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We present the results of an implemented system for learning structural prototypes
from gray-scale images. We show how to divide an object into subparts and how to
encode the properties of these subparts and the relations between them. We discuss
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exhibit a learning algorithm that forms class models from the descriptions produced

and uses these models to recognize new members of the class.
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Overview

1.1. Introduction

This research has two goals. The first is to generate symbolic descriptions of ob-
jects from video images. The second is to generalize these descriptions into models.
The ability to generate and generalize descriptions is a prerequisite for recognition.
Figure 1 shows how the system is used. We start by presenting the two examples
at the left. The system forms semantic networks for each image and generalizes the
descriptions into a model which covers both the examples. We then present the sys-
tem with the test case at the bottom and ask whether it is an instance of the model.
The system produces an answer by comparing the network for the test case with the

model it created earlier.
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Figure 1-1. The networks for the two airplanes shown at the left are generalized to form a model.
Using this model the system can determine whether an object is an airplane or not.




In accomplishing these goals, this thesis makes several interesting contributions

to the fields of vision and learning. Among these are:

e a partial theory of what we scc when we look at an object. Specifically we con-

jecture that objects are broken into parts which obey certain restrictions.

e a partial theory of visual similarity -~ why two objects look alike. This is based

on several types of structural abstraction.

e an argument that the syntax of a representation should reflect its semantics. We

also show how to represent visual objects in accordance with this principle.

e atechnique called Gray coding that allows simple feature dropping to accomplish

the effects of many traditional induction heuristics.

e results from a fully implemented system that works on many examples. Start-
ing from gray-scale images, the system learns highly detailed class models and

subsequently uses these models for recognition.

1.2. Symbolic Descriptions

The vision system is built on top of the Smoothed Local Symmetries program of
Brady and colleagues [Brady and Asada 1984, Heide 1984]. A block diagram of
the entire system is shown in Figure 2. Brady’s program takes the gray-scale video
image, finds local symmetries in it, and then feeds the digested version to our new
segmentation and description modules. The segmentation program breaks the image
into region primitives and then sends the result to the description module which
forms an appropriate semantic network to describe the parts and their relations.

Brady’s program, the basis for the vision system described here, has three in-
ternal stages. First, the program finds the edges in an image using an edge-finder
developed by Canny [1983]. Next the bounding contour of the shape is extracted and
approximated by circular arcs [Asada and Brady 1984]. Finally the program looks
for local reflectional symmetries between these contour segments [Brady and Asada
1984]. The final output of Brady’s program is shown in Figure 3a.

The construction of the next two portions of the vision system is described in
detail in this thesis. The first of these parts, the segmentation program, computes
parameters such as length, aspect ratio, area, and orientation for each of the sym-
metries found. It then joins symmetries which are different sections of the same

primitive region. Finally, it chunks the image into a collection of non-overlapping
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Figure 1-2. The vision system. The edge finder was built by Canny and the contour approximation
and Smoothed Local Symmetries programs were written by Brady and Asada. This thesis describes
the construction of the segmentation and description modules.

Figure 1-3. Segmenting an object. a. The Smoothed Local Symmetries found in an image of a 747.
b. The subshapes of the 747.




pieces based on the extended symmetries found. A typical segmentation produced
by the program is shown in Figure 3b.

The second portion, the description module, computes symbolic descriptors for
the shapes of each of the pieces found by the segmentation program. It also de-
termines which pieces are joined together and generates a summary of exactly how
the pieces are joined. Finally these two types of information are combined in accor-
dance with various rules of abstraction to generate a semantic network for the object.

Figure 4 shows a simplified version of such a description.
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Figure 1-4. A portion of the hierarchical semantic network for the 747. Information about the edges
of regions has been omitted.

The descriptions generated satisfy several properties required of a good represen-
tation [Marr and Nishihara 1978, Brady 1983]. First of all, a representation must be

efficiently computable from the data available. The system presented here has been



implemented and generates descriptions in a reasonable amount of time (15 minutes
start to finish on a 300 x 400 gray-scale image), hence it qualifies on this count.
Second, a representation must be relatively insensitive to noise. Segmentation, the
cornerstone of the system, is highly stable since it is based on Brady’s SLS which
was designed to tolerate relatively noisy object boundaries. The system is also insen-
sitive to small variations in the parameters of regions, thanks to special techniques
for representing ranges and geometric structures. Thus, similar images produce sim-
ilar semantic nets. Finally, a representation must be complete. To demonstrate that
the system captures all the relevant information in an image we have built a pro-
gram which takes a semantic net and draws the corresponding object. This programs

produced the pictures in Figure 5 from the descriptions in Figure 4 and Figure 6.
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Figure 1-5. Objects reconstructed from their semantic nets. a. The 747. b. A tack hammer.

1.3. Template Formation

The learning program takes the semantic networks produced by the vision system
and generalizes them to form models which can be used as recognition templates.
The initial template is made by copying the first example’s network. Then, as new
images are presented, this template is modified to cover all the images which are
members of the class which it specifies, and to exclude all the non-members.

The algorithm for modifying the template is similar to the method used by Win-
ston {1970, 1982]. Suppose a new example is presented which almost matches the

current template. Since the template should have ezactly matched this example, the



differences between the template and the example are deemed acceptable variations.
Therefore, the template is modified by removing the conditions that were not exactly
matched by the example. Now suppose, instead, that we present a non-example which
almost matches the current template (a near-miss). In this case the differences be-
tween the non-example and the template are definitely important. Therefore, the
template is modified by requiring that future instances MUST have any of the fea-
tures of the template lacking in the non-example, but MUST NOT have the extra,

unmatched features of this non-example.
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Figure 1-6. Generating descriptions. a. A segmented tack hammer. b. The full semantic net for the
tack hammer which is used as the initial model of a hammer.
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Figure 1-7. Generalizing descriptions. a. The hammers presented to the system as examples. b. The
concept learned from the three examples.

Figure 6 shows the full semantic network generated by the vision system for a
tack hammer. This becomes the initial template for the hammer concept. Figure
7 shows the template after two more examples have been presented. Note that the
resulting description only partially specifies the size and shape of the head. This is

because the head of the ballpein hammer is much shorter than the heads of the others
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while the head of the claw hammer is much more curved than cither of the other two.
This leads to a template which makes no restriction on the length of the head or how
curved it should be. Note also that the specification of how the head joins the handle
has been relaxed. This is because the handles of both the claw hammer and the
tack hanmmer are connected to the side of the head while the handle of the ballpein
hammer is connected to the end of its head.

The learning algorithm presented goes beyond Winston’s program in three major
ways. Ifirst, it relies less on the teacher to choose appropriate examples and presen-
tation sequences. Seccond, it handles fully disjunctive concepts through the use of
non-models. Third, it incorporates domain-specific knowledge in its matching and
generalization routines. These three points will be discussed in more detail later in

the thesis.
1.4. Pointers

The rest of this thesis describes the theory behind our implemented system in more
detail. In particular:
e Chapter 2 discusses why we segment objects into pieces and how this is done. This

chapter also contains a section showing the results of the segmentation program.

e Chapter 3 explains the language used to represent shapes and the types of visual
abstraction employed by the system. Some sample descriptions produced by the
system are presented at the end.

e Chapter 4 describes how models are produced and refined, and how the system
recovers from over-generalization.

e Chapter 5 shows the system in action and includes several worked examples of
the learning procedure.

e Chapter 6 summarizes the abilities and limitations of the system and suggests
some possible applications. It closes by proposing several interesting extensions

that could be made to the current system.
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The Vision System

2.1. Issues

For the system to learn about shapes it must first be able to perceive them. In this
chapter we describe the vision system we have built and the descriptions it produces.

Our approach is based on two principles:
e An object should be broken into regions.

o Each region should correspond to an intuitive piece of the object.

Segmenting an object into parts helps us satisfy several of the criteria for a good
visual representation [Marr and Nishihara 1978, Brady 1983|. First, a visual repre-
sentation must be rich in the sense that it preserves all the important facts about
an object. By segmenting an object into parts we can obtain a description which is
richer than, for example, feature sets. In a feature set shape representation, objects
are described using sets of global parameters such as their bounding box, center of
mass, number of holes, etc. |[Perkins 1978, Ballard and Brown 1982]. The main
advantage of the feature set approach is that it is relatively insensitive to noise in an
image. However, not only are feature sets insensitive to noise, they are also insensi-
tive to important detail in the image. As illustrated in Figure 1, many shapes which
are perceptually quite different yield the same description. Conversely, the set of
parameters representing an object does not contain enough information to allow us
to reconstruct it. The description { aspect-ratio = .33, area = 18, holes = 1, center
= (0,0) } could refer to any of the objects in Figure 1. Using parts we can create
a better descriptions of these objects such as “a rectangle that has a hole in it and
sprouts two bent arms opposite each other”.

A good representation should also make important facts ezplicit. For instance, the
relative length of a protruberance like the blade of a screwdriver is often important
and therefore should be made explicit. Some schemes such as representing a shape
by its bounding contour |Freeman 1974, Ballard 1981, Hoffman and Richards 1982},
contain the required information but not in an explicit form. Figure 2a shows a
screwdriver and Figure 2b shows the list of corner points and the chain code for
the image. To determine that the blade is the same length as the handle requires
quite a bit of computation in either contour representation. The curvature and

elongation of a part are also hard to determine as is the distance between two points
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Figure 2-1. Parts provide richer descriptions than sets of global parameters. All the objects shown
have the description: { aspect-ratio = .88, area = 18, holes = 1, center = (0, 0) }.
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Figure 2-2. Parts make lengths explicit. It is difficult to tell from either of the two contour represen-
tations that the screwdriver’s blade is the same length as its handle.
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on the contour. Entirely region-based representations [Nevatia and Binford 1977
have similar problems; they fail to make explicit contour information such as the
curvature of the side of a part and the adjacency of edges. This suggests using a
hybrid representation which captures the important facts about both the regions

and their contours.

M C )

Figure 2-3. Parts help us achieve stability with respect to configuration. Although a “Y” and a “T”
look different, once we realize that they both have “arms” we can transform one into the other.

Finally, a good visual representation must be stable. There are three major prob-
lems in recognizing a previously seen object: differences in illumination, presentation,
and configuration. A stable representation is one which can tolerate reasonable vari-
ations in each of these conditions. Stability with respect to illumination suggests
removing illumination-dependent information before attempting recognition. This
is usually achieved by extracting the edges from an image. This does not mean
illumination information is unimportant; it is essential for other processes such as
shape-from-shading [Horn 1977]. Stability with respect to presentation means toler-
ating differences in the size, position, and orientation of an object within an image.
This is usually achieved, as in feature sets, by building a representation based on
operators which are invariant with respect to a suitable set of affine transformations.
This is one area in which classic perceptrons fall short [Minsky and Papert 1969]. The
third type of stability, stability with respect to configuration, is where the division
of an object into parts becomes crucial. The idea is that an object with moveable
parts should be recognizable independent of the relative orientations of the parts.

For instance, the overall shapes of the letters “Y” and “T” are very different, yet, as
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shown in Figure 3, we can imagine a Y being transformed into a T by bending down
its “arms”. Such a transformation can not be imagined without realizing that both

the Y and the T are composed of a vertical stroke and two arms.

a. b.

Figure 2-4. A segmentation should make boundaries explicit without introducing extra boundaries.
a. A good segmentation. b. A bad segmentation.

Not all segmentations are good, however; the regions of an object must have
intuitive appeal. For instance, the segmentation in Figure 4a is more intuitive than
the decomposition in Figure 4b. Both segmentations yield a rich description yet
there seem to be far too many pieces in the second one. It is also irksome that
some pieces terminate without any special reason while other pieces cross what seem
to be natural boundaries. The reason that the segmentation in Figure 4b is bad is
because it does not conform to our intuitions about boundaries. Specifically, it does
not mention some of the prominent borders while explicitly suggesting breaks that
have no justification. When two pieces are joined the contour of the object usually
contains evidence of this join [Marr 1977, Bagley 1985]. Many of the proposed joins
in Figure 4b leave no mark on the contour, while none of the joins explain such

obvious contour features as the corners formed by the head and the handle.

2.2. Smoothed Local Symmetries

To find parts we employ Brady’s smoothed local symmetries [Brady and Asada 1984].

SLSs pick out reflectional symmetries in an object - symmetries which suggest plau-
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sible axes for the parts of the object. The geometry of a local symmetry is shown in
Figure 5. Imagine a circle which is tangent to the edge of the object at two points.
The midpoint of the chord connecting the two points is defined as the symmetry

point. The smoothly joined loci of such points are called the symmetries of the

object.
Boundary
of Object
dsl
ds2
Boundary
of Object

Figure 2-5. The definition of a smoothed local symmetry. The piece of contour ds1 becomes ds2 when
reflected through point P. An SLS is a smooth collection of such symmetry points, P.

The SLSs of an object describe regions of the object. Figure 6a shows the SLSs for
a claw hammer while Figure 6b shows the regions described by two of the SLSs. The
lines in Figure 6a are the reflectional symmetry axes, reflecting one piece of contour
through this line gives us the piece of contour on the other side. These axes are
called spines while the perpendicular rulings are called ribs. Ribs join corresponding
points on the two pieces of contour. For instance, consider the spine between the top
of the pein and the handle. The last rib of this spine joins the tip of the claw, point
A, with a point a third of the way down the handle, point B. This means that if we
reflect a short piece of contour near A across the spine, it will lie exactly on top of
the corresponding short piece of contour near B.

Not all symmetries between contour segments are allowed. We can assign a di-
rection to each contour segment based on which side of the segment corresponds to
the inside of the object. Since we use SLSs to find axes of plausible parts, only sym-

metries which agree on where the inside of the part is located are allowed. Figure
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Figure 2-6. SLSs describe regions. a. The SLSs of a claw hammer. b. The regions described by two
of the spines shown in a.

7a shows an internal symmetry which suggests a solid part of the object. We can
also have ezternal symmetries, as in Figure 7b, which describe empty, space-filled re-
gions. Symmetries such as in Figure 7c, however, do not have any consistent physical

interpretation.

The SLS was developed by Brady as an improvement on the Symmetric Axis
Transform [Blum 1973, Blum and Nagel 1978]. The SAT is also known by many
others names, including the Blum transform, the grassfire transform, and the Voronoi
diagram. The SAT and the SLS of a rectangle are shown for comparison in Figure
8a. While the SLS, like the SAT, can be defined in terms of inscribed circles, there
are two differences. First of all, the symmetry axes found by the SLS are built from
the midpoints of chords, rather than from the centers of circles as in the SAT. More
important, however, the circles in the case of the SAT must be entirely contained in

the object; in the SLS they merely have to be tangent at two points.

The SLS has three main advantages over the SAT. First of all, it allows for multiple
interpretations of a shape. As shown in Figure 8a, the SLS picks up both of the axes
of the rectangle while the SAT picks up only part of the horizontal axis. Depending

on which SLS we choose to describe the figure, the rectangle can be interpreted as
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Figure 2-7. Symmetries must agree on where the inside of the region is. a. An internal symmetry. b.
An external symmetry. ¢c. A symmetry which is not allowed because it has no physical interpretation.

either a squat vertical shape or an elongated, horizontally oriented shape. The second
advantage of the SLS is that it supports cut-out interpretations. Figure 8b shows the
SLS and SAT of a rectangle with a nick in it. The SAT tries to describe the shape
as a collection of disjoint solid and space-filled regions. The SLS, on the other hand,
allows negative regions to overlap positive regions. Using the SLS we can interpret
the shape as a rectangle, described by a horizontal interior spine, with a piece cut out
of it, described by the external symmetry in the nick. Finally, the third advantage
of the SLS is that it is local. Consider, again, the SAT of the rectangle with a nick
in it shown in Figure 8b. The locus of circle centers originating in the corner of the
nick extends far beyond the pieces of contour which are the borders of the region it
describes. The SLS of the corner of the nick, on the other hand, does not extend
past the projection of the two contour segments. A even more blatant example of
the SAT’s non-locality is the transform of a human profile shown in [Blum and Nagel
1978].

18
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Figure 2-8. Comparing the SLS and the SAT. a. The SLS (left) picks up both axes of the rectangle
while the SAT (right) does not. b. The SLS (left) suggests a cut-out interpretation for the nick.

2.3. Finding Plausible Parts

Part of the definition of an SLS is that it is the mazimal smooth locus of symmetry.
Currently Brady’s system finds SLSs by approximating the boundary of an object
with a series of lines and circular arcs, and then computing, analytically, the symme-
tries between all these sections of contour. The SLS between any two such smooth
pieces of contour is guaranteed to be smooth but it may not be maximal; often a
symmetry can be smoothly extended beyond the original pieces of contour. One such
case is shown in Figure 9a, where breaks in a symmetry have been introduced by the
contour approximation. At the bend in the top figure, for instance, the central sym-
metry of the “arm” is disrupted because new linear segments start at the “elbow”.
Symmetries can also be broken at joins between subparts as shown in Figure 9b.
Here the break occurs because one or both sides of the symmetry are missing. The
point is that, since symmetries form the axes of plausible parts, we need to extend
the symmetries in these cases.

There are several important restrictions on when two spines can be joined. The
first of these is that the ends of the spines must be reasonably close together. This is
usually not a problem for breaks caused by the contour approximation. However, as
shown in Figure 10, it can become significant when there are subshape joins. The issue

is more than just finding a way to heuristically reduce the potentially vast number
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Figure 2-9. Sometimes SLSs need to be extended across gaps. a. Breaks can be introduced by the
contour approximation. b. Breaks also occur at subpart joins.
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Figure 2-10. Spines which are far apart cannot be joined. The spines in a are close enough but the
spines in b are not.
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of possible extensions, although this is important. The point is that if the spines
are too far away, they are not perceived (by humans) as parts of the same region.
This restriction reflects a fidelity versus smoothness trade-off like those discussed in
[Poggio and Torre 1984]. While the two spines may smoothly extend, there simply is
not enough evidence to support the joined interpretation when the gap is large. The
program actually measures the size of a gap by comparing its area to the arca of the
spines to be joined. Comparing arca, rather than length, is important in the case of

spines which are tapered, as shown in the bottom half of Figure 10.

Another requirement for combining two symmetries is that their azes smoothly
exfend. For two symmetries to extend their axes must be pointing in more or less
the same direction. Figure 11a shows several cases in which spines can not be joined
because they are going in different directions. When two spines are close together
but oriented differently it is often the case that the regions described by the two
spines have been physically joined end-to-end. Knowing that the two sections were
originally distinct can be important. Thus, since such joins seldom produce perfectly
aligned sections, we disallow large changes in orientation. The orientation restriction
alone is not strong enough, however, as shown in Figure 11b. Here the spines are
pointing in exactly the same direction but when joined they have a kink in the middle.
In the real world, kinks such as these are often created by a shear force applied to an
object. This suggest that we treat the two sides as different parts. We can strengthen
the axis condition by requiring the lateral offset to be small compared to their widths.
These two conditions can be summed up by restating the axis criterion in terms of
the joined spine: the joined spine should have no major bends. This obviously works
for the case where the axes are oriented differently. It also works for the offset case
if we consider drawing in the section of spine joining the two spines on either side.
The combined spine will then be “Z” shaped with two distinct bends. In practice,
however, spines never extend perfectly, we need to tolerate small offsets. This is why
we say no “major” bends. A major bend is a change in the orientation of the spine
over a length comparable to the width of the two spines at the join. The width of
the spines provide us with a natural scale over which to find discontinuities. The
no major bends criteria is similar to Bagley’s [1985] collinear extension heuristic for
polygons. 1t is also similar to the spline method proposed by Heide [1984], except

that our version takes scale into account.

The last requirement for joining two spines is that the region which results must

be locally convez. Examples of regions which are and are not locally convex are shown
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Figure 2-11. Spines can only be joined if their axes smoothly extend. The spines shown cannot be
joined because a. they are pointing in different directions. b. they are offset from each other.

' | e

Figure 2-12. Parts are by their nature convex with respect to their axes. The spines in a can be joined
but the spines in b would yield non-convex regions if joined.

in Figure 12. The “local” in the term local convexity means local with respect to
the axis of the region. Imagine pulling on the two ends of a spine until the spine

was straight, if the deformed region is convex then the original region was locally
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convex. This means that regions which do not look globally convex, such as the
bottom example in Figure 12a, can still be locally convex. The rationale behind
the local convexity criterion is that the concavities of an object correspond to the
physically weakest places in an object. If we were to drop the object and let it shatter,
these are the places at which we would expect breaks to occur. The local convexity
requirement covers earlier suggestions that regions should be segmented at minima
of width [Fairfield 1983], at matched concavities [Marr 1977|, or minima of curvature

4

[Hoffman and Richards 1982].

Figure 2-13. Sometimes there is no clear choice of what to join to what, as in a. Varying the b. width
or c. angle of one of the pieces can break the tie.

Sometimes we leave two spines unjoined even if they satisfy the gap, axis, and
convexity conditions. Such a case is shown in Figure 13a. The upright of the “Y”
is reasonably close to both of the two arms and could be joined to either. However,
since we have no grounds for choosing one arm over the other, we follow the principle
of least commitment [Marr 1982} and leave the upright unjoined altogether. This
is important because, under the no-overlap condition, the upright can be joined to
only one of the two arms, not both. Often such a cautious approach is not necessary

because a decision can be made based on differences in width or angle. Figure 13b
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and Figure 13c show two cases in which, although either of the two joins is plausible,
joining the upright to the more similar of the two arms is clearly favored.

To summarize the previous discussion, segmenting an object into parts requires
first finding all the plausible parts. This is a two step process: first, we determine
the smoothed local symmetries of the object, then we try to link symmetries that
are reasonably close together. To be linked, two symmetries must match in angle
and the combined region must be locally convex. Each of these maximally extended
symmetries specifies the axis of a plausible part of the object. These rules are not
intended as a complete theory of shape perception, rather they are merely heuristics
that have been found to work well in practice. They serve to prohibit some of the

truly egregious joins while picking up most of the obvious cases.

2.4. Choosing a Decomposition

The SLSs of an object suggest parts but there are far more symmetries than there
are intuitive pieces. We must choose some subset of the SLSs to describe the object.
The idea is to explain all the edges seen as the borders of some number of regions.
This set of regions should be non-overlapping and connected. The regions must be
largely disjoint since in the real world two things can not occupy the same space.
The regions must be connected otherwise we could not pick up the object as a unit.
Figure 14 shows examples of sets of regions that violate these conditions.

At present our vision system does not have a good understanding of regions. The
non-overlap and connectivity conditions are enforced using contour information only.
The non-overlap condition is implemented by assuming that each section of contour
is the border of exactly one region. Thus if two regions claim the same section of
contour it assumes that they overlap. Connectivity is also viewed in terms of the
contour of the object. The system decides that two pieces are connected if their
borders are a short distance away along the contour. By “short” we mean small as
compared to the width of the pieces.

Constraining the parts of the object to be connected and non-overlapping still
leaves us with the problem of deciding which of the plausible parts gave rise to this
border. For instance, a common situation is illustrated in Figure 15. Not only do
we have two obvious parts but we also have the envelope of the pair. This leads
to two possible interpretations of this shape each of which satisfies the non-overlap
condition. The object could either be two pieces joined at their ends, or a wedge

shaped piece with a smaller wedge cut out of it [Bagley 1985]. To solve this problem
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Figure 2-14. The sets of regions shown are not good objects because a. they are not counected and
b. they overlap.

we make the observation that long skinny regions tend to be more salient than short
fat regions. Although roughly circular regions also stand out [Fleck 1985], the SLS is
best at detecting elongated regions. This suggests that the two piece interpretation is
better than the wedge interpretation because the two side pieces are more elongated
than than their envelope. If we measure the elongation of a piece in terms of its
aspect ratio (the average width divided by the length) we can restate the “long and
skinny” heuristic more precisely. When two regions are competing to explain the

same section of contour, the region with the lower aspect ratio wins.

This heuristic sometimes generates an interpretation which fails to satisfy the
connectivity condition. This is the case with the fork shown in Figure 16a. The two
side tines have much lower aspects ratios than the head of the fork and therefore
claim the outer edges of the fork’s contour. The region corresponding to the head
is suppressed because part of its border has already been claimed by a supposedly
better description. This, however, leaves the tines unconnected to the handle of
the fork. One solution is to backtrack by allowing the head of the fork to claim
the two sides even though the tines have better aspect ratios. This leads to the
cut-out interpretation shown in Figure 16b. Another solution is to relaz the overlap
condition by including the required connecting region in the final segmentation even

though part of its contour has already been claimed. This method generates the
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Figure 2-15. There is more than one decomposition for most objects. a. The symmetry axes of the

object. b. A two part interpretation. c. A wedge interpretation. We favor the decomposition in b
because the parts have low aspect ratios.

a. b, p-p-f- c. :
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Figure 2-16. Sometimes the overlap condition must be relaxed. a. The head of the fork has un-
fortunately been omitted because the tines had better aspect ratios. b. An alternative cut-out
interpretation. c. An envelope interpretation.

interpretation shown in Figure 16c and is the method used by the program. The
head of the fork is viewed as a rectangle which has substructure; the tines only

become evident when the head is examined more closely.

We have now presented the complete segmentation scheme used by our program.
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After finding the plausible parts of an object, the program chooses a connected,
disjoint set of these parts to describe the object. The interpretations produced favor

long skinny pieces over shorter squatter ones.

2.5. Parameters of Parts and Joins

After segmentation there is still more work to be done: the pieces found must be
described. We know that the pieces found all have smooth axes and that they are
convex but this leaves their shape still largely unspecified. By the definition of a SLS,
the shapes of pieces we have found can be described by two functions: the orientation
of the axis and the width of the cross-section. These are both functions of length along
the spine. However, instead of recording the orientation and width at every point, we
summarize the functions using several shape parameters. Earlier we criticized such
parameters but this was because they failed to accurately represent the structure
of the shapes from which they were computed. We claim that six numbers suffice
to give a good approximation of the shape of the pieces found by our segmentation
algorithm. Furthermore, all of these parameters are dimensionless and invariant with

respect to scaling, rotation, and translation. The required parameters are:
e the aspect ratio of the region

e the overall curve of the spine

o the relative widths of the two ends

e the tapers of the two ends

Each of the parameters has a formal definition as shown in Figure 17. The aspect
ratio of a region is its average width divided by its length. As mentioned before,
this measure plays an important role in selecting a segmentation for an object. The
second parameter, the overall curve of the region, corresponds to the “dented-ness”
of the spine. It is defined as the average deviation of the axis from the line connecting
its two ends normalized by the length of the axis. These two parameters were also
used by Heide [1984], although he computed the overall curve by taking the average
curvature of the spine times its length. Our method is less sensitive to the often noisy
orientations of the ends and thus gives an intuitively better measure of the piece’s
bend. Heide’s representation also did not include the four end parameters. The end

widths are the widths of the two ends divided by the average width of the region
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aspectratio = w/s start width = sw /s end width = ew /s

overallcurve = d /s start taper = (SW’ - swW) / sw end taper = (ew’ - ew) / ew

Figure 2-17. The shape of a piece is described by six parameters. These parameters are sufficient
because each piece is locally convex and has no major bends.

while the end tapers are the local derivatives of width at the two ends. The taper of

a end is measured over a scale comparable to its width.

These parameters accurately represent the shape of a piece due to the restrictions
we placed on the extension algorithm. First, a piece is guaranteed to have no major
bends. This means the most it can do is either curve gently or oscillate slowly. Ne-
glecting the second case (wiggly things are relatively rare), spines are either straight
or they bend gradually to one side. The overall curve parameter is meant to capture
the degree and direction of this bending. There are cases, such as spirals, in which the
overall curve of the spine is not meaningful, but for the typically short spines in most
segmentations this parameter is adequate. Second, because a piece is locally convez,
we know that there are no constrictions in the middle of the piece; the only places
at which the region can get smaller are the two ends. Thus, if we know the average
width of the piece (obtainable from the aspect ratio) and the width at the two ends,
we have a rough sketch of the width function. Experience has shown, however, that

this is not quite enough; we often need to know how pointed an end is as well. For
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piece-2

Figure 2-18. Joins are described in terms of the angles of the picees and the location of the join with
respect to cach picce.

this reason, we also the record the rate of change of width at each end.

Not only must we describe the shapes of the objects, we must also describe how
they are combined. We do this by finding and describing the joins between pieces.
Finding joins is easy since joins are connections between pieces and we have already
discussed how connectivity is determined. We must do more, however, than just say
that a certain piece is joined to a certain other piece. There are two other important

things we must determine:
e the relative angle of the pieces joined

e the location of the join with respect to each piece

The relative angle between two pieces is calculated by taking the difference between
the local angles of each spine. Here “local” means over an interval comparable to the
width of the piece at the join. For instance, the angle of the join shown in Figure 18
is 45 degrees with piece-2 leaning toward the left end of piece-1. The location of a
join is specified with respect to the coordinate frame defined by the axis of the piece.
The join shown occurs halfway along picce-1 and near the end of piece-2. We also
record, as suggested by Marr [Marr and Nishihara 1977], whether the join occurs at
the end of the piece or along its side. Thus, the position of the join in Figure 18 is

further specified by noting that the top end of piece-1 is connected to the lower side
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Representing Physical Structures

3.1. Syntax as Semantics

In order for the learning program to produce meaningful results it must have knowl-
edge of what makes things visually similar. Since determining the similarity of two
objects is obviously very important for learning, the representation should make such
similarities explicit. We accomplish this by embedding our knowledge of visual sim-
ilarity directly in the representation. The embedding is based on the principle that

syntactic distance should reflect semantic distance. Specifically:
e Similar things should give rise to similar descriptions

o Dissimilar things should yield manifestly different descriptions

As shown in Figure 1, not all representations follow this principle. Everyone has
had the experience of getting in the family car and driving around the block to watch
the odometer change from 99,999 to 100,000 miles. There is nothing particularly
special about 100,000 that makes it extraordinarily different from 99,999, yet the

representation leads us to believe that there is. The mile between the two is in fact

Figure 3-1. The syntax of a representation should reflect its semantics. Analog clocks conform to
this principle while car odometers do not. a. 10:05 looks very much like 10:10 b. 99,999 looks very
differcut from 100,000 even though there is nothing special about the mile in between.
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no different than the mile between 76,982 and 76,981, two mileages which look very
similar. The odometer fails to make similar mileages look similar. This is a general
problem with digital readouts: the notion of similarity needed to compare two num-
bers is specified by the subtraction procedure rather than by the representation of the
numbers. Analog readouts, on the other hand, do not have this complication. Con-
sider the times 10:05 and 10:10. In digital form, half the digits in the representation
of the time change which suggests that the two are rather different. The difference
between 9:55 and 10:00 is, apparently, even worse. On an analog clock, however,
the representations of the two times are very similar; the only difference is that the
minute hand has moved slightly. This is what we mean when we say the syntax of

the representation should reflect the semantics underlying it.

Figure 3-2. The prototype of a hammer is a special kind of signal. This signal is present in the
examples shown but it has been corrupted by the details of the objects. A good representation should
be insensitive to such noise.

This principle is related to the stability of a representation. A good representation
should be insensitive to noise; if the same signal is present the same description
should result. The “syntax as semantics” principle extends this idea to things which
are merely similar, not identical, to give us immunity to a different kind of noise. The
signals we are interested in are class prototypes. The noise mixed with this signal are
the irrelevant, and sometimes conflicting, details of examples from which the concept

is built. Figure 2 shows the basic hammer “signal” corrupted by various “noise”
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functions. The examples shown differ from cach other primarily in the type of pein
the particular hammer has: be it curved and pointed, short and rounded, or straight
and square. Our extended notion of stability requires that these cxamples give rise
to highly similar descriptions since they are all instances of the same concept.

As stated, we are concerned primarily with the similarity of objects. In this re-
spect, our approach diflers from that of classic representation languages such as KRL
[Bobrow and Winograd 1977], KLONE [Bobrow and Webber 1980], and KRYPTON
[Brachman, Fikes, and Levesque 1983]. These systems were concerned with managing
taxonomies and making simple deductions from them. The representations developed
were carcfully tailored to make the required operations fast and easy. Since we are
interested in similarity, we have instead designed our representation to make the com-
parison of objects easy. The exact manner in which this was done will be explained

in the following sections.

3.2. The Network Formalism

The representation language in which we embed our knowledge of similarity is based
on the idea of semantic nets. A semantic net is a collection of nodes with labelled links
between them. However, a semantic net is not just a graph; it must have meanings
attached to each link and node [Woods 1975, Brachman 1983]. Our networks have
two types of nodes. One type, called things, stand for typically noun-like entities
such as objects, regions, and ends. These are represented by dark boxes in Figure 3.
The other type of node are called predicates and are drawn as light colored boxes.
Each predicate is connected to its arguments by a number of labelled arcs which
form the links in our semantic net. We make a further distinction between predicates
based on their arity. Unary predicates are called properties and are used to represent
intrinsic qualities of a thing. For instance, the handle of the hammer shown in Figure
3 has the properties of being STRAIGHT and being a REGION. N-ary predicates
are called relations and are used to represent facts about groups of things. Figure
3 shows two relations involving the head of the hammer: it is ATTACHED to the
handle and it HAS an end.

Each of the things in a relation plays a particular, usually different, role in the
situation described by the relation. For instance, saying that “A is-bigger-than B”
is certainly different from saying that “B is-bigger-than A”. To make clear their
respective roles, we assign a label to each of the participants in a relation. Figure
4 shows several examples of this. The IS-BIGGER-THAN relation has the labels
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Figure 3-3. Descriptions are collections of things and predicates. Things are represented by black
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Figure 3-4. The arguments of predicates are labelled so they can be distinguished. Sometimes several
arguments play the same role as in the JOIN and BETWEEN relations.

“s” for subject and “o” for object which allow us to tell which part is the big one.
Sometimes, however, several arguments play the same role in a relation. It does not
matter whether we say “A is-connected-to B” or “B is-connected-to A”, the point is
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that the two parts are joined together. Since both parts play the same role we assign
them the same label. Iigure 4 shows an example of this in which three pieces all
meet at a common place. Since all the pieces play the same role, all the arcs coming
out from the JOIN relation have the same label (predicates are not required to have
a fixed arity). The BETWEEN relation is similar except that the thing in the middle
needs to be distinguished from the things on the ends. This is done by labelling the

ends as “o0” and the center as “s”.

Our representation is similar to the representation of circuits used by Davis [1984]
in this respect. In his representation each module has a number of labelled ports.
Modules are connected by running a wire from a port of one device to some port of
another. The predicates in our representation correspond to the modules in Davis’s
representation. Each of our predicates has a set of labelled arguments which are used
to “connect” it to other predicates: two predicates are connected if they have some

argument in common. Thus, Davis’s wires correspond to things in our networks.

Predicates serve to modify their arguments. A thing has no intrinsic meaning, it
is just a nameless cipher until it participates in some predication. Since a thing is
no more than a collection of features, adding a predicate changes the import of the
thing. Much as things can be modified by predicates, complete predications can also
be modified by other predicates. Figure 5 shows two examples of this. Here A is
joined to B and the join occurs at the end of B. The AT relation involving the JOIN
relation further specifies the join by telling its location. The OF relation involving
the END property says that E is an end with respect to B. This is what Hendrix
[1978] calls a “partitioned” semantic network. A similar technique is used by Davis

[1984] for representing the inner structure of an electronic module.

Modification is an important feature of the language for two reasons. First, it
allows us to make a distinction between the main point and the details. Since the
AT relation modifies the JOIN relation, it is less important than the JOIN fact.
This would not be the case had we concocted a new three-place predicate JOINED-
TO-AT and applied it to A, B, and E. The JOINED-TO-AT predicate makes the
fact that the pieces are connected and the fact that connection occurs at E equally
important. Even worse, however, it makes the two facts inseparable. This is the
second advantage to having predicates with modifiers: it allows us to express partial
information. For instance, we may know thal two pieces are joined but not know
where. We can not use the JOINED-TO-AT predicate in this case because we do not
know its third argument. One solution would be to use both the JOIN and JOINED-
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Figure 3-5. Predications can be modified by other predicates. This is important for specifying the
relative importance of facts and for representing partial information.

TO-AT relations, the choice depending on whether we knew the location of the join
or not. This, however, does not capture the fact that the first two arguments of the
JOINED-TO-AT predicate also JOIN each other. While it seems obvious to us, if
we changed the name of the JOINED-TO-AT relation to INTERSECTION-OF-IS,
or even FOOZLE, it would be much less obvious. We stated earlier that we wished
to put as much of the knowledge as possible into the structure of our representation.
For this reason we allow predicates to be modified, instead of creating new compound
predicates as KLONE [Brachman, Fikes, and Levesque 1983] and KRL [Bobrow and
Winograd 1977] do.

The representation language described is an improved version of the semantic
nets used by Winston [Winston 1981, Katz and Winston 1983]. Winston’s networks
suffered from several problems. First of all, they were restricted to binary relations
which are insufficient for representing relations such as BETWEEN which naturally
takes three arguments [Woods 1975]. To represent this fact in Winston’s system one

might use the statement:

((A between B) and (A between C))

or the two statements:

((A is between) to B)
((A is between) to C)
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However, ncither of these seems particularly palatable. We solve this problem in our
representation by allowing predicates of any arity. Another problem with Winston’s
representation is that all the links in his nctwork must be directed. This poses a
problem for symmetric relations like JOIN which would have to be represented by
two facts like:
(A join B) and (B join A)

While this captures the essential information, it fails to make it clear that the two
facts are the same. This becomes important if we receive the additional information
that this join is at E. To represent this it would be necessary to add a TO link to
both of the JOIN relations.

3.3. Local Matching

We use a local matching scheme to compare two descriptions cast in this semantic
network representation. The matcher is based on the principle that distance corre-
sponds to importance; the further away something is in the network, the less influence
it has. For instance, in Figure 6 nodes B and C are more important to A than D
is. Since PART OF can be considered a compound predicate, both B and C are one
predicate away from A. The D node, on the other hand, is two predicates away from
A; we can not get from A to D without first passing through C. This does not mean
that the importance of each node is fixed, rather the importance varies depending on
our location in the network. From node D, C is the most important node, followed
by A and B. From node C’s point of view, all the nodes are equally important. For
the local matching procedure to work it is essential that the links in the network be
set up so that distance really does correspond to importance. This is one instance of
the “syntax as semantics” principle embodied in our representation.

Two networks are compared by gradually extending the matching horizon in a
manner much like spreading activation [Quillian 1968]. Suppose we were matching an
object to the model of Object-1 shown in Figure 7. At the first level the program only
considers those things which are at a distance of zero or less from Object-1; the part
of the model it sees is totally contained within the horizon marked “Level 0”. It then
compares the example to the model on the basis of all the predicates whose arguments
are known. In Figure 7 there is only one such predicate: OBJECT. Assuming that the
example is a satisfactory match to the model at this level, we extend the horizon one
predicate further to the horizon labelled “Level 1”. This involves finding analogs for
Region-1 and Region-2 in the example object which satisfy the predicates within the
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Figure 3-6. Distance corresponds to importance. B and C are more important then D from A’s
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Figure 3-7. The local matching process gradually extends its matching radius to new predicates. If
no match is found for Region-1 at level 1, the horizon would only be expanded to the dotted line at
level 2.

current horizon. These two regions must each have a HAS link to the example object,
the regions must JOIN each other, and the analog of Region-1 must be CURVED.

Assuming suitable regions could be found, the horizon is then expanded to encompass
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End-1, End-2, and Side-1 as well and the matching process continues.

Sometimes, however, it is not possible to find matches for certain things. Suppose
that we were unable to find any region of the example object corresponding to Region-
1 in the model. This might be enough to cause the match between the example and
the model to fail at level 1. In a such a case the matching procedure stops and reports
that the example matches the model down to level 0. That is, the example matches at
an abstract level but not at a more detailed one. A similar thing could happen if, at
level 2, the system found a binding for End-1 but not for End-2. This implies that the
example object has a region which fits the coarse description of Region-1 but not the
finer one. As before, the program stops trying to match Region-1 in more detail when
this occurs. This means we must be careful to ensure that the matching levels truly
correspond to levels of abstraction when we encode objects in this representation.
Now, instead, suppose that, although no analog was found for Region-1, the program
decides the example still adequately matches the model at level 1. In this case, the
horizon is expanded to the dotted line shown in Figure 7. Since we can only compare
predications in which all the arguments of the predicate are known, it makes no
sense to expand the horizon out from Region-1 — any predications involving Region-1
would always have at least one argument that was unknown. Therefore the system
effectively cuts off the whole branch involving Region-1 since it would be silly to
look for the end of a region if the region itself could not be found. Once again,
when encoding an object we must take this phenomenon into account so that these
truncations accurately reflect the dependencies in the data.

To summarize, the local matching procedure progresses out from an initial set
of correspondences as long as the example continues to match the model. As new
correspondences are added, the system checks that they satisfy all the predicates
applicable at that level. If, because of newly exposed details, a node no longer
matches the model sufficiently well, search along the associated branch of the model
is terminated. Otherwise, the system expands its horizon and attempts to find still
more correspondences which are consistent with what it already knows. A worked

example of this procedure can be found at the beginning of Chapter 5.

3.4. Gray Coding

Determining whether two regions look similar, a crucial part of the local matching
procedure, involves comparing their shape parameters. The parameters of a shape

are its length, aspect ratio, overall curve, and whether it is filled in or is a cut-out.
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Conceptually, these properties fall into two classcs: lincar descriptors and Boolean
descriptors. Comparing two Boolean descriptors is easy; if they match the objects
are the same, if they do not match then the objects are different. Generalizing a
description containing a Boolean descriptor is equally easy, we just omit the descrip-
tor (this is the well known drop link heuristic). Linear descriptors, however, are not
as easily compared and generalized. One approach would be to encode values using
symbols that stood for small range of values. The problem with this is that in order
to compare parameters the system has to understand the meaning of each symbol
and then perform subtraction to get the answer. As mentioned before, we wish to

encode the similarity metric more directly in the representation than this.

0 0 0 = 0
06 0 1 = 1
0 1 1 = 2
0 1 0 = 3
1 1 0 = 4
1 1 1 =3
1 0 1 = 6
1 0 0 = 7

Figure 3-8. Gray numbers representing the values 0 to 8. Notice that only one bit changes as the
values ascend.

We encode linear descriptors by a technique we call Gray coding. This technique
was inspired by the Gray numbers [Hamming 1980, Davison and Gray 1976] used
in digital communication. There, the idea is to represent each number such that
toggling any one bit only changes the number represented by one. Figure 8 shows
how the number one is encoded as 01, two as 11, and three as 10. In this way, the se-
mantic distance between two numbers is reflected in the syntactic Hamming distance
(how many bits are different) between their representations. A similar technique has
been developed in phonology [Kenstowicz 1979, Chomsky 1968] for representing the

features of vowels. This form of representation has two nice properties. First, to
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compare two numbers all we have to do is count the number of bits that are different.
Second, a good generalization can be made by simply dropping bits. For instance
we could represent the interval [1..2], a generalization from the two valucs 1 and
2, by X1 where X stands for “do not care”. This is the effect of the close interval
heuristic proposed by Dietterich and Michalski [1981]. Unfortunately the encoding
shown limits us to intervals of size 2 or 4 (one or two “do not cares”). We are also
stuck with a fixed set of end points for intervals; we can not, for instance, represent
the interval [0..2].

To encode intervals we take the table in Figure 8 and turn it on its side. As
shown in Figure 9, this means we cover the number line with a series of overlapping
ranges. Kach range is associated with a Boolean variable which is true if the value
being encoded falls in this range and false otherwise. A particular value is encoded
by the set of intervals it is in: 5 is encoded as (e f g). Moving slightly to either
direction gives us (d e f) for 4 and (f g h) for 6. As claimed, a small change in value
leads to a small change in representation. We can also represent any generalization
we want by using a smaller set. For instance, the interval [4..5] is represented by the
set (e f), a set which subsumes the sets corresponding to 4 and 5. The partitioning
of the number line shown in Figure 9 gives us greater flexibility than normal Gray
numbers. We can use this partioning to represent intervals of width 1, 2, or 3 and

these intervals can have any value we want as their end points.

o an own

AN %

—D

Figure 3-9. Gray coding intervals. The value 5 is represented by the set (e f g).
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Figure 3-10. Gray coding hicrarchies. A crescent wrench is represented by the set (tool wrench
crescent).

Gray coding can also be used to represent hierarchies. As shown in Figure 10, we
do this by associating a different Boolean variable with each leaf and branch-point in
the tree. This variable is true if the item being encoded lies beneath it in the tree and
false otherwise. For instance, a tack hammer is represented by the set (tool hammer
tack). Using this representation, it is evident that a claw hammer, (tool hammer
claw), is closer to a tack hammer than is a crescent wrench, (tool wrench crescent).
Furthermore, we can achieve the effect of the climb tree generalization heuristic by
once again simply leaving things out of the set. A generalization of (tool hammer
claw) and (tool hammer tack) is (tool hammer) which represents the branch point

directly above the two in the tree.

Gray coding has two important kinds of extensibility. First the resolution of a
Gray code can be increased. Suppose we initially divide an interval into eight discrete
ranges and create the corresponding Gray code predicates. Later we find that eight
divisions are not enough, we really need more like sixteen divisions. In such a case the
granularity of the representation can be made finer by simply adding more predicates.
A particular number will now be represented by a set of four predicates instead of a set
of three. One way to do this is by adding predicates corresponding to ranges which are
same width as the original set but which are offset by half a unit. Another possibility

is to add ranges which are smaller than the original. Both of these approaches are
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Figure 3-11. Increasing the resolution of a Gray coded interval. a. Adding more predicates of the
same width as the originals. b. Adding new narrower predicates. We prefer the narrow predicates
because they can be represented using the modifier technique.

shown in Figure 11. In our system we use the narrower predicates approach since it
meshes neatly with the modifier technique to give us properties like VERY curved.
Similar extensions can be made for hierarchies: not only is something an end, it is
the end OF of a particular region; not only is some object a hammer, it is a CLAW
type hammer. The key point is that the same mechanisms as described before will
continue to work on these new expanded representations.

Gray coding also allows us to add new data types to the system without changing
the similarity metric or generalization procedures. In our system not only do we have
ranges of shape parameters and classification hierarchies, we also have other types
such as edges, regions, and objects. Instead of creating new procedures for telling, say,
how similar two regions are, we can use the mechanisms we already have provided
that we encode the information about regions appropriately. Similarly, instead of
defining a new generalization mechanism for every type introduced, we can use the
generalization procedure outlined above. Thus, we can have an extensible type system
without incurring the overhead of a plethora of mechanisms. The trick is properly
encoding the new type so that the old procedures will do the right thing.

One example of a new type is a region. We have already shown how individual
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Figure 3-12. In the representation of a region the Gray code predicates for cach parameter are grouped
separately.

shape parameters are compared, we now need to compare whole regions as well.
Although we have been discussing shape parameters as if they were predicated of the
region itself, this is not true. We actually group the predicates for each parameter
separately as shown in Figure 12. We can now look at a region as having its own set
of Boolean predicates, LENGTH-X, ELONGATION-Y, and CURVATURE-Z, which
can be used to compare the region to other regions. If we had attached all the
properties directly to the region, the similarity metric for regions would be wrong. A
small difference in each the length and the curvature would look as bad as a totally
different length because the same number of properties would fail to match in each
case. Grouping the related properties together allows us to isolate the small changes
from each other. The changes are isolated because at each level of modification we
determine whether the parameters are reasonable matches. In the case of the two
small changes the system deems that the length and curvature are reasonably close.
It then reports that the length and curvature really do match, hiding for the moment
that there was a small discrepancy. The region sees that all three of its parameters
match the parameters of the model and hence the whole region matches the model
region. In the case of a total mismatch in length the region sees that its curvature
and e¢longation match but that its length does not. Thus, the region is not an exact

match to the region in the model; at best it is only close.



3.5. Structural Approximations

As mentioned before, incorporating abstraction into the representation language is
important. Tirst of all, abstraction is useful for speeding up the matching process.
The problem of matching two graphs is difficult and in the worst case can grow
exponentially with the size of the graphs to be matched. By matching an example to
a model at the most abstract level and then progressively matching the details, the
problem can be reduced to a manageable size. The second thing abstraction does is
to specify how to make generalizations. For two objects to share the same coarse-
level description they must be roughly similar. Thus the levels in the representation

delineate acceptable partial matches, each having a different degree of specificity.

[orthogonai]

Figure 3-13. Edge abstraction. a. An abstract version of head to handle join. b. A more detailed
version involving the edges of the regions.

An important facet of this work has been determining appropriate types of ab-
straction for shape descriptions. We have found several ways of approximating the
structure of an object to be particularly useful in this respect. The first of these is
edge abstraction which states that regions are more important than their boundaries.
Figure 13 shows an example of edge abstraction. Using the local matching scheme,

at the top level all we know is that the head of the hammer is elongated and curved
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and that it is attached at a right angle to the handle. When we expand the horizon
to include the edges as well, we can say which direction the head curves and more
accurately specify its shape by examining the width and taper of the head at each
end. Furthermore, by using the edges of the two parts, we can say exactly how and

where the head joins the handle.

N

Figure 3-14. Size abstraction. a. The body is more important than the limbs. b. For this reason the
body is closer to the object node than the limb is.

Another form of structural approximation is size abstraction which captures the
fact that big picces seem more “important” than small pieces. Small does not neces-
sarily mean unimportant, however; the type of tip a screwdriver has is more important
than the shape of its handle. Yet the importance of the tip of the screwdriver has
nothing to do with its size, the tip is important because it determines the function
of the tool. When we do not know anything of the function of some object, physical
size is often a good indicator of perceptual salience. This is also known as the “body
and limbs” heuristic and is shown in Figure 14a. The idea is to omit the small pro-
trusion from the coarse level description of the object. This is done by putting the
limb syntactically further than the body from the object node as shown in Figure
14b. Using the local matching scheme, the first horizon extends only as far as the
node representing the body; the limb node is invisible. Later, if the body node is
adequately matched, the horizon is expanded to encompass the limb node as well.

This makes sense since the body provides a natural coordinate frame for describing
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the limb and thus must be established before the limb can be matched. A good
generalization of the objects structure can also be formed by simply [orgetting about
the small protrusion. This is exactly what the local matching scheme does when
presented with two examples that have very different looking protrusions. While the
shapes of the two example objects closely match at the first level, at the next level
they are substantially different. Because of this the matcher stops the comparison at

the first horizon and drops all mention of the protrusions from the model.
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Figure 3-15. Envelope abstraction. a. The tines of the fork are subparts of its hcad. b. The tines are
represented like limbs.

The third form of abstraction, envelope abstraction, is similar to size abstraction,
In Chapter 2 we discussed relaxing the “non-overlap” condition for the head of the
fork. As shown in Figure 15a, the head of the fork is dcfined largely by the envelope
of the tines. The head is more important than the tines not only because it larger,
but also because it completely subsumes the region described by the tines. For this
reason, the head is represented in Figure 15b as a rectangle whose internal structure
is further specified by the tines. The rectangle description helps support functional
analogies such as seeing a fork as a shovel [Agre 1985]. It also lets us match a “spork”,
a combination of a spoon and a fork which has a much more prominent head, to the
fork model.

The last type of structural approximation is chain abstraction. The idea is that

several parts connected end-to-end, as in Figure 16a, form a special kind of larger
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Figure 3-16. Chain abstraction. a. The limb is composed of threce different parts. b. These parts are
grouped into one unit in the representation.

part. This larger part has certain properties, such as size, elongation, and curvature,
that represent the ensemble. The representation of a chain of parts is shown in
Figure 16b. Chains are important because of the connectivity requirement discussed
in Chapter 2. Removing any of the parts, other than the ends, causes the object to
be broken into two different objects. When the chain is connected to a larger piece,
as in Figure 16a, only the most distal section can be removed without fragmenting
the object. Representing chains as shown in Figure 16b also helps the system tolerate
the fixed thresholds employed in the symmetry extension algorithm. The last section
of the chain in Figure 16a is a different piece from the middle section only because of
the “local convexity” condition; if the piece had been slightly less tapered it would
have been joined with the middle section to form a single part. Similarly, the middle
section is distinct from the innermost section only because of the “no major bends”
condition — decreasing the angle between the two sections would cause them to be
joined. While the substructure of whole limb would be different in these cases, the
overall properties of the chain are unchanged. A related topic, the use of chains to

recognize different configurations of the same object, is discussed further in Chapter
5.
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Figure 3-17. The decomposition of a human figure as suggested by Marr. Several examples of size,
chain, and envelope abstraction are evident.

Many of these forms of abstraction were implicit in the work of Marr and Nishi-
hara [1978]. Figure 17, for instance, contains examples of size, chain, and envelope
abstraction. However, Marr never specified exactly why the object was broken down
in the form shown nor how to accomplish this. We have answered not only these two
questions but have also shown how to represent structural approximations and how

to use them in forming generalizations.

3.6. Sample Descriptions

The following pages show the full semantic nets computed by our program for a claw
hammer and a Lockheed 1011 airplane. These networks are very large and have
been broken down into page-sized sections for easier viewing. We also show, for each
object, a picture of the object drawn by the program based on the object’s semantic

network description. The edges of the original image are presented for comparison.
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Claw Hammer (head)
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Lockheed 1011

Left Wing Body Right Wing

3 X Io
Left Engine - . _ i\ Right Engine
=

Left Elevator Right Elevator

61



Lockheed 1011 (body)
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Lockheed 1011 (left wing)
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Lockheed 1011 (right wing)-
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Lockhced 1011 (left engine)
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Lockheed 1011 (left elevator)
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Lockheed 1011 (right elevator)
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The Learning Algorithm

4.1. General Principles

The primary goal of this thesis is to show how models of objects can be learned using
visual data. This is accomplished in our system by presenting several example objects
and saying whether they belong to a particular class or not. The learning program
then creates a prototype description which can be used to recognize other members

of the class. For the learning program to operate reasonably it needs to:

be capable of learning from positive examples only.

e make an educated guess if it is not sure of its answer.
¢ not make any rash generalizations.

e Dbe able to recover from over-generalizations.

There are various rationales behind these design criteria. The reason for the
first of these, positive examples only, is that humans seem to be able to learn what
things are without ever being shown counter-examples. Counter-examples are used
to refine concepts and make fine distinctions; they are not necessary to learn the
basic concept. This is not to say that the program can learn what something is
without learning what it is not, rather we claim that this learning can occur without
explicitly presented negative examples. This is possible because each model of a class
contains an tmplicit description of its complement. That is, given a class model, there
are things which are so obviously different that they can not possibly belong to the
class. The set of all such grossly different things is the inverse of the class. Thus
by knowing what is in a class and having a suitable similarity metric, we also know
what is not in the class.

The second criterion, educated guessing, is largely a performance consideration
as it deals with how the models are used rather than how we construct them. In
the real world, not everything falls neatly into a class having a compact description,
nor do we always completely learn a concept before being required to apply it. In
both these cases it seems reasonable to attempt to answer rather than giving up in
confusion. This is especially important when some definite answer is required, either

a “yes” or a “no”, and giving up is interpreted as “no”. By making educated guesses
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the system is more likely to give the correct answer in ambiguous cases and in the
face of incomplete models.

The other two criteria constrain how models are modificd. The no rash general-
1zalions heuristic is meant to make the system less gullible. Suppose that the system
only knows about the shapes of things and we tell it that both humans and whales
are mammals. The shapes of these two objects are grossly different, so different
that if we were to make a generalization based solely on shape information it would
amount to “All things are mammals”. This is clearly wrong. The system should be
more skeptical than this; it should hestitate before discounting most of what it knows
about the members of the class of mammals. However, no matter how careful the
system is, it is bound to make mistakes like this every so often. This is the reason
for the fourth desideratum, recovery from over-generalization. If mistakes are going
to occur they should be correctable; they should not be allowed to cause permanent

damage.

lest case

a.
Exact Match
b . test case
\
.,"l’ Close Match
test case
C.

No Match

TFigure 4-1. Possible outcomes of matching an example to the current model: a. exact match b. close
match ¢. no match. The circles represent sets of features.

It is useful at this point to introduce some terminology involving the outcome
of the matching process. This terminology will help explain the algorithm we have
developed and further clarify several of the design criteria presented above. When
comparing an example to an existing model, the example can either exactly match

the model, closely match the model, or fail to match altogether. These three cases
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are depicted in Figure 1. The circle labelled “model” represents the features required
to be a member of the class. The circle labelled “test case” represents the features
possessed by the example presented. Figure la shows an ezact match. The test case
has all the features required by the model and may have non-required features as
well. In Figure 1b the test case is a close match to the model. The shaded area
represents features which are required by the model but which are lacking in the
example. Finally, Figure 1c shows the case of no match. Again the shaded area
represents features which ‘were required but which are not present. In this case we
deem the discrepancy to be too large and thus the match fails.

These distinctions are intimately related to the functioning of the learning sys-
tem. They help us define, for instance, what constitutes an “educated” guess. If
an example is an exact or close match to a class model the system will say that the
example really is a member of that class. This is part of the meaning of what “close”
means; a close match is a reasonable guess to make. Close matches also help define
what a “rash” generalization is. If the example is not reasonably close to the the
current model then altering the model to cover the example is a mistake.

Obviously our algorithm relies heavily on this notion of closeness. This is a
domain-dependent measure that accounts for a number of types of similarity be-
tween objects. For reasons previously cited, we have embedded this knowledge in our
representation language. The learning system complements this metric much as the
A-box cooperated with the T-box in KRYPTON [Brachman, Fikes, and Levesque
1983]. The job of the T-Box was to take care of all the special inheritance inferences
made possible by the representation, while the A-box handled the other types of
reasoning. In our system the similarity metric forms the equivalent of the T-box —
the representation is specifically designed to support similarity comparisons — while

the learning procedure fills the role of the more general A-box.

4.2. Creating and Generalizing Models

The response of the learning program depends on the outcome of the match between
the example and our current model. First, suppose that we present the system with
an example and tell it that the example is a member of the class being learned.
If the eﬁmmple ezactly matches the current model then the system will correctly
state that the example is a member of this class. Since the system produces the right
answer everything is fine; no further action is necessary as Figure 2a shows. Suppose,

however, that there is no existing model, that this is the first example the system has
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ever seen. In this case we create a model for the class based on the description of
the example presented. This is the situation illustrated in Figure 2b. The rationale
behind this action is that if we have only scen one example of a class, then that
example is a good prototype for the class. Certainly all known members of the class

(there is only one) will exactly match this model.

a. fest ca% No Change
T O
——————— e
lest case
b. New Modet
— O
c. fest case Generalization
\
P —— ]
d lest case

Disjunction

B —

Figure 4-2. Learning from mistakes. The learning algorithm takes different actions depending on the
outcome of the match.

If a model of the class already exists, it might be that the new example only
closely matches this model as in Figure 2c . The system will correctly state that the
example is a member of the class due to the “educated guess” heuristic. However,
the example presented was explicitly included in the class — the teacher said it was
a member. Under what Winston has dubbed “felicity conditions” [Winston 1984,
VanLehn 1983], we assume that the teacher intended this to be a good example of
the concept rather than some fringe case. The fact that this example was not an
exact match to the class model then implies that our current model is inadequate; it
should be extended to cover this positive example.

By our definition of “close” we know that it is appropriate to generalize the model
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in this situation - the only question is how to accomplish it. Our approach is very
simple: we ablate the current model by removing all the features that were not present
in the example (the shaded region in Figure 1b). In general, this is an atrocious way
to create gencralizations. The reason it works in our case is that we have carefully
construcled the representation such that ablation produces meaningful generalizations.
This is one elfect of forcing the syntax of the representation reflect its semantics: we
can have a very simple procedure for creating generalizations. Anyhow, since we
have removed all the unfulfilled requirements from the model, the example will now
exactly match the model. The next time the example is prcsentedl the system will
have no doubts as to whether it belongs to the class or not.

The last case is when the example presented fails to match the current model as
in Figure 2d. This does not mean that there was no overlap between the example
and the model, merely that the overlap was insufficient. In this case we create a new,
secondary model for the class based on the example presented. Had we generalized
the old model by intersecting its feature set with that of the example, we would have
thrown away a great deal of the useful detail in the original model. We believe such
drastic revisions are dangerous and should be avoided. Our solution is to represent
the class using a set of prototypes much like in Mitchell’s version spaces [Mitchell
1978).

Employing a set of models rather than a single prototype is invaluable when deal-
ing with disjunctive concepts. Seemingly disjunctive concepts often arise in reasoning
between form to function. For instance there can be many structurally different types
of “handles”. Some handles are curved like those on a briefcase or a cup, others are
knob-like as are the handles of a dresser, still others are elongated sticks such as the
handle of a hammer or a baseball bat. The thing that unifies all these examples is
their function not their form. Similarly, the representation space that unifies whales
and other mammals is reproduction. Yet we are often able to recognize the function
of some object without actually using it; we can infer its function merely by looking
at it. This suggests that sometimes visual information is all that is needed in order
to classify objects with regard to their function. Learning such a concept on the basis

of entirely geometric information, however, is hopeless unless we allow disjunctions.

4.3. Specializing Models

We have discussed how to generalize models but it is also necessary to specialize them

sometimes as well. No matter how careful we are about altering the current models,



for instance, over-generalizations arc bound to occur. When a model has been over-
generalized not only does it cover all the members of a class, it also inadvertently
covers some items which are not members as well. This problem is corrected by
specializing the model so that it excludes all the incorrectly labelled items. Another
case in which specialization is required is when there are ezceptions to the rule.
Exception is different from disjunction: the reason for creating a disjunction is some
new example that is not covered by the current model while the reason for making an
exception is some new non-cxample that is incorrectly covered. Once again the way

to remedy this is by specializing the model so that it no longer covers the exceptions.

a.  Over-generalization

model altered model
B
must D

b. Exception

altered model

model
B .
must not D

Figure 4-3. The use of two specialization heuristics. a. Over-generalization is countered by requiring
a particular feature. b. Exceptions are rejected by forbidding some of their characteristic features.

To specialize a model we must present the system with negative examples, things
which the teacher says are not members of the class. However, negative examples are
only useful when they have been misclassified by the system. There is no problem if
the system says that these items are not inembers of the class when they truly are
not. Requiring the item to be misclassified is similar to Winston’s claim that under
“the no-guessing principle” the only useful non-examples are near misses |Winston
1984]. Remember that our system will not claim that a test case is a member of a
class unless it is either an exact or close match to the current model of that class.
Thus “far misses”, in which there are many differences between the test case and the

model, will never be deemed members of the class. The only kinds of non-example
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that could be misclassified are near misses or exceptions.

There are two heuristics which are especially useful for correcling over-generaliza-
tions and handling exceptions. They are known as require link and forbid link |Diet-
terich and Michalski 1981] or, equivalently MUST have and MUST NOT have [Win-
ston 1970]. These two heuristics are used as shown in Figure 3. Over-gencralization
usually occurs because we have thrown away some useful feature of the model. The
simple solution to this problem is to put the feature back by making it a required
feature. Exceptions, on the other hand, are generally distinguished by some partic-
ular feature or sct of features not present in the model. Thus, to recognize that an

exception is not a member of the class we make all these features forbidden.

4.4. Non-Models

Instead of having features of diflerent strengths as suggested in the last section, our
learning program uses combinations of models and non-models to cope with over-
gencralization and exception. Whenever a non-example is misclassified, we create a
new non-model based on the non-example much as we created a new, regular model
for a positive example which was not covered by the existing model. This is again
similar to the specialization technique used in version spaces [Mitchell 1978]. Non-
models have the same status as regular models; they can participate in disjunctions,
be generalized, and be specialized. They follow all the rules listed in Figure 2. The
only difference is that they explicitly delineate what is not in the class.

Non-models allow us to achieve the effects of MUST and MUST NOT. As shown
in Figure 4, require link is implemented by having a negative non-model which is
identical to the positive model except that it lacks a single feature. If we tell the
system that something which matches both the model and the non-model is not a
member of the class, the system will never decide that a test case lacking this one
feature is a member — the feature has become mandatory. The second heuristic,
forbid link, is implemented in a similar fashion. This time we construct a non-model
which is exactly the same as the original model except that it has the extra, forbidden
feature as well. Now any test case which has all the features required by the model
but also has the forbidden feature will match both the model and the non-model
equally well. However, as before, we specifically instruct the system to favor the
non-model in the case of such a tie. Thus the system will decide that any test case

having the forbidden feature is not a member of the class.
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a. MUST haveD
model NON-model

B suppresses
A C i

b. MUSTNOT have D

model NON-model

l suppresses

Figure 4-4. Require link and forbid link can be achicved using combinations of models and non-models.
a. For require link the model has an extra feature. b. Tor forbid link only the non-modcl has the
forbidden feature.

While we can explicitly instruct the system what to do in the case of ties, not
all interactions between models and non-models lead to such conflicts. For instance,
the situation in which a test case exactly matches a model and closely matches a
non-model can be simply resolved without advice from the teacher. This is possible
due to the conceptual difference between a close match and an exact match. If a test
case exactly matches the concept then it is a bonafide example of the class; if it only
closely matches then it is not a obviously a member of the class but we are willing to
take a guess on it. Thus we have more reason to believe that the test case really is a
member of the class than that it is not. In both this case and its converse, in which
the non-model is exactly matched while the positive model is only closely matched,
we can make an informed decision: the exactly matched model or non-model wins
over the closely matched one. This is akin to the mazimum specificity heuristic used
in many production systems.

When there is a real conflict we await a verdict from the teacher and then change
the priorities of the conflicting models to ensure that only the correct answer will be
reported in the future. A real conflict is when a test case either exactly matches or
closely matches both a model and a non-model. In such a case we have no basis for
making a decision and hence must rely on the teacher for guidance. The way that

the teacher’s judgement is then incorporated depends on whether the model and
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a. example

IS member
— [ GO

example

O o) TG GO

suppresses

Figure 4-5. Non-models can conflict with models. Given the correct answer, the system resolves these
conflicts in various ways.

non-model were exactly matched or only closely matched. If it is an exact conflict we
explicitly rank the two opponents one above the other. The effect of this ranking is
that the correct one will suppress the incorrect one if they are ever in exact conflict
again. The other type of conflict is when a-testcase closely matches a model and a
non-model. Here we do not need to impose a ranking. Once we determine, on the
basis of the teacher’s pronouncement, which was the correct guess to make, we can
ensure that in the future we will make this guess by generalizing either the model or
the non-model. The correct model or non-model will now exactly match the test case
(it was generalized to cover this item) while only closely matching the other. Since

exact matches always take precedence over close matches, the dispute is settled.

Non-models have two advantages over the MUST have and MUST NOT have links
used by Winston. The biggest advantage is that they allow conjunctive exceptions.
That is, it could be that an item possessing either of two features belonged to the
class but that when both features were present the item was not a member of the

class. Such an example is shown in Figure 6. Here we are trying to construct a
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definition of “hammer” that includes both a and b but excludes c. It would be wrong
to say that a hammer MUST NOT have a curved head since the head of hammer in
Figure 6b is curved. We also can not say that the hammer MUST have a pointed
pein since the hammer in Figure 6a has a flat-ended pein. While MUST and MUST
NOT clauses can not cope with this example, it can be easily handled by a single

non-model which has a curved head and a flat-ended pein.

o

Figure 4-6. Conjunctive exceptions. A hammer can have a flat pein or a curved head but not both.
Winston’s MUST have and MUST NOT have links are inadequate for describing this; non-models
must be used.

The second advantage to non-models is that since they share all the properties
of regular models, they can be refined through specialization and generalization. In
Winston’s system [Winston 1970] making a clause into a MUST or MUST NOT clause
was permanent; there was no way to turn a mandatory feature back into an optional
one. To get around this his system was simply very conservative about creating
MUST and MUST NOTs in the first place. It waited for a near miss in which it
was possible to discern one key difference before altering its model. Yet disregarding
non-examples when there is more than one possible discrepancy scverely impairs the
value of negative examples. Our system is more flexible and can work with any near
miss since it has the ability to generalize non-models. When in doubt, it decides
that all differences are important and incorporates all of them into a non-model.

Later, more negative examples can be presented to progressively generalizes the non-
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model until it differs from the positive model by only the one difference that all the
non-cxamples had in common. This idea, similar to Winston’s near miss group, is a

natural outgrowth of using non-models.

m | suppr esses (\ | Su ppr esses (\
| | D

AP ¥ U

Figure 4-7. Exceptions can themselves have exceptions. a. The plane model. b. A non-model that
suppresses the plane model. ¢. A model developed for planes with canards. This model suppress the
non-model in b.

Non-models, just like regular models, are sometimes over-generalized or have
exceptions. The technique for coping with this is the same as for regular models: a
non-model is specialized by being suppressed by a positive model. Figure 7 shows
the program’s model of a typical jet airplane and a non-model which looks just like
the model but lacks elevators in the back. This pair represents the fact that although
something may look a great deal like an airplane, if it does not have elevators it can
not possibly be one. While for the most part true, there are certain planes which have
front-mounted canards instead of elevators. To correct the program’s conception of
a plane, we create a new model describing planes with canards and make this model
suppress the previous non-model. Thus the exception itself has an exception. The
suppression scheme we use to handle such situations is much like putting a censor on
a rule in Winston’s system. The major difference is that a censor requires a named
intermediary in order to suppress a rule. That is, some rule concludes fact X which is
one of the “unless” clauses of another rule and thus keeps this other rule from firing.

Our non-models, on the other hand, directly suppress their associated models.
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Obviously we have borrowed many ideas from Winston. One of the contributions
of the learning algorithin presented here is that it incorporates all these ideas in a
unified framework. Another improvement is that the learning algorithm has a good
grasp of the types of generalization which are appropriate to its domain. Such knowl-
edge of similarity is crucial for learning which involves complex data. Finally, our
algorithm rclies less on the teacher than does Winston’s. Through the use of models
and non-models it is not confused by inherently disjunctive concepts. Furthermore,
because it can handle examples that differ in more than one way from its current
model, it does not have to be spoon-fed near misses. The next chapter contains

several examples which illustrate these points.
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Expceriments

5.1. Structural Prototypes

The major focus of our research has been on learning structural descriptions of ob-
jects. The idea is to present the system with pictures of several different airplanes
and have it construct the description of a prototypical plane. Figure 1 shows the
edges of the three airplanes we used to form the “airplane” concept. The pictures
are actually of model airplanes, not full-sized jets. They are (from left to right):
Boeing 747, Lockheed L-1011, and Douglas DC-9. Geometrically, these airplane vary
primarily in the aspect ratio of the body, the number and placement of engines, and
the position of the wings along the fuselage. They were presented to the system in

the order shown.

Figure 5-1. The edges of some airplanes (not to scale). a. A Boeing 747. b. A Lockheed 1011. c¢. A
Douglas DC-9. These three examples were used to learn the “plane” concept.

We start by showing the system the gray-scale image of the 747 and telling it that
the object in the picture is a “plane”. This causes the initial model of the “plane”
class to be a copy of the 747’s description. In other words, the system believes that

to be a plane an object must look like a 747. If we now ask whether the object in
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Figure 5-2. The semantic network description of the “plane” model at level 1.

the picture just shown is a plane, the system will answer YES because the object’s

description ezactly matches the system’s model of the class.

Next we present the picture of the L-1011 and ask whether this object is a plane.
The matcher starts out by looking at only the top-level properties of the L-1011
since they are the only predicates that have all of their arguments bound. At this
level the L-1011 exactly matches the plane model since, as can be seen in Figure
2, the only property the model requires is OBJECT. Next the program expands
its matching radius by examining the relations emanating from the top node of the
model. Figure 2 shows all the predicates which can be tested at the second level,
level 1. The matcher starts by trying to find a binding for Wing-1, the left wing.
The corresponding region in the L-1011, the test case, should be ELONGATED and
STRAIGHT. It also must be PART OF Test-Object-1, the node representing the
entire L-1011, otherwise it would fail to satisfy the dependency specified in the model.
This description, however, matches both the body and the two wings of the test case
so the system is unsure which binding to make. Since it does not mind backtracking,
it tentatively decides that Test-Body-1 is the correct binding for Wing-1. It now goes
on and looks for a binding for Body-1. The thing bound to Body-1 should also be
ELONGATED and STRAIGHT and must be PART OF Test-Object-1. Additionally,

82



it should JOIN Test-Body-1 at an OBLIQUE angle. Test-Wing-1, the lelt wing of
the L-1011, satisfies all these criteria so the system tentatively binds Test-Wing-1 to
Body-1. So far we have:

Wing-1 == Test-Body-1

Body-1 = Test-Wing-1
At this point the matcher has confused the body and the wing of the test object but
does not yet realize it.

The system discovers its mistake when it tries to find a binding for Wing-2.
The part of the test case corresponding to Wing-2 should JOIN Test-Wing-1 at an
oblique angle, yet the only thing which is PART OF Test-Object-1 and satisfies this
requirement has already been bound to Wing-1. This tells the system that at least
one of the two bindings it has made is wrong. Therefore the system scraps both
bindings and tries a different set. Suppose, instead, it binds Test-Wing-2 to Wing-1
and Test-Body-1 to Body-1. This allows it to bind Test-Wing-1 to Wing-2 resulting
in the bindings:

Wing-1 = Test-Wing-2

Body-1 = Test-Body-1

Wing-2 = Test-Wing-1
While this allows the test object to exactly match the model at this level, these
bindings are still incorrect; the system has rotated the plane about the axis of the
body such that the two wings are swapped. However, because all the predicates at
this level have been satisfied, the system does not know it has made an error. The
model of a plane at level 1 merely says to look for three long skinny things, two of
which are joined to the third. As shown in Figure 3, many objects fit this description.

The next level adds additional constraints, enough to allow the system to correct
the bindings it made. Figure 4 shows the relevant portions of the plane model at
level 2. Each wing must be joined to a side of the body and the two wings must
be on opposite sides. The left versus right ambiguity can now be resolved because
both wings lean TOWARD END-2, the tail end of the body, but only the left side is
RIGHT-OF END-2. In this way the system discovers that the bindings it made at
level 1 are not the best ones. Eventually the system discovers the correct bindings
and is able to compare the example to its model of a plane.

The system finds that L-1011 matches the current plane model, but not exactly.
All the top level structure is the same — the L-1011 has parts which look like a body

and two wings and these parts are in the proper relative orientations. However, at
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Figure 5-3. Some of the objects which fit the description of a plane at level 1.

Figure 5-4. The description of the plane at level 2 specifies the joins precisely enough to disambiguate
the two wings.

the level of the wing model the program notices that there is a discrepancy. The
model, based on the 747, had two engines on each wing while the example, the L-
1011, only has one. The system compares the wing of the L-1011 to the wing of the
plane model using the Gray coding metric. Figure 5 shows the relations involving the

wing which are visible after the horizon has been expanded. The fact that the wing
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is missing an engine causes one of the JOIN relations to remain unmatched. This is
a small difference since the other JOIN relation and the four SIDE OF and END OF
relations are all matched. Therefore, the system judges that the piece is still close
enough to the prototype description to be called a wing. When the top level of the
matcher asks if the piece in question looks like a wing the answer is YES; no mention
is made of the fact that the wing is missing an engine. While the difference only
matters locally and is isolated from the higher levels of matching, this does not mean
the program forgets about it: it needs to remember this at least to perform ablation.
The point is that the program’s judgement of the similarity of two objects is based

on a number of very simple local decisions.

Figure 5-5. The relations involving the wing which must be matched. The missing engine only affects
one of these relations.

The third example airplane refines the model in a similar way. The DC-9 differs
from the other planes by having a squatter body and skinnier wings. The final model
learned from all three examples describes a plane as being, first of all, something with
a body and two wings, each of which must have a particular shape. The topology of
the model says that the wings must be connected on opposite sides of the body and
swept backward. When prompted for more detail, the model reveals that there are
two elevators attached to the end of the fuselage. The model has been generalized
by ablating the parameters of the wings and body to allow a fairly broad range of

shapes for these parts. Furthermore, the model now specifies that each wing need
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only have one engine on it, although more are permitted.

5.2. Context Dependent Models

Our system is not restricted to creating prototypes for whole objects, it can also
form prototypes for parts of them. This is possible because the representation has
been carefully designed so that the view from any node in the network yields an
appropriate similarity metric. The prototypes created typically specify not only the
shape of the part but also its relation to the object as a whole. One example of
such a context dependent description is the concept of a “wing”. Here we mean the
geometrical form and relations of a wing rather than its aerodynamic or functional
properties. A wing has an intrinsic shape, basically straight and skinny, as well as

being located at a particular place with respect to the rest of the plane.

Figure 5-6. A wing can be joined to either side of the body. Dropping the four RIGHT-OF links
makes the two sides indistinguishable.

We have taught the system the basic shape and position of a wing using the wings
of several airplanes as examples. The shape of these wings differ slightly in terms
of aspect ratio and size relative to the body. Such variations are easily handled by
applying ablation to the shape parameters of the wing model to arrive at appropriate
ranges of values. The wings of different planes also join the body at various angles and

distances along the fuselage. Once again, ablating the properties of the wing-body
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join allows the model to match all these examples. A more important difference is
that a wing can be joined to either side of the plane’s body: there are right wings and
left wings. The two sides of the body are distinguished by their relation to the body’s
ends. As shown in Figure 6, one is RIGHT-OF the nose while the other is RIGHT-
OF the tail end of the fuselage. To make the two sides of the body equivalent, we
drop these RIGHT-OF links from the model. The model arrived at now recognizes

both left and right wings and, thanks to ablation, tolerates a variety of wing shapes.

Figure 5-7. The wings of a plane have a particular relation to the rest of the object. a. A wing. b. A
non-wing. ¢. Another non-wing.

Unfortunately, this model also recognizes things which are not wings such as
those in Figure 7. Because the body has a shape which is roughly similar, it, too, is
a close match to the wing model. The context which serves to distinguish the body
from a wing is eliminated by dropping one JOIN link, a small change. To correct this
misclassification we explicitly tell the system that the body is not a wing. In responce,
the system forms a non-model based on this particular body. The body is not the only
piece which might be mistaken for a wing, the elevators in the back of the airplane
also closely match the wing model. Because they do not match the preliminary non-
model constructed from the body’s description, the system incorrectly classifies them
as wings. When informed of its mistake the system creates a brand new non-model
based on the elevator it was shown. As more elevators are presented, this non-model

is gradually generalized. The same thing happens to the non-model derived from
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the description of the body when we show the system the bodies of other planes
and classify them as non-wings. At some point, the bodies start to match not only
this non-model but also the non-model based on the elevators. This causes the two
non-models to converge to the same description: a wing can not obliquely join the
end of a straight piece. An elevator is not a wing because it is joined to the end of
the body. Similarly, the body is not a wing because its end is joined to the end of
an elevator. A real wing, however, is not joined to the end of anything; it is joined
to the side of the body. Thus, the system has learned to correctly classify wings as

members of the class while rejecting both bodies and elevators.

5.3. Articulated Objects

Many objects have moveable parts. We argued before that one reason for segmenting
an object into parts was to allow the recognition of different configurations of the
same object. To study this we have used a flexible model of the cartoon character

Gumby. The task is to recognize Gumby independent of the position of his arms.

Figure 5-8. Several different poses of Gumby. The task is to recognize Gumby whether his arms are
raised, straight out, or lowered. Note that a fully extended arm appears as a single piece, not two.

Gumby’s arms vary in two ways in the pictures shown in Figure 8. The first
difference is the angle that Gumby’s arm makes with his body. His arms can be raised,

extended horizontally, or lowered. The second difference involves the substructure
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of his arms. In some pictures two sections are clearly visible while in other pictures

there is no indication of Gumby’s clbow whatsoever.

The first type of variation is easily handled by weakening the specification of the
shoulder angle using ablation. The angle of Gumby’s arm varies from acute with
respect to his head, to orthogonal, to acute with respect to his waist. The position
of the join, however, does not vary; the left arm is always joined to the torso half
way up the left side. Thus, the final model specifies the location of the join precisely

but puts no restriction on the relative angle of the picces.

e eyl

s s
L4

Iﬂ‘."—“l elongated]
S

5

L J
ature |

Figure 5-9. The two sections of Gumby’s arm are parts of a chain which represents the whole arm.
To match the picture with outstretched arms, certain links must be dropped from the model.

The second type of variation is handled using the chatn heuristic described in
Chapter 3. As Figure 9 shows, Gumby’s upper arm and lower arm are both parts
of a chain which has certain shape properties derived from the pieces of the chain.
Only the chain, representing the entire arm, is joined to the body. In the pictures
where Gumby’s arms are extended each arm is a single piece with no substructure.
However, this single piece has the same length and elongation as the chain although
these two views of the arm obviously have different curvatures. Part of being able to
recognize Gumby, therefore, is removing any restriction on the curvature of his arms.
The description of Gumby must also be further modified by removing the details of
the chain’s substructure from the model. These links are marked by X’s in F igure 9.
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The chain heuristic lets us recognize articulated objects in arbitrary configurations
but it does this by discarding the information about the moveable portions. A better
solution would be to recognize that Gumby’s elbow is a joint not a join. A joint is a
connection between two or more pieces where the angle between the constituents is
allowed to vary over some specified range. This approach would help us segment the
image of a pair of pliers in which four pieces meet at the same place. From a single
view it is unclear what should be joined to what. However, from two different views
we can discover that this intersection is a joint. By observing that some of the pieces
of the joint move together, we can determine that each handle should be joined to
the opposite jaw. The joint approach is good for this purpose but the singularity
resulting from the alignment of two sections would now have to be handled as a

special case.

5.4. Functional Improvisation

We have shown how structural descriptions of things can be learned, yet certain
things, like hammers, are more naturally defined by their function. One way to do
this is to isolate the structural features of the hammer that enable it to perform
its function. The functional description of a hammer can then be learned in terms
of these structures and their interrelations. While this has been suggested before
[Winston, Binford, Katz, and Lowry 1984, it has never been implemented.

The function of a hammer can be broken into subfunctions by examining the
tool’s interfaces to the user and to the workpiece. The first requirement is that
the hammer must be able to contact the nail without slipping. The flat end of the
head is ideally suited to this task. Second, since the hammer is powered by the
action the the user’s arm, it must be firmly graspable. There are several methods
of prehension |Schlesinger 1919] each suited to some particular shape. Because the
handle is relatively long and fairly wide, it can be gripped by wrapping the fingers
around in one direction and the thumb in the other. Finally, given the dynamics
of swinging a hammer, the head must be appropriately oriented with respect to
the handle. The fact that front of the head is perpendicular to the direction of
the hammer’s motion allows this kinematic requirement to be met. Therefore, our
functional description of a hammer is a graspable object that has a flat striking
surface orthogonal to the direction of motion.

We have taught the system this definition by telling it straight-out the require-

ments and then showing it examples of various structures which are graspable, flat,
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Figure 5-10. Function from structure. a. The structures of a hammer that contribute to its function.
b. The functional description of a hammer mapped onto the structure of a screwdriver.

orthogonal, etc. The advantage to having a functional description of a hammer is
that it allows us to improvise |Brady, Agre, Braunegg, and Connell 1984]. Suppose
we needed to drive some tacks but did not have a hammer. One solution would be to
use a screwdriver to pound them in. Our system suggests this using the functional
definition we taught it. First, it notices that the blade and shaft of the screwdriver
fit its structural description of a graspable part. Then it realizes that the side of the
screwdriver’s handle can be considered a striking surface. Since it is appropriately
oriented with respect to the prospective handle, the screwdriver successfully matches

the system’s description of a hammer.
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Conclusion

6.1. Summary

We feel that this research has been successful. The system described is fully im-
plemented and generates shape descriptions from gray-scale images. Furthermore,
it is capable of generalizing these descriptions in a reasonable manner. The system
has been used to form structural prototypes and is now being applied in learning
functional concepts. However, even if you disbelieve all our theories of shape and

abstraction there are two things which should be clear:

e Images are not just collections of bits or even edges. It is entirely possible to ex-

tract a much higher-level representation from them which is intuitively satisfying.

e FEach domain, especially the visual one, has its own types of similarity. A program

can not learn about a domain without understanding this similarity.

The system as described has several known limitations. First of all, it is restricted
to two-dimensional shapes. Work is being done on segmenting three-dimensional
objects into parts [Ponce and Brady 1985], yet figuring out how to describe joins
and measure visual similarity in 3-D are still tough unanswered questions. A second
limitation of the current system is that the SLS also only works well if the object
is composed of elongated parts. A companion technique known as local rotational
symmetries [Fleck 1985] is being studied for detecting round regions. The most
important deficiency, however, is that there is no provision for recognizing partially
occluded objects using the models generated. These three topics are areas for future
research.

Even with its limitations, there are several applications for our system. One
of these is generating geometric models for a smarter recognition system such as
ACRONYM |Brooks 1981]. ACRONYM knows about three-dimensional transforma-
tions like rotation out of the image plane, and can handle partially occluded objects.
Currently it works using models from a CAD /CAM data base. While this is fine
for many objects, especially machined parts, sometimes the required information is
not readily available. In such situations our system could be used to complement
ACRONYM by generating models directly from images of the objects.

Another applicable is parts indexing. When designing a new machine it is often

possible to employ parts used in other machines also and thus avoid stocking new
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items. In the old days it was enough to bring the specification of a part down to
the stock room and ask the clerk if he knew of anything like it. Modern inventories,
however, often contain millions of different parts — far too many to be kept track
of by any individual. One approach to solving this problem is “group technology”
[Boothroyd, Poli, and Murch 1982]. In this approach each part is assigned a three
digit code describing whether it is cylindrical or prismatic, what sorts of symmetry it
has, and the aspect ratio of its bounding polytope. The indexing problem is solved by
mapping similar parts to the same code number. Our system could be used the same
way, but with far richer descriptions. Each part would have its semantic network
computed and stored away in a large database. To find items similar to some new
part, we merely show the system a picture of the new part and then ask it to match

this against the stored descriptions.

6.2. Future Work

Aside from fixing the short-comings listed above, there are several interesting exten-

sions that might be made to the system:
¢ Integrating visual and verbal knowledge

Learning the class of some object can be viewed as determining which word cor-
responds to some visual stimulus. English descriptions of shapes are also filled with
references to particular items: “pear-shaped”, “hook-like”, “V-necked”, etc. Under-
standing these terms requires understanding the appearance of the objects they are
derived from. We could also learn the meaning of non-class words such as “bent” and
“paralle]” much as we learned the functional properties of a hammer. Currently, we
have a program which will draw pictures based on the semantic networks produced
by the vision system. Since the output of the parser developed by Katz [Katz and
Winston 1983] is compatible with our representation language, it would be a rela-
tively simple matter to integrate these two programs. The result would be a system
that could give an English descriptions of the shapes it saw as well as draw pictures

based on a written descriptions.
¢ Enhancing the contour representation

The descriptions produced by our system are largely region-based. The only

contour information they contain is the bentness of the spines, the curvature of the
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sides of the symmetries, and the adjacency of the edges of a region. Even so, region-
based descriptions often provide a good first-pass approximation to the shape of an
object. Consider the running shoe shown in Figure 1. It has a fairly irregular shape
but can be considered to be roughly ellipsoidal. Sometimes, just knowing that a shoe
is ellipsoidal is all the information we need. If required, more detail can be added
by noting certain contour features: the shoe is pointed in front, square at the back,
and has a concavity surrounded by two points at the top. This information could be
computed using visual routines [Ullman 1983} or a system such as that described in
'Asada and Brady 1984].

Figure 6-1. A running shoe is basically ellipsoidal as shown in a. More detail can be added to this by
examining the contour as in b.

¢ Using partial information

Sometimes only a small portion of an object is visible. While not enough to allow
recognition based purely on the visual data, it may be sufficient if we have other
sources of information. For instance, if we know that the occluding object is the top

of a hangar, then the symmetric pointed object protruding beneath it is liable to be
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the nose of an airplane. Complete models of a shape can also be constructed using
partial information in a manner similar to the way free-space maps for robots are built
up from multiple views [Chatila and Laumond 1985]. Imagine building a description
of a real, full-sized jet airliner by walking around the plane. It is impossible to
see all the important features simultaneously because the object is self-occluding.
Nevertheless, it is relatively easy for a human to get a comprehensive model of the

plane from this exercise.
¢ Determining function from form

The approach to improvisation we presented in Chapter 5 only works if we already
know the function of a tool. It would be interesting to go the other way, guessing the
function of an object from its form. To do this we need to determine which parts of a
shape have functional significance and how the functions of these subparts interrelate
to yield the overall function of the object. This is part of the motivation behind the
Mechanic’s Mate project {Brady, Agre, Braunegg, and Connell 1984] which has taken
the first step in this direction by compiling a partial list of the subshapes found in
tools and the functions they are useful for. There is still much work to be done,

however, before full form-to-function reasoning is realized.
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