should allow multiple representations for some shapes in order to be stable
and accurately model human perceptions, and whether there is a constraint
that perceptually salient regions have uniform or slowly changing color,

In Chapter 6, | discuss issues in representing an image at multiple levels of
resolution, comparing the method 1 use to previous use of multiple-scale rep-
resentations. Important issues include: alternative ways to create representa-
tions at multiple scales of resolution, how to relate representations at different
scales, why exhaustive computation at each scale should be local.

Chapter 7 is a summary and conclusion.

The Appendix contains a listing of the LISP code used in computing Local
Rotational Symmetries.



Chapter 2: Criteria for a good shape representation

The goal of this research is to model the way that humans represent shape.
When a person looks at the world, he processes the raw visual and other sensory
input extremely quickly into a form which allows him to reason about how to
interact with the world. Representations of objects are used for:

s Interpreting a scene as a set of objects, tracking the positions and form of these
objects over time, and planning motion, hand movements, eye movements
involving these objects;

e ldentification and description of objects and scenes using natural language;

s Practical reasoning about processes and the behavior of objects in the world.

By studying human behavior that is dependent on representations of objects and
scenes, we can infer properties of these representations.

| am being deliberately careful to emphasize that evidence about how humans
represent shape can only come from behavior dependent on these representations.
Modelling human behavior is different from building an algorithm to accomplish
some technically defined task, such as accurately determining the orientation of
points on an object from the shading of the object under some particular lighting
conditions, determining the 3-dimensional shape of an object from one or more
9_dimensional views, representing objects in terms of & set of mathematically
convenient primitives, e.g. ellipses. While algorithms for doing such tasks well
may be interesting in and of themselves and may serve as inspiration in building
models of human perception, they are not a solution te the problem of modelling
how humans represent the world. In modelling human behavior, one must de-
termine not only how te do the task well, but also exactly what task humans
actually do. A good example of the distinetion is to consider the terms “ellipse”
and “oval”. The mathematical definition of “ellipse™ refers to a very specific class
of 2-dimensional shapes. This class of shapes is related to, but distinct from,
the class of shapes that the (informal] Flnglis.h words “oval” and “ellipse” re-
fer to. While people apply the English words consistently to naturally eccuring
shapes, it is less clear how well they can identify instances of shapes meeting the
mathematical definition.

In using natural language and in doing practical reasoning about the world,
people divide the world up into objects and sub-objects and regions of empty



space. Objects are grouped into so-called natural kinds, classes, or types of ob-
jects, such as hammers, leaves, serrated leaves, pears, corners, round objects, The
simplest hypothesis is that the structure of this class system reflects the structure
of the representational svstem. That is, objects classified as the same tvpe of
object are represented similarly. How people classify objects can be determined
by studying how natural language words are applied, observing how people do
practical reasoning, and by directly asking people to classify objects, Factors
which seem to be important in classifying objects include shape, color, funetional
properties such as weight and flexibility, tactile properties such as smoothness,
and so forth,

This thesis will be exclusively concerned with representing shape, primarily
2-dimensional shape. Shape is a good place to start investigating ohject repre-
sentations, because many ohjects can be recognized by their shape alone, without
color or other functional information. 1T am working with 2-dimensional shapes
for several reasons. First, it is possible Lo recognize many 3-dimensional ob-
jects from 2-dimensional views or from line drawings without shading, stereo or
other direct evidence of 3-dimensional shape. This suggests that people have 2-
dimensional or augmented 2-dimensional representations of visual images which
they can relate to 3-dimensional shape models. [The 2 1/2-D Sketch described
in Marr [1982) is an example of an augmented 2-dimensional representation.)
Secondly, people can recognize and describe purely 2-dimensional shapes, such as
written letters, squares and triangles, or the shapes of flat objects such as tree
leaves. Finally, it is likely that representational techniques used for describing
2-dimensional shape perception can be extended to the 3-dimensional case. The
objects | use as examples were chosen because they have a distinetive shape which
can be well-represented with one 2-dimensional black and white picture, e.g. flat
objects such as leaves or spanner wrenches, For some of the examples shown,
this restriction means that the reader may need some context to identify the ob-
ject, For example, it is difficult or impossible to identify vegetables and fruits out
of context without color and size information, Information about 3-dimensional
shape would also help disambiguate certain of the shapes,

In order to determine what human representations of shape are like, we need
to look at how classification of objects is affected by various types of changes to
objects, how people describe ohjects, what types of objects they judge similar,
and ao forth. Human judgements and behavior allow us to infer that a shape



representation should have the following properties if it is to accurately model
human shape representations:

# It should be invariant under simple transformations (translation, changes in

size, rotation};
¢ It should be stable under noise;

s It should allow arbitrary amounts of detail to be computed and also allow

abstraction from details;
s It should be fast and robust;

e Its judgements of relative similarity, its judgemenis of relative complexity,
and its descriptions of differences between two objects should match answers

humans give:

e It should make explicit concepts such as “axes” and “centers” which occur in
human descriptions of shapes;

¢ It should represent complex objects in terms of sub-parts and the descriptions
of parts should be stable under attachment;

s It should be stable under change of 3-I} viewpaoint.

Similar criteria are an obligatory preface to most work on shape representation.
The paper to which | owe the greatest intellectual debt is Marr and Nishihara
(1978), although the way I divide up the problem is not guite compatible with
theirs. These criteria will be discussed in detail in the rest of this chapter.

I should note that this point that detailed psychological and linguistic work
would be needed to determine the fine details of human judgements and behavior.
In later chapters, I will point out places where such evidence might be useful in
refining the theories presented in this thesis. Zusne [1970) gives a survey of
relevant psychological data. However, 1 will not present much detailed formal
data, because there ig not much formal data that bears on the issues considered
in this thesis. There are several reasons behind the lack of formal data:

o Most existing formal systems for representing shape do a poor job of modelling
human capabilities, They cannot, for example, reliably recognize common
household objects such as scissors, hammers, and pears. FPlausible theories
can be distinguished from inadequate ones on the basis of coarse-scale facts
about human perceptions obtained by informal observation of human behav-
ior, linguistic data, and so forth.



¢« Much of the literature is concerned with tasks only tangentially related to
representing the shape of 2-dimensional regions, e.g. studies of the perceived
shape of subjective contours, texture perception, differences in perception of
a shape as a function of location in the visual field, and perceptual grouping.

¢ FEvidence from sources such as linguistic data often reflects factors other than
2-dimensional shape. Detailed formal analysis of such data will be difficult 10
do until we have developed a fuller theory that includes preliminary represen-
tations of 3-dimensional shape, color, function, and so forth.

e It is difficult to design meaningful psychological experiments or methods of
analyzing linguistic data except with reference to a preliminary theory which
i= precise and already an approximate match to the facts. Existing methods
for quantifying properties of shapes (see Zusne 1970, chapter 5) are crude and
mostly limited to polygons or relatively simple shapes.

e Experiments that use more general or more perceptually plausible properties
but without precisely defining them are difficult to interpret. For example,
the work presented in Biederman (unpubl.) is difficult to relate to issues of
processing real images because the theory of perception on which it is based
is too vague.

The goal of this thesis is to develop a theory of shape representations which
matches human perceptions sufficiently well that detailed experimental testing
and refinement is appropriate.

2.1. Invariance under simple transformations

The size of an object and its orientation and location in the visual field should
be represented independently from other features of the shape. This is needed
for several reasons. First, human perceptions of shape are stable under small
changes in size, orientation, and location. Secondly, although relative size, orien-
tation, and location of objects within a scene or sub-objects within an object can
be important in classification of the scene or object, absolute size, orientation, or
location of an object in space or in the visual field is generally not important.
Finally, natural language contains specific terms for describing size, orientation,
and relative location. Words describing other aspects of shape are largely inde-
pendent of changes in these parameters. All of these facts suggest that regions are



represented by size, orientation, and location parameters, plus a shape description
which is invariant under changes in these parameters,

Relative size, location, and orientation of sub-parts within an object or of
objects within an arrangement can be extremely important perceptually. For
example, the fact that the ends of the wings of an airplane are attached to its
body is crucial in identifying it as an airplane. Although the size and orientation
of the wings relative to the body can vary somewhat, they must be within a fixed
range for the object as a whole to look like an airplane (cf. Brooks 1981 and
Connell 1985). Similarly, in order for a set of people to be said to be “standing
in a straight line”, they must meet criteria on the location of each person relative
io the other people.

Changes in the absolute size, location, and orientation of an object or set of
objects are rarely important in classifying the object or scene. Changes can occur
hetween different views of the same object, as one moves closer to an object or
the ebject is rotated around the line of sight and this does not generally affect a
hurman's identification of the object. Further, even from a constant viewpoint, two
different objects of the same natural class (e.g. two objects that would be labelled
with the same natural language word) may differ in size, location, and orientation.
The main exception to this is that some recognition and labelling processes are
sensitive to large differences in orientation. For example, squares and diamonds
are distinguished by their orientation. Alse, some objects and scenes are difficult
to recognize when upside down. However, these exceptions are minor compared
to the general pattern of separation of size, location, and orientation from shape

properties,

2.2. Stability under noise

Human perception of object shape seems not to be affected much by noise or
clutter in the visual image. There are a variety of sources of noise. First, there
may be clutter or texture or color patterns in, on, or around the objects them-
selves., Secondly, there may be noise or other types of degradation in the visual
image of the scene. This occurs most conspicuously in laboratory experiments on
perception and in images transmitted by media such as television.

Human perception of shape also seems to be relatively robust in the presence
of small imperfections in region boundaries. These include small gaps, two parallel
bhoundary curves instead of one, and small spurs off the sides of boundaries. Such



imperfections occur in output from the edge finder used in our analyses of images
and could in that context be viewed as indicating problems with the edge finder.
However, such imperfections also cceur in line drawings of objects produced by
people and do not cause drastic changes in the perception of shapes of regions
in these drawings. Thus, whether or not the edge finder could be improved,
shape representation algorithms must not be sensitive to such types of small
imperfections in boundaries. Small imperfections in boundaries should be noted
in detailed representations of a shape, but they should not be allowed to cause
large disruptions in the overall representation.

2.3. Abstraction from detail

The representations humans create for objects or scenes seem to allow one
to represent arbitrary amount of detail. There do not seem to be any classes of
shapes that cannot be distinguished if sufficiently detailed processing is done. At
the same time, the representations allow one to abstract away detail when it is
unnecessary. There are a variety of tvpes of detail that need to be abstracted
away from:

* Features and noise much smaller than the overall shape of a region;
« Texture covering a region;

 Clutter of approximately the same size as the region, such as an internal color
boundary dividing a region into two pieces.

When people abstract away detail, the abstracted representations may be
qualitatively different from the detailed representations. Good examples of this
occur in practical reasoning. Reasoning about the behavior of a complex object
is often done by reasoning about an abstracted representation of the object. For
example, a detailed representation of a hammaock is that it is a regular mesh of
cords. An abstracted representation of a hammock might be that it is a thin
sheet. Using the flat sheet representation, people can reason about the behavior
ol a hammeock under applied forces such as a person lying on it. Reasoning about
the behavior of a hammock directly from the physics of the mesh representation
is much more difficult: people who are quite familiar with a hammock and can
easily predict its overall behavior may be unable to explain how the mesh succeeds
in staying uniform and locally planar and why the mesh does not loosen up and

create big holes.



When an object has both a relatively detailed representation and an abstracted
representation, these representations seem to be related. That is, features in one
representation are matched with the corresponding features (if any) in the other
representation, so that facts deduced about one representation can be converted
into facts about the other representation.

2.4. Speed of computation and robustness

Humans compuie representations of visual images, including the ohjects in
them, extremely quickly. The computation that is done involves some choice of
how much detail is to be represented for each part of the scene, depending on
the goals of the observer. Computation of representations of common objects
in sufficient detail to recognize them, including choice of appropriate amounts
of detail and and the recognition process itself, can be done extremely fast and
robustly, Practical reasoning about common objects can also be done rapidly.
This implies the following facts:

e Inorder for computation to be [ast, data dependencies during the computation
must be local. Otherwise computation of shape descriptions would slow down
more than linearly on large or complex images.

¢ There cannot be more than a few alternative representations computed for
any given shape. Otherwise, reasoning that uses these representations, in-
cluding identification of objects, would slow down drastically on certain types

of shapes.

I should note that T am not worrying here about small changes in processing
speed of the sort that might take detailed experimentation to discover. Rather, 1
am worried about the several order of magnitude slowdown in processing circles
relative to processing squares that would occur if circles were given as many
representations as they have diameters but squares were given one representation.
Or, to take another example, there would be a drastic slowdown on large and
complex images if processing time grew much faster than linearly in the size
and complexity of the input image. Such differences in processing time would
be blatantly obvious to casual observation and do not seem to occur in human

processing of visual input.



2.5. Relative similarity, complexity

The representation should be stable under deformations that seem “minor™
to people or which seem to have minor effects on practical reasoning about ob-
jects. The relative similarity of the representations of two objecta should match
human judgemnents of their relative similarity. The differences between the rep-
resentations of two objects should match human descriptions of their differences.
One aspecl of matching human similarity judgements is that there should not be
sudden changes in representation in the middle of what humans judge to be a
continuous smooth variation in shape [stability).

Evidence about human similarity judgments can be obtained by direct ques-
tioning or by examining what words are used to describe different types of objects
(cf. Labov 1973). Another way to get evidence on human similarity judgements
is to observe what types of objects people expect to behave similarly in practical
reasoning about objects and actions. Types of ohjects that people expect 1o be-
have similarly should be represented similarly. For example, to a human ohserver,
it is obvious that a hexagonal pencil could either roll and slide, depending on the
circumstances. Rolling and sliding involve very different aspects of the shape of
the pencil: rolling requires that the cross-section be ®close” to circular and sliding
requires that the pencil have a side that 15 “close” to flat. Thus, & pencil should
have a shape representation which is similar both te a cylinder and to a flat-sided
object, or else two representations capturing these distinct views of the pencil’s
shape.

In addition, relative complexity of the representations of two objects should
match human judgements of their relative complexity. For example, suppose
that the representational system measures complexity of shapes by counting the
number of elongated and round regions in the representation and suppose that
this is the correct measure of shape complexity for determining how long it takes
to reason aboutl objects of various shapes. In that case, circles could not have
region representations explicitly eomputed for infinitely many or even a very large
number of the possible axes of the eircle. If circles were given a complicated
representation invelving large numbers of axes, whereas rectangles and ellipses
have only one salient axis and an airplane only maybe 5-10, this would imply
that circles are drastically more complicated perceptually than the other figures.
That iz, circles would seem more much complicated to humans and would take

longer to reason about, This does not seem to be the case. IT other measures of



complexity are used, similar arguments apply, mutatis mutandis.

2.6. Axes, subparts, and other features of shapes

People use axes and widths to describe elongated shapes, centers and radii to
describe round shapes. They seem to have clear intuitions as to where centers
and axes lie. This implies that these features of shapes are psychologically real.
People refer to a region and fts boundary, explicitly recognizing both and relating
them to each other. Thus, a model of how humans represent shape should make
these notions explicit and its use of them should agree with human judgements.

People describe complex shapes in terms of subparts which are adjoined or
cut out of each other, This implies that the representations should build complex
shapes out of simpler ones and thal the subparts postulated should agree with
human judgements about subparts. The representations people use seem to be
relatively stable under attachment of other objects to the object being described.
For example, the handles of a knife, fork, and spoon from the same silverware
pattern will be perceived as similar, despite the extremely different business ends
attached to them. How much the representation of a region is disrupted by
attached parts seems to be a function of how much of the boundary of the region
is disrupted and which features of the boundary are destroyed.

2.7. Stability under change of 3-D view

The world we live in is 3-dimensional and some of our sensory data, e.g. tactile
data, directly reflect 3-dimensional situations. However, the images received by
the visual sysiem are 2-dimensional, with partial information about surface orien-
tation added by stereo matching and shape from shading. A given 3-dimensional
scene can generate extremely variable 2-dimensional images, depending on the
direction from which the scene is viewed. Changes to an image which depend on

viewpaoint include:

# csmooth deformation of regions due o rotation;
e qualitative changes in the shape of abjects due to rotation:

# ooclusion, including self-occlusion.



A human's ability to recognize objecis and to relate visual information to 3-
dimensional models of objects seems to be able to compensate for some types of
changes in view, particularly smooth deformations. Other types of changes make
the object difficult to identify, particularly qualitative changes in shape, such as
the difference between an end view and a side view of a bottle. In addition,
the human visual system seems to be able 1o compensate for changes in the
J-dimensional scene itzelf, including differences in shadows and shading due to
changes in lighting,.

In this thesis, I will avoid the difficult questions concerning the relationships
between 2-dimensional models or augmented 2-dimensional models (cf, Marr
1982] of visual scenes and 3-dimensional models of objects and scenes by only
considering 2-dimensional shapes. The objects used in examples were chosen
specifically so that the shape of the object could be well represented by a single 2-
dimensional view. Some care was taken in photographing objects to aveid shadow
and occlusion, although both effects do occur in our data.



Chapter 3: Local Symmetry Representations for Shape

This chapter reviews the Smoothed Local Symmetry representation for elon-
gated regions and presents the new Local Rotational Symmetry representation for
round regions. The primitive features extracted from an image are the boundaries
where sharp intensity changes occur. Local symmetry representations of shapes
are defined on these boundaries. Smoothed Local Symmetries provide intuitive
descriptions of elongated regions. However, they do not provide intuitively plau-
sible representations for round regions. They are also degenerate and unstable

on these regions. Therefore, a companion representation for round regions is

required.

3.1. The input representation

A black-and-white camera image of a real world scene consists of grey-level
values for all points in & bounded region of 2-space. In human visual processing,
images are interpreted as being composed of connected regions in which the grey
level changes only gradually, together with a finite set of boundary curves across
which the grey-level changes rapidly. Likewise, regions of 3-space and curves (e.g.
boundary curves) seem to he represented in terms of regions of gradual change
and boundaries where there is a sharp change. (Cf. Blake 1983a and 1983bL,
Asada and Brady 1984, Ponce and Brady 1985, Grimson and Pavlidis 1985.)
Local symmetry representations, as well as many other shape representations, are
defined on these boundaries of sharp intensity change. Note that representation
of space to a finite degree of resolution in terms of connected sets and a finite set
of boundaries is analogous to the representations of time and gualitative spaces
used in Forbus (1984) and Allen (1984). The general idea used in both vision
and practical reasoning work is that an infinitely dense reality can be represented
by a set of regions where change is smooth or continuous and a set of interesting
boundary points where change is abrupt.

It is possible that other features of a grey-scale image besides boundary lo-
cations might be used in shape description. The edge finder | use (Canny 1983)
finds boundaries by detecting peaks in a first-derivative operator convelved with
the image. This amounts 1o detecting zero-crossings of a second-derivative opera-
tor. Peaks in the output of a second-derivative operator have also been proposed
as features for analyzing images. Watlt and Morgan (to appear) argue that a



representation for changes in intensity based on second-derivative peaks is more
robust than one based on second-derivative zero-crossings. Mayhew and Frishy
(1981) present evidence from stereo that second-derivative peaks as well as zero-
crossings are used. Crowley [1982) also uses peaks, rather than zero-crossings
to detect regions and edges in grey-scale images. In addition, color of regions
seems Lo be useful in sorting out intuitive local symmetries from unintuitive ones,
though the details of how this is te be done are not well-understood [see below,
Chapter 5, Section 4).

The grey-scale input to the shape description system is dig]tizéd, so that a
scene is described by a discrete array of pixels. The output of Canny's edge finder
15 an array of similar size in which each position is marked as to whether there is an
edge there and, if 50, what the orientation of the edge is. The most straightforward
way Lo think about edge *points” is as small intervals, since they have not only
a location but also an crientation. The boundary of a region is represented by
a series of edge “points” that are connected in the 2-dimensional array. Each
edge “point” {or interval) should be thought of as an interval overlapping the
neighboring intervals in the curve. In this way, the set of edge “points® with
orientations is a discrete representation for a connected curve.

3.2. S5LS definition

The Smoothed Local Symmetry (SL3) representation for elongated shapes
(Brady 1083, Brady and Asada 1984, Heide 1984, Connell 1985) is based on
the notion of a local symmetry between two boundary points, Two boundary
points A and B (see figure 1) are said to have a local [reflectional) symmetry!
if the angle between the line AB and the outward normal at A iz the same as
the angle beltween AB and the outward normal at B. The symmetry center [C)
for such a pair of points is the midpoint of AB. Another way to describe this
situation is that the boundary around A and the boundary around B are locally
reflectionally svmmetric about the perpendicular bisector of AR In an elongated

I Brady et al. use the term “local symmetry™. 1 will add the gqualifier “reflectional® to distinguish
this type of local symmetry from *local rotational symmetries.” which T will define later in this
chapter. T will use the term “local symmetries” to refer to both types of symmetries jointly.

? MWore precisely, in an infinitely dense description, the tangents are reflections of one another
and thus the boundaries approach being reflections of one another as one considerz amaller and
emaller neighborhoods of the points A and B, Il boundaries are represented with a dizcrets
get of intervals, ie. locations with orientations, then two intervals & and B will have a local



region, a point on one side of the region and the point which is perceived as being
directly opposite it on the other side will have a local reflectional symmetry and
the midpoint of the line joining the two points will lie on the perceived axis of
the region. Current implementations of Smoothed Local Symmetries also place
constraints on the color of the regions to both sides of the boundaries involved in a
local symmetry. Since the form of the constraint used in current implementations
seems to be perceptually incorrect and it is unclear what a more correct statement
of the constraint would be, | defer discussion of it to Chapter 5.

Figure 3-1. L8 Geometry: A and B are said to have a local [reflectional] symmetry il the angle
i hetween the outward normal at A and the line AB is the same as the angle between the outward
normal at B and AB. The midpoint of AR, C, 1s the symmetry center for A and B.

A Smoothed Local Symmetry region {SLS region) is formed by grouping local
reflectional symmetry pairs and their centers into connected curves.* Thus, there
are two curves of boundary points, each containing one point from each symmetry
pair, that form the sides of the symmetry region. The centers of the symmetry

symmetry if their normals are sufficiently elose to being reflections of one another.

3 Thiz version of the definitions i= a reworked verzion of the definitions found in Brady [1983),
Brady and Asada [1984), Heide (1984), Connell [1985). While the representations of elongated
Fegions remain more of less the same as in these references, the details of the definitions than
produce these representations are rather different. This description also abstracts away from
details of the several implementations of algorithms for com puting local sy mimetries,



pairs form the ars* of the symmetry region. This axis corresponds well with
the perceived axis of the region. The line segments connecting corresponding
pairs of symmetry points are called the ribs of the region and the length of a rib
measures the local width of the region. The two-dimensional region covered hy the
symmetry region is the union of all of the ribs or, alternatively, the region bounded
by the two sides and the first and last ribs. Figure 2 shows the boundaries, region
covered, axis, and selected ribs for one symmetry region. The symmetries in a
Smoothed Local Symmetry region must progress in a consistent direction along
the axis. That is, the region cannot double back on itselfl, as illustrated in Figure 3.

The raw descriptions of a symmetry region computed from a digitized input
image give the locations of the sides and axis and the width of the region for
each of the discrete set of symmetry pairs that make up the symmetry region.
This detailed information can be summarized into symbolic representations which
describe various salient features of the region, including:

the length and curvature of the axis;
* the average width and pattern of change in the width of the region:
* the ratio of the width of the region to its length, called the “aspect ratio™;

¢ whether the region is part of the ohject being considered or part of the back-
ground (determined by the color of the the region in current implementations).

For more detailed description of descriptive parameters for SLS regions, see Con-
nell (1985) and Heide (1984). The aspect ratio of a region can be used as a
measure of how perceptually salient the region is. A region with a very high as-
pect ratio is typically not salient, whereas a region with a low aspect ratio is, as
shown in Figure 4 [Also see discussion in section 6.3 “Locality of Computation™.)

In analyzing a shape into symmetry regions, there are a number of features
that indicate where there are boundaries between regions or subregions:

* an interior color boundary;

* & sharp change in one of the parameters of the region, e.g a sharp bend in
the boundary or the axis, a sharp change in the width of the region, a sharp
change in the derivative of the width of the region;

e a minimum of width. (This criterion has been proposed but is not used in
current SLS implementations.

1 called the spine by Brady
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Figure 3-2. An SLS region with boundaries, axis, ribs, and region covered marked. The pairs of

pointz connected by ribs, e.g. a and a’, are corresponding pairs of points, ie. pairs of points with
local reflectional symmetries.

Figure 3-3. A hypothetical 818 region that doubles back on itsell. This i not allowed. The
symmetries in an SLS region must progresz in a consistent direction along the axis, Thus, the
boundary shown most be analyeed as two distinct ELS regione [a long region with an inlet cut
ont of its end).

Descriptions of a shape using symmetry regions should involve symmetry re- .
gions that are maximal given the above considerations, i.e. only break regions
when there is some reason to do so. | do not know of any iron-clad rules for
whether to break up a shape at a possible boundary. Obviously, this decision
i« partly determined by the strength of the boundary, e.g. the sharpness of a
“sharp” change in a parameter. The decision also seems to involve functional and



—
ﬂ-_

—

Figure 3-d4. Three SLS regicns with varying aspect ratios. The region on the left has a low aspect
ratio and is perceptually salient. The region on the right has a very high aspect ratic and is not
salient. The middle region is intermediate.

other high-level context. A given shape may admit of more than one plausible
analysis in terms of subparts. For more discussion of these issues, see Connell
[1985), Heide (1984), Brady and Asada (1984), and Hollerbach (1975},

In the process of describing an input shape vsing symmetry regions, the in-
tuitively best representation may invelve joining together two symmetry regions
into one longer region, by creating sections of boundary that are not in the in put
image. There are two basic considerations involved in determining how good a
joined region is:

* Fidelity to the data: the area of the join should be small compared to the areas
of the regions being joined and the lengths of the added boundaries should be
small compared to the lengths of the boundaries of the two original regions

* The combined region, including the added section, should form a good SLS
region: the added points should form good local symmetry pairs and there
should be no indication of a boundary in the join region, e.g. no sharp changes
in parameters,

There may be more than one way to cover the same region of an input shape or
scene using local symmetry regions. For example, a fat rectangle has an SLS axis
along its main axis, and another one perpendicular to it. Both regions cover the
entire area of the rectangle. A local symmetry description of a complex sh ape may



also involve combining multiple local symmetry regions, either by joining them
together or by cutting one out of another, This results in more more possibilities
for multiple descriptions of the same shape. The basic consideration involved in
building a local symmetry description is that:

s Except in the case of cutouts, a given 2-dimensional region with a given bound-

ary iz only deacribed by one local symmelry region.

Actually, this statement of the criterion is somewhat vague and possibly not
perceptually accurate, Hevising it is a topic of current research and 1 will defer
detailed discussion of it to Chapter 5 (Section 2.

Smoothed Local Symmetlry representations can be computed robustly from
input images and provide intuitive descriptions of elongated regions. For exam-
ple, Figure 5 shows the Smoothed Local Symmetry regions of an airplane figure,
computed by Brady and Asada’s (1984) implementation of Smoothed Local Sym-
metries and Connell’s (1985) analysis code,

Figure 35 The boundary of an arplane {left] and the Smoothed Local Svmmetry regions com-
puted for it by the code described in Connell {1985).

3.3, Problems with the SLS

Although Smoothed Local Symmetry regions are good representations for
elongated regions, they are not appropriaie representations lor regions which are
round, nor for half-open regions bounded by one straight side, such as background



regions extending to the edges of the image. Smoothed Local Symmetry repre-
sentations of round regions are counter-intuitive, because such regions do not
have a particular perceptually salient axis. Half-open regions do not in general
have & Smoothed Local Symmetry representation at all, because they only have
a boundary on one side. Further, in both of these cases, the Smoothed Local
Symmetry representation has an infinite degeneracy and is unstable under small
changes to the shape,

The Smoothed Local Symmetry representation is infinitely degenerate and
unstable on round regions. First, all pairs of points in a circle or partial circle
have local symmetries between them. Thus, a cirele has infinitely many distinct
SLS representations, each in terms of a different axis. It is necessary to explicitly
detect circular regions in order to avoid computing the large numbers of possible
Smoothed Local Symmetry regions within them. (Current implementations use
various heuristics to avoid computing more than a few symmetries within round
regions.] An axis-based description. such as Smoothed Local Symmetries, does
not provide perceptually appropriate representations for round regions, A round
or roundish shape does not have one perceptually salient axis. Rather, such a
shape is most naturally described in terms of a center and angle, radius location
of points on the boundary, relative to the center. Unless there is influence from
outside context, the possible local symmetry axes of a round region are not in
general perceptually salient (for details, see below, section 3.9),

The SLS representation is also unstable on regions which are close to circular.
A region which is close to circular, but not quite eircular, will in general have only
a small number of possible symmetry axes, but extremely small changes to the
shape of the region will drastically change which axes are possible. Furthermore,
in going from a circular region to one which is perceptually very close to circular,
there is a sudden change from a representation with infinitely many axes Lo one
with only one or two axes, as illustrated in Figure 6. This instability will oceur
when noise or texture is added to a circle, as well as when a circle is deformed,
e.g. into an oval.

Smoothed Local Symmetries also do not provide any representation for half-
open regions which have a single boundary that is straight or perhaps has a
shallow curve. Such regions occur when a background region or an object ex-
tends beyond the edges of the current field of view, as shown in Figure 7. David
Braunegg has also pointed out to me that in representing 3-dimensional shapes



Figure 3-6. A circle with selecied axes and two deformations of a circle, with all axes. If you
transform the oval smoothly into a circle and then smeothly into the triangular figure, there will
be a sharp change in representation as you pass through the circle,

we need some representation for regions for which we can only see one of the
bounding surfaces. Although the full model for a 3-dimensional flat object leg. a
table top) will have two bounding surfaces and the 3-D equivalent of a Smoothed
Local Symmetry region, partial models built up from one view of an object may
only have evidence for the shape of one of the bounding surfaces.

In addition to this lack of representation for half-open regions bounded by
straight lines, the Smoothed Local Symmetry representation is infinitely degen-
erate and unstable on straight lines in much the same way that it is degenerate
and unstable on circles. In an exactly straight line, every pair of points has a
local symmetry, with the boundary segments exactly perpendicular to the axis of
the eymmetry. These symmetries are not perceptually salient. Further, the SL5
representation is unstable on boundaries that are close to straight lines: small de-
viations from a straight line, due to noise or bending, will result in drastic changes
to the possible symmetries, as illustrated in Figure 8. Again, symmetries between
points in a boundary that is ¢lose to straight are not in general salient and current
implementations use various heuristics to avoid computing such symmetries.

Thus, in addition to the Smoothed Local Symmetry representation for elon-
gated regions, we need representations for round regions and for lines that are
close to straight (bounding half-planar regions). In this thesis, I will describe Lo-
cal Rotational Symmetries, a representation for round regions. (A representation
for boundaries that are close to straight will have to wait for future research.)

34, LRS definition

The Local Rotational Symmetry representation for round regions is defined in
a way parallel to the preceding definition of Smoothed Local Symmetries, with a
few modifications required by differences in the two types of symmetries. 1 first
define a rotational version of a local symmetry. A Local Rotational Symmetry
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Figure 3-7. Examples of hall-open regions: a half-open background region bounded by one siraight
side and an object extending oot of the field of view.
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Figure 3-8, A straight line and two slight deformations of the line. The bent lines ([top and
bottom) each have one SLS axiz. The straight line in the middle has either infinitely many SLS
axes or none. As one bent line is smoothly transformed into the other via the straight line, the
possible local symmetries of the figure change drastically. Thus, the 515 representation is unstahle
on stratght hines,

region can then be defined as a region bounded by a connected set of boundary
points with local symmetries around the same center.

A Smoothed Local Symmetry region is a region whose boundaries are con-



nected curves that locally form reflectional symmetries about the axis. 1 will
define a Local Rotational Symmetry region to be & region whose boundary s a
connected curve that locally forms a rotational symmetry about the center of the
region, In other words, if a section of the boundary is rotated about the center, it
“eomes close to matching” the next section of boundary. More precisely, I will say
that & boundary point has a Loecal Rotational Symmelry (LRS) to a center loca-
tion if the normal to the boundary at that point at a small angular distance from
the radivs from the boundary point to the center location, az shown in Figure 9,
This condition on the normals al boundary points guarantees that if you map a
section of the boundary onto another nearby section of boundary, each boundary
point should be displaced in a direction approximately tangent to a circle around
the center location, i.e. the mapping was approximately a rotation around the

center locatlion.

Figure 3-9. A boundary point B is said to have a local rotational symmetry about a center point
C if the angle & beiween the radius BC and the normal to the boundary at B is small.

A Local Rotational Symmetry region (LRS region) is a region bounded by
a connected curve of boundary points, each of which has a Local Hotational
Symmetry with a common center location. So, Figure 10 shows a typical LRS
region. | will refer to a line segment connecting a boundary peint to the center as
a radius, Figure 11 shows some LRS regions. Obviously, 2 circle is an LRS region.
The other regions illustrate various types of minor deformations of a circle, all of
which are perceptually more or less “round” or “not elongated”. | will allow the
bhoundary of an LRS region to be an open curve and 1 will also allow the boundary
to spiral. For example, the bump, dent, spiral, and round end shown in Figure



12 are all LRS regions. Open boundaries whose ends can plausibly be joined are
perceived as closed boundaries with gaps. However, when the ends are too far
apart, the ends are not joined, and the boundary is perceived as bounding only
a partial round region. However, the boundary should net “back up”, i.e. switch

direction of rotation, as shown in Figure 13.
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Figare 3-10. A vypical LRS region, showing the boundary and center of the region, the 2-
dimensgional region covered, and selected radii from the center to the ha undary,
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Figure 3-11. Examples of LRS regions, with the centers of the regions marked

The two-dimensional region covered by an LRS region whose boundary is
closed is obviously the region inside the boundary curve. If the boundary curve is
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Figure 3-12. Examples of open LES regions: a bump, a dent, a spiral, and the round ends of a
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Figure 3-13. An LRS region is not allowed to switch direction of rotation. Thus, each of the two
examples shown must be represented by two distingt LRE regions.

open and .dcres not spiral, the region covered is the area bounded by the boundary
curve and & straight line joining the two ends. In other words, the regipn covered
is the union of all line segments joining two of the boundary points, as shown in
Figure 10. The region covered is not the union of the radii of the LRS or the area
bounded by the boundary curve with the ends joined by a smooth curve, e.g. a
smooth interpolation of the radii. As shown in Figure 14, the regions specified by



these definitions do not match human perceptions. A spiral LRS does not bound
a region in a coherent way. For some purposes, the area of a spiral region may be
defined by closing the open end of the spiral and taking the whele interior. | am
not sure whether this is the only perceptually reasonable definition of Lhe Tegion
bounded by a spiral.
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Figure 3-14. The left-hand example shows the region bounded by a partial round boundary plus
i smooth join of its ends. The middle and right-hand figures show the regions obtained using tle
unicn of the radii of a partial round region. Neither of these definitions matches the perceived
area of a partial round TEg .

In a Smoothed Local Symmetry region it is possible to require that the normals
at each pair of correspending points be exactly reflections of one another in the
theoretical dense model. In real data, seme allowance for noise and digitization
error is required, perhaps 5-10 degrees. However, in a round region, it is not
possible to require the normals to be exactly the same as the radii to the center,
even allowing for noise and digitization. Maest of the points on the boundary of a
region that seems intuitively “round” have normals closely aligned with the radii,
but a few points can be relatively far from perfect symmetries, as shown in in
Figure 15. In beth types of symmetries, good regions have both long boundaries
and symmetries that are close to exact. In a Smoothed Local Symmetry region,
since a symmetry center is only shared by two points, these two desirata are
relatively independent. In a Local Rotational Symmetry region, since the center
15 shared by a large number of points, an optimal solution invelves a compromise
between increased length and increased divergence,

Since closed LRS regions can contain points with non-exact local symmeLries
and since the boundaries of round regions can be open, it requires no extra ma-
chinery to allow the LRS representation to handle spirals. In fact, it would require
extra machinery in the theory to forbid them. The difference between a spiral



Figure 3-15. Individual points on a round region can have normals that are relatively Far from
being aligned with the radius to the center, For example, the angle o hetween Lhe normal at I
and the radins BC i= about 40 degrees

and a round region of more or less constant radius is anzlogous to the difference
between pointed SLS regions and more elongated ones. Both spirals and round
regions are intuitively described in terms of a center and radii from it to a con-
nected boundary. Variation in radius per se does not distinguish spirals from
round regions. The variation in radius of a perceptually round ellipse can be as
mueh as the variation in radius of a spiral, In fact, sections of a spiral whose
ends do not come close to the same angle form reasonable half-round regions. For
example, the boundary of the bump shown in Figure 12 is actually part of the
spiral shown in the same figure. A spiral could be analyzed as a set ol partial
round regions, each one extending until its ends gel close enough together that
they can be seen not to meet. However, on a regular spiral, there are infinitely
many places to break up the spiral into partial round regions and there is no

principled way to choose among them.

Spirals can occur in natural figures, e.g. a spiralled tail or a coil of rope or vine
tendril. and in line drawings. Since they do nol seem to be difficult for people to
understand, spirals should have a relatively simple shape representation. Simi-
larly, & spiral is a common way of mis-drawing a circle or an *07, as illustrated in

Figure 16. While the defect should be noticed, it seemns a perceptually small dif-



ference between basically similar figures, Spirals seem to be perceptually similar
to round regions, except that they overlap (or come close to overlapping)] the same
angle with different radii. If spirals were not allowed to be round regions, then we
would have to add a special shape representation for them. Fortunately, the hest
representation for round regions autematically provides simple descriptions of spi-
rals. Furthermore, the representations of round regions in terms of radius, angle
locations of boundary points provide the information needed to identify spirals
as special for later processing, by detecting that they cross the same angle twice.

Figure 3-18. Two spiral mis-drawings of a circle or an “0". While the diference should be noticed,
both figures seem perceptually elese to a circle and should have a representation similar to chal
of a circle.

3.5. The optimization problem

Since Local Rotational Symmetries are not exact, a given round region has, in
general, not only a plausible LRS analysis using the perceived center of the Tegion,
but also plausible LR analyses using centers near the perceived center. These
sub-optimal LRS analyses are not salient. Thus, picking out just the perceived
center of a round region requires finding loeally optimal pairs of a center and
a boundary. There can be more than one SLS analysis of a given region. For
example, Figure 17 shows two different SLS analyses of an ellipse. However,
multiple SLS analyses are generally a small set of qualitatively different analyses.
This is because Smoothed Local Symmetries are already an exact symmetry and
thus typically locally optimal.® Choosing among a discrete set of qualitatively
different alternatives is somewhat different from picking locally optimal choices
from a set of alternatives that vary smoothly,

I use several criteria in deciding how good an LRS region is:

* But seo the discussion of SLS's within region regions in Section 3.9 [below),
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s The average angular deviation between the normal at each boundary point
and the radius from the center to that boundary point should be low;

+ The region should have a long angular length;

¢ Closed boundaries are prefered to open boundaries and spirals are disfavored
compared to either.

For example, Figure 18 shows a set of ovals with increasingly bad average angular
deviation around their centers (assuming one center covering the whole boundary
in each). 1 use the average deviation rather than a threshold on individual devi-
ations, because the presence of boundary points with small deviations seems to
license some boundary points with large deviations, as in the example shown in
Figure 3-15. Figure 19 shows examples of open boundaries with varying angular
length. Note that angular length should be used rather than absolute length of
the boundary, becavse angular length is invariant under changes in the size of
the region. A low average deviation of normals within a region seems to be able
to partially compensate for a small angular length. That 1s, partial but highly
regular regions are as salient as more complete but irregular regions. Chapter 4
discusses details of exactly how regions are evaluated.

3.6. Joins and segmentation

Like the boundary of an elongated region, the boundary of a round region
may be broken up into disconnected sections by attached or occluding parts, or
by sections cut out of the region. For example, Figure 20 shows the boundary
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Figure 3-18. A set of ovals that are increasingly fattened. As the ovals are Battened, the average
angular deviation increases and the region becomes less good az & round region.

o © ¢

Figure 3-19. A #et of boundaries with increasingly small angular length, As the angular lengih
gets smaller, it seems lesz and less likely as the boundary of a round region.

of a spanner wrench. Each end of the wrench is perceived as one round region,
though the boundary of the end is broken up into two sections by the handle and
by the square cutout. In describing the round regions in such a figure, one must
join together disconnected sections of boundary to form one connected boundary.
In addition, the ends of a connected open boundary should be joined if possible.
For example, the two pieces of boundary of each round end of the spanner wrench
should be joined across both gaps to make a closed boundary.

Figure 3-0. The boundary of a spanner wrench. The boundaries of the round ends of the wrench
are broken up by ILhE attached handle and by the square cut-outs between the juws.

When the boundary of an LRS region is made up of two disconnected sections
of boundary joined together, the resulting LRS region, including the boundary



points hypothesized in the join, must meet all the normal conditions for an LRS
region. In particular, the angular deviation between the normals along the new
section of boundary and their corresponding radii to the center must be low and
the direction of rotation must stay the same for the whoele boundary. Alse, there
is an additional consideration in evaluating boundaries with joins: fidelity to the
input data. Whether the combined boundary formed by joining twe boundaries
is better than the two sepﬁ.:ral.e boundaries is a tradeoff between the increased
length and the degradation in goodness caused by adding hypothetical points,
particularly if these points also have high deviations. The situation is similar
when the ends of an open curve are joined to form a closed curve, except that
there is the additional factor that closed boundaries are more highly favored, all
other things being equal. Figure 21 shows a series of boundaries thal can be
closed with joins of similar length, but varying average deviation from normal.

Figare 3-21. A series of boundaries to be cloged. The points required to join the leftmost boundary
would all have small deviations and the join seeme good. The points required to join the right-
most boundary would have abysmal deviations and the join seems bad. The middle boundary is
intermediate.

One definition of fidelity to data would be Lo use the percentage of real points
in the joined boundary, Figure 22 shows a series of boundaries with varying per-
centages of real points. Another consideration is a more local measure of fidelity
to the data: how long the gap is compared to the lengths of the two boundaries.
The difference between these two measures occurs when the boundaries to be
joined are of very different lengths. Even though the longer boundary may be
long enough to guarantee a high percentage of good points in a combined bound-
ary, it seems that the size of the gap must also be short compared to the length of
the smaller boundary in order for the join to be perceptually good, as illustrated
in Figure 23. The current implementation uses a combination of both eriteria.
It now seems to me that local fidelity by itself may be sufficient to account for
the data. Finally, there seems to be a constraint that twoe boundary ends cannol



be joined if the gap between them is more than about 40-50 degrees: a bound-
ary with a gap larger than that seems to be perceived as a partial round region,
rather than a full round region with a gapped boundary. Figure 24 shows a series
of open boundaries with varying length gaps between the ends, illustrating that
open boundaries with long gaps are not closed. Pinning down the details of these

constraints is a matter for further research.

Figure 3-22. A series of boundaries with varying percentages of real points compared to points
that would need to be hypothesized to join them into a complete boundary. The set of boundaries
on the left, with high percentage of real points, can plausibly be joined. The set of boundaries on
the right, with a low percentage, cannol, The middle set = interm ediate.

Figure 5-2%. A series of boundaries with varying lemgth gaps compared to the length of the shorter
boundary. The join gets worse as the relative size of the gap increases. The join on the rightmost

figure does not seem plansible becanse it is too long relative to the length of the shorter boundary,
althongh the overall percentage of good points iz high.

On the other side of the coin, & sudden change in parameters of a round region,
such as a corner, is a reason for breaking up the region into sub-regions. When a
Smoothed Local Symmetry region is broken up into sub-regions, each sub-region
has the same status as any independent region. However, when a Local Rolational



Figure 3-24. A series of open boundaries with varying length gaps between the ends. The leftmaost
boundary can planeibly be closed. The rightmost boundary cannot plansibly be closed. The
middle h-:rum:'hrr iz intermediate.

Symmetry region is broken up into sub-regions, the subregions may retain the
global center of the region, even when that is not the optimal center for the
sub-region taken in isolation. For example, consider a hexagon. The corners are
salient and seem to divide the boundary of the region into subsections. However,
this division does not affect the perceptual center of the hexagon, which is the
center of the entire boundary, not the perceptual center of any of the sides in

isolation,

3.7. Resnlts and symbolic descriptions

[ have implemented an algorithm for computing locally optimal LES regions,
The details of this algorithm are described in Chapter 4 and results of this algo-
rithm on sample figures are shown in Section 4.7. For each region, the program
computes a center location and a full ordered list of boundary point locations
relative to the center. Radii from the center to boundary points and orientations
of boundary points relative to the center can be computed ex tremely quickly.

From this output, one could compute a symbolic representation of the region.
Such a description should include facts such as the following:

e Location of the center of the region;

+ Range of angles covered as one moves along the boundary (If the boundary
spirals, this includes noting which angles are duplicated and how many times.

The boundary is not parameterized by angle.);

e  Which sections of the boundary are real boundary points and which were parts

of joins;



* Whether the boundary is open or closed;
* Whether the boundary spirals;

*  Average, minimum, and maximum deviation of normals at boundary points
from corresponding radii to the center:

* Average, minimum, and maximum radius and locations of extrema in the
radius;

* Description of simple patterns of change in radius, e.g. generally increasing,
approximately constant, ratio of minimum to maximum radius;

* Locations of sharp changes in the radius.

These parameters for symbolic deseription of LRS regions are similar to the Pi-
rameters proposed for Smoothed Local Symmetry regions in Brady (1983), Brady
and Asada (1984), Heide (1984), Connell {1985), The current implementation of
Local Rotational Symmetries does not yet compute these descriptions, although
it computes some of these parameters (e.g. angle range covered) in the course of
evaluating regions.

3.8. Alternatives

My definition of Local Rotational Symmetries specilies that the crucial proper-
ties that determine when a set of curves bounds a round region about a particular
center are the connectedness of the boundary and the angular deviation between
the normal at each boundary point and the radius from the boundary point to the
center of the region. I have formulated the problem of finding perceived regions
as an optimization problem, in which optimal regions (pairs of a boundary and
a center) are determined by a compromise between low angular deviation and
long angular length of the boundary. | considered a variety of aliernative ways of
defining round regions in the course of choosing this definition. The approach |
used was to start with the properties of a circle, the round region par excellence,
and observe which of these properties were preserved in regions which peaple per-
ceive as slight deformations of a circle. In particular, methods of finding region
centers using exact constructions such as intersecting normals, prove to be too
sensitive to deformation.

Some familiar properties of a circle are:



¢ the curvature of the boundary I8 constant;
« all points on the boundary are equidistant from the center;
« the normal to the boundary at every point passes through the center;

¢ the houndary is & connected, closed curve.

The only one of these properties that holds exactly of round regions which are
not circles is the connectedness of the boundary. When pieces of the boundary of
a region are not connected in the input, it seems as if they are explicitly joined
into connected boundaries during the process of shape description.

Exact normality is very sensitive to slight deformations in a figure. For ex-
ample, in a fat ellipse or a hexagon, very few of the normals to the boundary
actually pass through the perceived center of the ellipse. Intersections of nor-
mals are even less stable and can be relatively far from the perceived center of
& nearly circular region. Furthermore, intersecting normals does not generalize
well to 3-dimensional shape models, because non-parallel lines in 3-space are nol
guaranteed to intersect. Therefore, although normality to the center is a good
indicator of the plausibility of a piece of boundary as part of a round region,
erae! normality must be relaxed. Since the shape representations should be in-
variant under changes in size, the appropriate measure of deviation from normal

is angular deviation.

Local curvature is also very sensitive to slight deformations. For example,
locally flattening a circle, e.g. to form a hexagon causes the local curvature to
vary substantially from the perceived curvature of the region as a whole. Local
curvature could be used as an additional, rough constraint on region curvature.
However, local curvature along the boundary of a region does not seem to be the
primary influence on where the perceived center of the region is.

Another possible definition of a round region would be to use some form of
equidistance of boundary points from the center. Exact equidistance is sensitive
te noise and deformation in much the same way that normality is, so any use of
equidistance must involve approximate equidistance. Equidistance, by itself, is a
poor indicator of how round a region is, At the very least, it has to be coupled
with some connectedness constraint on the boundary, in order to keep concentric
partial circles from scoring as well as an extremely circular ellipse. In fact, since
even blatantly non-circular ellipses are perceived as relatively round, it will not



work to impose a requirement of global equidistance, i.e. that all points in the
region must be approximately equidistant from the center.

The contraint that seems to best reflect human perceptions is a requirement
that poinis be locally close to equidistant from the center. Since the representation
should be size-invariant, the measure of equidistance should be normalized for the
size of the region. Given that the boundaries of regions form connected curves,
requiring that the local change in radius normalized by the radius be small is
equivalent to requiring the boundary to he approximately normal to the radius
to the center.

It is not possible to salvage any of the exact solutions by smoothing the image
or the boundaries first, at least not by using any smoothing technique that 1 am
aware of. The problem is that smoothing is only effective at removing detail that
is much higher-frequency than the feature being detected. Thus, smoothing can
remove the effects of edge texture, such as serration, and image noise. However,
smoothing to remove deformation at about the same resolution as the features
you want to detect destroys the very structure you are looking for. For example,
the round end of a pear, as in Figure 25, is typically not exactly circular, but
smoothing it enough to make it circular will also smooth it into the pointed end
of the pear. In general, if & round region is attached to other regions of similar
scale, smoothing its boundary enough to regularize deformations in the round
region will also smooth its edges into the adjacent regions. Techniques such as
the ones described in Ponce and Brady (1985) and Grimson and Pavlidis (1983) to
avoid bleeding of smoothing into adjacent regions cannot be used unless the region
boundary can be detected hefore smoothing. The boundaries of round regions
often connect smoothly to the boundaries of adjacent regions, as in a pear sh ape,
0 there is no obvious way to detect region boundaries prior to describing the
regions, Furthermore, if the boundary of the region is broken up into disconnected
sections by attachments, smoothing these sections of boundary individually will
not correct for any discrepancies between local curvature in each fragment and
the overall curvature of the whole region. A good example of this is the outline
of a lemon shown in Figure 25.

3.9. Fixing the SLS infinite degeneracy

Omne of the reasons for developing a new representation for round regions was
because Smoothed Local Symmetry representations have infinite degeneracies in



Figure 3-25 Outlines of a lemon and a pear. Smoothing the pear to elimmate deformations
in the round end will smooth the round region into the pointed end, It 12 not obvicus how to
~ eliminate thiz bleeding of smoothing across the region boundary, since there 12 no obvious marker
of the boundary lecation. In the lemon image, the region boundaries do ocour at poiats of high
curvature, which can easily be detected, However, if the two halves of the boundary of the body of
the lemon are smoothed individually, this will not correct for the cverall lattening of the region,

round regions. In addition to having a representation for these regions, we also
need to suppress Smoothed Local Symmetries within these problem regions. A
round region such as a circle has an infinite number (or a very large number in
a finite-resolution representation) of possible SLS representations. Rather than
computing all of these possiblities explicitly, we should detect these cases and
summarize the possible analyses. Such a summarization would allow one to make
one of the possible SLS analyses salient when external context provides some
means of selecting among them. For example, in the shape in Figure 26, one axis
of the round region is made salient by the fact that it is in line with the axes of

the long sections attached to the round region.

Figure 3-26, A round region attached to two elongated regions. The axiz of the circular regicn
that iz in line with the elongated regions is made salient by their presence.

Forbidding all Smoothed Local Symmetries within an LRS region does not
produce the perceptually correct type of suppression. For example, when there



15 a corner in &an LRS region, the pointy SLS describing the corner is salient,
Similarly, when an LRS region has two parallel flat sides, the SLS describing
their relationship may also be salient. Figure 27 shows examples of Lhis. Similarly,
there is a salient SLS between adjacent sides of the spiral in Figure 28, although
they form part of the same round region.

Figure 3-27. A hexagon. The Smoothed Local Symmetries i the corners [left] amd between
opposite sides (right} are salient, deapite the fact that a hexagon i= an LRS region.

Figure 3-28. A spiral. The Smoothed Local Symmetries between adjacent boundaries in the spiral
are salient, despite the fact that the spiral is an LRS region.

What distinguishes salient from non-salient Smoothed Local Symmetries, in
the absence of external context, seems to be that a Smoothed Local Symmetry
i salient if it is locally optimal. That is, if you replace one of the boundary
points of the symmetry with a point to either side of it on the boundary, the
local reflectional symmetry between these two points will be markedly further
from exact. The non-salient Smoothed Local Symmetries occur when a number
of adjacent boundary points all have close to exact symmetries with the same
opposite boundary point. Such situations can he detected during the com putation
of Smoothed Local Symmetries and these symmetries suppressed in a principled

manner,



3.10. Future work and extensions

There are several ohvious ways in which the symmetry representations pre-
sented above could be extended. First, | mentioned that Smoothed Local Symme-
iry representations have problems with straight line segments bounding hall-open
regions that are analogous to the problems with round regions. I have fixed the
problems with round regions by developing a new representation for them. Per-
haps the problems with straight lines and half-open regions could also be fixed
by developing a representation for straight line segments and the half-planes they
bound and by finding ways to detect the corresponding degeneracy during SLS
computation.

Secondly, an analog of SLS and LRS representations should be developed for
representing 3-dimensional regions of space. The obvious 3-dimensional analogs

of the 2-dimensional symmetry regions are:

» round or sphere-like regions that are locally rotational symmetries about a
point;
s elongated regions that are locally rotational symmetries about a line;

« flat regions that are locally reflectional symmetries about a surface;

o flat surfaces that divide 3-space (locally) into two open regions,

Finally, we need to develop a theory of how 2-dimensional local symmetries
are computed on non-planar 3-dimensional surfaces. For example, the outsides of
objects such as coffee mugs are often decorated with designs. These designs are
essentially 2-dimensional figures, but the surface on which they are drawn is only
locally planar. It may be possible to extend the definition of 2-dimensional local
symmetries to allow them to be defined for any surface which is close to planar

within the local area of the symmetry region.



Chapter 4: Computing local rotational symmetries

This chapter describes the details of an implemented algorithm for computing
Local Rotational Symmetry regions and shows results of Lhis algorithm on grey-
scale images of objects.

4.1. Overview

The input to the algorithm is a grey-scale image. This image is smoothed and
sampled to produce a series of finer and coarser resolution versions of the image.
Houndaries of regions are extracted from each of these images by the edge finder
described in Canny (1983). Computation of Local Rotational Symmetry regions
proceeds from coarser to finer scales. At each scale of resolution, symmetries
are computed exhaustively between all boundary points and all centers that are
within a fixed search radius of one another. Thus, the exhaustive com putation is
restricted to being local. The reasons for imposing locality on the computation
will be discussed in Section 6.3. Symmetries are also computed for centers and
boundary peints suggested by Local Rotational Symmetry regions found at the
preceding (coarser) scale. The output of the program is a set of Local Rotational
Symmetry regions at each scale of analysis.

Computation of Local Rotational Symmetries at one scale of resolution pro-
ceeds in three stages:

» For each center location (in parallel), compute a map of boundary points
around the center, showing the angular deviation lor each point;

* Compute the best regions for each center location;

¢ From among the regions computed for all center locations, choose the locally
best regions.

Since the versions of the image at different scales are sampled at a rate propor-
tional to the rate of smoothing, the entire computation is size invariant. That is,
all parameters of the computation are constants that do not depend on the scale
at which computation is being done. This computation is shown schematically in
Figure 1.

The rest of this chapter will be a detailed discussion of how LRS regions are
computed. The sel of topics to be discussed include:
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4.2. Multi-scale input

I create representations of an image at different scales of resolution by srnooth-
ing the grey-scale image and sampling it at a rate proportional to the amount of
smoothing done. {Chapter 6.1 compares this type of smoothing to other methods
of creating representations at different resolutions.) Each image is hall the area
of the next-finer one and each pixel in the coarser scale version is a weighted
average of the pixels around the corresponding location in the next finer scale
version, The rate of sampling and the size and shape of the smoothing function
uged to transform the image at one scale into the smoothed image at the next
scale are the same for all scale transitions. This is required in order that the
representation be size-invariant,

The function used for smoothing the image is a Gaussian. In the current
implementation, the Gaussian used has & o of approximately 2 pixels and is
approximated by an 11-pixel mask. The corresponding sample rate used for each
dimension is 4/2. In other words, the area of the sampled image is half the area of
the original image. The smoothing and sampling process starts with the original
input image and continues until the dimensions of the smoothed image are smaller
than the mask size. lmages whose dimensions are unequal are padded to make
them square as the smaller dimension approaches the mask size. This allows
smoothing to continue until the larger dimension is smaller than the mask size,
For detailed discussion of Gaussian convelution techniques, issues of noise, sample
rates, and aliasing, see Crowley (1982) and Canny (1983). The set of smoothed
and sampled images for a drain strainer is shown in figure 2.

From each of the smoothed grey-scale images in the sel, [ use the edge finder
described in Canny (1983) to extract the locations of sharp changes in the intensity
of the image. The output of the edge finder is a set of pixel locations at which
there is an edge, together with the orientation of the edge at that point. In the



F.isl.l.l"? 4-2. Smoothed and ‘E-I'I-m]'!'h":] .II:IJ-\.'I:QEE for a picture of & drain strainer. The E-'I.FHI!H! EFE}--:.I'.&]E
image is the original picture from the camera. Each of the other images was obtained from the
previons one by smoothing with a gaussian and sampling

current implementation, edge locations and orientations are stored in an array
of the same size as the original image and the local symmetry calculations are
done directly from this array. The edge finder returns locations where the edge
strength is above a fixed threshold, with some hysteresis to encourage connected
houndaries. It also provides information about the magnitude of the intensity
change at each edge point, but 1 do not wse this information. The edge finder
described by Canny can be run with a range of mask sizes. Since running this edge
finder with & larger mask size is equivalent to smoothing and sampling the image
and running the edge finder with a smaller mask size, the smoothing and sampling
done to create images at coarser scales achieves the same effect as changing the
mask size of the edge finder. Thus, the edge finder is run with a single fixed
mask size (B pixels). The edges for the smoothed images in Figure 2 are shown
in Figure 3.

The boundaries found by this edge finder are very high quality. Furthermore,
the boundaries are thin. That is, exactly two of the eight neighbors of an edge
location in the middle of a boundary will be marked as edge locations. Therefore,
extremely simple algorithms can be used to extract connected boundaries from
the set of edge locations. However, the boundaries from an image of an object are
not guaranieed to be simple closed curves. There may be internal color boundaries
in the image, producing 3-way joins in the edges. There may also be gaps in the
boundaries, particularly at sharp corners of regions in the grev-scale image. In

addition, boundaries may run off the edges of the image. These defects do not



Fignre 4-3. The edges extracted from the images in Figure 2 by the edge finder described in
Canny [1983) These edges represent the locations of sharp changes in intensity in the grey-scale
unage.

necessarily represent problems with the edge finder: they occur in line drawings
as well. We have not found any way to robustly resolve 3-way joins and gaps in
a way that is consistent with people’s judgements before the shapes of regions
have been described. It may eventually be possible to resolve some of the gaps
and joins in early processing, using facts about the orientation of boundaries that
meet at an intersection or come near each other at a gap. However, it is also
the case that representations of shape using smoothed local symmetries and local
rotational symmetries can be computed without first resolving all gaps and joins
and, indeed, the shape representations may provide additional information about
how gaps and joins should be resolved.

4.3. Computing local rotational symmetries

Computation of local symmetries is done for all centers and boundary points
within & fixed search radius of one another. Currently, the maximum distance
between center and boundary point is & pixel units. In other words, in order to
be detected, a round region must appear and get a good evaluation at a scale at
which it is no larger than radius 8. If the region is a full round region with a closed
boundary, this means that it will have approximately 50 points in its boundary.
Increasing the exhaustive search radius allows the program Lo find increasingly
more regions. These additional regions are regions which do not survive smooth-
ing well, such as regions whose boundaries are dizrupted by oceclusions and thin
regions such as rings and spirals. The output of the program is nol sensitive to



the exact setting of this parameter.

In addition, local symmetries are computed for pairs of centers and boundary
points suggested by regions found at the next coarser scale. Given a location im
a finer-scale image, the corresponding location in the next coarser scale image
can easily be computed. Since edges may drift somewhat between scales, my
program allows two extra pixels in each dimension for drift between two adjacent
images (i.e. 2v/Z times the sampling rate in each dimension). The amount of
drift allowed was determined by experimentation. Any edge in a corresponding
location is considered a mateh for the coarse-scale edge, regardless of orientation.
Since the LRS computation constrains the orientation of edges in LRS regions,
this simplification is not a problem. In a more general setting, orientation would
also have to be matched and more detailed figures for possible edge drift (possibly
taking into account edge strengths) might be necessary (cf. Canny 1983). For
each coarse-scale region, the sets of fine-scale locations corresponding to its center
and the set of fine-scale boundary points corresponding to its boundaries are
computed, Symmetries between these center locations and boundary points are

computed at the fine scale.

Computation of local rotational symmetries about a given center location is
done on a digitized map of boundary point locations around that center. For
each boundary peint, the algorithm computes the angular distance between the
normal to the boundary at that point and the radius from the boundary to the
center location, i.e. the amount by which this section of boundary deviates from
an exact Local Rotational Symmetry. For example, consider a center location in
the middle of an image of a lemon. Figure 4 shows the angular deviations for all
boundary points in the figure, relative to this center location. Figure 5 shows the
best connected boundary that the program computed for this center location.

Figure 6 shows the best connected regions for two other center locations in
the lemon image. How well center locations account for a region decreases slowly
as the location is moved away from the perceived center of the region. Center
locations near the perceived center of a region generate candidate regions which
have good evaluations, though not as good as regions generaled by the perceived
center. The righthand center location in the figure illustrates the fact that even
locations somewhat displaced from the perceived center of a region will generate
region descriptions similar to those generated by the perceived center. Center
locations that are far from perceived centers do not generate regions with good
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Figure 4-4. A map of angular divergences for the boundary points in a lemon Bgure, relative to
the perceived cemter location of the figure (marked with & circle). At each boundary point, [ have
shown the angular divergence divided by 10. That is, a 2 in the Ggure indicates a boundary point
with divergence between 10 and 20,

Figure 4-5 The best connected boundary computed for the center |n|:al.'l|:||'|__=.llu'n-:n in Figure 4,

evaluations, as illustrated by the lefthand center location,

In a map of boundary point locations about a center, each boundary point s
represented by its x- and y-displacement from the center. Displacement values are
used rather than pairs of angular position and radius because the displacement
values are trivial to compute from the center location and the original edge map,
whereas accurate angular position and radius values are expensive to compute.
The computations that need to be done efficiently from this data structure are:

* compute the approximate radius for a boundary point from its x- and y-



Figure 4-6. The best boundaries for two other center locations in the lemon figure. The center
locatione are marked with stars. The boundary on the right was compated for a location near the
perceived center of the Ggure and it is very similar to the boundary computed for the perceived
center. The boundary on the left was computed for a location further away from the perceived
center and has a much lower evaloation

digplacements;

e compute the approximate angular position of a boundary point about the
center from it x- and y-displacements;

s compute the angular deviation between the normal to the boundary at a given
point and the radius line from the center to that point;

s given two boundary point locations that are close in angular position [i.e.
much less than 180 degrees|, determine which point is clockwise of the other;

# given & boundary point location, retrieve nearby boundary point locations.

The angular deviation is the basic measure of rotational symmetry for a boundary
point about this center location. Ability to retrieve nearby locations is needed in
building up connected boundaries of symmetry regions with this center, Bound-
aries of LRS regions are constrained not to switch angular direction. Since it
is prohibitively expensive to compute accurate values for the angular position of
a boundary position, relative angular positions eomputed from absolute angular
positions are not reliable for points close together. Therefore, a separate opera-
tion is needed to check relative angular position during the process of building up
connected boundaries. The approximate radius and angular position values are
used for describing and evaluating regions with this center.

All of these computations can be done extremely efficiently. Calculating ac-
curate tadii and angular positions from displacements is computationally expen-
sive. However, radius and angular position for any displacement values can be



estimated using precomputed tables for locations with small displacements [cur-
rently up to 20 units of displacement in either dimension). Absolute angular
position does not need to be particularly accurate, since there is a separate op-
eration to determine relative angular position. The relative angular locations of
two points can be computed quickly by directly computing the sine of the angular
distance between them. If the x- and y-displacements of the points a and b are
@y, ay, by and by, then bray, — azb, is the sine of the angle from a o b, times
the radii from the center to both points (i.e. the magnitude of the eross product
of the vectors from the origin to @ and b). The sign of this quantity indicates
which point is clockwise of the other, assuming that the points are not close to
180 degrees apart. (There may be similarly efficient ways for determining relative
radius for points near each other.)

The majority of center locations considered were not near the centers of regions
at the previous coarser scale, so the only boundary point locations being consid-
ered are &t locations within the fixed exhaustive search radius. A small number of
center locations are the centers of coarser-scale regions and have boundary point
locations at arbitrarily large distances from the center. The data structure wsed
for this computation must allow efficient storage of boundary points for centers
with only local boundary locations, while also allowing storage of boundary points
further off for those centers that have extended computations. For any center, it
must be possible to quickly retrieve locations adjacent to a given boundary point
location, in order to be able to efficiently track connected boundaries. In the
current implementation, the map of boundary points is stored in an array plus
a list of points outside the bounds of the array. Initially, the array size is set so
that the array can hold exactly the points within the current exhaustive search
radius.” When a map is computed for a center with many points beyond this
radius, i.e. when the program found a region with this center at a coarser scale,
the size of the array is adjusted so that only few points lie outside the array.

A Local Rotational Symmetry region computed from a deviation map is rep-
resented by & center location and an ordered list of boundary point locations
going counter-clockwise around the center. This list of points includes any points
hypothesized to join disconnected seetions of boundary &nd thus points included
in the boundary are marked as “real” or “hypothesized”. Since these connected

! The current implementation uses a square search area, rather than a round one, for program-
MinE Convenkence,



houndaries are computed from the deviation maps, the boundary points are rep-
resented by x- and y-displacements [rom the center. From this representation,
symbolic descriptions of the sort described in Chapter 3 could easily be com-
puted. In fact, some of the required computation, eg. computing the range
of angles covered, must already done in order to evaluate how good a proposed

region is.

4.4. Evaluating regions

To form rotational symmetry regions from boundary points in a deviation map,
we need to gather connected curves of boundary points that form regions that
are as good as possible. The first issue involved in finding optimal regions is Lo
come up with an exact definition of how regions are to be evaluated. As described
in Chapter 3, evaluation of a connected boundary around a center involves the

following factors:

¢ D:the average of the (unsigned) distances between the normals at points along

the boundary and the corresponding radii;
e A: the angular length of the boundary, in percent of a circle;

s Classification of whether the boundary is open, closed, or spirals,

The angular length and the average deviation trade off against each other, so that
a short region with extremely small deviation and a longer region with larger devi-
ation are about equally acceptable. Experimenting with various ways of combin-
ing these factors suggested that the two factors should be related multiplicatively,
in order to encourage regions which were good on both criteria, and thatl the aver-
age deviation should be weighted somewhat less heavily than the angular length.
In order to keep spirals from having extremely high evaluations, I bounded angu-
lar length for open boundaries at 90 pereent of a full circle, so a spiral is evaluated
as if itz length is at most 324 degrees, even if it is really much longer.

Since the boundary of what is perceived as one round region may be broken
up into disconnected sections of boundary, e.g. by occlusions or attachments, the
process of gathering connected curves may involve hypothesizing new boundary
points to fill gaps in a curve. Therefore, another factor in evaluating a proposed
region is fidelity to the input data. As an estimate of fidelity, I use:



* R: the percentage of points in the curve that are real boundary points found
by the edge finder,

The current evaluation function combines this factor additively with the an-
gular length and deviation term. For a closed boundary, the evaluation is:
. 5‘% + £ (100 is the value of A, the percentage of the angular length of a full
circle for any closed boundary!).

For an open boundary, the evaluation is:

a0, A i
] %E—) T m-

The constant determining the balance between the evaluation term and the
fidelity term was determined by experimentation. In order for a region to be con-
sidered minimally acceptable, its evaluation must be over a thresheld, currently
7.0. Running the program on examples suggested that this was the approximate
location of the cut-off between regions that seemed perceptually plausible and
regions that didn’t. Regions near this cut-off seemed marginal. It must also meet
minimal requirements on angular length and deviation. Currently, the minimum
angular length is 10 percent of a circle and the maximum average deviation is 20
degrees,

In fact, there are two ways in which a boundary peint can be hypothetical,
rather than a real boundary point of the original image. First, the original image
might not have had a point at that location at all, Secondly, there might have
been a point there, but not with the orientation assumed in the boundary. In
other words, in the second case, the algorithm is assuming a boundary point
where there was one in the image, but correciing the orientation to something it
prefers. This happens frequently in the current version of the code,

In cases where the program corrects the orientation of a boundary point or
in which it hypothesizes a new boundary point at a location very close to a real
boundary point, it is not obvious how to interpret “fidelity to the input data”,
One obvious way to measure fidelity would be to say that such points are worse
than real boundary points, but better than boundary points created out of whole
cloth. Alternatively, one could say that since the program is so close to using a
real boundary point, it should be enco uraged 1o go the whole way and use the real
point unaltered. This view amounts to saying that hypothesized boundary points



are most acceptable when they are nof near real points. My impression from look-
ing at the program’s results is that this second method of evaluating hypothetical
points is perceptually correct, but this is a matter which needs more detailled in-
vestigation, The current implementation treats all hypothetical boundary points
as equally bad, without taking account of cleseness to real points.

Finally, the average deviation and the percentage of real versus hypothetical
points were computed relative Lo the length of the boundary curve. It would also
have been possible to compute them relative to the angle spanned by the boundary
curve. The difference between these two formulations will be most obvious for
regions whose boundaries spiral, o that the relationship between boundary length
and angular length changes drastically between different sections of the boundary.

Refining the methods of evaluating possible regions so that they match human
judgements is a matter for further research. Comparing the results of the current
implementation, presented in Section 4.7, to my own intuitions suggests that the
current evaluation function does not weight fidelity to data high enough. That
is, the program seems to have more of a preference than 1 do for “correcting” the
boundaries using hypothesized points, rather than following the input boundaries,
Also, in looking at the program’s analyses of oval or ellipse-type shapes, it seems
as if the relative balance between angular length and average deviation is not set
exactly right. The program analyzes some shapes as one round region when |
consider them on the borderline between & long region with round ends and one
round region. In this case, the behavior of the program is qualitatively correct,
but the point at which it switches from one type of analysis to the other is wrong.
The location of this change-over point s determined by the relative balance of the
angular length and average deviation terms in the evaluation function. Detailed
study of human perceptions of these shapes would be necessary to make the

program’s evaluations exactly match human judgements.

4.5. Building connected regions

Given a function for evaluating how good a region is, the next step is to devise
an algorithm to build optimal connected region boundaries from the points in a
deviation map. The algorithm that | will describe is the one implemented for
this thesis. This algorithm does a reasonable job of producing optimal regions,
but the technique it uses is only a heuristic. It is also likely that mathemati-

cal analysis of the problem of creating regions and finding locally optimal ones



will result in more elegant, provably correct, possibly more efficient algorithms
for computing symmetry regions. In particular, it seems that the regularization
methods discussed by Torre and Poggio (1984) or the optimization methods die
cussed by Blake [1983a, 1983b) that have been used to solve problems in low-level
vision might be applicable to the LRS optimization problem. Alternatively, it may
be possible to directly construct a provably optimal algorithm operating on the
discrete set of oriented edge locations. This is a topic for future research.

In order to explain the implemented algorithm, su ppose, for the moment, that
it was possible to use some fixed threshold on deviation from normal to decide
which boundary points should be incorporated inte the connected regions. In
this case, an algorithm deing almost the right thing would first gather maximal
connected boundaries from the points better than the threshold, and then attempt
to join the ends of these boundaries into boundaries that are as long as possible.
As described in Chapter 3, there are a variety of constraints on possible joins
between two pieces of boundary:

* The points hypothesized in joining the two pieces of boundary should have
deviations better than the deviation threshold, in order to maintain the eon-
straint that the deviations of a region are better than the threshald;

¢ i is only plausible to join two boundaries if the angular distance of the join
is below about 40-50 degrees;

* If the piece of boundary hypothesized in the join is long compared to the pieces
of boundary being joined, the percentage of the resulting boundary that is real
will be low enough to negate the advantages of joining the boundaries:

# The anguolar length of the join should be small compared to the lengths of the
boundaries. (In the current implementation, it must be less than the longer
of the two boundaries and less than three times the length of the shorter. )

Given these constraints on when two pieces of boundary can be joined, the cur-
rent implementation uses a greedy algorithm to produce the best boundaries for
a fixed deviation threshold. First, maximal connected boundaries are extracted.?
Then, the algorithm starts with the longest boundary and tries to join other sec-
tions of boundary to it, starting with the boundaries whose ends are nearest. [t
should be noted that in order to close boundaries when appropriate, one of the
candidates for joining is the other end of the longest boundary, Currently, ends

© All these boundaries go counter-clockwise around the center of the region.



are joined with a straight line segment, an approximation which is relatively crude
for large gaps. When a plausible join is found, the two boundaries are merged and
the process is repeated until either the longest boundary is closed or it cannot be
joined to anything else, at which point it is removed and the process is repeated
on the remaining set of boundaries. This algorithm will miss some possibilities
for creating boundaries. For example, the overall optimal boundary for a set of
points may invelve joining boundaries whose ends are not locally the best pair to
join and it may be made up of sections of boundary which are smaller than the

maximum connected sets of boundary points.

In fact, it is not possible to impose a fixed threshold on angular deviations., As
described in Chapter 2, the optimal boundary for a center may involve allowing
in some points with bad deviations in order to be able to join the points with low
deviations inte long boundaries. Thus, my program iterates the above algorithm
for finding regions over a series of thresholds on the angular deviation. [The cur-
rent implementation steps from 20 degrees to 50 degrees by 5 degree increments.
The candidate regions for a given center are all of the regions for all choices for
the deviation threshold. Again, this algorithm is not guaranteed to find the op-
timal region for a given center, although empirically it does a reasonable job, A
further problem with the algorithm is that it seems to be doing the same work
more than once. Specifically, when an optimal set of regions have been found
using only points ﬂmet.'mg 2 restrictive threshold on angular deviation, it seems
that it should be possible to erfend this solution when the deviation threshold is
relaxed, rather than computing the regions for this new threshold entirely from

scratch.

Trying to develop an efficient algorithm for computing provably optimal con-
nected regions is a topic of current research. As discussed in Section 3.6, the
current algorithm uses two distinet measures of fidelity to the input data: the
percentage of real boundary points in the region, which is a global measure of fi-
delity: and the length of the join between two sections of boundary relative io the
lengths of the two sections of boundary, a local measure of fidelity. It may be the
case that the local measure is sufficient to account for the perceptual data. Note
also that joins are restricted to 40-50 degrees in length. These two facts together
suggest that the process of creating connecled boundaries may be restricted to
considering enly & local window of the map of boundary points when it is creating

optimal joins. Such a restriction might make it easier to develop direct optimal



algorithms for building connected boundaries. Furthermore, this locality might
account for the preference for closed boundaries: if the algerithm only looks at
a small area around the gap between two long sections of boundary, it cannot
tell whether the far ends of these pieces of boundary are connected or not. Thus,
the same procedure that conneets two disjoint sections of boundary would also
connect twao ends of the same boundary, because it cannot distinguish the two

situations,

4.6. Non-maximum suppression

When candidate regions have heen produced for the centers in an image, the
locally optimal regions must be selected. As 1 pointed out in Chapter 2, regions
computed for centers near the perceived center of a region may be relatively good,
though worse than the best region for the perceived center. Further, for each
center, we will in general generate a number of regions which are basically similar,
except for small variations in choice of boundary points and joins. Therefore, it
15 necessary to suppress regions which are basically similar to a better region.

The important issue in suppressing sub-optimal regions is determining when
to consider two regions “basically similar”. It is not obvious what the perceplu-
ally correct definition is and 1 will discuss the matter in more detail in Section
5.3. The current implementation considers a region similar to a better region
when more than 50 percent of its boundary points are the same as the boundary
points of the better region. Note that this definition is not symmetrical in its two
arguments., Thus, a large region and a better small region, may co-exist even if
they overlap. An example of this situation would be an analysis of an oval as
one large round region co-existing with analyses of its ends as being more co-
herent half-round regions. The algorithm iteratively selects the best region from
all regions generated and removes it and all regions similar te it from the list of
regions. The end result is a pruned list of distinct optimal regions.

4.7. Examples of Output

This program has been run on over 30 images of objects or groups of objects.
The examples shown in this section were chosen to illustrate typical behavior
of the program on diverse types of shapes. They show examples it works well
on, as well as examples of the types of errors that the current implementation
makes. The reader should bear in mind that the input grey-scale images have



not been displayed at full resolution and that such images reproduce poorly.
Thus, the region boundaries shown are a better index of the input resolution
than the grev-scale images. Except where explicitly mentioned, all LRS regions
found by the program are shown, including regions generated by fine-scale clutter,
reflections, and shadows. These analyses were all done with the same setlings for
all parameters of the algorithm.

The first example, shawn in Figures 8 to 11, shows the full multi-scale analysis
of the spanner wrench image shown in Figure 7. This example illustrates what the
multi-seale LRS analysiz of a shape looks like in full gory detail. Boundary points
are drawn as open circles whose size is proportional to the amount the image has
been smoothed. (This is a graphical device for making blurred boundaries look
appropriately blurred.) When LRS regions are shown, the boundary of each LRS
region is indicated with filled circles, points hypothesized in joins are indicated by
large open circles, and the original boundary points are indicated by small open
circles. The size of these points is also propoertional to the amount of smoothing.
Selected radii from the boundary of the LRS region to its center are also shown.
As you can see, analyses vary more or less smoothly between adjacent scales, with
occasional sharp changes as new detail, such as the cut-outs in the jaws of the

wrench, becomes visible.
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The rest of the examples will only be shown at a single seale. This is generally
the finest scale to which the analysis was run, with the exception of a few figures
whose boundaries were not detected by the edge finder at the finest scale. Figures
12, 14, and 16 show grey-scale images of figures with one round or oval region,
of varying proportions. Figures 13, 15, and 17 show the LRS analyses of these

figures. For figures which are clearly one round region or clearly a long region



Figure 4-8. The boundaries of the spanner wrench image at the three coarsest scales, There Were
no good LES regions found at these scales.
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Figure 4-9. The boundaries and LRS regions of the spanner wrench at the next three scales. For
each scale, the original boundary is shown, followed by the same boundary drawn in small eircles
with the boundaries of LRS regions indicated by larger circles. Selected radii from the boundary
of the LRE region to its center are also shown. The size of circles representing boundary pointe
1= proportional to the amount the image haz been amoothed
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Figure 4-10. The boundaries and LRS regions of the spanner wrench at the next three scales, The

cutouls of the wrench have started to be large encugh and well-enough defined that they RINErEe
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Figure 4.11. The boundaries and LRS regione of the spanner wrench at the finest three scales



with two ends, the program finds the correct analysis robustly. For intermediate
figures, the program finds one or both of the analyses, but in a somewhat degraded
form, probably due to the roughness of the non-maximum suppression heuristic
used. Furthermore, the point where the program makes the change in analysis
does not quite agree with my perceptions: some of the figures it analvzes as clearly
one region seem to me to be on the borderline, e.g. the pecan in Figures 16 and
17.

A second problem, illustrated most clearly by the hexagon image, is that
the critefion for determining when one LRS region is a less good variation of
another, 50 percent overlap in boundaries, is not sufficiently robust. When there
are alternative parallel boundaries close together, or where there are many points
added by joins, two regions that are perceptually “basically the same” can fail
to have this many boundary points in common. Adding some measure of region
overlap as well as boundary overlap would improve the robustness.

Figures 18 and 20 show images in which the reund region has been broken up
by attachments. Figures 19 and 21 show the LRS analysis of these shapes. The
program proves to be able to detect round regions even when other regions are
attached to them.

The next figure, Figure 22, shows grey-scale images of a coffee mug and a
teapot. Figure 23 shows the LRS regions found for these figures. In general,
the program finds the right regions. However, note the error in analyzing the
handle of the teapot: the program creates a region by splicing together parts of
iwo concentric circles. One problem with the current implementation of Local
Rotational Symmetries is that the balance between fidelity to data and clodeness
o an exact symmetry is wrong., Figure 24, shows grey-scale images of a spiral, a
key, a car part, and another spanner wrench. Figures 25 to 27 show summaries
of the types of regions found in these figures. In figures in which there are sets
of edges which look locally like parts of concentric circles with close radii, the
program tends to “jump tracks,” building counter-intuitive analyses because it is
not giving high enough weight to following connected boundaries. It might seem
as though considering the color of regions to the sides of the boundaries might
help the program make this choice correctly. However, the program’s analyses
still seem counter-intuitive when one locks only at the boundaries of the figures
rather than at the grey-scale images.

Two other problems shown up in the spanner wrench figure. First, the pro-



Figure 4-12. Grey-scale images of a hexagon and twe ovals, drawn on a whiteboard



Figure 4-13. Analyeis of the images from Figure 12, The boundaries found by the edge finder are
shown in the top row. Below that are all the LRS regions found by the program for these figures.




Figure 4-14. Grey-scale images of three ovals, drawn on a whitehoard,




ml.l_t:n_! 4-15. Analysis of the images from E_':i:gl.lru 14.




Figure 4-16. Grey-scale images of two brazil nuts [upper left], a squash [upper right], a pecan
[lower left], and an eggplant (bower right .






Figure 4-18, Grey-scale images of objecis with attachinents, Top row: a garlic bulb and a squazh

Middle row: a lernon and a pear, Bottom row: fwo more pears.
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Figure 4.20. Grey-scale images of objects with attachments, Top row: a mallet and a spoon.
Bottom row: another spoon and a darning egg.




Figure 4-21. Analysis of the images from Figure 20 Note that the square end of the mallet handle
wag picked up as a partial round region in the analysis at the next coarser scale from the cne
shown, In that coarser scale, the corners of the end wers shghtly rounded.




Figure 4-22. Grey-scale images of a teapot [top) and a coffee mug (bottom).



5 analysis of the teapot and coffee mug images.

Figure 4-23. LR



Figure 4-24. Grey-scale images of a spiral drawn on a whiteboard, a key, a part from a car, and

a spanner wrench



Figure 4-25. Sample regions from the LRS analyeis of the spiral. The full analysis of the figure

contained T different spiral regions (2 shown), 4 partial round regions (2 shown), 2 regions in the
large end of the spiral (1 shown), and 4 regions due to noize.




Figure 4-26. Sample regions from the LRE analysis of the carpart. The full analysis contaimed 1
region for the inside of the big end (shown], 5 aliernatives for the sutside (1 shown], 4 regions for
the big end that spiral or croee themselves (2 shown), 2 alternatives for the outside of the small
end [1 shown) 1 region inzide it (shown], and 12 small regions due to clutter,



Figure 4-27. Sample regiong frem the LRS analyses of the spanner wrench and the kev. The
key analysiz contained 2 regions at the tip of the key (shown], 2 other detail regions, and 11
variaticns on round and spiral analyses of the concentric arcs in the round end [6 shown]. The
spanner analysis contained 5 variations on the small holes in the handle [2 shown), the left end
(shown), 2 variations on the left jaw {1 shown, variant is due to the shadow edge), 6 varjations
o the regions at the ends of the handle (2 shown), and 8 emall detail or noise regions. The right
end of the wrench was found at coarser scales but lost st this scale due o the shadow line, The
right jaw was missed for unknown reasons.



gram builds counter-intuitive regions at the ends of the handle, by splicing an
extremely short piece of contour together with two much longer pieces. There
are other examples of similar behavior on other figures. What is wrong here is
that the current implementation allows the gap in a join to be as long as three
times the length of the smaller piece of boundary. From these examples, it seems
that this threshold is too permissive. Secondly, although the program finds the
right-hand head of the wrench at coarser scales, it gets confused by the shadow
line that appears along the bottom of the wrench at finer scales. It first builds
a spiral boundary for the right-hand head with a misplaced center location, and
then (because the center passed down as a suggestion is bad), loses the region
entirely. In cases like this wrench, it might be better to allow the region-growing
algorithm to merge two boundaries which are very close together, when this would
lead to a better analysis of the region.

In surn, the regions chosen by the program to describe input images are rel-
atively close 1o what you or | would consider natural descriptions of the round
regions in the image. Attachments, irregularities in region shape, and fine-scale
clutter in the images do not prevent the program [rom finding these regions.
There are also a variety of errors, most of which can be explained as reflecting
slightly incorrect choices for parameter settings and the coarseness of the current
algorithms for building regions and non-maximum suppression. The results are
close enough to human perceptions to serve as a solid basis for doing more de-
tailed investigation of human shape representation. More detailed psychological
evidence ig obviously necessary to refine the results,

4.8, Analysis of the algorithm
The running time of the algorithm can be broken down into two parts:

« the running time of the exhaustive computation

s the time spent pursuing fine-scale refinements of regions found at coarse scales

The exhaustive computation takes a constani [worsi-case) amount of time per
center location. Since the program only explores center locations within the
exhaustive search radius of some boundary point, the total number of center
locations is linear in the size of the input image. Thus, the running time of the
exhaustive computation for one scale is linear in the area of the image at that scale
(measured in pixels). Since the sum of the areas of all the smoothed images is a



constant times the size of the input image (it is a geometric series), the running
time for the entire exhaustive computation is linear in the size of the input. For
similar reasons, smoothing the image and finding edges to make the input to the
LRS algorithm also takes time linear in the size of the input,

Actually, this running time for the exhaustive computation is only strictly true
as a worst-case estimate, In fact, the computation time spent per center is a fune-
tion of the number and complexity of the boundaries around this conter. Thus,
the real expected running time of the exhaustive computation is alse function of
the “complexity” of the image at each scale. It would be nice if this measure of
“complexity” correlated with psychological data, but 1 have no evidence either
way.

Making finer-scale versions of regions found at coarse scales takes additional
time which is a function of the number of good regions found in the image.
The time spent ecomputing refinements of a region gets larger as one moves to
increasingly fine scales, because the number of points in the boundary gets larger.
In fact, computing extremely fine refinements of a region that is stable over a
large range of scales can take large amounts of computation. Therefore, it may
be necessary to impose some limit on the maximum radius at which detailled
refinement of a region is done.

The current implementation is slow on a Symbolics 3600. Analysis of a
medium-size example shown in this section to the finest scale of resolution takes
all night. However, most of the algorithm is highly parallel and would be speeded
up drastically by parallel hardware or hardware assists. Since the computation
for each center is independent, as much of it can be done in parallel as there is
available hardware. Furthermore, it is likely that better theories of how to create
optimal regions for a fixed center will decrease the computation time per center.
Since the computation time is roughly linear in the area of the input, any such
speed up in the time per center will result in a corresponding speed up in the
overall running time,



Chapter 5: Issues in single-scale representation

In this chapter, I compare local symmetry representations to other types of
representations Tor shape. | also discuss several issues involved in representing
2-dimensional shape at a fixed resolution: how to build deseriptions of complex
objects from the raw symmetry regions, how multiple representations for selected
shapes can lead to a more stable overall shape representation, and how the color
of regions may affect which symmetries within them are salient.

5.1. Alternatives to local symmetries

A wide range of different types of representations for two-dimensional shape
have been proposed. There are three general classes of representations with po-
tentially high coverage and descriptive power:

s Local symmetry representations:
# Generalizations of the Hough Transform;
o Maodel fitting techniques.

I will discuss these alternatives in detail. For a survey of other alternatives,
see Ballard and Brown (1982) and Pavlidi= (1977, 1982).

Local symmetry representations include Smoothed Local Symmetries, Local
Rotational Symmetries, and the Symmetric Axis Transform (Blum 1973, Blum
and Nagel 1978]. The local symmetry represenations have several important

properties:
+ Shape models are local;

*+ Connectedness of boundaries or of axes is used to build regions out of local

aymmelries;
* Hoth regions and boundaries are represented;

#  Axes and centers of regions are determined by the local symmetry construc-

tion.



The common idea behind these representations is that an input shape is analyzed
by first searching for instances of shape models describing local relationships be-
tween sections of boundary. For instance, the model used in the Smoothed Local
Symmetry representation is two sections of boundary that are locally reflections
of one another. Representations of extended regions in the input shape, such
as rectangles or hammer handles, are built up by joining instances of the local
models to form connected boundaries and axes.

The Symmetric Axis Transform (SAT) is the ancestor of the other two lo-
cal symmetry representations. This representation finds the centers of maximal
circles that can fit within a shape and uses the centers of these circles as a de-
scription of the shape. The restriction that circles do not cross boundaries in
a figure makes the representation very sensitive to small holes or internal color
regions in a figure. If the no-crossing restriction is removed, the SAT becomes
equivalent to finding centers which are exactly equidistant from twe boundary
points and normal to the boundary at these points. Although the SAT picks
out reasonable pairs of corresponding points for elongated shapes, it assigns a
perceptually incorrect symmetry center to them, as discussed in Brady (1983).
For round shapes, the SAT picks out the correct center for a set of points with
an exact local symmetry. However, since it requires the boundary points to be
eractly normal to the center location and ezactly equidistant from it, it only really
handles regions which are exactly cireular and it will be very sensitive to small
deformations from this, as discussed in Section 3.8,

Local symmetry representations computed on fine-scale raw input boundaries
are extremely sensitive to noise, as Agin (1972) pointed out for the SAT. However,
this sensitivity can be removed by smoothing the image or the houndaries to
remove noise, typically as part of a multiple-scale analysis (see Chapter 6). The
shape primitives described by Crowley (1982) seem to pick out points similar to
the SAT center points, but at multiple scales of resolution. However, it is not
obvious how the two representations are related mathematically,

Generalizations of the Hough Transform have been described by Ballard (1981)
and Davis (1982). These programs search an image for a parameterized class of
shapes, e.g. circles, ellipses, or a fixed shape with rotation and scaling. One of
the parameters will generally be location in the image. Each boundary point in
the image votes for all combinations of parameters which would produce a figure
containing that boundary point. Sets of parameters that receive large numbers of



voles are taken to indicate the presence of an object of this class with that set of
parameters (including a value for the location parameter). One problem with the
Heugh Transform is that it does not make use of connectivity information. As
discussed in Chapter 3, connectivity information is crucial in determining what
regions are perceptually reasonable. Brady (1983) discusses the same problem
with the Hough Transform from a slightly different point of view, Secondly, the
transform can only search for a limited class of shapes at one time. If the number
of parameters is increased, the space of possible parameter combinations to be
explored will get unmanageably large. Finally, the transform does not provide a
theory of how to choose the reference point for a given shape.

Finally, there are a wide class of other shape description algorithms that search
for instances of a class of shape models in an image. These algorithms differ as
to what class of shapes they search for and what types of technigues they use to
fit shapes to input data. The class of shape models that is best known in high-
level vision work is Generalized Cylinders (Shani and Ballard 1984, Brooks 1981)
which represent elongated 3-dimensional shapes, and their 2-dimensional analogs,
called ribbons. As far as I know, the only class of shape models that has been
proposed for describing round shapes is ellipses (including circles). Brooks, for
example, uses ellipses to model round 2-dimensional projections of Generalized
Cylinders. Sakaue and Takagi (1980, 1982) use iterative methods to fit circular

models to data obscured by noise and ocelusion.

These model-fitting techniques share two problems with the Hough Transform.
First, they do not provide a good representation for irregular shapes. An irregular
shape will be detected as a marginal match to a target shape and one is then left
with the problem of describing the divergences. If the class of target shapes is
increased, the computational cost of searching for them increases proportionately.
In contrast, with local symmetry representations, a region iz built up from local
fragments that can be detected more or less independently. Thus, the class of
possible shapes found is much wider: the radius function for an LRS region can
be any smooth function [up to the current limits of resolution). But, becaunse
the region-finding process is more data-driven, local symmetries do nol require
searching a large parameter space.

A second problem with the model-fitting approaches is that they do not pro-

vide constructive definitions of the axis of an elongated shape or the center of
a round shape. Axes are used in deseribing Generalized Cylinders. However, a



given shape can have Generalized Cylinder representations based on maore than
one axis and the theory provides no way to decide which axis to pick for & given in-
put shape. In contrast, the local symmetry constructions explicitly define an axis
or center for a shape constructively in terms of the input shape. This means that
local symmetry representations do not need an auxiliary algorithm for choosing
axes, centers, or other types of coordinate systems. Brady [1982) also mentions
that the axes of projections of Generalized Cylinders do not in general conlorm
well to the perceived axes of shapes.

The dilference between local symmetry representations and other types of
shape models can be summarized by saying that local symmetry representations
lend themselves to shape description technigues which are more bottom-up and
constructive than the model-fitting approaches. The shape models used are very
local and are detected by local matching. Larger-scale shape models, such as
circles, rectangles, and complex irregular shapes are butll up out of these locally
detected pieces, using connectedness of boundaries or axes. Thus, local symmetry
representations can identify a larger class of shapes more robustly.

Local symmetry representations based on symmetries of connected sections of
boundary should be contrasted with more global symmetries based on matehing
sections of an image against itself. For example, in order to detect textures or
motion, one might match an image, or some symbaolic representation of an image,
against itsell with some translation, rotation, or possibly reflection, Such global
matching symmetries within an image may also be useful in describing an image.
However, they represent different types of properties from the region-forming local
aymmetries described in this thesis.

5.2, Building complete shape descriptions

Most shapes of common objects are too complex to be represented by a single
local symmetry region. A local symmetry description of a pear, an airplane, a
spanner wrench, a square, or a triangle involves several local svmmetry regions
Joined together or cut out from one another. In order to be useful for recognizing
and reasoning about shapes, the raw local symmetry analysis must be transformed
into an analysis of the shapes as a set of subshapes that:

» Exhaustively cover the shape;

¢ Do not account for the same part of the shape in more than one way;



s Have explicitly specified spatial relationships to each other.

Bagley (1985) and Connell [1985) have recently done work on constructing
such analyses for Smoothed Local Symmetry representations of shapes. Similar
work needs to be done for analysis of shapes containing both Smoothed Local
Symmetry regions and Local Rotational Symmetry regions. Since this is future
work, 1 will only briefly sketch the issues involved.

One set of issues involves representing the relationships between the sub-parts
involved in the analysis. First, the coordinate systems of different subparts must
be related. This involves specifying direction, distance, and orientation of one
subpart with respect to another. When two parts are attached to, adjacent to,
or cut out of one another, these facts should be made explicit. A local symmetry
region may represent either part of an object or part of the background. Two
regions which share the same boundary are typically a region of some object and
& region of the background surrounding that object. A region which is cut out
of an object region must be part of the background. When the boundary of one
region is directly connected to the boundary of another region, this fact should
also be made explicit, as in the pear and bar shapes in Figure 1. Two regions
whose boundaries connect must be two parts of the same object or two sections
of the background.
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Figare 5-1. A pear shape and the rounded end of a rod. In bath of cheze figures, the two symmetry
regions smoothly extend each cther’s boundaries and region.

Between the primitive symmetry regions and shape models for natural classes
{e.g. hammers), there are a number of simple and frequently oceuring combina-
tions of symmetry regions that should be recognized. For example, there are a



number of standard ways of terminating an SLS region (cf. Brady and Asada
1984);

* open termination into some other type of region;
¢ blunt termination at the last rib;
* pointy SLS region continuing its boundaries;

e LRS region continuing its boundaries,

These four types of terminations are illustrated in Figure 2. Some common com-
binations of symmetries involve several competing local symmetry analyses. For
example. a ring or a spiral has an analysis as a long SLS region, as well as an
analysis as two LRS regions. A hexagon has several competing SLS analyses (the
main axes plus corners), as well as an LRS analysis. The configuration of multiple
competing analyses might be made explicit in the representation of these region
combinations.
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Figure 5-2. Four ways of terminating an elongated SLE region. Top: open termination and
termination in a pointy SLE. Bottom: blunt termination and termination in a hali-round LES

Finally, there seems to be a constraint that local symmetry regions involved
in an analysis “not account for the same part of the shape twice”. For example,
sub-optimal LRS regions with centers near the perceived center of & region are
not perceptually salient. Also, two SLS regions in the same analysis cannot in
general overlap, as illustrated in Figure 3. However, it is not obvious how to make

this constrainl precise.



Figure 5-3. The axes of two possible symmetry regions are marked with dotted lines. These two
regions are perceptually incqmpatil‘r]e, presumably because they overlap.

It seems that a perceptually correct version of the constraint that symmetry
regions not overlap involves consideration of:

# overlap in boundaries,
s overlap in 2-dimensional regions covered, and

s  whether the two regions represent parts of the same object, or whether one is
part of an object and one is part of the background arcund the object (either
a region of empty space or a region of another object),

Note that whether a symmetry region represents part of an object or part of the
background cannot be determined @ priori from the input image. Rather, the
organization of the image into a number of distinct objects and a background is
one part of the task of creating a complete shape representation. Thus, constraints
on region overlap should be viewed as consistency constraints on how a complete
analysis of an image can be constructed.

Two, or even three regions can share the same piece of boundary. The pos-
sibilities are illustrated in There are two relationships that abutting regions can
bear to one another and form part of a consistent description of the scene. The
first possibility is that the two regions cover disjoint 2-dimensional regions, as
illustrated in Figure 4. Note that the “two regions™ considered here could in fact
be parts of the same region, as shown by the spiral in Figure 5. The second pos-
sibility is that the two regions cover overlapping 2-dimensional regions and one
region is cut out of the other as shown in Figure 6. Two regions are in conflict



when they cover overlapping 2-dimensional regions and one is not a cut-out of
the other, as Figure 3 illustrated,
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Figure 5-4. A& boundary can be shared by two figures, or by a figare and the background.

Figure 5-5. Self-adjacent spiral. This figure shares a section of boundary with itself.

This statement of the constraint, however, does not seemn to be quite correct,
The problem is that some types of regions seem to be able to co-exist even though
they share boundaries and cover overlapping regions. For example, the corners of
@ rectangle seem to be salient, despite being in conflict with the main axis of the
rectangle (cf. Brady and Asada 1984}; the regions describing the pointed jaws of
& spanner wrench seem to eo-exist with the regions describing the round ends and
square cut-outs of the wrench; an oval that is on the borderline between round
and elongated can be described as one round region or as having two round ends,
It is not clear that main region of such an ellipse and its more coherent round
ends are peceptually in conflict. These examples are shown in Figure 7.

My LRS implementation uses the heuristic that two regions overlap incom-
patibly if they share half of their contour. As some of the output examples in
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Figure 56. A region can share a section of boundary with a cot-cot regron. Where there are
cut-outs, there can be more than two compatible regions sharing the same section of boumdary

Figure 5-7. Regions can co-exist even though they overlap and share boundaries, The jaws of the
spanner wrench co-exist with the round end and sguare cut-out. The endz of a fat oval co-exist
with a description of the whole oval as basically round. The corners of a rectangle co-exist with
ite main axis

Section 4.7 illustrate, this heuristic does not robustly detect when two regions are
perceptually “basically the same” or when they cverlap “too much.”

5.3. Multiple descriptions

Marr and Nishihara [1978) state that the representation should be designed
so that each shape has one canonical representation, so that processing using

these representations need not search through multiple possibilities in matching



shapes. The idea of limiting representations of a given shape to & small num-
ber is clearly reasonable. However, if shapes intermediate between two Lypes of
shape descriptions, e.g. round shapes and elongated shapes, are required Lo have
a unique analysis, the shape representation will have a sharp change in represen-
tation at some point. In many such cases, the intermediate shapes are perceived
by humans as varying smoothly from one type of shape to the other. The sharp
discontinuity in the shape representation does not match human perceptions and
the location of the change from one type of representation to the other must he
chosen arbitrarily.

The solution in these cases is to allow intermediate shapes to have more than
one representation. Suppose that the relative salience of the competing repre-
sentations is allowed to vary continuously, so that the salience of one type of
representation diminishes gradually as one moves towards sha pes mare Tepresen-
tative of the other type of representation. So, for example, an 5LS representation
is very salient for rectangles, less so for ellipses, and not salient at all for circles.
When one of the competing representations reaches sufficiently low salience, it
should no longer be considered plausible at all. However, the change from an
extremely low salience alternative to no alternative is not a sharp change in rep-
resentation. Small changes to this salience threshold should make little difference
to users of the representation. This controlled use of multiple representations for
the same shape allows the representational system to aceurately model human
perceptions of similarity and smooth change (i.e. the representation is stable)
and avoids use of arbitrary thresholds.

There are several situations in which there are smooth transitions between
different types of shape models. First, there are two different types of local sym-
metry representations: Smoothed Local Symmetries for elongated shapes and
Local Rotational Symmetries for round shapes. Secondly, there may be qualita-
tively different ways to analyze a complex shape in terms of sub-parts. Finally,
larger-scale shape models such as the natural classes “cup,” “vase.” and “bow]”
may grade smoothly into one another,

The Local Rotational Symmetry representation for round regions was specif-
ically designed to overlap somewhat with the Smoothed Local Symmetry repre-
sentation for elongated regions. For example, the oval shapes shown in Figure 8
vary smoothly in analysis depending on the proportions of the figure. The longer
regions are analyzed as an elongated region with two round ends. The fatter re-



gions are analyzed as one irregular round region. Intermediate shapes have both
analyses, with varying degrees of relative salience, Similarly, Figure 9 shows the
transition from a circle (clearly round) 1o a lozgange shape (clearly elongated], via
a hexagon which has both types of analyses. Similar examples can be constructed
using only one shape model, e.g. Smoothed Local Symmetry regions, but match-
ing it to the shape in different ways. Figure 10 shows gradual transitions from a
rectangle to a square to a pointy diamond.
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Figure 58 A circle, which = perceived as one reund region, can be emanthly deformed into a
long owal, which 15 percetved as a long region with two round ends, Intermediate hgures may be
perceived as ambiguounz between the two types of descriptions,

O UD

Figure 5-0. A circle can be smoothly deformed into a losange shape. Intemediate shapes, such as
the hexagon, can be described either as a round region or as an elongated region
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Figure 510, A rectangle can be smocihly deformed intc a diamond. The rectangle has one
maost salient axis, the diamond has a different type of most salient axis. The square, which is
intermediate between the two shapes, has several salient axes.

Multiple competing representiations also occur in analyzing complex shapes in
terms of simpler ones. For example, Bagley (1985) describes a system for building



representations of complex polygonal shapes in terms of 2 main shape and shapes
attached to it or cut out from it, He shows examples of sets of complex shapes that
vary smoothly from one prefered analysis to another, with intermediate shapes
having both analyses as options. Figure 11 shows one of his examples, [See also

Hellerbach 1975.)

\

Figure 5-11. Complex shapes may have multiple interpretations. The Bgure on the left I8 most
naturally interpreted ars a rectangle with a paece cat out of it. The fipare an the right is interpreted
as a reciangle with two tabs attached to it. The maddle figure is in:nr_mediqu_

In constructing a complete analysis of a shape, there may be a tradeoff between
an analysis in terms of a larger number of local symmetry regions with simple
patterns of parameter variation and an analysis in terms of a smaller number af
regions with complex patterns of parameter variation. For example, Figure 12
shows an 5LS region that could be described as either one region with complex
variations in width or as a number of regions concatenated. The first description
would be most useful if this were an arbitrary complex shape produced on a lathe,
e-£. a decorative table leg or door post. The second description would seem more
appropriate if the individual pieces had distinet functional roles, e.g. if this were
& complex tool,

Figure 5.12. A complicated SLS region. Such a figure could be mterpreted as one region with
complicated changes in width, or as three regions with gimpler descriptions.




A similar effect seems to hold in the way people use natural language words
to refer to objects. The data presented in Labov [1973) suggest that there is a
smooth decay in how well a shape is perceived as member of the class named
by some English word, such as “cup” or “vase,” as the shape is slowly made
less and less like a good exemplar of that class. In labelling shapes with natural
language words, people can use a particular word to refer to an object, or they
can decide that there isn't any term that really covers the shape. For instance,
the shape in Figure 13 doesn’t really look like anything in particular. Adding
an option of “matches nothing” does not, however, change the argument about
sharp transitions. The transition from a shape that has a good label to a shape

that does not 15 still smooth.

Figure 5-13. A shape that doesn't lock like anything in particular.

5.4. Region color

The Smoothed Local Symmetry code described in Brady (1983), Brady and
Asada [1984), and Heide [1984) incorporates a constraint which 1 will call the
Region Color Constraini. The idea behind this constraint is that a local symmetry
between two sections of boundary is only salient if the color of the region on the
interior sides of the boundaries (i.e. the sides toward the symmetry axis) is similar.
For example, the symmetries shown in Figure 14 (left) are salient symmetries, but
the symmetry shown in Figure 14 (right) is not. For a round region, a similar
constraint seems to hold, as shown in Figure 15, Figure 16 illustrates the fact that



Figure 5-14. The lefi-hand figure shows a symmetry down one elongated region of a shape and
also a symmetry in an inlet of the shape. These axes are perceptually salient, because they involve
symmetries whose twa sides match in color. The right-hand figure shows a symmetry between the
outside boundary of the shape and *“the wrong” side of the inlet. This symmetry i not salient,
becanze the two sides of the symmetry do not match in color.

Figure §6-15. There are two plausible LRS regions i this figure: the inside of the jaws and the
outside of the jaws, Possible symmetries involving the inside of one jaw and the outside of the
other are not perceptually salient, because the sides of the symmetry do not match in color.

the constraint is only on the color of the interior of the local symmetry region,
not on the exterior.

The idea behind this constraint is that region color can be used as a heuristic
for determining what regions in an image are part of the same object and what
regions are part of the background around that object. Most of the images used
in testing the Smoothed Local Symmetry represeniation contain one or more dark
objects on a light background or one or more light objects on a dark background.
Therefore, in these images, region color i= a good indicator of whether a region
s figure or background. Furthermore, there are only two colors to worry about
in any particular image: light and dark. Then, since a local symmetry region
defines a 2-dimensional shape or part of a shape, the interior of the symmetry
region should be all the same color or perhaps smoothly varying in color. The



Figure 5-16. A monochrome grey ball and a grey rod. each half buried in o black region. The
constraint on region color must apply only to the intertor sides of the boundaries of the symmetry

Fegioms.

problems appear when one tries to extend this idea to grey-scale images containing

regions of more than two distinct levels of intensity.

In the implementations of Smoothed Local Symmetries (Brady and Asada
1984, Heide 1983) the normals at boundary points are directed, e.g. always
pointing towards the darker side of the boundary. The region color constraint
was implemented by requiring that the normals at the two boundary points in a
local symmetry either both point outwards or both point inwards. This heuristic
will not in general produce the right answers. For example, in Figure 17, the
grey stripe seems like a reasonable SLS region, although the normals on one
side point inwards and the normals on the other side point outwards. Thus, a
perceptually correct implementation of the constraint would have to refer directly
to the color of the region near the boundaries, rather than using the directions
of the normals. One unsolved problem in implementing a correct version of the
constraint is determining what the exact conditions are for the interior sides of
the two sections of boundary to be “close enough to the same color™.

In aggregating local symmetry pairs into regions, a change in interior color
between two adjacent pairs, Le. an internal color boundary in the region, seerms
to be a reason to consider dividing the region in two. However, in such a situ-
ation, it is also possible to ignore the color boundary and make one symmetry
region. For example, the stripe in Figure 18 can be construed as either one TeEIo



Figure 5-17. A grey stripe with a white bachground to one side and a black background te the
other. This example shows that comparing the direction of color change on the two sides of a
SYmmetry Fegion 15 not a perceptually correct statement the constraint on regian color. In this
figure, one side of the svmmetry is darker on the inside and the other is darker om the outzide.
Nevertheless, the symmetry region is perc eptually salient, because the color on the interior sides
of 111[' boundaries iz the_ Bame,

(by ignoring the color change) or as two regions. divided at the color boundary.
Round regions can also be divided up by internal color boundaries, with the same
optionality, as in Figure 19, The existence of such figures makes it unclear how to
formulate the constraint for round regions, because for these regions we cannot
neatly separate the question into constraints on the points in the same symmetry
pair and constraints on adjacent pairs. Worse, even the constraint on the two
points in an SLS symmetry pair does not held strictly. For example, the sym-
metry along the stripe in Figure 20 can be continued along the boundary of the

black tah, despite the violation of the color constraint,

Figure 5-18. A stripe, black for one half and white for the other, on & grey background. This
stripe can be peceived as sither one region or two

Because of these problems with the definition of the region color constraint, |
have not implemented any form of it for Local Rotational Symmetries. Obviously,
more research needs to be done into the exact form of the percepiual constraint

on region color.



Figure 5-19. A beachball fgure. Roand regions divided into sections by color boundanes can etill
be interpreted as one region, despite the difference in color,
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Figure 5-20. A white stripe with a black patch on it. The whole stripe, including the patch, can
he interpreted as one elongated region, despite the change in color along part of the bou ndary.




Chapter 6: Multi-scale representations

The shape representations discussed in Chapters 3 and 5 all represent shapes
with a fixed, finite amount of detail or resolution. Far recognizing and reasoning
about objects and scenes, we need to be able to represent a shape with any
arbitrary amount of resolution, in order to be able to distinguish small differences
between objects or scenes. It is also necessary to be able to abstract away from
detail when it is not needed, representing only the most important aspects of
an object or a scene. These two requirements are hest met by having a series of
representations of an object with varying amounts of detail. If the representations
at different levels are related, so that information computed at ope level can be
transfered to other levels, a multi-scale representation allows one to achieve several
apparently incompatible goals at the same time:

* HResults are highly accurate and representations are highly detailed:
* Computations and representations are stable under small changes in input;

* Computations have data dependencies that are nen-local in the original in put
and so can detect Jarge features;

Multiple scale representations have been proposed, to achieve varying combina-
tions of these goals, by & wide variety of researchers. Pyramid-shaped processing
structures have been widely used in image processing. For a summary of this
literature, see Tanimoto (1978). The main goal in this work is to use pyramid-
shape arrays of processing elements to do efficient calculation. On the vision end
of things, Terzopoulos (1984) uses multi-grid relaxation 1o produce efficient algo-
rithms for surface reconstruetion, A.ga.in, although he is interested in producing
output at multiple scales of resolution, much of the focus is on using the pyramid
siructure to allow efficient computation.

There has alse been considerahle work done on finding and interpreting edges
in images at multiple scales, surveyed by Torre and Poggio (1984). These re-
searchers find representing edges at multiple scales interesting because the set of
cdges in an image at all scales may be a complete representation of the image and
also because multiple-scale representations allow both good detection of edges [at



coarse scales) and good localization of edges (at fine scales). For example, the
edge finder described in Canny (1983) finds edges in an image at multiple scales
and matches these edges across scales to yield a unified map of edges at all scales,
using an explicit mathematical theory of how an edge at one scale will be reflected
at the next coarser scale, Witkin (1083) proposed summarizing multiple-scale rep-
resentations of a signal into what he calls a “scale-space” representation. In this
representation, the shape of the signal across scales is surmmarized qualitatively
by describing: the set of features in the signal, the range of scales at which each
feature occurs, and the scales at which features split or merge. In his work, the

features considered are inflection points of a one-dimensional signal.

There has been less work done on multiple-scale representations using features
that are higher-level than edges. Asada and Brady (1984) developed a system for
locating sharp changes in orientation along boundaries (corners, for example)
and tracking these features across scales to produce a representation analogous
to Witkin's representation for one-dimensional signals. Fonce and Brady [1983)
extend this work to representing the shape of 3-dimensional surfaces. Hoffman
(1983) tried to locate “natural scales” in multi-scale representations of boundary
curves. Crowley [1082) locates and tracks features for describing regions across
scales, but he uses relatively ad hoe methods for relating representations at dif-

ferent scales.

On the other side of the fence, researchers working on planning and reasoning
have been talking about representing situations or objects at multiple levels of
resolution or abstraction, although there are only a few systems that actually use
this idea. Planning can be made more efficient if it is done first with a coarse-scale
representation of the problem and then fleshed out in more detail, most recently
proposed by Allen and Koomen (1983). They also propose using a hierarchical
organization of time intervals in order to restrict explicitly stored temporal re-
lations 1o intervals local to one another. Such a locality restriction would allow
algorithms for reasoning about temporal relationships to run efficiently. There has
been some limited work in using representations which involve qualifative changes
in representation between finer and coarser scales, for example Weld (1984) and
Patil (1881}, Taylor (1977) and Dowty (1979:163-173) have discussed problems in
the that have been discussed in natural language semantics that could be resolved
by using multi-scale representations.

Shape representation lies somewhere in between the low-lev el visual processing



and high-level representations for reasoning and natural language understanding.
Ultimately, shape representation systems must serve as the connection between
these two types of processing. Very little wark has heen done on creating shape
representations at multiple levels of resolution. Marr and Nishihara (1978) pro-
pose using multi-scale representations lor objects, but their proposal is not very
detailled. Brady and Asada (1984) build Smoothed Local Symmetry Represen-
tations for shapes at multiple scales of resolution. but they do not relate the
representations at adjacent scales. In building an efficient implementation for
computing Local Rotational Symmetries, I have had to reconsider the way in
which Brady and Asada computed multiple scale representations. The goal in de-
signing the multi-scale LRS representation has been not only to use multiple-scale
representations for efficiency and compatibility with theories of low-level vigion,
but also to be sensitive to the needs of reasoning and natural language under-
standing systems that might be using its output. My implementation of Local
Rotational Symmetries uses a local multi-scale computation with communication
between scales. Detection of cross-scale features and patterns has not vet beep
implemented, although the inter-scale matching provides support for adding such
analysis,

This chapter will discuss issues in computing and using multi-scale represen-
tations in shape representation. These issues include:

¢ Types of abstraction from detail;

* Inter-scale matching, communication between scales. and cross-scale f ealures;
¢ Locality of computation;

» Tlow attention may affect multi-scale processin E-

In discussing each of these issues, | will point out what choices have been taken in

implementing a system for computing Local Rotational sSymmetries at multiple
scales, '

6.1. Types of scale abstraction

Coarser-scale representations are ideally supposed to contain only the “impor-
tant” or “stable” or “overall” features of finer-scale representations, abstracting
away from detail. In practical reasoning, the mportance of some feature is de-
termined by a large number of factors, including functional imporiance as well as
size. For example, the difference in the shape of the business ends of a Philips and



a regular [slotted) screwdriver is crucial in explaining the functional properties
of these tools and would appear even in relatively coarse-scale representations
of screwdrivers, despite the small size of the features (Connell and Brady 1985).
Even when only size is used to determine importance, the cut-off for how small
a feature is represented may or may not be a constant across the entire TeRTE-
sentation, For example, at the instani that one is looking at a chair, the chair
may be represented with high resolution while the context around it is only more

coarsely blocked out.

In the early analysis of a visual image, the only index of importance available
is size, Therefore, the techniques for abstraction discussed here will only use size
as an index of importance, However, nothing prohibits later reasoning from re-
adjusting the results of these early analyses or influencing processing of shape as
it is going on. While early visual processing (e.g. stereo) seems to be more or
less independent of the content of the image, decisions about which objects to
focus on in a complex scene (e.g. a large cluttered room) are clearly dependent
on the viewer’s goals. How far down the influence of higher-level goals extends
in visual processing is an empirical question which I cannot answer here. The
algorithms for computing multi-scale circular region symmetries do not depend
on higher-level information, but could make use of such information to guide
processing, were it available. Similarly, these algorithms do not crucially depend
on the resolution being constant over the entire field of view.

The abstracted or coarse-scale representations of an object that people use of-
ten involve qualitative differences in representation compared to finer-scale views
of the same object. For example, the fact that brushes can clean particles off of
surfaces depends on the outside of & brush being made up of a large number of
bristles. Thus, a fine-scale view of bristle texture can be used to explain why a
floor brush is different from a blackboard eraser. However, understanding what
shapes of brushes are useful rn} what types of cleaning tasks also requires con-
sidering an abstracted representation of the brush which shows just its overall
shape, with the surfaces of the shape marked as to whether they are made up
of the business ends of bristles, the attachment ends of bristles, or the sides of
bristles, For example, a bottle brush can be represented as a cylindrical bristle
section attached around a long thin handle, with the entire exterior of the cylinder
being composed of the business ends of bristles, A floor brush, on the other hand,
has a bristle section with all the business ends of the bristles on one flat side and



the other ends of the bristles attached to a flat back. In fact, the coarse-scale
representation of a floor brush is very similar to the coarse-scale representation
of a blackboard eraser, a fact which makes it easy to explain why these brushes
require similar hand motions and are used to clean similar shapes of surfaces
whereas a botile brush requires rather different hand motions and is used on dif-
ferent types of surfaces. Reasoning about the functions of these brushes directly
from individual bristle locations without using abstracted bristle surfaces would
be extremely slow and tedious.

A different type of example involves edge texture, as illustrated by the leaf
with a serrated edge shown in Figure 1. Standard terminology for describing leaf
shapes [cf. Petrides 1972) separates the description of a leaf into a description of
its overall shape (oblong, narrow, heart-shaped, long-pointed) and a description
of the texture of its edges {wavy, toothed, double-toothed). A multi-scale local
symmetry analysis describes both the coarse-scale shape and the fine-scale edge
texture, as shown in the oak leaf example [Figure 1-4) and the cog example [Figure
1-6] from Chapter 1. If analysis iz done at only one scale of representation, it js
not possible, in general, to pick out both the serrations and the overall axis of the
leal. If the serrations are visible and don't exactly line up on the two sides, the
overall symmetry axis will be disrupted.

Figure 1. A serrated leal. The standard way to describe such leaves is in terms of their overall
shape plus the shape of the texture on their edges (e, serration).

In both the brush and the leal examples, the coarser and finer scale repre-
sentations were qualitatively different. For example, there may have been regions
or other features in the coarse-scale representation that were not present in the
fine-scale representation. Such qualitative changes are useful not only in repre-



senting shape, but also in more abstract domains. For example, recent work by
Weld (1984) and Patil (1981) uses qualitatively different representations to rea-
son about complex situations in biochemistry and medical diagnosis. The same
ideas could also solve the problems in representing non-homogeneous actions dis-
cussed by Taylor (1977) and Dowty (1979). The specific examples that Taylor and
Dowty discuss are in linguistic semantics, but the axioms used by Allen [1954)
for representing actions for practical reasoning have the same problems.

There are several technigues for abstracting away from small detail in a visual

mage:

¢ Feature dropping;

+ Boundary smoothing;
s Image smoothing;

¢ Threshold changing.

Feature dropping technigques take a symbolic representation of an image and
remove regions or other features which are small or unimportant according Lo
come criterion. This abstraction technigue is extremely important in higher-level
learning and reasoning. However, by itself, feature dropping cannot account for
qualitative differences in representation between finer- and coarser-scale views of
an object.

Threshold changing involves changing the setting of a threshold that is used
io select which features are “good enough” or “salient™. Yor example, region
boundaries in images differ in their strengths, ie. in how much the intensity
changes from ome side of the boundary to the other. Relaxing strength thresholds
on boundaries results in more detailed analysis of the regions in an image. Hlake
(1983a, 1983b) uses such a threshold changing technique to produce a series of
representations of the boundaries of an image. Like feature dropping, threshold
changing is a useful technique for varying the amount of detail in a representation.
However, it cannot be the primary means of changing the scale of a representa-
tion, First, like feature dropping, it can only remove features as one tightens the
threshold, not add them. Furthermore, while the sharpness of a boundary is one
indicator of its importance within a representation at a particular scale, the size of
regions, rather than their sharpness, seems 10 determine the differences between
representations at different scales. Finally, representations based on threshold

changing are sensitive to blurring an image or introducing noise.



The other techniques for creating representations at multiple scales of reso-
lution involve smoothing the image. For a one-dimensional signal, such as that
used in Witkin [1983), there is only one alternative: smooth the signal and then
extract significant features at each scale. However, for two-dimensional images,
there are at least two alternatives:

¢ Smooth the image and extract boundaries at each scale [used by Crowley 1082
and Canny 1983).

¢ [Extract boundaries from the image and smooth these boundaries [used by
Asada and Brady 1984, Brady and Asada 1984, and Hoffman 1983,

The advantage to extracting boundaries first and then smoothing them is
that it allows region boundaries from grev-scale images and boundaries shown in
line drawings to be analyzed in exactly the same way. However, current off-Lhe-
shell boundary smoothing techniques require that boundaries be simple connected
curves. If there are gaps in the boundaries, smoothing will not operate across the
gap. Further, it is not obvious how smoothing should proceed across points at
which several boundaries meet, e.g. when there is an internal color boundary.
Both of these types of imperfections occur frequently in the output of our edge
finder and also in line drawings. In the absence of a robust algorithm for extracting
“the correcl” connected boundary of a figure, these defects cause serious problems
for the boundary smoothing approach.

Further, the smoothing done by existing technigues for contour smoothing
does not match intuitive judgements about the overall shape of objects. For
example, consider the image of a drain strainer shown in Figure 2, with the
boundaries extracted by the edge finder. The internal boundaries of the holes in
the strainer seem to be detail relative to the exterior boundary of the object, but
smoothing the boundaries in this image will not eliminate the internal boundaries.
Smoothing the grey-scale image, however, extracts just the overall shape of the
object, as shown in the same figure. In general, smoothing the grey-scale image
produces effects which seem to correspond well to intuitive judgements of the
overall shape of objects.

Smoothing the grey-scale image also has the advantage that it has the same
effect as the blurring caused by seeing the same scene from a greater distance.
Thus, & multi-scale representation created by smoothing the image will be invari-
ant across changes in size. This type of smoothing is also the technique used by
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Figure 6-2. The grey-ecale image of a metal drain strainer at a fine scale of resolution and at
4 conrser scale of resolution. The boundaries for both ecales are also shown Smoothing the
grey-scale image abstracts away from the detail of the textured interior of the figure. Existing
techmigques for smoothing boundaries cannot remove the boundaries of the holes,

low-level vision algorithms, such as the surface interpolation algorithms described
hy Terzopoulos (1984). Therefore, the technique 1 use in computing representa-
tions of the shape of an ohject or a scene at multiple scales is to first smaooth the
grey-scale image and then extract region boundaries at each scale. Smoothing
is done with a finite mask approximating a Gaussian filter, The smoothed im-
age i sampled at a rate proportional to the size of the Gaussian to create the
coarser-scale image. | use this technique in my implementation of Local Rota-
tional Symmetries. The Smoothed Local Symmetry examples shown in this thesis
use a version of the Brady and Asada (1984) implementation that has been altered
to use grey-scale smoothing. This technique was used to produce qualitatively
different coarse- and fine-scale representations of images such as the cog and the

oak leaf shown in Figures 1-4 and 1-6,

One disadvantage to smoothing the grey-scale image is that it performs poorly
when the image contains extremely thin lines, because they tend to disappear
before the shape they enclose is smoothed. Further, when there are boundaries
with only a small but sharp change in intensity, the boundaries may not be picked
up in smoothed versions of the image. In either of these cases, images may have
large regions whose boundaries will not be detected in smoothed lorm. However, |
submit that since smoothing grey-scale images seems to be perceptually correct for
grey-scale regions and existing boundary smoothing techniques are not, the right
solution is te find a way to emulate the effects of this type of smoothing on isolated

boundaries, such as the boundaries in line drawings. The general idea of such an



approach would be to assume that the boundary is separating two contrasting
regions, where the contrast in this case must be introduced artificially, and figure
out what the effects of smoothing would be. In this context, I should note that
in some cases, €.g. a tangle of twine in a cluttered room, thin regions should
disappear as coarser-scale representations are created. Whether thin regions are
relained in coarser-scale representations may depend on factors other than their

sige and proportions.

A second problem with smoothing the grey-scale image is that when two
objects are near one another, the smoothing will blur one into the oiher. In
some cases this is desirable, for example when one is trying to describe larger-scale
patterns of arrangement of objects or coarser-scale shapes, In the initial coarse-to-
fine analysis of a situation, | do not know of any way to distinguish “two figures"
from “one figure” so that the two cases could be smoothed differently. However,
after twe figures have been tdentified, it should be possible to re-do the smoathing
of each figure independently, without interference from the other figure. Since
Gaussian smoothing (with a finite filter) has only local data dependencies, this
would not require extensive re-computation. As in the case of extremely thin
regions, it seems as though whether two ohjects should be separated or blurred
into one another depends on details of the emerging shape analysis and perhaps
on the goals of the reasoner using and directing the shape analysis.

6.2. Relating scales

It is not sufficient to analyze an image independently at a series of scales, First,
when an object has an overall shape and more detailed features, people seem to
be able to relate their locations. For example, the axes of the lobes of the oak leal
discussed in Chapter 1 (Figure 1-4) are related in location and orientation to the
main axis of the leal. Secondly, efficient computation of detailed representations
for large regions or other features requires passing information between coarser
and finer scale, Thirdly, if representations at different scales are not related, the
representation is sensitive to the details of which discrete set of scales of resolution
were chosen, as noted by Witkin (1983). Finally, a qualitative description of the
stable representations of parts of an image and how they are related in scale js
more informative than a simple listing of representations at different scales [also
noted by Witkin).



The first task that must be done in order Lo relate representations at differ-
ent scales ia to match corresponding leatures at adjacent scales, There are two
different reasons for matching features at adjacent scales:

a Detecting cross-scale properties of representations, e.g. which features are
stable across a range of scales:

o Using coarse-scale representations to guide attention in processing an image
at fine scales.

Passing information between different scales is a relatively well-known tech-
nigque in low-level iterative algorithms., For example, the algorithm for surface
interpolation described by Terzopoulos [1984) passes information [rom coarser
to finer scales. Information from coarser scales can be used either to add more
global information to finer-scale analysis, or to focus finer-scale processing on just
regions that seem interesting at a coarser scale. Systems for tracking higher-level
features across scales (Asada and Brady 1984, Witkin 1983, Canny 1983, Crow-
ley 1982) have not used coarse scale analyvses to guide finer-scale analysis, but
generate the analyses at each scale independently and then combine them.

A program that tracks features across scales needs two theories of how features

change between scales:

# a theory of how a.feature changes smoothly between scales;

* a theory of abrupt changes in features between scales.

The theory of smooth changes apecifies when a feature at one scale should be
considered a manifestation of “the same”™ cross-scale feature as some feature at
an adjacent scale. For each cross-scale feature, the program specifies the range of
scales at which the feature occurs and the scales at which the feature disintegrates
or disappears. The length of the range of acales at which a given feature is detected
can be used as an index of how stable or salient that feature is in the overall
analysis, as Witkin [1983) does. It may also be possible to determine the scale
al which a particular feature shows up most strongly or coherently, as Crowley
(1982) and Hoffman (1983) try to do. The theory of abrupt changes specifies
the ways in which features can merge, split, disappear, or otherwise abruptly
change between scales. When a feature merges with another feature, splits into
two features, or bears some other relationship to leatures that replace it when it

disappears, these relationships are explicitly noted in the multi-scale represention.



Theories of smooth change in features are generally more or less straight-
forward. For simple features, an exact mathematical analysis of possible changes
can be done. For example, Canny (1983) does a mathematical calculation of
the predicted shape of a fine-scale edge at a coarser-scale in order to determine
whether it should be matched with a given coarse-scale edge. The current LRS
implementation uses a theory of smooth correspondence between LRS regions to
pass suggestions from one secale of analysis to the next finer scale. Since this
implementation only uses the locations of boundaries and not their strengths and
since it works from coarser scales to finer scales, Canny’s results for boundary
matching could not be used directly, In order to pass information from one scale
to another, I use empirically determined estimates of how much displacement to
expect between a boundary or a center location at one scale and a corresponding
boundary or center location at the next finer scale, The correspondences used
in doing the suggestion passing could alse be used to match regions found at
one scale with regions found at the next finer scale, in order to produce a type
of scale-space analysis of the LRS regions. This has not vet been implemented,
although its feasibility is obvious from the smooth changes in analysis between
different scales of the LRS analysis of test images (see Section 4.7) and from the
fact that the suggestion passing mechanism works.

Abrupt changes include features disappearing at coarser or finer scales [Witkin
(1983) explicitly rules out disappearances), two fine-scale features merging at a
coarse scale, and other types of changes. {In general, two coarse-scale features
do not merge at a finer scale.) Neat mathematical theories of either of these
phenomena are easiest to build for low-level features, such as the inflections that
Witkin tracks. The set of primitives that Asada and Brady (1984) and Ponce
and Brady (1985) use for describing boundaries is richer than Witkin's primitives.
Therefore, in their representations. the possible relationships between a coarse-
scale primitive and one or more finer-scale primitives are more complex. For
higher-level features, such as LRS regions, the possible types of abrupt changes
between scales are yet more varied. When a coarse-scale region disintegrates at a
finer scale, the regions that will he generated to describe corresponding sections
of boundary in the fine-scale representation are related to patterns of parameter
change in the coarse-scale region. For example, a round region with a smooth
periodic variation in its radius will break apart into a series of small round regions,
However, it is not clear to me whether there is any reason to work out all possible



relationships in detail: it suffices to explicitly observe the abrupt changes when
doing an analvsis of an image.

I should note that, in the current LRS implementation, when the analvsis
changes qualitatively between scales, there are often several intermediate scales
at which the fine-scale and the coarse-scale analyses co-exist, in somewhat de-
graded form. This behavior resembles the behavior of competing shape models
on intermediate shapes: the two analyses co-exist for several scales and each
analysis degrades smoothly as the scale is varied, resulting in a combined analysis
that is stable under change in scale. This behavior seems o be different from the
behavior of simple primitives, such as the inflections tracked by Witkin or the
curvature primal sketch primitives of Brady and Asada. These simpler primitives
gplit, merge, or disappear abruptly rather than gradually fading off.

When there are qualitative changes in representation between different scales
of analysis, the high-level symbolic representations at each scale should be related.
The relative spatial locations and orientations of axes and centers of regions at
adjacent scales should be specified, possibly in exactly the same way as relative
positions of regions at the same scale. A good example of this is a lobed leaf, such
as the oak leaf shown in Figure 1-4. Because the lobes are not exactly symmetrical,
the main axis of the leaf can only be extracted at a coarse scale of representation.
The axes of the individual lobes can only be extracted at somewhat finer scales.
However, specifying the pattern of attachment of the lobes to the main axis of
the leaf is important in describing different types of lobed leaves [cf. Petrides
1972). Therefore, the joins between these primitives should be related, despite
the difference in scale.

6.3. Locality of computation

It i= not practical to compute relationships such az Smoothed Local Symme-
tries between all pairs of hnundﬁn‘ points or other items in an image. Such global
exhaustive pairwise computation for a 2-dimensional image will grow as O(n?) in
the area of the image, even il the computation for any pair of features is constant.
Similarly, computation of Local Rotational Symmetries for all boundary points
and all possible centers in an image grows as 0(n”) in the area of the image. This
is true even if the center locations considered are restricted to locations close
enough to the set of boundary points that a boundary made [rom these points

could span some minimal percentage of the angles around the center. Data com-



pression technigues such as the technique of approximating the contour by a set
of line segments and circular arcs that Brady and Asada (1984) use can produce

4 substantial linear speedup in the computation for a fixed scale of resslution
but do not change the rate of growth as the total number of boundaries in the
image grows. Not only does computation time grow as O{n?) in the number of
boundary segments, but a change in any part of an image or an addition of an ad-
ditional section of image from another view requires recomputation of symmetries
affecting all segments in the image.

The solution is to impose locality of computation: restrict exhaustive computa-
tion of Local Rotational Symmetries to boundaries and LRS center locations that
are within some fixed distance of each other, Similarly, computation of Smosthed
Local Symmetries should be restricted to pairs of boundary points local to one
another. Not only is locality necessary for efficient computation of symmetry
regions, but the symmetries eliminated by locality seem not to be perceptually
salient. Since the symmetry computation runs at multiple scales of resolution,
such a restriction does not prevent the algerithm from finding regions of arbi-
trarily large size: the boundaries of large regions will be local to one another
at a sufficiently coarse scale. Furthermore, once a symmetry region has been
hypothesized at a coarse scale, it can be efficiently tracked down to finer scales
of representation. Thus, a local multi-scale computation in which information is
passed between scales has the following properties:

* it is accurate;
* it is efficient; and

* it is able to detect large features.

The restriction imposed by locality is that, in order to be salien t, & region must
show up as salient at a scale coarse enough that the symmetries forming the region
are local. That is, if the region is elongated, it must show up at a scale at which
its width is small. If the region is round, it must show up at a =cale at which its
radius is small. My experience with symmelry representations of objects indicates
that, at least to a first approximation, the potential symmetry regions pruned by
the locality restriction are not perceptually salient. For example, Figure 3 shows
the smoothed local symmetries of the oak leaf from Chapter 1 at a fine scale of
resolution. The symmetries near the boundaries seem perceptually salient: they
mark the axes of elongated or pointed regions in the figure. However, symmetries



whaose boundaries are far apart relative to the area of the symmetry region, such as
many of the symmetries with axes near the center of the leal, are not perceptually
salient. The axes of these symmetries strike people as meaningless noise in the
analysis. It is not just that people consider these regions counter-intuitive: people
seemn perplexed that one would even consider symmetries between two random
pieces of houndary in totally unrelated parts of the image.
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Figure 6-3. The Smoothed Local Symmetries of an cak leal. The darker lines are the boandaries
of the leaf and the finer lines are the axes of Smoothed Local Symmetries, Symmetries whose
boundaries are close to one another compared to their lengihs seem salient, whereas symmetries
whose boundaries are far apart for their lengths seem like random junk in the analysiz. This iz
perceptual evidence for locality of computation. (The vertical line represents a color houndary in
the background on which the leal was photographed. |

One description of why non-lecal Smoothed Local Symmetries are bad is that
to be perceptually salient, an SLS region must have a low enough ratio of width
to length (the so-called “aspecﬁ ratio”™ of the region). For round regions, there
is an analogous measure: the angular length of the boundary around the center
of the region. Heide [1984) and Connell (1985) use aspect ratio to filter out
undesirable svmmetry regions after they have been hypothesized. However, it is
not clear how to use this measure to avold computing most of these regions in
the first place. For regions without much oeclusion, the locality constraint will
tend to keep the algorithm from hypothesizing regions with bad aspect ratios.
This happens because a region with a good aspect ratio will tend to survive the



smoothing and sampling process until it is small enough to be detected. However,
in general, the two constraints do not correlate exactly, particularly when shapes
are attached or occlude one another,

G.4. Inter-scale communication and attention

The current implementation for computing Local Rotational Symmetries pro-
coeds from coarse-scale representations to fine-scale representations. For each
scale, it does an exhaustive computation of symmetries whose centers lie within a
fixed search radius of their boundary points. It also computes wider-scale symme-
tries for centers and boundary points suggested by regions found at the previous

(eoarser) scale.

My algorithm for local computation and inter-scale suggestions may be an
over-simplification of the algorithm that people use. For example, the algorithm
people use might be a more complex iterative process of doing an exhaustive
computation, focussing attention on only the most promising locations, and then
extending the exhaustive computation to & wider search radius for just those
aelected locations. For example, it would be easv to produce a version of my
algorithm in which the exhaustive search radius varied depending on the density
of boundaries in the image. This would have the effect that certain types of
TEgions [E.E- a region with a boundary made up of many disjoint sections of
boundary or & region bounded by a thin line}) would be salient when they are the
only thing in the image, as in Figure 4 I:]EF[::I.. but not when there s clutter around
them, as in Figure 4 (right}.

Context or other features might also be used to direct attention to specific
portions of the image or to specific features. For example, regions that might not
be noticed in a neutral context may be found il they are specifically pointed out.
Sections of boundary with close to constant local curvature might trigger a search
at the center predicted by their curvature, bevond the usual search radius. Since
the data dependencies in the LES computation are extremelv local, it would not
he difficult to produce a version of the computation which could focus attention
on sugpested locations, e.g. by locally widening parameter settings. [ do not
know whether any of these things actually happen in human shape perception.
Rather, they are examples of factors that it would be worth considering when
using detailed paychological evidence to refine this theory of shape representation.



Figure 6-4. Effect of clutter on salience of regions Om the left are shown a round region whose
boundary is broken up by ecelosion (top), a connected line, and a round figure whose boundary is
a dashed line (bottom). These regions are all lege salient when buried in clutter, as in the Bgures

on the right



6.5. Summary

This chapter has described a number of principles involved in computing shape

representations at multiple scales of detail. The key ideas involved are;

L

Representations should be able 10 change gualitatively between scales:

The best of the available techniques for producing multiple-scale representa-
tions of visual input is smoothing the grey-scale image, because it is mare
robust than boundary smoothing and because it produces gualitative changes
between scales;

Computation should be kept local, both for efficiency and because non-local
relationships are not perceptually salient:

Representations at different scales should be related and summarized in a type
of analysis similar to Witkin’s scale-space analysis of 1-dimensional signals,

These ideas, with the exception of & full scale-space type analysis, were used in the
current implementation of the algorithm for computing Local Rotational Symme-

try regions. Similar techniques should be also be used in computing Smoothed

Local Symmetries. However, the only change that was easy lo make, without

extensive re-implementation, was to use image smoothing in place of boundary

smoothing.



Chapter 7: Conclusion and Future work

In this thesis, | have developed a representation for round regions, Local Ro-

tational Symmetries, that can serve as a companion to the Smoothed Local Sym-

metry representation for elengated regions. An algorithm for computing these

representations has been implemented which computes perceptually reasonable

regions from unretouched images of real objects. The high points of this repre-

sentation include:

L

Local Rotational Symmetries are a robust, perceptually reasonable represen-
tation for round regions. Smoothed Local Symmetries are unstable on such
regions and do not assign them perceptually reasonable analyses.

These two types of local symmetry representations (1) represent a wider class
of shapes than competing representations, at lower computational cost, (2]
incorporate a constructive definition of axis or center of a region, and (3]
represent and relate both regions and their boundaries.

Shapes intermediate between two types of shape analysis can have multiple
analyses, allowing the shape representation as a whole to be stable.

The local multiple-scale computation with information passed between scales
allows (1) efficient computation, (2) detection of arbitrarily large features, (3)
highly detailed and accurate results, (4) representations that are stable under
small changes in the input, (5) use of suggestions from coarse scales to focus

fine-scale processing.

The locality restriction causes the represeniation to avoid generating a class
of symmetries that are not perceptually salient.

The use of grey-scale image smoothing rather than boundary smoothing al-
lows gualitative changes in representation of the sort required for practical
reasoning and makes the algorithm work robustly in the presence of gaps and
other defects in region boundaries,

The implementation works robustly on unretouched, natural input images, It
does not impose special restriclions such as requiring closed boundaries.

In the previous chapters, 1 have mentioned a number of areas in which [uture

work could extend or refine the theories presented here:



Using detailed psychological and psychophysical evidence about human per-
ceptions of shape to refine evaluation metrics, parameters, and algorithms for
finding eptimal regions;

Using mathematical techniques commeoenly used in low-level vision, such as
regularization, to find a better algorithm for the optimization problem:

Finding a version of the non-overlap constraint and non-maximum suppression
that is rebust and agrees with human perceptions:

Developing a representation for straight lines and the 2-dimensional half-open
regions they bound;

Developing a region color constraint that is robust and agrees with human

pereeplions;
Extending the representations and algorithms to 3-dimensional ohjects;

Developing a system for building symbolic representations for round regions
from the LRS output;

Developing a system for building representations for complex regions from the
LRS and 5LS output;

Finding algorithms for arbitrating between alternative representations for re-
gions, using both SLS and LRS analyses;

Building a system to match regions between scales to produce a scale-space
analysis of regions in a 2-I) image;

Finding methods for allowing selected long thin regions to be smoothed as if
they were the houndaries of grey-scale regions.

Another topic for further research is to build a new implementation of the code

for computing Smoothed Local Symmetries, incorporating the following ideas

from my LRS implementation:

L]

Detecting the infinite degeneracies on round regions and lines in a principled
manner;

Smoothing the grey-scale image, rather than the boundaries:

Matching regions from adjacent scales so that information can be passed be-

tween scales:

Using a local multi-scale algorithm to compute exact symmetries:



# Perhaps allowing inexact symmetries, particularly when searching at a fine

scale for a region found at a coarser scale.

In fact, the Smoothed Local Symmeiry code used to produce examples for this
thesis has already been altered so that it produces representations at multiple
scales by smoothing the grev-scale image, rather than by smoothing the bound-
aries. This allows the code to run robustly on the region boundaries found in real
images, without requiring that the bounding contour of an object be extracted

first.
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Appendix: The Code

The following pages list the ZETALISP code for computing Local Rotational
Symmetry regions. Only the code for computing the symmetries and building
connected regions is shown, The complete system alse contains code for smmoot bi-
ing and sampling images, code for displaving results and partial results, code for
saving results in files and and reading them back in. and the code for the edge
finder described in Canny {1983).
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o Dverview
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. The input to the code is8 a list of objects of flaver

s Irg-analyeis-at-scale, Initially, each of these

13 analyses contains only a smoothed version of the original
inage and the boundaries found by the edge finder for that image.
The analyses are typically created so that the image is shrunk

Ve by a factor of sqrt(2) in each dimension between adjacent

Pi scales. The analyses are ordered in the list, with coarser

i scales first.

{defflavor lrs-analysie-at-scale
(expansion-factor ;; how much image was shrunk

computed-p ;; have regiong been found for this scale yet?
gmoothed-image ,; smoothed grey-scale image
orientation-array ;; boundariea from this image
all-regions . liet of LRS regions for all centers
best-regions .: LRS regione after non-maximum suppression

suggestion-center-liat ;. center locatione suggested by
;. regions at previous coarser scale
suggestions) . suggestions from previcus (coarser) scale
()
gettable-instance-variables
rgpttable-inetance-variables)

.; To compute LRS regions, the functien lrs-multi-scale is called
S on this list of analysis objects.

e e S S D B R R EEEEEEEEEETSST——SSssEsssSEEE=

I ——————— e

{defmethod (lrs-analysis-at-scale :compute-regions)
{#optional (window nil) (max-radius 1B}
(max-deviation 500) (max-angle-distance GO0}
(min-evaluation 5.0) (max-average-deviation 200)
{min-percentage 10) (max-percentage-for-distinctness b0J})
(eetq all-regions
(compute-all-regions-for-inage-with-gnggestions
asrisntation-array suggestion-center-list suggestions
window nax-radios max-deviation nax-angle-distance
min-evaluation max-average-deviation min-percentage
max-percentage-for-distinctness))
{(format t "“%Picking best regions")
(getg best-regione
(get-local-best-regions
all-regions max-percentage-for-distinctness))
(setg computed-p t))
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v: Called for eide-effect.
i This function computes LRS regione at multiple scales, passing
down suggestions from coarser to finer scales.
i When the best LRS regione are computed for a given scale, they
are digplayed on <window>
{defun lrs-multi-scale {(converted-nmeltdown
koptional (window nil) (ecale 1.0)
{nax-radius &)
(nax-deviation B00) (max-angle-digtance B0OO)
(min-evaluation 7.0) (max-average-deviation 200)
(min-percentage 10)
(max-percentage-for-digtinctness 50)
(expansion-factor (sgrt 2)))
{do {{nylist converted-neltdown (cdr myliet)))
{{null mylist))
(forpat t """ % WComputing regions for ascale “a"
(send (car mylist) ' expansion-factor))
(eend {car aylist) '.compute-regions
nil ; ;window
max-radius max-deviation max-angle-distance
min-evaluation max-average-deviation
min-percentage max-percentage-for-distinctness)
{format t ""% a good regioms found"
(length {send (car mylist) ' best-regions)))
{dolist (region (send (car myliet) ':best-regions))
(format t ® “a® (car region)))
{cond ((and window (send (car mylist) ':best-regions))
(eend window ' nrefresh)
(send window ':set-cursorpes 50 6Q)
(eend window ' gtring-out
{format nil *The best regions for scale “a."
(eend (car mylist) *:expansion-factor))})
{gend window *:set-cursorpos O Q)
(send (car mylist)
';dot-display-orientation-array
window 100 100 scale)
{dolist (region (send (car myliet) ':best-regiona))
Ediapluy-:anzer—hnundnry (nth 3 region)
(nth 1 regiom)
(nth 2 region)
window 100 100
(+ scale
(eend (car mylist)

. '-expansion-factor))))))
(eand ((not (null (cdr mylist)))

(pass-down-suggestions (car mylist) (cadr nylist)
expansion-factor)))))
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{defun pass-down-guggesticone {current-analysis next-analysls expansion-factor)

{format t ""%Adding “& suggestions. "
{length (pend current-analysis *:best-regions)))
{let {{count O})
(setq count O)
{dolist (region (gend current-analysis " best-regions))
{getq count {1+ count))
(format t ® ~“a&® count)
(send next-analysis
'-pet-auggeEtione
[cons
(nake-suggestion-from-region
region
(// (send current-analysis ':expansion-facter)
{send next-analysis ' expansion-factor))
expansion-factor)
{gend next-analysis '-suggestioms)}}))
{dolist {suggestion (send next-analysis *;suggestions))
(doliet {center (car suggestion))
{cond ((not (member center
(gend next-analysis ':suggestion-center-list}l})
{send next-analysis ':set-suggesticn-center-list

{cons center
{send next-analysis ':suggestion-center-1iet}))}1)))

i

;; Comaputation of radii and erientations

e ..______......._________.,..______..-----r——————-----r-——--—--l.

. For each boundary-point lecatien in nask, mask containa orientation of
i point from mask center.
{defun nake-center-orientation-mask (max-radius)
{1et ((mask (make-array (list (1+ (= 2 pax-radius})
(i+ (= 2 max-radiue)))
"rtype 'art-16b))
(aize {1+ (+ 2 max-radius}))
(delta-x nil)
(delta-y nil)
(orientation nil))
(dotines [y size)
{eetq delte-y (- y max-radius))
(dotines (x size)
(setq delta-x (- x max-radius))
{cond {{and (= 0 delta-x)
{= 0 delta-y)))

(t
(setq ocrientation (ceiling (// (+ 1800 (atan delta-y delta-x))
pill)l
{cond ((€<= orientation 0) ;; i.e.., I think, if equal to zerc

{setq orientation {+ orientation 3600))))
(aset orientation mask x y)))))
rask))
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.+ For each boundary-peint location in mask, mask containe radius froesm
i painrt to mask center.
(defun nake-radius-mask-without-missing-cornere (min-radius max-radius)
(let ({mask (make-array (list (1+ (+ 2 max-radius))
01+ {(+ 2 max-radius)))
"type ‘art-16b})
(size (1+ (* 2 max-radiue)))
(delta-x nil)
(delta-y nil)
(radius nil))
{fillarray mask '(3)}
{dotimes (y size)
(eetq delta-y (- y max-radins))
(dotimes (x size)
{setq delta-x (- x nmax-radius))
(eetq radius (floor (sgrt (+ (* delta-x delta-x)

{* delta-y delta-yl)1))
{cond ((>= radius min-radius)

{aset radius mask x y)}}))
mask) )

(defvar *cr-mask-nax-radius* 20)

(defvar *cm-radiuvs-mask*
(make-radiue-mask-without-missing-corners 0 *cn-mask-max-radiuss))

(defrar =c¢m-orientation-magk+
(make-center-orientation-mask *cm-pask-max-radius=))

Uses one masx of size 20 to compute radii.
Estimates values for larger displacements based on values from
the small array
(defun get-estimated-radivs (delta-x delta-y)
(do* ((factor 1 (= 2 factor)))
((and (<= (abs (round delta-x factor)) +cm-mask-max-radiuge)
(¢= (abs (round delta-y factor)) *cm-mask-max-radius=))
(* factor (aref *cm-radius-masks
(+ (round delta-x factor) *cm-mask-max-radiuss)
(+ (round delta-y factor) =cm-nask-max-radius=)}))))}

i Uses one mask of size 20 to compute crientations.
. Estinates values for larger displacements based on values from
‘i the small array.
(defun get-estimated-orientation (delta-x delta-y)
(do* ({facter 1 (+ 2 factor)))
({and (<= (abe (round delta-x factor)) *cm-magk-max-radius*)

{¢= {abs (round delta-y factor)) =cm-mask-max-radiuss+}}
(aref =cm-oriemtation-magk+*

(+ (round delta-x factor) =cm-mask-max-radius*)
(+ (round delta-y factor) *cm-mask-max-radine+}}J1})
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;. The twe orientatlons ghould be in the range (0,6 3600]
{defun orientation-distance (orientation-1 orientation-2)
. normalize crientatiem-1 to a coordinate eystem in which
crientation-2 i zero degrees
(setq orientation-1 (- orientatien-1 orientation-2})
{comd ({> erientatiom-1 1800}
{getq orientation-1 (- erientation-l 3600)))
{{¢ orientation-1 -1800)
{setq orientatiom-1 (+ eriemtaticn-1 3600)10)
;: get the distance between prientation-1 and either 0 or 1800,
HH depending on which is cloger
{rin {abs orientation=-1}
(- 1800 (abe oriemtatiomn-1)}))

.. Box for storing pointe as displacenents Irom center

.. The idea behind these functions is to be able to store points
; at any digplacement and be able to give at least an estinate
of their orientation and radius, as fast ae possible.
H Since a few computations create pointe with large displacements,
.. but most computation is done with points closer in, these
.+ gtructures provide fast access to the near pointe while atill
.. allowing one te add points further away.

{defetruct (center-map :naned

(:print *[map of points from center ("a, a)]”
(center-map-center-x center-map)
(center-nmap-center-y center-mapl)
{EOnc-name)

center-x

center-y

full=nap

full-pap-radins

sparse-list) ;. an assoc list

{defun create-center-map (max-radius center-x center-y)
(make-center-nap

center-x center-x

center-y center-y

full-map (make-array {list (1+ (+ 2 max-radius))
{1+ (= 2 pax-radius)))

"itype tart-16b)
full-map-radius max-radius
sparse-list mnil})

(defun map-max-radius (center-map)
{let {{current-pex-radius (center-map-full-map-radius center-mapl})
{dolist (point (center-nap-sparse-list center-map))
(setqg current-nax-radius
(max current-nax-radius

(car (ear point))
{eadr (car point))}l))

current-max-radiue))
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(defun copy-center-pap (old-map new-map-radius)
{let {(new-map (create-center-map new-map-radius

(center-map-center-x old-nap)
(center-map-center-y old-map)))
(old-map-radius (center-map-full-map-radius old-map))
{zemp-value))
(de ((delta-x (- old-map-radius) (1+ delta-x)))
({> delta-x eld-map-radiua))
(do (({delta-y (- eld-map-radius) (1+ delta=y)))
((> delta-y old-map-radius))
{setq temp-value (get-point delta-x delta-y sld-map))
(cond ((> temp-value 0)
(add-point temp-value delta-x delta-y new-map)))))
(dolist {peint (center-map-sparse-list old-map))
(add-point (cadr point)
tear (car point))
(cadr (car point))
new-map) )
new-napl)

i: Deviations are always made >0 2o that O can indicate
i the absence of a boundary point.
{defun add-point (deviation delta-x delta-y center-map)
(cond ({= O deviation)
{setqg deviation 1)))
{cond {({and (<= (abe delta-x)
(center-map-full-map-radius center-map))
(<= (abs delta-y)
(center-map-full-map-radius center-map))})
i.e. 1t 18 in the area of the full map
{aset deviation
{center-map-full-map center-map)
(+ delta-x (center-map-full-map-radius center-map))

{+ delta-y (center-map-full-map-radius center-map)}])
[t

(alter-center-map center-map
sparse-list
{cons
(list (list delta-x delta-y)
deviation)

} (center-nap-sparse-list center-map)))))
il
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- returns deviation, or 0 if no point at that lecatiom
(defun get-point (delta-x delta-y center-map)
{cond {{and (<= (abs delta-x)
{center-map-full-pap-radiue center-map))
(<= (abs delta-y)
{center-map-full-nap-radins center-map))})
c: i.e. it is in the area of the full map
(aref (centeér-map-full-map center-nap)
{+ delta-x (center-pap-full-pap-radius center-nap))
(+ delta-y (center-nap-full-nap-radius center-napl)))
(t ;: otherwise it is in the aggsc list
[(let [{raw-result (assoc (list delta-x delta-vy)
(center-map-gparse-list center-map)l))
{eond (({null raw-result)
o)
(t
(cadr raw-result}))}}])

ey e S T L L L T T T
1

i+ Computing a map of deviatione from normal for a center lecation

BT o e o
[

i Are there any points in this region?
{defun quick-check (orientation-array center-x center-y max-radius)
(let ((x-size (car (array-dimensions orientation-array)))
{(y-size (cadr (array-dimensioms orientatiom-array))})
{do ((real-x (max O (- center-x max-radius)) (1+ real-x)))
((» real-x {(min (+ center-x max-radius) x-size)]
nil)
{cond ((de ((real-y (max O (- center-y max-radius))
{1+ real-y}]})
({(> real-y (min (+ center-y max-radius) y-size))
nill
{cond ({and {array-in-bounds-p orientation-array real-x real-y)
(> {aref orientatiom-array real-x real-y) 0}
{return t}}))
(return t})31))

{defun map-good-centers (orientation-array max-radius)
(let ((center-map (make-equal-hash-table))
{x-gize (car (array-dimensions orientatiom-array)))
(y-size (cadr {array-dimensions erientation-array))])
(format t "TH") _
{do ({center-x (- max-radius] {1+ center-x)))
({> center-x (+ max-radius x-size)))
(format t * "a® (- (+ max-radius x-size) center-x})
{do {(center-y (- max-radiue) (1+ center-y)})
{{> center-y {+ max-radive y-size)})
{cond {{gquick-check crientation-array center-x center-y max-radius)
{puthash (list center-x center-y)
{compute-nap-for-center orientaticn-array
center-x centeér-y
max-radius)
center-mapl i)
center-map) )
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.. correction for funny orientation conventien in Canny code
(defnacro correct-crientation (orientation-array x y)
‘(let ((raw-orientation {aref ,orientation-array .x .y}))
(cond ((> raw-erientation 1800)
[ raw-orientation 18003}
(t (+ raw-erientation 180071331)

i+ Excludes black points in the & neighbors of the center.
. Array returned containe the deviations from normality for boundary
i+ pointe with deviation below mex-deviation.
. These deviations are always at least 1, 8o that zerce in the BFFay
can indicate absence of boundary point.
I1 you supply a center-map, it will clear it and use it.
You are responsible for seeing that it was the right radiua’
(defun compute-map-for-center (orientation-array center-x center-y max-radius

koptional {center-map nil))
(cond (center-map
(alter-center-pap center-map
aparse-list nil
center-x center-x
center-y center-y)
(fillarray (center-map-full-map center-map) '(0)))
(t
(eetq center-map {ereate-center-map max-radius center-x center-y31l}
(do ((delta-x (- max-radius) (1+ delta-x))
(real-x (- center-x max-radius) {1+ real-x)})
((> delta-x max-radius))
{do ({delta-y (- max-radius) (1+ delta-y)})
{real-y (- center-y max-radius) (1+ real-y))})
{({> delta-y max-radius])
lcond ({and (array-in-bounde-p sorientation-array
real-x real-y)
{or (> (abse delta-x)] 1)
(> (abe delta-y) 1}))
(cond ((> (aref orientatien-array real-x real-y) 0O}
;; 1.e. there is a boundary peint at thie lecation
(add-point (orientaticn-distance
(get-estimated-orientation delta-x delta-v)
{eorrect-orientation
orientation-array real-x real-y))
delta-x delta-y

center-mapl)li)}))
center-map)
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Get regions for image

-_—____.1--____"-—__—___.-—___-—————_—_—-r———dl———————_

{defun camputa-ull-rzgiun:v!nr-imnge-uith-nuggeatiuna
{orientation-array suggestion-centers suggestions
koptional {window nil) (max-radius 15)
(nax-deviation 500) (max-angle-distance BOO)
fmin-evaluation 5.0) (max-average-deviation 200)
(min-percentage 10) (max-percentage-for-distinctnase 50))
{let ({resultlist nil)
{center-nap (create-center-map max-radius 0 0))
(x-size (car (array-dirensions erientation-array)))
(y-size (cadr (array-dinensions erientation-arrayll))
(format t ""%")
{do ((center-x (- max-radius) (1+ center-x)})
(({» center-x (+ max-radius x-size)))
(format t * "a" (- (+ max-radius x-size) center-xl)
{do (({center-y (- max-radius) (1+ center-yll)
((>» center-y (+ max-radius y-size)))
(setq resultlist
{append {:nlput--re;iunn-1nr—nenter-uith-uu;gestiun:
srientation-array suggestione center-x center-y window
center-Rap
pax-radius max-deviation pax-angle-distance
min-evaluation max-average-deviation min-percentage
uax-putcantagt-!nr-diutin:tneau)
reaultlist})))
(fornat t ""“%and "a centers provided by suggestions:
{length suggestion-centers))
{dolist (center-point suggestion-centers)
{cond ((and (or (< {car center-point} (- nax-radius) )
{» {car center-point) (+ max-radius x-size)))
for (¢ [cadr center-point) (- max-radius))
(> (cadr center-peint) (+ max-radius y-size))))
(format t ".")
.+ i g, center-peint in suggestion wasn't in exhaustive search
(setg resultlist
[append {:cmpute—ra;iuna-iﬂr~cunmtr-iith-anggeatiun;
orientation-array suggestions
{ear center-point) (cadr center-peint) window
center-map
max-radius max-deviation max-angle-distance
nin-evaluation max-average-deviation
pin-percentage
ulx-parcunta;:—tur-diatin;tngaa}
reenltlist}))))

resultlist})

.. gach region ig of the form (evaluation center-x center-y boundary)
{defun get-best (regionlist)
flet (({current-best (car regienlist)))
{dolist (region regionlist)
(cond ((» (car region) (car current-best})
(setg current-best region}) )}
current-best))
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{defun get-local-best-regions (regionlist max-percentage-distinct)
[(let [[resultlist nill)
(do ((current-best (get-best regionlist) (get-beat myregiomlist))
(myregionlist regionlist)
{templist nil mill)
{{null curremt-best) resultlist)
(push current-best resultlist)
(dolist {region myregionlist)
{cond {(not (boundary-similar (nth 3 region) (nth 3 current-best)
(= {nth 1 region) (nth 1 current-best))
(- (nth 2 region) (nth 2 current-best))
rax-percentage-diatinet))
(push region templist})}))
[setqg myregionliast templist)
(format £ " ~a" (length myregionlist))
(cond {(null myregionlist)
(return resultlist)}}))})

e e e e v e i v i e e e e e P BPCEN R NP NP MW TE NF NN NN M

i+ Get possible regions for center

BT e e e e e e e e e i v
]

v Buggestions is a list of items of the form
ii <list of center points, list of boundary pointe>
{defun add-suggestions
(center-map center-x center-y suggestions orientation-array)
(dolist {suggestion suggestions)
(cend ({member {list center-x center-y) (car suggestion))
(dolist {boundary-peint (cadr suggestion))
{cend {{and (array-in-bounds-p orientation-array
[+ center-x (car boundary-point))
(+ center-y {cadr boundary-point)))
" {or (> (abs (car boundary-peintl}) 1)
(> (abs (car boundary-point)) 1})])
{eond ((> (aref orientation-array
(+ center-x (car boundary-peint))
} {+ center-y (cadr boundary-peint)}))
O
{add-point
{orientation-distance
(get-estimated-orientation
{car boundary-point)
{cadr boundary-point))
{correct-orientation
orientation-array
[+ center-x (car boundary-point))
(+ center-y (cadr boundary-point))))
[car boundary-point)
(cadr boundary-point)
center-map)})))3)))
center-nap)
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;: Returne a list of regioms
{detun compute-regions-for-center-with-suggestions
(erientation-array suggestions center-x center-y
koptional (window nil) (center-map nil) (max-radiue 16
(max-deviation 500) (max-angle-distance 500)
(min-evaluation 5. 0) (max-average-deviation 200}
(min-percentage 10) {(max-percentage-for-distinctness 50))

{let ((suggestion-p nil)
(resultlist nil)
(temp-map))
(dolist (suggestion suggesticns)
(cond ((nember (liet center-x center-y) (car suggestion))
(eetg suggestion-p t))})
{eond ({or (guick-check orientation-array center-x center-y rax-radiue)
euggestion-pl
(setq tenp-map
{add-euggestions
{conpute-map-for-center orientation-array
center-x center-y
max-radiue center-map)
center-x center-y
suggeetions orientation-array))
;; expand out if neceseary
{cond ((> (length (center-pap-sparse-list temp-map))
30)
(format t "#")
.:"(new map radius “a)" (map-max-radius temp-map}]
(setq temp-nap (copy-center-map temp-map
(map-max-radiue temp-map)})))
(setg resultliset
(get-local-maxima
{nake-all-regions
temp-nap
nex-deviation max-angle-distance
min-evaluation max-average-deviation min-percentage)
nax-percentage-for-distinctne Be)l))

{cond ({and resultlist window)
{gend window ' nrefresh)
{doliet (regiom resultlist)
{display-center-boundary
{nth 3 regicn) (nth 1 regien) (nth I region)
window 100 100 1.0)0)))

resultligt))

{(defun peint-is-in-boundary (point-x point-y boundary)
{de ({mylist boundary (edr mylist)})
{({null mylist) nil)
{cond ((and (= peint-x (nth 2 (car mylist))}
(= point-y (nth 3 (car mylist))})

(return t}))))
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;. HOT SYMMETRIC in the two Boundaries

;: delta-center-x is the distance from better-boundary's center ta
s new-boundary's center, and similarly for delta-center-y
(defun boundary-eimilar

(rew-boundary better-boundary delta-center-x delta-center-y

foptional (max-percentage bO))
{let {(summ 0))

(dolist (point new-boundary)

(cond ({peint-is-in-boundary (+ (nth 2 point) delta-center-x)
(+ (nth 3 point) delta-center-y)
better-boundary)

{setq summ (1+ summ}))})
(cond ((> (ceiling (= summ 100)

(length new-beundary)) ;. percentage same polinte
nax-percentage)

T)
(t NIL))))

returns packages of <evaluatien center-x center-y boundary>
(defun make-all-regions (center-map

koptional

(max-deviation 500)
(max-angle-dietance S00)
(min-evaluation 6.0)
(max-average-deviation 200)

(min-percentage 10))
{let ((resultlist nil)

(current-evaluation nill)
{(do ((current-max-deviation 200 (+ 50 current-max-deviation)))
((> current-max-deviation max-deviation))
{dolist (boundary
(make-all-joins
(gather-all-curves center-map current-max-deviation)
current-nax-deviation max-angle-distance))
(setq current-evaluation
(get-evaluation-of -boundary
boundary min-percentage max-average-deviation))
{cond ((>*= current-evaluoation
min-evaluation)
{push (list current-evaluation
(center-map-center-x center-map)
(center-sap-center-y center-map)
boundary)
resultlist))}))
resultlist))

i Eame center!liil

{defun any-boundary-similar (new-boundary better-boundarylist max-percentage)
(do ((mylist better-boundarylist (cdr mylist)}))
((null mylist) nil)
{cond ((boundary-similar (mth 3 new-boundary)
(nth 3 (car myliat))

0 0 max-percentage)
{return T))}))
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.+ all boundaries from samne Center
.. sach boundary is & package <evaluation center-x ceater-y boundary>
{defun get-local-maxima (boundarylist pax-percentage)
(let {{newlist
{gort {copylist boundaryliet)
{function (lambda (boundaryl boundary2)
{> (car boundaryl) (car boundary2)}i})})
(returnlist nill)
{dolist (boundary newlist)
{cond ({net {any-boundary-similar boundary returnlist nax-percentage) )
(push boundary returnlist))))
returnlist))

o = EEEEEE—mEASEAEEEEE-T—— S SffSEEET- - SSSSEEEmTss--——SSSsSSmnmEe

.- Gather connected curves for center

I ———————— RS il

.. Returns & curve going counter-clockwise containing the atarting peint
Halts curve at 3-way joine and gape. Expects point given it to be black
Leaves a 1 in temp-array at each of the peints in the curve.
.. Returns the new boundary and the altered version of tenp-list
{defun get-connected-curve (center-map start-x start-y max-deviation temp-map)
{cond ((= 0 (get-point start-x start-y center-nap))
(ferror nil
n"%pat connected curve called with non-black starting point.*)})
(let ((resultlist (list (list 'real (get-point start-x start-y center-map)
gtart-x start-y)l})
{add-peint 1 start-x start-y temp-map)
{do (({next-points (get-neighbors-pesitive center-map rtart-x start-y
max-deviation temp-map)
(get-neighbers-pesitive center-map next-x next-y
nax-deviation tenp-map))

{mext-x nil) (next-y nill)
{{not (= (length next-points) 1})})
{setq next-x (caar next-pointal)
(eetq next-y (cadar next-points))
{add-point 1 next-x next-y temp-map)
{push (cons 'real (cons (get-point next-x next-y center-nap)
{car mext-pointe)))
regultlist))
{setqg resultlist (nreverse regaltlist]))
{de ((next-points (get-neighbors-negative center-map start-x stari-y
max-deviation temp-nap)
{get-neighbors-negative center-map next-X next-y
max-deviation temp-map))
{next-x nil)
(mext-y nill}
{{not (= {lemgth next-points) 1))
(setg next-x (caar next-peints))
{setq mext-y (cadar next-points))
{add-point 1 mext-x next-y temp-map)
{push (cons 'real (cons (get-point next-x next-y center-map)
(car next-points)})
resultlist))
resultlist))
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(defmacro new-point-there-p (center-map x y max-deviation temp-map)
‘{and (= 0 (get-point ,x .y .temp-map))
(> (get-point ,x .y ,center-map) O)
(<= [get-point ,x .¥ .center-map) ,max-deviatien)))

;. returns a ligt of liste, each representing a boundary
(defun gather-all-curves (center-map max-deviation)

(let {({temp-nap (create-center-map
(center-map-full-map-radius center-map)
(center-map-center-x center-mnap)
(center-map-center-y center-map)))

{radiue {center-map-full-map-radiue center-nap))

(returnlist nil)

{(new-boundary nil))
; all the points in the full array of the map

(de ((x (- radiue) (1+ x)1))

((> x radius))

(do ((y (- radius) (1+ y)})
({> y radius})
{cond ((new-point-there-p center-mnep x y max-deviation temp-map)
(setq new-boundary
({get-connected-curve
center-map x y max-deviation temp-map))}
{push new-boundary returnlist}})))}
(dolist (point (center-map-sparse-list center-map))
{cond ((new-point-there-p center-map
(caar peint) (cadar point)
nax-deviation temp-map)
(setq new-boundary
(get-connected-curve center-map (caar point) (cadar point)
max-deviation temp-map))

{push new-boundary returnlist)}}}
returnliet) )

vi Going counter-clockwise, i.e. clockwise on disepley
{defun get-neighbors-positive (center-map x y max-deviation temp-list)
(let ((returnliet nil))
(do ((new-x (1- x) (1+ Rew-x)))
({> new-x (1+ x=3})
(do {((new-¥ [(1- ¥) {1+ new-y)}})
{((> new-y {1+ y1))
(cond {{and (not (and (= x new-x) (= ¥ new-y)})
{(new-point-there-p
center-map new-x new-y max-deviation temp-list)
(> (- (* new-y x) (* new-x y}) 0))

(pueh (list new-x new-y) returnliat))}])
returnlist))
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;; Going clockeise, i.e. counter-clockwiee on display
{defun get-neighbore-negative {center-map x ¥ max-deviation temp-list)
{1et ((returnlist nill)
{do ((new-x (1- x) {1+ new-x}]})
({» new-x {1+ x}))
{do {{new-y {1- y)} (1+ new-y1))
({> new-y (1+ ¥)))
fcond ({and (not (and (= x new-x) (= y new-y)})
(new-point-there-p
center-map new-x new-y max-deviation temp-list)
{€ (= (= new-y x) (* mew-x y}) 0})
{push {list new-x new-y) returnlist))))]
returnlist))

e ———————————— P LR E L L et

.. Deseribing and evaluating & region

I ——— el

{defun new-boundary-clesed-p (boundary)
fend (> (length boundary) 2)
(¢= (abs (- (nth 2 (car beundary})
{nth 2 (car (last boundaryl}))})}
1)

{¢= (abe (- (nth 3 (car boundary))
{nth 3 (car (last boundary)}}))
133

{defun get-average-deviation (boundary)
{cond ({null boundary)
{ferror nil " %Can't evaluate null boundary. "))
(t (let ((total-deviation O)
(nunber-of -points 0))
{delist (point boundary)
{setq total-deviation {+ total-deviation (nth 1 point)l)
{getq number-of-pointe (1+ nunber-of -pointsal )}
{ceiling total-deviation nusber-of-paints)li}]

{defun get-percent-real (boundary)
{cond ((null boundary}
(ferror nil = %Can’t evaluate null boundary."))
(t
{let ({total-real-pointe O}
(tetal-points 0))
{dolist (point boundary)
(getg total-points (1+ total-pointe))
(cond ((eq (nth O peint) 'REAL}
{setq total-real-points (1+ total-real-pointsl)i}))
(ceiling (* 100 total-real-points) total-points})}))
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(defun get-angle-percentage (boundary)
Ccond ({null boundary) 0)
{{new-boundary-¢losed-p boundary) 100)
{t (let* [{start-orientation
(get-estirated-orientation (nth 2 (car boundary))
(nth 3 {car boundary)}))
{current-orientatisn-difference nil)
(full=loop-count O}
(past-180-degree-flag nil))
(dolist {point boundary)
{setq current-orientation-difference
(- (get-estimated-orientation (nth 2 peint) (nth 3 point))
start-orientaticn))
{eond ((< current-orientation-difference 0}
(Betg current-orientation-difference
{+ current-orientation-difference 3800))1))
{cond ((and past-180-degree-flag
(< current-orientation-difference 1800))
(Getq past-180-degree-flag nil)
(setq full-leop-count (1+ full-loop-count])))}
({and (>= current-orientation-difference 3300)
(not past-180-degree-Tlagl)
i+ Ehig case happens on adjacent points
if estimated orientation is off so as to Bcrew up
i+ Lhe relative order of their orientations (it can!)
{setg current-orientation-difference 0}))
[{>= current-orientation-difference 1800)
(setq past-180-degree-flag t))))
{+ (= full-leop-count 100} ;; length of full loops around center
(ceiling
current-orientation-difference 368)))1))
i length of last partial loop

{defun get-evaluation-of-boundary (boundary min-percentage
rax-deviation)
{let {({deviation (get-average-deviation boundary))
{nn;ln—per:entu;e {5et-nn;1t'per:entn5e boundary) )
(cond [{er (< angle-percentage min-percentage)
{* deviation max-deviation))
o)
{(new-boundary-closed-p boundary)
[
(* (min angle-percentage 100)
(egrt (// 1.0 deviation)))
{ (ceiling (get-percent-real boundary) 50)))
t
[+
{#+ (min angle-percentage G0)
(egqrt (/S 1.0 deviation)))
(ceiling (get-percent-real beundary) 50)))}))
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Making joins fer a center

SR L T T e—,
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{defun nake-all-joins (boundarylist nax-deviation max-angle-distance)
{let ((boundaryliet (sort (copyliet boundarylist)
{(function {lambda (boundaryl boundaryd)
{> {length boundaryl)
(length boundary2}}))})
(returnlist nil))
{eond ((null beundarylist)

nill

it

{do ((boundary (car boundaryliset))

(boundaries boundarylist)

(added-piece nil nil))
(({aull boundaries)

{push boundary returnlist))
(setq added-piece (best-positive-extension
boundary boundaries

nax-deviation max-angle-distance})
{cond ((eq added-piece boundary)

- i, e. best extension was to close boundary
(setq boundaries (remove added-piece boundaries))
(push {close-boundary boundary) returnlist)

(eetq boundary (car boundarylistl))
[(added-piece

[(eetq boundaries

{remove boundary (remove added-piece boundaries)))

{setg boundary (join-boundaries boundary added-pilece))
{push boundary boundaries))

;; order of execution important here!
(t

{setg added-piece (best-negative-extension
boundary boundaries

max-deviation max-angle-distance))
{(cond ({eq added-piece boundary)

{ferroer nil

""%This case ghould never happen, because
of symmetry"))
(added-piece

{setg boundaries (remove boundary

{remove added-piece boundaries)))
(eetg boundary

{join-boundaries added-piece boundaryl)
{push boundary boundaries))
(t

{push boundary returnlist)

{setq boundaries (remove boundary boundaries))
[cond (boundaries

(getq boundary (car boundaries))))3)10)
returnliat))))
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i tries te connect the boundaries in given order
i: if comnection i ok, return langth of connection
HS elee return NIL
(defmacro connection-okp (boundaryl beundary2 rax-angle-distance max-deviation)
'‘{let+ ((start-point (car (last ,beoundaryi)))
{end-point (car ,boundary2))
(shortest-distance-is-clockwise-p
(> (- (+ (nth 3 end-point) (nth 2 etart-point))
{* (nth 3 start-point) (nth 2 end-point)))

0)) . get-estimated-orientation can get relative orientations
i+ wWreng for points cloke together. This cendition
+i catches potential lossage due to this.
langle-distance

(- (get-estimated-orientation
(nth 2 end-point) (nth 3 end-point))
(get-estinated-orientation
(nth 2 start-peint) (nth 3 start-point))))
{length-of-connection (length-of-connection
{nth 2 start-peint) (nth 3 start-peint)

{nth 2 end-point) {nth 3 end-point)}))
(cond ({< angle-distance 0)
(setq angle-distance (+ angle-distance 3800)1))
{cond ({and shortest-distance-is-clockwise-p
(< angle-distance ,max-angle-distance)
[« (deviation-of-comnection
(nth 2 start-peint) (nth 3 start-point)
(nth 2 end-point) {ath 3 end-point))
max-deviation)
{« lemgth-of -connection
(nin (max (lemgth ,boundaryl) {length Jboundary2))
(+ 3 {min {length .boundaryi) (length ,boundary2))))))
length-of-connection)

(t nil))))

i returne the boundary from boundarylist that is the best
counter-clockwise extension of boundary, if BRY are
- acceptable extensions
(defun best-positive-extension (boundary boundarylist max-deviation
nax-angle-digtance)
(let ((best-boundary nil)
(begt-length TTTTT)
(current-length nil))
(dolist (added-boundary beundarylist)
(setq current-length .
{connection-okp
boundary added-boundary max-angle-distance max-deviation))
(cond ((and current-length
(< current-length best-length))
{setq best-boundary added-boundary)
{setq best-length current-length))))
best-boundary))
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.; returns the boundary from boundarylist that is the best
clockwise extension of boundary, if any are
£ acceptable extensions
(defun best-negative-extengion (boundary boundarylist max-deviatien
max-angle-distance)
{let ((best-boundary nil)
(beat-length TT777)
{current-length nil))
(dolist {added-boundary boundarylist)
(setq current-length
{connection-okp
gdded-boundary boundary max-angle-distance max-deviatiom))
(cond {{amd current-length
[« current-length best-length))
{setq best-boundary added-boundary)
(setqg best-length current-lengthli)}
best-boundary))

[e————————————————— L L L L L R R R R R R R R N R R R R R R R R R R

. Joining and displaying boundaries
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[defun display-center-boundary [(boundary center-x center-y
window
Eoptional
(reference-x 0) (reference-y 0)
(gcale 1.0))
{new-draw-x window center-x center-y reference-x reference-y scale)
{new-draw-crese window center-x center-y reference-x reference-y ecale)
{doliat (point boundary)
(cond ({eq 'REAL (nth O point))
(pend window ':draw-filled-in-circle
({normalize-a-point {+ (nth 2 point) center-x)
reference-x scale)
(normalize-a-point (+ (nth 3 point) center-y)
reference-y scale)
{ceiling scale)))
(t
(gend window ' draw-circle
(normalize-a-point {(+ (nth 2 point) center-x)
reference-x scale)
(nornalize-a-point {(+ (nth 3 point) center-y)
reference-y sBcale)
(ceiling scale)})})))

. Presumed to be both going counter-clockwise
(defun join-boundaries (boundaryl boundary2)
{append boundaryl
{connect-by-line(nth 2 (car (last boundaryl))}
(nth 3 {car (last boundaryl))}
(nth 2 {car boundary2))
(nth 3 {car boundary2}))
boundary2) )



{(defun clese-boundary (boundary)
(append boundary
(connect-by-line (nth 2 (car (last boundary)))
{nth 3 (car (last boundary)))
{nth 2 (car boundary))
(nth 3 (car boundary))}))

i+ Inward/eutward distinction not respected.
(defun orientation-of-points (start-x start-y end-x end-y)
(cond ({= end-x start-x)
o)
{t
(let {({orientation (floocr (+ QOO0
(ff (+ 1800 (atan (- end-y start-y)
(- end-x start-x}1)
pLIIIN)
(cond ({>= grientation 3600)
{{— erientation 3I600))
t
orientation}}}) )}

v+ & gquick estimate, hopefully not too gross
{defun deviatien-of-connection (start-x start-y end-x end-y)
{eeiling
0+
(orientation-distance
.. orientation of filler line
{erientation-of-points start-x start-y end-x end-y)
.. right erientation for midpoint of filler line
(get-estimated-orientation
{fleor (+ gtart-x end-x) 2)
(floor (+ start-y end-y) 2)))
(orientation-distance
v orientation of filler line
(erientation-of-pointe start-x start-y end-x end-y)
v+ right orientation for one end of filler line
{get-estimated-orientation
Btart-x start-y)))
)

(defun length-of-connection (etart-x start-y end-x end-y)

{ceiling {sqrt (+ (expt (- start-x end-x) 2)
(expt (- start-y end-y) 2)))))

152



. returns a list of points frem start-x.start-y to end-x.end-y
(defun connect-by-line (start-x start-y end-x end-y)
{let ({delta-x (abe (- end-x start-x}})
(delta-y (abs (- end-y start-yl}))
{sign-% (cond ((> end-x start-x} 1)
(t =1}))
(gign-y (cend ((> end-y start-y} 1)
{t -1}))
{orientation-of-filler-peointe
{erientation-of -points start-x start-y end-x end-y))
(resultlist mnil})
{de ({previcus-x start-x)
{(previous-y start-y))
{{and (<= (abe (- previous-x end-x)) 1)
{<= (abe (- previeus-y end-y)) 1))) ., i.e. adjacent
{cond ({= (abas [- previous-x end-x})
{abs (- previous-y end-y}))
{setq previous-x (+ sign-x previous-x))
{getq previeus-y (¢ sign-y previeus-yl)})
{(> {abe (- previous-x end-x))} ;; more ¥ pointe te move
{abs (- previous-y end-y)))
{cond {({and (> (abs (- previous-y emd-y)) Q)
(»= (* delta=x [abe (- previous-y end-y)}}
(#+ delta-y (abs (- previous-x end-x3133)
{setq previcus-x (+ eign-x previocus-x])
{setq previous-y (+ sign-y previous-yl))

(t
{setq previeus-x (+ sign-x previous-x}})))
{(t :; more y points to nove

{cond {(and (> (abe (- previous-x end-x)}) 0}
{>= (* delta-y (abs (- previcus-x end-x)}}
{* delta-x (abe (- previous-y end-y))}})
{setq previous-x (+ sign-x previous-x))
(setq previous-y (+ sign-y previous-y)))
(t
{setq previous-y (+ sign-y previous-y))}1))
{push (list 'FAKE

(orientation-distance
orientation-of-filler-points
(get-estimated-orientation previous-x previous-yl)

previous=x previcus-y) resultlist))

{nreverse resultlist)))
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;i This is the right wav to shift a center locatiom.
i The subtraction of number-of-expansions ie to conpensate for an
il apparant movenent of inages created neltdown. (This carrection

P is not needed for delta's.)
.. The +f- 2 factor is some slippage for movement of boundaries in

encothing.
(defun get-points-at-next-scale-for-point
(x y number-of-expansions expansion-factor)

(let ((returnlist nil))
(do ((new-y (floor (* expansion-factor (- (- ¥ number-of-expansions) 213}

{1+ new-y}1)

({> new-y
(ceiling (* expansion-facter (+ (- y number-of-expansions) 2)))})

(de ((new-x (floor (= expansion-factor (- (- % number-of-expansions) 2)))
{1+ new-x)})

({> new-x
(ceiling (= expansion-factor {+ (- % number-of-expansione) 2)))})

(push (list new-x new-y) returnlist))})
returnliet)}

i+ Takes a delte-x delta-y pair and returns another
(defun get-delta-at-next-scale-for-delta (delta-x delta-y expansion-facter)

{let {(returnlist nil))
(de ((new-y (floor (* expansion-facter (- delta-y 2)))

{1+ new-y)))
({> new-y (ceiling (+ expansion-facter (+ delta-y 2)1)))

(do ((new-x (fleor (* expansion-factor (- delta-x 2)})
{1+ new-x)})
({> new-x (ceiling (* expansion-factor (+ delta-x 23}}1))
{push (list new-x new-y) returnlist)))

returnlist))

{defun get-number-of-expansions (expension-amount expansion-facter)

(do ((count O (1+ count)))
({<= expansiom-ameunt {+ 1.0 (sqrt expansion-factor)))

count )
(eetq expansion-amount (// expansion-amount expansion-factaor))))



region is of the form <evaluation center-x center-y boundary>
{defun nake-suggestion-from-region (region expansion-anount expansion-factor)
{1et ((new-boundary-peinte mnil))
{dolist (boundary-point {nth 3 regiem))

(setq new-boundary-points
{append {get-delta-at-next-scale-for-delta

{nth 2 boundary-peint) ;; x
(nth 3 boundary-point) .. ¥
expansion-anount)
new-boundary-points) )}
{liet (get-points-at-next-scale-for-point
(nth 1 region)

(nth 2 regiom)
(get-number-of-eéxpansions expanslon-amount expangion-factor)

expansion-amount}
new-boundary-peints}])
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