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so that the reconstruction task in formulated as an estimation problem.
Our main contributions are the following:

l. We introduce the use of specific error criteria for the design of
the optimal Bayesian estimators for several classes of problems,

and propose a general (Monte Carlo) procedure for approximating them.
This new approach leads to a substantial improvement over the existing
schemes, both regarding the quality of the results (particularly for
low signal to noise ratios) and the computational efficiency

2. We apply the Bayesian approach to the solution of several problems,
some of which are formulated and solved in these terms for the first

time. Specifically, these applications are: The reconstruction of
piecewise constant functions from noisy data; the reconstruction of piece-
wise continuous surfaces from sparse and noisy observations; the recon-
struction of depth from stereoscopic pairs of images and the formation

of perceptual clusters.

3. For each one of these applications, we develop fast, deterministic
algorithms that approximate the optimal estimators, and illustrate
their performance on both synthetic and real data.

4. We propose a new method, based on the analysis of the residual process,
for estimating the parameters of the probabilistic models directly

from noisy observations. This scheme leads to an algorithm, which has

no free parameters, for the restoration of piecewise uniform images.

5. We analyze the implementation of the algorithms that we develop
in nonconventional hardware, such as massively parallel digital machines,
and analog and hybrid networks.
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Chapter 1

INTRODUCTION

unddmental problem in the design and analysis of systems endowed with
lal apilities is the construction of internal representations of the physical
s infhe external world. The precise form of these representations is not well
)od, jand is the subject of much current research in Artificial Intelligence
cholpgy. It is clear, however, that these representations should integrate
nerid knowledge about the physical properties of the external world with
menfs from a number of different sensory modalities. Furthermore, in
be(]ﬁ

ons pf the physical structures of interest at different levels of detail.

ectively action—oriented, the representations should provide compact

prpblem is not exclusive of biological perceptual systems; it arises

r infprmation from a set of sensors has to be processed, stored and retrieved
ciept way. Thus, it is of fundamental importance, for example, in the
cothiputer vision systems; in the reconstruction of subterranean geological
s frgm geophysical data and in the design of biomedical imaging systems.
ivatpon for this thesis is to increase our understanding of the principles
ng tke process of integrating prior generic constraints with the available
ons) for the construction of these representations. In particular, we will
he groblem of reconstructing, in a way that is consistent with the available
lata,Jthe value of certain properties of the physical structure of interest over
zed egion of space.

defing these early perceptual processes in a more precise way, let us model

the specific pyoperties of the physical structure as functions f that map a (compact)

region () C R"™ into R™. In the most interesting cases, f will be either a scalar

(m = 1) or § vector field (m = 2) defined on a two-dimensional region. This is




the casg, forjexample, of the problems of image restoration and segmentation, and

of the

comput

recovery of: depth from stereo; lightness; shape from shading; and the

ation of optical flow in computer vision, as well as many problems in the

recovery of geological structure from geophysical measurements,

We willjassume that the available data consists of several sets of qualitatively

different megsurements {gy,...,gam } that in general are modeled as:

g: =Hi(f’DfaD2f’“°’nt')

where Pf dgnotes the derivative of the property f; n; is a noise process, and H;

is some
corresp
this inff
the obs
phenon

operptor (for example, in vision problems, the different measurements may
ond fp: stereo disparity; brightness; color, etc.). We will also assume that
drmagion is collected with different sampling patterns {Sy,..., Sy}, that is,
ervatfons g; are defined only on the finite set S; C Q. Since most physical
lena fonsist of events that occur at a variety of scales, and in general,

events

lattice
of the
present

widely different scales have little influence on one another, the numerical
ons pf the behavior of a property over a range of scales can be used
ly tq produce a physically meaningful hierarchical decomposition of the
strucgure into individual substructures ("objects") which can be subsequently
d in|symbolic forms that are more compact and easy to manipulate (see
076 dEd 1982; it is not surprising that there is psychophysical evidence

ng presence of a multiscale processing hierarchy in the human visual

;|see Gampbell and Robson, 1977, and Marroquin, 1976).

IS, tl'r solutions we are looking for consist on a family {]a} of numerical
jons ¢f the function f at different scales (indexed by «) at the sites of some

C () (the finest scale representation should correspond to the best estimate

ctual{value of f at the sites of L). To illustrate this idea, in figure 1-a we
binjry pattern, and in figures 1-b through 1-e, its numerical representation

at increasingly coarser scales. This family of descriptions was generated by the

algorith

In

unique

m defcribed in section 5 of chapter 4.

greneIl, the observation processes g; do not determine the value of f in a

and gable way (that is to say, these problems are ill-posed in the sense of




. ..-':. t-“.‘. t x t .
: W . w» -
ISTI <+
(aJ (b) (c) (d) (e)

Figure LJRcpresentation of the binary pattern (a) at increasingly coarser scales.

Hadamuard: gee Poggio and Torre, 1984). Therefore, the algorithms we are looking
for shquid He able to regularize the problem by incorporating constraints on the
solutiof] genprated by some prior knowledge about its general characteristics.

Finally.|because of the large number of variables involved, reasonable speed
of perfprmagce will usually require that these algorithms be distributed, and thus,
rrlplementable in parallel hardware.

efficienftly i

1. Regularizqtion Analysis and Cooperative Algorithms.

Among Jthe most successful solutions to these type of problems are those
that formulaje them as variational problems, where the measurement and generic
constrajnts afe separately represented in the following way:

Let| us cpnsider the case of only one set of "perfect” measurements (i.e., with
no noisg) g defined on the set S, and suppose that the constraints that they impose
on the solutign can be expressed in the form:

[ atr.9=0

10




where A

IS a

of the value

will nof

positive definite, real valued function that measures the incompatibility
pf the property f with the observations g. In general, the observations

be ferfect, and so, we will only require that the error fg A(f,g) be small.

However, th

To find

re may be a large number of configurations that minimize the error.

a ufique solution, an assumption about the global smoothness of f is

introduged

means of some positive dcfinite, real valued function P(f, Df,...)

which measyres the "jaggedness" of f. If both A and P are convex, the desired

solution

where X\

will

is a

This ap
problems of]surface interpolation (Grimson, 1981b, 1982; Terzoupulos, 1983,
1984a); [comgutation of visual motion (Horn and Schunk, 1981; Hildreth, 1984a,b);
of sRape from shading information (Ikeuchi and Horn, 1981); computation
of subjectivelcontours (Ullman, 1976; Brady et al., 1980; Horn, 1981); lightness
(Horn, [1974)] and edge detection (Torre and Poggio, 1983).

recovery

In
the forn
regulari
(1980);
paramel

On

e the unique minimizer of the "energy” functional:
U(s,9) = [[Alf,0)+> [ P(1,DF,..) (1)
parameter.

proach has been applied with varying degrees of success to the

recgnt paper, Poggio and Torre (1984) have shown how functionals of

of

bquation (1) can be derived in a rigorous and systematic way using

atiof] methods (Tikhonov, 1963; Tikhonov and Arsenin (1977); Wahba

thi
).

context fq P is called a stabilizing functional, and ), the regularization

e th¢ functional (1) is specified, its minimization can be carried out by

standard varfational methods (Courant and Hilbert, 1953). Since usually one is

interested in

resultin
point of]

Thig
network
analog 1

Eu

St

alg
of 1

a rel

the value of f only at the discrete set of points L, the solution of the
lrx—Lagrange partial differential equations can be obtained as the fixed
ation (cooperative) algorithm of the form:

&Y =F(®) el (2)

In'thm can be efficiently implemented in parallel hardware using a
cally connected processors (one for each site 7), or even by some

ctwolk (see Poggio and Koch, 1984).

11
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embed [the

observa
definin
Poggio

in chapter 6.

It

ments

functional;

Suppose

constraj

where the p

of meas

If

the mir
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tions
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5 alsq

nto ¢

[1TC

S ir;fresting to note that it is also possible, and sometimes easier, to

ior knowledge about the solution, and the constraints imposed by the

directly in a coopcrative network of a given form, without explicitly

a gibal variational principle. This approach has been used by Marr and

for the sterco matching problem. We will have more to say about it

possible, in principle, to incorporate qualitatively different measure-
single cooperative process, by a simple modification of the energy

that we have M sets of measurements, and that each set g; places some

nts op f (and/or its derivatives) which can be expressed by the functionals;

[ Adga DS ) =0 i=1,.,M

> solytion will now be constructed as the global minimizer of the functional:

M

U() = 3 adf.9) [, 4+ [ PUL DS, ) 3)

1=1

ameters a; measure the relative weight we wish to assign to each set
nts.

il

[ b Y

(this ap

problem

(Df) at
Th

regulari
formuld

algorithms. H

by Pogg

(i) Ve
dor

proa

a di

g ap
zatio
tion

1ain

functions A; are convex, the solution will again be unique, and

imizdtion of (3) may be carried out by means of a cooperative network

has been used by Terzopoulos (1985) for the surface interpolation

, when the depth value f is known at some set S; of sites, and the slope

erent set Sp).

oach we have been discussing — which we will call the "standard
method"” is very attractive: it provides a unified framework for the
pf a variety of problems, and it leads to computationally efficient
owever, it has some important limitations (some of them pointed out

410) a;f Torre):
'y ofen the assumption that the solution f is smooth over the whole
Y

) is not justified. What is more commonly true is that 0 can be

12




pa

bo
Th

/s

titioffed into a small sct of disjoint connected regions, and that while f

I
is smoofh in the interior of cach of them, it has discontinuitics along the
l

indafics between regions (which in turn are piecewise smooth curves).
{s linfitation is a scrious one, because very often the discontinuities of
whicl} the rcgularization methods tend to hide, are the most important

pafts offthe surface, in particular if one is trying to compute a symbolic
represcrftation for it.

(i) Th
cle
(iii) In

¢ mepning of the parameters of the energy functional is not always

r, a

they often have to be sclected on a purely empirical basis.

any| cases, the choice of the particular (often quadratic) form for the

functiong A and P is arbitrary, and is determined mainly by the tractability

of
(lin
oth
(iv) Th
ad¢
md

2. Prob

itive

ar)
rth

int|

he uniqueness problem for the solution, and by the simplicity of the

minimization algorithm (in some cases, of course, there may be
poretical or experimental considerations that justify this choice).

praction between qualitatively different observations is purely
One would like to be able to include more realistic non-linear

es f interaction.

bilis§ic Formulation.

iffergnt approach is to model the function f, whose reconstruction solves

tual
dp

problem, as a random field that has to be estimated from a set of
pssibly ambiguous measurements. Within this formulation, one can

Bay

ihg t
robgpility distribution Py. This distribution, together with a probabilistic
on

sian viewpoint (see Good, 1983), and assume that the best way of
prior knowledge about the nature of the solutionis in the form of a

the noise that corrupts the observations, allows one to use Bayes

corppute the posterior distribution Py, which represents the likelihod of

a solutign f kiven the observations g. In this way, we can solve the reconstruction

problem

by #nding the estimate f which either maximizes this likelihood (the so

called Maxinjum a Posteriori or MAP estimate), or minimizes the expected value

(with regpectfo Py,) of an appropriate error function. This formulation has several

advantages o

1. Flexib

ility.

er the "Standard Regularization™ approach:

13




With simple modifications in the prior probabilistic model for f, one can

gencrate alg
pieccwise cq
model |prior

patches|(i.e.,

2. Gengrality.

prithms that reconstruct not only smooth, but piecewise constant or
ntinuous functions. It is also possible to include explicitly into the
knowledge about the geometry of the curves that bound the smooth
about the discontinuities) of f.

This approach provides a general framework for the formulation of a wide

varicty |of p
for: image

rceptual problems. We will show, for instance, how it can be used
cgmentation; surface reconstruction from sparse data; modeling of

perceptual glouping processes; stereo matching, etc. Furthermore, the incorporation

of qualijtativ
can be |madd

ly different measurements into a single cooperative estimation process
in a natural way: if the noise processes ny,na, ..., ny associated with

the setg|of
P(f|ag1}...

asurements gy, ...g» are independent, the joint posterior distribution
) will be simply:
_ PN, P(gi | £)

PUS Lo qn) = LS

3. Precise Inferpretation.

using this ap
weight of th

The parlm\eters that appear in the reconstruction algorithms that are derived

roach have a precise statistical interpretation (for example, the relative
 evidence provided by each set of observations, will be determined

by the||vari

ce of the associated noise process); also, the plausibility of the

prior assumftions about the behavior of the solution can be explicitly verified

by generating sample functions of the random field defined by Py, by means of

an appropri
function whd

e Monte Carlo procedure. Finally, one can choose the precise loss
se expected value will be minimized by the Bayesian estimator.

3. Computatipnal Efficiency.

As|we Will see, if the random field defined by P; is Markovian (i.e., if the

probabilistic

dependencies are local), the estimation algorithms will be distributed,

so that it willjbe possible to implement them efficiently in parallel hardware.

14




Se

als of fhis Thesis.

e objective of this work is to apply the probabilistic approach we have just
2d tq| the solution of a general class of perceptual problems. In particular,

nt a|class of random fields with local probabilistic dependencies, that can
very effectively to model the behavior of a wide variety of functions.

lop gppropriate loss functions, and the corresponding optimal estimators for
t clagses of problems.

lop general distributed algorithms for computing these estimates.

y thq above results to several specific problems, to illustrate the generality
tica] value of this approach.

op thore efficient algorithms for each of these particular cases.

now present a list of our main contributions:

nmary of our Main Contributions.

imal Hayesian Estimators.

eral fesearchers have used Bayes theory and Markov random field (MRF)
for fhe restoration of piecewise uniform images. It has been implicitly
| by|most of them that the maximization of the posterior probability
leadsjto the-Maximum a Posteriori or MAP estimator) is the best possible

ance] criterion. We introduce the use of different specific error criteria

oseja general procedure (which is based on some existing Monte Carlo

es, quch as the Metropolis algorithm) for approximating them. We show,
oretifally and experimentally (in particular for the case of the restoration of

ise unform images) that this new approach leads to a substantial improvement

15




over the exiging methods, both regarding the quality of the results (particularly for

low sighnal tq

noisc ratios) and the computational efficiency.

2. Novel Apllications.

Throug
probabilistic

derive

terms
a unified fra

single

out this thesis we present several examples of the application of the
approach, and of the optimal estimation procedures that we have

to geveral problems, some of which are formulated and solved in these
r thq first time. The results that we get show that this approach can provide

ework for the integration of a variety of related perceptual tasks into a

opefative process. Also, these results represent, in several cases, a significant

improvemeng over those obtained using existing schemes. Specifically, these new

applications pre the following:

a) Surfgee Interpolation.

noigy d
to modg
that boy
(in | the

prcIalem of reconstructing a piecewise continuous surface from sparse and

is formulated using a Bayesian approach, using two coupled MRF’s
the behavior of the smooth patches, and of the curves (discontinuities)
nd them. Although this type of coupled model has been used before
ontext of the restoration of piecewise uniform, noisy images), its

adaptatipn to this problem requires some non-trivial modifications: the local

intgractipns between the elements of the fields have to be redefined in an

ate way, and the general estimation algorithm has to be modified to
romputationally feasible. The practical value of the resulting algorithm

illustrhted using both synthetic and real data.

Nign

i§ pr

syntheti

Matching.

lem consists in finding the corresponding points in two signals when

is ofgtained from the other by shifting it by a variable amount. We study in
il a ppecific instance: the reconstruction of depth from a stereoscopic pair
agqs, and show how to formulate it using our general framework. The
formgnce of the algorithms that we construct is also illustrated by means of

and real examples.

jormgtion of Perceptual Clusters.

16




pat
muy

to

We sugest that the process of formation of perceptual clusters of certain dot

terngcan be modeled in terms of the cstimation of binary images corrupted by

Itiptfcative noise, and illustrate the application of our estimation algorithms
this task.

3. Efficient 4lgorithms.

Although the Monte Carlo procedure that we have developed for approximating

the opti

possiblg to
significantly

mal gstimates is perfectly general, for each particular application it is often

esign alternative (some times deterministic) algorithms that improve

e computational efficiency. It has been our concern in this work to

develop| sucl} alternative fast algorithms for each one of the applications that we

present,

a)
\'Y

fin

agg
refi

Spegifically, we have developed the following algorithms:

igorofis proof of its optimal performance. We also develop an alternative

sme for the same purpose, based on dynamic programming principles,
ch cqn be extended to handle more general situations (such as the MAP
matign of piecewise constant one-dimensional signals).

istimption of Two-Dimensional, Binary MRF’s.

heufistically motivate and develop a new deterministic algorithm for

foxirgating the optimal Bayesian estimator of two-dimensional MRE’s. We
, expprimentally, that the quality of the results produced by this scheme is
lvalegt to those obtained by the general Monte Carlo procedure, and the
putajional efficiency (execution time) is improved at least by an order of
nitude.

the cgse of the MAP estimation of binary patterns, we develop a modification
e "Jimulated Annealing" procedure, which improves its computational
lencyf It is based on the computation of "coarse solutions"” (formed by
3gat1g the elements of the field into blocks) which are then progressively
ed.

17




this g
rforrlance is practically equivalent to that of the Monte Carlo procedure,

dim

Sterg

Recqnstruction of Piecewise Continuous Surfaces.

nse, we also develop a heuristic, deterministic scheme whose experimental

roves significantly on its computational efficiency.

D Matching.

> pr
ne sijnple cases. This scheme is based on the direct implementation of the
al copstraints (generated by the probabilistic model) in a highly distributed
peragive network of a particular form: a "Winner-Take-All" network. We

pose a new algorithm for solving the stereo matching problem in

w rigorously that, for noise-free observations, the state of this network will

verg]

? to the correct solution, and estimate the maximum number of required

atioI (which is usually very small). The application of this technique to
rec

struction of the depth of real objects from stereoscopic photographs
sed, and some modifications to the algorithm are introduced, which

demonst

5. Parall

An
develop

s to produce results whose quality is comparable to those of other
the art" algorithms.

eter] Estimation.

rate

e cqntext of the estimation of two-dimensional, binary fields, we study the

¢ parameters that characterize the field model and the noise are not
ve to be estimated from the noisy observations, a situation that, so far,

r begn treated. We present a maximum likelihood procedure, which based
nalygs of the residual (“innovations") process, permits the simultaneous
ion offthe field and the parameters of the system. We apply this technique
pnstiuction of an algorithm, which does not have any free parameters,
econptruction of piecewise uniform images, and perform experiments to

performance.

el Implementations.

impI'tant issue regarding the practical value of the algorithms that we
is th

ir possible implementation in certain non-conventional hardware,

18




such as mas[i)vely parallel digital machines; hybrid and analog computers, etc. In

this cofnnect|

a)|Mon

n, we make the following contributions:

e Carlo Procedures.

Wg analyze the parallel implementation of the general Monte Carlo procedure for

approximating the optimal Bayesian estimators. We show that the convergence

of|ce

n widely used algorithms (such as the Metropolis and Heat Bath

schemeg) cannot be guaranteed in this case. We justify the selection of an

approp
compu

ate algorithm (the "Gibbs Sampler"), and present an estimate of its
tional complexity.

b) Recopstruction of Piecewise Continuous Surfaces.

The pagallel implementation of both the modified Monte Carlo procedure

and thef deterministic algorithm that solve this problem are analyzed, and

thejr copputational complexity is estimated. We also propose schemes for the

construgtion of hybrid (digital/analog) and analog networks that implement

these prpcedures, and perform digital simulations to evaluate experimentally

their pefformance.

¢) Estimption of Two-Dimensional Binary Fields.

The corpputational complexity of the parallel implementation of the fast

determi

flistic algorithm that performs this task, is estimated and compared with

that of the general Monte Carlo scheme,

We |also|propose the adaptation of a class of analog networks proposed by

Hopfield and Tank (1985), so that we can obtain an approximation to the

op; al

pstimate of the field from the equilibrium state of this system. The

per rmI:ce of this scheme is assessed experimentally by means of numerical

simulati

S.

3.2. Thesis Oferview.

Thig thegs is organized in the following way:

19




In

chajter two we will introduce the basic concept of a Markov random field:

show how td compute the corresponding probability distribution, and present Monte

Carlo procgdures for gencrating sample functions. In chapter three, we develop

loss functiopals for the image segmentation and surface reconstruction problems,

and defr
algorith
parallel

Th
piecewi
binary
a proce

ve

e corresponding optimal Bayesian estimators. We also present general

ms for computing these estimates, and discuss their implementation in
hardware.

ese fesults are applied, in chapter four, to the problem of segmenting
s¢ c@nstant images given noisy observations. For the particular case of
imagks, a very efficient distributed algorithm is developed, and we present
dureffor the case when the model and the noise parameters are not known,

and haye to|be estimated from the noisy data. Also in this chapter, we show how

inciffles can be applied to the problem of computing the perceptual clusters

formjed in some dot patterns.

Fi

thapger five, we treat the problem of reconstructing piecewise smooth surfaces
arse fand noisy data, without blurring the boundaries between continuous
we Hiscuss the use of Markov random field models to embody the prior

the]general reconstruction algorithms developed in chapter three to this
. WJ also develop a special purpose efficient algorithm for this case, and
rallel implementation.

pterfsix is devoted to the problem of the reconstruction of depth from
pic Jimages. As in the previous cases, we first present a probabilistic
ion pf the problem, and extend the general methods of chapter three for

nting a solution. Then, we develop special purpose algorithms that improve
putational efficiency. The performance of these algorithms is illustrated
th synthetic and "real" images.

future r

lly, jn chapter seven, we summarize our results, and suggest areas where
gsear¢h may be fruitful.
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1. Intrg

Th

approagh fof the solution of the class of reconstruction problems in which we are

diff

Chapter 2

LOCAL SPATIAL INTERACTION MODELS

ductipn.

e thq following characteristics:

prgpabilistic dependencies between the elements of the field should
patiglly localized. This condition is necessary if the field is to be used
odd surfaces that are only piecewise smooth; besides, if it is satisfied,

| recqnstruction algorithms will be distributed, and thus, efficiently

lemdntable in parallel hardware.

clags should be rich enough, so that a wide variety of qualitatively
reny behaviors of the desired solutions can be modeled.

oulfl be possible to represent the prior probability distribution Py
icitl}, so that Bayes theory can be applied.

VIt ~;houlll be possible to specify an efficient Monte Carlo procedure for
g

generati

For

class of|
this cha
do this,
which is
algorith

sample fields from the distribution, so that the ability of the
del tq represent our prior knowledge can be verified.

e keyfto the success in the use of the probabilistic (and in particular, Bayesian)

d, iqour ability to find a class of stochastic models (that is, random fields)

we

tunafely, there is a class of models that satisfies these characteristics: the
Marfovian Random Fields (MRF) on lattices. We will describe them in
pter,

d we will also show how they satisfy the required conditions. To
ill need two important results: the Hammersley-Clifford theorem,

relaged to conditions (iii) and (iv), and the Metropolis and Gibbs-sampler

ms,

ich will permit us to satisfy condition (v).

21




2. Markov Random Fields.

to high
of moq

The corjcept of a MRF is a direct extension of the concept of a Markov process

r dithensions and originated in the work of Ising (1925) on the construction
els fpr ferromagnetic phenomena. The definition for a two dimensional

continyous MRF was introduced by Wong (1968), following Levy (1956) (see also
Dobrushin, §968), and in intuitive terms it says that a random field is Markovian

the v

if for a’ y clgsed curve that separates the space into two regions, the knowledge of
al

ue off the field along the curve, makes the field in these regions mutually

independen

M

gre ugeful for our purposes (since usually we will be interested only in

reconstlucti g the field at the sites of a regular lattice) is the definition of a discrete

MREF,
random

corresp

the conditio

values

the val
of the

1983,

Le
system

(i) s 4

geferalization of the concept of a Markov chain. A discrete Markov
)| field on a finite lattice is defined as a collection of random variables, which
ond $o the sites of the lattice, whose probability distribution is such that

I;l probability of a given variable having a particular value, given the
f thq rest of the variables, is identical to the conditional probability given
es of the field in a small set of sites, which we will call the neighborhood

iven |site. In formal terms we have the following (see Geman and Geman,
d alfo Woods, 1972 for an alternative definition):

S Be a finite set of IV sites, and G = {G,,s € S} be a neighborhood
or S| i.e., a collection of subsets of S for which:

G, fprallsesS.

(ii) s €|G, if and only if r € G,, for all r,s € S.

Let| F = {F,, s € S} be any family of random variables indexed by s € S, and
supposg; for{simplicity, that these variables take values on some finite sets {Q,}
(the deﬁniticI can be extended, with some technical modifications, to the case of

continu

Bus state space). We will call any possible sample realization f :

(fsn'--;fon) 3 fa.- eQa.-
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Figure 2. 1ites 1, 2, 3 and 4 are the neighborhood of site j
a conﬁguratialz of the field. Let  be the set of all possible configurations (i.e., the
sample space} and let P be a probability measure in Q. F is a MRF with respect
to G if: o
(1) SI(Ii = f) > 0, for all f € Q ((F = f) denotes the event: (Fy = f, for
sie S).

(i) P(Fy=p |F.=f r#s)=P(F,=f,|F,={ reG,).

for every|s € §.

It is clear} from this definition , that if the size of the neighborhoods is small,
a MRF will stisfy the first condition we required from our class of models. The
direct speciﬁzltion of a MRF from this definition (i.e., in terms of the conditional
probabilities), however, is not very convenient because of the following reasons:

Firstly, thg functions defining valid conditional distributions for a MRF cannot
be chosen arbifrarily, since they have to satisfy a set of consistency conditions (that

23




result from §
directly; Seq

determined

ayes’ rule; sce Besag, 1972), and are, in general, very difficult to specify
pndly, although the joint probability distribution P, can be uniquely

from the conditional probabilities, its computation is, in general, a

highly non-

ivial task. Finally, there is no obvious intuitive relation between the

form of]the gonditional probability distributions and the qualitative behavior of the

sample| fieldg.

Talover

This is |[done

2.1. Markov-

rome these difficulties, we need an alternative way of defining a MRF.
as follows.

Gibbs Equivalence.

First, w¢ need the following definition:

GiNen al

a single site,

system of neighborhoods on a lattice, we define a "clique” C as either
pr a set of sites of the lattice, such that all the sites that belong to C are

neighbgurs df each other. For example, on a 4-connected lattice (Fig. 2), the sites

1, 2, 3 and 4

form the neighborhood of site 7, and the cliques are sets consisting

either of single sites, or of two (vertically or horizontally) adjacent sites (nearest

neighbours;

ee Fig. 3).

The res
(Hammersle
S with |resp
configuratio
which ig that]

where Z is 4

It we are looking for is contained in the Hammersley-Clifford theorem
and Clifford, 1971) which states that if F is a MRF on a lattice
t to the neighborhood system G, the probability distribution of the
(sample functions) generated by it will always have a definite form,
of a Gibbs distribution:

1,
Py(f) = e ")

normalizing constant, 8 is a parameter, and the "Energy function"

U(f) is|of thg¢ form:

U(f)=ZC:Vc(f)
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(a) (b) (c)

ure 3' Cliques for the 4—connccted lattice of Fig. 2.

C rapges over the cliques associated with the given neighborhood system,

potgntials V(f) are functions supported on them. Thus, in our example of

d lattice, U would be of the form:

U =2Valfi)+ X Vslfuf)+ Y Vel f))

i,jENH ‘,J‘GNV

Td Ny denote the sets of all horizontal and vertical nearest neighbor
eq of the lattice (figure 3 (b) and (c)), respectively, and V,, V;, and V, are
ns.

simple proof of this important result can be found in Besag (1972). We

a brief sketch:

loss of generality, we may assume that 0 (the configuration with fi=0
ngs to  (otherwise, we simply perform a translation of the origin).

lis a MRF, we have that
PO)>0

25




so|that fhe quantity

is well ¢

P(f)
P(0)

efined.

The key] step is to note that we can always write:

with

P(f) _ e
P(0)

Q) = X f:Gilfi) + 323 fifiGij(fi £3) + -
i T g

+f1 - SnGijnlf1, - - fn)

for some furctions G;, Gy, . . ..

Naw, fo
7 as being

Using B

any configuration f and any selected site 4, we define the configuration
qual to f everywhere, except possibly at site <, where it is equal to 0:

f(') = {fl) . °'fl'—l;0y f€+1) .. ‘)fﬂ}

hyes rule we find that:

PU) _ PUil £33 #9) Pl #3) _
P(f6&)  P(O] f;,5 #% ) P(f;,7 #1)
P(0] f;,5 # %)
= exp[f;G:i(f:) + E fiijij(fs‘s fj) +.. ]
J

exp[Q(f) — Q(fY)] =

Note that bgcause of the Markov property, the above quotient of conditional

probabilities

of site 7|

Now, su

which is
we have

can depend only on the value of f at those sites which are neighbors

ppose ! is not a neighbor of <, and consider a particular configuration f

equdl to 0 everywhere, except at sites < and {. By the above considerations,

that

Q) — QU = £Gif) + FifiGulfis 1)
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depends only on f;, which means that Gy (f;, fi) = 0.

By a si

ilar reasoning, one can show that G; ;. . ..(fi,-.., fm) can be different

from 0 only |if the sites 7, j, ..., m are ncighbors of each other, i.e., if they belong to

the same clifjue. The proof is completed by defining:

1

ﬁv(fii ey f‘m) = fi,.. -fmGi,...m(f:'; .. fm)

It|}s important to note that whereas the functions defining valid conditional

probabilitieg

for a MRF cannot be chosen arbitrarily, the form of the potentials

Ve is not rgstricted in any way, and can be used freely to specify the required

behavigur o
these potent|

the field f (which is what one does in practice). The relation between
als and the conditional probabilities is given by the following formula

(which|folloys from Bayes rule):

__ exp[—§ Toiec Vo(f)]
Y4eq; exp[—5 Leiec Ve (f9)]

(1)

where Q; is Ie set of allowable values for the state of F;, and f9 is the configuration

which is eq

I to q at site 2, and coincides with f everywhere else.

There afe other ways of representing certain classes of MRF’s. For example,

Woods||(197
finite ldttice

where fm i

) has shown that every homogeneous Gaussian MRF defined on a
jatisfies a difference equation of the form;

fom = Z hklfn—k,m-—-l + Unm
D(P)

the value of the field at site nm and u is a (non-white) stationary

Gaussian fiekd whose autocorrelation function satisfies:

where

c, m=n=10
Elupmugo] = {—hmnc,  (m,n) € D(P)
0, elsewhere

D(P)={(k,}) : 0< k*+1%2< P?%}
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square
estimat

c, ifn=kand m =1

E|famur] = {

0, otherwise
hi; can be interpreted as the coefficients of the linear minimum mean

rrorrstimator of fmn given its neighbors out to distance P, and u as the

or.

This repfresentation (called a "Conditional Markov" (CM) model by Kashyap

(1983))
an algo
realizat
A field

where

Autoregressi]

ns ¢

ed

an then be used to generate sample functions (Woods, 1972 also presents
ithm{ based on the discrete Fourier transform, for the generation of sample

f the field u, and for the computation of the joint distribution for f).

at atisfies a difference equation of the form:

fam = Z hklfn—k,m—l + Wnm
D(P)

wn4t are independent random variables, is called a "Simultaneous

e" (SAR) model by Kashyap ( a similar representation can be obtained

with exponential autocorrelation functions; see Habibi, 1972). Although

that for any homogeneous SAR model it is possible to find a MRF

S

ate

3. Gene

3.1. The

| thes

ratiorn

Met

e spectral density, albeit with a different neighborhood structure, it

eralf very difficult to compute the joint distribution explicitly from the

tation. On the other hand, the Gibbs representation has the following

fectly general: it applies to discrete valued fields, and it can be
heralized to the case of continuous valued ones.

to generate sample functions from the distribution (we will discuss
1s for doing this in the next section).

e the posterior distribution is also a Gibbs measure, the optimal

can be obtained directly from the posterior energy function.

e reasons, this is the representation that we will adopt.

of Sample Configurations of MRF’s.

opolis and Gibbs—Sampler Algorithms.
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functio

compt
equilib

may be

the jth

systemy

system
distrib
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direction, w

Forar

where
we con

g

S
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€ C

tatio

‘ium

in

part

e ba
ond
Lt
is at

liest successful Montecarlo procedure for the gencration of sample

ns ol MRF's was developed by Metropolis et al. (1953) for the numerical

of thermodynamic propertics of many-particle systems in thermal
To describe it, let us consider a system with IV particles, each of which
y one of a finite number of allowable states. Let f; denote the state of
le (we will refer to the N —vector f as the global configuration of the

, anq let U(f) be the corresponding energy.

ic idea of the algorithm is to construct a Markov chain whose states
fo the global configurations of the system at discrete time intervals
# a well known fact, from statistical physics, that when the physical
thermal equilibrium at a given temperature T, its configurations will be

ted gccording to the Gibbs measure:

(f) = %exp[—U—;f)] (2)

re, e want «(f) to be the invariant measure for our chain. If the chain is

CiS

(i.efif it is possible to go between any two states in some fixed number of
r(f) pill be the unique vector satisfying:

7Pp=nm

fthe transition matrix of the chain (see Kindermann and Snell, 1980).

s]'xce a system in equilibrium looks the same if we reverse the time

require that the associated chain be reversible, that is,

Prf(n+1) =7 f(n) =) =Pr(f(n—1) = j | f(n) =)

gulal chain, reversibility is equivalent to the "detailed balance” condition:

ider

=(f)Pe(f, ) = =(f)Pc(f’, f) (3)

and f’ are any two global configurations. This condition means that, if

fla large collection of isolated, identical systems, each one in thermal
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ium

to |

pos

Ifr <4
[fr > ¢

system/|is at

at the same temperature (the so called "Canonical Enscmble”), the

of systems going from state f to f’ must equal the number of systems going

. This condition is also sufficient for the convergence of the chain to

red Gibbs measure.

prithm proposed by Metropolis generates a rcgular chain that satisfies

as fpllows:

 that we visit the particles of the system (i.e., the sites of the lattice) in

ndo;r sequential order (for example, we choose the next site to be visited at

uniform distribution). When a particle j is visited, we update its state

a new state }’,- randomly from the set of allowable states using a

fornlly distributed random number.

e the increment in energy AE; that results from moving the state
h particle from f; to f;.

' € 0, make the move, ie, set f; = 3",-.

> 0, generate a new random number r, uniformly distributed

weerf] 0 and 1.

—AE"/T, set fj = ?j'

~AF/T leave f; unchanged.

If jwe denote by q(f, f) the probability of proposing the state f when the

tate f (i.e., the probability of visiting particle 5, and selecting the state

}'j for it; nqte that ¢ must be a symmetric, irreducible stochastic matrix, so that

a(f, F) = a(]

where

, f), by construction), we have that
Po(f, f) = q(f, F) min(1,e~2Y/T)

Po(F, f) = ¢(F, f) min(1,e2U/T)

AU = U(f) - U(f)

Therefore, il AU < 0,

Po(f, 1) = q(f, 1) and Po(F, f) = o(f, ))eAV/T
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and if AU {0,

Clearly

Thi

in whia
(1982)).

Po(f, ) =a(f, Ne=2V/T and Pe(f, f) = o(f, )

in bpth cases, (3) is satisfied.
is is 1fjot the only chain that satisfies (3). Another possibility is to set:

G = —"0
PC(f:f) Q(f’f)ﬂ'(f)-’-ﬂ'(?)

= qof, ——

14 eAU/T

h cag we get the "heat bath” algorithm (see Gidas (1984) and Hastings

A (differgnt construction, called the "Gibbs sampler” has been proposed by

Geman
iteratiot
conditig

and |Geman (1983) (see also Besag (1972)). In this scheme, too, at each
1 only one site is modified; its new state, }j is selected at random from the
nal distribution given by equation (1). These authors show that provided

only that we keep visiting every site, (i.e., that we update its state "infinitely often")

the resu
reversil
systems

3.2. Sta

)ltingchain is ergodic, and its invariant measure is given by (2) (note that
lity | not required in this case). It is not difficult to see that for binary
this fnethod is equivalent to the heat bath algorithm.

isticg] Mechanics Interpretation.

To

get 4n intuitive grasp on the way these algorithms work, it is useful to

recall sifme rpsults from statistical mechanics (see, for example, Reif, 1965). When
c

a macr
is in th
the Gib

energy |

op¥ system (i.e., a system with a large number of degrees of freedom)
rmalf equilibrium at a given temperature T, its state f will be such that
s frge energy F is minimized. The relation between F(f) and the internal

A V= =l [ €]

/(f) ¢f the system is given by:

F(f)=U(f) - TS
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where

S), wh

states.

where
negativ
value U

is
ex

¢ efftropy S is:

S =InQU)

) isfthe total number of feasible configurations of the system with energy

m this relation it is clear that at high temperatures, a system in equilibrium
pt a fisordered, high energy configuration (which will have a high value of
¢ atiow temperatures, the dominant tendency will be towards low energy

obability distribution of the equilibrium energy is given by:
Py(U) = %e‘U/TQ(U)

constant. Since Q(-) is a rapidly increasing function of U, and the
[Lnential is rapidly decreasing, Py will be sharply peaked around a

[7(T)4 Using the fact that Q(U) = O(U™), where n is the number of degrees

of freedom df the system, one can show that the relative width AU of this peak will

be invel

To
lattice,

with

S S

ely proportional to the square root of n:

AU 1
- Vn

sult] holds, in fact, not only for the energy, but for other related

ical properties as well). This means that, for large n, the Metropolis
pler) chain will generate (asymptotically) configurations whose energy

glose ko U*(T'), which is an increasing function of T

illusgrate this, let us consider a binary system on a four—connected square

whos¢ energy function is given by:

05) = £ S Velfo £)

if fi = fj

otherwise

_1’
Ve(fi, ;) = {1
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1.2 (righ

Fiﬁure 44 Sample patterns of the two-dimensional Ising model at 0.8 (left), 1.0 (center) and

) timgs the critical temperature.

where

dimens

rafjges over all the nearest neighbor cliques of the lattice (this is the two
onal}Ising model with "free boundaries" — since the only interactions that

contrib
lattice

In

ute t¢ the energy are those between elements of the field that belong to the
— whlich we will later discuss in detail).

figuge 4 we present typical equilibrium configurations generated at three

differe
The te

t tenfperatures using the Metropolis algorithm with random updating order.
pergtures used correspond to 0.8, 1.0 and 1.2 times the critical temperature

for this

model (the critical temperature is defined as the maximum value of the

tempe

Ising

In
proport

tureffor which the effect of fixed conditions at the boundary of a square

lattice feltln the center, no matter how large the lattice is. For the two-dimensional

del jit equals 2.273).

the §mit of very large lattices, the equilibrium energy per spin (which is
ionalf to the total length of the boundaries between "black” and "white"”

regions) is gven by (see Wannier, 1959):

U_ff_'i'.'l - -—z—cothil,-[l + %(1 — o?)2K (a)]
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Figure S;Fquilibrium values of the energy (a) and average density (b) for an infinite Ising

where we taﬁf the + or — sign, above and below T, respectively. & is the Boltzmann
i

constant; a

given by:

,  2sinh(1/T)
" cosh¥(1/T)

and K(-) isthe complete elliptic integral of the first kind (see, for example,
Hildebrand, }976).

The avefge density of "black" elements can be computed by the expression:

1, cosh®(1/T)

= = sh2 _1y1/8
C+(T) 2[1+ sinh"(l/T)(smh (1/T)-1)]

The shaﬂe of these functions is illustrated in figure 5.

From a xalitative viewpoint, one can see that the temperature, which is the

only free pa

eter of this model, controls the granularity (average cluster size and

cluster density) of the sample patterns.

of them) mayfbe found in Cross and Jain (1983) and Hassner and Sklansky (1980),

where they ar

Other eprles of patterns generated with these algorithms (or some variations

used as models for texture; in Geman and Geman (1983) as models
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for piecewisf constant images, and in Grenander (1983), where they are used to

produce mofe complex patterns.

3.3. Continugus Valued State.

Any of fhe two algorithms presented in section 3.1 can be generalized to the

case where fhe state of each particle can take any real value on a compact set
(e.g., a closeq interval) at the expense of their computational efficiency. A different
approach thdt seems promising is based on the fact that a vector f which obeys the

stochastic diferential equation:

df = —gradU(f)dt + V2T dw (4)

where w is ajvector Wiener process with unit variance (a collection of independent

Brownian mption processes), will be, under suitable smoothness conditions on

U, distributdd
er 1984; Geman and Hwang, 1984). This means that we can use a
ulation of (4) (see Wong and Zakai (1965)) to generate the desired

patterns. Thif approach has two interesting advantages, that result from the fact that,

asymptotically (as t 1 oo) according with the Gibbs measure (1)
(see Grenang
numcrical sif
in a numeridal simulation, the increments dw are approximated by independent,
identically diftributed Gaussian random variables;

(i) We onl [ need to generate Gaussian random numbers, for which efficient

algorithrps exist.

(ii) All site
implemg

q can be updated at the same time, so that efficient parallel
tations can be adopted.

The pro ability distribution of the configurations generated by the system at

of partial differential equations (i.e., the Kolmogorov equations; see for example,
Karlin and Thylor, 1981); this will not be practical in most cases, however, so that
the rate of copvergence of this algorithm will have to be assessed in an experimental

way.
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We willf now describe how an extension of the techniques presented in this

section can fpe used to find the global minimum of arbitrary energy functionals.

As we will

minimization

ow in the next chapter, this method will be particularly useful for
in the variational principles which represent the Maximum a Posteriori

estimated solution to a reconstruction problem.

4. Simulated

Simulatq
for the solut
that any cosf
finite set, can|
corresponds

Annealing and Global Minimization.

d annealing is a new technique, developed by Kirkpatrick et al (1983)
on of combinatorial optimization problems. It is based on the idea
functional of N variables, each of which can take values on some
be considered as the energy function of a physical system whose state
0 a particular value of these variables. Therefore, we can use, say,

the Metropo

is algorithm to generate, at any given "temperature” T (which now

becomes a pgrameter of the optimization process) samples from the corresponding

Gibbs meas
impulses) cor

e. Since as T | 0 this measure converges to an impulse (or set of
Fesponding to the state (or states) of minimum energy, the state of the

system in thefmal equilibrium at zero temperature will correspond to the value of

f that minim

zes U(f) globally.

One seri
a very long

us difficulty, however, is that attaining thermal equilibrium might take
e at low temperatures. Kirkpatrick’s idea was to start at a relatively

high tempergture (where thermal equilibrium is reached very fast), and then, to

slowly cool

4.1. Discrete

e system, until "freezing” occurs and the state stops changing.

Valued State.

Geman & Geman (1983) were able to show that if the temperature is lowered

at the rate:
C
" log(n+1) (5)
where n is th¢ number of iterations, and C is a constant, this algorithm (using the
Gibbs samplef) will in fact converge (in probability) to the set of states of minimal
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energy. The:l also showed that this chain is asymptotically ergodic in the sense that

for any real

alued function Y of the global state at time ¢, f(¢), we have:

lim L 3 Y (f(t) = | Y(w)dPyw)

nfoo M {71

where 1 is fhe set of allowable global states. This means that we can use time

averages to egt
(1984) for thg

imate ensemble averages. Similar results have been obtained by Gidas
Metropolis and heat bath algorithms.

The migimal value of the constant C in equation (5) for which convergence

can be guarahteed has not been determined in general. The value found by Geman

and Geman

C=NA

where N is fhe total number of sites in the lattice, and A is the largest absolute

difference in]energies associated with pairs of global configurations that differ at

only one sitg

This value, however, is too large to be of any practical use in most

applications. [Gidas (1984) has shown that if U has not more than two local minima,

C can be comp

puted as:
1
C=x

where A’ is te minimal energy change between a local minimizer and a neighboring

(in the sensefthat it differs at exactly one site) configuration. He also conjectures

that this exprssion holds in general, but this result has not been confirmed.

In a recent paper, White (1984) characterizes the initial annealing temperature
in terms of the standard deviation of the "density of states" (the number of possible

states of the s§

stem, per unit energy, for each value of the energy) when this function

is approximagely Gaussian (which seems to be the case for a large class of systems).

In some parti

ular cases this value can be determined analytically from the structure

of the probleth, but in general, it has to be computed numerically from a simulation

of the system

at high temperature.

For the dlass of systems in which we are interested, we have found, by a trial

and error pro

edure, that a value of C equal to 1.5 times the natural temperature of
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the system (
MRF model

€., the temperature associated with the Gibbs distribution of the prior

produces a rcasonable convergence behaviour (of the order of 500

iterations), bt clearly, more rescarch, both theorctical and experimental is needed

in this area.

Another

important factor which determines the computational efficiency of

simulated angealing is related to the difficulty in computing the increment in energy

AUj associat
comes from t
only the statd

d with a change in the state of the 5** variable. If the energy function
ne probability measure of a MRF, the computation of AU; will require
5 of the variables in the neighborhood of 5. Suppose now that we color

the sites of

color. In a

lattice in such a way that any two neighbors will always be of different
rallel implementation we can, in principle, update the states of all

the sites thatfare of the same color in a simultaneous way. The minimum number
of colors neefled to satisfy this condition is called the "Chromatic Number" of the
graph that dpscribes the neighborhood structure of the MRF, and it is bounded

below by the
the minimu
state of the
some particu

ize of the largest clique of the system. This number, then, determines
number of steps that are needed in a parallel machine to update the
ole lattice. We will analyze these implementations in more detail for

r examples in the next chapters.

4.2. Continugus Valued State.

All the
the case wh
this set is inf
solutions by

ailable convergence results for the annealing algorithm hold only for

Jc; the set of allowable values for the state of each variable is finite. If

nite, but compact, we can still use these results to find approximate
discretizing it. However, the computational complexity will increase

as we incre
generalize

time depend
functions thaf
Hwang, 1984

the resolution of this discretization. An attractive alternative is to
approach discussed in section 2.2 by making T in equation (4)
t. A convergence proof for this modified scheme, for smooth energy
satisfy appropriate boundary conditions, can be found in Geman and
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5. Discussiog.

We ha
which can r
problem: t

presented a class of probabilistic models with local dependencies
resent prior generic knowledge about the solution of a reconstruction
class of MRF's on finite lattices. We have seen how they can be

completely specified by defining arbitrary "potential functions” which are supported

on the cliqyes of the associated neighborhood system. It is thus easy to define

families of
prior knowl
constant, we

In this
family of fi

Smooth
with quadrat

Ids with a wide range of different behaviors. For example, if the only
ge that we have is that the reconstructed surface should be piecewise
may use a 4-connected lattice with Ising potentials;

-1,

VC(fiy f]) =141,
0,

if i—jl=1 andf,-=f_,-
if |t — 7] =1 and f; 5 f;
otherwise

Ese, the natural temperature of the system will index a one parameter
€

s with varying degrees of granularity.

surfaces can be modeled using the same neighborhood system, but
¢ potentials:

if i—jl=1
otherwise

. f.)2
Volfo £;) = {(f' 55)%

L

More ¢
larger neigh
5, an appro
to use a MR|
construction,

plicated, non-isotropic patterns can also be modeled, using slightly
rhoods (as in Cross and Jain, 1983). Also, as we will see in chapter
iate choice of the lattice and the neighborhood system, permits one
F to model sets of piecewise smooth curves on the plane. Using this
it is possible to model the behavior of a piecewise smooth function

defined on aJtwo-dimensional lattice (a "piecewise smooth surface") by coupling

two MRF’s:
them.

pne for the smooth portions, and another for the curves that bound

We shovled how the probability distribution of the configurations generated by

a MRF has
in thermal e

e same form as the one associated with a macroscopic physical system
uilibrium, so that one can use Monte Carlo procedures that simulate
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the behaviof of such systems to generate sample functions of arbitrary MRF’s. The
Markovian property of the modcls imply that the computations performed by these
procedures pre local in nature (the updating rule for each site depends only on
the states of its neighbors), so that, in principle, efficient parallel schemes can be
designed fof their implementation. We will examine this question in detail in the
next chapte}, where we discuss the use of MRF models and Bayes theory for the
optimal solytion of reconstruction problems.

40




Chapter 3

OPTIMAL BAYESIAN ESTIMATORS

1. Introductipn.

The usd

requires the

of the Bayesian approach for the solution of reconstruction problems

development of the following items:

i) A priorrrobabilistic model for the functions to be reconstructed.
i

(i1) Stochas
(iti) Approp

¢ models for the observation processes.
iate loss (error) criteria.

(iv) Estimatgrs that are optimal with respect to (i), (ii), and (iii).

(v) Efficieny algorithms for the computation of these estimates.

In the
probabilistic

previous chapter, we discussed item (i), and presented a class of
models that can be used very effectively to encode prior generic

constraints apout the solutions of reconstruction problems. In this chapter we will

develop the

'emaining necessary ingredients that are necessary to perform optimal

reconstructigns in the general case.

First of

qll, let us formulate the class of problems of interest in a precise way,

and present § general stochastic model for the observation process.

2. Problem Hormulation.

We me
problems w

tioned in chapter 1 that there is an important class of perceptual

se solution can be found by reconstructing a function f : R™

R™ on a finge set of points that lie inside a compact domain Q@ C R™. Although

the methods

that we will develop are, in principle, perfectly general, for the sake of

clarity we wifl confine ourselves to the important particular case when n = 2 and
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m =1. We [rc, therefore, interested in reconstructing the value of a function f at

cach one

sitet € L

of khe N sites of a lattice L (we will denote the value of the function at

by] f)-

2.1. Stochas]ic Model for the Observations.

of L, and
by:

Here

general n

Let us ‘Essume that we have a set of observations g on a subset S of the sites
t

thit the process by which these observation are obtained can be modeled

9; = U(H;(f)nj) » JE€ S (1)

, ’IH ;(+) is an operator with local support that represents some kind of (in

ofl-invertible) degrading operation (such as blurring); ¥ is an operation

invertible ¥ith respect to n; (so that n; = ‘I’—l(gj,Hj(f))); it may represent,

for exam

pk, noise addition or multiplication followed by a memoryless non-

linear trangformation. n; represents a scalar noise process with known probability

distributiof P,;. We will assume that n; is independent of n;, for all « # 7, and

also that itfis 1ndependent of f.

Give

£, the conditional probability distribution for the observations P, will

be given by:

Assu

glf g: H Pm gn}I (f))

1€S
rjing that Pp;(n;) > 0 for all z, and all possible values of n;, we can define

the functigns ®; by:

o,(f,9:) = — In Pui(¥ ™' (95, Hi(f)) (2)

so that wd can write the conditional distribution as:

gl[(g f “"exp Z‘p(f;gt (3)

€S

As an example, consider the case of additive , zero mean white Gaussian noise. We

have:

Ht(f) = fi
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2.2. Posterio

U(a,b) =a+b

P,i(z) = 1 exp[—z%/20?)
2o
s f)= exp(—(fi — ¢:)%/20% =
Py s(9; f) ile]-;’\/ﬁa p[—(fi — 9:)°/207]
— expl~ 3 (In(vEro) + 55(fi — 9"}
i€S

Probability Distribution.

Since wg are using a MRF model for the field f, its prior distribution will be

of the form:

with

where C ran

1

P(f) = - expl=7-Uol ) (1)

Uo(f) = ZC:Vc(f)

res over the cliques of the neighborhood system of f.

Using Bhyes rule, we find that the posterior distribution is:

Using

Py(f)Py4(g; f)
P, 9(9)

Pflg(f; g) =

e expressions (3) and (4) for Py and P,;, and recognizing that Py(g) is

a constant fof a given set of observations, we get that the posterior probability will
also follow a]Gibbs distribution:

with

Py(f;9) = 711; exp(—Up(f;9)] (5)
Un(f;0) = 7-Uolf) + 3 8(f,99) )
0 €S

Where Zp is|a constant, and the functions ®; are defined by (2).
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We can

now provide a physical interpretation of the posterior distribution, by

considering that, while the prior distribution (4) describes the behavior of a free field

in thermal e
the behavior
field whose v
noise variang

vilibrium (see section 3.2 of chapter 2), the distribution (5) describes
bf the same field coupled with a fixed (but spatially varying) external
hue is given by g. The functions ®;, whose magnitude depends on the
e, can then be interpreted as the coupling strengths between the two

fields. This cupled system is also Markovian, and if

H(f)=Hy(f;) forallie s

its neighborhpod structure will be identical to that of the original field.

The im
in the followjng sections, that the optimal estimate for f can be obtained simply

ortance of this interpretation lies in the fact, which will be proved

by observing lthe equilibrium behavior of this coupled field. Before considering this

question in
we are intere

3. Cost Func

The Ba
adopted by
estimate has
Posteriori or

tail, let us define the appropriate cost functionals for the applications
sted in.

ionals.

sian approach to the solution of reconstruction problems has been

sTveral researchers. In most cases, the criterion for selecting the optimal

been the maximization of the posterior probability (the Maximum a

MAP estimate). It has been used, for example, by Geman and Geman

(1984) for th

restoration of piecewise constant images; by Grenander (1984) for

pattern recortruction, and by Elliot et. al. (1983) and Hansen and Elliot (1982) for

the segmen
suitably defi

ion of textured images (a similar criterion — the maximization of a
d likelihood function — has been used by Cohen and Cooper (1984)

for the same purposes).

Since

use of this criterion defines the optimal estimator as the global

minimizer of] the posterior energy Up (equation 6), it is closely related to the

standard reg\flarization method that we discussed in chapter 1. Indeed, if we assume

quadratic po

entials for the prior MRF model, the term Uy(f) corresponds to a
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global smoo
are corrupte
so that Up W
models, the
regularization
on a purely
very similar
however, the
it provides a
verifying the

sample fields}.

In some

mean squareq
of fields. For

EJI

b

ness assumption (the “stabilizing functional™), and if the observations
by additive Gaussian noise, the term 3 ®;(f, g;) will also be quadratic,

Il have a unique minimum. For more general prior and observation

MAP estimator may be considered as an extension of the standard

approach. Thus, the variational principle proposed by Blake (1983),
ragmatic basis, for the reconstruction of piecewise constant images is
the one derived by Geman and Geman (1984). Even in this case,
recise probabilistic formulation in the latter case is preferable, since
precise interpretation of the parameters, and a practical means for
adequacy of the prior assumptions (via the experimental analysis of

pther cases, a performance criterion, such as the minimization of the
error has been implicitly used for the estimation of particular classes
pxample, for continuous-valued fields with exponential autocorrelation

functions, cofrupted by additive white Gaussian noise, Nahi and Assefi (1972) and

Habibi (1972

have used causal linear models and optimal (Kalman) linear filters

for solving th reconstruction problem.

The minjmization of the expected value of error functionals, however, has not

been used as
case. We will

an explicit criterion for designing optimal estimators in the general
show that this design criterion is in fact more appropriate in our case,

for the follo
(1) It permi

ing reasons:
one to adapt the estimator to each particular problem.

(i) It is in clpser agreement with one’s intuitive assessment of the performance

of an es

mator.

(iii) It leads tp attractive computational schemes.

We will
segmentation

now propose design criteria for two particular problems: image
land surface reconstruction.

3.1. Error Criferion for the Segmentation Problem.

Consider

a field f with N elements each of which can belong to one of a finite
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set @; of clg
scgmentatior

th

sses. Let f; denote the class to which the " element belongs. The

problem is to estimate f from a set of observations {gy,...,g,}. Note

that f; does pot necessarily correspond to the image intensity. It may represent, for

example, thg

A reaso
elements tha

erTor e, as:

where

texture class for a region in the image (as in Elliot et. al., 1983), etc.

able criterion for the performance of an estimate f is the number of
are not classified correctly. Therefore, we define the segmentation

A N -~ ~
es(f, f) = ;(1—5(fi—fi)) i f; € Qi (7)
1, ifa=0
§la) =
(a) {0, otherwise (8)

3.2. Error Cijjterion for the Reconstruction Problem.

In this @
on finite setg
of an image

hse, we also consider a field f with N elements which can take values
{@:}, but now we assume speccifically that f; represents the intensity
or the height of a surface) at site <. This suggests that an estimate f

should be cdnsidered "good" if it is close to f in the ordinary sense, so that the

total squared

€ITOr:

(fi = 1:)?

M=

er(f: }) (9)

=1

will be a reajonable measure for its performance.

Let us npw derive the optimal estimators for these error criteria.

4. Optimal Bpyesian Estimators.

To deriye the optimal estimators with respect to the criteria stated above, we

first present
which states

are known,

he general result (which can be found, for example in Abend, 1968)
at if the posterior marginal distributions for every element of the field

I:e optimal Bayesian estimator with respect to any additive, positive
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definitc costJ[unctional C may be found by independently minimizing the marginal

expected co

In mord

with

for each element.

precise terms, we will consider cost functionals C(f, f) of the form:

cif, )= ZL Ci(fi, 1) (10)
1€
=0, ifa="5b
Ci(a, b){ ] )
>0, ifas%£b , foralls

We will ass§me that the value of each element f; of the field f is constrained

to belong tg

some finite set Q; (the generalization to the case of compact sets

is straightfogward). The Optimal Bayesian estimator f with respect to the cost

functional C]
possible f ar

We now havg:

Theorem 1:

The optimal
C can be fol
element, i.e.,

forall s £ q

is defined as the global minimizer of the expected value of C over all
dg:

*

A

C(F) = [, UL T )aPry(f,9) =

= u}f/},g C(f, })de,g(f: g)

(11)

v

estimate of a field f with respect to the positive definite cost functional
nd by minimizing independently the marginal expected cost for each

2 Cilr,q)P(r | g) < 3 Cifr,s)Pr | 9)

reQ; reQ:

fi=gq

and for all : € L.

P;(r | g) is the posterior marginal distribution of the element 1:

Pyr|g) = !}; Pyy(f3 9) (12)
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Proof

First, we notd that since C is positive definite, and since

Py o(f,9) = Prg(f;9)Fy(g)

where P,(g) i a constant for a given set of observations, we can write, from (11):
S, PYPpulfia) = inf 320U, DPrlf39)
Using (10), we rewrite the right hand side as:
inf E;, ; C(fi, F:)Prig(fi9) =
. i'}f ; > Cfu F)Pg(fi9) =

mfz > 3 O R)Pfe)
t r€Q; f:fi=r

From (12), we find that this expression is equal to:

meZC(r [)Pi(r | g)

i reQ;

which, since [ is positive definite, we can rewrite as:

>inf 3 Cifr, [;)Pir|g) ®

i S reQ:

The opnTnal estimators for the error criteria defined in section 3, can be easily

derived fromy this result:

In the cdse of the segmentation problem, we put
Cifo F)=1-8(fi— 2)
and get that
S (1—=6(r,F:)P{r | ) =1—PdJ; | 9)

rEQ:
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and thereforg

}’:=q€Q; : Piq|g) > Pls|9)

forall s % q (13)

We will call this estimate the "Maximizer of the Posterior Marginals” (fspas)-

For the feconstruction problem, we set:

now,

implies that

or equivalent|

where

so that the of

Cilfi, 1;) = (fi — ;)?

2 (r—qfP(r|9) < 3 (r—s)’P(r|9)

rEQ.- fEQ-‘

—~2q7 + q> < —2s7 + ¢

Y,
(F-af < (F—s)

timal estimate is:

]

Fi=ea€@i : (Fi—q? < (Ffi—s)?

for all s £ ¢ (14)

We will call this estimate the "Thresholded Posterior Mean" (f7p 7).

Note th]t these results still hold if the sets @; of allowable values for each

element, or

wE may assur

e individual cost criteria C; are not the same for all <. In particular,
ne that the index < varies over the union of two lattices:

1€ LiJLe
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and let the figld at the sites of L, represent the height of a piecewise smooth surface,
and at the siles of Ly, take an integer value to indicate the presence (and possibly
the directiond of a boundary between two adjacent continuous patches (see Geman
and Geman | 1984; we will explain this construction in detail in chapter 5). If we

now define 4 mixed error functional:

emf, )= 2 (fi— f.)2+xz (1—6(fi — 1))

1€ELy 1€L;

for any posifive value of X, the optimal estimate will be:

A {}T‘I’M(i)’ €Ly
fi =9, . .
fmrm(@),  1€l2

The mdin obstacle for the practical application of these results, lies in the
formidable Jomputational cost associated with the exact computation of the marginals
and the medh of the posterior distribution given by (5), even for lattices of moderate
size. In thelnext section we will present a general distributed procedure that will

permit us tq approximate these quantities as precisely as we may want.

5. Algorithrgs.

The aldorithms that we will propose are based on the use of the Metropolis or
Gibbs Sampler schemes that we presented in chapter 2, to simulate the equilibrium
behavior offthe coupled MRF described by equation (5). We recall that the Markov
chain genefated by these algorithms is regular, and their invariant measure is the
posterior d]stribution Py, The law of large numbers for regular chains (see, for
example, Hemeny and Snell, 1960) establishes that the fraction of time that the
chain will §pend on a given state f will tend to Py,(f;9) as the number of steps
gets large, fndependently of the initial state. This means that we can approximate f
by:

(15)
ki=h
and the p&terior marginals by:
1 n
Plalo) ~ = X 6 - a) (16)
t=k
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where f(t)

i the configuration gencrated by the Metropolis algorithm at time t,

and k is the fime required for the system to be in thermal equilibrium. From these

values, fyp

This pr

chapter 2)

Geman and

statistics ab

|, and Jppp can be casily computed using (13) and (14).

hcedure is related to the use of simulated annealing (see section 4 of
fr finding the global minimum of Up (i.e., the MAP estimate: see

Geman, 1984). In our case, however, we are interested in gathering

ut the equilibrium behavior of the coupled field at a fixed temperature

T = 1, rathr than in finding the ground state of the system. This fact gives our

procedure

me distinct advantages:

1. It isldifficult to determine in general the descent rate of the temperature

(anneal|ng schedule) that will guarantee the convergence of the annealing

process

'

2. Sinc

the vaLl
the se

Since

issue

refined

that the
inverse

The m
problem, a
per elemen
posterior m

With 1
particularly
optimal ong
of the two
in figure 6:
noisy obser]

in a reasonable time (it usually involves a trial and error procedure).
e are running the Metropolis algorithm at a fixed temperature, this
comes irrelevant.

b in our case we are using a Monte Carlo procedure to approximate
es of some integrals, we should expect a nice convergence behavior, in
e that coarse approximations can be computed very rapidly, and then
to an arbitrary precision (in fact, it can be proved (see Feller, 1950)
expected value of the squared error of the estimates (15) and (16) is
y proportional to n).

1:n disadvantage of this procedure is that in the case of the segmentation

arge amount of memory might be required if the number of classes
m is large (we need to store the N(m — 1) numbers that define the
prginals).

pspect to the relative performance, we point out that in many cases,
for high signal to noise ratios, the MAP estimate is usually close to the
| If the noise level is high, however, the difference in the performances

];timators may be dramatic. This is illustrated in the example portrayed

anel (c) represents the MAP estimate of the binary MRF (a) from the
Lations (b); it is clear that the approximations to the MPM estimates
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shown in parEls (d) and (e) are better than the MAP from almost any viewpoint. An

intuitive exp

is implicitly 1

nation for this behavior comes from the fact that the MAP estimator
ninimizing the expected value of a cost functional Cp4p(f, }') which is

equal to zerofonly if f; = 7, for all 1, and is equal to, say, M otherwise. If the signal

to noise ratig

error will be

is sufficiently high, the expected value of the optimal segmentation
very close to zero, so that fypar and fas4p Will coincide. In a high

noise situati

from its vie

, however, the MAP estimator will tend to be too conservative, since
oint it is equally costly to make one or one thousand mistakes. The

MPM estimagor, in contrast, can make a better (although more risky) guess, since

making a fe
return to th
estimates in

mistakes has only a marginal effect on the expected cost. We will
example, and analyze in detail the relative performance of both
e next chapter.

6. Computatipnal Complexity and Parallel Implementations.

We havm seen how the optimal solutions of reconstruction problems , for a

large class o
of the Markd

cost criteria, can be obtained from the observation of the evolution
v chain generated by the algorithms presented in chapter 2. In this

section, we \;Ill discuss the following questions:

(i) Which
the view

these algorithms is the best one to use on a serial machine, from
point of the computational efficiency.

(ii) Which ope is best suited for an implementation in parallel hardware.

We will

so describe a parallel machine that is currently under construction at

Thinking Mafhines Corporation and at the MIT Artificial Intelligence Laboratory:
the "Connecfion Machine" (Hillis, 1985), and present estimates for the execution

time of these

algorithms in that particular piece of hardware.

6.1. Serial Cqmplexity.

Suppose
(Metropolis,

we are running our algorithms on a serial machine. In the three cases
Heat Bath and Gibbs Sampler), we first have to select the next site
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(d) ) (e)

Figure 6. fa) Sample function of a binary MRF. (b) Output of a binary symmetric channel
(error rate: 0.4 (c) MAP cstimate. (d) Monte Carlo approximation to the MPM estimate. (e)
Deterministic approximation to the MPM estimate.

whose state Has to be updated. Assume it is site . Let AU, denote the increment
in the posterfor energy associated with replacing the value of the state of the sth
element by the value q. Using (6) and the expression for Uy of 4), we get:

QU = = 3 (Ve(f9) = Vo 1) + 89, ;) — (£, 03) (15)

To ¢isec

where ; oy

N jaki

£ ={ T (16)
q. J=1

Let C(AU) dqnote the computational cost of evaluating (15).
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The ncg

sssary steps for updating the state of site 7 are, in the Mectropolis scheme

(see section B.1 of chapter 2):

(i) Select the candidate state ¢ from the set @; (generate a uniform pseudo-
random{number in the range (0, |Q;|], with cost C(prn), and load ¢ from

a table,

ith cost C(load)).

(ii) Compuje AU;.

(iii) Check
>iv):

AU, > 0 (cost: C(comp)). If not, set f; = q. Otherwise, go to

(@iv) Compule exp[—AU,] (cost: C(exp)).

(v) Genera

e a new uniform pseudo-random number in the range (0, 1).

(vi) Compafe it with exp[—AU,).

Therefdre, we have that the total updating cost for the Metropolis scheme, Cyy,

satifies:

For the
deleted. Thg

exp[—
(vi) If 7

The up

Cpy > C(AU) + C(prn) + C(comp) + C(load)

lcpm < C(AU) + 2C(prn) + C(ezp) + 2C(comp) + C(load) (17)

Heat Bath scheme, steps (i), (ii) and (iv) are identical, and step (iii) is
remaining steps are in this case:

v) Gejerate a new uniform pseudo-random number r in the range (0,1 +

Udl)

> 1, set f; = q; otherwise, leave f; unchanged.

Hating cost for the Heat Bath scheme, Cyp is then:
Cuyp = C(AU) + 2C(prn) + C(ezp) +

C(comp) + C(add) + C(load) (18)

and in general, it will be higher than C)y, since

For the

C(ezp) > > C(comp)

Gibbs Sampler, we select the new state by generating a pseudo-random

number which takes values on @, with probabilities given by the conditional

distribution

(equation (1) of chapter 2). To do this efficiently, we rewrite this
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equation as:

(Note that A

Let @, S

exp[—AU,]
P; =
)= 5 o x0T
Uy, = 0)
= {q1,---,qpm}. We now generate an array a, by putting:

ag =0

aj =a;_y+exp[-AU;] , 7=1,..,.M

The new stat¢ f; is now computed by generating a uniform pseudo-random number

r in the rang

2 (0,a ], and putting:

Ly

fi=aq ; re(aj-1,a4)

The computptional cost will be:

Cgs =

note that we
array a.

If N is

(M — 1)[C(AU) + C(ezp) + 2C(add) + 4C(load) + C(comp)] +
+C(prn) (19)

are including the overhead cost incurred by the use of the auxiliary

the size of the lattice, and we perform n iterations to compute our

estimate, theljtotal cost will be:

Cr = N - n - (C(update) + C(select) + C(overhead)) (20)

where C(seldct) is the cost associated with the selection of the next site whose

state is going

to be updated. This selection involves the generation of 2 uniform

pseudo—randjm numbers in the first two cases, whereas for the Gibbs sampler it

requires onl
using a deter

a couple of additions, since in this case we can select the next site
ministic rule, such as lexicographic order (see section 6.3 below).
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Since CTpdate) is the dominant cost, apparently one should conclude that the

Mctropolis ¢
as the size o

necded to ge

gorithm is the most efficient. It must be considered, however, that
[ the state space (i.e., M = |Q;|) increases, the number of iterations

an estimate with an equivalent degree of precision will increase much

faster in the Metropolis or Heat Bath cases, than in the Gibbs sampler, since in the

latter case w

are using an "importance sampling”" procedure, versus the uniform

sampling of the former (sce Hammersley and Handscomb, 1965).

A rigoro

1s analysis of the tradeoffs involved is not easy, and is highly dependent

on the naturg of the particular problem, so that an experimental analysis might be

needed to clprify these questions in each case. In the more interesting case of a

parallel impl
We will justi

6.2. Parallel

mentation, however, the Gibbs sampler becomes the obvious choice.
ly this assertion in the following sections.

pdating.

A neccslnry condition for the convergence of the probability measures of the

Markov chai
to the Gibbs

s defined by the Metropolis, Heat Bath or Gibbs Sampler algorithms

measure is that if two sites belong to the same clique, they are never

updated at the same time. As we will show in the next section, this condition is

also sufficienf only for the case of the Gibbs sampler. In this case it is possible to

update simulfaneously the states of all non-neighboring sites, by implementing the

algorithm in

The total exe

where K i

a parallel architecture in which a processor is assigned to each site.
cution time will then be reduced by a factor of

N

K

the so called "chromatic number"” of the graph that describes the

neighborhood structure, and it is equal to the minimum number of colors needed

to color the gites of the lattice in such a way that no two neighbors are the same).

Note that if

he state of every site is allowed to take real (continuous) values, we

may use a nymerical simulation of the stochastic differential equation:

df = —gradU(f)dt + V2T dw
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to generate

chapter 2).

sample configurations from the desired distribution (see section 3.3 of

this case, all sites can be updated at the same time, so that a parallel

implementa“:on can reduce the complexity by a factor of N.

6.2.1. Conve

Geman
defined by

rgence of the Gibbs Sampler.

and Geman (1984) established that the measure of the Markov chain

¢ Gibbs sampler will converge to the Gibbs measure independently of

t
the initial stJte, independently of the order in which the sites are updated (provided

only that we
The converg
result for wh

First, w

1, every valy

Since b

b
L

keep visiting every site, i.e., that we update its state infinitely often).
nce of the parallel implementation, therefore, follows from this general

ich we present here a simple alternative proof:

t note that from the definition of a MRF, it follows that for every site
P g € @;, and every configuration f, the conditional probability,

Pr(fi’-“”fj y 1F#1)>0

hypothesis every site is visited infinitely often, this implies that any

two states off the chain will be mutually accessible (with positive probability) in a

finite numbe

" of steps, which means that the Gibbs sampler defines a regular chain.

On the pther hand, the Gibbs measure =(f) is an invariant probability vector

of the chain|

To see this, suppose that at time t, just before updating site 7, the

possible configurations of the field F(t) are distributed according with the Gibbs

measure.

Pr(F(t) = f) = =(f)

After the update we have:

Pr(F(t + 1) = f) =Pr(F;(t + 1) = f; | F;(t) = fi » 15#1)-

Pr(Fi(t)=f; , j#)=

)
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because, by

selected ran|

=n(filf; , F#)f; . FA)=a())

the definition of the algorithm, the new state of the st* element is
omly according with the conditional Gibbs distribution. The proof is

now compldted by remembering a well known theorem for finite Markov chains

(see Kemeny and Snell, 1960) that establishes that every regular Markov chain:

(i) Has a

ique invariant probability measure.

(ii) The mepsure of the chain will converge (with probability 1) to this invariant

measurg

the Gibbs
on the satis

chapter 2),

h

independently of the initial probability distribution of the states.

Note :If unlike the Metropolis and Heat Bath algorithms, the convergence of

pler does not depend on the reversibility of the chain (or equivalently,
action of the "detailed balance" condition given by equation (3) of
though this condition will hold if we use it with a random updating

order. We will now see that the reversibility will not hold in general if we use a

parallel updpting scheme, which will make the first two algorithms unsuitable for

parallel implementations.

6.2.2. Breakdown of Reversibility for Parallel Updating.

To sho
updating sc
with Ising p

why this condition is violated (by the three algorithms) when a parallel
me is used, we will consider a first order, binary MRF on a lattice L
tentials, that is,

fie{0,1} forallzelL
~1, if li—jl=1and f; = f;
Ve(fi, ) = {1, if [i—jl=1and f;# f;
0, otherwise

To implement a parallel updating scheme, we divide the sites of the lattice into

two non-ovgrlapping sets, which we will call B and W (the sets of "black" and

"white" site

Let fw, |
that f = {fy

respectively) as illutrated in figure 7.

5 denote the state of the elements belonging to W and B, respectively,so
r, fp}. The parallel updating scheme consists in updating first, say, all
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Figure 7

® O @€ O o
O @€ O @ O
® O @ O o
O @€ O e O
® O @€ O o

Non-overlapping sets for parallel updating (sce text)

the white s‘i.]Es, and then all the black ones. Note that the random variables associated

with any t

sites of the same color are conditionally independent (given the state

of the elemgnts of the other color), which means that the order in which their state

1s updated

Let A
of all the

immaterial, so that, in fact, they can be updated simultaneously.

, Pp, denote the transition probabilities corresponding to an update

ite and black sites, respectively. Note that both Markov chains with

 transition pfobabilities Py and Py satisfy the detailed balance condition (although

they are cle

and similarly, for a fixed fw,

Po({fw, fo}, {fw, I8}) =

ly not regular), so that for a fixed fg, we have:
Bw({w, £}, Uw: fa)) = gW'j,'B;Pw({fw,fa} {fw, fa})
W(fW: fB)

where = is the Gibbs measure of the complete configuration f = {f, fB}.

Now, l]t Pws(f, ]) be the transition probability associated with a complete

"white-blac

" update (where the white elements are updated first). We have:

Puls(f, F) = Pw({fw, 18}, {Tw, 781)Pe({w, f8}, {Fw» o)) =
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(fw. fs)
7(fw, fB)
?T(}w, }'13) _

“(}W)fB);—

= Pw({fw, fu}, Uw, fu})
Pu({Fw, Fu} {Fw, f})

_mNp 3
= ﬂ_(f)PBW(f;f)

where Py [is the transition probability of the converse "black-white" update (black

sites visited

Now, d

and let

Clearly,

and so,

first).

pnsider the particular configuration:

; {o, ieEW
"1, ieB

f;=1 foralliel

Pew(f, f) > Pwi(F, f)

=(f)Pws(f, ) > =(f)Pws(f, f)

so that the {etailed balance condition does not hold.

The a

ve argument can be easily generalized to show that if we use any

prescribed ypdating order (such as lexicographic order), the Markov chain generated

by any of

three algorithms will also become irreversible. These chains, however,

will remain fregular, which means that in each case, the probability distribution of

the configu
distribution

tions generated by the chain will converge towards a unique invariant
In general, however, it will not be possible to guarantee the coincidence

of this invaJ:]nt measure with the desired Gibbs distribution, except in the case of

the Gibbs

An ex
Gibbsian

pler.

ple of a situation in which the invariant distribution is not the
asure, can be obtained by running the Metropolis algorithm, either
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with lexicogfaphic or "black-white" updating order for the Ising model discussed in

section 2 of]
of the infin
are almost
predictions
order is use

chapter 2. If the natural temperature is below the critical temperature
te lattice, the algorithm will produce equilibrium configurations that
completely uniform, and therefore, inconsistent with the theoretical
and with the behavior of the same algorithm when random updating
d). The Gibbs Sampler (which in this case is equivalent to the Heat

Bath schemg), on the other hand, produces consistent results, as expected.

6.3. Discussion.

The prgvious results mean that the expected computational cost (execution

time) for the
our general

solution of a reconstruction problem on a large parallel machine, using
Monte Carlo procedure, will be given by:

Cp=n-K- -Cgg (21)

where n is the number of (global) iterations; K is the chromatic number of the

graph of the

Sampler, giv

underlying Markov model, and Cgs is the updating cost of the Gibbs
en by equation (19).

An ex
Machine" (

ple of such a massively parallel architecture is the "Connection

illis, 1985). This machine was originally designed for the parallel

processing offstructured symbolic expressions, such as frames and semantic networks.
It is a "Single Instruction Multiple Data” (SIMD) array processor consisting of
256,000 procgssing units (each with a single bit Arithmetic/Logical unit, and about
4K Dbits of gtorage) organized in a four-connected lattice that is 512 elements

ed most efficiently if the field is first order Markov, but higher
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order proce

es can also be implemented without using the router by successively

propagating|ithe transmitcd state (the execution time, therefore, will grow linearly

with the or

r of the field).

To makg these results more concrete, consider, as an example, the problem of

finding the gptimal estimate for an M-ary, first order MRF with Ising potentials

(i.e., the seg
will analyze
estimator is
the use of a
integers. We

cycles of a
or compari
generating a
16 cycles fou
exponential.

Assumi

b

entation of a piecewise constant image) from noisy observations (we

this problem in detail in the next chapter). Let us assume that the

be implemented in the "Connection Machine", and suppose that by
ropriate scaling factors, all the numbers can be represented as 16-bit
will use the following conservative assumptions: We assume that 16

sJ?e 1-bit processor are needed to perform 16-bit addition, substraction

; 162 cycles to perform multiplication or division: 2 X 162 cycles for

pseudo-random number with uniform distribution on a given interval:

memory transfer operations, and 6 X 162 cycles for computing an

that we run 250 iterations of the system, and ignoring the overhead

time we get,rrfrom (19) and (21),

Cp ~ 1.4(M — 1) seconds (22)

Although this execution time may be reasonable in many cases, it is clear that

this approach
more conven
continuous Vv
smoothness ¢

where w is a
section 2.2).

|

becomes impractical as M becomes large. In this case, it might be
nt to approximate the field by one in which the state at each site takes
ues in a compact set and, provided that Up satisfies the appropriate
pnditions, use the stochastic differential equation:

df = —gradUp dt + V2T dw (23)

Wiener process, to simulate the behavior of the system (see chapter 2,

This schgme will not work, however, if some of the variables are intrinsically

discrete (e.g.,

pinary variables indicating the presence or absence of a boundary). In
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this case, it fmight still be possible to use a mixed scheme in which the state of the
discrete varfables is updated using the Gibbs Sampler, and that of the continuous

ones using gquation (23), but the precise form of such mixed schemes has not been
determined|| nor their convergence properties established.

These dpnsiderations provide us with a strong motivation for finding alternative

ways of solving these problems. In particular, much more research is needed in the
following difections:

(i) Design pf more efficient (possibly deterministic) algorithms for approximat-
ing the pptimal estimators for particular classes of problems,

(ii) Design [pf analog and hybrid networks for implementing these kinds of
algorithjns.

study these possibilities in detail, in the context of specific problems

We Wij
ng chapters,

in the follo
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Chapter 4

RECQNSTRUCTION OF PIECEWISE CONSTANT FUNCTIONS

1. Introductjon.

In this fchapter we will apply the optimal Bayesian estimators that we have

developed, t the problem of reconstructing piecewise constant functions from noisy

observationg

useful

The efficient solution of this problem is relevant for several reasons:

many interesting applications (for example, object recognition

(i) Binary IFages (or images consisting of only a few grey levels) are directly

and mafipulation in restricted (industrial) environments).

(ii) Several perceptual problems, such as the segmentation of textured images

(Elliot,
or the
(1976)),
constan

(iii) As we

t. al. (1983); Hansen and Elliot (1982); Cohen and Cooper (1984)),

rmation of perceptual clusters (O'Callahan (1974); Marroquin
can be reduced to the problem of reconstructing a piecewise
surface.

ill see in the next chapter, where we treat the reconstruction of

piecewige smooth surfaces, the boundaries between continuous patches can

be adeqpately modeled by binary fields coupled with continuous valued

processe
way. We

5. These coupled systems are very difficult to analyze in a rigorous
hope to increase our understanding of them by studying first the

estimatign of binary fields.

2. Problem F

brmulation.

Followirfg Geman and Geman (1984), we will model the behavior of piecewise

constant fung

ions using first order MRF models on a finite lattice with generalized

Ising potentigls:




-1, if |z’—j{=1andf,-=f,-
Velfi, fi) =31, if |i—jl=1and f; £ f; (1)
0, otherwise

fi€e@:i={q,..,qu} foralls

We wil} use a free boundary model, so that the neighborhood size for a given

site will be: 4

, if it is in the interior of the lattice; 3, if it lies at a boundary, but not

at a corner, and 2 for the corners.

The Gipbs distribution:

defines a o
constant pat

section 2.1
that chapter:

with

Fy(f) = G exel—7-Unlf)]

Uo(f) = V(fi, £5) (2)

parameter family of models (indexed by Tp) describing piecewise
rns with varying degrees of granularity.

Using jte general stochastic model for the observation process presented in

chapter 3, we get the posterior distribution given by equation (6) of

Ppy(f39) = E!; exp[—Up(f; g)]

Urlfi9) = - Uolf) + 32 9(£, ) 3)
0 €S

Of particular

interest will be the case of binary fields (M = 2) with the observations

taken as the qutput of a binary symmetric channel (BSC) with error rate e (Gallager,

1975), so tha

In this case, t

. (1- €), for g; = f;
Ploc1 1) = {e, for g; # f;
ne posterior energy reduces to:
Up(fi0) = g2 S VUi f)+ o (1= 5(f: = ) ()
t,7 3
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where f; € lq1,9:}; .
1, ifa=0

0, otherwise

(5)

and

a=mﬁ“j (6)

€

Note that iff this case (and also in the case of additive white Gaussian noise), by
modifying the constant Zp, and applying a suitable linear transformation to the
variables {f}}, so that Q; = {—1,1}, we can write the posterior energy in the form:

Urlfi) =7 % fifj+aX fi 7

4,7:i—7]=1

which corregponds to the Hamiltonian of an Ising ferromagnet coupled with a
spatially varying external magnetic field (whose magnitude is proportional to g).

The importahce of this connection is twofold: on the one hand, it means that the
tools developed for the equilibrium behavior of these systems — which is what
the estimatign process is about — may be relevant for the physicists. On the other
hand, it is capceivable that one could use physical ferromagnets to ¢onstruct special
purpose "quantum” computers that could solve estimation problems at atomic
speeds.

In the fgpllowing sections, we will study the relative performance of different
Bayesian estifnators, and design efficient algorithms for approximating them in some
important pafticular cases.

3. Relative Pgrformance of Bayesian Estimators for Binary Fields.

Once thelposterior energy has been determined, one can solve the reconstruction
problem by finding the optimal Bayesian estimate of the field f. As we discussed
in chapter 3, however, we have several possible choices for the optimality criterion.
To understanfl the differences in their performance, we will now analyze in detail
the estimatior] of binary fields, when the observations are the output of a BSC with
error rate e.
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Since the ficld is binary, the MPM and TPM cstimators (defined by equations
(13) and (1) of chapter 3, respectively) coincide. The question is: how do the

performancgs of the MAP, and say, TPM estimates compare with respect to the

error criteripn:

with

& = Ele,(f, ])]

N A
es = ;(1 —6(fi — 1))

where N isthe size of the lattice, and the expectation is taken over all possible

configuratiopis f and g.

In particulaf|

we are interested in the ratio:

€TPM

_ X0 ¥P[=Up(f; g)les(f, ?MAP(Q))
X r0exp(=Up(f; 9)les(f, frpm(9))

The numeridal evaluation of this expression is feasible only for small values of N.

In figurf 8 we show a plot of the ratio » for a 2 X 2 lattice, for different values

of the error
1. In the wq
is 1.17 timeg
large, both ¢
the MPM e

ate € and the natural temperature Tp. As expected, r is never less than
rst case (for € = 0.1 and Ty = 0.2) the error of the MAP estimate
that of the MPM estimate; if Ty is not too small and € is not too
Stimates coincide, and as e approaches 0.5 (low signal to noise ratio),
imate is consistently better than the MAP. An experimental analysis

of larger lattjces reveals a similar qualitative behavior, but the values of r are much

larger in thig|case (see table 1).

3.1. Example

We now
it in more d
with free boy

return to the example presented in figure 6 of chapter 3, and examine
tail. Panel (a) represents a typical realization of a 64 X 64 Ising net
indaries, using a value of To = 1.74 (0.75 times the critical temperature
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Figure 8. R"au'o of the average errors of the MAP and MPM estimators for a 2 X 2 Ising net.

of the lattice)ll panel (b), the output of a binary symmetric channel with error
rate e = 0.4; panel (c) the MAP estimate, and panel (d) an approximation to the
MPM estimate) (which we will label "MPM (M.C.)") obtained using the Metropolis
algorithm and{equation (10) to estimate the posterior density. The corresponding
values of the posterior energy Up (equation (13)) and the relative segmentation
error (e, /64%) gre shown on table 1.




. Table 1

f g Tsar }.MI’M(M'C) }MI‘M(Det')
Energy —5594.8 —-226.0 —6660.9 —6460.0 —6427.0
Seg. Error - 0.4 0.33 0.128 0.124

4. Exact Alggrithms for the MAP Estimator.

From the discussion of the previous section, it is clear that if the signal to

noise ratio ig not too low, the MAP criterion may be an appropriate choice, if
one can design efficient algorithms for computing it. As we will now show, in
the case of ghe-dimensional binary fields, one can in fact construct an algorithm
which compujtes (exactly) the MAP estimate with computational complexity which
is O(N) (the [fength of the lattice) in a serial machine: at most 22N operations are
needed, and [the storage requirements are also O(N). The algorithm can also be
distributed i

lattice length

a parallel architecture, making its execution time independent of the

To simpljfy the notation, we will assume that f; € {—1,1} for all < (there is no
loss of generglity in this asumption, since any binary process can be brought into

this form by 4 reversible linear transformation). Also, assuming the noise process is

stationary, wef|introduce the notation:

V1) = 204(fi 00

where Tj is the natural temperature of the field.

From eqmixtions (1) and (3), it is clear that the MAP estimation problem is

equivalent to the minimization of:

Up(f) =n+ 3 ¥7(0)
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where n is the number of places where f; 54 f;,; (thc number of odd bonds of the
configuratiop). From this expression, it follows that the MAP estimation process can
be reduced b the problem of finding the optimal value for n, and the best locations
for the odd ponds ( which we will also call "boundaries" between constant-valued
blocks). We |will now present a procedure for performing this task.

Description pf the Algorithm.

The idef in which this method is based is the following:

We staft scanning the sequence {g;}, say, from the left, with some initial
estimate k& €{—1, 1} for the value of f in the block that starts at Iy (a pointer that
is initially sey to 1).

Whenever we process a new observation g;, we ask if we can get a lower energy
by putting ajboundary in j and in the best possible location ! within the interval
[lo, 7], that is| we ask if:

Up+1< U,

where _
7
Up = Z V.1 k(9:)

‘l=lo

l J
Up=1+ Y Yii(a)+ Y Y _i(a)
t=lg 1=l+1

As we will SI below, the optimal boundary location I (which is initially set equal
to lp) needs tp be updated only if the conditions:

Ytk
Ml £ ik

J l
D Wak(9) = Yoi(9i) < 3 Wk(ed) — Y-i(g:)

‘i=lo t=lo

hold simultar

maximum lik

eously, in which case ! is set equal to j — 1. Here, fML denotes the
clihood estimate; since we are using a white noise model, it is given
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mL b if Uii(g5) < ¥-i1(gy)
fj - .
-1, otherwise

If we get a lower energy by putting a boundary at [, we sct f; = k for: € [lo, 1];

update the|lvalue of the pointer lp by setting it equal to ! + 1, and set the new

estimate for] the value of f, in the block that starts at Iy, equal to —k.

Otherwi

se, we just set f; = k, and continue to process the next observation.

When |we reach gy, we take fy as the initial estimate and run the same

process backwards to get the final solution (in fact, one can show that it is possible

to make this backward run as soon as we get the second boundary). This means

that we car

implement the algorithm in a distributed fashion, by processing in

parallel oveflaping subsequences of {g;}, provided that the length of each of these

subsequencgs is greater than twice the length of the largest constant-valued block

in f. The fig

al solution is then obtained by pasting together these partial estimates.

Formally, the algorithm is as follows:

Definition of Variables.

1. Current ppsition.

l: Pointer tp the beginning of the current region.

I: Current optimal location of the boundary in the interval [lo, 7).

k: Current gstimate for f([lo, I]).

Up: Energy |

U Energy

ncrement associated with the assignment f([lp, <]) = k.

increment associated with the assignment f([lo, 7]) = —k.

Usp: Energy jncrement associated with the assignment f([lo, I]) = k; f((L,1]) = —k.

st: Best locaj (maximum likelihood) estimate for f;.

stml1: Best |

pcal (maximum likelihood) estimate for f;_;.

71




Upi: Energy

increment associated with the assignment f([ly, !]) = .

Uit Energyl increment associated with the assignment f([lo, I]) = —k.

Utemp: Tempporary storage register.

M: A very |arge positive number.

Ky: Switch

ndicating the method for cstimating f;.

Algarithm A1(K,):

1: Inigialization.

Set

Set

Set

VQ=1=1;UP=Um= ml=0;Ub=1;Upl=M°
k=1, if Ko=0 and ¥ 41(g1) < ¥ _4(g1) ;
-1, if Ko=0 and ¥ ,4(g1) > ¥ _4(g1);
Ko, if Ko 5# 0.

stml = k

2: Mdin Loop: For i from 1 to N do:

Begin

S

ptsi =1, if ¥ 41(gs) < ¥ —1(gs) ;
—1, otherwise.

1. See if the optimal boundary location needs to be updated:
If (s: % k and st % sitmil and Up—Up—Un+Up <0)do:

Update boundary location:

Set :
l=1-1
Upt = Up
Uml=Um
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End

3:S
If

p.2: Update encrgy increments:
Set :
Up="Up+ ¥ 1k(g:)
Um = Um + v -—k(gi)
Up=Up+ ¥ _i(g)
2.3: See if a new boundary has to be introduced:
If(Up+1 < Up) do:

Introduce a new boundary:

For j from lp to ! do : Set f; =k

Set :
k= —k
lo=1+1
Utcmp = Up - Upl
Up = Up ~ Upny
Um = Utemp
Up=M
Uy=Up,+1

P.4: Set siml = sz

eg if the last boundary has to be introduced:
W, < Up) do :

#.1: For j from Iy to [ set f; = k.

B.2: Setlp =1+1.

3.3: Set k = —k.

4: Fil] the last region:

For[j from lp to NV set f; = k.

End.
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The proof
(7) is prese

In app
is based on

the one we
of being ex
compute th

If

n
lynamic programming idcas. The resulting algorithm is less efficient than

f the fact that this algorithm will in fact find the global minimizer of
ted in appendix 4.A.

dix 4.B we present an alternative approach to this minimization, which

have just presented for the case of binary fields, but it has the advantage
lensible to handle more general situations. Also in this appendix, we
 probability distribution for the number of odd bonds, and discuss the

relationship| between the dynamic programming procedure, and the use of linear

filters to pr¢

duce multi-scale descriptions of piecewise constant signals.

S. Estimatign of Two-Dimensional Binary Fields.

The te

iques developed in the last section for the exact computation of the

h
MAP estimﬂte cannot be extended to the two-dimensional case; the main difficulty

here is that

the geometry of the boundaries between uniform regions (which in the

one dimens

onal case are simply points), causes a combinatorial explosion of the

number of possible configurations compatible with a given total boundary length.

The questi
the optimal
efficient tha

3.1. MAP E

In the
algorithm fi
of sites (in

, then, is whether it is possible to find algorithms that approximate
estimates (with respect to the sclected error criterion), that are more
i the general Monte Carlo procedures presented in chapter 3.

itimator.

ase of the MAP estimator, the efficiency of the Simulated Annealing
the minimization of Up can be improved by defining large "blocks"
manner that is reminiscent of the "block-spin" strategy used by

Wilson (197§) in connection with the renormalization group approach to the study
of critical penomena); the optimal estimate for the average value of the field in
each of the
blocks in sugcessive annealing stages. We will now show that, if we use a maximum

blocks is found, and then progressively refined by subdividing the
entropy assumption, the structure of the MAP estimation process for Ising models
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is invariant|under the "blocking" transformation; this means that the ground state

(i.e., the
corresponds

P estimator) of the aggregated process (with blocks of size L) also
to that of an Ising model with a coupled external ficld, in which the

natural temperature is scaled by a factor of 1/L, and the noise (coupling) parameter

by a factora"]of L%. As a consequence of this scaling, the final temperature for the

simulated
than for the

Let us

nealing of this smaller network will be approximately L times larger
original problem.

ronsider a binary Ising net f with the observations taken as the output

of a binary rjlzymmetric channel with error rate . From scction 2, we know that the

posterior €

with

and

Notice that

rgy will be:
Up = = S V(i [) + o S alforsi) ®)
0+j :
0, ifgi=/f;
Q(fi) gi) - {1’ if g 7é fi

a=ln(1—€)
€

pquation (8) can also be written in the form:

Up = = Vol £i) + o S ac(fiy 95) (8)
To 55 i

where V¢, q¢ are continuous functions satisfying:

Ve(z,y) = V(z,y) and

QC(x’ y) = Q(m:y) for T,y € {0) 1}

We will novILderive an expression for the energy in the "block spin" case. Let us

partition the
gr, will now

riginal lattice L into square blocks of side L. The "block observations"
pe the density of 1's on each block, i.e.,

) 1
9L(z) = Iz _GZB g9;
J 3
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where DB; is

the *# block. The "block field” f,, is defined in a similar way.

For a

iven f;,, we compute the energy by assuming a maximum entropy

configuratioft, which occurs when the 1's that correspond to the given density fu(?)

are randomlyy distributed within the block. The energy will have three terms:

1. Interactio

The int

where Py, is
to an elemer

Substituting

1s between adjacent blocks:

praction between two adjacent blocks 7 and 5 will be:

Iij = {——1 . (Pu + P()o) +1. (PIO + POI)] -L

the probability of having an element with state & on block ¢ adjacent
t with state [ on block j:

Py = fi2) fr(y)

Por = fu(7)(1 — fL(%))
Py = fL(5)(1 - fu(5))
Poo = (1 — fr(2))(1 — fr(7))

these values we get:

Lij = L2(f1(3) + fi(5)) — 450(5) fu(s) — 1]

2. Interactiorfs within each block:

This terfn depends on the relative frequencies of the clique configurations

11,10,01 and

00 (p11, P10, P01 and poo, respectively) on each block (note that there

are 2L(L — 1) different cliques). Since the 1's are randomly distributed we get:

pu = fi(2)?

p1o = por = fi(2)(1 — fi(7))

poo = (1 — f1,(s))?
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so that the ih

ternal interaction I; is:

I; = 2L(L - 1)(—4f(i)* + 4f,(5) — 1)

3. Interactign with the observations:

Assumi
distributed

Finally,

note that thq
respectively.

g that the 1's in the observations and in the field are independently
e get:

Lops(5) = «L2[f1,(5)(1 — g1(5)) + (1 — f1(2))gr(3)] =
= aL?[f1(5) + g.(5) — 2£1(5)gL(s)]

the energy takes the form:

Uf1) = g S+ S + ani) =
1,7 )
= Lz DIR(u00) + 1uls) — 4620 ul) ~ 1] +
ty)

+—1?—0(L —1) 3 (—4f1())® + 4f1(5) — 1) +

1

+aL 3 2(fu(2) + 91(s) — 2f1(5)gr(5)}

sums are taken over pairs of adjacent blocks, and over all the blocks,
For L = 1, this expression reduces to (8") with

Ve(fi f3) = 2(fi + f;) — 4fif; — 1

qc(a,b) =a + b—2ab

For L > 1, the quadratic terms of Uy, are:

and since

T£ (43 fL() fuls) = 8(L - 1) Y f1(3)?
o

3
]

g

=23 f1(0)1105) + 2 X fu(i)? = S(7u6) - )2 > 0

7




it follows thht

and

which impli

Zf/, > Zfl () f.(7)

-4 f1.()fL() -

t,J

L-1)Y 6 <
< ~(+8(L-1) ¥ fii) < 0

s that Uy, is negative definite for L > 1, and therefore, its minima,

constrained fo the hypercube [0, 1)V* (IV,, is the total number of blocks) will always

lie in a corn
to find the g
the energy t
constant):

The minim
representati
refinement (
solution as a
(the MAP
At present,
determining

Also in
This author

i

r of such hypercube, which means that we can use simulated annealing
obal minimum of Uy, constraining the search to {0, 1}V In this case,
D be minimized takes the simpler equivalent form (up to an additive

U=z / 3 Z V(fL(), fL(5)) + aL? ; a(f1(2), 9L(%))

energy solutions for each L can be interpreted as "coarse scale”

U
(IE; of the original pattern f. Once a solution is obtained, the next
or blocks of size L/2) can be efficiently obtained using the previous

tarting point, and initiating the annealing process at a lower temperature
mates presented in this chapter were obtained using this technique).
wever, we do not have a good method (other than trial and error) for
the optimal values for these initial temperatures.

his connection, the work of Blake (1983, 1985) should be mentioned.
proposed the minimization of an energy function similar to Up as a

pragmatic crjterion for restoring piecewise constant images. He also proposed an

algorithm, bgsed on the successive approximation of Up by a family of convex

envelopes to

The rel
should be as

nd an approximation to the global minimizer.

ajtve performance and computational efficiency of these various schemes

ssed experimentally.
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5.2. MPM Estimator.

In the ¢

sc of the MPM estimate, it is possible to construct a fast deterministic

algorithm whose experimental performance (in terms of the average segmentation

error) is equivalent to the Monte Carlo method discussed above. It is based on the

following id

First, we

recall that for a binary pattern, the MPM and TPM estimates coincide.

We will appfoximate the posterior mean of (3) by that of a Gaussian distribution

P¢ with the

In partig

where

For this distr

which corresy

property:

Pg(h) = —e~Ur®  for all h € {0, 1}.
Zp

hlar, we use:

Po(h) = —eXP[—-E 2 (ks —h:)z—aZ(h - a)’).
i JEN;

Ne={j€l : |i-Jll=1}.

bution, & is the (unique) minimizer of the convex function:

Uolh) = A 5 T (he = by + o (ks - 0

) JENc

onds to the unique fixed point of the system:

ple+1) _ Xden: A + oTyg; )
N+ aTo

We could now approximate our estimate by putting:

where

Ji = O(h;)
3 1
o = "2 (10)
0, otherwise

19




There is an [additional consistency condition that f must satisfy, however. It can

be shown that when the posterior distribution has the form given by (3) and 4),
the MPM egtimate f, which by definition satisfies:

also satisfies

Pyg(Fi:9) > Pyy((1 = 1)s 9)

Pyy(F ) > Py = F:i ) (11)

which meang that if we replace the observations by the MPM estimate, and compute

a new MPMestimate for this modified problem, we should get the same result (the

proof is inclfided in appendix 4.C). Translating this condition to the case of }., we

get that it myist satisfy:

*

fi = 6(h)) (12)

where k' safisfies:

hf — }:J'EN.* h'; + aT(,(-)(h:)
! |N;| + oTo

In practice, We get " as the fixed point of the system:

with

Note that thg

acts as a Lyap

B+ _ ieN: LY T

t |N,| + aTy (13)

KO =p

function:

Un(h) = 3 (ki — hj)? + aTo Y (h; — O(hy))?
1,JEN; i

unov function for the system (13), which is therefore (locally) stable

(Vidyasagar, 1978).

This alggrithm can be visualized as operating in two steps: In the first one,
we extract alljthe information that we need from the observations and encode it in
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h (which is dgontinuous-valued), and in the second one, we find the closest binary

pattern that gatisfics the consistency condition (11).

To illuskrate the performance of this approximation, we show T, for the
example disdhissed above, in pancl (¢) of figure 1, and its corresponding energy and
segmentatior error in the last column of table 1 (labeled "MPM det.").

5.2.1. Paralldl Implementation.

The dyrfamical systems defined by equations (9) and (13) can be implemented

directly in a

a processor

Ifarallel architecture, such as the "Connection Machine”, by assigning
o each site, and updating the state of all sites at the same time.

Each update| will require, for both systems, at most 10 (16-bit) additions and two

multiplicati

s, that is, a total of 672 cycles of a 1-bit processor. We have found

experimentally that in most cases, less than 50 iterations of (9), and 100 of (13) are

needed for
total executi

onvergence, so that, using the figures of chapter 3, we estimate the
bn time as approximately 0.1 seconds, an improvement of one order of

magnitude dyer the general Monte Carlo procedure described in that chapter.

5.3. Analog

Hopfiel
behavior of

Networks.

i and Tank (1985) (see also Hopfield, 1982 and 1984) have studied the
"neural” analog networks of non-linear amplifiers interconnected by

resistors, whipse dynamics can be described by the differential equations:

Here, N; is

du; _ f_ T
at —j:‘}:v; Tifi—— +1 (14)
fi = 6(w;)

the neighborhood of node <; u; and f; denote the input and output

voltage of the ** amplifier; T;; is the conductance of the link between the nodes

7 and j; I;
the internal

s a fixed current injected at node %, and , a constant depending on
Iresistance and capacitance of each amplifier. The gain function of the
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amplifiers, ©
interval (0, 1)
(hence the te

-) is chosen as a sigmoid function that restricts the output to the
and has a form similar to the observed response of biological neurons
m "neural”). In particular, one can put:

1

O(u) = 1 + exp[—pu]

(15)

where g is callled the "gain parameter”.

These re
we have T;;
fixed points v

jearchers have proved that the system (14) is always stable, provided

3 Ty for all 7,7, and in the high gain limit (for 8 > > 1), the stable

ill be local minima of the "energy” function:

E(f) = —% > Tiifif; — 3 fiks (16)
%,] 1
Note that we can write (14) as:
du,- oE Uy
@ 8f T (18)
fi = O(u;)

They ha

e also pointed out that if one uses the gain function (15), the fixed

points of (18)| will satisfy:

with

1

= T e BB (19)
OF
H() = =28 = ¥~ Tyl + I (20)
: JEN;

These equatigns will also be satisfied by the mean field approximation (see Reif,

1965) to the

insemble averages of a binary process f (f; € {0,1}) with respect to

the Gibbs mdasure generated by the energy (16) at a temperature T = 1/8r. This

can be showr

as follows:

The meap field approximation is obtained by assuming that the local energy at

node , which

is:

E(f)=—fil Y Tijfi + L] = —fiH(f)

JEN;
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can be appr

where f; de

temperature

This means
approximati
in general
the initial
the general

In the
write it in t

so that

In this form,

pximated by:

"'fz[zlgf +[]—“"ft

JEN;

()

hotes the ensemble average of f;. Since {ffj} are constants for a given

we can compute f; as

Y=o, fi exp[—H,-g)/T] _
Y ,=o0,1 exp[—H(f)/T)
_ 1
1 + exp[—Hy(f)/T)

fi=

that there is a fixed point of equation (18) that can be interpreted as an
pn of the ensemble average of a corresponding binary MRF (note that
Lﬂis fixed point will not be unique, and will depend on the selection of
C

nditions; the lack of an adequate criterion for making this selection in
ase represents, at this point, a serious limitation of this approach).

ljﬂase of the posterior energy (4), if we require that f; € {0,1}, we can

e equivalent form (up to an additive constant):

U = —'—’Z z ftf] Z[_— + (2gt 1)]fi
i JEN;
=90 _ 4 - 2|N|
Hi= %7 é%ﬁ+(2 V-

one can construct directly the system (18), and defining the initial state

as ff-o) = uf-') = 0.5 for all 4, find the stable fixed point that will approximate f.

Since for a
approximatg

We have p¢

binary system the MPM and TPM estimators are equivalent, we can
the optimal estimate by:

L
1,

Fformed digital simulations of the system (18), and have found very

if f; < 0.5
otherwise

-~
- =

1

good perforfpances for relatively high signal to noise ratios. For high error rates,
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the behaviounof this approximation is similar to that of the MAP estimator. We will

have to say

ore about this approach at the end of the next chapter.

6. Simultandpus Estimation of the Field and the Parameters.

To app

y the estimation procedures described in the previous sections, the

parameters that characterize, both the prior model of the field (the natural temperature

To). and the
In most pra

noise process, (the error rate ¢, or the variance o2) have to be known.
tical cases, however, we are only given the noisy observations g and

general qualftative information about the structure of the field and the noise, so that

f,a (which
estimated.

tands for either log[(1 — €)/€] or o) and Ty have to be simultaneously

In pringiple, one could use again a Bayesian approach, and assuming prior

independent]
respectively)

uniform distributions for « and Tj (in the ranges [o, o'] and [T, T}),
find those &, Ty and f which jointly maximize the posterior distribution:

exp[—Up(e, To, f)]
(a! = a®)(Tg — T4)Z(To)Py(9)

P(fsarT()lg):

The ma[x difficulty here is the extraordinary computational complexity of the

partition fun|

tion:
71 =5 expl— 7l )

which makes|this approach impractical, except for very small lattices.

An alterpative approach is based on the following considerations (we will study

in detail the

fase of a BSC; other noise models can be analyzed in a similar way):

EquatiorIE (9) and (13), which describe the deterministic approximations to

}' mpum depe

which means
single param

on the parameters of the system, e and Ty, only through the product:

'7=aTo=Tolog(1:€) (21)

that the behaviour of the algorithm is completely characterized by the
eter 4. In the case of the Monte Carlo approximation, if we fix the
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value of ~, I['\e value of Ty cannot be chosen arbitrarily, since it has to satisfy the

consistency

with

ondition:

S
I
(=2

=)

, 1
¢ = 7v‘§ (22)

where z is the residual process defined as:

This means

if J; # 0

: (23)
otherwise

{1,
z': —
0,

that, given ~, the correct value of Ty can, in principle, be determined

in an adapt(Ilie way, so that in this case too, the behaviour of thc approximation

depends effi

Forag
f using the

tively only on ~.

ven value of 4, we can approximate the corresponding MPM estimate
methods developed in the previous section, and compute the residual

process z arfd the conditional (on v) Maximum Likelihood Estimate of the error

rate e using
will be:

To me

equations (22) and (23). The corresponding conditional estimate for T

To= (24)

Rl

ure the "likelihood" of the estimate f, we use the degree of uniformity

(or "whitengss™) of the residual process z. This property can be quantified by the

variance of

e local noise density, which we estimate as follows:

We cover the lattice with a set {S;} of m non-overlapping squares (say, 8

pixels wide)

For each square S;, the relative variance of the noise density is:
— a 2
2y —¢€
o =(2) (25)
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with

where |S;| is

. 1
5o Loy,
’ lsylééi '

the area of the 5** square.

The desjred likelihood function is:

(==X o (26)

which is eq ultalent to a x2 criterion (Cramer, 1946) normalized to take into account

the sample s

Alternat
a uniform di

are distr]

with

€.

vely, one can use directly the likelihood that the residuals come from
tribution. To compute it, we note that the quantities:

l/j= Zz,-

i€S;

buted according to the multinomial law:

n! 1\"
P, .. vm) = u!.. .um!(;n_)

n=Née=v1+...un

Using the Stifling approximation we get the log-likelihood:

where K is a
(26) and (27)
or when for
adopt.

m
L(v1,..ovm) =log P(v1,...,vm) =~ — > v;logy; +

t=1

n 1 n
+n log (;) + Elog(lll...l/m) + K (27)

ronstant. We have found experimentally that both likelihood measures
have a similar behavior when = is large. When = is relatively small,
me ¢, v; = 0, however, (26) is preferable, and so, it is the one we
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Note thht a more conventional likelihood function, such as the conditional

likelihood pfoposed by Besag (1972), will not work in this case; this function is
defined as: N (]
upy=DEED
(=TI PG: | };5 € N, o) =
1€Ck
H exp[":“ll'_o ZJ'EN.' V(}i’ }J)]
= eXP{—;'.; 2jeN: V(Fa I + exP["TTl; Yien, V(1 - Fi 1)
2 NP
= II (1+exp[7- Z V(f,,fj)]) 1, k=1,2
1€Ch To 7E€N:
where the "¢odings" C; and C; are the sets:
C = {s (z; is odd and y; is even) or (z; is even and y; is odd)}
Cy = {z (z; is odd and y,is odd) or (z; is even and y; is even)}

with (z;, w:)

value of the
of sites of (

denoting the row and column indices of site < (notice that, given the
field at the sites of C,, the random variables associated with any pair

. become independent, and viceversa). In our case, we find that as v

decreases, f| becomes more and more uniform, while T, remains almost constant.

It is not difficult to see that as a result, the conditional likelihood L will decrease

monotonically with «, which renders it useless for our purpose.

The rage of values [yo, 7] Of the parameter ~ that corresponds to the class

of systems (¢

f interest can be determined as follows:

One cah show that for 4 > 8 we will always have fj;pp; = g; for all 4, so that

we can usc

vy = 8. The value of 4o can be obtained from an upper bound for e

and a lower| bound for Ty. For example, assuming that ¢ < .45 and Tp > .5Tc, we

get yo = .2
MREF is bel
and Snell,
1), while

J

. (Note that when the natural temperature Tp of a first order, isotropic
bw 0.5 times T, (the critical temperature of the lattice; see Kindermann
80), the patterns become practically uniform (i.e., f; =constant for all
values of Ty greater than 1.5, we get patterns that are practically

87




indistinguis:]rble from white noise. Therefore, the assumption Tp > .5T, covers

practically al| the intcresting cases).

The compplete estimation procedure is as follows:
Maximum Ljkelihood Estimation Algorithm?

1: Sample tje interval [yo, 7p] at the points

Y0 < V- S IM

2: Foreachly € @ = {71,.. -7} :
2.1: Fifd f(v) using (9) and (13).
2.2: Compute z using (23).

2.3: Cj[npute ¢ using (22). If & = 0, set L(f(v)) = —oo and proceed with the
next value of 4. Otherwise, compute & and go to 2.4.

2.4: Cdmpute Tp using (24).

2.5: Campute L(f(7)) using (25) and (26).

3: Computg the optimal estimate f using:

A

F =3 : LFE)=supL(F() (28)
7€Q
The corresgionding ¢, T; will be the optimal estimates for € and Tp, respectively.

Remarks:

1. This estjmation algorithm allows us to reconstruct a binary pattern f from
the noisy ¢bservations g without having to adjust any free parameters. The only
prior assunjptions correspond to the qualitative structure of the field f (first order,
isotropic MRF) and to the nature of the noise process, but neither the natural
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Figure 9. (a) §
complete scries

(d)

ynthetic image. (b) Noisy obscrvations. (c) Maximum Likelihood Estimate. (d) A
of cstimates. The optimal estimate (for v = 2.9) is indicated by an arrow.

temperature

T, nor the error rate e have to be known in advance. In practice, this

means that We can apply it to restore any binary image with uniform granularity,

even if it ha
algorithm to
we show suc

not been generated by a Markov random process. We have used this
reconstruct a variety of binary images with excellent results. In figure 9
h a restoration. The observations (b) were generated from the synthetic

image (a) with an actual error rate of .35 (assumed unknown). The MLE for f is

shown in (c]

| A complete series of estimates f(7), with ~ varying from .5 to 3.5 is

shown in pahel (d).

2. This pro

redure can be easily extended to handle any one-parameter noise

corruption pfocess (such as zero mean, additive white Gaussian noise). The extension

to the case
is also strai
of (9) and

8

hf N-ary fields, i.e., to the restoration of piecewise constant images,
tforward (using the general algorithm described in chapter 3 instead
) in step 2.1). As an example, we present in figure 10 the optimal
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(a) (b) | (¢)

Figure 1q. (a) Original ternary MRF. (b) Noisy obscrvations (additive Gaussian noise). (c)
Optimal (Max{mum likclihood) estimate.

restoration df a ternary pattern corrupted by additive white Gaussian noise.

3. We have [found that the likelihood function (26) is reasonably well behaved as
a function ¢f 4. This permits us to perform the one-dimensional search for its
supremum if an economical way, by first determining its approximate location using
a coarse sarppling pattern, and then refining its position by a fine sampling of a
reduced intgrval. In practice, it is possible to get very good results using on the

order of 15 samples.

4. The whole procedure is highly distributed, so that it is possible to implement it
in parallel Hardware in a very efficient way.

7. Formatiop of Perceptual Clusters.

At the heart of a general purpose perceptual system, one must have a mechanism
for decidinm which parts of an image should be considered to "belong” together
(Marroquiry, 1976). A simple instance of this problem is the grouping of dots in an
image into perceptual clusters. Some heuristic schemes have been proposed to model
this phenomhenon (see for example, O'Callahan, 1974). We will show, however, how
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this problem

Lan be formulated in an elegant way that is also biologically motivated,

as a particulaf case of the reconstruction of binary patterns from noisy observations.

The con

Let us jr
some objec

this way, the

eptual model for this formulation is as follows:

nsider the dots that form the original pattern as patches belonging to
of uniform color that are partially hidden, say, by some foliage. In
formation of clusters is equivalent to the problem of reconstructing

these objects|(whose cohesive nature is modeled by a first order MRF with Ising

potentials) f1

Lm observations that are formed according with the following model:

that f; = 1 only if an object overlaps the :** site of the lattice. We

(29)

Suppos¢
assume that fthe "foliage" will hide this point (i.e., make g; = 0) with probability
e, and that slﬂmrious values of g; = 1 can appear in sites where f; = 0 with a very
small probaljility p:
1, with prob. (1—¢), if fi =1
_ o, with prob. ¢, if f; =1
%= 0, with prob. (1 —p), if f; =10
1, with prob. p, if f; =0
with p < < ||. The posterior energy is:
1
Up(fig) = 7 Vo) +a 3 (1=5(1—g)+
0 1:fi=1
+M .fzo(l — 6(g:))

where Uyp(f)

6 and o are

is given by (1) and (2):
-1, if i—jl=1and fi=/;
V(;(f,‘,fj)= 1, if |i—j|=1and f,'yéf,'

0, otherwise
Vo(f) = V(fiu fi)
%)
defined in (5) and (6):
5(a) = {1, ifa= 0
0, otherwise
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and M is a Very large number.

The clugtering task is now equivalent to the problem of estimating f and the
parameters j‘ and T, from the noisy observations g. To accomplish this, we can use
the method flescribed in the previous section, except that in this case, only those
sites for whigh f; = 1 will be useful for the estimation of the residual density and

its local varignce. This means that equation (22) has to be modified to:

1,
=4

€A

where

and z; is defined in (23). Also, the sets S; used to compute the relative variance of
the residual[density in (25) should now be taken as the intersection of the squares
that cover tlje lattice with the set A.

With these modifications, the Maximum Likelihood algorithm can be used
for clusterifg. Its performance is illustrated in figure (11) where we show: the
original dot|pattern (upper left) and the recontructed objects for decreasing values
of v = aTp| The maximizer of the likelihood is marked with an arrow. We believe
that these fireliminary results are encouraging, although, clearly, more numerical
and psychophysical experiments are needed to assess the plausibility of this scheme
to model hyman perceptual processes.

8. Discussiqn

In thig chapter we have addressed the problem of reconstructing piecewise

constant fuhctions from noisy observations. We showed that the optimal solution
to this profjlem can be obtained from the observation of the equilibrium behavior
of a generglized Ising net coupled with a spatially varying (but fixed in time)
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Formation of perceptual clusters. We show: the original dot pattern (upper left)

Figure 1
and the rccont]ﬂuctcd objects for decrcasing values of 4y = aT,. The maximum likelihood estimate

(i.e., the optim

I clustering) is marked with an arrow.

external field.

a criterion, I
MPM estim

If we use the minimization of the expected segmentation error as
e optimal estimate is the maximizer of the posterior marginals ( the

or which was described in chapter 3).

We compared the rclative performance of the MAP and MPM estimators, and

found that fgr moderate signal to noise ratios, they are practically equivalent, but

as the noise |

vel increases, the MPM estimate is (sometimes dramatically) superior.

A consequenge of this analysis is that, if the noise level is not too high, the MAP

estimator m

be a reasonable choice in those cases where it is computationally

advantageous| This is the case, for example, of the reconstruction of one-dimensional

binary signals] where we derived a very efficient algorithm for its exact computation.

In the t}o-dimensional case, however, the situation is different: the general

Monte Carlo procedure for the approximation of the MPM estimator is in fact more

efficient, fromfa computational viewpoint, than the corresponding one for the MAP

(Simulated Afinealing), and in the case of binary fields, we derived a much faster
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deterministig¢

We alsd

scheme with excellent experimental performance.

showed how thesc cstimation procedures can be extended to the more

interesting case where the parameters of the system are not known in advance. In

this case, a mpaximum likelihood estimation algorithm can be derived, which, using a

likelihood fynction that is computed from the residuals, allows for the simultaneous

estimation o

the field and the parameters.

We poifpt out that although, for the sake of simplicity, we have concentrated

on the case ¢f binary fields sent through binary symmetric channels, the results that

we have pregented can be generalized to N-ary fields and other noise models (see

figure 10).

The constructions that we have presented can be applied not only to image

segmentatio

and restoration, but to other problems as well. As an illustration,

we presented a novel application to the modeling of the process of formation of

perceptual ¢
is the recontj

sters. Another important problem that can be formulated in this way
uction of surfaces from stereoscopic pairs of images; we will discuss it

in detail in chapter 6.




Appendix 4.A

OPTIMALITY OF ALGORITHM Al

In this appendix we present a proof of the fact that the algorithm presented in
section 4 of chapter 4, effectively computes the MAP estimate for a one-dimensional,
binary MRF

The optjmality of the algorithm follows from the following propositions:

Proposition |: Let $° = {l1,...1,} be the optimal boundary configuration, and
suppose that{y, for k < n was detected by A1. Then, i;,; will be the next boundary
detected by Al.

Proof:

Suppose [; was detected by Al, and let L be the next boundary detected. We will
assume that 4 5 I, and arrive at a contradiction. We will consider three cases:

Case 1: Supppse Al detects L at j < l4;.
Then, we mujst have that
Up(7) > Up(L) + Upa(j) — Um(L) + 2

and therefore]
Ul ey Ly 5, by, - }) < U(S)

which is a coftradiction.
Case 2: Supppse Al detects L at j € (lgy1, liy2).

This means that at j we had that L was the optimal location for the boundary. In

particular,

Up(1k+1) + Um(j) - Um(lk+l) > UP(L) + Um(j) - Um(L)
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which impligs that

and therefore,

LIP(L) + Um(lk+2) - Um(L) < Up(lkH) + Um(lk+2) - Um(lk+1)

U({lty -+ ey Ly lya, ...} < U(ST)

which is a cpntradiction.

Case 3: Suppose that A1 has not detected any new boundary at j =l 5 + 1.

Then, we mpist have:

Up(lk+2 +1) < Up(lgy2 +1) + 1

which mean that

which is ag

U{l, .. Ik, lkss, ...} < U(S)

ajn a contradiction. g

Proposition P: If A1 runs from left to right starting at a point [y, and generates
the boundatjes {ly,ls,...}, then, l; € S* (the set of boundaries of the optimal
configuration) for 5 > 2.

Proof:

Let f*x fAl
Let

If Ly = 1y,

bE the optimal configuration, and the one generated by A1, respectively.

Ly=suwp{j€S" : j<Uu}
L=inf{j€8 : j>Uu}

fve apply proposition 1 and finish the proof; so, let us assume that

Lo # ly, and|that I; was detected at . We have two cases:

Case 1: Ly

> lo. We claim that in this case, /; € S”, and therefore, by proposition

1 1€ S” for) 7 > 1. To prove this claim, we consider two subcases:

Case 1-a: f

“([10, Lo)) 5 fa1((lo, Lo)).




In this case,|we have:
2 + U‘m(i) - Urn(ll) + Up(ll) < UP("')

and therefor

1Y

2+ Um(s) - Un(l1) + Up(ll) - UP(L()) < Up(i) - UP(LO)
which impligs that {; € S”.

Case 1-b: f(lo, Ln)) = fa((lo, Lo)).

Suppose 1 ¢ S*. We have that, at location 1,

fom |

p(11) + Um(?) — Um(l) + 2 < Up(Lg) + Upn(5) = Upn(Lo) + 2

since othem]]:e, Lo would have been a better location for the boundary. However,

this implies ghat

Up(ll) -+ Um(L) - Um(ll) < Up(Lo) + Um(L) — Um(ll)
which meang that we can improve S* by moving Lg to 4, which is a contradiction.
Case 2: Ly < lo.

Again, we cansider two subcases:

Case 2-a: f"{(Lo, lo)) = fa1((Lo, o))

Let U4, U_ He the energy increments with respect to Ly:

Ui(s) = ‘I’+k(9j)

' ™M .
™

J

U-() =

V_(g5)

-

Note that
Up(?) = Us() = Us(l))  and

Uli) = U-(3) - U_(lo)
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Since !; way detected at 2, we have:
2 + Un(?) = Um(li) + Up(l1) < Up(3)

and therefoge,
2+ U_(Z) - U_(ll) + U+(ll) < U+(z)

which means that; € S°.

Case 2-b: f|((Lo, %)) # fa1((Lo, o).

Using the sgme definitions for U, ,U_, we have that, by the optimality of S*, for
some 7 > L
U-(§) = U-(L) + U (L) + 2 < Uy (j)

and therefote,
U_(5) = U-(L) + U (L) = Us (L)) + 2 < Us(L) — Uy ()

which meanp that if A1 detects {;, it must detect L too, unless it detected o first,
but in this dpse we have that, for some p < 7,

U-(p) = U-(l2) + Us(l2) = Uy () + 2 < Uy (p) — Us(l)

which impligs that l, € S*. This completes the proof, g

It should be clear that these results can be easily extended to the case where
Al runs backwards (from right to left). With this extension, we get the following
complete opfimal procedure:

Algorithm Ap:

1: Run A1 fgom left to right. Detect {13, ...,1,}.

2: Run A1 bpckwards (starting from I3). Get either
{lz,...,ln} or {11’, l-g,...,ln}
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In either cage, this is the optimal solution.

The onlfy thing that rcmains to be proved is that the determination of the

optimal locgtion for a boundary is in fact performed by step 2.1 of A1. We have

the following:

Proposition
the optimal
st = —k an
likelihood e

B: Suppose that Al detected a boundary at (or started from) ly. Then,

ILO

cation ! of the next boundary has to be updated only at places where
stm1 = k (note that in s: we have stored the value of the maximum
timate fMZ, while sim1 = fML). Suppose : is one such place. The

optimal location will be:

Proof:

First, we nd
location of t|

1—1,

={

l

if Up(t — 1) = Up(t — 1) < Up; — Upy
(the current value) otherwise

te that a necessary and sufficient condition for ! to be the optimal

ne boundary at the point 1 is that, for 5 € [lp,7 — 1]:

Up(l) + Um(i) - Um(l) < Up(j) + Um(i) - Um(j)

or equivalengly,

Up(!) — Um(l) < Up(5) — Un(5)

Suppose ! Was the optimal location at ¢+ — 1, and we process observation :. We

consider sev
Case 1; stm
In this case,

By construct]

bral cases:

= -k

we show that | remains the optimal location:

on, we have that:
Up(t — 1) = Up(i — 2) + Wk(gi-1)

Um(i - 1) = Um(i — 2) + ‘I’__k(g,;..l)
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Since sim1 #= —k we have that,

W ik(gi-1) — Y_i(gi-1) > 0

and thereforg,
Up(t = 1] = Un(? — 1) = Up(s — 2) — U (s — 2) + Y 1k(gi=1) — Vi (gi-1) >

> Upli = 2) ~ Un(i = 2) 2 Up(l) = Un(l)

so that | remhins the optimal location.

Case 2; ssmll =k

In this case we have that

Up(s — 1) — Un(s — 1) < Up(i — 2) — Un(i — 2)

This means that the minimal value for Up(z) — Un(z) on a block for which si = &
will be obtaihed at the extremal point where st = —k and stm1 = k, and since,
by theorem |l of appendix 4.B, this is the only point where a boundary might
be placed, it|is sufficient to update the optimal location only at these points. So,
suppose stm} = k and sz = —k.

If
Upt = Ui < Up(t — 1) — Up(z — 1),

then,
Upt — Ui < Up(7) — Um(5) for 5 € [lp,1 — 1]

because ! wag the optimal location outside the last block where si = k. By the same
token, it is clgar that if

Upt = Ui 2 Up(t — 1) = Up(z — 1),

the new optitnal location will be : — 1.3
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(

In this 4

which, based

Appendix 4.B

YNAMIC PROGRAMMING FORMULATION OF THE
DNE-DIMENSIONAL MAP ESTIMATION PROBLEM

ppendix we present an algorithm for finding the global minimum of:

N-1
> (9)

=1

N-1
Up= Y V(fi,fir1) +a (1)
i=1

pn dynamic programming principles, reduces the problem to a sequence

of one dimersional optimizations.

As we will see, this algorithm generates, as a byproduct, a family of solutions

which can be
coarse descri
the optimal (

considered as descriptions of the field f at different scales, so that the
ptions, which are computed very fast, are progressively refined until
finest scale) configuration is found.

This appjroach is based on the following idea:

A confi

Tration f is completely characterized by the value of f;, and the set

L, defined by:

We will call
these bound
an equivale

For a fixed n

Lo={L fL 7 fra1} |Ln| = n. (2)

.
’

he n elements of L, the "boundaries” of the configuration f. Since

es correspond to odd bonds between neighboring cells, we can define

nTenergy function as:

U(f) = n+30(5) (3)

with ﬁ(f) = Z ®r(g), fi € {ko, K1} (4)

, U depends only on the value of f;, and on the position of the n

boundaries, that is, on n + 1 variables. To make this dependence more explicit, let
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us define thg

Let Uy and
f1 =k and

We have tha

Up(n,

Ui(n,

and for n odd,

Up(n, L

(Note that ¥,

L

functions

L
G(L) = ) (Pr,(95) — Px,(95))

J=1

(5)

denote the energy functions corresponding to the configurations with
0, respectively, for a given set of boundaries

Lo={Ly..L}, Li<...<L, (6)

, for n even,

L2 N
Y Ph(g)+ .+ D Ble) =

a b
[n) =7+ 5[2 Dy (95) +
] 1 IJ1+1 Lu+1

J=

—n+ 52”.[@(1,1) —G(L2) +...— G(Ln) + g: @, (95)]

Jj=1

N
Z q’h(gj)] =

o Ll L2
[n) =n+ (2 Bule)+ 3 Puolgi)+.--+
=1 Lit1 Latl

et EO() o+ GlL) = GN) + 35 Biofo) )

i=1

b =+ 2I6(L) ~ Glla) + ...+ Gl(Ln) = G(N) + 3 1a(55)

i=1

o N
Ui(n, La) =n+ 2 [-G(L1) +... — G(La) + 21 Do(95)]

1=

(8)

®4,(g;) does not depend on f).

(0)

n

Let S

Q ) be the sets of boundaries that minimize Uy and Uy, respectively.

Then, the op!lfmal energy for a given = is:
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We will defi

The det

pe S, to be the corresponding optimal set of boundaries.

rmination of S is an n-dimensional optimization problem. However,

as we will show below, it is possible to decompose it into a sequence of one

dimensional
approach w
the correspo
problem (3)

strategy, how

(i) We can
bounda

optimizations using a dynamic programming formulation. With this

(k)

)

(k)

n—1»

also get, as a bonus, the solutions S ., S k € {0,1}, and
ding optimal energies. If we set n = N, the solution to the original
U'(n®,S,+) can then be found by a one dimensional search. This

ever, can be dramatically improved by the use of the following facts:

reduce substantially the search space for the location of the optimal
ies L; € S,-.

(i) The seqfiences {U],Us, ...} and {U3, Uy, ...} are unimodal. This, together
with thefffact that the dynamic programming algorithm uses S;_; to compute
S; provides us with an efficient stopping criterion for the computation of

the seq

nce {S1,...,S,°}.

(iii) The expgcted value of »” is usually small.

We will

1. Search Sp

mow describe the algorithm, and analyze each one of these facts.

ace for the Optimal Boundaries.

Let
Pu = {M;, M,,...} =
={: GU-1)<GG) =G +1), withG(j —1)#G(F+1)}  (10)
Pm = {my,mq,...} =
={: G(H—-1) > G(j) LG +1), with G(j — 1) £ G(5 + 1)} (11)

(Conventionglly we include j = 1 in Py, if 0 < G(1) > G(2), and include it in P,

if0 > G(1) :

(Note that P
changes sign)

|

[ G(2)). We define the set P as

P =PMUPm={PI;°"’Pf}

porresponds to the set of places where the sequence {®,(g;) — P&, (9;)}
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In wha
"minima”, a

Let S,-

follows, we will call the elements of Py, P, and P, the "maxima",
d "critical points” of G, respectively.

L (Sy-) denote the subscts of S,. formed by those boundaries L;

whose corregponding term G(L;) has positive (negative) coefficient in U ; ie., if

then,

With th

Theorem 1:

N

with probabil
To see
f obtained

and let f* b
Sps = Pm. S
Or Pry1 € P

If P ¢
than S,. (we
then either

and so, we ge
decrease sim
or L; € (P,

h
L

E

Sy =S® =(1,,...L,.},

Sn°+ = {LH-k; L3+kr .. }

S,

nte = Spr — Sn'+

se definitions, we have:

Suppose that &, (g;) — Pk, (g;) 7 0, for all 5 (a situation that will occur

ity 1 for most observation models). Then, S,,., C P, and S,-_ C Py.

thy this is true, let fML denote the maximum likelihood estimate for

ki,
0,

lf (Dkx(gj) > (pko(gj)
otherwise

ML _
J

{

the optimal estimate. Suppose that for some ; we have, say, L; €
ppose L; € (Py, Pr41), for some Py, Py, € P. Clearly, either P, € P,,
. Suppose, for definiteness that P, € P,,.

bne» the configuration {Ly,...L;_y, Py, L;1y,...L,-} has lower energy
decrease U without altering n), which is a contradiction. If P, € S,,-,

£ (P, Ly)) # fME(Py, Lj))
or f*((Lj, Pe+1)) # FMU(Ly, Piyr))

L a lower energy configuration by deleting L; and either P; or Py, (we
Itaneously n and 7). A similar argument can be used if L; € 1,P)

]-n
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This regult means that we can use P to constrain the search space for the

boundaries ¢f each subproblem (i.e., for each fixed »n), which now becomes:

For n 4

|P| fixed, find Sp = {Lu,...L,} with

Sn+ C Pnand S, C Py (13)

such that U(p, S,) < U(n, L,) forall L, C P.

Note that theorem 1 guarantecs that the constrained and unconstrained solutions

will coincidg

only forn = n", so that for n £ n°, S, may, in general, be suboptimal.

2. Dynamic Programming (DP) Algorithm.

From equations (7) and (8), it is clear that, for any fixed n, the determination
of the optimjl (constrained) configurations s¥ ), st is equivalent to the solution of
the optimizafion problems:

For S!?’":

Minimize [G(L1)— G(L2) +...]
with LIJIL;;, ... € Pp,and Ly, Ly, ... € Ppy.

For Sg

with L1 P

Let us @

Maximize [G(L;)— G(Lz2) +...]
L3,... € Py, and Ly, Ly, ... € Py

pnsider the maximization problems. Assume, for definiteness that the

first critical goint of G is a maximum, i.e.,, M; < m,, and define the sequences:

Clearly,
sU = {Mm,

Dy(k) = sup G(M;)

Li(k)={minL : G(M)=Di(k)}, k=1...|Pu] (14)

My, is the optimal location of the boundary for n = 1 (i.e.,
1) })» and from D, (1) we can casily compute the corresponding energy.
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We now define, for j > 1:
Daj(k) = sup{Daya(i +1) - Glmy)}

Dojii(k) = fgl;{Dzj(i) + G(M;)}

and
ng(k) = {minL : ng(k) = D2J'_1(L + 1) — G’('mL)}

Lojyi(k) = {min L : Dag;, (k) = Dyj(L)+ G(M)}
for k=1,..|,|Pu| — j. One can check that, for n odd,
SO = {My gy me a)s- o ML, (Lo (Ln(1))) }

and the optighal energy is:
Ur(n) = n+ S[=Da(1) + 3 @4, 9;)]
2

For n even, we define:

Dx(k)=§glz{-6‘(me)} y k=1,..,|Pm]

Ly(k) = {minL : Dj(k)=—G(mpL)}

D}.(k) = ?g;;{D;j_l(z’) +G(M)} , k=1,..|Pa]—j+1
Ly;(k) = {minL : Dj;(k) = Dy,;_,(L)+G(My)}

Djjs1 ?gI:{D'Zj(i +1)=Gm)} , k=1,...|Pu|l—J

Lyjpi(k) = {minL : Dy, (k) = Dy; — G(mp)}

and get:
Sg) = {ML;.(1): . -mL',(Ll.(---L;(l))'--)}

Us(n) = n + Z[=Dp(1) = G(N) + 3 Br,(s;)]
J
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For the minifnization problems, that is, for the computation of S, assuming again

that M, < m;, we have, for n even:

=

and for 7 >

4i(k) = jnf (~G(ma)}

li(k) = {minl : di(k) =—-G(m))}

d2j(k) = '.i’zlf,;{de—l(i) + G(M;)}
lgj(k) = {minl : dgj(k) = dgj_l(l) + G(Ml)}
daji+1(k) = jnf {dy;(i + 1) — G(mi)}

12j+1(k) = {mml : d2j+1(k) - d2j(l + 1) - G(ml)}

with & varying in the appropriate range. The solutions are;

For n odd:

Sﬁ?) = {Ml,.(l)’ “ooy m[,(:,(,,.(t,,(l))...)}

Un(n) = n + 5 [da(1) + 3 @i (g5)

dy(k) = jnf {G(M)}
dyi(k) = inf {doy (i + 1) — Glmi)}

d’2j+1(k) = inf

inf {day(6) + G(M)}

with the corrgsponding definitions for l;-(k). The solutions are:

S’('?) =— {Ml;‘("), ) MI;,(-(I;U(I))“')}

Un(n) = n + S[da(1) = G(N) + T @s(g5)]

The case for yhich m; < M; is treated in a similar way.

The rec
allow us to ¢

(21)

(22)

(23)

(24)

ions (15), (18), (21) and (23), together with equations (9) and (10),
mpute the sequences {S;, Se,...} and {UI,U;, ...} using only one
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dimensional
value n" for

3. Stopping

loptimizations. We now turn to the problem of determining the optimal
the number of boundaries.

Criterion.,

In this gection we prove the following:

Theorem 2. §

{S1,82,...}
U.) and tha

This res
programmin
minima for

r
p

he subsequences {U;,Us,...} and {Uj,Uj,...} are the global ones,

uppose that every (constrained) optimal configuration in the sequence

s unique (i.e., for every n, if S, £ S,,, and S,, C P, then U(n, S,) >

*
n

for some n, U,y > U,. Then, U, o, > Us, forall & > 1.

Wit will provide us with an efficient stopping criterion for the dynamic

recursions described in the previous section; since the first local

we can termjnate the computations once we have found them.

To prov

Lemma 1.
boundaries

e the theorem. we will need the following lemmas:

et S = {Li,...,L¢} and Spye = {Li,...L;,,} be the optimal
ith corresponding configurations f; and fi,) for n = k and n =

k + 2, respeqtively. Suppose that k + 2 < |P|. Then, S; C Siis (i.€., Skyo is a

refinement o

Proof:

We will
We consider

Sk), provided S; is unique.

ume that for some j, L; € Si — Sik+2, and arrive at a contradiction.

E:S
ree cases.

Case 1: Suppose that for some ¢,

[L;‘»L;'H] nSk =0

In this case, ye claim that we can find some index p such that

[L;»L;H] ﬂSk =0
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and

Fev2((Ly Ly 1)) % Fil(Ly L))

Supposk that this is not the case. Then, L;, L; ., are the only elements of Sg,o

in some interval (L, L;;,) (or in one of the extreme intervals [1, L), (L, N]) and

Suppos

By conditior

and minim

<P

Firal(Liy Liga]) 7 Fi((Li, Liva])

[L;, Liyy) C (Ljy Lj41)

(13), we have that L; 5% L;_, (otherwise, L; would be a local maximum
of G at the same time). But then, since S; is optimal, we can find

a configuratfon with k + 2 boundaries whose energy is lower than that of Si.s,

by moving &; to L; (or L, to L;), which contradicts the optimality of Si,o. A

similar arguinent holds if

This proves

(L, Lity] C [1, Ly) or (L, N]

pur claim.

So, supgose that

and

Form

and let f; b

[L;.n L;)+1] n S =10

Fera((Lpy Ly 1)) 7% Fe((Lys Lpyy])-

1] ’

S;c = {L’ll ceny Lp—l’Lp+2’ LKRY L;c+2}

the corresponding configuration, chosen in such a way that f,(1) =

f+(1) (and therefore, fi([Ly, Ly1i)) = fi([Ly, Lyyq])).

Let AU

be the change in 7 (see eq. (4)) associated with setting;
F((Lp Lpis)) = Frra((Lps Lipi])-
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We haveg

Now, we put;

that
U(Sks2) = U(S}) + AU.

Sks2 ={Li,-. Lj, L, Ly, ., L},

Since S; is optimal, we have that:

U(Sk+2) = U(Sk) + AU > U(Sk) + AU = U(Sk,2),

which contraficts the optimality of Si,s.

Case 2:

Suppose that

Otherwise, if]
are in case 1
configuration

So,

([, L) UL 42, NN Sk = 0

L; € [1,L;). We must have

fraa([1, Ly)) 5 fe([1, Ly))

Ly = L,, condition (13) generates a contradiction; if Ly > L, we
and if Ly < Ly, Sk4+o is not optimal, since we get a lower energy
by moving L; to L,.

fr2([1, Ly)) # fi([1, Ly)).

By a simjlar argument, we get that

Fex2([Liyz) N1) 7# Se([Liga, N]).

Now, proceeding as in case 1, we form:

and let f, be
fi(1)

S;c = {L,2’ .o 'rL;c+1}

the corresponding configuration, chosen in such a way that f,(1) =
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Let AU

so that

Now, we for

be the change in U associated with setting;
f(Ly, Ly)) = feso([L1, Ly])) and

f([L;c+l ’ L;+2]) = fk+2([L;c+1 ) L;:+2])

U(Sks2) = U(S}) + AD.

mn:

S;H-? == {L’lyLl) ey Lk’ L;¢+2}’

Since S; is gptimal, we have that:

which again

Case 3:

U(Sev2) = U(Sk) + AU > U(S) + AU = U(Sk+2),

rontradicts the optimality of Si .

Forall4, [L;,L;,,]()S: #0,

and ([I:L’I]U[L;c-f-Z’N])nSk 7£ 9 (*)

To make (*)ulhold, we must be able to place k& boundaries in k£ + 3 (ovelapping)

closed interv
hold, we can

s, without omitting any interval. Moreover, since condition (13) must
ot put L; = L; and L;,; = L;,, for any 4, 5. But this is impossible;

so, our proof}is finished. g

Lemma 2. Le

Proof:

Conside

AU = U(Sk)—U(Sk+2). Then, AU < AU, _,, forall k € 3, |P|—2].

the optimal configurations Sy, Sk+2, Sk+4, and suppose that AUz, >

AU,. Using lemma 1, let

S = {Ll, ceny Lk};

Sk+2 = {L1,-. L1, Ly, ..., L} }.
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* consider eac

By con(nition (13) and lemma 1, there are only two valid forms for Si,4. We

case scparately:

Case 1: Sy, 4|is of the form:
Sk+a ={L1,.- Lp, Ly, Lo, Lpy1.. ., Ly, Ly,...}

(i.e., the refinements corresponding to S,y and S, 4 are disjoint).

Then, far
Skve = {L1,...,Lp, Lpy1,..., L}, Ly,.. .},

we have
U(Sks2) = U(St) — AUkya < U(Si) — AU = U(Si42),s

which is a cantradiction.

Case 2. Si.4|is of the form:

Sk+a = {L1,...,L;j, Ly, Ly, Ly, Ly, ...}

(i.e., Sk+4 is g subrefinement of the refinement introduced by Si,.2).

Let
= ~U({Ly,...,Lj, Ly, L{,Lj41,...} + U(Se)
= U({Ly,..., L;, Ly, Ly, Lis1,...} — U(Sk)
= —0({Ll’ LJ’ L2»L27 7+1, - } + U(Sk)
We have that]
Af]k =a+c—b
Aﬁk+2 == b.
By assumptiap,
b>a+c—-b
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and therefor

'

a+c

Affk=a+c—b< 5

< max(a,c).

Now, let S, |, be formed from S; by the refinement:

Then,

Ly, L, if a = max(a, c)
Ly, Ly,  if ¢ = max(a,c)

§(Sk12) = U(Sk) — max(a,c) < U(Sk) — AUk = U(Si+a),

which is a contradiction.g

Now we

Suppose

prove theorem 2:

Ugy2 > Ug. Then,

k+2+ -‘;-if(sm) > k+ —;—f](&)

now, by lemipa 2 we have:

>

Ubss = k+4+ S0(Supa) =k +4+ S(0(Sk) - Alkya) >

k+2+ -;‘—(I‘J(sk) — AUjya) > k+2+ %(0(Sk) — Al =

=k+2+ gﬁ(skw)’—" UI:+2 1

4. Expected Yalue of n".

First, we

compute the (prior) probability density function p(n) for the number

n of odd bon(s in the original field f.

Let Ny =

= N — 1 be the total number of bonds. We can rewrite equation (1)

Plw=f) = et (25)
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The total number of configurations compatible with a given = is 2C, and so,

2C Nt exp[L(Ny — 2n))

p\n) = =
(") = S OF expl L(Ny — 2]
1/a Ne—n ~1/a n
—o{ ) (=) (20
el/a 4 e—1/a el/a 4 e—1/a

which is a bipomial distribution. Therefore,

We note th

E[n] = Nb(ﬂ—)

ella 4 g—1/a
1
vt = ) )

]l as a 1 oo, E[n] 1 Ny/2, and as « | 0, E[n] | 0 (and varfn] | 0)

exponentially fast. This means that if the natural temperature of the system is not

too high, we [can expect that n”, the MAP estimate for n, to be relatively small,

5. Relation tq Multiscale Filtering.

An inteflesting characteristic of the DP formulation is that the solutions to

each of the

ubproblems (which in fact correspond to a minimization of U (eq.

(4)) are independent of the value of the parameter . The role of this parameter
is to determine the number of regions (n”) that will be present in the optimal

configuration| In this sense, it can be regarded as a "scale" parameter that controls

the aggregatign of the subregions into larger units, and the algorithm can be used to

produce mulfiscale descriptions (in the style of the "fingerprints” treated in Witkin
(1983) and Yille and Poggio (1983)) of the input signals. (Several other heuristic

solutions to

this problem have been proposed. See, for example, Blumenthal et al.,

1977; Prazdny, 1982 and Pavlidis, 1973)

If we inferpret the algorithm in this way, it becomes natural to ask whether

a family of lipear operators can do the same job in a much efficient way. Let us

formulate thi§ question in more precise form (in what follows, we will consider a

"continuous

me" problem obtained from the original one as a limit when N t oo
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(provided thgt the observations are different from 0 only in a finite interval), since
it simplifies jl'\e notation. It should be clear that the same arguments apply to the

discrete case)

Considet a family of filters {F,} with the following properties:
(i) Each Fyjz) is a symmetric and non-negative function of z.

(ii) For eacl L, F;(z) is a decreasing function of |z|, and Fy(z) | 0 as |z| t oo
fast enoligh, so that F; can be approximated by a function with finite
support.

(iii) All the fjlters are normalized:
| F(z)iz=1, forallL
(iv) The filters become sharper as L | 0:

Kmmm<ﬁmma

implies that Ly > L,

Particulay examples of acceptable families are:
(i) The family of rectangular boxes Bp:

L if|z| <L
= L* —_
Bu(z) {3 otherwise
(ii) The famjly of Gaussian Kernels:
z
Gi(z) = exp[——]
varL 212

Suppose|| we convolve the function g(z) — § (g(z) is a continuous time
approximatioulh to the observations) with a set of filters from the family {F.}.
If we start with L large enough, the function

1
hL=(9-§) * F
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will be practig

ZCrO Crossing

associate a b
respectively,
ignoring, at

ally constant, and therefore, it will have no zeroes. As we decrease L,
of h;, will begin to appear. To each of these zero crossings, we will
ndary, and form the configurations 5y, Sy, ... with 1, 2, . .. boundaries
at correspond to the first, first two, etc. zero crossings of hy, (we are
is point, the question of the precise localization of these boundaries.

With additionjal contraints on the family {F},}, it is possible, in principle, to localize

them by decfeasing L in a continuous fashion, and then tracing the position of

each zero crogsing to the finest (L = 0) level; see Yuille and Poggio (1983). For

the moment,
correspond tg

let us assume that we can identify the zero crossings of g — 1 that
those of hy, for all L).

The quegtion that we ask is the following:

If Sy,S2)...

algorithm,is if]

for all k?
As we ng

Consider

L)

Ul

and g(z) =0,

are the optimal boundary configurations produced by the DP
true that

w show, this is not the case.

the signal g(z) defined by:
g(z)=1 ,

forze[ly,l; + 2a]U[12,12 + Zb]U[lg +4b, 1y + Gb]U

+ 8b,15 + 10b] U[lz +12b, 1 + 14b] U[lg + 165, [5 + 185] ,

otherwise. Here, !y, 1, a and b are some positive numbers chosen in

such a way t.tﬂ:t, if Ly is the starting L, we take lp — I} —a >> Lg, so that, by

property (ii),
4.B.1).

Suppose
single double

ere is no interaction between [I1,!; + a] and [lz, I + 18b] (see figure

hat the zero crossings corresponding to [l1,!; + a] appear first (as a
gero) at L = Ly, and those corresponding to [Iz, [ + 18b] at L = L.
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‘20 — o-o-—-zb

Figure 4.B.1. (See text).
Then,

[ Pz = [~ i (=)de (28)
b 56 9b
/0 Fp,(z)dz +/3b Fr,(z)dz + /lb Fr,(z)dz =
3% 70 )
=/b FL,(:c)dz+/5b FL,(z)d:z-f-/;b Fi,(z)dz (29)

Now, for a > b, we have:
U({l1,12}) = 105

U({l3,1s}) = 8b+2a > U({l1,12})

and therefore, S; = {11, l2}.

We claim that we can find some a, b with ¢ > b such that
| @z < [ Fu(a)iz

If this is true, we find, using (28) and conditions (iii) and (iv), that it implies that
Ly > Ly, and therefore, 5; = {l3,1}.
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We now prove our claim:

Leta=0b+ %, where we choose ¢ so that
b+¢/2 5b
/b Fp,(z)dz = /3 ) Fi,(z)dz (30)

(property (ii) guarantees that we can find such ¢). From (29),

oo b 5b 9b
/; Fp,(z)dz = 'L Fi,(z)dz + 2 /.';b Fp,(z)dz + 2/16 Fr,(z)dz

and from (30),

oo ) ) b+ef2
L Fu@iz= [ pFu@ds = [ FL@dz - [ R (e)de =
b b+e/2 9b b+ef2 9b
=/0 FL,(:z:)d:z:+/b Fp,(z)dz+2 /7b Fp,(z)dz =/0 Fr,(z)dz+2 /;b Fp,(z)dz >

9b a
> Jo FL,(z)dz=/(; Fr,(z)dz 1

This result does not mean, of course, that families of linear filters cannot be
used for producing useful multiscale descriptions of signals; it only means that these
descriptions cannot, in general, be considered as MAP estimates of MRF models.

6. Continuous Valued Fields.

In this section we present a related problem which can, in principle, be solved
using the DP approach, although, as we will see, in a less efficient way.

Let us consider the problem of estimating a piecewise constant signal corrupted
by additive white Gaussian noise. We model the signal {f;} as a MRF with potential

1, otherwise

V(fi, fiv1) = { (31)
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and global states distributed according to:

1 L N-1
P(F = f) = ?exP[—Z Py V(fi) fis1)]
The observations are given by:
g = fi+ny

where n is a white Gaussian process. The Bayesian (MAP) estimate for f is again
found by minimizing eq.(4):

U(fy=n+30

N

N
U= (fi—a)?
i+l
where n is the number of places where f; % f;,,, and v = 307. Note that in this
case, f; is not restricted to {0, 1}, but can take any real value.

Proceeding as we did in section 2, we consider the sequence of subproblems
obtained by puttingn = 0,1, 2,....

For any fixed n, U will depend only on the n integer variables that correspond
to the location of the boundaries between regions of constant f, since given these
boundaries L = {Ly,...L,}, the optimal estimate for f on any interval (Li, Li1])
(we put Lo =1 and L., = N) is;

1 Lis1

Lo Linl) = ——F 2 9

vl — Li ;270

If we define G, (for k < 1) as:

2
1 1
Gk'[ == (l —2(l - k))(m Z g,-) (32)
1=k+1
We get that:

. N n+1
U(ln)= 3" a2+ > Gr,,1, (33)

=1 J=1
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(note that 3 g? is a constant for a given set of observations). Using dynamic

programming principles, we can now write the recursions:
Fo(k)=Gen , k=0,...N—1
Fii1(k) = ;iili{c"" +F;(7)} , k=0,..N—j—1
Lin(k) ={L : Gir+ Fj(L) = Fj1(k)}
The optimal solution, for each given = is:

Sn = {La(0), La-1(Ln(0)), . . , L1(La(. . (La(0)).. )}

and the corresponding energy,

U(n, S,) = n + g[i 97 + Fu(0)]

1=1

The solution to our problem will be S,.-, where:

U(n", S,:) = inf{U(n, Sn)}

(34)

(35)

(36)

Unfortunately, in this case we cannot guarantee the unimodality of any subsequence

of {U(Sn)} (although we believe that the sequence will be unimodal in many cases)

and so, (36) has to be computed, in principle, by an exhaustive one dimensional

search. Another unpleasantness is that, unlike the binary case, the search space for

the variables L; cannot be reduced in any obvious way.
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Appendix 4.C

CONSISTENCY CONDITION FOR TIHE MPM ESTIMATOR

In this appendix we present a proof for the consistency condition (given
by equation (11) of chapter 4) satisfied by the MPM estimator of a binary,
two—-dimensional Ising net:

Theorem: Let P(f,g) be the posterior distribution corresponding to the estimation
of the first order, binary MRF f from the observations ¢ which are obtained as the
ouput of a binary symmetric channel:

P(£,9) = 5 exbl= £ V{fir £5) =7 5(1 — 6(fs — g0)
i

]

Let f be the MPM estimator for f. Then, for every site i,

> P(f,e)> X P(f,9)

f:fi=7; f:5i#F
implies that:
> P(LD)> X P
fifi=f; B3]
Proof:
Let:
(¥) {f]a JF .
7 =1, . -
fio =1
(¥ {9.7" JF#E
9; =1~
fi’ )=



1) We first prove that for all s:

; P(f%,9) > S P(hY, g)

f

implies that:

> P(f9,g%) > 37 P(h1, g)
7 7

Suppose that g 5% ¢*) (otherwise, the above is obviously true). For any fixed f, we
have that:

p(f(i)’ g) — P(hW, g) =
= K{exP Z V fn fJ) '7] - exp[ Z V }i’ fJ)]}

JEN; JEN;

and
P( 7, g(i)) - p(h(i), g(*')) —

= K{exp|- > V(fu f;)l—exp| 3 V(1 =T, £;) = 1}
JEN; JEN;

Where K is a constant. Since v > 0, this implies that;
P(s1),9) — P(h8),g) < P(f9, %) — (a1, o(i))
so that

> P(f9, o) — P(hD, g(z)) > ST P(s9), g) - PR, g) > 0
f f

2) Let r; = 1 — f;. We now prove that if:

Y. P(f,9)> Y P(f,9)

f:f=1, f:fi=ni
then,
> P(fd9) > ¥ P(f,4¥)
................ 1:fi=}; f:fi=r;
for all 5.
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For ¢ = 5, part (1) applies, and for ¢)) = g, the assertion is obviously true, so
"""""""""" suppose 1 #% 5 and gl9) £ g. We have:

P(f%,g) — P(hW), g) =

= Ki{exp[- > V(f;, f;)] —exp[ 3 V1 -7, f5) =}

JEN; JEN;
P(f(')’ g(])) - P(h(t)s g(J)) = Kl{exp[_ zj:v V(}.u f])] -
JEN;
exp 3 V(1 ~Ji, £;) = 2} exp[—v(1 = 2(f; — )] >

JEN;

> e (P(f1),g) — P(h1, g)

for some constant K, so that

> P(£1, W) — P(h®, gli)) > ¢ E,: P(f0),g) - P(h),g) > 0
7

- The theorem is now proved by assuming that

2. P(f,9)> 3 P(f9)
fifi=J; I:ifi# )

and succesively replacing g; by f;, for: = 1,2,...and using (1) and (2) to show that
the corresponding inequalities hold at each step.
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Chapter 5

RECONSTRUCTION OF PIECEWISE CONTINUOUS FUNCTIONS

1. Introduction.

In this chapter we will illustrate the application of local spatial interaction
models and estimation techniques that we have described to the solution of the
general reconstruction problem that we introduced in chapter 1. To make this
discussion more specific, we will consider a particular instance of this problem: the
reconstruction of piecewise continuous functions from noisy observations taken at
sparse locations.

In this reconstruction, it will be important not only to interpolate smooth _
patches over uniform regions, but to locate and preserve the discontinuities that
bound these regions, since very often they are the most important parts of the
function. They may represent object boundaries in vision problems (such as image
segmentation; depth from stereo; shape from shading; structure from motion, etc.);
geological faults in geophysical information processing, etc.

The most successful approaches to this problem (see Terzopoulos (1984)) consist
of, first, interpolating an everywhere smooth function over the whole domain; then,
applying some Kind of discontinuity detector (followed by a thresholding operation)
to try to find the significant boundaries, and finally, to re-interpolate smooth patches
over the continuous subregions.

The results that have been obtained with this technique, however, are not
completely satisfactory. The main problem is that the task of the discontinuity detector
is hindered by the previous smooth interpolation operation. This becomes critical
when the observations are sparsely located, since in this case, the discontinuities
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may be smeared in the interpolation phase to such a degree that it may become
impossible to recover them in the detection phase.

One way around this difficulty is to perform the boundary detection and
interpolation tasks at the same time. In the method we will present, this is done
by using a Bayesian approach, and including in the posterior distribution our prior
knowledge about the smoothness of the function and about the geometry of the
discontinuities, as well as the information provided by the observations. Before
describing how this is done, let us formulate the problem in a more precise way.

Consider a region @ of the plane which is formed by a number of subregions
separated by boundaries which are known to be piecewise smooth curves. Suppose
that within each of these subregions, some property f (in what follows, we will refer
to f as "depth") varies in a smooth fashion, presenting, at the same time, abrupt
jumps across most of the boundaries. Suppose also that we have measurements for
the values of f at some discrete set of sites S; these measurements will, in general,
be corrupted by some form of noise.

Our problem is then to estimate the values of f on some finite lattice of points
L C 0, and to find the position of the boundaries, using all the available information
in an optimal way.

2. Posterior Distribution.

To apply the general recontruction algorithms developed in chapter 3 to this
problem, we need to cast it in probabilistic terms. The main issue here is the
representation of the concept of "piecewise continuity” in the form of a prior Gibbs
distribution in a meaningful way.

This could be done, for example, by modeling the function as a first order,
continuous valued MRF with nearest neighbor potentials given by:

(i=fi%  iflfi—fil<aandi—j]=1
V(fi, f;) = {b, if|fi—f;l>aand | —j|=1
0, otherwise
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where a and b are positive constants such that b > a?, and for every pair of
ncighboring sites ¢, 7, |f; — f;] < a if both 7 and j lic in the same smooth patch,
and |f; — f;| > a, otherwise.

This scheme, however, has the disadvantage of not allowing for the explicit
modeling of prior knowledge about the geometry of the curves that bound the
smooth patches (the fact that they should be piecewise smooth curves, for example).
A more flexible construction involves the use of two coupled MRF models: one to
represent the function (the "surface") itself, and another to model the curves where
the field is discontinuous. A coupled model of this kind was first used by Geman
and Geman (1984) in the context of the restoration of piecewise constant images.
We will now describe their work in detail, and define a related model that can be
used for our problem.

2.1. Coupled Line and Depth Models.

In Geman and Geman’s work, the intensity of the images is modeled using a
first order MRF with generalized Ising potentials (see chapter 4). The boundaries
between constant regions are modeled using a "line process" I, which is a MRF
whose associated random variables are located at the sites of the dual lattice of
lines that connect the sites of the original intensity lattice (see figure 12). These
variables may be binary (indicating the presence or absence of a boundary between
two pixels), or may take more values to indicate the orientation of the boundary as
well. In both cases, their function is to decouple adjacent pixels, reducing the total
energy if the intensities of these pixels are different.

This is done by modifying the prior energy function; the new expression is:

UO(f7 l) = Z Z Vf(fir ij lij) + ZVGU) (1)

1 JEN; Ci

where
Vilfo fysli) = o if1;; is "on”
S\ T3, b)) = V{(fir £} otherwise
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Figure 12. Dual lattice of linc clements (sites denoted by x)
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Figure 13. (a) Cliques for the line process used by Geman and Geman. (b) Additional cliques
used to prevent sharp turns.

V is defined in equation (1) of chapter 4:
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-1, if ji—jl=1and f; = §,
V(fi, f;) = {1, if [i—jl=1and f; 5 f;
0, otherwise

l;; is the line element between sites 7 and 7, and the line potentials V;, have as
supports cliques of size 4, such as the one shown in Fig. 13-a. Every line element
(except at the boundaries of the lattice) belongs to 2 such cliques. The values of
the potentials associated with each possible configuration of lines within a clique
must be specified. Thus, for example, if straight horizontal and vertical boundaries
are likely to be present, a binary process, with potential values as those of Fig.
14 is used (rotational invariance is assumed). In more general situations (such as
piecewise smooth boundaries), we may use different values for the potentials, or we
may allow more states for the line elements, corresponding to different orientations,
augmenting consequently the table of values for the potentials.

2.2. Models for Piecewise Continuous Functions.

The model we have described can be adapted to our problem by modifying
the choice of the potentials and the neighborhood structure of the coupled MRFs,
Specifically, the following modifications are needed:

1. Since in our case the observations are sparse, it becomes necessary to expand
the size of the neighborhoods of the line field, to prevent the formation of "thick"
boundaries between the smooth patches (i.e., adjacent, parallel segments of active
lines in these regions). In particular, we propose that the dual lattice be 8-connected,
with non-zero potentials for the cliques of the form illustrated in figure 13 (a)
and (b). The inclusion of the cliques of figure 13-b has the additional advantage
of penalizing the occurance of sharp turns, permitting us to model the formation
of piecewise smooth boundaries (a more general case) using a binary line process
instead of the 4-valued process proposed by Geman and Geman. The potentials
for these cliques are computed in the following way:

Let V,, V4 denote the potentials associated with the cliques C,, Cy of figure 13
(a) and (b), respectively, and let S (k € {a, b}) denote the number of line elements
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Figure 14. Potentials for the different configurations of a line process

belonging to C; that are "on" at a given time, i.e.,

Se=3 L , k=ab
t€Ch

The potentials V; are given by:

Vi =B¢i(Sk) , k=a,b

where £ is a constant, and the functions ¢, are defined by the following tables:
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Sa 0 1 2 3 4
¢a 0 04 025 12 2.0

S 01 2
o 0 0 10

It is not difficult to see that this choice of potentials (notice that V, will be
slightly different from the definition of figure 14) will effectively discourage both
the formation of thick boundaries (S, = 2) and the presence of sharp turns (S, = 3
and/or Sy = 2).

2. The potentials of the depth process, which is now continuous-valued, have to be
modified to express the more relaxed condition of piecewise continuity (instead of
piecewise constancy). Specifically, we propose:

{(f.- - =1, forji—jl=1

0, otherwise

Vifir i lig) = (3)

(note that ;; € {0,1})

3. Unlike the case of piecewise constant surfaces, we now have to worry about the
maximum absolute difference in the values of two adjacent depth sites that we are
willing to consider as a "smooth" gradient (and not a discontinuity). This value,
which in general is problem-dependent, determines the magnitude of the constant
B in equation (2), which can be interpreted as the coupling strength between the
two processes.

2.3. Model for the Observations.

We will adopt the general model described in section 2.1 of chapter 3 to
represent the observation process. In particular, to make the discussion more
specific, we will assume that the observations g correspond to samples of the surface
f taken at aset S C L of sparse locations, corrupted by a zero mean, white, additive
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Gaussian noise process:

g = fi+mn,

\

so that the conditional distribution is:

prigla; £) =11 exp[—(fi — ¢:)/20%

1€S /270

our results, however, can be extended to handle other noise models as well.

Using Bayes’ rule, we can finally write the posterior distribution as:

Prug(filig) = 51; exp[—Up(f,1;g)]

with
1
Up(f,l;9) = T S V(S firkis) +
045

a7 U= 0 + V) + T ()

€S Ca

Va and V, are the potentials corresponding to the "a" and "b" type cliques of the
line process, and are defined by equation (2). It is convenient to introduce a function
g which is equal to 1 only at those sites where there is an observation, and is equal
to zero elsewhere (i.e., ¢ is an indicator function of the set S):

1, ifies
;= 5
4 {0, otherwise )
Using this function, and the definition of V' from equation (3) we get:
1
Up(f,l;9) = T S (- fHPa-u)+
045
1
g 2 (fi — @) e + X Va(l) + X Va(Y) (6)
20° e c. C
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3. Optimality Criterion.

We can now apply the general principles developed in chapter 3 to derive the
optimal Bayesian estimators for the depth and line fields. As a performance criterion
we will use a mixed cost functional of the form:

w1 )= 2 (fi- 5P+ 2 (1~60;—1;)) (7)
€Ly JEL: ‘
where L;, L; denote the depth and line lattices, respectively. This error criterion
means that the reconstructed surface should be as close as possible to the true
(unknown) surface, and that we should commit as few errors as possible in the
assertions about the presence or absence of discontinuities.

Appllying the results of section 5 of chapter 3, we find that the optimal’
estimators will be the posterior mean for f and the maximizer of the posterior
marginals for [. Note that these estimates must be computed by averaging over all
possible values of both f and I:

= Ef: ; f,l[g(f:l g)
=2
f

fi
Pii(q Z Prug(fi69)

4. Monte Carlo Algorithm,

There is one serious difficulty that prevents us from applying directly the
general Monte Carlo procedure that was derived in chapter 3 to the computation
of these optimal estimates: since the depth variables are continuous-valued, if we
discretize them finely enough to guarantee sufficient precision of the results, the
computational complexity of either the Metropolis ar Gibbs Sampler algorithms
will be very large. One way around this difficulty is to note that for any fixed
configuration of the line field, the posterior energy becomes a non-negative definite
quadratic form:

U(f|l,9)= Z (f. P+ay (fi—-g)+K (8)

1,Jiij= JES
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where o and K are constants (note that the first sum is taken only over those pairs of
sites whose connecting line element is "off", and the second one over the set S). This
means that the posterior distribution of the depth ficld is conditionally Gaussian,
so that we can find the optimal conditional estimator f(1) as the minimizer of (8)
(for a Gaussian distribution, the posterior mean and the MAP estimate coincide).
If ¢ is identically zero (no lines), this function is strictly convex, and therefore it has
a unique minimum. Let f, be the corresponding global minimizer. For any fixed

configuration [, the gradient of (8) is given by:

a—[{agf—_-l-ﬂ =2 Z (fi — f)lij + 2aqi(fi — gi) (9)
s JEN;

where
N={ : li—-j|=1} ;

L =1—1;

Setting this gradient equal to 0, we find that any minimizer of U will be a fixed
point of the system:

(k)
(k+1) _ 2ien; Liify + ag95 it S ¢
! —_— 2 : -+ g ?é 0,
f’ Yien,; bij + g iEN; Y %

and f¥*) = s otherwise (10)

We note that the updating scheme (10) will produce a decrease in the value of
U(f | !), regardless of the sweeping strategy. In a synchronous scheme (where all
the sites are updated at the same time), the energy increment will be:

AU(f | )= U | ) -u(® | )=

=23 T 4+ ag)(f{) - fP -

t€EL JEN;
A2U(f | 1
- EUULD ey iy <o
o Ofil;
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because U is non-negative definite. For an asynchronous strategy, where fk+1) js
obtained from f(¥) by updating only the site i, we get:

AU(f ) = —4( T ;5 +aq)(F5 = £ <0
JEN;

Therefore, if we set
fO=f, (11)
the dynamical system defined by (10) and (11) (with a given sweeping strategy) will

be stable and have a unique fixed point f;.

Note that, since U(f | ) is always convex, f; will be a global minimizer (see
Luenberger (1973)), but in general it will not be the only one; there may be cases
in which some region @ within which there are no observations is isolated from the
rest of the lattice by the line process. In this case, any solution for which

f; = constant , JEQ

will also minimize U(f | {). However, for a fixed initial state f© the deterministic
dynamical system (10) will always converge to the same solution, so that the
configuration f7(1) is well defined.

Let us define the set F* as:
F'={(,) : f=1}
It is clear that, if f,{ are the optimal estimates for our problem, we have that:
(hher

which suggests that we can constrain the search for the optimal estimators to this set.
This can be done, in principle, by replacing the posterior energy with the function:

UT() =U(f,1)
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(which depends only on !), and use the standard Monte Carlo procedures to find
the optimal estimator [. To illustrate this idea, let us consider the following physical

model:

It is a well known fact the the steady state of an electrical network that contains
only (current or voltage) sources and linear resistors will be the global minimizer of
a quadratic functional that corresponds to the total power dissipated as heat (Oster
et al, 1971). It is therefore possible to contruct an analog network that will find
the equilibrium state of the depth field for a given, fixed configuration of the line
process, i.e., that will minimize the conditional energy (8) (see Poggio and Koch,
1984). This suggests a hybrid computational scheme in which the line field (whose
state is updated digitally, using, say, the Metropolis or Gibbs Sampler algorithms)
acts as a set of switches on the connections between the nodes of the analog network
whose voltages represent the depth process. In particular, if f; represents the voltage
at node <, the hybrid network can be represented as a 4-connected lattice of nodes

(see figure 15) in which:

(i) A resistance (of unit magnitude) and a switch (controlled by the line
element /;;) is present in every link between pairs ¢, j of adjacent nodes.

(ii) If an observation g; is present at site 7, a current of magnitude equal to
ag; is injected to the corresponding node, which must also be connected
to a common ground via a resistance of magnitude 1/« (see equation 8).

A direct application of Kirchoff current law shows that at each node of this

network we will have:

2 (fi = £) — ) + agif; = agig;

JEN;
which corresponds to a fixed point of the system (10). In practice, there will always
be parasitic capacitances which will prevent the instantaneous establishment of the
equilibrium conditions. However, the time constant of the analog portion of the
network may be made very fast, so that in fact, the probability distribution of the
equilibrium states of this network will be Gibbsian with energy U".

This scheme can be used, in principle, to construct a special purpose hybrid
computer for the fast solution of problems of this type. In a digital machine, however,
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Figure 1S. Hybrid network implementing the surface reconstruction algorithm of section 4.
The voltage at every node represents the height of the surface. Inside every rectangular box there
is a resistance of unit magnitude and a switch whose state is controlled by the corresponding line
element. (sce text).

the exact implementation of this strategy will in general be computationally very
expensive, since f; must be computed every time a line site is updated. We will
now present an approximation which has an excellent experimental performance,
and leads to an efficient implementation.

First, let us examine one iteration of the, say, Metropolis algorithm at a given
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temperature T > 0 for the function U”. When a line site is visited and its state is
updated, the corresponding incrcment in energy AU, is computed as follows:

Suppose the line site ¢5 is visited (the line between depth sites ¢ and 7). Let ;5
be its current state, and ;; the candidate state:

A

l,'j =1-—=1;
Suppose that the current state of the depth process is

f=n

and let fi' be the fixed point of (10) obtained when we replace I;; by 2'.1,_ Let us
define:
f=n

and

AVi= Y Vu)-Va)+ X W(l)-Vi(d)
CuzliJECn Cb:l;,-ec',,

”"

where C,, C,, are the "a" and "b" type cliques defined in figure 13, and V,, V;, the
corresponding potentials.

Since the depth process is at equilibrium, and we are changing only the element
l;;, we may assume that

-

for=fp for p # 1,5 (12)

so that
AU ~ AV +

+ E . (-?121: - f?n)[ Z (1 -lkm) + aqm] - 2(}m - fm)[ Z fk(l - lkm) + aq"zgm]]

m=i,] keNm kENm
(13)

Now, if the absolute difference |f; — f;| is small, f and f will be practically
identical; on the other hand, if | f; — f;| is large, the changes in f at locations ¢ and
7 will be relatively small with respect to this absolute difference. Therefore, we may
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approximate AU,' by the simple expression:

AU; ~ AV + (fj = fi)2(i; — 1)) (14)

which depends only on the potentials of the cliques to which the updated line
element belongs, and on the current state of the depth sites adjacent to it. If this
approximation is to remain valid, the equilibrium condition on f must be mantained.
This is done by performing M global deterministic iterations using (10) after every
global stochastic update of the line process. We have found experimentally that the
use of the approximate expression (14), and only three restoring iterations (M = 3)
are sufficient to get a good convergence behavior.

It is also possible to use assumption (12) and the fixed point condition of the
system (10) to compute a more precise approximation to AU (the corresponding
formulae are derived in appendix 5.A). Our experiments indicate, however, that
the simpler approximation (14) gives sufficiently good results, so that the increased
complexity incurred by the use of this, more precise scheme does not seem to be
justified.

An important issue in the practical implementation of this procedure is the
determination of the optimal temperature for observing the equilibrium behavior
of the system. We have found that this can be done effectively in an adaptive way
by starting the simulation at a relatively large temperature (say, T = 5) and slowly
decreasing it until the network shows an adequate level of activity (measured, by the
fraction of sites whose state is modified in one global iteration). We have found that
a level on the order of 0.1 is adequate in most cases. This technique is similar to the
Simulated Annealing method for finding the global minimizer of the energy, but
in that case, the cooling of the system must proceed at a slower rate, and it should
be continued until the level of activity is reduced practically to 0; if we proceed in
this way, the final state of the system will correspond (approximately) to the MAP
estimate. Note that (fys4p,lmap) € F* t00, so that the mixed strategy described
above will also work in this case (see Marroquin, 1984). As we pointed out in the last
chapter, if the signal to noise ratio is not too low, the configuration corresponding
to the MAP estimate will be very similar to the optimal one (fpys, {ppa). From
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a computational viewpoint, however, the optimal estimator is preferable, since it
exhibits a faster and more consistent convergence behavior,

5. Experimental Results.

We will now present some experimental results that illustrate the performance of
the optimal Bayesian estimators for surface reconstruction tasks. In these examples,
we assume that we have the following prior knowledge about the nature of the

surfaces we are trying to reconstruct;

(i) The region under consideration can be segmented into a small number of
subregions.

(ii) Within each subregion the surface is smooth (the gradient is less than 0.5).

(iii) The boundaries between regions are piecewise smooth. There are relatively
few corners.

(iv) The average height of the discontinuities across boundaries is greater than
0.8.

(v) The observations are corrupted by an additive white Gaussian noise process,
and we have some estimate of its intensity.

This knowledge is embodied in the model for the line process, and in the
numerical value of the parameters. For our experiments, we have used a binary
process with potentials given by equation (2).

In the first set of experiments, we generated sparse observation points at 200
random locations of a 30 X 30 rectangular grid. Figures 16, 17, 18 and 19 show
(with height coded by grey level) the observations (a); the configuration obtained
by interpolation with no boundaries (b); the final reconstructed surface (c), and the

boundaries found by the algorithm (d), for:

(i) A square at height 2.0 over a background at constant height = 1.0 (Fig.
16).

(i) A triangle, with the same characteristics (Fig. 17).

(iii) A tilted square plane (slope = 0.1) over a constant height background
with white Gaussian added noise (¢ = 0.1) (Fig. 18).

(iv) Three rectangles at different (constant) heights over a uniform background
(Fig. 19).
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Figure 16. (a) Observations of a square at height 2.0 over a background at height 1.0 (a white
pixel mcans that the observation is absent at that point). (b) Interpolation with no boundaries.
(c)Reconstructed surface.(d) Boundaries found by the Algorithm,
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Figure 17. (a) Observations of a triangle at height 2.0 over a background at height 1.0. (a
white pixel means that the observation is absent at that point). (b) Interpolation with no boundaries
(c) Reconstructed surface.(d) Boundaries found by the Algorithm.

In many interesting cases, the observation sites are not randomly distributed,
but rather tend to be clustered along certain curves. This is the case, for example, of
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Figure 18. (a) Obscrvations of a tilted square (slope = 0.1) over a background at height 1.0
with added white Gaussian noise (¢ = 0.1) (a white pixcl means that the observation is absent

at that point). (b) Interpolation with no boundarics. (c) Boundarics found by the Algorithm. (d)

Reconstructed surface.
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Figure 19. (a) Observations of 3 rectangles at heights 2.0, 2.0 and 3.0 over a background at
height 1.0 (a white pixel means that the observation is absent at that point). (b) Interpolation with

no boundaries. (c) Reconstructed surface.(d) Boundaries found by the Algorithm.

the reconstruction of geological structures from seismic data, or of certain algorithms
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Figure 20. (a) Obsecrvations of a square at height 2.0 over a background at height 1.0 with
added white Gaussian noisc (o = 0.1). White pixels denote missing obscrvations. (b) Interpolation
with no boundarics. (c) Boundarics found by the Algorithm. (d) Reconstructed surface. (e)
Perspective view of (b). (f) Perspective view of (d).
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Figure 21. (a) Disparity data for a stereo pair of aerial photographs (data kindly provided by
W.E.L. Grimson). (b) Intcrpolation with no boundaries. (¢) Boundarics found by the Algorithm
(d) Reconstructed surface.
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for the reconstruction of surfaces from stereoscopic pairs of images, when the stereo
matching is done only at the "edges” (places where the intensity gradient is large)
detected in the images. The synthetic example of figure 20 illustrates this situation
(here we include also a perspective representation of the recontructed surfaces, so
that the difference between the smooth reconstruction and the optimal estimate can
be fully appreciated). In figure 21 we illustrate a real example of this situation. It
represents the interpolation of data obtained along the zero—crossing contours of
the convolution of a stereo pair of aerial photographs (depicting the campus of
the University of British Columbia) with a "Difference of Gaussians" operator, by
Grimson’s implementation of the Marr-Poggio stereo algorithm [G4,M2]. We will
come back to this example when we discuss the stereo matching problem in detail
in the next chapter.

We have also used a modified Simulated annealing scheme to get the MAP
estimator for the same examples presented above (see Marroquin, 1984). The final
configurations are very similar to the optimal ones, so we do not reproduce them
here. With respect to the computational efficiency, it took, on the average, around
450 global iterations (in a global iteration the state of the complete line field is
updated, and the equilibrium of the depth field is restored) for the Simulated
Annealing algorithm to converge, while for the (fpys, lprpas) estimator, only 250
were needed. Also, in the latter, the behavior of the algorithm was more consistent
in the sense that the difference in the results from successive runs with the same
data were smaller than in the former case.

6. A Fast Algorithm.

The ergodicity of the "Gibbs chain" (the Markov chain generated by the
Gibbs Sampler or the Metropolis algorithm at a fixed temperature) means that its
time behavior mirrors the ensemble probabilistic structure. Since the probability of
turning "on" a given line element depends on the difference in the values of the
associated depth elements (i.e., on the current value of the gradient of the field f at
that location), the configurations with active lines at points of high gradient will be
generated first. These lines, in turn, will decouple the adjacent depth sites, increasing
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the gradient even more, generating thus a positive feedback that stabilizes these
configurations (the opposite happens in regions of low gradient, which prevents the
formation of stable clusters of lines at those points).

We can see, therefore, that the behavior of the Gibbs chain can be thought
of, qualitatively, as performing in time a scale separation of the discontinuities
of the image. This suggests the use of a deterministic scheme that performs the
same separation, but compressing the time of the Gibbs chain. A simple way of
implementing this idea, is to introduce a time varying coupling between the depth
and line ficlds, and to allow only "downhill" moves (i.e., those with negative AU %)
in the updating rules for the line process. Specifically, we compute the increment
in energy associated with the update of the line element l;j at time ¢ using:

AU" = AV;; + K(8)(fi — £;)%(li; — 1i5) (15)

instead of equation (14), and accept the candidate state only if AU* < 0. The
coupling strength K (t) is computed using:

K(t) = Ko + ht

(' where Ky and h are positive constants) until it reaches a given value K. 7, and it is
held constant at this value thereafter. The state of the depth process is updated, as
before, using equation (10). Ko must be chosen in such a way that with f = fqand
l; = 0 for all 7, no lines will be turned "on" in the first iteration. This means that
if we use equation (2) (with 8 = 1, and the values of ¢ given in the corresponding
tables) to compute the potentials, we must have:

0.4

Ko < — (16)

a

where

a = sup(f; — f;)?
%2

On the other hand, the final value of K (t) (i.e., K7), must be such that no lines are
introduced in the smooth regions. Let

b= inf(f; — f;)*
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¢ = sup(fi - f;)?

Sm

where D is the sct of neighboring pairs of sites such that each site belongs to a
different smooth patch (i.e., pairs that lie across a discontinuity), and Sm is the
complementary set of pairs of adjacent sites such that both sites belong to the same
continuous patch. K7 must satisfy:

Note that even if we do not know the precise values of a, b and ¢ for a given
problem, usually we can estimate them accurately enough to determine "safe" values
for Ko and K. The value of h controls the number of iterations needed for the
algorithm to reach a fixed point; if 4 is too large and the observations are relatively
sparse, we might get suboptimal solutions where regions with no observations are
completely surrounded by lines, and therefore, adopt spurious constant values. We
have found experimentally that usually 50 iterations, i.e., setting

__Kr—-Ky

h
50

are enough to produce results that are indistinguishable from those produced by
the Monte Carlo approximation.

This scheme has an additional advantage: the optimal value of the coupling
between the depth and line fields (the constant 8 in equation (2)) depends on the
height of the discontinuities relative to the gradient in the smooth patches. It is,
therefore, a free parameter of the Monte Carlo algorithm that must be adapted to
each particular problem. Since in the deterministic scheme it is varied dinamically,
its adaptation to each problem is automatic, provided that we choose K1 and K
sufficiently large and small, respectively, so that the procedure has practically no
free parameters.

146



® | 02 @ | O 3

3 4 3 4 )

O 2 @ | 0 2 e 4

4 3 4 3 (b)

® | O 2 @ | O© 4

3 4 3 4 2 @ |

© 2 @ | 0 2 @ 3
(a) (c)

Figure 22. (a) Coloring of the coupled linc—depth lattice. (b) and (c) Elements whose éiate
is stored in each of the two types of processors of a 4—connected parallel architecture.

7. Parallel Iinplementations.

Both the general Monte Carlo procedure of section 5 and the deterministic
algorithm of the last section can be efficiently implemented in a parallel architecture.
To study this implementation, we first note that the chromatic numbers (see section
6.2 of chapter 3) of the graphs associated with the line and depth neighborhood
systems are 4 and 2, respectively, which means that the coupled process has a
chromatic number of 6. In figure 22 (a) we illustrate one possible "coloring”.

The colors of the line process are represented by the numbers 1,2,3,4, and
those of the depth process by white and black circles. The updating process can
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be implemented in a 4-connected architecture such as the "Connection Machine";
by assigning one processor to cach depth site and its four adjacent line elements.
We will thus have two different populations of processors, whose conﬁguratlons are
shown in figures 22 (b) and (c), respectively. .

;1‘
Each complete iteration consist on 6 major cycles: in the first two, the state of
the white and black depth variables is respectively updated, and in the next four,
the new states of the binary line variables stored in (say) the white processors are
successively computed and transmitted to the corresponding memory locations of the
neighboring black processors. Note that in this scheme we have some redundancy
in the use of memory (each binary variable is stored twice), but the state 6f all
the elements needed for each updating operation is always available from adjacent
Processors. |

7.1. Connection Machine Execution Time.

The update of each depth site requires 2 (16-bit) multiplications; 5 additions
and 10 1-bit comparisons, that is, about 600 cycles of a 1-bit processor. The
computation of the increment in energy for the line process (equation 14) requires
1 multiplication; 5 additions and 13 1-bit operations, that is 350 cycles. For the
deterministic algorithm, we require 256 additional cycles for the multiplication
by the variable coupling constant, while the exponentiation and random number
generation needed for the Monte Carlo updating use about 2300 additional cycles
(we assume that the updating of the coupling constant is done once every complete
iteration in the host computer, and the new value broadcast to the whole network).

Considering that the Monte Carlo algorithm requires about 200 iterations to
converge, while only 50 are needed in the deterministic case, we get the following
approximate estimates for the total execution time in the "Connection Machine"
(using the same assumptions as in section 6.3 of chapter 3): 2.4 seconds for the
Monte Carlo procedure, and 0.18 seconds for the deterministic algorithm.,

7.2. Analog Networks.
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In chapter 4 we discussed the use of the "neural” networks introduced by
Hopficld (1984) (see also Hopficld and Tank, 1985) for constructing analog systems
that approximate the optimal estimators of binary ficlds. Since for a binary system,
the TPM and MPM estimates are equivalent (see chapter 3), we can, in principle,
replace the digital computation of the ! field in the hybrid scheme discussed above
(see figure 15) by a "neural” network that approximates the optimal estimate coupled
with the analog "f" network (note that the switches must be replaced by analog
devices that implement a multiplication). The time constant of the "neural" network
has to be adjusted so that the "f" network remains in equilibrium and the search
space is effectively restricted to the set F* (see section 4).

To implement this idea, we must define a new energy function that depends
continuously on I, and whose behavior is similar to Up for ; € {0,1} (Hopfield,
1985). One such function is:

E(f,)=K3 3 (fi— i’ (1 =lj)+ K Y (fi —a:)* +

1 JEN; i€S

+c12 Z l,‘( Z lk-—1)2+6221;(1—h)+
T Cai€Ca  kECanii} :
+ez Y, Y. Ll (23)

Cvii€Cy jeCp—{s}

where K, o, ¢y, g, c3 are constants.

Following the construction discussed in section 5 of chapter 4, we can now use
an analog network that implements the dynamical system:

du, __9F .
dt 3l *
l,-=6(u.-)

Where the function ©, which corresponds to the gain of the non-linear amplifiers
that are at the nodes of the network, is as defined in equation (15) of chapter 4 (note
that in this case the network also contains non-linear elements that act as analog
multipliers).
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We have performed numerical simulations of this method, and the results are
similar to the optimal ones if the parameters of the system are sclected appropriately.
The system can be made practically data-independent by making the coupling K
between the two networks (see equation (23)) time-varying, in the manner that
was described in section 6. We have found that a reasonable set of values for the
remaining parameters is: ¢; = .15; ca = .05; ¢35 = 1.5.

8. Discussion.

In this chapter we have studied the problem of reconstructing piecewise
continuous surfaces from sparse and noisy data. We showed that such surfaces
can be adequately modeled by two coupled MRF's: A depth field with quadratic
potentials and a binary "line" field with sites in the dual lattice, and with potentials
that represent our prior knowledge about the geometry of the curves that bound
the smooth patches.

We pointed out that a straightforward extension of the general estimation
procedures derived in chapter 3 to this problem is computationally unfeasible, due
to the continuous nature of the depth field. Therefore, we proposed a modified
computational strategy that is based on the fact that the search space for the optimal
estimates can be restricted to those configurations in which the depth field minimizes
the (quadratic) conditional posterior energy for each given line configuration. The
plausibility of this scheme was demonstrated by experimental results showing the
reconstruction of both synthetic and "real” surfaces.

We also derived, based on heuristic arguments, a fast deterministic algorithm
with excelent experimental performance, and whose parameters can be made
problem-independent, and discussed the implementation of all these procedures in
parallel digital machines, and in hybrid and analog networks.

It is interesting to compare the techniques we have presented with other surface
reconstruction methods that handle discontinuities. The most successful of these
(see Terzopoulos, 1984) are based on the idea of interpolating a smooth surface
first and then, detecting the discontinuities by a threshold mechanism. We believe
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that the method that we are proposing has some advantages over this scheme which
justify its use in spite of the increased computational cost:

(i) From a conceptual viewpoint, it is better to perform the interpolation and
boundary detection tasks at the same time, rather than approximating
an everywhere smooth surface first, since this operation hides the
discontinuities that one then tries to find in the second phase.

(i) In our method, the values of the parameters depend only on the average
height of the jumps that one wants to consider as boundaries in the
reconstructed surface, and thus, they are independent of the location of the
observations. If these are sparsely located, even when the discontinuity is
relatively large, the threshold method may fail.

(iii) A priori knowledge about the shape, orientation and position of the
discontinuities can be easily incorporated by choice of the potentials of
the line process. This fact makes our method particularly promising for
integrating information from qualitatively different sources into a single
unified estimation procedure.

(iv) The same algorithm can be used for surface interpolation, noise elimination

(smoothing) and boundary detection.

We will now study a related problem: the reconstruction of surfaces from

stereoscopic images.
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Appendix 5.A

HIGHER ORDER APPROXIMATION TO AU

In this appendix we describe a higher order approximation to the energy
increment AU (see section 4 of chapter 5). We will compute AU* using;

AU; =~ AVj; +

+ > (}.727; — R 2 (A= lim) + 2@m] = 2Fon = fu)[ = Sl = lem) + angm]]

m=t,j kENm kENom
(1)

using the assumption:
fp%fp forp?éihj

the new equilibrium configuration f can be estimated by the following formulas,

which correspond to the fixed point of:

k
fery _ Ziew, 65119 + agyg;
7 Lien; bij + ag;

(2)

when f,,, p 5% 1,7 is held fixed:

Let:

. 1~ lem,s for k,m =1,3
ekm -

1—lgm, otherwise

Tm = Z 2Ic:m + agm
kENp

The new equilibrium configuration will be a fixed point of (10), and therefore, it
will satisfy:

A 1 A ~ . .
fm = —'[ Z ekmf'm, + G‘angm] for m=1,]
Tm | keN,
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If;; = 0 and y;y, 5% 1, we get

+ > filp + agje5}
kEN;—{i}

pp— {’Yj[ > felu + age

keN;—{s5}

A 1 Y

fi= —.[ Y el + agjq,]
V7 | keN;

if ?,-,- = 0 and v;v; = 1, it means that there are no observations, neither at < nor at

7, and that these two sites are isolated from the rest of the lattice by line elements.

Therefore, we use;:

no oa Jit+ S
fi=Ti==5>

Finally, if i;; = 1, we put

m .
fm’ if Ym = 0

form =1, 7.

Besides, if the move from [ to [ is accepted by Metropolis criterion, we replace
fm = }',,,, form=1,75

As described in chapter 5, after all | sites have been updated, M restoring
iterations using equation (10) of that chapter should be applied.
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Chapter 6

SIGNAL MATCIIING

1. Introduction.

In all the estimation problems we have studied so far, the posterior energy

function had the form:

Up(f;9) = Uo(f) + X_ ®i(fi, 9:) (1)

where Up(f) corresponded to the MRF model for the field f. The functions &,
whose precise form depended on the particular noise model, were non-decreasing
functions of the distance between f; and g; (see equation (2) of chapter 3):

(I)i(f) gi) = —In Pni(\I’_l(ngl'(f))

There are some cases, however, when the conditional probability distribution
of the observations Py4(g; f) is multimodal (as a function of f) which causes the
functions ®; to be non-monotonic, so that the solution to the problem remains
ambiguous, even if the observations are dense, and the signal to noise ratio arbitrarily
high. To illustrate this situation, we will study an important instance of it; the
"signal matching” problem, whose one-dimensional version is as follows:

Consider two one-dimensional, real valued sequences hj, hp, where hy is
obtained from hp by shifting some subintervals according to the "disparity sequence”
d:

hi(i) = hp(i + d;)

with
;e€Q={-m-m+1,..,-1,0,1,...,m}
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The signal matching problem is to find d given hy, h;. (In a more realistic
situation, we do not observe h;, hy, directly, but rather some noise-corrupted
versions gy, gg). Some interesting instances of this problem are the matching of
stereoscopic images along epipolar lincs (Marr and Poggio, 1976); the computation
of the dip angle of geological structures from electrical resistivity measurements
taken along a bore hole, and the matching of DNA sequences.

To make the discussion more specific, we will consider a simple example, in
which the sequences ky,, hy; are binary Bernoulli sequences; we will assume that the
noise corruption process can be modeled as a binary symmetric channel with known
error rate, and that d is known to be a piecewise constant function. A well known
instance of this problem is the matching of a row of a random dot stereogram with
density p (Julesz (1960)), when the components of the stereo pair are corrupted by

noise.

The stochastic model for the observations is then constructed by assuming that
the right image is a sample function of a Bernoulli process A with parameter p :

9r(7) = A1)

The left image is assumed to be formed from the right one by shifting it by a
variable amount given by the disparity function d, except at some points where an
error is commited with probability . Note that some regions that appear in the right
image will be occluded in the left one (see figure 23). The "occlusion indicator" ¢4
can be computed deterministically from d in the following way:

1, if d; 4 > d; + k, for some integer k € (0,m)]

i) = { (2

0, otherwise

The occluded areas are assumed to be "filled in" by an independent Bernoulli
process B. The final model is then:

gr(t + d;), with prob. 1 —¢, if #4() =0
gr(d) = {1 —gr(i+d;),  with prob. ¢, if ¢4(¢) =0 (3)
By(2), with prob. 1, if ¢4(¢) = 1
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*-Lines of Constant
Disparity
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|

Figure 23. Occluded Regions: The horizontal and vertical axis represent points in one row
of the left and right images, respectively. Matching points arc represented by black circles. Any
match in the shaded region will occlude the point i

Note that in the two-dimensional case, the index ¢ denotes a site of a lattice, and
therefore it can be represented as a two-vector (4,4;) whose components denote
the column and row of the site, respectively. To simplify the notation, we will adopt
the following convention throughout this chapter: when a scalar is added to this
vector index (as in gp(v + d;) and d;.¢), it will be implicitly assumed that it is
multiplied by the vector (1,0) (so that the above expressions should be understood
as gp(7 + (d;,0)) and d; 4 (k,0)» Tespectively). Using this convention, the observation
model of equation (3) can be applied either to the one or to the two—dimensional

cases.

Notice that even if the observations are noise-free (¢ = 0) the solution of the
problem remains ambiguous, and it cannot be uniquely determined unless some
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prior knowledge about d (for example, in the form of a MRF model) is introduced.
The use of a MRF modecl in the sterco matching case, corresponds to a quantification
of the assumption of the existence of "dense solutions” (this term was introduced
by Julesz (1960), and essentially corresponds to the assumption that the disparity d
varies smoothly in most parts of the image; see also Marr and Poggio (1979)), and
the use of the occlusion indicator corresponds to the "ordering constraint” (i.e., the
requirement that if ¢ > 7, then < +d; > j + d;, see Baker (1981); we put ¢4 = 1

whenever this constraint is violated).
2. Bayesian Formulation.

To formulate the estimation problem, we will consider the sequence g, as
"observations”, while g, will play the role of a set of parameters. Thus, from (3),
we have (assuming, for simplicity that p = }):

P(g(1) = k | d, gr) = Py4(k) =
1—e, if ¢4(?) =0 and gp(: + d;) =k
={¢, if pa(s) = 0 and gp(: + d;) 7% k
3 if gg(z) =1
The posterior distribution Py, will then be:

Py Pyq
Pdlg(d) = ? =

— % exp [—5,1; E V(d;, dj)] . H{[(l —€)6(g9.(z) — gr(z + d;)) +

et = 8(au(5) ~ anli + (1 - oa() + 24y

where .
1, ifz=0

0, otherwise

5(z) = {

As a prior model for the disparity field, we may use a first order MRF with
generalized Ising potentials, such as the one presented in chapter 4. Other models
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may also be used, including the coupled depth and line fields that we discussed in
the previous chapters. For the present, let us assume that the simpler Ising model is
adequate. Note that even when the matching problem is one-dimensional (we are
asuming that there is no vertical disparity between the images, so that the matching
can be done on a row-by-row basis), the two-dimensional nature of the prior MRF
model for the disparity introduces a coupling between matches at adjacent rows.
The posterior energy is:

Up(d;g) = 5% 2 V(di,dj) = 3 n{[(1 — €)6(91(4) — gn(i + di)) +
1,7 1

(1= 8(a(5) = guls + (1 — 4u(5) + 24y

Using the fact that for any a,b 5% 0

In[aé(z) + b(1 — 6(z)] = 6(z)Ina + (1 — 6(z)) In b

we can write an equivalent expression for Up (modulo an additive constant):

1 1
Up(d;g) = T >_V(d;, dj) + 5 2 ¢d(?)in2 +
2,7 )

+3 21— $u(5))6(91(2) — gr(i + dy)) (4)

€
a=ln(1—e)

where

3. Optimal Estimator.

It is possible to apply the general Monte Carlo algorithms developed in chapter
3 to approximate the optimal estimate d with respect to a given performance measure
(such as the mean squared error). Their use in this case, however, is complicated by
the introduction of the occlusion function ¢4 in the posterior energy: the size of the
support for this function equals the total number of allowed values for the disparity
(see equation (2)). If this number is large, the computation of the increment in
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cnergy, or of the conditional distributions (if the Gibbs Sampler is uscd) may be
quite expensive. In many cascs, however, the size of the regions of constant disparity
is relatively large compared with the size of the occluded areas. In these cases, one

can approximate the posterior ¢nergy by:

Ub(d) = g 35 V(dhy ds) + 5 3 6(0u(6) - i + ) (5)

and increase significantly the computational cfficiency (we have successfully used
this approach to reconstruct the disparity of random dot stereograms).

In the one-dimensional case, it is also possible to extend the dynamic
programming methods described in appendix 4.B to compute the MAP estimate;
this extension is described in appendix 6.A.

An alternative approach to the solution of this problem is to implement the
local constraints, generated by the prior MRF model, directly in a deterministic
"cooperative network” of a given form (a "Winner-Takes—All" network) whose
fixed point will correspond to the optimal solution. This will be done in section
6. First we present, in section 4 the dcfinition of a "Cooperative Algorithm", and
describe and analyze, in section 5, the previous work that has been done in this

connection.
4. Cooperative Algorithms.

Consider the two-dimensional signal matching problem defined in section 2,
and suppose that to each site  of the lattice Q we associate a set of binary variables:
{fi,a»d € Q} (we will call this set the "s** column" of the network f, and the set:
{fi 4,1 € Q}, the "disparity layer d" of the same network).

If a particular variable f; 4 = 1, it means that we assign to site ¢ the disparity
d (note that more than one disparity may be assigned to a node at a given time).

A "Cooperative Algorithm" (Marr and Poggio, 1976; it is also known as a
"Cellular automata”; see Wolfram, 1983) is a rule for updating the state of the

159



network f. It can be represented formally as:

fi,d(t + 1) - Ipi,d(f(t)’ t)

with the additional requirement that the intcractions should be local, that is:

E’d(f(t), t) = Fi,d({fj,s(t):j S Nir s € Q}) t)

where IV; is the (two-dimensional) neighborhood of site 7 € Q. The idea is to define
the functions F (i.e., the conncctions of the cooperative network) in such a way that
the following local constraints are implemented:

(i) Compatibility with the observations: FEach element fir should receive
an "excitatory" external input proportional to the conditional probability
Pr(g.(2) = gp(i + 1) | d; = 7). -

(i) Smoothness: This corresponds to an implementation of the MRF prior
model for the disparity: the likelihood that an element fi,4 is turned "on"
(ie., is set equal to 1) should increase if the elements {f; 4,5 € N;} are
"on" (IV; is the neighborhood of < in the Markov model), so that excitatory
connections should exist between these elements.

(iii) Uniqueness: Since in the final configuration f* one and only one element
of cach column { ff,d, d € @} should be equal to 1, each element should

have "inhibitory" connections with the other elements of the same column.

The operation of the network will be Synchronous if all its elements are updated
in parallel at the same time, and Asynchronous if they are updated sequentially,
one at a time. Note that one synchronous iteration is cquivalent to |f] (the number
of elements of the network f) asynchronous ones (we will refer to |f| succesive
iterations as a Global Iteration), and that the evolution of the asynchronous network
will depend, in general, on the order in which its elements are updated.

5. "Linear Threshold" Networks.

The first successful application of this approach (although not formulated in
probabilistic terms) is the algorithm developed by Marr and Poggio (1976) for the
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stereo disparity computation. They proposed a binary network of the form:

Ji{t +1) = o(p;)

with p; = [Z fj(t)wij +n; — 0], 1,7 €EQ X Q; (6)
7
®) {1, if p>0
o =
P 0, otherwise

wi; satisfying  w;; =wy, forall 4,;€QxQ
and f; €{0,1}, forall <

The parameters w;;, n; and 6 must be chosen in such a way that the constraints
to the solution of our problem are implemented locally. In particular, the smoothness
constraint is implemented by defining:

Wy dy,d = 1, for YyeEN; ; z,y€0

where N, is an excitatory neighbourhood of z. The uniqueness constraint, by:

Wz, d,y,d = —€, for (y’ d’) € szd

with M, 4 an inhibitory neighbourhood corresponding to multiple matches at z (see
Marr and Poggio (1976) for a precise definition of these neighbourhoods), and

Wzdy e =0 elsewhere.

The compatibility with the observations is enforced by putting

1, if gp(z+d) = g.(x)
0, otherwise

Mod = fO 4= { (7)

Although it has not been possible to this date to find a rigorous proof for the
convergence of this algorithm, numerical experiments and a probabilistic analysis
(Marr et. al., 1978) show that the synchronous network defined above will converge to
reasonably good solutions for random dot stereograms portraying piecewise constant
surfaces. Howcver, this scheme has scveral problems (although some modifications
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to get around them are suggested in Marr and Poggio, 1976 and in Marr et. al.,
1978):

In the first place, the quality of the results degrades very fast as the density of
the tokens in the stercogram decreases. Besides, it is not clear how to extend this
formulation to the more interesting cases of slowly varying disparities, and different
types of tokens placed in points that do not correspond to a regular lattice.

5.1. Asynchronous Algorithms.

We now consider algorithms of the form (6) that operate asynchronously. In
this case, it has been shown (Hopfield, 1982) that if we choose the parameters in
such a way that p; is never 0 (this can be done, for example, if w;; and n; are
integers, by giving 6 a non-integer value), the "Energy" function:

B(f) = —5 Swijfify — X filni —0) ®)
1,7 t

will decrease monotonically at every global iteration of the asynchronous algorithm
in which the state of every element is updated, unless the network is at a fixed

point.

It is interesting to note that with the parameter definitions given above for the
stereo problem, the term

_%fz,d Z fy,d

yENz

in (8) will be negative only if all the spatial neighbors of the cell z on the same
disparity layer are "on", and therefore corresponds to a smoothness constraint. The

term

_fz,df?:,d
corresponds to the compatibility with the obscrvations, and the remaining terms:
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fz,d[o + % Z fy,d’}

y,d’€EMz,d

may be considered as an implementation of the uniqueness constraint, since their
minimization requires that we have as few "on" cells as possible, and it penalizes

explicitly the local non-uniqueness of the solution.
5.2. Experimental Performance.

To study the performance of these algorithms, we implemented a simulator
of both the synchronous and asynchronous networks. The "stimulus” used for the
set of experiments performed, was a random dot stercogram portraying a square of
21 X 21 elements floating at disparity -2 in front of a flat background at disparity 0.
Figure 24 shows this stereogram and the fixed points obtained by the synchronous

and asynchronous algorithms.

[n both cases, the behaviour of the algorithm shows two distinct phases: In the
first iteration, most of the elements that are "on" on the wrong layers (and some on
the correct ones) are turned "off" (see figure 24-b). As a result of this, at succeding
iterations, the probability of having a cluster capable of growing is relatively high
for the correct regions, which begin to fill in, and very small for the wrong ones,
for which the remaining "on" cells are turned "off".

This form of operation causes that the precise shape of the boundaries between
regions will depend on the exact shape and location of the random clusters that are
formed after the first iteration on the correct layers. Also, it is easy to see that the
form of the inhibitory neighbourhood (sece Marr and Poggio (1976)) causes the cells
lying on wrong layers along a narrow band near the edges of the background to be on
the average less inhibited by the "on" elements in the correct layers (which in turn
are less stimulated) than the interior points, making thus more likely the formation
of wrong stable clusters in these regions. This effect is more pronounced in the
asynchronous case, since a wrong cell that is left "on", can increase the excitation
of a neighbouring one on the same global iteration, increasing the likelihood of a
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(d)

Figure 24. (a) Random dot stereogram portraying a 21 X 21 square at disparity —2. (b)
State of the nectwork after one iteration of the synchronous algorithm. (c) Fixed point for the
Synchronous Algorithm. (d) Fixed point for the Asynchronous Algorithm.
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stable cluster, whereas on the synchronous case, all the cells of the cluster must be

left "on" at the samc time.

For the valucs used for the parameters (e = 2,0 = 3.5 ; see Marr and Poggio,
1976) the energy defined in (8) decreases monotonically at each global iteration
of the asynchronous network, and thus, it converges to a configuration that is a
local minimizer of this function. The correct solution will also correspond to a
(different) local minimum; it is interesting to note, however, that in general it will
not be the global one. It is easy to show, for example, that if the random dot
stereogram portrays a region that has a ratio of area/perimeter less than a critical
value (for the current value of the parameters this critical ratio is == 13), this rcgion
will not be distinguished from the background in the configuration that globally
minimizes the energy. This means that the use of simulated annealing to minimize
(8) will not necessarily improve the solution; however, we have found that after the
deterministic algorithm has converged, a few iterations of Metropolis algorithm at
a moderate temperature (== 1) may be very effective for rcmoving the clusters at

wrong layers. This is illustrated in figure 25.
6. Winner-Takes-All (WTA) Networks.

Linear threshold networks are not the only form of local implementation of the
constraints generated by the probabilistic formulation of our problem. A different
possibility is to associate with each column {f, 4,d € @} a binary "Winner-take-all"

synchronous network:

The input u(z, d) to each cell corresponds to the excitatory input in the linear
threshold case, that is, to the local implementation of the smoothness constraints
and the compatibility with the observations.

The inhibitory terms (the uniqueness constraint) are implemented in the form
of a WTA mechanism. The output (the new value of f; 4) is given by:

(9)

{1, if u(z,d) = maxgeq u(z, d’)
d= .
‘ 0, otherwise
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(a)

(b)

Figure 25. (a) Fixed point at T = 0. (b) Statc after 4 itcrations at T = 1. (c) Fixed point at
T = 0 with (b) as inidal state.

This means that f; 4 will be "on" at time ¢t + 1 only if it is maximally stimulated
with respect to all the other elements in the same column at time ¢, and if it is
"compatible enough” with the observations (see figure 26).
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External Input=P°" é j

Excitatory
Connections
(MRF Model)

Column
(WTA Mechanism)

Figurce 26. Winncr-Takes-All network (sce text).

This design has several advantages :

1. For dense stereograms, we will show that it converges to the correct solution

in a small number of iterations.

2. For sparse stercograms, the algorithm will give, with high probability, the
correct disparity at every location in which a matching token is present.

3. It exhibits a good performance with natural images portraying piecewise

constant surfaces.

4. It is not necessary to process the whole domain 02 at the same time: a
complete representation may be built up by defining local networks corresponding
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to overlapping subregions that cover Q. This feature enables the algorithm to process

arbitrarily large images.

5. It can be extended in such a way that it can handle more complex situations,

such as transparent and piecewise smooth surfaces.
Qualitatively, this improved performance can be explained as follows:

Unlike the linear threshold design, in the first iteration the WTA algorithm will
only turn "off" cells that do not lie in the correct disparity layers. This will cause
the cells that lic at the boundaries of clusters at the wrong layers to lose, in the
subscquent iterations, against the corresponding strongly stimulated cells that lie in
the interior of the "correct” regions. This will result in a progressive shrinking of
the wrong clusters, and will end up with their disappearance.

This results in a faster convergence, since the size of the clusters that have to
be killed is in general smaller than the size of the regions that the linear threshold
algorithm has to fill in. Also, the boundaries between constant disparity regions will

be more accurately localized.

The only situation in which this behavior will not take place, is when there is
a significant overlap (due to accidental correlations in the images) between regions
lying at different depths. In this case, the algorithm will not be able to solve the
ambiguity correctly based only on smoothness considerations, and it will locate the
boundary at a position, within the region of overlap, which will depend on the
detailed shape of this region. Also, the solution will not be so clean in this case; a
few cells, corresponding to different disparities at the same spatial position, may be
left "on" in the final state (limit cycles involving some of these few cells are also
possible).

This type of ambiguity (accidental overlap) is relatively frequent in sparse
stereograms. However, the regions of overlap are typically "blank" regions (i.e.,
without tokens), and the algorithm will give the correct disparity at all token
locations.

We will now make these considerations more precise. First, we will need some
definitions.
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1. @ will be defined as the sct of points lying on a finite square lattice.

2. We will use a sccond order MRF with Ising potentials as the prior model for the
disparity field. Therefore, for cach = € Q, we define its ncighborhood as:

N.=0y : 0<|z—y| <2} (10)

3. Given a region R C Q, we define the set of its interior points (with respect to
N.) I(R) as the set of points in R such that all its neighbors also belongto R :

I(R) = {z € R:|N: (| R| = |N,|}

In a similar way we define:
I*(R) = I(I(R))

and so on. We call the points in R that are not interior: = € R — I(R), Boundary
points of R. We will say that a region R is connected if, given any two sites 1,7 € R,
we can find a sequence of sites {1 = 4g, ¢1,.. ., ip =g}, Withiy eRfork=1,...,p,
such that i, € V;,,, for k=0,...,p— 1.

4. Given a region R C Q, we define its Diameter D(R) (with respect to N,) as the

smallest integer such that:
ID(IE)+1(R) =0

Alternatively, if we define an algorithm that deletes all the boundary points of a
region at every step, the diameter of the region is the minimum number of steps
necessary to completely delete the region.

5. The initial state of the network will be given by:

1, if d) =g,
o, ={ gR(fv+ ) = g1(z) (1)
: 0, otherwise
6. The WTA algorithm for this problem will have the particular form:
1, .f z t = 4 z.d’ t
fz,d(t+1)={ | velt) = maacg unell)
0,  otherwise
Uz d(t) = affy+ Y frlt) (12)

yEN.
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7. We will assume that the set €2 can be covered by M + 1 non-overlapping regions:

Q———RIU“—URMUO

and that the correct solution (i.e., the way the stereogram was generated) consists in
assigning to every point in R; the depth d;:

foti=1 iff z€ER

The set O corresponds to the union of all the regions that are occluded in the left
image (sec figure 23), and therefore, for every z € O, any depth assignment will be

considered "correct”.

8. Since we are assuming that the observations are perfect, the loading rules
guarantee that
fou =1 foreveryzeR;

However, in many cases we will also have:

fe4, =1  forsome z € R; and d; 5 d;

L et ]
Lo,

due to accidental correlations in the images. A connected set W; defined as:
W;={z : fy4 =1andz€ R; for some d;  d;}

will be called a wrong cluster on layer § of R;.

9. We will say that a stereogram has well defined boundaries if there are no large
wrong clusters overlapping the boundarics between adjacent regions. This means
that every non—occluded point must have at least as many "on" neighbors at time 0
on the correct layer as in any other layer, i.e., for every region R, and every point
z € Ry,

> RL> Y f24  foralldsdy (13)

yEN. yEN:

10. A stereogram will be said to be unambiguous if for every region R; and every
wrong cluster W; there is at least one point z € W; N R; which has less "on"
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ncighbors at time 0 on the wrong layer d; than in the correct one d;, i.e.,

Z 2,!1,' < Z foyd-' (14)

YEN: yENx

We can now establish the following result:

Convergence Theorem: Given an unambiguous random dot stereogram with perfect
observations (0 crror rate) portraying M non-overlapping regions of constant depth
with well defined boundaries, the WTA algorithm (12) with & > 8 will converge to
the correct solution in K iterations, where K is the diameter of the largest wrong

cluster in Q.
Proof:
R}

1) First, we note that condition (13) guarantees that all the cells on the correct layers
(which, by (11), are "on" at time 0) will remain "on" at time 1.

2) Condition (14) and the definition (12) guarantce that for every wrong cluster W;
on every rcgion R; there will be at lcast one point z that will be turned "off" in the
first iteration. Then, for all points y € N, N W; N R; we will have:

> A< T A

ZeNv ZENy

which implies that fff},,. = 0.

A recursive application of this reasoning establishes the theorem. g
Remarks:

1. For occluded regions, there will be no large clusters of "on" cells in any layer of
f9, and since the form of (12) precludes the growth over regions with f0 = o, if
there are any isolated points for which fg'd = 1, they will remain "on" in f* (the
fixed point of (12)); otherwise, f~ = 0 uniformly over these regions.
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2. If the algorithm has ambiguous boundaries, we can still use this theorem to
guarantee the convergence of the WTA algorithm to the correct solution outside the
overlap regions. It is clear that if we define new non-overlapping regions R\, ...R),
with non ambiguous boundaries, and include the overlap areas in the set O, the
thcorem will guarantee that we get the correct solution in the new regions. In the
overlap areas, the stable state of the network may include some leftover ambiguity
(fz,4 = 1 for more than one d), and even limit cycles involving a few cells. However,
thesc problematic areas will be confined to layers of unit width along the portions

of the (final) boundaries that lie inside the overlap regions.

3. The probability of finding wrong clusters in a binary stereogram is related to the
probability of finding a repeated subsequence on a Bernoulli sequence of length
equal to the total number of disparity layers, and decreases exponentially with the
number of cells belonging to each of these clusters. For dense sterograms (generated
by a Bernoulli process with parameter p = 1), the probability of finding a wrong
cluster that contains a square of m cells per side can be bounded by

Np|Q|
Pr(ClllSler) S '2-":{:

where Np is the number of disparity layers, and |Q] is the total number of cells in
the lattice. On the other hand, a cluster of diameter & must contain at least a square
of side 2k + 1. Thus, if Np = 7 and || = 642, for example, we can guarantee that,
for dense stereograms, the algorithm will converge to the correct solution in less

than 3 iterations with probability > 0.99.

4. For sparse stereograms, wrong clusters involving only "blank" areas will be very
common, but those containing active tokens will be rare. This fact, together with
remark 2, mean that, with high probability, tha WTA algorithm will find the correct
disparity at all the sites that have active tokens. This has been confirmed by our
experiments.

5. Algorithm (12) will not grow regions into occluded (uncorrelated) areas.
Psychophysical experiments show that these areas should be included with the
adjacent region that is at the greatest depth. It can be verified that an algorithm
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such as the following:

Lo Syen fud®) > el Soen, funl)], @ 4
0, otherwise

fz,tl(t + 1) = {

with f, 4(0) = f;,d (the fixed point of (12)), will converge to a solution in which
these regions are correctly filled in, provided there are no wrong clusters in the
occluded regions, and that each layer of constant d is allowed to converge separately,
starting with d = dmin = min(d € Q).

6. Note that even when (z1, z2) € Q, (z + d, z2) may lie outside Q and so, if we load
the network using (11), some cells near the boundaries of @ may remain undefined,
and (12) may give incorrect results. Therefore, we implicitly assume the existence
of a larger region Qp D Q such that for all z € 0, fB,d is defined for y € N; U{z}
and d € Q. Also, the operation of (12) should be understood in a modified sense,
so that f, a(t) = f2 4 forall z € Qg — O, all d € Q, and all ¢,

A useful corollary establishes that it is not necessary to process all Q2 at the same
time, but that a complete representation can be built up by defining local net-:orks
corresponding to windows S C , provided that there is enough overlap between
them. In particular, we will show that if we load the local network S in such a way
that its initial state coincides with the initial state of the complete network at those
cells, and if the algorithm operates only on the interior points of S, keeping the
state of the boundary points fixed, then the final state of the local network at these
interior points will correspond to the optimal solution:

Let fi(=z, d) and f(z, d) be the state of the (z, d) cell at time ¢ in the complete
and local network respectively. We have:

Corollary 1: Suppose the conditions of the convergence theorem hold in 2, and
consider a set S C Q such that the stereogram is not completely ambiguous in
Sy = I(S) (i.e., condition (14) holds for every z € ;). Suppose that we load the
local network fs in such a way that for every z € S, fA(z,d) = (=, d), for all
de Q.
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Then, algorithm (12), modified in such a way that f%(z,d) = f%(z,d) for all
t,all z € §— 8y, and all d € @, will converge to a fixed point fg for which
Fs(z,d) = fq(z,d) for all z belonging to unoccluded regions inside S, .

Proof:

Consider a region R of constant disparity d such that R’ = RN S; 5 0, and let
B, be the intersection of R with the boundary of S;. For every point z € R’ — By,
f%(z,d) = 1, by the same arguments as in the convergence thcorem. For z € By,
fY(z,d) = 1 too, since f(y,d) = fA(y,d) for y € N,, and (13) holds in 0.
Therefore, for every z € R, fi(z,d) =1 .

On the other hand, for any wrong cluster Wp C R’ in layer &’ 5£ d, since the
stereogram is not completely ambiguous inside Sy, there will be at least one point
z € Wy such that f}(z,d’) = 0. Reasoning as we did before, we have that for all
points y € N, N Wy N R’ we will have:

> S < X A8

ZEN, 2EN,

which implies that fﬂi =0.

ciaat

Applying this reasoning recursively, we get, for every z € R’, that f(z,d) = 1, and
f;(x, d’) = 0, d’ # d, which, together with the convergence theorem, completes the
proof.y

Note that S — .S, defines the overlap that should exist among local windows, so that
the complete representation, defined by

n=|Js{
J
is correctly formed.

6.1. Numerical Results.
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To test the performance of algorithm (12) with random dot stercograms, a
simulator was implemented in a Symbolics 3600 computer. Figure 27 shows the
fixed points corresponding to dense and sparsce stereograms portraying a pyramid.
As predicted by the theory, the convergence to the correct solution is fast (less than
4 iterations) in both cases. In the case of the sparse stereogram, the boundaries are
slightly misplaced, but, as can be verified by direct inspection of the stereogram,
all the dots are correctly located. The fixed point corresponding to the synchronous
operation of (6) (obtained after 11 iterations) is also presented, for comparison. As
we can see, the WTA algorithm (12) converges much faster to a much more precise
result.

7. Recontruction of Real Images.

To apply this algorithm to the processing of real images, there are some

modifications and extensions that should be made.

7.1. Neighborhood size.

It is possible to increase the robustness of algorithm (12) with respect to the
presence of noise in the images by increasing the size of the excitatory neighborhood
(i.e., by postulating a more global MRF prior model) and decreasing the value of
the parameter a. This increased robustness is traded off by a decrease in resolution:
small correct regions may be trated as "noise”, and therefore disappear from the
solution. Also, the shape of the piecewise constant regions may be altered (corners
may be rounded and small concavities "filled in").

7.2. Token Selection.

The simple rule (11) is adcquate for measuring the compatibility with the
observations in the case of a synthetic image (such as a random dot stereogram).
However, it will not work in the case of continuous-toned images of real objects.
The reasons for this failure are manifold: the distribution of the reflected light
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Figure 27. (a) Dense Stercogram (density = 0.4) portraying a pyramid. (b) Fixed point for
algorithm (12) (c) Sparse stercogram (density = 0.1) portraying a pyramid. (d) Fixed point for
algorithm (12). (¢} Fixed point for the Synchronous algorithm (6).

176



varies as the viewpoint is changed (particularly the specular component), and the
two retinas (cameras) may have different point spread functions, and be affected
by independent sources of noise. This means that the model for the observation
process given by equation (3) should be replaced by another that reflects the process
of formation of natural images in a more realistic way. The use of a better model
will cause the term f‘}'d in equation (12) to be replaced by a different compatibility
measure 7, 4 which is obtained by first preprocessing the right and left images using
an operator 7' whose output should be, ideally, invariant under the changes in
viewpoint, optics, etc., and then computing a suitable defined distance D between

the two processed images:

Nz, d = D(Tg[g(m + d)’ TgL(Z)) (15)

(note that n may be continuous-valued).
The new WTA algorithm will be:

1, if  ug4(t) = maxgpeq uga(t)
0, otherwise

fz:,d(t + 1) == {
~ ' ux,;i(t) = aNgd + PN(f(t)) z, d) (16)

The operator Py is generated by the enlarged MRF model, and in general it will
represent a weighted average of the values of the field in the enlarged neighborhood:

Pu(frad) = 3 clls—yl) (17)

YyEN,

where N, is the extended neighborhood of z and ¢(-) denotes a set of parameters
that depend only on the distance |z — y|, and are related to the prior MRF model
for the disparity. fO may be chosen as:

fo . {1, if Nz,d = MaXrcQ Nz,r
4= )
? 0, otherwise

The convergence of this modified algorithm to the correct solution can still be
guaranteed if condition (13) is replaced by the requirement that the cell corresponding
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to the correct layer of every non-occluded point should be maximally stimulated at
time 0, with respect to the other cclls in the same column, by ncighbors belonging

to the same constant disparity region:

ang 4, + P(I:/)(fo, z,d;) > ang 4+ Pn(f° z,d) (18)

for every region R;; every z € R; and every d € Q. Ps\,i) is the operator Py restricted
to R;:
PR o d) = 3 cllz—y)fya

IIEN; n R.‘

(this modification is necessary to cover the case in which a point near the boundary
of a constant disparity region is partially stimulated by a wrong cluster outside this

region which may disappear in succeeding iterations).

Condition (14), i.e., the requirement that every wrong cluster has less "on"
neighbors at time 0 on the wrong layer than in the correct one, can now be expressed
by requiring that for every region R; and every wrong cluster W; on layer j of R;,
there is at least one point z € R; N W; such that:

Pn(f° z,d;) < Pn(f°, x,d;) (19)

Under these conditions, it is easy to use the same arguments of the proof of
the convergence theorem to verify the convergence of algorithm (16). It should be
remarked that conditions (18) and (19) are sufficient, but by no means necessary;
(16) may converge to the correct solution even if they are violated by a particular
stereogram,

The determination of the optimal operators D and T in equation (15) is a
difficult — and as yet unsolved problem. One scheme that has often been used is
to define T as a convolution operator whose kernel is the Laplacian of a Gaussian

function , and T as:
1, ifab > 0

0, otherwise

ﬂmw={
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(sce Marr and Poggio, 1979). The rationale for this choice is that the zero crossings
of the convolution with the Laplacian operator should pick the places where large
intensity changes occur in both images (i.c., it acts as an "edge detector™), while the
Gaussian kernel has the effect of smoothing out the "irrelevant™ edges and filtering
out the noise. One difficulty, however, is that if the Gaussian mask is large enough
to produce the desired effect, it will also introduce errors in the localization of the
zero crossings of the convolved images, which will translate into errors in the depth

of the reconstructed surface (see Clark and Lawrence, 1985).

We have found that the normalized absolute value of the Laplacian of the
difference between left and right images:

—v(z,d) + max,¢q v(z, )

Nz,d — "
max,cq v(Z,r) — min,eq v(z, r)

with
v(z,d) = |V2(gr(z + d) — g1(z))| (20)

has relatively good experimental behavior, but clearly, much more research is
nceded in this area.

[t is important to note that the definition of n will affect the performance of the
WTA algorithm, since it will determine the extent to which conditions (18) and (19)
hold in the initial state; the structure of the WTA network, however, is independent
of the choice of 5, so that the experimentation with different definitions can be
done very efficiently.

7.3. Uniqueness Constraint.

The definitions (12) and (16) imply the enforcement of the constraint:

"Each point in the left image should be matched by only one point in the right
image".

That is to say, we are enforcing the uniqueness constraint along the left eye
line of sight. It is also possible to include explicitly the corresponding constraint for
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the right cye (as in Marr and Poggio, 1976). This is done by replacing (16) (or (12))
with:

1, i uy4(t) = maxgpeg ug,a(t)
fra(t+1) = and u, g = Mmaxg. ke Yok d+k
0, otherwise

For perfect observations, this additional constraint is redundant. If noise or other
distortions are prescnt, however, this scheme will have better performance, since the
disparity of "doubtful” points will be left unassigned (the corrcsponding values of
the disparity in these locations may be determined after convergence by the robust

surface reconstruction techniques described in chapter 5).

As an example of the application of this technique, the processing of a stereo
pair of aerial photographs is illustratcd in figure 28 (this stereo pair is the same that
was used in chapter 5; see figure 19). Although it is difficult to assess objectively
the performance of an algorithm on this type of images, the quality of these results
seems at least equivalent to that obtained by state—of-the-art systems (see Grimson,
1984).

7.4. Piecewise Smooth surfaces.

The WTA scheme can also be applied to reconstruct disparity surfaces that
are piecewise smooth. To do this, it is only necessary to modify the definition of
the operator Py (equation (16)), so that cells at nearby depths are also taken into
account. Notice that, in order to be consistent with the WTA mechanism, only the
maximum contribution for any given column should be considered. The modified
operator is:

Py(f,z,d) = ,,éV,:v, max{c(|z —yl, |d — r|)fy,r} (21)
where ¢(-, -) is some fixed decreasing function of its arguments, and Ny is a disparity
neighborhood defined as the intersection of a closed interval with the set of allowable
disparities:

Nyg=[d—p,d+p]\Q

180



W TN E NN NGRSO NDESERRERNEEREES

(b) (c)

Figure 28. (a) Sterco pair of acrial photographs. (b) Final state of the WTA network (disparity
is coded by grey level; white arcas have no assigned disparity). (c) Reconstructed suface, obtained
using the algorithm described in section 6 of chapter 5.
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where p is a positive constant.

The sufficient conditions for the convergence of the modified algorithm, nam"cly,
that the stercogram should be unambiguous and have well defined boundaries with
respect to the the modified operator Py, can also be expressed in the form 'gi:ven
by equations (18) and (19), but now a wrong cluster W; should be defined as a
connected region on the disparity layer d; such that fg,d,, =1, and d; 5% d"(z) for
all z € W}, where d*(z) is the true disparity at point z. The proof of the convergence
theorem is straightforward, but the interpretation of these conditions is not obvious,
and in practice, they are very difficult to verify, so that at this point, the performance
of this algorithm should be assessed experimentally.

Pradzny (1984) (see also Pollard et. al., (1984)) has obtained good results for
the reconstruction of piecewise smooth and "transparent” surfaces (i.e., stereograms
portraying sets of small interspersed patches that belong to two smooth surfaces,
one in front of the other) using an operator of the form:

Py(f,zd)= 3 3 {c(lz =yl ld —r[)fyr}

yEN, r€Ny

We believe that the use of (21) should improve the performance in these cases.
8. Discussion

In this chapter we have studied a class of recontruction problems that arise
when the conditional distribution of the observations is a multimodal function,
which causes the solution to remain ambiguous, even for arbitrarily high signal to
noise ratio. We identified the signal matching problem as one of the most important
instances of this class, and gave a probabilistic formulation for it using a MRF
model to model the disparity surface, so that the optimal estimation algorithms
derived in chapter 3 could be applied.

We then presented a different approach to the solution of the problem in
which the constraints derived both from the prior MRF model for the disparity
field and from the observations are implemented directly as excitatory connections
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on a three—dimensional cooperative nctwork of processors (or "cells”) with binary
state space. The stcady state of this network can be unambiguously interpreted as a
disparity surface only if there is exactly one processor in each column whose state
is equal to 1. This imposes a uniqueness constraint which can be enforced cither
by introducing inhibitory lincar connections, or by a "Winner—take—all" mechanism
that operates within each column. We showed that, for high signal to noise ratio, it
is possible to define precise sufficient conditions (which are usually met in the case
of synthetic images) for the convergence of the state of this "WTA" network to the
correct solution in a small number of iterations.

The experimental performance of this algorithm with random dot stereograms
is excellent; it produces accurate reconstructions in a very short time (in less than 5
iterations). In the case of the reconstruction of real objects from stereoscopic
photographs, this algorithm — with some modifications — produces results
comparable with those obtained by more complicated schemes that are considered
"state of the art”, and it has the advantage of being directly implementable in
parallel hardware.

Tt should be noted that the performance of the stereoscopic vision of human
beings on similar data is still dramatically superior to that of this, or any other
existing artificial system. Some issucs that should be addressed for the development
of more effective algorithms are the following:

(i) More realistic models for the observation process that take into account
the nature of the relative distortions of the left and right images should be
constructed. This should lead to the definition of optimal combinations of
tokens for the matching process. The precise nature of the optical system
used (which may cause problems like non-horizontal epipolar lines; vertical
disparities, etc.) should also be taken into account.

(ii) The use of more sophisticated prior models for the disparity field —
including a coupled line field as described in chapter 5 — should be
investigated.

(i) Since the intensity edges and the regions of uniform intensity (or uniform
texture) of the images are natural candidates for becoming stereo matching
tokens, and the location of depth and intensity (or texture) edges is likely
to be correlated in a natural scene, the integration of edge detection;
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image segmentation; stereo matching and surface reconstruction into a
single cstimation process should produce very good results. The Bayesian
approach, and the use of coupled MRF models for describing surfaces
and edges that we have presented in this thesis should provide a unified
framework for performing this integration. We discuss this point further
in the next chapter.
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Appendix 6.A

DYNAMIC PROGRAMMING APPROACH TO SIGNAL MATCHING

Consider the one-dimensional version of the signal matching problem described
in section 2. To compute the MAP estimate, we need to find the global minimum
of:

Urldia) = 7 T V(diydy) + 5 3 u(i)In2+

4

+3 (1 — 6a(9))6(91(s) — grli + i) (1)

(i.e., equation (4)) The use of the dynamic programming algorithm described in
appendix 4.B is complicated by the fact that, given the boundaries L, between
regions of constant disparity, the optimal estimate for d in the interval (L;, L; 4]
depends on the estimate on (L;_y, L;], since this last choice detcrmines the extent

of the occluded region.

However, if we assume that the size of the regions of constant disparity is
relatively large compared with the size of the occluded areas (as it normally happens

in most practical cases), we can estimate d given L, using the formula:

d((Li, Lit1]) =

i+1 Liyy
= {k: LEL_: 1 6(gL(?) —gr(i + k) < 3 6(gr(s) — gr(z + 1)), foralll € @} (2)
1=L;+ 1=L;+1
Defining:
l
Gru= Y. 6(gu(s)— gr(i + d((k, 1)) 3)
i=k+1
and

A; = max(0, (Ai,'_l - 3,)
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(note that A; corresponds to the length of the occluded region when a change in

the estimated disparity occurs). we get that

Up(d; 9) = 7 + U(L)

n
To
with

U(L) —_ GI,L1 + Al In 2 + G"IA"I-AI”'I:L2 +
+AsIn2+ ...+ G A+ LN

We can now perform the global minimization of U using the dynamic programming
scheme of appendix 4.B. In this case, however, it is better to use "forward"
recursions, (in the sense that now Fj(k) will represent the cost associated with
putting j boundaries, in the best possible locations, in the interval [1, k]), because
occlusion, as we have defined it, always takes place from left to right. We have
then:

Fy(k) = Gk
Lo(k) = 1
Fj.}.l(k) = iiI<lfl;{Gi+Ai+],k + FJ(’L) + A] In 2}

Lisi(k) = {L:Grya;+1,6 + Fi(L) + Ajln 2 = Fjpa(k)}
The optimal location of the boundaries, for any given n is:

S = {La(N), La—t1(La(N)), - . -, Li(La(. . (Ln(N)).. )}

The optimal configuration is computed using (2), and the corresponding energy,
using (1).

Note that as the size of the regions of constant disparity decreases, (2) may not
be well defined (the optimal estimate d may not be unique) and a more complex
optimization procedure may be required.
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Chapter 7

CONCLUSIONS

In this thesis we have presented a probabilistic approach to the solution of
a class of perceptual problems. We showed that these problems can be reduced
to the recontruction of a function on a finite lattice from a set of degraded
observations, and derived the Bziyesian estimators that provide an optimal solution.
We have also developed efficient distributed algorithms for the computation of these
estimates, and discussed their implementation in different kinds of hardware. To
demonstrate the generality and practical value of this approach, we studied in detail
several applications: the segmentation of noise-corrupted images; the formation of
perceptual clusters; the recontruction of piecewise smooth surfaces from sparse data
and the reconstruction of depth from stereoscopic measurements.

This methodology also permits, in principle, the incorporation of more than one
modality of observations into a single estimation process, as well as the simultaneous
estimation of several related functions from the same data set. This makes one hope
that this framework could be useful in the solution of difficult problems that require
such an integrated approach. We mention two examples:

1. We mentioned in chapter 6 that the stereo matching problem in real situations
has not been solved yet in a satisfactory way. The same can be said of other related
perceptual problems such as: edge detection; image segmentation; the recovery
of the shape of an object from a single two-dimensional image (the “shape form
shading” problem), and the segmentation of a scene into distinct objects, as well
as the recovery of their three-dimensional structure from the analysis of images
formed at successive instants of time (the "structure from motion" problem). All
these problems are obviously related, and it is intuitively clear that the individual
solutions that can be obtained should improve if the mutual constraints that the
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solution of each individual problem imposes on the others were taken into account.
Thus, the presence of a brightness edge should increase the likelihood of a depth
edge, and viceversa; the depth estimated from stereo should be compatible with
the shape derived from shading; points belonging to the same region in an image
should move together, etc. We believe that these constraints can be incorporated
in the potential functions of the corresponding MRF models (in particular, of the
coupled fields that represent the "lines” or edges in each case; see chapter 5).

2. The processing and interpretation of geophysical information (as is done, for
example in oil prospecting) attempts to reconstruct subterranean geological structures
from information provided by a set of qualitatively different measurements, such as
those obtained by: gravimetric and magnetometric surveying; reflexion seismology;
measurements of physical properties taken vertically along bore holes ("well logs™),
etc. Since all these measurements are obtained independently, their joint conditional
probabilities can be easily determined, and since all of them refer to the same
physical structures, their processing can, in principle, be integrated into a single
estimation process, which should greatly increase the reliability of the results.

The above considerations may be taken one step further. Ultimately, the results
one is interested in are not only the quantitative reconstruction of some surfaces, but
the symbolic description of the scene in terms of functional structures or "objects".
On the other hand, the prior knowledge about the occurance of a particular object
or class of objects might greatly simplify the tasks of the "low level” processors
(for example, a letter recognition algorithm should greatly benefit from the use
of context, given the probabilities of occurance of certain letter combinations or
words). The Bayesian approach provides a common "language” that may allow
these low-level and high-level (or symbolic) processes to communicate and mutually
enhance their performance.

As a simple example of this situation, suppose that we are interested in finding
a symbolic description of a binary pattern f in terms of a set of geometric objects
(such as squares, triangles, etc.) that are characterized by some parameters (such
as position, orientation, size, etc.) for whose values we have some prior probability
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knowledge.

Given a description D, i.e., a list of objects with a set of particular values for
their parameters, we can find a binary field ¢ which corresponds to the boolean sum
of the indicator functions of the objects included in D:

{1, if an object in D covers pixel ¢
¢ = )
' 0, otherwise

We can now write the joint prior distribution for the field f (which represents the
actual intensity of the noise-free image) and its description as:

P(f,D) = P(f | D)P(D)

To compute P(f | D), we assume that f is a first order MRF whose configuration
is biased by D:

P(710) = g explo SV (fa f) 2 S aifd
1,J H

P(D) can be computed from the prior probabilities for the occurance of each type
of object, and from the prior distributions for the values of the corresponding
parameters. Since the conditional distribution of the observations depends directly
only on f, the posterior distribution will be:

P(g | f)P(f, D)
P(g)

P(f,D|g)=

where P(g) is a constant. From this expression we can compute the optimal estimates
for f and D using methods similar to the ones developed here.

We will now present a summary of our main results and a list of some interesting
open technical questions.

1. Summary of our Main Results.

1.1. Optimal Bayesian Estimators.
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Several researchers have uscd Bayes thcory and MRF models for the restoration
of piecewise uniform images. It has been implicitly assumed by all of them that the
maximization of the posterior probability is the best possible performance criterion.
We have shown that it is possible to choose other critcria that are better adapted
to each particular problem, and have derived the corresponding optimal estimators,
which not only improve substantially the quality of the results (particularly for
low signal to noise ratios), but also lead to more efficient and better bchaved
computational schemes.

1.2. General Monte Carlo Algorithms.

We have shown that the optimal Bayesian estimators can be obtained from
the observation of the equilibrium behavior of a MRF (which in physical terms
correspond to a ferromagnet subject to a spatially varying external magnetic field).
This behavior can be effectively simulated by Monte Carlo procedures which
generate a regular Markov chain with an invariant Gibbs measure.

This method differs from "simulated annealing” (which has been used to
approximate the MAP estimator) in that it is based on the collection of statistics of
the evolution of the chain at a fixed temperature, while the latter attempts to find the
ground state of the coupled system by slowly decreasing it. From a computational
viewpoint, our method exhibits a faster and more consistent convergence behavior.

1.3. Parallel Implementations.

The implementation of this general Monte Carlo procedure in parallel hardware
was discussed. We proved that the Gibbs sampler (but not the Metropolis or Heat
Bath algorithms) will produce consistent results in this case.

1.4. Reconstruction of Piecewise Constant Funcions.

The problem of reconstructing a piecewise constant function from noisy
(but dense) observations was formulated in probabilistic terms, and the form of
the optimal estimators derived. For the one-dimensional case, we presented a
deterministic algorithm with minimal complexity which computes (exactly) the
MAP estimate of binary fields. For the two-dimensional case, we presented a
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method for improving the computational efficiency of the "Simulated Annealing”-
scheme for approximating the MAP estimator, and derived a fast algorithm for -
approximating the optimal (MPM) Bayesian estimator.

We also presented a maximum likelihood procedure, which based on an analysis
of the residual ("innovations™) process permits the simultaneous estimation of the
field and the parameters of the system. We applied this technique to the construction
of a parameter-free algorithm for the reconstruction of arbitrary binary patterns.

1.5. Formation of Perceptual Clusters.

We suggested that the process of formation of perceptual clusters of certain
dot patterns can be modeled in terms of the estimation of binary images corrupted
by multiplicative noise, and illustrated the application of our estimation algorithm
to this task.

1.6. Reconstruction of Piecewise Continuous Surfaces.

The problem of simultaneously detecting the discontinuities and recontructing
a piecewise smooth surface from sparse observations was cast in the Bayesian
framework. A model consisting of two coupled MRF’s: one representing the
depth and the other the boundaries between continuous regions, was adapted to
our problem. Since the straightforward use of the general Monte Carlo algorithm
for finding the optimal estimate is computationally unfeasible in this case, an
approximation (which showed an excellent experimental performance with both
synthetic and "real" data) was derived and implemented. We also developed, and
heuristically justified a fast algorithm that produces results that are practically
indistinguishable from the optimal ones. The implementation of these procedures
in digital parallel hardware, as well as in hybrid and analog networks was also
discussed.

1.7. Signal Matching.

We presented a class of problems that is characterized by the fact that the
conditional probability distribution of the observations P(g | f) is multimodal (as a
function of f), which means that the solution remains ambiguous, even for arbitratily

191



high signal to noise ratios. We studied a prototype problem of this class: the signal
matching problem (in particular, the reconstruction of depth from stcreoscopic pairs
of images), and showed that it is possible, in principle, to find the solution using the
general estimation procedures that we have developed (although the computational
cost will be high in the general case). We also presented a different scheme, which
is based on the direct implementation of the local constraints (generated by the
probabilistic model) in a highly distributed cooperative network of a particular
form: a "Winner-Take-All" network, and showed that the state of this network
will converge to the correct solution in a few iterations (in the high SNR case). The
application of this technique to the reconstruction of the depth of real objects from
stereoscopic photographs was discussed, and some modifications to the algorithm
were introduced, which permitted us to produce results which compare favourably
with those of other "state of the art" algorithms.

2. Open Technical Questions.

2.1. Stochastic Models.

We have shown throughout this work the richness and versatility of simple (first
and second order) MRF models. It is clear,however, that there are classes of physical
structures whose behavior cannot be adequately modeled by these processes (as a
simple example, consider images formed by clusters of blobs of certain average size).
There have been some attempts to model these and other "textured" patterns via a
hierarchy of independent MRF’s: one that represents the structure of the image, in
terms of regions of uniform texture, and individual models for each textured regions.
This representation, however, is not very convenient for estimation purposes. A
more rigorous approach has been suggested by Grenander (1984), who has proposed
the use of generalized Markovian fields to model complex patterns; these fields
consist of several layers of "generators”, which in the first layer correspond to
grey levels, and in the succeeding ones, to features of increased complexity (lines,
corners, etc.). It is not clear, however, how to use this approach to construct models
of textured images; objects of different shapes, etc.
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These considerations suggest the nced for much more research in this area,
which should include, perhaps, the use of probabilistic models that are not based
on the Gibbs distribution.

2.2. Multiple Scale Representations.

It is the current view that the production of high-level (symbolic) descriptions
of a scene should be mediated by the construction of numerical descriptions of
the surfaces involved at different "scales”. The parameters that describe a MRF
play in some sense the role of scale parameters (see figure 1 of chapter 1; section
5 of appendix 4.B and section 6 of chapter 5); this identification, however, is not
completely satisfactory. A good multiscale representation should feature not only a
progressive blurring of detail, but the aggregation of substructures into larger units
in a way that is not accomplished by the current algorithms.

2.3. Parameter Estimation.

Intimately liked with the previous questions, is the determination of the optimal
set of parameters of a given model from noisy samples. The maximum likelihood
method that we have presented here (see chapter 5) becomes computationally
unfeasible as the complexity of the model (the dimensionality of the parameter
space) increases; therefore, alternative procedures need to be derived (for instance,
the use of time-varying algorithms, such as the one presented in section 6 of chapter
5 should be more rigorously investigated).

A related (and more difficult) question is the selection of the optimal model
from a certain class given only the noisy observations. It is possible that the ideas of
Rissanen (1978, 1981, 1983) about "minimum description length" schemes, and also
of Akaike (1977) about generalized maximum likelihood methods could be useful in
this connection, although the high computational complexity of the present problem
might limit the applicability of these techniques.

2.4. Fast Algorithms.

The practical use of the general Monte Carlo estimation algorithms of chapter
3 is limited by the relatively large number of iterations needed for the convergence
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of these systems. A very important question, then, is how to improve on the
convergence time without sacrificing the power of these methods. The use of
"multigrid” type strategies (Brandt, 1973; Terzopoulos, 1984), which in the present

"er

case may takc the form of "block—spin"" algorithms, such as the one presented in

chapter 4 (see also White, 1983) should be investigated.

Also in this connection, it should be interesting to find more rigorous justifications
for the performance of the fast deterministic schemes that we have developed, based
on heuristic considerations, in chapters 4 and 5, to see if it is possible to find some
general principles that may guide the extension of these schemes to other, more
general cases.

2.5. Analog Computers.

It would be interesting to actually construct prototypes of the hybrid and analog
networks described in chapter 4 and 5, to assess the practicality and performance of
such schemes. A more intriguing possibility is to exploit the isomorphism between
the estimation process of a MRF from noisy data, and the equilibrium behavior
of a ferromagnet with a coupled, spatially varying external field (see chapter 3), to
construct very fast, special purpose "quantum" computers to perform the former
task.
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