MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

AL TR, Mo, 74 Mowember 1985

BUILD:

A Tool For Maintaining Consistency In Modular Systems

hy

Richard Ellivt Robbins

Abstract

BUILD i & tool for keeping modular systems in a consistent state by managing the construction tasks (e.g.
compilation, linking cte.) associated with such systems. [t employs a user supplied system model and a
procedural description of a task to be performed in order to perform the tagk, This differs from existing tools
which do not explicitly separate knowledge about systems from Enowledge aboul how systems are
manipulated.

BUILD provides a static framewaork for modeling systems and handling construction requests that makes vse of
programining environment specific definitions. By aliering the et of definitions, BUILD can be extended to
work with new programming environments and to perform new tasks.

Copyright (c) Massachusets Institute of Technology, 1985

This repor describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of
Technology, Support for the laboratory's artificial intelligence research has been provided in part by the
Advanced Research Projects Agency of the Department of Defense under Office of Naval Research contract
MNOO014-80-C-0303, in part by Mational Scicnce Foundation grant MCS-8117633, in part by the International
Business Machines Corporation, and in pant by Honeywell Information Systems, Incorporated.

The views and conclusions contained in this document are those of the author, and should not be interpreted
as reprosenting the policies, either expressed or dmphied, of the Department of Defense, of the Mational
Stience Foundation, of the International Business Machines Corporation, or of Honeywell Information
Systems, Incorporated.,

This report B8 a revised version of a thesis submitted o the Department of Electrical Engincering and
Computer Science on June 3, 1985 in partial fulfillment of the requirements for the degree of Master of
Science,

Dedicated To

The memory of my grandmothers, Ruth and Esther.

Acknowledgments

I would like o acknowledpge the role that my thesis advisor, dick Warters, played in the work that this
report is based on: the importance of his guidance and encouragement canned be over-cstimated. | would
also like 1o thank Bob Ficve, Jocques Bouvard and Honeywell Information Sysiems for supporting this
rescarch. Finally, 1 would like w thank Donna Gorshel, 1ave Wheeler, Pete Sterpe, Suzanne Witty, Marc
Lissman, Dave Kravitz, Sam Leviting and all of the people who were even remotely connected with the
Honeywell Day Care Center for providing the friendship and moral support that allowed me to see this

Project o its completion.

Table of Contents

1. Introduction
2, System Construction Tools
21 MAKE
22 DEFSYSTEM
2.3 Other Toals
3. The BUILD Reference Level
31 Modules
3.2 References
1.3 Models
4. The BUILD Task Level
4.1 Girain types
4.2 G-nodes
4.3 Process Types
4.4 P-Nodes
4.5 Task Graph Constraints
4.8 The Construction Algorithm
5. Construction Regquests and Task Graph Derivation
5.1 Viewing and Manipulating Task Graphs -- ACCESS
5.2 Request Handlers
5.3 Reference Handlers
54 A Task Description Definitdon Example
fi. Reprise
6.1 BUILD Compared With Existing Tools
6.2 BUILIYs Construction Framework
6.3 Extensions to BUILDY
References
I. BUILD Definitions For C

11
13
17
17
17
19
21

21
12
n
24
15

7

0
i
a2

35
i5

41

List of Figures

Figure 1-1: TinvcomMe Inter-Module Reference Graph
Figure 1-2: Construction Graph For TINYOOMP
Figure 1-3: MakekFile For mNycomMe

Figure 1-4: puiLD Model For TINYOOMP

Figure 1-5: 1efinition For :LIST-S0URCE-CODE
Figure 2-1: Construction Graph For TINYCOMP
Figure 2-3: MakeFile For TiNYCOMP

Figure 2-3: sakk Construction Algorithm

Figure 2-4: MakeFile For LINT

Figure 2-5: DEFSYSTEM Description For INYCOMP
Figure 2-6: 1EISYSTEM Description For LINT
Figure 3-1: nuiln Model For TINYCOMP

Figure ¥2: puil.D Description For LINT

Figure 4-1: Simple Task Graph

Figure 4-2: Grain Type Definitions for Lisp

Figure 4-3: Process Type Definitions For Lisp
Figure 4-4; Expanded P-Node

Figure 4-5; puUiLn Construction Algorithm

Figure 5-1: Reguest Handler Definitions for Lisp
Figure 52 Reference Handler Definitions for Lisp
Figure 53: Definition For :LIST-50URCE-CODE

-] T T e b e b Bl

[ErR -
WO WD A ek WD

2l

1. Introduction

Many programming languages encourage the development of modular systems by allowing the
independent compilation of modules (ADDA [Ada B3], C[Kernighan and Riwhic 78], CLU [Liskov 81],
Common-Lisp [Steele 24], Mesa [Michell 797 This feature can be exploited W minimize the amount of
compilation that needs w Be done when some part of a system is changed. Howewver, as systems become
larger it becomes difficult 1o know exactly which modules need to be recompiled when one changes. It is
important that the correct modeles be recompiled and relinked - a bug caused by ignoring a module that
should be rebuilt can be very difficolt to find, This problem is called the consistent construction problem.

This report describes BUNLD, & tool that reconstructs system modules im order to ensure that they are kept
in & consistent state. BUTLD docs not modify source modules and will not rid systems of problems that require
soyrce eode revision, Howewer, BUILD can handle the many instances where some portion of a system needs
to he recompiled, relinked, or somehow reprocessed in order o eliminate inconsistency.

There are many Wwols that manipulate systems by reconstructing inconsistent parts. Chapler 3 presenis
Ak [Feldman 79) and DEFSYSTEM [Weinreb and Moon 81, two representative tools, and discusses some of
their weaknesses. The fundamental problem with MAKE, DEFSYSTIM, and all similar construction directive
based tools is that they operate on systems by using user supplied lists of construction directives. These lists
are difficult to understand, BUILEG provides the same functonality as existing weols but does so without
requiring wsers to list construction sieps,

puUILDy derives the constrection steps needed o produce a module from wser supplied swsremy models,
These models specify how modules reference cach other instead of how they are constructed. BUILD uses the
reference informaticn to determine how modules depend on each other and how a change o one module will
effeet another, For instance, if a system model specifies that rr:u:l-l::l'i.n'\?lr refers o macros defined in module.,, then
BUILD can infer that & change w modwle, implies that .vam:v.ﬂ‘nr!eF should be recompiled. Chapter 3 discusses
system models and chapiers 4, and 5 explain how BUILD uses system madels to perform construction.

The major strength of BUTLD'S reference based modeling system over a construction directive based system
is that it provides a higher level language for describing system structure. Decause it eliminates low level
construction detail and allows explicit declaration of high level system relationships, a reference based model
15 casier to understand and provides more information than is construction directive based counterpart.,

BUILD separates knowledge about systems from knowledge about how systems are manipulated. The term
fask is used to refer to a construction process such as compilation or linking that BUILD may be called upon o
perform, BUILD uses fask descriprions to specify how to perform construction tasks and how the various kinds
of references that appear in system models may effect tve construction required o perform the task, Using
the example from the previous paragraph, BUILD's task description for compilation allows it to realize that
while a change o mm‘ufr; implies that module, should be recompiled, a change to module, does not imply
that miedule , should be recompiled.

TINYCOMP

NIMYCOME 18 an example of @ modular system, it will be used throwghout this report o present different
gpects of system construction wolks (this example was sdapled from one used by Feldman [Feldman 79]).
MNYOOMP has two major modules. a parser and a code generator. ‘The parser s built by YACC, a parser
generating ool [Johnsen 78a), 1he code generator is implemented in C [Kernighan and Ritchic 78] The
parser and code gencrator use & commaon set of definitions for shared data siructures. These definitions are
coribired with the source programs during compilation. The compiled programs are linked with a library
that is also subject 1o change. Figure 1-1 depicts TisyoOME's inter-module reference pattern and figure
[-2 depicts TINYOOMPS CONSITUCINN PTOCcess.

ALLS (EODE -GENERATOR
@ INCLUDH SIHCLUDEE —
CALLS LIBRARY) CALLS

Figure 1-1: 1iNyYooMme Inter-Module Reference Graph

PARSER . GRAHMAR YACC PARSER.D

LIKKER

CODEGLN.O

LIBRARY O

Figure 1-2; Construction Graph For iNyooMPe

Reference Based System Models

Compare figure [-3 which contains the MAKE directives for TiNnyeome, and figure 1-4 which contains the
LT system model for TINYOOMP. While the Akl dircetives encode TINYCOMP'S construction graph,
BUIYE system maodel encodes TINYOOMI'S reference grsph.

A reference model can be used inoplace of & construction dircetive st because all of the information about
constrection present in such a list can be derived from a reference model. Consider the third MAKE directive
for TIsYOOM I

CODEGEN.O: CODEGEN,.C DEFINITIONS.C

CC -C CODEGEM.C ¥ =C COMPILES
This expresses that CODEGEN . O i produced by compiling CODEGEN . C. and that if cither CODEGEN. C or
DEFINITIONS.C changes, then CODEGEN. € necds e be recompiled. 'This construction dependency exists
because CODEGEN . C is combined with DEFINITIONS, C when it is compiled w produce CODEGEN , 0.
I comtrast, the reference based model specifies that CODE -GENERATOR /ncludes DEFS:

[:INCLUDES CODE-GEMERATOR DEFS)
EUILIYs description For compilation contains the knowledge that the : INCLUDES reference implics a
compilation construction dependency between inefuding and inclided files.

PARSER.C: PARSER.GRAMMAR
YACC PARSER.GRAMMAR #YACC MAKES Y.TAB.C
My Y.TAB.C PARSER.C #RENAME ¥ .TAB.C

PARSER.D: PARSER.C DEFINITIONS.C
CC -C PARSER.C # -C COMPILES

CODEGEMN.O: CODEGEN.C DEFINITIONS.C
CC -C CODEGEN.C # -C COMPILES

TINYCOMP: CODEGEN.D PARSER.OD -I_Iﬂﬂ.ﬂ.;t'l',ﬂ
CC CODEGEN.O PARSER.D LIBRARY.O -0 TINYCOMP # -0 LINKS

Figure 1-3: MakeFile For TINYCOME

(DEFMODEL TINYCOMP

(:MODULE DEFS :C-S0URCE "DEFINITIONS®)

{ :MODULE PARSER :YACC-GRAMMAR “PARSER")

{ :MODULE CODE-GENERATOR :C-S0URCE "CODEGEN™)
(:MODULE LIBRARY :C-0BJECT "LIBRARY")

(:INCLUDES PARSER DEFS)
{:INCLUDES CODE-GENERATOR DEFS)
{:CALLS PARSER LIBRARY)

{:CALLS PARSER CODE-GEMERATOR)
{:CALLS CODE-GENERATOR LIBRARY))

Figure 1-4: pUILD Model For TINYOOMP

Task Descriptions

Upon receipt of a reguest to perform a sk, BUND derives a ek graph which models the construction
steps and dependencies necesary o perfonn the sk, (Chapter € presents BURLD (ask models and chapter
§ cxplaing how task models are derived from system models.) Onee the sk model has been derived, BUILD
analyres it in order e determine which components have changed and what steps are needed in order w
safisfy the tisk roquest,

Bty provides a statie famework Tor modeling systems and handling construction reguests that makes
uwse of programming eavironment specific definitions. New tasks can be added o BUILIYS repertoire by
alwering the ser ol definitons.

For example, Agure 1-5 contains the forms needed o define a task called : LIST-S0URCE -CODE which
produces formatted listings of the source modules of a Lisp system. (This cxample will be cxplained in detail
in chapter 5.1 ‘The firse form alkews KU W represent the processing necded tw list a single Lisp source file,
The sccond form tolls BUID what to do when a :LIST-SOURCE-CODE request is received, The last two
forms well mumn about the imphcatons of the references CALLS and :MACRO-CALLS wupon the
sLIST-S0URCE-CODE task.

Bince task definitions are separate from sysiem models, new tasks can be performed on cxisting models
without additional effor. For instance, once - LIST=-5S0URCE-CODE has been defined, Ui i will be able w
handle reguests fiv format the source code for existing systems without changing any system models,
Construction directive hased tools cannot be extended i a similar manner.

(DEFINE=PROCESS=TYPE ;LIST=-LISP-S50URCE
{{SOURCE :LISP-SOURCE :SINGLE))
{({LISTING :PRESS :SINGLE SOURCE))
OUTFUT=5TREAM
{FORMAT OUTPUT-STREAM "~%LIST -A"
{PATHNAME-MINUS-VERSTON SOURCE))
(FORMAT OUTPUT-STREAM "~%LISTING ~A"™ SOURCE)
(LIST-LISP-FILE SOURCE LISTING))

(DEFINE-REQUEST-HANDLER {:LIST-S0URCE-CODE :LISP-SOURCE :PRE)
{ SOURCE -NODE)
(ACCESS* SOURCE=-NODE ((SOURCE :LIST-LISP-SOURCE) LISTING)))

(DEFINE-REFERENCE-HANDLER ((:MACRO-CALLS :LI1SP-SOURCE :LISP-SOURCE)
{:LIST-SOURCE-CODE :LEFT))
(IGNORE CALLED-NODE)
(PROCESS-REQUEST :LIST-SOURCE-CODE CALLED-NODE))

(DEFINE-REFERENCE~HAMOLER {({:CALLS :LISP-SOURCE :LISP-SOURCE)
{+LIST-S50URCE-CODE :LEFT))
{ IGNORE CALLED-NODE)
[(PROCESS5=REQUEST :LIST-S0URCE-CODE CALLED-NODE})

Figare 1-5; Definition For ; LIST-50URCE-CODE

2. System Construction Tools

This chapter fucuses on two (oals that were designed to aid in the management of the consistent
constroction problem, Before they are presented some terminology that will be wsed throughout this report is
introduced,

I¥ifferent programming environments are geared to operate upon different kinds of ohjects. For instance,
soume environments are designed o operate on files, and others on functions. “The erme geein will be used to
refer to the ohjects manipulated ina programeming environment = regardless of their nature,

The weeminology introduced in this paragraph will be used w refer we the Kinds of grains that are
manipulated during the construction process, Sowrce graing are the components that are produced by people
and mod programs (2.8, programming language source code). Source grving are manipulated by programs to
produce derived graing (e.g., object onded, Grains that arc the final prisdects of the construction process are
called goaf grains (e.g., executable images of programs). While goal grains are usually derived grains, they can
alzo he spurce grains, [Derived grains thal are nob goal grains are called infermedinde grains (c.g,, object code
that requires linking in order tw form exccutable images),

2.1 MAKE

sMAkL [Feldman 79), available as part of UNIX, s a simple wol A managing systems that has received
widesproad wse, MARE i driven by seis of construction directives that form “recipes™ for construcling
systems, These directives are stored in a text file called a Makckile and have the form:

TARGET-GRAIN : INGREDIENT-GRAIN-1 INGREDIENT-GRAIN-2 ...
COMMAND -1
COMMAND-2

#
"

Each entry declares that TARGET-GRAIN depends on each of the grains to the right of the colon. The
command sequence below the construction dependency declaration line & execuled in order o construct
TARGET-GRAIN, There are no constraints placed on the commands which can appear in the command
sequence. Furthermore, there are no ordering rules for MakeFile entries.

MAKE has a simple macro substitution facility. A macro s defined in the following manner:

MACRO-NAME=MACRO-EXPANSION

Any instance of MACRO-NAME enclosed within parentheses and preceded by a dollar sign (Le,
3 (MACRO-NAME)) is replaced by the text MACRO-EXPANS TON when the MakeFile that includes the macro
defimition 1 processed. The definiton for a macro must precede all of its uses,

A Small Example - TINYCOMP

Figure 2-1 depicts the construction process for TINYCOMP and figure 2-2 contains a corresponding
MakeFile. Given the MakeFile, Makl will perform the appropriate construction when TINYCOMP
components change. For instance, a change o PARSER .GRAMMAR will cause a now parser to be derived,
compiled, and linked. A change o CODEGEN.C will cause CODEGEN.C 1w be compiled and linked. A
change to DEFINITIONS ., C will cause PARSER,C and CODEGEN. T 1w be compiled and linked, Finally, a
change to LIBRARY . 0 will cause linking but no compiling.

]UNLK is a irademark af el | aborstones

PRESER . GHANMAR YACL PARSLR. C] PRRSER.D

Figure 2-1: Construction Graph For TINYCOMP

PARSER.C: PARSER.GRAMMAR
YACC PARSER.GRAMMAR #YACC MAKES Y.TAB.C
MV ¥.TAB.C PARSER.C #RENAME Y.TAB.C

PARSER.O: PARSER.C DEFINITIONS.C
CC -C PARSER.C # -C COMPILES

CODEGEN.Q: CODEGEN.C DEFINITIONS.C
CC -C CODEGEN.C # -C COMPILES

TINYCOMP: CODEGEN.O PARSER.D LIBRARY.D
CC CODEGEN.OQ PARSER.O LIBRARY.O =0 TINYCOMP # =0 LINKS
Figure 2-2; MakeFile For TINYOOMP
The MakeFile entries are interpreted in the following manner:

PARSER.C: PARSER.GRAMMAR ..
PARSER.C depends on PARSER . GRAMMAR, 1 is created by running YACC on PARSER , GRAMMAR.

PARSER,D: PARSER.C DEFINITIONS.C ..
PARSER. D depends on PARSER.C and DEFINITIONS.C. Iuis created by recompiling PARSER . C.

CODEGEN.O: CODEGEM.C DEFIMITIONS.C
CODEGEN, O depends on CODEGEN, C and DEFINITIONS . C, It is created by recompiling CODEGEN . C.

TINYCOMP: CODEGEN.O PARSER.D LIBRARY.OQ ...
TINYCOMP depends on CODEGEN ., PARSER . O, and LIBRARY . 0. 1tis created by relinking the system.,

The Construction Process
MaAKE is invoked with the following UMY command line template (brackets indicate optional ficlds):

MAKE [-f MAKEFILE] [OFTION ...] [TARGET-GRAIN]

MAKEFILE Specifics the name of the file containing the construction directives, if no = option is used
then MAKYE uscs the file named MAKEF TLE in the working directory.

OPTION Specifies options like print but do notl execule the command sequences or update the
el Tl dade o the targers withor! executing gay conmiand seguences.

TARGET=GRAIN Specifics the name of the target grain w be processed, iFf TARGET-GRATIN 15 not specified
then MAKE will process the firsts trget grain named in the MakelFile.

MAKE begins by constructing a dependency graph from the selected Makelile, Each node in the graph
corresponds o a grain mentioned in the MakeFile. The children of a node represent the grains that the grain
represented by the node depends on. A request 10 sake & FEEL grain B processed by doing a depth-first
witlk of the graph starting with the node that corresponds 1o the target, At cach node visited, any grains that
are missing or whise children have changed arc updated,

MAKE compares the creation dates of a targel gridn and its ingredient grains as an approximate means of
neting when changes coour, For instance if TARGET-1 depends on INGREDIENT -1 then MAKE will assume
that INGREDIENT =1 has changed if and only if its creation date i after the creation date of TARGET-1.
Since UINIX allows file creation dates to be modified by users, it i possible w0 fool MARE by changing file
auributes, However, since mast people do not change file attributes, the MAKE mechanism is reasonable.

Without information about how an ingredient has changed, MAKE cannod determine whether a change is
significant or not. Therefore, MAKE pessimistically assumes that every change to an ingredicnt grain will
effect the target grain, and it will always reconstrect a target when one of its ingredients bas changed. Figure
2=} contains the MAKE construction algorithm written in Lisp.

(DEFUN MAKE {NODE)
(DOLTST (CHILD (GET-CHILODREN WODE})
{MAKE CHILD))
(IF (DR (NON-EXISTENT-P NODE) (CHILDREN-CHANGED-P MODE))
{(UPDATE NODE}})

(DEFUN CHILDREN-CHANGED-P (NODE)
(< [CREATION-DATE NODE)
[(APPLY #'MAK
(MAPCAR #'GET-CREATION-DATE (GET-CHILDREN NODE}))))

Figure 2-3; Make Construction Algorithm

An Extended Example < LINT

The 1INT system [Johnson 78b] is presented as an extended example of using MAK1L LINT examines C
spurce programs and detects bugs that most C compilers cannot. [t s also sensitive to constructs that are legal
bt may ot be portable.,

LIwT consists of a UMDY shell script driver, a set of LINT Library files, and two C© programs. Before
programs are processed by the first C program (ic., the first pass of LINT), they are processed by the C
pre-processor, which handles magro expinsion and some compiler directives.

After being processed by the C pre-processor, programs arc sent to the first pass of tivt, This pass does
bexical analysis on the input text, constructs and maintaing symbol tables, and builds trees for expressions. An
iermediote file that consists of lines of ASCI text s produced. Easch line containg an external ident fier
famme, an cncoding of the context in which it was seen (use, definition, declaration, ey, a type specifier, and a
sourge file name and line number, The information abouet variables local o a function or file is collected by
aceessing the symbol whie, and examining the expression trees, Comments about local problems are
produced as detected. The information about external names is collected in the intermediate file.

Lis likraries are collections of definitions of cxternal namos that are appended o the intermediate file
generated by the first pass of LINT, They are wsed W provide 11T with a set of definitions for commaonly used
exiornal names without processing the source that contains the definitions. The mest commuonly used
librarics contain the defimitions for the functions that are supplicd by the LINIX © run time environment.
ILsors cam create their own hbraries of commonly used mames in corder to alleviate repeated processing,

After all the spurce fles and library deseriptions have been collocted, the intermediate file is sored o
bring a1 information collected about a given cxternal name tegether, The second pass of LINT then reads the
lines from the imermediate file and compares all of the definitons, declacations. and uses for consistency.

Figure 2-4 contains the MakeFile for Liwr, The primary point of this example is that MakeFiles, even for
medium sized systems like LINT, are difficult to understand. The BUILD description mechanism introduced in
chapter 3 provides a much simpler way (o describe systems,

The first part of the LINT MakeFile contains macro definitions. These definitions are used o specify
directories (c.g., M), compilation flags (e.g.. CFLAGS), and w group files (e.g.. LINTLIBS). The target ALL is
used to name the major subsysiems of the LINT, The next cluster of specifications manages the first pass of
LINT. There ks an entry Tor each library file provided with LINT, Each of these specifies that a LINT library file
is dependent upon a library source file and the first pass of LINT. Libraries depend on the first pass of LINT
because they are constructed by i, The targets that specily management for the second pass of LINT are
LPASS2 and LPASS2 . 0.

The LINTALL, INSTALL, SHRINE, and CLEAN targets are nof grains at all, rather, they are used two
initate installation and removal of LINT. A request to make any of these will always result in the associated
command sequence being exccuted because the corresponding files do not exist in the UNIX environment.
The use of non-existing grains o force command sequences o be executed 15 a popular and useful feature of
MAKE, The functionality provided by these target grains 1s an example of how construction teols can be used
for mare than just SySLem CoRSLIUC o,

M=/USR/SHEALIBAHIP
CHLAGS=-0 -DFLLINAMES
LINTLIBS-LLIEB-FORT.LH LLIB-LC.LW LLIE-LM.LNW LLIB-LHPF.LH LLIB-LCURSES.LNW

ALL: LPASS] LPASS2 S(LINTLIRS)

LP&S5E: CGRAM.O XDCFS.0 SCAN. O COMMI . O PFTR.O TRCES.O OPTIM.O LINT.D HASH.O
CC CGRAM.D XDCFS.0 SCAR.O COMME. D PFTM.O TREES.D OPTIM.O LIKT.O HASH.O -0 LPASER

TREES, O: .I[H‘].FHAIII'PH:I HACOEFS .‘t[H].-'IFlIP'I 1‘[Hj.n"TI‘I:EE,‘E..t
00 -C S{CFLAGS) -1%{M) -1. S{M)/TRELS.C
OPFTIM.0: S{M}/HANIFEST MACDEFS S{M)/MFILEL S{M)/OPTIM.C
CC -C S{CFLAGS) -15{M} -1. S{M}/OPTIM.C

PETH, 0 S(MI7MARIFEST MACOEFS S(HIAMFILE]D S{H)SPETH,C
CC -C S{CFLAGS) =1E(M} -1. S{M}/PFTN.C

LINT.O: S{M}/MANIFEST MACDEFS S{H)/MFILE1 LMANIFEST
CC -C S{CFLAGS) -1§{M} -1. LINT.C

SCAR.O: S(MIMANIFEST MACDEFS S{M)/MFILED S(M)/SCAN.C
CC -C S{CFLAGS) =TS{M} -1. S{M}/SCAN.C

KDEFS.0: S{M)/MANIFEST S{M)/MFILE] MACDEFS S{M)/XDEFS.C
£C -C S{CFLAGS) -18(M) -1, S{M)}/XDEFS. C

COMM1.0: S{M)/MANIFEST S{M)/MTILEDL S{M)/COMMON MACDEFS S{M)/COMMI_C
CC -C S{CFLAGS) -I. -15(M) S{M}/COMMI, C

CORAM - t{H].-'HA.HJIIE.r iqlll:n"HI_ILI'L MACOEFS CGRAM T
€C =C S{CTLAGS) =IS(M) =1. CGRAM.C

COREM,C: ${M)/CGRAM, ¥
YACC S(M)SCERAM. Y
WY ¥.TAE.C CGHRAM.C

LLIE-PORT ,LW: LLIE-POAT LPASE1

={fLIBSCPP -C -DLIMT LLIB-PORT | ./fLPASS1 -PLNW * LLIB-PORT.LN)
LLIE-LM.LM: LLIE-LM LPASS1

-{/LIBSCPP -C -DLINT LLIB-LM | .FLPASS1 <P > LLIB-LM.LN)
LLIG-LMF.LM: LLIE-LMF LPASS1) .

-{/LIESFCPP -C -DLINT LLIB-LMP | _/LPASS] -PLW > LLIB-LHP.LK)
LLIE-LC.LM: LLIB-LC LPASS1

-{#LIBSCPFF -{ -DLINT LLIB-LE | ./LPASS1 -¥v > LLIB-LL.LN)
LLEIB-LOURSES LN: LLIB-LCURSES LPASS)

=(fLIBSCPP -C =-DLINT LLIB-LCURSES | .fLPASS1 -¥W > LLIB-LCURSES.LM }

LPASSY: LPASSZ 0 HASH.O
CC LPASS2.0 HASH.O -0 LPASSZ

LPASSZ.0: S({M)/MANIFEST LMARIFEST
CC S{CFLAGS) -C -I$(M)} -1. LPASSZ.C

LINTALL:

LINT -HPW 1. -IS{M} S(M)/CGRAM.C S{M)/XDEFS.C S(N)/SCAN.C
S(M)/PFTH.C S{M)/TREES.C S(M)/OPTIM.C LINT.C

TNSTALL: ALL SHELL
IRSTALL -5 LPASS] JUSRESLIBALIMTALINTI
INSTALL -5 LPASSZ /USR/LIB/LINT/LINTZ
FOR T IN LLIB-%; DO INSTALL -C -M &34 §51 /USASLIB/LINT; DOKE
INSTALL -C SHELL JUSR/BIN/LINT

SHRINK :
MM -F *.0

CLEAK: SHEINK
RH -F LPASS]1 LPASSZ CGRAM.C S{LINTLIBS}

Figure 2-4: MakcFile For LiNT

Deficiencies
Phrased i terms of construction, The fundamental problem with Makl & thal it forces users

manipulate lists of construction directives. People do not normally think about systems in terms of the steps
psed W construct them, and therefore these lists are difficult w understand. MAKE should prosent & more
patural user interface and then work from the user supplicd information wwards the construction information
that it requires.

sk does not include an adeguate means for saving and reusing comman construction patterns, The
irtresduction of such a facility would shorten MakeFiles since commuon patberns would be replaced with single
identiliers, The definition of the iwdentifier would document and highlight the intended constrection patierm,
Ihe functionality described i this paragraph is usually provided by a macro mechanism, however the MARE
macro facility 15 wo simple == i does not even allow for parameterized macros.,

Mo underlving task descriptions. Sysiems that keep knowledpge about construction scparate from
knowledge about systems can be extended by adding to the construction knowledge without altering existing
syarem maodels, Pitman [Fitman 34] discusses the imporlance of separating knowledge about systems from
knowledae ahout constructon tasks, Makl docs nol use sk descriptions at all and cannot be extended
without changing existing MakeFiles,

Intermediate grains are referenced. Maintainers can only change systems by manipulating source grains or
requesting that goal graing be constructed. Maintainers do not manipulate intermediate grains and it would
be nice if these grains did not need o appear in MakeFiles,

All source grains need not be referenced. MakD: allows system descriptions o omit source grains that are
alsn gl grains since there 15 no command sequence that uses or eifects them. For example, there & nothing
that forces UNIX Shell Scripts w be included in MakeFiles. The absence of references to Shell Scripts would
be a serious omnission if someone were using a MakeFile to determine which grains needed to be copied when

ransporting a system.

2.1 DEFSYSTEM

EYETEM [Weinreh and Moon 81] is a construction directive hased ool that 15 used to install and
maintain Lisp Machine software. The DEFSYSTIM analog to MAKL's Makekile is colled a system description.
DEFEYSTEM syslem descriptions contiin a mixture of system modeling information and construction
directives. IMISYSIEM regquires that command sequences (called transformations) be formally defined before
they are used; this s different from the MAKE approach of allowing unlimited wse of UNIX command
SCOUERCEs.

System descriptions arc made by DEFSYSTEM macro. Calls o DEFSYSTEM have the form:

[DEFSYSTEM SYSTEM-NAME
(KEYWORD ARGS ...)
(KEYWORD ARGS ...)

-

The options selected by the keywords fall into two gencral categories: propertics of the system and
Lransformations,
Ihere are three main DEFSYSTEM property keywords:

: NAME Specifics a “premy™ version of SYSTEM-NAME fur usc in printing,.

:PATHMAME-DEFALLT

Specifics a local default within the definition of the system for surings 1o be parsed into
pathnames,

¢MODULE Assipns a name o a group of files within the system.

A transformation is an operation, such as compiling or loading, that takes one or more files and performs
some operation on them. There are two types of DEFSYSTEM transformations: simple and complex. A simple
transformation & a single operation on & module, such as compiling it or loading i A complex
transformation combines several transformations; for cxample, compiling and then loading the results of the
compilation.

The general format of a simple transformation is:

(NAME INPUT PRE-CONDITIONS)

NAME The name of the transformation o be performed on the files specified by INPUT.
Examples of transformation names are : FASLOAD and :COMPILE-LOAD=INIT (these
transformations are described below),

INPUT A module or nested transformation,

PRE-CONDITIONS
Optional., Specifies transformations that must occur hefore the current transformation
itself can take place. The format is cither a list (NAME MODULE-NAMES ...), oralistof
such lists. Fach of these liss declanes that the transformation NAME must be performed on
the named modules before the current transformation can take place. (The Lisp Machine
documentation calls pre-conditions dependeneies.)

The fullowing simple transformations arc pre-defined:

:FASLOAD [.oads the indicated e when a aewer version of the file cxists than was read mio e
current enviromment.

SCOMPILE Compiles the indicated file when the source file has been been updated since the compiled
code file was wrillen.

Unlike simple transformations, complex transformations do not have any standard form. The pre-defined
complex transformations are:

;COMPILE=LOAD
Compiles and then Toads the input files. 10 has the form:
(COMPILE-LOAD INPUT COMPILE-CONDITIONS LOAD-CONDITIONS)

and s exactly the same &8
[+FASLOAD (:COMFILE INPUT COMPILE-CONDITIONS) LOAD-CONDITIONS)

COMPILE-LOAD-INIT
Compiles and loads the input files, This transformation is sensitive w changes made w0 an additonal

dependency list, 1t has the form:
{:COMPILE-LOAD-INIT INPUT ADDITIONAL-DEPENDENCIES
COMPILE=PRE-CONDITIONS LOAD-PRE-CONDITIONS)
INEUT will be compiled and laded whenever dts source file or any of the modules listed in
ADDITIONAL-DEPENDENCIES arc updated. MNote, the ADDITIONAL-DEFENDENCIES ficld of this

transformation specifies the same kind of construction dependency as MakeFile entries do.

It & important to distinguish between transformation declarations and ransformation references.
Transformations are declared by keyword bsts mocalls o DEFSYSTEM. Transformations are referenced in
pre-condition lists. The ransformations referenced in a pre-condition list must be declared somewhere in the
system descriplion.

DEFSYSTEM contains a facility for defining new transformations, New simple transformations are defined
using the DEF INE-STMPLE-TRANSFORMATION macro, Calls have the form:

(DEFIME-SIMPLE-TRANSFORMATION NAME FUNCTION DEFAULT-CONDITION
INPUT-FILE-TYPES OQUTPUT-FILE-TYPES)

NAME The name of the transformation being defined.
FUNCTION A function to be called when the ransformation is performed.

DEFAULT-CONDITION
The function that is called in order to determine i the wansformation should be

performed.

INPUT-FILE-TYPES
Specifies the types of the input files to the ransformation. Lisp Machine file type

specifications are filename cxtensions (e.g.. “lisp™ of "bin™).

OUTPUT-FILE-TYPES
Specifies the types of the output files produced by the transformation.

For example, to define a simple transformation called : LISP-YACC that calls LISP-YACC to derive parsers
writien in Lisp from BNE grommars, the following definition could be made. (IF a wtility like YACC were

desired on the Lisp Machine it would probably be implemented with a macro and not a separale parser
gencrating ool)

(DEFINE=SIMPLE-TRANSFORMATION :LISP-YACC #'LISP-YACC
FILE-NEWER-THAN-FILE-F {:GRAMMAR) (:LISP))

LISP-YACC will be invoked whenever the input file {i.e., the grammar) is newer than the output file (i.e., the
parser). In other words, the transfirmation will be performed whenever the source file is updated. Notice
that this transfommation relics on grain creation dates in cxactly the same way that MAKE docs.

Complex transformations are defined as Lisp macros, Here is the definition of the : COMPILE -LOAD
transformation that was described carlier:

(DEFMACRD (:COMPILE=-LOAD DEFSYSTEM-MACRO)
(INPUT ZOPTIONAL COMPILE-PRE-CONDITIDNS LOAD-PRE-CONDITIONS)
"{ :FASLOAD [:COMFILE ,INPUT ,COMPILE-PRE-CONDITIONS)
LLOAD-PRE-CONDITIONS))

A Small Example - TINYCOMP
Figure 2-5 cuntaing the H5YSTEM description for a Lisp implementation of TINYOOME.

(DEFSYSTEM TINYCOMP
{:MODULE DEFS "DEFINITIONS™)
[*MODULE PARSER "PARSER")
{ :MODULE CODE-GENERATOR "CODEGEN™)
{ :HODULE LIBRARY "LIBRARY")

:FASLOAD DEFS)

:FASLOAD LIBRARY)

:COMPILE-LOAD-INIT CODE-GEMERATOR (DEFS) (:FASLOAD DEFS))
:COMPILE-LOAD-INIT (:LISP-YACC PARSER) (DEFS) {:FASLOAD DEFS)))

L e W B

Figure 2-5; DEFSYSTEM Descnption For TINYOOMEP

The TivyCoMP description containg a set of module definitions followed by a series of transformations,
The transformations in the description have the following interpretation:

(:FASLOAD DEFS)
Specifies that DEFS should be loaded whenever it is updated. There are no pre-conditions to be satisfled

before the loading can take place.

[:FASLOAD LIBRARY)
Specifies that LIBRARY should be loaded whenever it is updated. There are no pre-conditions w be

satisfied before the loading can take place.

(:COMPILE-LOAD-TINIT CODE-GENERATOR (DEFS) {:FASLOAD DEFS))
Specifies that CODE -GENERATOR should be be compiled and loaded whenever it or DEFS changes. Before
e compilation can take place, DE FS must be loaded,

{:COMPILE-LOAD-INIT (:LISP-YACC PARSER) (DEFS) (:FASLOAD DEFS))
Specifies that a parser derived from PARSER is w be compiled and loaded. A new parser is produced
whenever PARSER changes, The compiler and loader are invoked whenever DEFS or the derived parser
changes. :LISP-YACC will not be invoked if only DEFS changes. Prior w compilation, DEFS must be
sided.

The Construction Process
Systems previcusly modeled with DEFSYSTEM are constructed by calling MAKE-SYSTEM. Calls have the

fomm:
(MAKE-SYSTEM SYSTEM-NAME EREST OPTIONS)

SYSTEM-NAME Specifics a system previously modeled with DEFSYSTEM.

OPFTIONS Specifies options like prind the tronsfonmations that would be done bl dow't do them and 50
forth.

The construction dependency graph specified by the transformations and pre-conditions in the
ErsYSTEM description of S¥YSTEM-NAME is analyzed in order to determine whal construction needs w be
done, Each wransformation is applicd by first applying any transformations referenced as pre-conditions, and
then updating the input module if it or any modules listed in additonal dependency lists, have been changed.
Motice that the transformation applications are ordered by the prescondition lists.

Like MAKE, DEFSYSTEM uses simple functions based on file creation dates in order to determine when a
module should be reconstructed. However, unlike MARR, DEEYSTEM allows the optional specification of
predicates that control when construction s done. The new predicates can replace the simple ones that are
supplicd with DEFSYSTIM.

CSYSTEM includes a paching facilicy. 10 allows small changes o be made 1o a system without invoking
the DEFSYSTEM transformation/dependency mechanism. Each sct of changes is stored in a patch file that
typically contains new function definitions or redefinitions of old functions, Each patch is assigned a number.
If a system contains patches, then the patches are loaded, in order, after the unpatched version of the system is
loaded.

An Extended Example - LINT

The DEFSYSTEM description for a Lisp implementation of LINT is presented in figure 2-6, Although the
DEFSYSTEM description is easier to understand than the corresponding MakeFile (figure 2-4), it is still difficult
1o understand.

The :BUTLD-LINT-LIBRARY transformation is assumed to have been defined and has (he form:

(:BUILD-LINT-LIBRARY INPUT PRE-CONDITIONS)

It constructs LINT library files from LINT library sources. The transformation allows the optional specification
of pre-conditions, and is applied if either TNPUT, or the first pass of LINT is updated.

The first keyword form in the LINT DEFSYSTEM description specifies a system-wide default directory. The
next hlock of keyword forms declare the various modules which comprise LINT. The final block of forms
declare the transformations wsed w construct LINT, Motice that as transformations arc nested and pre-
conditions are added, the transformation declarations become increasingly difficult to understand.

Deficiencies

Phrased in terms of construction. Like MAKE, DEFSYSTEM is a construction directive based tool. This
the primary reason that DEFSYSTEM descriptions, although casier w understand than MakeFiles, are sull
awkward.

OIne reason that DEFSYSTIA descriptions are easier o understand than MakeFiles is because DEFSYSTEM
is not purely construction directive based. DEFSYSTEM's :MODULE declarations allow for the logical grouping
of grains inwe higher level modules. This grouping absiracts away from low level construction information,
and provides a more natural way for users to describe systems than MAKE doos.

DEFSYSTEM supports the sharing of common construction patterns through the declaration of

(DEFSYSTEM LINT
{ :PATHNAME-DEFAULT "/USR/SRC/LIB/MIP")
MODULE DEFINITIONS-1 ("MACDEFS™ "MANIFEST™ "MFILE1™ "LMANIFEST"))
:MODULE DEFINITIONS-2 ("MANIFEST" "LMANIFEST"))
:MODULE PARSER "CGRAM")
:MODULE PASS1 ("XDEFS" "SCAN" “COMM1™ "PFTN®" "TREES"™ "OPTIM"
"LINT® "HASH"))
“MODULE PASS2 ["LPASS2" "HASH"))
:MODULE DRIVER "SHELL")
:MODULE LIBRARIES (“LLIB-PORT" "LLIB-LC" "LLIB=LM” "LLIB-LMP"
"LLIB-LCURSES™))

<FASLOAD DEFINITIONS-1)
SFASLOAD DEFINITIONS-2)
-COMPILE-LOAD DRIVER)
SCOMPTLE-LOAD-1NIT PASS1 (DEFINITIONS-1) (:FASLOAD DEFINITIONS-1))
-COMPILE-LOAD-INIT PASSZ (DEFINITIONS-2) (:FASLOAD DEFINITIONS-2))
:COMPILE-LOAD-INIT {:LISP-YACC PARSER) (DEFINITIONS-1)
(:FASLOAD DEFINITIONS-1))
{:BUILD-LINT-LIBRARY LIBRARIES {:FASLOAD DRIVER PARSER PASS1)))

Figure 2+6: DEFSYSTEM Description For LINT

transformations. This makes DEFSYSTEM system descriptions easier to produce and understand than
MakeFiles. However, since it is possible to avoid the declaration of @ complex transformation by using nested
transformations, DIEPSYSTIM still allows for common patterns to be repeated instead of shared.

Mo underlying task descriptions, Although DEFSYSTEM has embedded knowledge about Lisp compilation
and loading it docs not include a mechanism .for describing construction tasks and therefore cannot be
extended withowt great difficulty,

Intermediate grains are referenced. DEFSYSTEM does not differentiate between source, intermediate, and
goal grains, In gencral, intermediate grains are hidden by complex ransformations. For example, there are
no references to intermediate graing in figures 2-5 and 2-6. While DEFSYSTEM does not force intermediate
grains to be included, it does not prohibit them either.

All source grains need not be referenced. In a Lisp environment. nothing can be used before it is loaded.
This means that any grain that participates in a Lisp system will be involved in some construction, and
therefore, it is not as natural to omit a source grain from a DEFSYSTEM description as it i to omit one from &
MakcFile, This difference between MAKE and DEFSYSTEM comes from differences between the UNIX and
Lisp environments, and not from important differences between the two tools.

2.3 Other Tools

DeRemer and Kron introduced the terms programming-in-the-large and programming-in-the-small
[IeRemer and Kron 78] to distinguish between the writing of modules and the structuring of modules into
systems. Consistent construclion s just one programming-in-the-large issue, others include source code
management, module interconnection specification. and version control. A bricf summary of these other
fssues and projects that focus upon them 8 presented here for completencss. The consistent construction
components of these projects do not differ from MAKE or DEFSYSTIM in any significant way.

When several people are working on a system simultancously, it i important to regulate access to the
source code modules in order to ensure that someone does not attempt 10 modify a module while someone
else is modifying that same module. A common scheme is o implement a Jbrarizn that regulates access o
system components via a check-in/check-oul mechanism. In short, only onc person is allowed W check-out a
module for update at any Gme. Anyone con read a module at any time, Source code management Systems
are deseriired i tie Tollowing papes fRochikind 73, Crisdodor, et ai, B, Hoesley and Lrach T, l_.i:wi:-;:H-ElI.

Ml of the problems mentioned above are compounded iF the programming envirenment is disinbuted
over a network. Schmidi addresses these issucs [Schmidt 82),

It is often the case that there are familics of systems being managed. For example there may be several
public releases of a system, internal releases, experimental versions and so on. 1118 also common for there o
be several versions of a system intended to rnen on different hardware conligurations. Each member of a
family of software systems usually shares many components with other members of the family. Maintainers
of such familics need o worry about which versions of which modules are used in cach member of the family,
Tichy and Cooprider attacked the problems associated with the representation and management of software
familics [Cooprider 79, Tichy B0, Tichy 84].

3. The BUILD Reference Level

Fhis chapter introduces BUILLY's reference based system modeling scheme. BUILD system models are very
casy W interpret because they contain nothing more than declarations of how grains are growped o form
modules and how these modules refer o each olher Although they do nol present any construction
dependencies explicitly, they can be used w derive all of the construction information found in construction
based models (soe Chapter 5). Construction models cannot be used to derive the reference information found
in reference models. Reference models are far less confusing than the construction based models hecause
they are writlen in a language that replaces low level grain construction information with higher level inter-
module reference patterns.,

3.1 Modules

It &5 ofien the case that groups of grains are conceived as one logical entity but are split up (c.g. into files)
for other reasons. Modeling schemes that represent systems only at the level of the individual grain do not
have the ability o express this kind of grouping. The module construct used by BUILD (and DEFSYSTEM)
allows these groupings 10 be made explicitly in system descriptions.

UL madule declarations have the form:

{ :MODULE MODULE-NAME GRAIN-TYPE SREST GRAINS)

MODULE=NAME The name of a module, The name must be unique within the system model,

GRAIN-TYPE The name of a grain tyvpe recognized by BUTLD, Each grain is assumed to be an instance of
this type.

GRATNS The names of the grains that comprise the module.

The following form declares that MATN Is a Lisp source module composed of the single grain MATN . LISP,
{(tMODULE MAIN :LISP-SOURCE "MAIN.LISP")

and the fiorm;
{:MODULE DEFS :C=-50URCE "DEFIMNITIONS-1.C= "DEFIMITIONS=2.C™)

declares that DEFS & & C source module with two grains named DEFINITIONS-1.C and
DEFINITIONS-2.C.

RAUTLD can wse grain Lype information without considering module references to determine a great deal
about the construction of grains. For instance, BUILD knows how to invoke the correct compiler on € or Lisp
source files or how o construct LINT library files from library sources by utilizing grain type information
alome,

3.2 References

BUILEY infers eonstruction dependencies from reference assertions by taking advantage of the fact that
construction dependencies are caused by references hetween modules. 1F two modules do not refer to each
ather, them it is impossible for there o he & constnuction dependency that involves them, When the assertion
i made that medile, refers mr.u:'m'-e? BUILD pessimistically assumes that each grain in module, refers to each
grain in modiule .,

References with the same name may be handled differently depending upon the grain ypes of the
muodules invelved in the reference. For instance, the calls reference between two Lisp source modules is
handled differenty than the calls reference hetween two C source modules.

mun o reference declarations provide for the specification of references between modules, No meaning is
attached w the ordering of reference declurations, Reference declarations have the form:

(REFERENCE LEFT-ELEMENT RIGHT-ELEMENT)

REFERENCE The name of a reference recogniced by BUILID.

LEFT-FLEMENT A module name of list of module names. Al module names wsed inoa reference
declaration must have been declared in a module declaration.

RIGHT=ELEMENT
A module name or st of module nomes. Al module names used inoa reference

declaration must have been declared ina module declaration.

The use of module name liss as cither of the clements of & reference declaration is syntactic sugar that is
equivalent o the set of reference declarations composed by cnumerating REFERENCE -NAME with cach pair
in the cross product of the right and lefi clement lists. For example:

{:CALLS (A B) (D E))
B cquivalent to:

{:CALLS A D)

{ :CALLS A E)

{:CALLS B D)

{:CALLS B E)

Here are some reference wriples and the construction dependencics that they imply:

{:CALLS LISP-SOURCE-1 LISP-SOURCE-2)
Asgerts that LISP-SOURCE-1 contaings functions that call LISP-SOURCE-2 and implies that
LISP-S0URCE-2 will need tw be loaded in order for LISP=-S0URCE-1 to execute,

{ :MACRO-CALLS LISP-SOURCE-1 LISP-SOURCE-2)
Agzorts that LISP-S0URCE -1 wses macros defined in LISP=-S0URCE -2 and therefore LISP-30URCE-2
must be loaded in order for LISP-SOURCE-1 w compile properly. 'This reference implies that if
LISP-S0URCE-2 changes, then LISP=S0URCE -1 will need to be re-compiled,

{:CALLS C-S0URCE-1 C-SOURCE-2)
Implics that the object grains compiled from C-SOURCE=-2 (as well as the ohject grains from any module
that C=S0URCE -2 calls) need to be linked into any executable image that is to include the ohject grains
from C-S0URCE-1.

{:INCLUDES C~S0URCE-1 C-SOURCE-2)
Asserts that C-SOURCE -1 contains the contents of C-S0URCE-2. This reference implics that whenever

the inchuded module, C-S0URCE - 2, changes, the including module, C=SO0URCE -1, needs to be rebuilt.

RUILLIY uses triples {called reference signatures) of the form
CREFFRENCE-NAME LEFT-GRAIN-TYPE=-NAME RIGHT=GEAIN=-TYPE-NAME>

to identify references. BUILD wses grain type information to distinguish between references that have the
samc name but apply w different grain types. A given implementation of BUILD will define the reference
signatures that ore commoenly used in the environment that BUILD i working with. Chapter 5 describes how
new reference signatures may be added W BUILLL.

1.3 Models

The general form of a B0 system description is:
(DEFMODEL MODEL-NAME SREST DECLARATIONS)

There are four kinds of declantions that may be included in o DEFMODEL form: module, reference,
delault pathnome, and defiwilt module, Module and reference declirations were described cardier in this
chapter. The default pathname declaration allows for the declaration of a pathname o be used a8 a wemplate
foor completing Nenamcs, 10 has the forme:

(:DEFAULT=PATHNAME PATHNAME)

The defoult module declaration is wsed 0 declare a module as the default module for 50N W operate on
when construction reguests for the system are made, [f has the form;

[DEFAULT-MODULE MODUWLE-NAME)

Figure 3-1 contains the DEFMODEL form for Tinveoose, The first four declarations are module
declarations that specily the grains and grain wypes of the system modules, The st three declarations specify
the references between the modules in the system. Figure 3-2 contains the DEFMODEL form for LINT, The
model is lenger than the TINYCOME moedel bul ne more complcated.

(DEFMODEL TINYCOMP
[:MODULE DEFS :C-530URCE "DEFINITIONS™)
[:MODULE PARSER :YACC-GRAMMAR "PARSER")

{ :MODULE CODE-GENERATOR :C-SOURCE "CODEGEN™)
{ :MODULE LIBRARY :C-OBJECT "LIBRARY"™)

{:INCLUDES (PARSER CODE-GENERATOR) DEFS)
{:CALLS PARSER (LIBRARY CODE-GENERATOR))
(:CALLS CODE-GENERATOR LIBRARY))

Figure 31: BUILD Mode] For TINYCOMP

(DEFMODEL LINT
(:DEFAULT-PATHNAME "/USR/SRC/LIB/MIP")
[:MODULE DEFINITIONS-1 :C-S0URCE
"MACDEFS" "MANIFEST" "MFILE1"™ "LMANIFEST")
{ :MODULE DEFINITIONS-2 :C-SOURCE "MANIFEST® "LMANIFEST")
{ :MODULE PARSER :GHRAMMAR "CGRAM™)
{ :MDDULE PASS-1 :C-SOURCE “"LINT")
{ :MODULE PASS-2 :C-SOURCE "LPASSZ™)
{ :MODULE SUPPORT-1 :C-SOURCE
"XDEFS" "SCAN™ "COMM1" "PFTN" "TREES" "OPTIM®™ "HASH")
(:MODULE SUPPORT=-2 :C-50URCE "HASH")
{ :MODULE DRIVER :SHELL-SCRIPT "SHELL")
(:MODULE LIBRARIES :LINT-LIBRARY-SOURCE
"LLIB-PORT® “LLIB-LC" "LLIB-LM" "LLIB-LMP" "LLIB-LCURSES")

{:INCLUDES PASS-1 DEFINITIONS-1)
{:INCLUDES PASS-2 DEFINITIONS-2)

{(:CALLS DRIVER (PAS5-1 PASS-2 LIBRARIES))
{:CALLS PA55-1 (PARSER SUPPORT-1))
(:CALLS PAS5-2 SUPPORT-2))

Figure 32 aUiLe Description For pisT

4. The BUILD Task Level

This chapter describes the tsk level representation of systems used by nuimn, A sk level model &
derived Trom the reference level madel for cach request that sUID receives. The derived model is then used
o handie the request. (The phrase fesk feved is used in place of the more specilic phrase constraction lovel
because BUILI is wsed Tor moene than just construction,)

Ul i usk fevel models are acyclic dirceted graphs with two kinds of nodes; g-modes which represent
griaing, and peacdes which represent the processes used o construct grains. Leal nodes represent source
grains, and nst nodes represent goal graing. The link between grains and the processes that use them is
madecled by linking the g-nodes representing graing o the p-nodes representing the processes that use them.

Figure 4-1 containg a portion of the tsk graph used worepresent the compilation of PARSER.LISP, a
grain from a Lisp implementation of TINvCoMP. This example sssumes thal PARSER, LISP is a source grain
and ignores the fact tat in TINYCOME, PARSER, LISP is an intermediate module produced by LISP-YACC,
The cllipses represent genodes and the rectangles represent prnodes, There are Dwo source nodes,
PARSER,LISP and DEFS . LTSP, and a singhe goal node, PARSER . IMAGE.

Although the use of an acyclic dirccted graph o represent sk processing s not unique (MAKE and
THIRYSETEM wse similar representations) the derivition of sk grphs from reference models is novel,

s > o
PARSER, LISP COMPILE PARSER.BIN | LoAD

Figure 4-1: Simple Task Graph

4.1 Grain types

Grain type objects are used to represent the classes of grains used by the environment that BUILD is
working with. They are used o represent all of the kinds of grains that are manipulated by the underlying
environment, whether they are files or not. For instance, the grain type :LISP-IMAGE is used to represent
the objects that result from loading files into the Lisp environment.

Defining Grain Types
Cirain types are defined with DEF IRE-GRAIN-TYPE and definitions have the form;

(DEFINE-GRAIN-TYPE NAME ZOPTIONAL FILENAME-EXTENSION)
NAME The name of the grain type being defined.

FILEMAME-EXTENSION
The defauli filename cxicnsion for graing of this type. I this ficld & null then BUILD
assumes that grains of this type are not Nles.

Figure 4-2 containg the grain type definitions used 1o maodel Lisp svstems, “The :LISP-S0URCE and
(LISP-BIMARY grain fypes corrcspond o files and hence their definitions include default filename
catensions (the Lisp Machine uses keyword symbols to represent filename cxtensions). ‘The : LISP-IMAGE
grain type is m associaled with files and therefore has no default filename extension.

(DEFINE-GRAIN-TYPE :LISP-S0OURCE :LISP)
(DEFINE-GRAIN-TYPE :LISP-BINARY :BIN)
(DEFINE-GRAIN-TYPE :LISP-IMAGE)

Figare 42: Grain Type Definitions for Lisp

4.2 G-nodes
Ci-nodes reprosent grains in task graphs, they contain the following information:
NAME The name of the grain represented by this g-node,
TYPE The grain type abject that the grain represented by this g-node s an instance of,
MODULE Optional. The moedule that imcludes the grain represented by this g-node.
CREATOR Optional. The p-node that represents the process that ercated this g-node. This field will

be null if the gnode represents a source grain,
USERS A list of p-nodes that depend on this g-node to Gl an input role.

INGREDTENTS A list that represents the source grains used to produce this g-node. Each element of the
list i5 a pair containing the name and creation-date of an ingredicnt grain.

CREATE-DATE A ume stamp that represents the tdme and date when the grain that & represented by this
E-node was created.

4.3 Process Types

Process type objects contain the information pertaining to classes of process instances (represented by
p-nodes). For example, the Lisp Machine implementation of BUTLD includes process type ohjects for Lisp
compilation and Lisp binary file lboading.

The grains that are used and produced by processes are partitioned according 1o the robes that they play in
them. Graing thatl processes use are said o play input roles. Grains that are produced by processes are said o
play outpul roles.

Process ivpe objects contain role descriptions for each of their input and output roles, Role descriptions
contain the following information;

NAME [he name of the role. 1L must be unigue within the process type being defined.

GRATN-TYPE The grain type name that grains filling this role must have.

ARITY Either : SINGLE or :MULTIPLE. A role with arity : SINGLE can have no more than one
grain filing . A rmole with arity :MULTIPLE can have an arbitrary number of grains
filling it.

NAME-SOURCE Optional. The name of a role used to help derive noumics for grsins that will fill this role,

Defining Process Types
Process types are defined with DEF INE=PROCESS=TYPE and calls have the form:

(DEFINE-PROCESS-TYPE NAME INPUT-SPEC OUTPUT-SPEC STREAM-VAR
DESCRIBE-FORM BREST CONSTRUCT-FORMS)

NAME Ihe numie of the process ivpe,
INPUT-SPEC A listof mpul role descriptions (discussed above),
OUTPUT=5PEC A list of ouiput roke descriptions,

STREAM-VAR A variable name that will be bound to the output stream when DESCRIBE-FORM and
CONSTRUCT-FORMS arc cvaluated,

DESCRIBE-FORM
A Form e be evaluated in order o describe the processing reprsented by an instance of
this process type. When the form is evaluated, cach rofe-name will be bound w the names
of the grains playing the role, Also, the symbol named hy STREAM-VAR will be bound to
ihe putput sircam,

CONSTRUCT-FORMS
The forms to be evaluated in order to accomplish the processing represented by an instance
of the process type. When these forms are cvaluated cach of the role-names and the
symbol named by STREAM-VAR will be bound as mentioned above,

Figure 4-3 containg the process type definitions for Lisp compilation and Lisp binary loading, The
definition for : LISP-COMP ILE specifics that there are two input roles, SO0URCE and DEFINITIONS, and a
singhe output role, BINARY. SOURCE has singular arity and must be filled by a :LISP-S0URCE grain.
DEFINITIONS has multiple arity and can only be filled by :LISP-IMAGE grains. BIMARY has singular
arity and must be filled by a ;LISP-BINARY grain. The describe form produces descriptions like:

"COMPILE PARSER.LISP"

The construct forms produce the grain playing the BINARY role by compiling the grain playing the S0URCE
role. The construct forms also cause a notification of the compilation o be sent w the output stream. The
nitification looks like:

"COMPILING PARSER.LISP.B"

Processes often depend on grains not explicitly mentioned in their invocations, For example, in languages
that rely on objects to be specified or loaded before objects that refer to them can be compiled, the
compilation process type must include a role that is used to capture that dependency. The role
DEFINITIONS is used in :LISP-COMPILE in order to express the need for some things o be defined
before a Lisp grain can be compiled. The link between the g-node for DEFS . IMAGE and the prnode
representing the compilation of PARSER.LISP in the uek model from fgure 4-1 5 an example of such a
dependency being modeled, Another situation in which it s necessary o model a dependency not made
explicitly in command line invocation s for © compilation, The :C=COMPILE process tvpe has the role
INCLUDE wy represent the dependency between a file and the files that it includes via the © #INCLUDE
meochanism.

(DEFINE-PROCESS-TYPE :LISP=-COMPILE

[(SOURCE :LISP=50URCE :SINGLE} S0URCE INPUT ROLE
(DEFINITIONS :LISP-IMAGE :MULTIPLE)) sDEFINITIONS INPUT ROLE
{(BIMARY :LISP-BINARY :SINGLE SDURCE)) sBINARY CUTFUT ROLE
DUTPUT-5TREAM (STREAM-VAR
[FORMAT QUTPUT-STREAM "-YCOMPILE -A" :DESCRIBE-FORM
[PATHNAME-MINUS-VERSION SOURCE))
{ FORMAT OUTPUT-STREAM "~ZCOMPILING -A™ SOURCE) sCONSTRUCT = FORMS

{COMPILER:COMPILE-FILE SOURCE BINARY))

(DEFINE-PROCESS-TYPE :LISP=LOAD-BIN

{(BINARY :LISP-BINARY :SINGLE}) ;BINARY INPUT ROLE
(DEFINITIONS :LISP-IMAGE :MULTIPLE)) sDEFINITIONS INPUT ROLE
{ [IMAGE :LISP-IMAGE :SINGLE BIMARY)) ;TMAGE QUTPUT ROLE
QUTPUT=-5TREAM (ETREAM-VAR
{FORMAT OQUTPUT-STREAM "~ALOAD ~A" sDESCRIBE-FORM
{ PATHNAME-MINUS-VERSION BINARY))
(FORMAT OQUTPUT-STREAM "~XLOADING ~A™ BINARY) sCONSTRUCT - FORMS

(SI:LOAD-BINARY-FILE BINARY NIL T})
Figure 4-% Process Type Definitions For Lisp

4.4 P-Nodes

Each p-node represents a process to he invoked on the grains amached o its input ports o produce the
grains attached to its ourput ports. Each role in a process type is represented as a port in pr-nodes of that type.
The grain type of cach g-node attached w a port must be the same as the grain type associated with the role.
A description of the processing represented by a prnode and the g-nodes attached to its ports can be produced
by applying DESCRIBE-FORM from the p-nodc’s process tvpe object w the p=node. The processing
represented by the pr-node can be done by applying CONSTRUCT =FORMS from the p-node’s process type
ohject to the prnode.

Figure 4-4 contains an expanded view of the p-node used to represent the compilation of PARSER. L1SP
in TINYCOMP.

LIGP-COHPILE BINARY FARSLR.BIN

FARSLR.LISF SOURCE

Figure 4-4: Expanded P-MNode

4.5 Task Graph Constraints
Task graphs are constrained in the following ways:

1. Task graphs arc acycle. A cycle in a graph would imply that seane grain was needed in order w
construct itself,

2. The parent of a g-node, iFtere 15 one, must be a p-node,
LA g-node can have no mone than one parent.
4. A g=node without a parcni Feprescnts & SoURce grain,

5, The children of a g-node, if there are any, must be p-nodes. These nodes represent processes that
depend upon the grain represented by the g-node.

6. A genode withowt children represents a goal grain,

7. The children of a p-node must be g-noedes, These g-nodes represent grains denved by the process
represented by the prnode, Each pr-node must have at least ene child.

In other words, task graphs are acvelic graphs which begin with g-nodes that represent source graing and end
with g-nodes that represent goal grains, 1he g-nodes are scparated by prnodes that represent the processes
that derive later g-nodes from earlicr ones.

Figures 1-2, 2-1, and 4-1 are examples of well formed task graphs,

4.6 The Construction Algorithm

Figure 4-5 contains the algorithm used by BUILD to perform the construction modeled by a task graph.
This algorithm is similar to the one used by MAKE and DEFSYSTIM (figure 2-3), the primary difference
hetween the two algorithms 15 in how they make wse of creation dates w determine when construclion is
necessary. The MAKE algorithm uses file creation date ordering between input and output grains in order to
infier that an input has changed {and therefore construction & triggered). In practice this method works,
howewer, it relies on several assumptions that are not necessarily true,

MAKE and DEFSYSTEM assumc that files with the same name but different extensions are related. For
instance, they assume thal MAIN.D was created by compiling MAIN.C. While this 8 a reasonable
assumptlion, it does nol have o be rue, Nothing prevents users from renaming files and therefore, there is no
guaranies that MA TN O actually came from MATN . C,

[f an output grain contains a file creation date that is newer than all of the input grains used to produce it,
then MAKE and DEFSYSTEM assume that the output grain docs not need to be rebuilt. However, there is no
guarantes that file creation dates have not been tampered with,

BUILLD does not wse file creation date ordening o mfer thal an obpect has changed. BUILD compares a
grain’s mgredient list with the ingredient fist tat would result if the processing modeled by the task graph
were done. 17 the ingredient s match, then the constrection is not domne,

The protdype mplementation of RUILD Eeeps a separate data file that containg grain creation dates and
ingredients. Swch a fle would not be needed if the underlving environment recorded the ingredienis used w
produce an ohject, The Mesa environment [Mitchell 79, Schmidt #2] keeps this information and exploits it in
order w determine when processing necds to be done.

(DEFUN CONSTRUCT-G-NODE (G-NODE)
(COND {{SOURCE-NODE-P G-NODE) T)
{{OR (NOM-EXISTENT G-NODE) (INGREDIENTS-CHANGED G-NODE))
{MAPCAR #°CONSTRUCT-G-NODE (INPUTS {PARENT G-NODE)))
{(DO-CONSTRUCTION (PARENT G-NODE}})))

(DEFUN INGREDIENTS-CHANGED (G-MODE)
(NOT [EQUAL (INGREDIENTS G-NODE)
(DERIVE-INGREDIENTS G-MODE}}))

(OEFUN SOURCE-NODE-P {G-NODE)
:: RETURNS T IF AND ONLY IF G-NODE
;v REPRESENTS A SOURCE GRAIN

)

[(DEFUN NOM-EXISTENT {G-NODE)
i: RETURMS T IF THE GHRAIN REPRESENTED BY G-NODE
17 DOES WOT EXIST
)

({DEFUUN PARENT (G-NODE)
7 RETURN THE PARENT P-NODE OF G-NODE
)
(DEFUN INPUTS (P-NODE)
:: RETURN THE IWPUT G-HODES OF P-NODE
)
(DEFUN DO-CONSTRUCTION (P-NODE)
PERFORM CONSTRUCTION REPRESENTED BY P-NODE

P
LI

(DEFUN INGREDIENTS (G-NODE)
;7 RETURM THE INGREDIENT LIST USED TO CONSTRUCT
i3 THE EXISTING VERSION OF G-NODE

)

{DEFUN DERIVE-INGREDIENTS (G-NODE)
:: RETURN THE INGREDIENT LIST THAT WOULD RESULT IF
;i A NEW VERSION OF G-NODE WERE CONSTRUCTED

)

Figure 4-5: purLD Construction Algorithm

5. Construction Requests and Task Graph Derivation

After a system has been modeled with DEFMODEL, suii iy can be called upon e handle construction
requests for it Fach request bus the firm:

(BUILD-REQUEST MODEL REQUEST ROPTIONAL MODULE (MODE :NORMALY)

MODEL The name of a model previously defined with DEFMODEL.
REQUEST The name of a reguest recognized by Bl (cg : COMPILE, : LOAD).
MODULE ‘The name of 2 module v operate upon. If this field is not specified then the default

module for the system (a5 defined with the : DEFAULT-MODULE declaration form) is used.

MODE Specifics one of several construction modes, Construction modes are discussed helow,
The prototype implementation of BUN LI has three construction modes that behave as follows:

: NORMAL Deseribe all of the construction o be done, and then ask the user if BUILR should perform
the construction just described.

:DESCRIBE Dcscribe all of the constrection o be done but do not perform it

tNO=CONFIRM Perform the required construction without describing it first.

Sample DUILD requests are;

(BUILD-REQUEST TINY-COMP. :LOAD)
(BUILD=-REQUEST LINT :LOAD DRIVER)
(BUILD-REQUEST LINT :LOAD DRIVER :DESCRIBE)

Once a request has been recelved, a three step process is executed for each grain in the module stated in
the request. This process creates a task model for the request which is then processed in the manner cutlined
in chapter 4. The three steps ane:

1. Model the construction that can be deduced from the regquest without considering any references.
This phase is called pre-reference reques! processing.

2. Model the construction that is implied by the references that involve the module associated with
the request. This phase is called reference processing.

3. Model the construction that can be deduced from the request and the graph built from the earlier
steps. This phase is called posi- reference request processing,

Afier the post-reference processing has been completed the task gruph is complete and can be used to direct
the construction necded w handle the reguest.

Hefore the construction process can be explained in detail it is necessary o present the functions used w
view and manipulate task graphs.

5.1 Viewing and Manipulating Task Graphs - ACCESS
onsider the following sk graph:

@ SOURCE BINARY m BINARY IMAGE

sLISP-COMPILE (LIGP-LOAD-BIN

Starting at a p-node, the path e any of the g-nodes connected W one of S ports can be specified by
mentioning the name of the port desired. [n the wsk graph above, starting at the ;LISP=COMPILE p-node,
the step BINARY loads to DEFS.BIN.

A step from a g-node W a p-node can be described by specifying the process type of the connected p-node
and the role played by the g-node in the p-node. In the sample sk graph above, the step (BINARY
<LISP-COMPILE) starting ot DEFS, BIN leoads o the : LISP-COMPILE p-node.

Parhs arg formed by listing sieps:

*|he path ((SOURCE :LISP-COMPILE) BINARY) starting at DEFS.LISP leads w
DEFS,BIN.

*The path ((SOURCE :LISP-COMPILE) BINARY (BINARY :LISP-LOAD-BIN)) starting
AatDEFS . LISP leads wothe : LISP=-LOAD-BIN p-node.

* The path
{{SOURCE :LISP-COMPILE) BIMARY (BINARY :LISP-LOAD) IMAGE)
starting at DEFS. LISP leads o DEFS . IMAGE.

* The path
{{IMAGE :LISP-LOAD} BINARY (BINARY :LISP-COMPILE) SOURCE)
starting at DEFS . TMAGE leads w DEF5.LISP.

The ACCESS family of functions are designed to provide a straightforward mechanism for both viewing
and manipulating task graphs. These functions are used heavily during the task graph derivation process.
There are three functions, ACCESS, ACCESS+, and ACCESS*, each of which 15 SETFable. The ACCESS
functions have the form:

(FUNCTION NODE PATH)
FUNCTION ACCESS, ACCESS#+, or ACCESS™,

NODE Either a p-node or a g-node. This node is used as the root of the path w be traced by
ACCESS-FUNCTION.

PATH A list of s1eps to be traced from NODE.
The functions behave in the following manner:

ACCESS Traces PATH from NODE and returns the last node encountered. An error is signalled if
any siep in PATH cannot be traced. An error is signalled if there could be maore than one
node that satisfics the path traced.

ACCESS+ Traces PATH from NODE and retumns a list of nodes that satisfy the path, An error is
signalled if any step in PATH canngt he irsced,

ACCESS* Traces PATH ronm NODE and returns the single node that satisfies the path. An error is
signalled if there could be mare than ane node that satisfics PATH, Mew nedes are created
if steps in PATH do not exisL

Any ACCESS call that reterns a single mode may be used we specify the root of another call oo ACCESS, in
edher words, the fellowing two calls are equivilent:

(ACCESS NODE (STEPI STEPZ STEP3))
(ACCESS (ACCESS (ACCESS NODE STEP1) STEPZ) STEP3)

Fach of the ACCESS funciions can be SETFed. Calls have the form:

({SETF (ACCESS ROOT-NODE PATH) END-NODE})
Fimsures that futwee calls wr ACCESS with R00T -NODE and PATH
(Lo (ACCESS ROOT-NODE PATH)) will felurm END-NODE,

(SETF (ACCESS+ ROOT-NODE PATH) NODE-LIST)
Fnsures that futwee calls o ACCE S5+ with ROOT-NODE and PATH
(i, (ACCESS+ ROOT-NODE PATH))will returm NODE-LTST.

(SETF (ACCESS= ROOT-NODE PATH) END-NODE)
Ensures that future calls io ACCESS® with ROOT-NODE and PATH
(1e, [ACCESS® ROOT-NODE PATH)) will return END-NODE,

The ACCESS functions differ in how they handle steps that cannot be traced, and what they do when a
path description fans out, IFACCESS or ACCESS+ encounter a missing link, an error 15 signalled, ACCESS®
and the SETF functions will create the link and continue tracing the path,

A fanoul condition occurs when an attempd it made to trace from a MULT IPLE arity port of a p-node, or
when more than one pe-node satisfies the role-name/process-type-name constraint racing from a g-node.
ACCESS, ACCESS* and their associated SETF Funclwons signal errors if fanout & encountered. ACCES5+
will continue racing down all paths and returns the list of nodes that sausfied the path description. When
SETFed, ACCESS+ will signal an error if fanout is encountered before the last step in the path description,

In Lisp Machine Lisp [Weinreb and Moon 81] and Common Lisp [Steele 84), the special form PUSH can
bee used for functions that are SETFable. PUSH can be used o add a g-node to a port. For example:

{PUSH SOME-G-NODE (ACCESS+ P-NODE SOME=PATH))
i equivalent to:
(SETF (ACCES5+ P-NODE SOME-PATH)
(CONS SOME-G-NODE (ACCESS+ P-NODE SOME-PATH)))

The SETF forms and ACCES5* can make additive changes to the graph. When a function needs to create
a genude and link it w a p-node port. a nome needs to be synthesized for the new g-node. The name of cach
g-node resembles a filenamee in that it has two parts, a primary name and an extension. In order io synthesize
a g-node name, the function copies the primary part from the grain attached to the port specified as the
NAME -S0URCE port for the port being linked to (see the paragraph aboul rele descnplions in chapter 4), An
error is signalled iF a function needs o derive a g-node name to link to a port that has no NAME = SOURCE part
associated with it The extension of a g-node name is derived from its grain type object. I the grain (ype
represcnis files, then the extension is the defauli-filename-cxiension, otherwise, it is the name of the grain

type itself.

5.2 Request Handlers

Roguest handlers specify the sk graph derivation steps that can be taken whenever the request associaled
with the handler hiss been made, without considering any reference declirations, Reguests sire identificd with
requecst signatures (much like referemee signataresh, Bach regueest sigmdure containg two Tields, a reguest
name and o groin type name. For cxmmple the sigrature:

L:COMPILE :LISP-SO0URCE?

identifies the handier designed 1o baild purt of the sk gruph needed w sccomplish the compilation of a Lisp
sopree grain, The signature:

S:YACT :YACC-GRAMMARS

identifics the handler that will build part of the task graph necded to invoke YACC on a grammar.
Mot all pessible signatures will have handlers defined for them, For example the request signature:

CrCOMPILE :LISP-BINARY

identifies a nonsensical request,

Presreference reguest handlers are used 1o construct the parts of a task graph which will be needed
regardless of the ramifictions of references, For example, in order o model the compilation of some
tLISP-S0URCE grain, G.LISP, the fillovwing links can be made without considering any references; the
g-node representing G, LISP should be linked e the SOURCE port of a : LISP=-COMPILE p-node, and then
the BINARY pont of this prnode should be linked w a g-node representing the binary version of 6. LISP [ie.,

G.BIN).

m SOURCE BINARY

LISP-COMPILE

Post-reference request handlers are used for modeling processing that can only be deduced after the
implications of the references are added o the task graph, At this ime it has not been necessary (0 use a post
reference handler, howewer, they are included becawse there may be situations where their use i appropriate,

Defining Request Handlers
Request handlers are defined with DEFINE-REQUEST-HANDLER, Calls have the form:

(DEFINE-REQUEST-HANDLER (REQUEST GRAIN-TYPE-NAME PRE-OR-POST)
{ARGS)
&BODY BODY)

REQUEST The name of the reguest being handled.

GRAIN-TYPE-NAME
The type of the grain that the handler is for,

PRE-DR-POST :PRE indicates that this is a pre-reference handler. :POST indicates that this is a post
reference handler,

ARGS The names of the variables pissed w the handler, There must be at least one clement in
this list, ‘1he first ARG will be hound o the grnode associated with the request when 80DY
is cvaluated.

BODY The forms that constituie the handler. They are evaluated with the arguments passed Lo
the handler bound (o the variables named in ARGS.

All requests made by users have a single argument, the name of the module that the request i intended For.
Handlers may also make roquests, and these requests can contain more than one argument. The handlers for
the :LOAD+ and : INCLUDE+ tasks presented in Appendix 1 are cxamples of handlers using additional
argUmenls.

Figure 31 contains the request handler definitions for Lisp compilation and loading. The first handler is
invoked when a 1 COMPILE requecst is made on a :LISP-S0URCE module, It uses ACCESS® Lo ensure that
the task graph being derived models the fact that the :LISP-S0URCE grains in the module need o be
compiled.

Ihe second handler & nvoked whon a : LOAD reguecst is made on a @ LISF-S0URCE module, The first
thing that the handler does is W initiate a :COMPILE request on cach of the grains in the :LISP-5S0URCE
modube. and then it models the fact that the s BINARY grains produced by compilation need to be naded.

Handlers cnsure that sk graph paths cxist. After a handler has been invoked on a grain once, additional
invocations will have no effect, Therefore, sk definers need only be concermed that the proper handlers are
invorked at Jeast once and do not need o worry about additional invocations,

(DEFINE-REQUEST-HANDLER (:COMPILE :LISP-SOURCE :PRE) (SOURCE-NODE)
(ACCESS* SOURCE-NODE ((SOURCE :LISP-COMPILE) BINARY)))

(DEFIME-REQUEST-HANDLER {:LOAD :LISP-SO0URCE :PRE) (SOURCE-NODE)
(PROCESS=REQUEST :COMPILE SOURCE-NODE)
(ACCESS* SOURCE-NODE {(SOURCE :LISP-COMPILE) BIMARY
(BINMARY :LISP-LOAD-BIN) IMAGE)))

Figure 51: Request Handler Definitions for Lisp

5.3 Reference Handlers

Reference handlers realize the implications references upon construction graphs. The construction
implications of a reference depend upon the kind of reference, the request. and which part of the reference
(right or left) the module participating in the reguest belongs . Each handler is identified by a reference
handler signature that includes five ficlds: the three fields from the reference signature, the request name, and
a participation marker (either : RIGHT or : LEFT). Sample signatures are;

£<:CALLS :LISP-S50URCE :LISP-SOURCE> <:LOAD :LEFT22
C£rCALLS :C-SOURCE :C-S0URCE> <:COMPILE :RIGHT:>
£ :MACRO-CALLS :LISP=-SOURCE :LISP-SOURCE> <:COMPILE :LEFTX>

Mot all references are relevant to every request made. For instance, the reference
(:CALLS LISP-5DURCE-1 LI SP-SOURCE=2)

has no implications when a request is made o compile LISP=S0URCE -1, However, if the request is to load
LISP-SOURCE -1 For cxccution, then the reference implics that LISP-S0URCE-2 needs to be loaded. It is
also important o recognize that the dircetion of the reference matters. For example, the reference above has
implications when LISP-S0URCE =1 is loaded, but, it has none when LISP-S0URCE-2 s loaded.

Defining Reference Handlers
[Eelerence handlers are delined with DEFINE=REFERENCE-HARDLER. Calls have the form:

(DEF INE-REFERENCE-HANDLER ((REFERENCE LEFT-TYPE RIGHT-TYPE)
(REQUEST DIRECTION))
(ARGS)

EBOOY BODY)
REFEREMNCE Thie name of he reference heing handied,

LEFT-TYPE The grain type of the left (first) module in the reference.

RIGHT=TYEF 'I'he grain type of the right {sccond) module in the reference,

REQUEST The name of the requcst being handled.

OIRECTION Fither s LEFT or : RIGHT, “This ficld identifies the modute that the request being handled
refers o,

ARGS The names of the variables passed to the handler, these will be bound when BODY s

evaluated. There msst be ot least two clements in this lisL The Gt ARG will be hound o
the left grain of the reference. ‘The second ARG will be bound w the right grain of the
reference.

BODY The forms that constitwte the handler, They are evaluated with the argumenis passed (o
the handler bound to the variables named in ARGS.

Figure 52 contains reference handler definitions for Lisp compilation and loading, The first handler
models the fact that the grain represented by CALLED=-NODE needs to be loaded, and that the resulting
:LISP-IMAGE grain plays the role DEFINITIONS in the compilation of the grain represented by
CALLING-NODE. The sccond handler ensurces that the grain represented by CALLED=-NODE is loaded.
Mote, while these handlers are sufficient o handle the common module interactions for Lisp systems, they are
not sufficient to handle all of the ways that Lisp modules may interact. More handiers would need o be
defined in order to propery handle all of the ways that Lisp modules can interact. The prototype
implementation of BUILD does not include these additional handlers at this dme.

BUILD guaranices that reference handlers are invoked after pre-reference request processing and therefore
handler writers may safcly assume that the effects of pre-reference request handlers will already be present in
the graph. For cxample, the :MACRO-CALLS handler discussed above assumes that the compilation of
CALLING-NODE has already been modeled.

5.4 A Task Description Delinition Example

This section presents an example of a sk description definition, The task defined is called
:LIST-S0URCE-CODE and it will produce formatted source code listings fora : LISP-50URCE module and
any ;LISP=S0URCE modules that it references. All of the defining forms for : LIST-S0URCE-CODE are in
figure 33.

First, the :LIST-LISP-SOURCE process type is defined. Instances of this type have a single input role
called SOURCE and a single output role called LISTING. ‘The function LIST-LISP-FILE & called
produce the grain filling the output role from the grain filling the input role. “The request handler for the sk
is wery simple, it models the fact that the source grain w be listed will play the role SOURCE in a
(LIST=LISP-SOURCE p-node and that a g-node should be amached w the LISTING role of that same

penode. The two reference handlers specify that grains which are called by a grain being listed should
themselves be listed.

:LIST=-50URCE-CODE shows the virtue of keeping system models separate from information about
tasks: onee its defining forms are evaluated, formatted listings may be oblained for any previcusly modeled
Lisp system without altering any system madels,

(DEFINE-REFERENCE-HANDLER {(:MACRO-CALLS :LISP-SOURCE :LISP-SOURCE)
{:COMPILE :LEFT))
(CALLING-NODE CALLED-NODE)
(PROCESS-REQUEST :LOAD CALLED-NODE)
(PUSH (ACCESS CALLED-NODE {{SOURCE :LISP-COMPILE) BIMARY
{BINARY :LISP-LOAD-BIN)} IMAGE))
(ACCESS+ CALLING-NODE ((SOURCE :LISP-COMPILE) DEFINITIONS))))

(DEFINE-REFERENCE-HANDLER {(:CALLS :LISP-SOURCE :LISP-SOURCE)
(:LOAD :LEFT})
{ IGNORE CALLED-NODE)
(PROCESS-REQUEST :LOAD CALLED-NODE))

Fipure 5-2; Reference Handler Definitions for Lisp

{DEFINE-PROCESS-TYPE :LIST-LISP-S0URCE
({SOURCE :LISP-SOURCE :SINGLE))
{{LISTING :PRESS :SINGLE SOURCE))
OUTPUT-STREAM . :
{ FORMAT OUTPUT-STREAM "~%LIST ~A"
(PATHNAME -MINUS-VERSION SOURCE))
{ FORMAT OQUTPUT-STREAM "~2LISTING ~A" SOURCE)
(LIST-LISP-FILE SQOURCE LISTING))

(DEFINE-REQUEST-HANDLER (:LIST-S0URCE-CODE :LISP-SOURCE :PRE)
{ SOURCE-NODE)
(ACCESS* S0URCE-MODE ((SOURCE :LIST-LISP-SOURCE) LISTING)))

(DEFINE-REFERENCE-HANDLER ((:MACRO-CALLS :LISP-SOURCE :LISP-SOURCE)
(:LIST-S0URCE-CODE :LEFT))
(IGNORE CALLED-NODE)
(PROCESS-REQUEST :LIST-SOURCE-CODE CALLED-NODE))

(DEFINE-REFERENCE-HANDLER ((:CALLS :LISP-S0URCE :LISP-SOURCE)
{ :LIST-SOURCE-CODE :LEFT))
{ IGNORE CALLED-NODE)
{PROCESS-REQUEST :LIST-SOURCE-CODE CALLED-NODE))

Figure 53: Definition For :LIST-S0URCE-CODE

6. Reprise

This chapter highlights several aspects of BUILD that have been presented in this report, The first section
summarizes how BULLD overcomes the difficulties associated with existing wols (soe chapter 23 The seoond
seclion discusses KU 'S construction framework and how it provides o base for describing new sks within a
static framework that conceals many bow level details from the sk definer. The final section proposes ways
that Bun o could be extended o provide capabilitics nt found in cxisting tools.

6.1 BUILD Compared With Existing Tools

IPhrased in terms of inter-maedule references. ‘The nun system modeling mechanzm allows wsers o
describe systems in terms that are natural for them. RUILD system models are easicr o understand and they
provide more infirmation than the construction directive lists used by existing tools.,

User definable task descriptions, BU1LDY'S tsk description mechanism is responsible for the fact that pUND
is not constrained o some embedded set of tsks, Wy scparating system models and task descriptions, RUILIS
knowledpe about construction can be modificd without requiring that system models be changed. However,
if o mew Lsk ® sensitive o a class of references previously ignored, then existing maodels will have w be
updated.

Intermediate grains are not referenced. The only grains that are referred o in a system are the source
grains that comprise modules. While Intermediate grains are used in BUILDY's task graphs, these graing never
appecar in system models,

All sowrce grains must be referenced. All of the source graing that participate in a system either reference
other grains in the system or are referenced by other grains in the system. Thercfore, since MALD models
encode system referencing patterns, all of the source grains in a system must appear in any well formed BUILD
model of that system.

6.2 BUILD's Construction Framework

BUILD provides procedures which guide the construction process. These procedures include hooks for the
components of user supplied task descriptions. The set of fixed procedures take care of low level construction
details that are common to all asks and allow task definitions to contain just the details that are relevant o the
particular task being defined. ’

The sk graph representation and analysis algorithm provide a uniform way o describe and perform
gyslem maintenance tasks. MNew process types and grain types can ¢asily be integrated into task graphs.

The ACCESS family of functions provide a general way for viewing and manipulating task graphs that
isolates handler definitions from the low level mechanics of instantiating nodes, matching grain types between
g-nodes and p-node pons, and actually linking nodes together.,

The task graph derivation algorithm ensures that pre-reference request handlers are invoked before
reference handlers and that reference handlers are invoked before post-reference request handlers, This
algorithm is also responsible for translating module references fnte a series of handler invocations, one for
each grain involved in a reference. Finally, the task graph derivation algorithm ensures that circular
references (ie., { :CALLS A B) (:CALLS B A))donotcause infinite loops during reference handling,

RLHNLD's construction framework allows task definers 1o concentrate on the significant details of the task
being defined {e.g. what process and grain types are used, what references are relevant and how should they
be handled etc.) and isolates them Trom low level details {e.g. task graph analysts, noede instantation .}

6.3 Extensions to BUILD

BuUILD provides a more graceful way of modeling systems than existing twols, yet it docs not provide
greater capabilitics, ‘This section proposes extensions to BUILD that would allow it w provide a scof facilities
that other twols do not, ‘The extensions are automatic derivation of system specifications from source code,
support for patching and similar maintenance styles, and the incorporation of the nature of module change

into the reconstruction algorthms,

Automatic Derivation of System Descriptions

The KU modeling mechansm provides a natural way to describe systems but it docs not ensure that the
descriptions arc complete or correct. Designers are still required to generate system models by hand. A o
that could derive system maodels from source code would relieve designers of the chore of building system
description files,

For simple languages, an analyzer could build a great deal of the model and locate arcas that might
present difficulties, For example, in most C systems all of the dependencies are caused by use of the
#TNCLUDE compiler dircctive and calls w externally defined symbols - the referenee assertions from these
references could be synthesized automatically,

While there may be programming environments in which it is possible to mechanize the derivation of
system models there are cortainly languages for which such derivation would become arbitrarily complex,
For example, Pitman develops an argument against automatic derivation of Lisp system models based on the
complications caused by macros [Pitman 84],

Patching

There are many instances where a system maintainer may want to introduce changes into a system without
making sure that the resulting system is consistent; for example, debugging experiments where small changes
are introduced o examine some small part of the system. These changes may not be intended to beoome part
of a released system, it may even be known that they will cause compilation of some other module to fail.
Another instance where the ability to patch a system s important is when a quick fix i being awempted and it
is important that the effects be scen quickly. This kind of change represents a tentative guess on the part of
the maintainer. The inroduction of such changes into systems must be supported by system management
tools if such tools are going to help and not hinder maintainers,

The DEFSYSTEM patch facility provides some suppaort for producing inconsistent systems. Unfortunately,
the DEFSYSTEM patching facility makes no use of the dependency information that the rest of the tool uses.
Mo analysis of the effect of a patch is available, Nothing guarantees that a patch will even be loaded correctly
according 1o the dependency information that is available. For example, if a paich file includes a modified
macro definition and two calls to it, the calls will not refer o the new version of the macro unless they are
placed after the definition in the patch file by the user,

System management tools should make use of system models in order to support patching. Patching
mechanisms should also supply information about the effoct that a patch may have on the rest of the system.
In BUILD, the analysis could be done by propagating the effects of a change through a task graph and then
identifying those modules that were alfecied by the change but ignored by the patch.

More Precise Change Analysis

All of the wels mentioned in this paper {including BUILDY are sensitive to the Bt that some change has
oecurred o a module in a system. However, no attention is paid to the nawre of the change. By exploring the
nature of a change it is possible w limit the amount of processing done when updating systems.

If source code s changed in a way thal cannot alter its compilation, there & no reason for the source
module 1w be recompiled. For example, compilation should not be done when source code has only been

refurmatied or had commentary added ot 16 a function is added to a modube, but no cxisting modules are
updated tw contain calls w the new function, nothing should be done w the existing modules. Lint libraries
are dependent upon the first pass of Lint however, most changes o the first pass of Lint will not affect the
librarics,

Change analysis can also provide important debugging information. For example, if a module interface is
changed, but not all of the modules that contain references w that module are changed, there is a possibility
that an error of omission his been made.

Linlike MAKE and BUTLD:, DEFSYSTEM can be exiended oo include more complicated predicates for
deciding when changes are significant. There is nothing proventing a DEISYSTIM system definition from
using parsers and source code comparison programs in order e decide when transformations should ake
place, Howewer, no enbanced predicates are supplied with 1ersysTeM and none of the DEFSYSTEM
descriptions encountered while prepaning this paper included definitions of such specialized predicates.

Specialized predicates can only be wseful if they require kess processing o determinge that a transformation
can be avoided than applying the ransformation in the first place. For instance, there i no point in using a
predicate o determine that compilation of o module can be avoided if that predicate requires more processing
than the compiler. BUND can step arcund this issuc by assuming that it s a single wol ecmbedded in an
integrated environment in which the tools that are used o modify modules can supply information w BUILD
aboul the nature of changes,

BUILEY could be extended w provide an imerface for communkcating information about changes to
modules, The information passed w0 BUILD would include the name of the grain modificd, the kind of
modification made, and the name of the new (Le. updated) grain. A new class of handlers called change
handlers would be introduced to aid in the determination of signifficans changes by the construction algorithm,

For cxample, the change assertion:

{ :ADDED-STRUCT DEFS)
would inform BUTLD that DEFS has been changed by adding a new structure and therefore modules that rely
on DEFS do net have to be re-<compiled. The compilation of unaltered modules can be aveided since there is
no way for them to refer to the new structure, The assertions:

[:ADDED-COMMENT DEFS)

[:RE-FORMATTED DEFS)
imply that no changes that can alier the compilation of DEFS have been made and therefore no ne-
compilation necds to be done.

The change handlers would contain listings of how types of changes alter the way in which grains play
their roles. For instance, one handler would note that re-formatting a piece of source code docs not change
the way that it plays the role S0URCE in instances of : LISP=-COMPILE.

References

[Ada B3]
Reference Marwal For the Ada Progromming Languape
United Stanes Department of Defense, 1983,
Ansi/Mil-5ud 18135 A

[Covprider T4)
Cooprider.
The Represeatation of Fawiilies of Soffware Sistems,
Phi¥ thesis, Carnegie-Mellon University, Apnl, 1979,

[Cristofior, et. al, #i]
Cristofior, Wendt, and Wonsiewice
Source Controd + Tools = Stble Systems.
In Procevdings of the Fowrth Computer Soffware and Applicaiions Coigfereince, pages pp. 327-532.
IEER, October, 1980

[13ckemer and Kron 76]
eRemer and Krom,
Programming-in-the-Large Versus Programming-in-the-Small.
IEEE Transactions on Software Fugineering SE-2{2):80-86, Junc, 1976

[Feldman 79]
Feldman.
Make - A Program for Maintzining Computer Programs.
Sofiware - Practice and Experience 3 3):pp. 255265, March, 1979,

[Haorsley and Lynch 79]
Horsley and Lynch.
Filot: A Software Engincering Case Study,
In Proceedings of the 4th International Corference on Sofitware Engineering, pages %499, 1EEE,
Seplember, 1979,

[Johnson 78a]
Johnson,
YACT - Yer Another Compiler Compiler.
Technical Report. Bell Laboratories, 1978,

[Johnson Tib]
Johnson.
Lint, a T Program Checker.
Technical Report, Bell Laborawories, July, 1978,

[Kernighan and Ritchic 78]
Kernighan and Ritchie,
The O Programming Languwage.
Bell Lahoratories, 1978,

Il ewis &3]
Lewis,
Fxperience With A Sysiem For Controlling Software Versions In A Distributed Environment.
In Proceedings of the Symposicnr on Application and Assessment of Automated Tools for Suffware
Devedaprnend, pages 210-219. TEEE, November, 1983,

[l .sskov 1)
Liskov oL al.
LU Reference Mamuaal,
1981.
Volume 114 of the Springer Verlag 1 ecture Motes in Computer Science

[Michell 79)
Mitchell, Maybury, Sweet,
Mesa Lavpwage Mannal,
Fifih edition, XEROX PARC, 1979,

[Pitman 34]
Pitman.
The NDeseripiion COF Large Sysioms.
Technical Report Al Memo 801, MIT Artificial Intelligence Laboratory, 1984,

[Rochkind 75]
Kechkind.
The Source Code Control Svstem.
IEEFE Transactions on Software Engineering 1(4):pp 364-370, December, 1975

[Schmidt §2)
Schmidt.
Controlling Large Software Development fn a Disiributed Envirommen.
PhI thesis, University of California Berkeley, Docember, 1982
This thesis is available as XEROX PARC Technical Report CSL-B2-7,

[Stecle 84]
Gy Steele It
Common LISP: The Language.
Digital Press, 1984,

[Tichy 30]
Tichy.
Software Development Condrol Based on System Structure Description,
PhiD thesis, Carmnegic-Mellon University, January, 1980,

[Tichy 84]
Tichy.
RCS = A Svstem for Version Control,
Technical Report CSIFTR-474, Purdue University, March, 1984,

[Weinreb and Moon 1]
Weinreh and Moon,
Lisp Machine Manual,
Fourth edition, Massachusetts Institute of Technology, 1981,

I. BUILD Definitions For C

"The definitions used by BUILD w mode] a Lisp environment have been given in the body of this report as
examples, This appendix contains the definitions used by BUILD © model 2 C programming environment
‘There are more kinds of commaonly used grain wypes in UNIX environmenis than in Lisp environmens,
hence there are more definitions needed o model all of the ways that UNIX grains can refer to each other,
Commentary has boen added w highlight the definitions.

Grain Type Definitions

(DEFINE-GRAIR=-TYPE :YACC-GRAMMAR :Y)
(DEFINE-GRAIN-TYFE :C-S0UACE :C)
(DEFINE-GHAIN-TYPE C-OBJECT 0]
(DEFINE-GRAIM-TYPE :C-LXECUTE :EXE)
(DETEINE-GRAIM-TYPE -SHELL-SCRIPT :SCHIPT)

Process Type Delinitions
It assumed that the functions C-COMPILE , C-LOAD, and YACT are available,

(DEFINC-PROCESS-TYPL C-COWPILE
{{SOURCE -C-50UHCE :SINGLE) {IMCLUDES :C-SOURCE -HULTIPLE))
({OBJECT C-OHJECT :SINGLE SOURCE))

STREAM
{FORHAT STREAM "-XCOMPILE ~A® [PATHRAME-MINUS-VERSION S0URCE))

{FOAMAT STREAM "-YCOMPILIMG -A" SOURCE)
{C-COWMPILE SOWMCE OBJECT))

{DEFINE-PROCESS-TYPE C-LOAD
{(PRIMARY :C-OBJECT :SIMGLE) (SECOMDARY :C-DBJECT :MULTIPLE))
{{TMAGE :C-EXECUTE :SINGLE PRIMARY))

STREAM
[FORMAT STREAM “-XLINK: ~A ~{=% <A<}"
{ PATHRAME -MINUS-VERSION PRIMARY)
(MAFCAR &' PATHNAME-MINUS-VERSION SECOMDARY))
[FORMAT STREAM “~%LINKING: =A ~{=% ~A=}" PHIMARY SECOMDARY]
(C-LOAD PRIMARY SECONDARY IMAGE))

(DEFINE-PROCESS-TYPE YACC
{ (GRAMMAR :YACC-GRAMMAN :SIMGLE))
{(PARSER :C-SOURCE :SINGLE GRAMMAR))

STREAM .
[FORMAT STREAH "-X¥ACL ~A" [PATHRAME-WINUS-VERSION GRAMMAR))

(FORMAT STREAM "~XYACCING -A" GRAMMAR)
{YACC GRAMMAR PARSER}))

Reguest and Reference Handlers
The request handler for C compilation models the Fact that the source grain needs o be compiled. The

omly reference that can have an cffect on C compilation is : INCLUDES. If GRAIN-1 includes GRAIN-Z,
then GRATN-1 indirectly includes any grains that GRAIN-2 includes, The tsk : INCLUDE+ (described later)
i responsible for gathering all of the grains included indirectly by a grain and attaching the corresponding
g-nides to the INCLUDES port of the : C=COMPILE p-node for the grain being compiled.

i3

:COMPILE :C-S0URCE

(DEF INE-REQUEST-HARDLER [:COMPILE :C-SOURCE :PRE) (SOURCE-NODE)
{ACCESS* SOURCE-MODE ((SOURCE C-COMPILE) OBJECT)))

(DEFIME-HEFERENCE-HANDLER ((:INCLUDES :C-S0URCE :C-SOURCE) | :COMPILE -LEFT))
{ TMCLUDTYMG-MODE TMCLADED-HOOE)
(LET {(COMPILE-PROCESS (ACCESS TRCLUDING-NODL ({SOURCE C-COMPILE))1))
[FUSH IMCLUDED-WODE (ACCESS+ COMPILE-PROCESS | TRCLUDES)))
(PROCESS-REQUEST :IMCLUDE+ ITMCLUDED-RODE COMPILE-PROCESS)))

Ifa :C-SOURCE grain calls another grain, then BULLD pessimistically assumes that it indirectly calls any
grain called by the second grain, The task : LOAD+ gathers all of the grains called indirectly by a grain in
order W ensure that the proper set of grains is linked waether, The lack of a tsk like : LOAD+ in Lisp is due
tr the fact that in Lisp environments, grains are loaded incrementally instcad of being explicitly linked

together,
i -LOAD :C-SOURCE

{DEFINE-BEQUEST-HANDLER {:LOAD :C-SOURCE :PRE) ({SOAMRCE - NODE)
{PROCESS-REQUEST :COMPILE SOURCE-NODE)
{ACCESS® SOURCE-MODE ({SOURCE C-COMPILE) OBJECT (PRIMARY C-LOAD) TMAGE)))

{DEFINE-REFEREMCE-HAMDLER {({:CALLS :C-SOURCE (C-SOURCE) (:LOAD :LEFT])
{CALLING-RDDE CALLED-NOOE)

{LET {{LINKING-PROCESS
[ACCESS CALLING-WOOE ((SOURCE C-COMPILE) OBJECT (PRIMARY C-LOAD}))))

(PROCESS-REQUEST :COMPILE CALLED-NODE)

{PUSH [ACCESS CALLED-WOOE ((SOURCE C-COMPILE) OBJECT])
{ACCESS+ LIMEIMG-PROCESS [SECOMDARY)])

(PROCESS-AREQUEST :LOAD+ CALLED-WODE LIMKING-PROCESS)})

{DEFINE-REFEREMCE-HANDLER ({:CALLS :C-SOURCE :C-DBJECT) (:LOAD :LEFT))
{ CALLIMG-MODE CALLED=-RODE)
{LET {{LINKING-PROCESS
[ACCESS CALLTNG-WODE ((SOURCE C-COMPILE) OBJECT (PRIMARY C-LOAD}))))
{PUSH CALLED-MODE {ACCESS+ LIMKING-PROCESS [SECONDARY)))
{PROCESS-RCQUEST :LOAD+ CALLED-WODE LINKING-FROCESS)))

Sometimes compiled objects are used as source grains (e.g. supplied librarics). These definitions encode
the knowledge needed to handle the loading of :C-0BJECT grains,

-

sLOAD C=0BJECT

L
FFF
T
e

{DEFINE-REQUEST-HANDLER {:LOAD :C-08JECT :PRE) (OBJECT-MODE)
(ACCESS® OBJECT-MODE {(PRIMARY C-LOAD] IMAGE)))

{DEFINE-REFERENCE-HANDLER {{:CALLS :C-OBJECT :C-SOURCE) {:LOAD :LEFT))
{CALL ING-NODE CALLED-NODE)
(LET [{LINKING-PROCESS {ACCESS CALLING-MODE {{PRIMARY C-LOAD)))))
(PROCESS-REQUEST -COMPILE CALLED-RODE)
(PUSH (ACCESS CALLED-MODE ((SOURCE C-COMPILE) OBJECT])
{ACCISS+ LIRKING-PROCESS |SECONDARY)))
(PROCESS-REQUEST :LOAD+ CALLED-ROOE LINKING=PROCESS)))

(DEFIME-REFEREMCE-HAMDLER ([:CALLS :C-0BJECT :C-0HJECT) {:LOAD :LEFT))
[CALLING-NODE CALLED=-MODE)}
{LET ((LINKING-PROCESS (ACCESS CALLING-WODE ((PRINARY C-LOAD}}}))
{PUSH CALLED-ROOE (ACCESS+ LIMEING-PROCESS (SECOMDARY)))
(PROCESS-RCQUEST :10AD+ CALLED-MODE LIKKIMG-PROCESS)))

Here are the handlers for : INCLUDE+ and : LOAD+, There are no request handlers associated with these
requests as all of the significant construction information that they imply arises from refercnces. These
handlers illustrate the use of more than two values being passed o reference handiers. The additional
parameter for : INCLUDE+ is the :C-COMPILE pnode which models the compilation to be done. ‘The
additional parameter for : LOAD+ is the p-node which models the linking to be done,

P
HHH : TRCLAAFE= :C-SO0URCE C-COMPILE

(DEFINE-HEFERENCE-HARDLER ((:IMCLUDLS :C-S(UECE -C-SOURCE) {:INCLUBE+ :LEFT))
{ IGNORE INCLUGED-NODE INCLUDING-FROCESS)
(PUSH TRCLUDED-MNODE (ACCESS+ IMCLUDING-PROCESS [INCLUDES)))
[FROCESS-REQUEST :INCLUDE+ IMCLUDED-MODE IMCLUDING-PROCESS))

FEE
HHH sLDAD+ :C-S0URCE C-LOAD

(DEFINE-REFEREMCE-HARDLER {{:CALLS :C-SOURCE :C-SOURCE} ({:LOAD+ :LEFT))
{ IGNORE CALLED-NODE LINKING-PROCESS)
{ PROCESS-REQUEST :COMPILE CALLED-ROOE)
(PUSK (ACCESS CALLED-WODE {(SOURCE C-COMPILE) OBJECT})
{ACCESS* LINKING-PROCESS {SECOMDARY)))
(PROCESS-REQUEST :LOADs CALLED-WOOE LINKING-PROCESS))

(DEFINE-REFERERCE-HANDLER {(:CALLS :C-S0URCE :C-0BJECT) {:LOADM+ :LEFT))
(IGRIAE CALLED-RODE LINKING-PROCESS)
(PUSH CALLED-MODE (ACCESS+ LINKING-PROCESS (SECONDARY)))
(PROCES5-REQUEST :LOAD+ CALLED-NODE LIWKIMG-PROCESS))

io: (LOAD+ :C-0BJECT C-LOAD

(DEFINE-REFEREWCE-HANDLER {{:CALLS :C-OBJECT :C-SOURCE) {:LOAD+ :LEFT))
{IGHIRE CALLED-WODE LIMKINMG-PROCESS)
{PROCESS-HEQUEST :COMPILE CALLLD-MODE)
(PUSH (ACCESS CaLLED-WOME {(SOURCE C-COMPILE) OBJECT))
{ACCESSs LINKETRG-PROCESS [SECONDARY)))
[FROCESS-REQUEST :LOAD+ CALLED-WOOE L IMEING-PROCESS))

{DEFINE-REFERERCE -MAMDLER ({:CALLS :C-0BJECT :C-DBJCCT) {:LOAD+ :LEFT))
{1GROHE CALLED-NODE LIMEIMG-PROCESS)
(PUSH CALLED-MODE {ACCESS+ LINKING-PROCESS (SECOMDARY)Y)
(PROCESS-REQUEST -LOAD+ CALLED-NODE LIWKING-PROCESS))

Here are the definitions used o model YacC's intcraction with C sysiems, 'The handlers capture the fact
that ¥aCC grammars may inclede and call ther grams.

(YACD : YACC-GHAMMAR

(DEFINE-REQUEST-HAMOLER {:YACC :YACC-GRAMMAR PRE) (GRAMMAR-NODE)
[(ACCESS® GRAMMAR-NODE (({GRAMMAR YACC) PARSER}})

(COMPILLE :YACC-GRAMMAR

a
0w Es
mr w1 oms

{DEFTHE-REQUEST-HANDLER [:COMPILE :YACC-GRAMMAR :PRE] (GRAMMAR-MODE)
[PROCESS-REQUEST :YRCC GRAMMAR-NODE)
[ACCESS® GRAMMAR-NODE (({GRAMMAR YACC) PARSER (SOURCE C-COMPILE) OBJECTR))

{(DEFTKE-REFERENCE-HANDLER {{:IMCLUDES :YACC-GHANMAR :C-SOURCE) (:COMPILE :LEFT))
{IRCLUDINE-NEDE [RCLUNFED-MODE)
{LET {{COMPILE-PROCESS
{ACCESS TWCLUDTRG-NODE ((GRAMMAR YACC) PARSER [SOURCE C-COMPILE}}}})
[FUSH TMCLUDEDR- HODE {ACCLSS5+ COMPILE-PROCESS {IMCLUBES b
{PROCESS-REQUEST ; IMCLUDL+ IMCLUDED-RODE COMPILE-FROCESS)}])

LOAD ; YALE-GRAMMAR

(DEFINE-REQUEST-HANDLER {:LOAD :VACC-GRAMMAR :PRE} (GRAMMAR-NODE)
[PROCESS-REQUEST :COMPILE GRAMMAR-NODE)
[ACCESS® GRAMMAR-MODE {(GRAMMAR YACC) PARSER
[SOURCE C-COMPILE) OBJECT
(PRIMARY C-LOAD) IMAGE)))

(DEFINE-REFERENCE-HANDLER {{:CALLS :YACC-GRAMMAR :C-SOURCE) (:LOAD :LEFT)}
{CALLIMG-NODE CALLED-NODE}
(LET {{LINKING-PROCESS (ACCESS CALLING-WODE {{GRAMMAR YACC) PARSER

{SOURCE C-COMPILE) OBJECT
{PRIMARY C-LOAD)}I))

{PROCESS-REQUEST :COMPILE CALLED=-NODE)

{PUSH (ACCESS CALLED-KWODE ({SOURCE C-COMPILE) OBJECT))

{ACCESS+ LINKING-PROCESS (SECONDARY)))
{PROCESS-REQUEST :LOAD+ CALLED-NODE LIKKING-PROCESS)))

{DEFIRE-BEFERENCE-HAMDLER ({:CALLS :YACC-GRAMMAR :C-OBJECT) (:LOAD :LEFT))
[CALLIMG-NODE CALLED-WODE}
(LET {(LINKING-PROCESS (ACCESS CALLING-RODE ((GRAMMAR YACC) PARSER
{SOURCE C-COMPILE) OBJECT
(FRIMARY C-LOAD)}}D)
{PUSH CALLED-WOOL (ACCESS+ LINKTNG-PROCESS (SECOMDARY)))
{PROCESS-REQUEST :LOAD+ CALLED-MODE LINKIWG-PROCESS)))

Here are the definitions used W handle s SHELL-3CRIPT grains. A request w compile or load a shell
script is interpreted womean Uiat all of e modules called by the script should be compiled or loaded.

Si COMPILE :SHELL-SCRIPT

{DEFINE-REFERENCE -HAMOLER (f:CALLS :SHELL-SCRIPT -C-SOQURCE) (:COMPILE -LEFT}))
{ IGNORE CALLED=-MODE)
(PROCESS-REQUEST :COMPILE CALLEDR-RODE))

(DEFIRE-REFERENCE-HANGLER ((:CALLS :SMELL-SCRIPT :C-0@JECT) (:COMPILE :LEFT}))
{ IGHORE CALLED-MODE)}
(PROCESS-REQUEST COMPILE CALLED-WOOE)}

{DEFIRE-AEFERENCE -HANDLER (f:CALLS :SHELL-SCRIPT :YACC-GRAMMANR) { :COWMPILE :LEFT))
{ IGHORE CALLED-MODE)
(PROCESS-REQUEST :COMPILE CALLED-ROOL})

(LOAD -SHELL-SCRIPT

[DEFTRF-REFFRENCE-HAMDLER (f:CALLS :SHELL-SCRIPT :C-SOURCE) o :LOAD :LEFT))
[IGRORE CALLED-MODE)
(FROCESS-REQUEST ;LOAD CALLED-ROGE))

(DEFINE-REFERENCE-HAMDLER ({-CALLS :SHELL-SCRIPT ;C-OBJECT) {:LOAD LEFT))
{ 1GROKE CALLED-NODE)
{PROCESS-REQUEST :LOAD CALLED-NODE})

{DEFIME-REFERENCE-HAMDLER ((:CALLS :SHELL-SCRIPT :YACC-GRAMMAR) (:LOAD :LEFT))
{ IGRDORE CALLED=-MODE)
{PROCESS-REQUEST : LOWD CALLED-WIDE))

