106 4L

oYy Ioylouy 0TIV

19JJO 98enSue

~ 3sBeH "M YIoUuuoy

Technical Report 901

ARLO:

Another
Representation

Language Offer

Kenneth W. Haase, Jr.

MIT Artificial Intelligence Laboratory

Tius blank page was inserted to preserve pagination.

ARLO
(Another Representation Language Offer)

The Implementation
of a Language for
Describing Representation Languages

by
Kenneth W. Haase Jr.
MIT Artificial Intelligence Laboratory
Cambridge, Massachussets 02139

This paper describes ARLO, u representation language language loosely modelled after Greiner and Lenat’s
RLL-1. ARLO is a structure-based representation language for describing structure-based representation languages,
including itself. A given representation language is specified in ARLO by a collection of structures describing how its
descriptions are interpreted, defaulted, and verified. This high level description is compiled into lisp code and ARLO
structures whose interpretation fulfills the specified semantics of the representation. In addition, ARLO itself — as a
representation language for expressing and compiling partial and complete language specifications — is described and
interpreted in the same manner as the Janguages it describes and implements. This self description can be extended or
modified to expand or alter the expressive power of ARLO’s initial configuration. Languages which describe themselves
-~ like ARLO — provide powerful mediums for systems whicl perform autoematic self-mecdification. optimization,
debugging, or documentation. AT systems implemented in such i self-descriptive language can reflect on their awn
capabilities and limitations, applying general learning and problem selving strategies to enlarge or alleviate them.

This empty page was substituted for a
blank page in the original document.

ARLO Ken Haase

Acknowledgements

In the last four years-at- MIT, so many people ~ both in the Institute and outside of it — have touched
my life in special, magical ways. These acknowledgements are long, but they only begin to offer appropriate
thanks for gifts of knowledge, support, and care from all those who have so freely given.

One’s footing always feels firmer when secured on a certain foundation, and the advice and guidance of
Marvin Minsky and Patrick Winston has been just such a constant support and foundation during my career
at MIT. The research described here and the research and studies that led to it would not have been possible
but for their advice, inspiration, and well-placed admonitions. More than contributing to this research, they
have contributed to me, and my debt is both to them and the intellectual environment they have created at
MIT.

Without particular aims - in the form of specific scenarios or particular problems - artificial intelligence
goes little beyond ”engineering for philosophers”. The ends of the research describe in this thesis have
often been shaped and molded by the dreams and quests of researchers at ATARI’s labs in Cambridge and
Sunnyvale. The environment and ”dreams in the making” at these institutions were the products by many
people, but I especially wish to thank Alan Kay, Margaret Minsky, and Cynthia Solomon for their support
and inspiration. These individuals — and the many others once or still at ATARI’s labs — helped shape an
environment in which tomorrows could be made.

MIT’s Artifical Intelligence lab has been another constant source of intellectual support and inspiration
in my career at MIT. The students, faculty, and staff of the Al lab have greatly enriched the intellectual
content of the author’s life. Particularly, Phil Agre, John Batali, Dave Chapman, Ken Forbus, Dave Levitt,
and John Mallery have — with their constant interest and dialouge — both sustained the author and greatly
improved the intellectual aims of the research here described.

Despite these firm supports, the sanity of the author has often been strained by the barrage of deadlines,
classes, and the prodigous bulk of MIT as an institution. Saving me from this barrage are many friends who
have enriched and blessed my life. Thank you Gumby, Margret, Danny, Gary, Charity, Hazel, and Jim. To
you and all the others I fear I have forgotten, I love you all.

The Beacon Hill Friends Meeting has been a source of joy and inspiration - of a different kind - since
my discovery of it nearly two years ago. To all of you — but especially Howard, Ginny, Gordon, and Mary -
I bear a debt of joyous reflection and blessed quietness. God bless you all, dear Friends.

Much of the support for this research was provided by the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research Contract N0O0014-80-C-0505. Of course, the opinions
in this thesis are those of the author and in no way reflect the opinions of the Department of Defense or the
US Government. In turn, the opinions of the Department of Defense also in no way reflect the opinions of
the author.

Finally, but most constantly, my family has been a support - before and above all other supports - of
my studies and research. They have endured my many missteps and failings, and returned love and support.

I wish I could adequately return what they have given me.
Ken Haase

Cambridge, Massachussets

This empty page was substituted for a
blank page in the original document.

This empty page was substituted for a
blank page in the original document.

ARLO

CONTENTS

Chapter 1: ARLO: Representing Representations

1.1: What Good is Representing Representations? .
1.1.1: RLL’s as implementation languages .
1.1.2: RLL’s as Mediums for Programs Which Grow .

1.2: Representation as Inference :
1.2.2: Spontaneous and Deliberated Inference .
1.2.2: Characterizing Spontaneous Inference
1.2.3: The Evolution of Spontaneous Inferences .

: What is ARLO? S
1.4: Basic Concepts: A User’s Introductlon

Chapter 2: ARLO’s Implementation .
2.2: Units and Knowledge Bases
2.2: The Value Dependency Mechanism

2.2.1: Dependency Mechanism Protocols .

2.3: ARLO Errors and Conditions
2.3.2: Anticipating errors
2.3.2: Classes of Errors

2.5: Reflexive Operators

2.5.0: Staunching an infinite regress .

2.5: Representing Representations: The Detalls
.5.1: Generic Objects & Shadow Slots
.5.3: Type Restricted Slots
.5.3: Defaulting Slots .
2.6: The ARLO Coder
2.6.1: Representing Programs .
2.7.0: ARLO’s Coders
2.7.0: User Defined Functions .
2.7. The Type System :
2.8: Archives and Layers: Saving Representations .
2.8.1: Layers

[T I o

Chapter 3: An E\ample Representatlon
: Building Basics
3.2: Defining Slots

3.3: Inheritance Mechanisms .

iii

Ken Haase

L T e S S o S e S Sy

ARLO

3.4: Shadowing Slotl Definitions
3.5: Building the data base .

3.6: At
3.6.1:
3.6.2:
3.6.3:
3.6.4:
3.6.5:
3.6.6:

the Console .
Defaulting of Slots .

Dependencies and Decaching

: Other slots

Errors .o
Shadowing Deﬁnltlom
Modifying our language

Chapter 4: An Example: Introspectlon

4.1: Explanation Structures

4.3: Textual Generation

4.3: Graphical Presentation

4.4: An
4.4.4:
4.4.4:
4.4.4:
4.4.4:
4.4.7:
4.4.7:
4.4.7:
4.4.8:

4.4.12:
4.4.12:
4.4.12:
4.4.12:

Explanation of the IN QUIR system
Units without any prototype.
Units with a prototype of Hacking ..
Units with a prototype of Hand Coded Functlon
Units without any prototype.
Units with a prototype of Hacking ..
Units with a prototype of Hand Coded Functxon
Units with a prototype of Person Slot
Units with a prototype of Person .

Units with a prototype of Slot .

Units with a prototype of Shadow Slot

Unite with a prototype of Type

Units with a prototype of Winner

Chapter 5: Conclusion
5.1: Flaws in ARLO

5.1.2
5.1.2:

. Flaws iu the Dependency Network .

Flaws in Combining Slot Actions

5.2: Why RLL’s are no good
A-0.3: Why RLL’s Aren’t So Bad

Ken Haase

32
35
35
37
42
44
46
49
54
54
55
55

60
60
60
60
61
61
62
62
63
65

ARLO

Chapter A-1:

Appendices

An ARLO ‘Explanation’

A-1.1: bnlts defined in Arlo: SOURCES; BOOT

A-1.1.2:

: Units with a Makes Sense For slot of Any-Type
A-1.1.2:
A-1.1.3:

Units with a Makes Sense For slot of Slot-Type
Units with a Makes Sense For slot of Unit-Type

A-1.2: Units defined in Arlo: SOURCES; CODERS .

A-1.2.2:
A-1.2.2:

Umits with a Data Type slot of Any-Type
Units not classifiable by Data-Type .

A-1.3: Units defined in Arlo: SOURCES; CODING

A-1.3.2: Units with a Makes Sense For slot of Coded-Function-Type

A-1.3.2:

A-1.3.4:

Units with a Makes Sense For slot of Coder-Type

Units with a Makes Sense For slot of @T[Function- Type]
A-1.3.4: Umits with a Makes Senze For slot of Implemented-Function- Type
A-1.5.2:

Units not classifiable by liekes-Sense-For .

A-1.5: Units defined in Arlo: SOURCES; LISP
A-1.5: Units defined in Arlo: SOURCES; TYPES .

A-1.5.2:
A-1.5.2:
A-1.5.5:

A-1.5.5:
A-1.5.5:

A-1.5.6:

A-1.6: Units defined in Arlo: SOURCES: V\HISTLES

Chapter A-2

Units without any prototype.

Units with a prototype of Coder

Units with a prototype of Function Descnptor
Units with a prototype of Hand Coded Function
Units with a protétvpe of Slot

Units with a prototype of Type .

2: An Explanation ‘Explanation’

A-2.1: Units defined in Arlo: AI; DOCUMENT

A-2.1.2:
A-2.1.2:

A-2.2.2:

Units with a prototype of Explanation Slot .
Units with a prototype of Hand Coded Function
Units with a prototype of Slot

A-2.2: Units defined in Arlo: Al; EXPL /&IN

A-22.2

A-2.2.4:
A-2.2.4:
: Units with a prototype of Hand Coded Functlon
: Units with a prototype of Slot

: Units without any prototype. .
Units with a prototype of Exp]anatlon Slot
Uinits with a prototype of Explanation

Units with a prototype of Type .
Uiits with a prototype of Unit Explanation q]ot

v

Ken Haase

66
66
66
66
68
70
70
70
71
71
71
72
72
74
74

74
74
74
75
75
75
76

77

79

79
79
79
81

81
81
82
82
82
83
83
34

ik

ARLO Ken Haase

Reading this thesis

The paper in your hands began as a primer for ARLO users, but with time it has — much like ARLO
itself ~— grown, mutated, and gone through rearrangements. The bulk of this paper discusses representation
language languages in general, and the detailed implementation of ARLO in particular. These discussions are
followed by two examples presenting ARLO as both a system-building tool and as a framework for building
auto-analytical systems.

The first chapter presents motivations for representing representations, and makes some first steps
towards generally characterizing what is meant technically (as opposed to philosophically) - in the Al

> It then introduces ARLO as a language for representing representation

community — by “representation.’
languages. The chapter closes with a scenario of a new user being slowly introduced to ARLO’s functionality,
features, and faclities.

The second chapter steps behind the scenes to talk about ARLO’s internal construction, detailing how
the mechanisms of the preceding scenario actually operate.

The third and fourth chapters of the thesis portray ARLO in two different roles. In the third chapter,
a toy language for describing people and their interrelations is implemented; this language is then used to
describe the members of an imaginary research lab. This embedded language and database is then examined
and extended in an annotated script of a user’sz interaction with the system. This script illustrates ARLO’s
facilities for accessing, modifying, and extending its representations.

The fourth chapter presents an example of tools which examine representations and descriptions de-
veloped in ARLO or its extensions. It describes an explanation system which takes a collection of ARLO
structures — describing either some domain, some representation language, or both — and produces an en-
glish description of the structures. The focus and organization of this description is generated from general
properties of its topical structures extracted for the structures themselves. The explanation mechanism is
then applied — as a demonstration — to antomatically generate a description of the in-core implementation
of the previous example (the laboratory database}.

Finally, in the appendices, this explanation mechanism is applied to both itself (the explanation system)
and the core of ARLO’s default counfiguration.

This empty page was substituted for a
blank page in the original document.

ARLO Ken Haase

Chapter 1
ARLO: Representing Representations

In |Ho80], Hofstader makes the sweeping claim that A] advances are language advances. While this is
certainly too broad a generalization, it has a hefty component of truth: we develop languages which reflect
our developing theories so that we may actually bring those theories to the touchstone of implementation.
As our proposals and theories advance and change, so do the languages — the abstractions and primitives —
used to implement them. If we are really engaged in ezperimental epistemology, as some have characterized
Al then the languages and representations we develop are the burners, flasks, lasers, and spectrographs of
‘our experimental laboratory.

But what precisely is an “Al language”? What distinguishes an Al language from a conventional pro-
gramming language used to write intelligent programs? One distinction we might draw is that Al languages
are languages embodying some theory of Al programs. The facilities which an Al language provides generally
grow from observation of the sorts of things which AI programs — written in either conventional languages
or other Al languages — tend to do: pattern matching, heuristic search, property inheritance, etc. A given

Al language combines a collection of these extracted primitives with a few organizational principles — mo-
tivated both theoretically and technically — to provide a framework in which writing intelligent programs
— encoding human knowledge and expertise — iz easier and more elegant.

Yet in a deeper sense, an Al language does not merely provide a framework for expressing knowliedge
and expertise in convenient ways; it implicitly embodies some knowledge itsell. The knowledge it embodies
1s the ontological foundation upon which programs or systems in it build: properties inherit in this way,
two things are similar (match) by this criterion, logical inferences are invalidated when this happens, and
so forth. In this sense, a given Al language is an Al program itself, embodying a particular theory of how
a particular part of the world works. 1t’s just that, in the case of representation langnages, the parts of
the world captured are techniques for representation and reasoning. But if an Al language is itself an Al

43

program. might we build a language whose “domain® iz these Al languages?

ARLO Ken Haase

This paper describes ARLO, a representation language language which describes and implements
representation languages, including itself. Descriptions of languages in ARLO are compiled into implementa-
tions, so that describing a given language in ARLO —ina sufficiently precise way — generates a reasonably
efficient implementation of the language as well as a manipulable description of its semantics and behaviour.

The first RLL (representation language language) was developed at Stanford by Greiner and Lenat
‘Grest]. Their implementation was dubbed RLL-1, and a version of it is used in Lenat’s automated discovery
prograni, Eurisko{Leng3]. Eurisko uses an accumulated body of heuristics to guide the mutative evolution of
representations and heuristics for various domains. A reflexive Al language — able to talk about and modify
itself and languages embedded in it — is ideal for this sort of evolutionary development of concepts and
expertise. ARLO was originally conceived as a Common Lisp [Ste84] version of the RLL-1, but has diverged
from it in several important directions.

1.1 What Good is Representing Representations?

Why do we need — or want — a language for describing representation languages? Our programming
languages already procedurally describe the representational mechanisms we use. What Is the point of
having an intermediate language for describing those mechanisms?

An auswer to this challenge may be revealed by describing what an RLL offers two distinct classes of
users: the expert.systems developer and the Al researcher. To the expert systems programmer tailoring
a representation for some understood domain, an RLL provides systems programmang tools for developing
a system’s representational paradigms and primitives. To the Al researcher building a program whose
understanding of its domain evolves through exploration and inner cogitation, an RLL makes a program’s
understanding of a domain into a manipulable stuff which the program itself can access.

1.1.1 RLL’s as implementation languages

The tools which an RLL gives the implementor of an expert system are primarily system programming tools—

tools which make the task of developing and debugging a given representation for a particular domain both

faster and easier. The features that make an RLL a powerful development environment for expert reasoning

systems are largely the same features that make modern LISP systems ideal for fast prototyping of any sort

of complicated system. LISP is a powerful development environment because (among other factors):

e Programs and data are uniformly represented; the same tools used to describe and modify programs
can be used to describe and modify data structures.

e Emhedded Languages — building on LISP’s data and program structures — can take advantage of
already existing facilities of the LISP environment.

e The language can be dynamically and incrementally extended, as experiments with the implementational
or theoretical feasibility of new ideas fail or succeed.

An RLL provides these same sort of features for higher level representational constructs:

e The description of a representation is accessible via the same mechanisms (in ARLO’s case the ac-
cessing or modification of values in slots on structures) as tlie representation itself; indeed, these same

mechanisms can be used to access and modify ARLO’s description of the language ARLO!

2

ARLO Ken Haase

e Tools built for describing, examining, or massaging a given representation can be easily generalized to
other representations. System tools — used for describing, defining, and modifying representations —
can be just as easily applied to the structures of the representation as to the representation itself.

e The definition of a representation — since it is stored as a mutable representation itself — can be
dynamically modified. An RLL can — and ARLO generally does — perform the appropriate bookeeping
to diminish unfortunate or fatal repercussions of such changes, while still supporting the intent of the
change.

The implementation of a given representation or program takes a high level task or goal and reduces it to
separately implementable parts. An RLL provides a tool kit and supply closet of such parts, where the
interchangability of its representational components makes mechanism or experience from one application
transportable to another.

1.1.2 RLL’s as Mediums for Programs Which Grow

To the researcher developing intelligent systems which grow and learn by themselves, an RLL offers a way to
let a program examine and extend its representation and understanding of a domain. The same properties
of an RLL which support design efforts of human expert system programmers make simpler the design of
mechanical expert system programmers which design and debug both other systems and themselves. While an
RLL does not neccessarily embody any fundamentally new learning or probiem solving technology, it does
provide a framework for describing such technologies generically and reflectively (so that any sufliciently
general mechanism can be effectively applied to its own description).

For any level in an RLL-based system — described problem, specified language, or the RLL itself —
the same mechanisms for accessing and modifying its description are available. Due to this homogeneity of
representation, faculties and tools built to operate on a given level may be applicable to other levels in the
system as well. Lenat’s Eurisko |Len83) system applies the discovery mechanism pioneered in AM {Len82]
to such diverse domains as three dimensional VLSI design, space gaming fleet design, and number theory.
But since the discovery mechanism — largely a collection of eclectic generation heuristics — operates in
and is described in an RLL, it can be applied to itself, improving its behaviour with the accumulation of
“experience” and examples in the application of heuristics.!

Analytic and descriptive tools developed in an RLL can generate summaries and descriptions of im-
plemented or evolved systems which are useful to both human and mechanical programmers modifying or
extending them. Further, since developnients in the RLL are generally extensions or modifications of exist-
ing structure, descriptive and manipulative mechanisms and metaphors may be automatically extended to
new applications in new domains. For instance, the grammar and dictionary of a natural language interface
might be automatically extended to cover newly developed or assimilated concepts or relations, growing by
extensions based on those concept’s derived semantics. Such an extensible language interface would explain
newly constructed or proposed concepts by using terms and grammatical forms extracted-from the com-
ponents which the concepts were developed from. In the same manner, the operations and presentations

TWonfortnnately, Eurisko’s experience is primarily embodied in the numeric worths assigned to its synthesized or
a priort heuristics. We might wish for a more symbolic description of the systems failures and successes as the

Vaesi= for this reflective miodification.

(2]

ARLO Ken Haase

offered by a graphical interface might be automatically extended to concepts and relations barely anticipated
in the interface’s conception. The interpretation of what some generic operation (characterized perhaps by a
particular gesture or vocalization to the interface) on an object should do may be derived from the system’s
description of it and of that description’s underlying semantics. An interface which represents what it 1s
interfacing to regularizes the user’s access to a changing program, making the implementation and debugging
of self-developing systems — programs which grow — an easier task.

1.2 Representation as Inference

Before leaping into the question of how representations may be represented, we may wish to characterize
exactly what we mean by representation. While we probably won’t find — and perhaps don’t desire — a
complete definition, we would like some sort of intuitive grasp of what an RLL should — and shouldn’t —
try to represent. This section presents a characterization of representation as a special sort of inference, and
briefly treats the consequences of this characterization.

1.2.1 Spontaneous and Deliberated Inference

In the beginning of this chapter, we slipped from describing Al programs to describing representation lan-
guages. But it would be hopelessly naive to claim that an Al program is merely its representation; what
issues have we glossed over in sharpening of our focus to representation? Which part of what Al programs
do is representation and which parts are something else?

Many, and perhaps most, of the actions of an Al program actively solving problems or operating in
some particular domain (including itself) can be classed as inferences connecting one partial description of
the world to an extension of that description. Such inferential actions further seem to fall into fairly distinct
classes: spontaneous inferences and deliberated inferences. Spontaneous inferences are the sorts of
inferences generally described with terms like tnheritance or defaulting, while deliberated inferences are those
inferences to which we apply terms like hypothesis or counterezample. This distinction between spontaneous
and deliberated inference is one made by nearly all Al programs, but is it merely an implementational
distinction, or is there a deeper semantic motivation behind i1t?

Certainly there is no such distinction implicit in the product of such inferences; spontaneous and delib-
erated inferences seem to share an identical character of belief or rational integration. The difference instead
lies in the act of inference itself, in the character of the action by which we extend our representations of
the world. If we characterize inferences as mental actions, spontaneous inferences might be looked at as the
basic actions of a rational agent making inferences. This introspective notion places a psychological, rather
than semantic, motivation behind the distinction between spontaneous and deliberated inferences. While
a formal analysis of any given inference system may best treat the two sorts of inference identically, any

implementation or psychological theory must retain the division.

1.2.2 Characterizing Spontaneous Inference

Are there other characteristics — besides the intuitive and psychological characterizations presented above
— for the distinction between spontaneous and deliberated inferences? Omne important clarification is that
the distinetion is not identical to the psychological distinction hetween conscious and unconscious mental

4

ARLO Ken Haase

activities. Conscious and unconscious activities each involve both sorts of inference; conscious reasoning
might be those deliberated inferences which are verbalizable, but even this may be going too far. In any

event, spontaneous inference is not psychologically subconscious activity; the knowledge that Clyde the

& >

elephant is gray, while a spontaneous inference, is certainly not a ‘subconscious” inference.

One distinction which we might make between these two sorts of inference is that spontaneous inference
never builds large mental structures. If we believe that there are aggregated collections of ideas in the mind
— structures — then spontaneous inferences may complete, fullfill, or verify these structures, but will never
construct them ez nihilo. Deliberated inference, on the other hand, has no such restriction; indeed, a large
part of its operation is the construction of just such loci of assumption and assertion.

Our names for the two sorts of inferences suggest another distinction which we should clarify. The ad-
jective spontaneous suggests that such inferences happen quickly, while deliberated suggests a more extended
process. While this is largely the intuition intended, we need to make clear when this inferential interval
actually occurs. Both spontaneous and deliberated inferences occur on demand; this demand may be of
physical neccessity or psychological intention, but the terms spontaneous and deliberated characterize these
inferences as actions carried out on demand, rather than as valid possibilities of action in a represented world.
Spontaneous — in our usage — does not mean that when I tell you Clyde is an Elephant you antomatically
infer that he is gray. It does mean that if I ask you what color Clyde is you can tell me quickly, withont
needing to go through any complicated intellectual machinations.

1.2.3 The Evolution of Spontaneous Inferences

Does deliberated inference become spontaneous over time? Is the distinction the same as the mechanomorphic
distinction proposed between “compiled” and “interpreted” knowledge? Without a more precise definition
of such “compilation”, it is hard to decide this latter question one way or another, but I suspect the answer
will be no. The process of compilation — as generally described in modern computer science — allows
programs to run faster by removing general character and making assumptions of context and reference.
Spontaneous inference does not rest on local assumptions of context or reference, as its execution may reach
across expanses of representation and structure. Taking the point about mental structures offered above,
spontaneous inferences are “fast” because they do not need to generate or access intermediate structure

created on the fly.

On the other hand, the answer to the first question above — ahout deliberated inference becoming
spontaneous — is probably affirmative. The way deliberated inference becomes spontaneous involves the
change of representation; deliberated inference in new domains works with structures formally representing
the domain and its principles — the manipulative principles of algebra or the force-motion axioms of hitting
baseballs; with time, however, the representation for the problem becomes specialized. as individual objects
and subproblems are placed in broad and powerful classes. It is by this process that deliberated inference
— referring to objects and general rules — becomse spontaneous inference — referring to properties and
particular paradigms.

Finally returning to the topic at hand, an RLL is a lanaguage for describing and Iniplementing spon-
taneous inference systems. The classification of inferences as spontaneous does not exempt them from tlie

restrictions we tvpically place on inferences. We still can demand consistency. accountability. and robust

5

ARLO Ken Haase

non-monotonicity. As such it must offer facilities for maintaining what we demand from inferences with a
minumum cost in their execution.

1.3 What is ARLO?

As suggested in the previous sections, ARLO embodies a theory of how representation languages work.
But like any theory tied to an implementation, ARLO’s carries its baggage of prejudices, leanings, and
restrictions. Most obviously, ARLO is prejudiced by an initial configuration as a frame-based language.
As initially configured, ARLO is a language for constructing data-structures — objects with properties —
which describe the operation and performance of other representation languages also based largely on data-
structures. In turn, ARLO is itself described by its own data-structures and this description is referred to in
compiling and interpreting the descriptions of representations described in ARLO. ARLO’s compilation and
description of a given representation references the in-core structures which define ARLO itself, rather than
being hardwired as LISP procedures. In compiling a given representation, ARLO is partially interpreting
its own description of itself.

How can such a self-referential interpretation process ever run efficiently? ARLO compiles the repre-
sentations it describes — including itself — into LISP code cached in quickly accessible locations in the
language’s description. This caching of values allows ARLO and representations described in it to run efh-
ciently once compiled. A value dependency mechanism? assures the accuracy of ARLO’s cached compilations
by updating or retracting them when the descriptions from which they were compiled are changed. Because
of this bookkeeping, representations described in ARLO — including ARLO iiself — can be dynamically
modified with relative impunity.

Greiner and Lenat’s RLL-1 is cast as a representational “organ,” whose stops and settings can be
modified by a performer or user, mutating RLL-1 into a language with some set of particularly desired
features. ARLO, while supporting this sort of fundamental mutation by providing access to its representation
of itself, is primarily designed to support ertension into new representational paradigms, without supplanting
its basic core. Instead of an organ, ARLO might better be perceived as a factory of synthesizer components
and patches, from which a user constructs whatever representational tools or paradigms she will.

The ability to mutate ARLO and languages described in it means that, in some ultimate sense, ARLO
is not really restricted by its intial configuration; ARLO could be used to define another RLL based on
assertions rather than frame-like data-structures. Such a representation, however, might not be acceptahly
efficient because of the way ARLO compiles itz descriptions: the way a frame system is compiled and
optimized 1= very different from the way an assertion based language would be compiled and optimized.
ARLO could be radically mutated to do such optimizations, but 1 certainly don’t claim to have done this,

and in some strong sense such an accomphishment would be a wholly different language.

2 . . . R . . . - o -1
2A value dependency mechianism is o generalization of propositional dependency mechanisms like Doy77) ar IMcATS).
It keeps track of what elements of the environment o given environmental side effect depends cn, updating or
undoing that side effect when those elements are changed. A prepositional TMS is a specialized sort of value de-

pendency syatem whicli perferma this maintenance function aver just the trath values of mijes and propositions,

6

ARLO Ken Haase

1.4 Basic Concepts: A User’s Introduction

ARLO is a frame based language.

A new user approaching ARLO in its initial configuration finds a classical “frame based” language much like
FRL [RG77] or UNITS [Ste7u]. In this language, she may create, examine and manipulate data structures —
called units — which possess properties — called slots — to which are attached values —— which are lisp
objects of various sorts. Each ARLO unit has a unique name relative to some knowledge base {a namespace
grouping many related units together), and its slots map symbolic names — each again relative to some
particular knowledge base — to single values. As in other frame based languages, the value of a slot is
sonietimes computed on demand; a slot’s attempted retrieval may compute a value (a default} for the slot if

one is not already available.

Defaulted values are cached and justified.

When the value of a slot of some ARLO unit is defaulted, the newly computed default is saved — cached
— on the unit itself. This caching allows subsequent references to the slot to return a value immediately,
without having to recompute a default value. Each of these cached values also records the justifications of
ite derivation: the function used to compute it and the slots referenced in its computation. When the user
later changes one of these supporting justifications, she finds that the cached default — typically listed when
the unit is described to her — disappears. When she asks again for its value, a new up-to-date default is
computed, and once more cached on the unit. The justifications of each of these defaulted slots are explicitly
available to the user: when she asks for a description of some particular slot’s value, its justifications are
listed along with the description of its value.

Different slots have different semantics.

From the justifications ascribed to various slots, our user discovers that different slots derive their defaults in
different ways. For instance, she finds that the Telephone-lIumber slot of a person-description defaults through
its Organization slot, while the description’s Home-Address slot defaults through the Spouse-Equivalent slot
attached to it. Further, in the process of creating and modifying various units, she finds that certain slots
will accept only certain types of values and will attach to only certain kinds of units. The Supervisor slot of a
person-description — for instance — accepts only other person-descriptions (determined by some inheritance
criterion in some hierarchy) for its values and attachments.®> When she accesses ARLO’s descriptions directly
from LISP (using a small repetoire of top level functions for accessing and storing values in slots) the user
discovers that the way in which slot values are printed and described also varies from slot to slot; a Birthdate
slot may store its value as a number in seconds since 1900, but this value is always printed out in a more
human-palatable form. Different slots in ARLO, she concludes, have different semantics: different sensible
values and attachments, different mechanisms for defaulting, different methods for describing their values,

etc.

These semantics are explicitly described in ARLO.

3The attachment of u slot is the wnit it attaches its value to. For the Home-Address slot of the unit Kris-Kringle, its
attachment j= the nnit Kris-Kringle, and its volue is “Nerth Pole, Earth”

ARLO Ken Haase

When at some point our user wishes to know more about the semantics of a particular slot, ARLO reveals
its accessible underside. To get a description of a particular sort of slot, she need only examine an ARLO
unit describing the slot to see a summary of its intentions, mechanisms, and restrictions as specified by its
human or mechanical implementor. Each slot in ARLO, she discovers, 1s described by an ARLO unit. For
example, if she wants to use a “color” slot defined by some other user, she can describe the the slot-defining
unit named COLOR to see its complete specification. This COLOR unit details many aspects of the “color” slot:
what types of objects can be stored as colors, which sorts of units may have colors attached to them, how a
color should be described to a user or even precompiled problem solving “cliches” for discovering or changing
the color of an object.

Modifying this description can alter the semantics of the language.

But these descriptions are not merely one-way windows on the semantics of the language; if the user is
dissatisfied with some part of the definition of the slot, she can modify the ARLO unit describing it and that
its semantics have changed. For instance, having the definition of the color slot “in hand,” she can extend or
modify different aspects of its semantics — such as how it is defaulted, restricted, or described — by usmg
established and familiar functions and utilities for modifying ARLO units.

ARLO represents implementation as well as semantics.

The ARLO description of a slot specifies not only its semantics — -its restrictions. and assumptions — it
also specifies its implementation. Since the methods for storing or fetching the value of a slot are explicitly
described in ARLO, different slots may be implemented in different ways. For instance, some slots might
store their values in a high speed “connection memory” [Hil85], while others might store their contents on
a shared storage device across a local network. While the initial ARLO configuration uses only immediate
storage techniques (storing values directly on the unit data structure), this in no way limits its ultimate
configuration or organization.

ARLO also represents its own semantics and implementation.

ARLO represents not only other representation systems, it also represents itself. The slots and units used to
describe the semantics of a given representation are themselves described in ARLO. This means that the unit
describing the To-Verify-Type slot 4 has a To-Verify-Type slot which is referred to whenever a To-Verity-Type
property is defined for a slot.

ARLO’s self-representation is made possible by an elaborate and circumventive bootstrapping process
that occurs when it is compiled and loaded. In this process, slot-describing slots — such as To-Get-Value
or To-Verify-Type — are defined as units with preemptively stored To-Get-Value or To-Verify-Type slots
referenced by run-time ARLO. ARLO’s bootstrapping process sneaks around the self-referential interpre-
tation mechanism to prepare a pre-compiled runtime environment which refers to itself in compiling and
interpreting other representation languages, including the remainder of itself.

The ability of ARLO to easily modify itself allows introspective activities like self-modification, self-

4The To-Verity-Type slot stores the function which a slot uses to determine if a given value and attached unit are
acceptable.

} 'mmnmARLO mmormaﬁifyy‘own reprY ,;

SFor instance, the documentation in the appmdzcas was mdm:ed by AR ;5,

apinlng aad describing its ow
description. e :

ARLO

Ken Haase

Chapter 2
ARLO’s Implementation

Most Al languages are implementation towers; it is popular to diagram the construction of a given Al pro-

gram as a tiered construction of implementation layers resting on a foundation of vanilla LISP. (Occasionaly

some clever wag also sketches in the machine language, microcode, logic circuitry, and semiconductor physics
beneath this LISP foundation.) Figure 2-1 is such a diagram for ARLO’s construction, illustrating the foun-
dational role each level plays in the next. This chapter describes these components of ARLO’s implementation
and the boostrapping process which consolidates them into a working self-referential implementation.

Second Bootstrap

Embedded Languages
|

First Bootstrap

Reflexive Opsrators
[Condition and Error System |
UNITS Yalue

Dspsndsncy
Mschanism

Objects & Slots

LISP

Figure 2-1. The Layered Implementaticn -f ARLO

10

ARLO Ken Haase

But Figure 2-1 is not quite the typical “layers of implementation” diagram; its details offer more content than
simply illustrating levels of embedded languages. The horizontal arrows on the figure indicate two iImportant
phases of ARLO’s deployment; each corresponds to the boostrapping of =ome component of ARLOs self-
representation. The first bootstrap is the definition of ARLO ax a representation defining language. The
second boostrap is the completion of ARLO’s type restriction system, which constrains the values aud
attachments of various slots.

As intimated above, a language implemented in ARLO remains reasonably eflicent by caching its com-
piled implementation on quickly accessible properties of its description. We might view this compilation
process as pushing ARLO’s execution down the tower of Figure 2-1. While a given representation is de-
scribed at the level just above ARLO’s definition, it is implemented and executed at the more efficient levels
below it.

The tower in Figure 2-1 has 11 distinct components, each of which plays a foundational role in the
components above it:

1. The LISP underpinning
ARLO is implemented in LISP Machine LISP [WMg2! for a variety of special purpose LISP Machines.
The version of ARLO described here is ARLO Version 25.30. running in Symbolics Release 5.2. ARLO
uses a variety of facilities developed for the LISP Machine, providing (among other capacities) special
capabilities for formatted output and “impatient i/o”.

2. UNITS: A Data Structure Facility
LISP is used to implement a data-structure facility for creating and accessing named objects with named
properties. These structures — called units after RLL — are implemented as fixed-length hash tables
which pair symbolic names to single values (which may of course describe sets of values). The names
of units and slots are organized by a namespace system which divides units into knowledge bases;
particularly, a knowledge base provides a many-to-one mapping from symbolic names to unit structures.

3. The Value Dependency Mechanism
Also implemented in LISP — or precisely, in Lisp Machine flavors — is a value dependency mechanism
for keeping track of dependencies between various properties and bindings of the LISP environment,
particularly the values assigned to the slots of ARLO units. This mechanism 1z used by a deployed
ARLO to keep track of its changing defaults as well as its changing semantic definition. The value
dependency mechanism is described in Section 2.2.

4. The Error Facility
No large system is perfectly bug-free, and ARLO’s self-referential implementation makes catching and
dealing with its internal problems a tricky task. Tracking and repairing an internal ARLO bug is often
like trying to climb out of a sand pit; each exploratory modification may shift or shatter the foundations
beneath you. Despite this, ARLO retains a degree of robustness through two mechanisms: the first 1s
the value dependency mechanism which ensures that changes in mechanisms described in ARLO from
component to component in the implementation; the second is a rich taxonomy of errors and conditions
which are signalled when ARLO detects itself going wrong. These errors describe conditions such as
obviously fatal recursions, type conflicts, or violations of bootstrap requirements. ARLO s facilities for

handling and signalling these unusual conditions is described 1 Section 2.5,

11

ARLO Ken Haase

10.

Reflexive Operators

ARLQ’s self-reference is centrally embodied in a mechanism called reflexive operators. Reflexive oper-
ators refer to ARLO unit structure to determine how to operate on and access other unit structures.
When the description of an embedded language (or of ARLO itself) is compiled, it is assembled into a
set of units wliose interpretation by reflexive operators fullfills the intended semantics of the langauge’s
description. Reflexive operators are an interpreter for frame like data-structure languages; the ARLO
language itself (interpreted by these mechanisms) is a compiler for turning high level representation
descriptions into structures for this interpretation process.

ARLO’s Definition

These are the units which define ARLO’s core, specifying a language — interpreted by reflexive operators
— which describes how the slots of a frame-based representation language default, restrict, and describe.
The detail of Figure 2-1 illustrates how the definition of these central units, skirting ARLO’s self-reference
mechanism, extends below the level of reflexive operators at ARLO’s first boostrap. The essentials of
ARLO’s definition — how it describes and defines the slots of various representations — are documented
in Section 2.5.

The ARLO coder

ARLO’s ability to define representation languages is used immediately in implementing ARLO’s coder
mechanism, specifying a language for describing the implementation of LISP functions. ARLO’s coders
expand partial descriptions of common representation functions (inheritance, composition, type restric-
tion, etc) into completely specified LISP implementations. These tools for function-building are detailed
in Section 2.6.

The TYPE system

On top of the coder mechanism, ARLO’s type system iz implemented. The type system implements
a non-excepting generalization hierarchy for predicates; these are used to specify restrictions on the
attachments and values of slots defined in ARLO. ARLO’s own initial description (which is used to
implement this hierarchy of types) refers to the type system by referencing the names of particular
types. The bootstrapping of the type system (the second dotted line on Figure 2-1) maps over every
unit in ARLO’s description of itself and replaces all of its symbolic type names with now-assembled
type descriptions. ARLO’s utility package extends the type system into a class system for organizing
units into overlapping description categories to which particular methods and heuristics are attached.
The basic form of the type system is detailed 1n Section 2.7.

Archives and Layers

A representation language Janguage allows a complicated program and representation to be extended (or
to extend itself) over time; but if the program must be rebooted and restarted each morning, its scope is
limited by its short lifetime. Archives and layers are a mechanism for wholly and incrementally dumping
ARLO representations and descriptions. The knowledge of a sophisticated program is a dynamic and
interconnected network of descriptions; archives and layers are tools for preserving those networks be-
tween sessions and even (if any projects are sharing particular representational tools) between domains,
The implementation of archives and layers is documented in Section 2.8.

The User Interface

12

ARLO Ken Haase

In the previous chapter, one of our arguments for the utility of RLLs was the expressive flexibility they
might bring to a user interface. ARLO’s user interface explicitly accesses and refers to the semantic
description of the descriptions it is presenting, offering different displays and options based on the under-
lying definition of what it is describing. ARLO’s interface — operating through a variety of “interface
modes” — determines its presentations and presumptions by its own description of the concepts and
relations 1t 1s preszenting.

11. Embedded Languages
Languages embedded in ARLO are finally built on the top of this edifice, taking advantage of the
descriptive and debugging facilities beneath them. Many representations built in ARLO (including
extensions of ARLO itself) do not build very high over the mechanisms which ARLO natively uses to
describe representation languages. These mechanisms — simple property inheritance, single hierarchy
type restrictions, etc — may be all a user needs for her application; but on the other hand, she may
easily implement more complicated representational constructs and abstractions at need.

2.1 Units and Knowledge Bases

Units are LISP structures which map named properties to LISP objects. Implemented as fixed length hash
tables, they can be thought of as a fast implementation of property lists. The implementation of units imposes
no semantic restrictions on what may be represented, outside of presuming that their exist objects with named
properties. Tle semantics of ARLO comes from the interpretation of descriptions constructed from these
units, much as the semantics of LISP comes — in a sometimes illusory sense — from the interpretation of list
structures. ARLO’s units — like LISP’s global function and variable definitions — are more or less global
definitions, but they are organized into many separate distinct knowledge bases.

Each ARLO unit has a name and is attached to a particular knowledge base, which 1s a structure
containing a collection of related units.® Within this knowledge base, the unit’s name is unique, though it
may possess other afiases in the same or different knowledge bases. To support this, each knowledge base
provides a many to one mapping from names to units; but for each unit, one of these mappings is it’s unique
irue-name used (by default) in printing and archiving it.

A unit’s printed representation looks like this:

{#>EXPLAIN: SUB-DIVISICIS}
where SUB-DIVISIONS is the name of a unit in the EXPLAI!N knowledge base. A user refers to a unit in a given
knowledge base by using the lisp reader macro “#>”. For example, the expression {#>EXPLAIL:SUB-DIVISIOIS}
refers to the unit whose printed representation appeared above.

ARLO’s knowledge bases are arranged in a hierarchy from the root CORE knowledge base, as pictured
in Figure 2-2. All units defined in a knowledge base are also defined in the knowledge bases below it. For
instance, every knowledge base contains the units of the CORE knowledge base; similarly, all of the units
defined in the EXPLATYN knowledge base will be defined in the THESIS knowledge hase beneath it. Knowledge
bases are a namespace mechanism and not a real “representational context” mechanism; user code cannot
easily refer ta “X in the current context,” but only to “X in the EXPLAIN context”.

SKnowledge hases are implemented on top of the Common LISP package system, a facility for maintaining mnlti-

P pmespaces inoa single LISP envircnment.

13

ARLO Ken Huase

INQUIR Rules Explain | — o>,

/.\\ /\ Other
AN /A Knowvledge Bases

/ Y
) \ J/ N g)
MIT Stanrorg Vs \ Scribe Thesis Memo

/ Synthesized
User-Defined

Figure 2-2. ARLO’s knowledge bases are organized into a hierarchy of name inheritance.

2.2 The Value Dependency Mechanism

ARLO’s slots are interconnected with a value dependency mechanism. When the value of a slot is defaulted
and cached, a dependency-record for the value is created referring to the dependency records of the values
accessed in computing the cached default. Each of these referenced dependency records is also given an
inverse pointer to the newly created dependency record. Later, if one of these referenced dependencies — an
“assumption” the cached default depends on — is invalidated, the dependency record for the cached value
is also invalidated. This invalidation decaches the out of date default, removing it from the unit structure
on which it was cached. The next attempt to access the value will then — in the absence of a cached value
— be forced to recompute a valid value for the slot.

The tracking of a slot’s dependencies is quite simple. When a slot is being defaulted, the global variable
"SLOT-BEI!G-DEFAULTED: is bound to a dependency record for the slot being defaulted. Every slot access
occuring during the computation of this default calls the form:

(ASSUMING wunit slot)
to make the dependency record kept in - SLOT-BEING- DEFAULTED dependent on the current slot of unit. This de-
pendency tracking may be disabled by the macro form AS-A-SIDE-EFFECT, which binds - SLOT-BEING-DEFAULTED
to ITL for the dynamic scope of its body, thus protecting any default computations in progress from depen-
dence on slots accessed in execution of its body. In addition, the call to ASSUMING is part of each slot’s
description, so individual slots might be defined to not reference the dependency creating form.

Dependency records for slots are stored in a non-reflective network (i.e. simply as named properties of
unit structures) defined in special knowledge bases associated with the knowledge base of the slot’s whose
vilues they describe. For instance, the dependencies for the #>CORE: To-Default-Value slot are stored on

14

ARLO Ken Haase

the #>CORE-DEPE!DE!IICIES : To-Defanlt-Value property (not slot) 7 of the unit whose #>CORE: To-Default-

Value slot they describe. A given slot’s dependency record may be accessed by the form:
(get-dependency-record unit slot)

which gets the dependency record describing the current value of unit’s slot. These dependency records are

implemented as flavor instances [Can83] which accept messages defining an invalidation, justification, and

description protocol.

2.2.1 Dependency Mechanism Protocols

ARLO’s value dependency mechanism uses the message passing facility of flavors to define a protocol for
the propogation of slot-value invalidation. In addition to this role, other protocols define ways of recording
justifications (which may later lead to invalidations) and documenting or describing the supports of an
assumed or deposited value. These protocols, however, never refer to slots or units in particular and is easily
extended beyond this; while most of the nodes in the dependency network describe the values of slots, many
do not. Some, for instance, describe value or function bindings in the LISP environment; others play critical
roles in the presentation — to the user — of the slot network.

In particular, several graphical interfaces to ARLO have the visual presentations of ARLO slot bindings
“wired into” the dependency network running between slots; the appearance of a given presentation in the
interface then changes with the validity of the slot value it represents. The graphical representation -— a
- flavor object — is defined to handle the invalidation protocol for dependency records and then connected
into the active dependency network just like any other node.

The invalidation and justification protocol iz defined by six messages which are sent to and passed among
nodes in the dependency network:

e . INVALIDATE-SELF invalidates a given dependency record and the dependency records which depend on
it. This is generally sent by an outside function, rather than from one dependency record to another.
"RETRACT-DEPENDENTS invalidates the dependents of a given dependency record. It does this by sending
all of its dependents a :SUPPORT-RETRACTED message (with itself as an argument), normally causing the
dependent value to be undone and spinning off another wave of :SUPPORT-RETRACTED niessages.

. - SUPPORT-RETRACTED is sent to a dependency record when one of the dependency records it depends on is

invalidated. The response of a dependency record to this message will typically go and alter the value
or assignment to which the dependency record refers. (This in turn will typically invalidate the node
receiving the message, and spin off new :RETRACT-DEPEIDENTS and :SUPPORT-RETRACTED messages.)

. . ADD-DEPE!DEIT adds a dependency record (its single argument) to the records depended on by the record
this message 1s sent to.

e REMOVE-DEPEIDEIT removes a dependency record (its single argument) from the records depended on by
the record this message is sent to.

. 'REPLACE-SELF replaces the dependency record it is sent to with a new dependency record (its single
argument). In order to side effect its value, the dependency record which receives this message should

kinow where the value it refers to 1= stored.

TThe distinction between a ‘property’ and a ‘slat” is that w slot has an abstract descripticn specifying the inter-

pretation and semantics of ite valies wnd o property” s simply o wmed attribnrion teo i,

15

ARLO Ken Haase

Dependency records also support a collection of niessages for debugging and explanation of the values they
represent. There are four basic messages for describing dependency records:

:DESCRIBE-COHUTENT describes the value its record represents. This is used by all the descripton functions.
This description is sent to the stream which is the messages single argument.

e . DESCRIBE-HISTORY describes the record it is sent to, as well as the record that record replaced, thus
producing a history of the value the dependency describes. It takes a stream as a single argument, as
above.

e :DESCRIBE-DEPENDELTS describes the other dependency records which depend on this dependency record.
It takes a stream as a single argument, as above.

e DESCRIBE-JUSTIFICATION describes where this value came from. If it was deposited by some person,
computed from some other slots, etc.

In the development of this protocol, it was neccessary to overcome the confusion of having two distinct net-
works: the unit-slot network and the dependency network. Early versions of the protocel did all propogation
of invalidation through the dependency network, causing numerous problems with slots which wished to avoid
or affect their invalidation in various ways. The final solution was the separation of the :SUPPORT-RETRACTED
and :RETRACT-DEPEIIDEITS messages by. reference to the unit-slot network. This harrier finally allowed the

dependency mechanism to avoid enforcing certain semantics on the unit-slot network.

ARLO’s initial configuration defines three basic sorts of dependency records: Slot-Computation-Records,
Slot-Citation-Records, and Slot-Boot-Records. Slot-Computation-Records are records of slot computations
(such as the computation of a default) which referred to other slots and can be invalidated by the invalidation
of those slots’ values. Slot-Citation-Records are dependency records which refer to a particular source and
attribution responsible for them. Typically these are references to users or text files. Slot-Boot-Records
describe slots defined before ARLO’s critical bootstrap period; attempting to invalidate these records results
in a proceedable error. This warning sometimes avoids fatal self-modification by programs in ARLO or

unsuspecting users.

2.3 ARLO Errors and Conditions

ARLO uses the lisp machines” condition system |Wei83] to define a taxonomy of conditions with which it
complains when it comes across unexpected or unusual situations. These conditions include both external
conditions (such as a particular user or machine not responding to requests) and internal conditions (such as
fatal recursions or type conflicts). Code using ARLO may auticipate and catch these conditions and there
is a standard facility — an ARLO coder — for doing this preemptive preparation. Futher, these conditions
are defined so as to offer standard ways to proceed from various situations as well as providing pertinent
information to the user when she is asked to haudle the condition (typically by entrance to the LISP Machine
debugger).

In order to handle and report errors effectively, ARLO keeps track of various parts of its dynamic

state. For mmstance, the current access state (the uuit operations currently i progre==) i= always available to

16

ARLO Ken Haase

the program in the variable -SLOT-ACCESSES-. ARLO uses this dynamic record for, among other purposes,
identifying when it is fatally recursing on some slot access. 8

The function where can be used to look at this part of ARLO’s current dynamic state: It produces a
trace that looks like this:

ARLO is currently:
4: trying to compute the Supervisor slot of {#>KYLE}

3: while getting the Supervisor slot of {#>KYLE}
2: vhile trying to compute the Hacking slot of {#>KYLE}
1: vhile getting the Hacking slot of {#>KYLE}

If you use the debuggers Contyol-M command to send a bug report on an ARLO condition, a version of
the above trace is included in the bug message. In addition, you can type the keystroke command Control-?
to get a vhere trace while in the debugger.

2.3.1 Anticipating errors

ARLO’s errors signal not only unexpected conditions — such as type conflicts arising from sloppy generated
or user code — but also “unfortunate” conditions such as failed searches or absent users. For both of these,
the program itself might want to take action when the error occurs. In the case of unexpected conditions
(what we might call true errors), the program might wish to repair or banish a definition or description; in
the case of unfortunate conditions, the program might wish to apply another method or simply assume a
harmless default. Harnessing the Lisp Machine’s condition handling system, ARLO is able to answer both
of these demands.

Unfortunate conditions are generally conditions of failed methods, for which there are alternative re-
sponses or actions. In ARLO, unfortunate conditions are handled by “try and try again” functions, which
possess many distinct methods for performing their computation, moving from one to the next if an error
occurs. These functions are typically synthesized by ARLO coders 2.6 such as the METHODS or EXPECTING
coders 2.7. When errors occur when these functions are executing, they throw out of the erring method and
advance to another or signally a final error if no more methods exist.

Unexpected conditions, on the other hand, generally arise from ill-formed programs or descriptions;
their occurence generally demands the alteration or generation of relatively large programs or descriptions.
Az such, the reaction to such errors falls into the class of operations which we identified in 1.2.1 as deliberated
inferences. Here we perceive a powerful pattern to the interaction of spontanecus and deliberated inferences:
deliberated inferences arise from the failure of spontaneous inferences. It iz only when our cached, compiled,
and common methods fail that we turn to the carefully constructive process of deliberation in our problem
solving. We must at least — if we wish to build mind-like systems with ARLO — provide explicit classes of
these unexpected conditions which reveal precisely how the languages definition and description have been

stralned.

B}f ARLO iz about 1o perform o slot access, it first checks that jt is not alrendy (further up the stack) perform-
ing it— if it is, it signals o Fatal-Recursion condition which may either be caught by ARLO’s “expectations” or
reported to the nser.

17

ARLO Ken Hause

2.3.2 Classes of Errors

A newly loaded ARLO defines a small collection of special conditions. A= ARLO (and programs using it}

venture into new domains, new technigues and new methodologies, this collection of conditions should grow

to become both more “worldly”™ and more tightly connected to the structure of ARLO.

All ARLO conditions inherit from the condition flavor ARLO-COIUDITION. Currently, the following con-

ditions are defined in a newly-loaded ARLO:

Fatal-Recursion is signalled when ARLO notices that it is trying to perform some operation which is
already being attempted. The user is offered the option to try the operation using non-reflexive sub-
primitives, or she may use the standard debugger commands to re-evaluate or return a value from the
fatally recursive call.

Slot-liot-Found is signalled when an attempt to inherit some slot through some relation fails— often
this error does not reach the user, but is caught and handled by ARLO itself. If it does reach the user,
she can proceed by either providing a value to cache locally, trying to inherit through another slot, or

looking on another unit for the value.

Unacceptable-Value 15 signalled when a value being stored on a slot is of the wrong type for that sort of
slot. If she wishes, the nzer may tell ARLO to go ahead and store the value anyway.
Unacceptable-Unit is signalled when a slot is being attached to a unit of the wrong type. As with
Unacceptable-Value, the user may tell ARLO to go ahead and store the value anyway. The abstract
condition flavor underlies both the Unacceptable-Value and Unacceptable-Unit condition flavors.

Boot-Conflict is signalled when a slot which was defined before ARLO’s second boostrap is being
invalidated. This will typically happen when a new value is being placed there. Going through with
such a replacement might cause a problem because such a slot may — in its boostrapped configuration —
implicitly depend on itself. E.G. ARLO may have to reference the slot being invalidated in order to finish
retracting it or put a value in it. While ARLO is generally robust about changes whose dependencies
are explicit (and thus non-circular), all bets are off for pre-bootstrap definitions which ground ARLO’s
self-description.

Cant-Default-Slot iz signalled when the value of a slot cannot be defaulted; this might happen if the
glot was never intended to default, or if all known methods for defaulting the slot have failed. Often this
may be caught by a prepared handler which then deposits its own “default” as a replacement value.
Out-0f-lLiethods is signalled when a try-and-tryv-again function ¥ runs out of methods to try in computing
some value. The user can proceed from this by providing eithier a value to use as a result or another
metliod to try. When this condition is reported to the user, it describes the methods it has already tried
in computing the value. Often this error is caught by higher level try-and-try-again functions which

move on to other higher-level approaches when this is signalled.

YA try-and-try-again function tries oue method after another to compute @ value, moving onto the next one if the
previous fuils. ARLO supports two sorts of try-and-try-igain functions: one moves onto the next method only if
the current method failz in some “expected way”; the other s a blanket version of the first, that tries the next

1 y

methed when any gort ~f error cecours,

18

ARLO Ken Haase

e User-liot-Found is signalled when a query to the user times out. This should be connected to ARLO in
a more intimate way, using a user model to decide when to quit, and being able to figure other methods
of contacting the user. (Such a model should also clearly incorporate some theory of etiquette!)

2.4 Reflexive Operators

ARLO’s operation refers to the in-core description of its own semantics in such a way that when its description
is modified, its performance changes. This is done via a data-directed mechanism called reflexive operators.
10 Reflexive operators are functions of the form:

(<operator> <unit> <slot> . <remaining-arguments>)
(where <operator> is a reflexive operator) and working by applying the To-<operator> slot (a slot also defined
in ARLO) of <slot> to the arguments <unit>, <slot>, and <remaining-arguments>. For example, the form:

(Put-Value #>Jane #>Age 25.)
takes the result of (Get-Value #>Age #>To-Put-Value) and applies it to the unit named Jane, the unit named
Age, and the number 25. This application might then (for instance) verify the suitability of 25 as the value
for Jane’s age or perform various dependency maintenance functions in addition to — or perhaps in place
of 11 — actually depositing the value.

In the same manner, the form:

(Retract-Value #>Jane #>Age)
works by taking the result of (Get-Value #>Age #>To-Retract-Value) and applying it to the units named Jane
and Age. This will then — typically — retract the value on the Age slot of the unit named Jane.

2.4.1 Staunching an infinite regress

The one significant exception to the reflexive operator mechanism is the Get-value function. The mechanism
described above runs into a snag when we try to define Get-value as a reflexive operator; we would like
Get-Value to work like any other reflexive operator, evaluating:

(Get-Value <slot> #>To-Get-Value)
to get an appropriate accessor, and applying this accessor to <unit> and <slot> to get a result. Unfortunately,
this approach ends up infintely recursing 12 on:

(Get-Value #>To-Get-Value #>To-Get-Value)
To get around this problem, Get-Value is only partially reflexive: instead of calling Get-value to find a
To-Get-Value slot. it checks <slot> and its prototypes — a relation defined as part of ARLO’s initial
configuration — for a To-Get-Value slot. A slightly cleaner version of thiz might look at the To-Get-value
data structure itzelf for the function to use in its search, rather than using a hard-wired definition.

2.5 Representing Representations: The Details

10T his terminalogy originates with ARLO.
1M the value heing deposited were inapporpriate by some criterion, it might signal an error instead of depositing
the vulue.

PZARLO nsually cotebes sneh fatal recursions and signals an errer eondition.

19

ARLO Ken Haase

The reflexive operator mechanism is an interpreter for structures specifying the implementation of frame-
based languages. From a partial description of a given representation language, ARLO generates — by
inheritance from abstract specifications and the synthesis of standard representation functions — the precise
details of its implementation. ARLO’s basic definition specifies the components of this generation process:
inheritance mechanisms, automatic coders, descriptive constraint predicates, etc. These primitive mecha-
nisms for language definition are themselves described in ARLO’s “pre-configured” representation and are
interpreted by reflexive operators in specifying and compiling other representations. The primitive definition
of this core can thus be extended or changed — carefully! — to alter or expand the capabilities of the
language.

ARLO’s central core is bootstrapped by setting up an initial description — to be interpreted by reflexive
operators — for a simple representation language. Facilities like coders and more complicated representation
compilers are then described (and executed) in this representation langauge.

In ARLO’s central core language, the primary inheritance mechanism — the mechanism by which
properties are declared abstractly and then propogated to particulars — is Prototype inheritance. This sort
of inheritance generates defaults for values by searching along the Prototype relations between units. The
Prototype hierarchy is an exception-shadowing hierarchy of slot inheritance which keeps dependencies for
its inherited and cached values. While representation facilities built in ARLO define and use other sorts of
inheritance mechamsms, ARLO itself goes little beyond this simple mechaniem.

When a user begins building a representation in ARLO, she generally uses the Prototype relation to refer
to a collection of pre-defined abstract slot descriptions, from which the particulars of ARLO and its embedded
representations inherit. A newly bootstrapped ARLO has a small collection of these prototypical slots,
defining simple classes of relations whose implementation details inherit through the Prototype hierarchy;
extensions to ARLO may well define entirely new such classes of slots beyond these.

The most basic sort of slot is the Primitive-Slot; Primitive-Slot is a non-defanlting, non-restrictive
slot, and lies at the root of the Prototype hierarchy of slots. The Prototype relation is a primitive slot,
but most other slots lie deeper in the slot inheritance hierarchy (the Prototype hierarchy) than this. The
first level of slot-types defined beneath Primitive-Slot are Generic-Slots. (Generic slots are the way ARLO
implements generic objects, an object oriented (as opposed to slot oriented) method of dispatching certain
slot and unit operations.

Beneath Generic-Slot, ARLO defines Typed-Slots whose values and attachments (the units they attach
their values to) must satisfy certain predicates. Beneath Typed-Slot is defined Slot. the protoypical slot

referred to by most of ARLO’s definition. Slot is a generic type-restricted slot which may compute “assumed”
values for its assignments.
The functional properties of these slots are not — unfortunately — automatically merged from com-

ponents along the hierarchy, but are hand-coded into implementation functions at for each new type of
slot. The To-Put-Value slot of Typed-Slot for instance, is hand-coded to operate generically, rather than
automatically acequiring the generic nature of Generic-Slot’s modifiers. Of course, this hand-coding is only
neccessary because they share the functional role of slot modification; the To-Put-Value slot of the defaulting
slot need not be specially coded. since Slot defines no new modification functionality and may just inherit

Typed-Slot’s To-Put-Yalue without merglng.

20

ARLO Ken Haase

2.5.1 Generic Objects & Shadow Slots

ARLO implements generic objects — as in SmallTalk |GR84! or flavors {WM82]|Can83] — with a mechanism
called shadow slots. In languages like SmallTalk or the Lisp Machine flavor system, the primary functional
operation is message passing, where an object is sent a message in order to perform an operation on or
with it. These languages are gemeric in that each object (or more precisely, each class of objects} has
local definitions for handling the messages it receives in different ways. In ARLO, on the other hand, the
primary functional operation is slot access (though the slot accessed may contain the definition of some
functional operator), and the character of the operation is determined by the global description of the slot
being accessed. Slots which are generic, however, permit a unit to shadow their global definition with a
locally specified redefinition; these redefinitions are other full-fledged slot descriptions which supersede the
global defaults. Thus, particular units may redefine some slot’s definition (where the definition 1s an ARLO
description) for themselves.

Shadow slots are implemented as a non-invasive extension of ARLO. By non-invasive, I mean that the
implementation does not modify ARLO’s reflexive operator mechanism but simply builds upon it. This is
done by having the implementation of a generic slot {as functions stored on the slot’s description) explicitly
check for replacement definitions of themselves on the the unit they are operating on. Most of ARLO’s slots
(and most of the slot accessing functions offered to users) contain this explicit check, encoded by the macro
Shadowing-Slot.

A generic slot looks for any “shadowed” definitions of itself by extracting its own Shadow-5lot-Slot
from the unit it is operating on. For instance, the Home-Phone slot might have a Shadow-Slot-Slot of
Shadoved-Home-Phone-Slot. The Shadowed-Home-Phone-Slot of any particular unit then contains the re-
definition of Home-Phone — if any — to use on that unit. Then, descriptions of people with unusual phone
numbers — overseas or buried in extensions — might have a Shadowed-Home-Phone-Slot whose defini-
tion would make their numbers acceptable or accessible despite some assumed global standard defined on

Home-Phone.

2.5.2 Type Restricted Slots

Another abstract slot is the type restricted slot. The type restriction mechanism in ARLO refers to types
defined in a non-excepting generalization hierarchy of predicates; the value and attachment (the unit a slot
attaches its value to) of a type-restricted slot are constrained by a pair of these types. (This hierarchy is
described in further detail in Section 2.7.) The Data-Type slot of a type-restricted slot determines what types
of values the slot may accept; its liakes-Sense-For siot determines what types of objects (typically units)
the slot may be attached to. The type checking predicates of a slot’s Data-Type and iakes-Sense-For slots are
merged into its To-Verify-Type slot; this value is a function of a unit, slot, and value about to be combined
which signals an error if either of the predicates fails. This error is proceedable, but of course such an action
may have dangerous repercussions.

Mozt of the slots of ARLO’s initial configuration are type restricted slots, constraining themselves by
reference to the predicate generalization hierarchy; but the relations forming this hierarchy (in their recursive
turn) are described and defined by ARLO. This circularity of reference is initially established when the type
Wierarchy is boatstrapped (recalling Figure 2-1). a major event in ARLO’= compilation and deployment.

ARLO Ken Haase

2.5.3 Defaulting Slots

SLOT is the abstract slot first referred to by most representations built on top of ARLO. As well as having
type restrictions as described above. units inheriting from SLOT have defaulting methods for generating absent
values. When no value for this sort of slot can be found directly on a unit, a default is generated by calling
the function stored on the slot description’s To-Default-Value slot. Thix function iz called on both the unit
being referenced and the slot being defaulted and returns the value computed and a truth-value (T or NIL)
to indicate the success of the computation.i?

Often, the To-Default-Value property of a particular slot must also be generated by default; the To-Default-Value
slot of To-Default-Value first tries to get a LISP implementation ofl of the slot’s High-Level-Definition
and failing this, ascends the hierarchy of abstract slot specifications (the Prototype hierarchy} looking for

a To-Default-Value slot to use. A slot’s High-Level-Definition — if it has one — is an abstract function
description which may be implemented by a lisp coder as described in Section 2.6 below.

In the final analysis, the semantics of most slots built on ARLO’s core (those inheriting from CORE: SLOT)
are determined by the two components of ARLO just introduced: the coder mechanism which describes
how “assumed” properties are computed and the type mechanism which constrains the values of slots by

predicates in a generalization hierarchy. Both of these modules are described in more extensive detail below.

2.6 The ARLO Coder

ARLO implements a facility called coders for generating lisp code from high level functional descriptions.
This facility is implemented by a representation language — described and implemented in ARLO — for
describing LISP functions. Using this Janguage, a user — or a sophisticated program — describes how partial
specifications of particular sorts of function are expanded into fully implemented lisp definitions. Coders
allow common representation functions — like property inheritance, network searches, function composition,
or value restriction — to he generated from their functional specification. Every coder generated function
begins with an ARLO unit which partially describes the function to be generated; the operational slots of
the function description — its lambda-definition, documentation, etc — are generated as defaults from this
description. When a user or program defines a particular coder, she is actually defining the way in which
certain slots — such as Lambda-Definition or Documentation — default for a particular sort of functional

deszcription.

Each time a coder implements a particular function, it constructz a unit describing the function; the
LISP definition. documentation, and name of the function are then generated by referring to methods stored

on the Coded-By slot of the description. The value of the Coded-By slot is also an ARLO unit a coder —

which has functional properties like Implementor, Documentor, or To-lLiame-Function. Coders — with these

I3This secend valne nses the multiple value rofurns of LISP Machine LISP.

22

ARLO Ken Haase

relevant slots — are defined by a Define-Coder form:

(Define-Coder (Coder-name . description-parameters)
documentation-for-coder
(function-name-specification . arguments-for-function)
documentation-spectfication
body-specification)

Define-Coder constructs a unit named coder-name which describes how to generate functions of some
particular type from specified description-parameters. These functions are actually generated as appropriate
Lambda-Definition slots for descriptions which are initialized with some given description-parameters. De-
scription parameters are slots stored on the functions’ descriptions, and it is by reference to these properties
of the description that the coder generates implementations, names, and documentation.

Each description parameter is either a symbol — in which case an indistinguished function-describing
slot with that name is created — or a list whose first element specifies a slot/parameter name, and whose
remaining arguntents are slot-value pairs to be deposited on the slot’s description (perhaps affecting it’s
implementation).

Function-Name-Specification specifies how to generate names for the functions the coder generates.
If it is a symbol (such as HATRIX-MULTIPLY), each function name is an iterated gensym of that symbol
(e.g. MATRIX-MULTIPLY-7).: If the specification is a lisp form, it is-evaluated to produce each function name,
referencing the description-parameters of the coded function as free variables, and the function description
itself by the variable coder-name.

Arguments-For-Function is the argument list for each function the coder generates. ARLO also knows
how to extract the argument list for general system functions not synthesized by ARLO, allowing operations
which use the argument list — such as functional composition — to be applied to functions defined by either
the user or other resident systems.

Documentation-Specification is a form which, accessing the description parameters and function descrip-
tion as free variables, prints documentation for the function to the stream STAUDARD-OUTPUT.

Finally, body-specification i a lisp form returning the body forms of the function generated by the coder.
As with the previous structure generating forms, this form may reference the description parameters and
function description as free variables.

The Define-Coder form creates a coder description — an ARLO unit named coder-name — which
describes how to generate names, documentation, and lambda definitions for the functions it codes. It
also implements a generator function, named coder-name, which constructs a function description with the
appropriate CODED-BY slot and with description parameters from its arguments. The function defaults the
lambda-definition — and LISP compiled definition — for this function description, finally returning the

generated name of the function.

2.6.1 Representing Programs

The coder mechanism was originally conceived as an embryonic, poor man’s version of the plan cliche repre-
sentation used in the Programmer’s Apprentice project at MIT {SR76!|Ric&0i|Wai7s! By representing typical
representation functions in this explicit way, the task of understanding or mmtelligently modifving ARLO

23

ARLO Ken Haase

definitions is far more straightforward. Mutative systems such as AM and Eurisko generally modified LISP
functions by heuristically munging s-expressions which encoded LISP definitions of relevant functions. The
coder mechanism was designed to make explicit and accessible — in an ARLO representation — descriptions

of the implementations of many of the system’s functions and operations.

2.6.2 ARLO’s Coders

The initial ARLO configuration defines 7 coders:

e Slot-Composition takes a list of slots and constructs a function which is their composition. For nstance, a
composition of the Father and Mother slots would be a function for extracting ones paternal grandmother.

e Inherit-Through generates a function for inheriting through a particular relation.

e liethods constructs a composite function from a list of other functions, which may also be generated by
coders. The function generated tries each function — one after another — until one succeeds (returns
without error). This function is called a try-and-try-again function, trying one method after another
until one finally succeeds, being careful about the accumulated dependencies of each attempt (it resets
the dependency tracking mechanism before each attempt.)

e Expecting is like Methods, but the function it constructs only “tries again” if a preceding method fails
in an “expected” way. Of course, if an unexpected error occurs inside of an Expecting function, it may
well be caught by other Expecting or Methods coded functions above it in the calling sequence.

e Test is a coder which generates a predicate function which is the conjunction of its component functions.

e Inherits? is a coder for predicates which determine if one unit inherits from some other through some
relation. (For instance, if some person is directly above some other in some hierarchy.)

e Type-Checker generates the function for verifying a slot’s assignment — its value and attachment —
from the slot’s lakes-Sense-For and Data-Type properties.

2.6.3 User Defined Functions

The function description language used by the coder is also used to record user function definitions. The
function DEFIIE has the syntax of LISP’s DEFUI, but builds an ARLO description with appropriate Lambda-
Definition and Documentation slois. The function AX is an inline version of DEFIHE which returns the name
of the function it defines.

The function GET-FUICTION-DESCRIPTIO! finds or generates an ARLO description of the function specified
by its single argument. Of course, if the function was not appropriately defined (by DEFILE, AA, or some
automatic coder), some information (such as lambda definitions) may not be available.

2.7 The Type System

The coder mechanism is used by ARLO in two roles: the implementations of “defaulting functions,” and
the specification of ARLO’s hierarchy of types. In this second role. coders are defined whicli implement
common representational predicates (such as checking inheritance over various relations) and particular con-
junctions of such predicates. These generated predicates are defined in a generalization hierarchy, descending

from broader predicates (satisfied by large numbers of objects and units) into progressively more particular

24

ARLO Ken Huaase

predicate categorizations. Each of the predicates in this hierarchy is represented by a “type,” an ARLO
description which consolidates a predicate function with associated functions for describing and operating
on objects which satisfy the predicate. ARLO’s “type hierarchy” is the predicate generalization hierarchy
imposed between these type descriptions.

The type hierarchy also fills two distinct roles in ARLO’s initial configuration. First of all, its predicates

serve to constrain the ©

sensible” attachements and values for particular slots; secondly, it provides informa-
tion about how to print, describe and parse the sorts of values known to belong to certain sorts of slots. For
systems implemented in ARLO, beyond tlhe definition of ARLO itself, it both provides constraints on the
generation of new slots from old and serves as a hook for hanging type specific knowledge in the form of

inference procedures or heuristics.

The generalization hierarchy between types is determined by two slots: the Generalization slot and
the Specification slot. The Generalization of a type is the type upon which a type is built; a type’s
Specification determines what additional criterion objects of the type must satisfy. The predicate for a
given type is hence the conjunction of the type’s specification and the predicate of its generalization. This
principle yields a strict generalization hierarchy — any instance of 7 is also an mstance of Generalization(T)
— which simply supports operations like classification (quickly finding the types which an instance satisfies
by traversing downwards the tree of generalizations) or property clustering {automatically generating new
types from old by specializing around particular property regularities in their instances). In addition to
providing a formal framework streamlining these sorts of operations, the generalization relation is used to
mherit type specific properties such as display functions, description parsers, or inference procedures.

The type system presents its own bootstrap problems; it is described in ARLO (as as a representation
langauge for hierarchically organizing predicates and their properties), but is used (in turn) to constrain the
values and attachments of ARLO’s own definition. As a result, ARLO’s type bootstrap is more complicated
than its representation bootstrap (which was described in Section 2.5). When ARLO is originally defined
as a representation describing language, its type restrictions and constraints are represented by symbolic
tokens referring to type names. ARLO’s second bootstrap — its type bootstrap — takes these symbolic
tokens and replaces each type name in ARLO’s self-description with a pointer to the actual type-describing
unit it refers to. The timing of this bootstrap is critical, as the type system uses both ARLO and the coder
mechanism 1n itz definition, and enough of these mechanisms must be compiled and cached before the type

system 1= completely enabled.

The package of ARLO utilities implemented for CYRANO significantly extends the type system into a
general classification system. This extension includes a classifier for placing instances in the hierarchy of
predicates (similar to the KL-0UE classifier) and an implementation of heuristic and inferential rules whose
“IF” components refer 1o the type hierarchy. Thiz innovation automatically places rules in a generaliza-
tion/specialization hierarchy from which they may be indexed to particular objects or tasks. A new variety
of automatic predicate coders accompanies this extension, permitting the specification of constraints on and

between various sub-parts of descriptions.

2.8 Archives and Layers: Saving Representations

25

ARLO Ken Haase

Upon the edifice described in the preceding sections, users and clever programs build both new representation
schemes and particular representations within those schemes. Much of this construction takes place in the
same manner as ARLO's own initial construction: through top level forms which side-effect the environment
to install particular representations and representations of representations. But much of the structure built
on top of ARLO iz a dynamic stuff, constructed by interactive editors, database parsers, or thoughtful
programs. The preservation of these structures — defined in no particular file, but only by the accumulation
of definitions and mutations over time — is critical if any of our programs is to have a life beyond a single
session or a handful of examples.

Archives and layers are ARLO’s tools for saving out collections of in-core units and their relations; units
and relations are dumped as data files from which they may later be restored. An archive stores a collection of
units and their connections, a layer stores the changes in such collections of units and connections. Archives
are used to store bodies of knowledge and the representation schemes (in ARLO, another sort of body
of knowledge) in which they are expressed; layers are used to store personal modifications or incremental
changes to these archives.

The implementation of archives and layers posed many difficulties, most of the arising from the circularity
and complexity of ARLO s inter-relations and dependencies. It is worth noting that the Lisp Machine system,
not designed to support the structured preservation of partial environments, had to be significantly extended
to permit dumping of ARLO structures. This section, however, will concern itself only with the dumping
abstractions used by ARLO, and not the implementation particular details of their realization.

Like nearly every other process in ARLO, the dumping of ARLO uunits and relations is data-directed.
The archive to which a unit belongs is a slot of the unit; every ARLO unit is given (or assumes by default) a
1ty-File-Of-Definition slot. For units defined by top-level LISP forms, this is the file in which the LISP forms
appeared; for other units, this slot is the archive the unit is defined in. A unit’s archive is either an explicitly
deposited pathname or (by default) a logical pathname fo ‘the form ‘‘ARLD: KBases: kb BIN >’* where kb
is the knowledge basze the unit was originally defined in. The #>My-File-0f-Definition slot is defined (as an
ARLO slot) to maintain backpointers from archive pathnames to the units defined in them. Thus, when the
user asks to dump and archive (specified by its pathname), the set of units to be dumped are avaliable as a
property of the pathname.

An archive is dumped through forms which bind — at load time — particular unit names to unit objects;
the reference to each unit abject is then realized in forms which access or regenerate the unit. Any given unit
reference is cither local or exfernal: a local unit reference refers to a unit in the current archive; an external
unit refers to a unit in some other archive. External unit references dump as a pair of unit name and unit
archive: if — at load time — the unit name is unbound, its archive is loaded, and the unit is then directly
referenced.

Local unit references dump as either per-file dumped-object indices (supported natively by the ZetaLisp
binary dumper) or as forms which regenerate the unit. In the first case, a regenerating form has already
appeared in the file and the restored object is directly referenced; in the second case, the regenerating form
must he produced, and this production is done by calling the #>iiy-To-Dump-Self slot of the unit on the
unit. The value returned by this function is a form which regenerates the unit and any attached portions

of its enviremment. For instance. when o function describing unit iz regenerated, its definition is recompiled

26

ARLO Ken Haase

into the load-time environment; if a unit describing an active process is loaded, that process might be
instantiated and started when the unit is restored. The #>My-To-Dump-Self slot of a unit need only take
care of reestablishing particular parts of the LISP environment dependent on, or depended on by, the. unit
dumped. A collection of canonical dumping functions (such as DEFAULT-UNIT-DUMPER) provide regeneration
forms which handle reestablishing the ARLO environment connected to a particular unit. These forms must
not only reestablish a frame with its connected slots, but must reestablish the units and slots those slots
refer to; when this reestablishment must reach between archives, it becomes insoluble in general and difficult
in particular.

The problem can be characterized in the following way. Every archive has an edge where it connects to
other archives; a given archive has certain assumptions about what lies over its edge, but it only has limited
information about the content of these bordering archives. When an archive is reloaded, it is not reloaded
in a vacuum, but must be established with its original edge connections intact. When inconsistent changes
have been made to multiple archives (an archive X refers to a unit in an archive Y which was never dumped)
the problem is insoluble; but if a degree of consistency is maintained, then the problem of establishing an
archive amongst its neighbors requires dumping the archive to just beyond its edge.

Most of the responsibility for reestablishing the cross-archive network is carried by ARLO’s dependency
network. Since this network specifies most of the explicit or implicit connections in the ARLO slot network,
reestablishment of the dependency network reestablishes parts of the ARLO unit-slot network as well. By
using references to dependencies over a given edge, many of the problems of dumping partial environments
are finessed or solved: “assumptions” of the network just outside a particular archive — just over its edge
— are found or recreated when the archive is loaded. When this search or recreation fails {(when an external
dependency is assumed that does not exist) the loader “fakes” the dependency and warns the user of the
temporarily patched inconsistency.

2.8.1 Layers

Layers are the way ARLO records incremental changes to its descriptions. Their mechanism is quite simple:
at some point (typically after an archive or set of archives is loaded) the state of a collection of archives
is frozen into a “layer”. Then, at some later point after a series of introductions and modifications to the
archives, the differences between the frozen layer and the current state of the archives is computed, and
appropriate modifying forms are dumped in much the same manner as an archive. In this process the data

direction and cross-archive connection proceeds as above.

27

ARLO Ken Haase
|

Chapter 3
An Example: Representation

This section describe a toy ARLO database of researchers and their interrlations. It is part of the default
systen, residing in the Inquir knowledge base, useful for testing and demonstration. The first section of this
example describes and explains what the code in the file looks like; the second is a script of an interactive
examination -- ou the LISP Machine — of the domain and its representation langauge.

3.1 Building Basics

The first step in building a representation system in ARLO is to define the basic essential units and relations
on which the iudividuals and relations of vour representation will build. If you are building on top of raw
ARLO, the inleritance mechanism you are likely to use is #>Prototype inheritance; if you are using a system
built on top of ARLO (for instance, an FRL or KLONE clone) you may be using an entirely different
mechanisin. Of course, if vou wish, you can easily implement your own inheritance scheme in ARLO and
use that.

The following expressions describe the prototypical person, construct a unit describing the “person
type”, and build a prototypical slot from which slots referring to people will eventually inherit.

(DefUnit Person
(Descripticn ~“This is the prototypical person.’’))

28

ARLO Ken Haase

(DefUnit Person-Type

(Description
*“This is a type satisifed by any unit inheriting from Person.’’)

(Prototype #>Any-Type)
(Generalization #>Unit-Type)
(Specification (Inherits? #>Person #>Prototype))
(#>Function-To-Find-Interactively ’get-person-from-menus)
(#>Function-To-Read 'read-person))

(Put-Value #>Person #>My-Specific-Type #>Person-Type)

(DefUnit Person-Slot
(Description
*“This is the prototypical slot which attaches to people.’’)
(Prototype #>Slot)
(llakes-Sense-For #>Person-Type))

The definition of the #>Person unit constructs a “placeliclder” to which individual people descriptions
will refer. Later, we may burden this unit with a variety of information which thoze individual people
descriptions will inherit of refer to. For instance, the #>Person unit may be used to shadow some slot
definitions in order to accomodate the restrictions and potentials of people.

#>Person-Type

is defined as a specialization of #>Unit-Type which requires inheritance — via the #>Prototype relation
— from the unit #>Person. The generalization hierarchy used for types is a non-excepting hierarchy of pred-
icate specifications. ARLO’s utilities implement a KLONE-style classifier for this generalization hierarchy,
determining which types in the hierarchy are instantiated by a given LISP object or ARLO description.

The #>liy-Specific-Type slot of a unit is an ARLO type description subsuming all ARLO units inhenting
{via the #>Prototype relation) from the unit. #>Person-Type is deposited there as a forethought; if we
had asked for the #>.y-Specific-Type slot of #>Person without storing #>Person-Type there heforeliand, an
appropriafe type description would have been generated on the fly. One thing we will exploit #>Person-Type
for is defining the way references to people are parsed, printed, and described.

Finally, #>Person-Slot is a version of #>Slot which embodies a particular coustraint on the units it may
be attached to.

3.2 Defining Slots

The following expressions define slots for the various appellations for individual people; these slots present

a variety of different value defaulting mechanisms.

29

TN

ARLO Ken Haase

(DefUnit Full-Name
(Description “*This is the full, formal name of a person. ')
(Prototype #>Person-Slot) ; Attach to people
(Data-Type #>String-Type) ; Accept sirings
(To-Default-Value ‘ask-user-for-slot)
(To-Prompt-For-Value
(1) ask-for-full-name (person slot stream)
(format stream "Vhat is the full name of the person described by a?"
person))))

(DefUnit Personal-Name
(Description *“This is the informal name of a person. *)
(Prototype #>Person-Slot) ; Attach to people
(Data-Type #>String-Type) ; Accept strings
(To~Default-Value
;; The AX macro — briefly mentioned on page 24 — internally defines
;; an external function constructing an ARLO description of the function at the same time.
(M) To-Generate-Personal-iHame (unit slot) ; Eziract her first name
(if (Ignoring-Errors (get-value unit #>Full-lame))
(get-first-vord (get-value unit #>Full-Name))
‘Friend’))))

(DefUnit Last-liame.
(Description ""This is the last name of a person. ')

(Prototype #>Person-Slot) ; Attach to people
(Data-Type #>String-Type) ; Accept strings
(To-Default-Value

(M) (unit slot) ; Extract her last name

(it (Ignoring-Errors (get-value unit #>Full-lName))
(get-last-word (get-value unit #>Full-Name))
*“Random’ "))))

The above are examples of slots which compute their defaults in different ways. The #>Full-Hame slot,
for instance, asks the user for a person’s full name if it isn’t already specified. The Personal-liame slot, on
the other hand, extracts the person’s first name from her full name if possible and otherwise defaults to a
friendly solution. The Ignoring-Errors form used in the definition catches difficulties with inaccessible slots
or formats, returning nil if any errors were encountered in the execution of its body. The #>Last-lame slot is
almost a copy of #>Personal-Hame, extracting a last name from the #>Full-Name slot if possible and otherwise
defaulting to a random solution. In both of these slots we see an explicitly defined lambda-definition specified
instead of an automatically coded high-level description.

The #>Makes-Sense-For slot for all of these units defaults from #>Person-Slot, and each accepts only
LISP strings for values.

30

N ARLO Ken Haase

3.3 Inheritance Mechanisms

The following slots illustrate how ARLO supports explicitly defined inheritance mechanisms of various sorts.
(DefUnit Supervisor
(Description "“This is the supervisor of a person.’’)
(Prototype #>Person-Slot) ; Attach to people
(Data-Type #>Person-Type) ; Chauvinist, but....
(To-Default-Value ’'ask-user-for-slot)
(To-Prompt -For-Value
(M) ask-for-supervisor (person ignore stream)
(format stream “Yho is a hacking for?"
(get-velue person #>Personal-Name))}))

(DefUnit Hacking
(Description *"This is what a person is hacking on.'’)
(Prototype #>Person-Slot) ; Attach to people
(Data-Type #>String-Type)
(To-Prompt-For-Value
(M) ask-for-hacking-slot (person ignore stream)
-.--(format-stream “What is - a-hacking?"
(get-value person #>Personal-liame))))
(High-Level-Definition
;3 Default from ones’ supervisor, and otherwise ask...
Py ;; (The character macro #§ returns a DESCRIPTION of the
;3 function whose name follows it.)
(METHODS (1ist (Inherit-Through #>Supervisor) #$ask-user-for-slot))))

(DefUnit Working-in-Field
(Description "“This is the field a persorn is working in.’'’)

(Prototype #>Person-Slot) ; Attach to people
(Data-Type #>String-Type)
(High-Level-Definition ;Another way to say it

(Slot-Composition (list #>Hacking #>Supervisor))))

(DefUnit Wedging

(Description " "A monkey wrench in the works.'®)

(Prototype #>Person-Slot)

(Data-Type #>String-Type)

(To-Default-Value (AX Wedge (un sl) (get-value un sl))))

The first of the slots defined above is the #>Supervisor slot, which is used to default the values of

a variety of other slots. The type restriction of #>Supervisor demands that its value be another person-
describing unit, since other slots will be looking at its value — with unit accessing functions — to derive
their own values.

31

ARLO Ken Haase

The second and third slots defined above perform inheritance (or defaulting) in different ways. The
#>Hacking slot attempts to inherit its value by searching through the #>Supervisor relation, but if it fails —
for any reason — it asks the user for the value. The #>Methods coder used to define this mechanism takes
its clauses and constructs a try-and-try-again function. (Try-and-Try-again functions are briefly described
on page 18.)

The #>Working-In-Field relation refers to one’s supervisor for its value also, but if this fails, the entire
attempted computation fails. In addition, the #>Slot-Composition coder is not characterized as a search,
so the function it generates will be implemented somewhat differently. (It will not, for instance, signal a
#>S1ot-Not-Found condition if it fails.)

Finally, the #>Wedging slot is merely there for purposes of demonstrating how fatal-recursion detection
works. Since the wedging slot defaults by getting its value, trying to compute a default for it will recurse
indefinitely.

3.4 Shadowing Slot Definitions

To demonstrate the ARLO mechanism for shadowing slots, we construct two special units. The first,
#>Shadoved-Hacking, describes how to find and store a shadowed definition for the #>HACKING slot; this de-
scriptions is another slot, defined to get its value by searching (with the LISP function Find-Value through
the #>Prototype slots of a unit. To redefine the definition of #>Hacking for a group of units, we merely arrange
that they have as a prototype some unit with the appropriate #>Shadowed-Hacking slot. In this particular
example, we define a unit #>¥inner with a shadowed definition of #>Hacking which asks the user for the slot’s
value, without first trying to inherit a value through the #>Supervisor relation.

(DefUnit Shadoved-Hacking-Definition
(Description *'A replacement definition for HACKING.'")
(Prototype #>Shadow-Slot)
;3 Search through prototypes for a value.
(To-Defeult-Value
(A Find-Hacking-Slot (unit in-slot)
“*Looks for a replacement hacking definition. >
(or (find-value unit in-slot) #>hacking))))
(Put-Value #>Hacking #>Shadow-Slot-Slot #>Shadowed-Hacking-Definition)

32

ARLO Ken Haase

(DefUnit Winner

(Description *“Somone who doesn’t always follow their supervisor.’’)

(Shadoved-Hacking-Definition

;; When we construct a unit with a #>My-Name slot, the true name

;; of the constructed unit will be an enumerated gensym of the My-Name

;; slot (e.g. #>Hacking-0, #>Hacking-1, etc).

(make-unit (My-lame ‘#>Hacking)
(Prototype #>Hacking)
(Makes-Sense-For (get-value #>Yinner #>My-Specific-Type))
(To-Default-Value 'agk-user-for-slot}))))

As a result of the above machinations, any person descriptions which have a prototype of #>Winner
instead of #>Person will use this alternate definition of #>HACKING in place of the one originally defined at the
top level. ,

3.5 Building the data base

The process of creating “individuals” in this example builds on the slots and prototypes constructed above.
Currently, there are two standard ways to build individuals in ARLO. One may either call DefUnit explicitly
~-from top level {the manner in which the slots above were created), or write support functions calling Make-Unit
internally to construct units with particular properties. For purposes of clarity and brevity, this example
uses only the first of these techniques, explicitly defining each individual person description at top level.
The following DefUnit forms build a small database of people-describing units for an imaginary Al lab.

(DefUnit Calvin
(Description »This is a well known robotics hacker.")
(Prototype #>Person)
(Full-Heme ~“Susan Calvin’’)
(Hacking ~“Robots’’))

(DefUnit Rodgers
(Prototype #>Person)
(Full-Lame °‘Robert Rodgers’’)
(Supervisor #>Calvin)
(Hacking "~ “Emotional Analouge Robots’’))

(DefUnit Charo
(Prototype #>Person)
(Full-lame "“Elizabeth Charo’’)
(Personal-ijlame *“Beth’"’)
(Supervisor #>Calvin)
(Hacking ““Cognitive Fundamentals’'))

33

AR | : Ken Hasss

(DatUnit Lee
(Prototype ®>Persos)
(Full-zame *“Pat Lee'’)
(Supazvinor ®>Calvia)
(Hacking *‘Engineering Design’’))

_ (DefUnit Kyle
(Prototype ®>Parsen)
(Full-Hame "“Kyle ﬂ'!hot“))

(DefUnit Arthur
(Prototype $>Persen)
(Full-Name “tArthar W
(Hacking *"Faatesy Cames’’))

(DetUnit Alice _
e { PloL Sy pe T isPurson) |
. (Full-Name "“Alice Adams'’))

{DefUnit Brian
(Prototype $>¥ianer)
(Full-Rawe °“Brisn Wlﬂ‘
(Supervisor w>Crare)) - -

84

ARLO Ken Haase
3.6 At the Console

3.6.1 Defaulting of Slots

(kb-goto 'inquir) |Change the default knowledge base. |
#<Package CORE:INQUIR 66156707>

(examine-unit #>Kyle) [Let's look at Kyle’s description. |
Description of the ARLO unit {#>KYLE}:

Description: The description of KYLE was not provided.

Prototype: {#>PERSON }

Prototype Of:

My Creator: Ken Haase

My File O0f Definition: ARLO: SOURCES; INQUIR * >

My Time Of Creation: Saturday the twenty-eighth of July, 1984; 12:02:01 am
Full Name: Kyle 0’Shea

My Name: #>KYLE

My To Describe Self: #'LOOK-AT-UNIT

My To Print Self: #’DEFAULT-UNIT-PRINTER

The slots of Kyle’s description are tabulaied above: slot names on the right,
values on the left. Note.that the. values-are printed out-based on the semantics
of the slot. #>MY-TIME-OF-CREATION, while stored as an integral number of seconds
past New Year’s Day 1900, prints out in a standard English format. Each unit
1s also annotated with the file of creation and (if provided) a string describing
the unit in English. In Kyle’s case, there is no description provided so a default
(describing the lack of an ascribed description) 1s provided. But the description

| above has no real information about Kyle: what he does, who he works for, etc.
So we begin our interaction by querying about these things...

Editing {#>KYLE} >>G Describe Slot Value
Which slot of {#>KYLE} would you like to see?Hacking

Here we ask for the Hacking slot of the unit. Since there is not one there
already (as we can tell from the description just provided) its value must be de-
faulted using the function on the To-Compute slot of Hacking. This function -
as described by tts high level definition provided above - first looks through the
Supervisors of the person and then - if that fails — asks the user at the console
for a value. But in order to search through the supervisors of Kyle it must first
know who his tmmediate supervisor 1s. Since the Supervisor slot defaults by
asking the user at the console, we are asked...

Who is Kyle hacking for?Pat

85

N

ARLO

Pat is the first name of “Pat Lee”, the person we are referring, but since the
value of the Supervisor slot is of Person-Type, ARLO knows to read its value
with a function which looks for people under their personal names {as well as last
names and their names qua description). It finds the unit named Lee, based on
our information, and caches it as Kyle’s supervisor. Having this information, it
looks on Lee’s description for a Hacking slot, and discovers....

The Hacking slot of {#>KYLE} is: Engineering Design

Thie is justified by:

The Hacking slot of {#>LEE} is: Engineering Design

The To Get Value slot of {#>HACKING} is: #'TYPED-DEFAULTING-GET
The Supervisor slot of {#>KYLE} is: {#>LEE}

The To Default Value slot of {#>HACKING} is:
#> INHERIT-THROUGH- SUPERVISOR-OR- ARLO : ASK-USER -FOR-SLOT~OR-ELSE
The To Get Value slot of {#>TO-DEFAULT-VALUE} is: #'TYPED-DEFAULTING-GET

As promised, ARLO keeps track of the dependencies - the “assumptions” -
of its dertvations. In this case, Kyle’s hacking slot depends on his supervisor being
Lee, Lee’s hacking of “Engineering Design,” the mechanism by which the hacking
slot defaults, and the implementation of that mechanism for defaulting. These
four dependencies are summarized by ARLO below. Note that if any of them were
to change the “assumed” value of Kyle’s hacking slot would be invalid. Thus, 1n
the event that any of these values is retracted or otherwise invalidated, ARLO
can use its dependency tnformation to make sure that the value just computed 1s
retracted and invalidated as well.

36

Ken Haase

ARLO

3.6.2 Dependencies and Decaching

the slot’s value up to

The dependencies ARLO recorded for the Hacking slot above allow 1t 1o keep

date. This 13 neccessary because 1is value 1¢ cached on the

unit, as we can see from ite description below:

Editing {#>KYLE} >>Describe [Describes the unit..

Description of the ARLD
Description:
Prototype:

Prototype 0Of:

My Creator:

My File O0f Definition:
My Time 0f Creation:
Full Name:

Hacking:

Last lame:

My Hame:

My To Describe Self:
My To Print Self:
Personal lame:

Supervisor:

Editing {#>KVLE} >>Edit

unit {#>KYLE}:

The description of KYLE was not provided.

{#>PERSON)}

lione

Ken Haase

ARLO: SOURCES; INQUIR.LISP

Saturday the twenty-eighth of July, 1984; 12:02:01 am
Kyle 0'Shea

Engineering Design [The hacking slot, cached. |

0'Shea

#>KYLE

#'LODK-AT-UNIT

#'DEFAULT-UNIT-PRINTER

Kyle

{#>LEE}

[Kyle’s supervicor, cached also. We won't be asked for it again. |

Which elot of {#>KVLE} would you like to edit?Supervisor

Now let’s go look at Kyle’s supervisor and change his hacking siot. The
change should propogate back to Kyle 14

37

Ken Haase

TN ‘ ARLO Ken Haase

Description of the ARLO unit {#>LEE}:

Description: The description of LEE was not provided.
Prototype: {#>PERSON }

Prototype Of:

My Creator: Ken Haase

My File Of Definition: ARLO: SOURCES; INQUIR * >

My Time 0f Creation: Saturday the twenty-eighth of July, 1984; 12:02:01 am
Editing {#>LEE} >>Describe |[Describes the unit..]

Description of the ARLD unit {#>LEE}:

Description: The description of LEE was not provided.
Prototype: {#>PERSON }

Prototype 0f:

My Creator: Ken Haese

My File Of Definition: ARLO: SOURCES; INQUIR * >
My Time 0f Creation: Saturday the twenty-eighth of July, 1984; 12:02:01 am

Full Name: Pat Lee
Hacking: Engineering Design
[The value which Kyle's Hacking slot defaulted from. |
My liame: #>LEE
My To Describe Self: #'LO0K-AT-UNIT
My -To Print Self: -#'DEFAULT-UNIT-PRINTER
Personal Name: Pat
Supervisor: {#>CALVIN}

Now we store a value in Lee’s #>HACKING slot. When reading a hacking slot,
whose value must be a string, ARLO knows to use the LISP readline function.
One might imagine that — if ARLO were connected to a natural language interface
- the same sort of knowledge might be used to generate discourse goals.

Editing {#>LEE} >>Set Slot Value
Which slot of {#>LEE} would you like to set?Hacking
Uhat would you like in the Hacking slot of {#>LEE}?The Grateful Dead[4 string &5 read]

Now we have given Lee a new hacking slot, and the value should have re-
placed the old one. We ask for Lee’s description:

38

ARLO Ken Haase

Editing {#>LEE} >>Describe |[Describes the unit.. |
Description of the ARLO unit {#>LEE}:

Description: The description of LEE was not provided.
Prototype: {#>PERSOIl }

Prototype Of:

My Creator: Ken Haase

My File 0f Definition: ARLO: SOURCES; INQUIR + >

My Time 0f Creation: Saturday the twenty-eighth of July, 1984; 12:02:01 am
Full lame: Pat Lee

Hacking: The Grateful Dead |[The new value.. |

My Hame: #>LEE

My To Describe Self: #'LOOK-AT-UNIT

My To Print Self: #'DEFAULT-UNIT-PRINTER

Personal liame: Pat

Supervisor: {#>CaLvIN}

If everything worked, our change in Lee’s Hacking slot should have tnvali-
dated the default which ARLO computed earlier for Kyle. We finish editing #>LEE
and return to editing #>KYLE:

Editing {#>LEE} >>Quit

Finished editing {#>LEE}

Editing {#>KVLE} >>Describe [Describes the unit.. |
Description of the ARLO unit {#>KYLE}:

Description: The description of KYLE was not provided.
Prototype: {#>PERSO!! }
Prototype Of:
My Creator: Ken Haase
My File 0f Definition: ARLO: SOURCES; INQUIR - >
My Time 0f Creation: Saturday the twenty-eighth of July, 1984; 12:02:01 am
Full Heme: Kyle 0'Shea
[The hacking slot —- here before — has disappeared... |
Last liame: 0'Shea
My liame: #>KYLE
My To Describe Self: #'LODK-AT-ULNIT
My To Print Self: #'DEFAULT-UNIT-PRINTER
Pergonal llame: Kyle
Supervisor: {#>LEE}

Now we ask for the Hacking slot again, and 1t will be defaulied as before,
except that this time Kyle’s Supervisor slot is already known and doesn’t have
to be asked for.

39

ARLO

Editing {#>KYLE} >>G -- Describe Slot Value

Which slot of {#>KYLE} would you like to see?Hacking

The Hacking slot of {#>KYLE} is: The Grateful Dead

This is justified by:

The Hacking slot of {#>LEE} is: The Grateful Dead

The To Get Value slot of {#>HACKING} is: #'TYPED-DEFAULTING-GET
The Supervisor slot of {#>KYLE} is: {#>LEE}

The To Get Value elot of {#>SUPERVISOR} is: #’TYPED-DEFAULTILG-GET

The To Default Value slot of {#>HACKING} is:
#>INHERIT-THROUGH- SUPERVISOR-OR- ARLO : ASK-USER-FOR-SLOT-0R-ELSE
The To Get Value slot of {#>TU‘DEFAULT'VALUE} is: #'TYPED-DEFAULTING-GET

Editing {#>KYLE} >>Describe [Describes the unit..]
Description of the ARLD unit {#>KYLE}:

Description: The description of KYLE was not provided.
Prototype: {#>PERSO! }

Prototype 0f:

Ny Creator: Ken Haase

My File Of Definition: ARLO: SQURCES; INQUIR * >

My Time 0f Creation: Saturday the twenty-eighth of July, 1984; 12:02:01 am
Full liame: Kyle 0'Shea

Hacking: The Grateful Dead ;The new default ts now cached.. |
Last lame: 0'Shea

My liame: #>KYLE

My To Describe Self: #’LOOK-AT-UNIT

My To Print Self: #'DEFAULT-UNIT-PRIUTER

Personal lame: Kyle

Supervisor: {#>LEE}

And now let us set the world back to normal, changing Lee’s Hacking slot
once more and reinstating the old value on Kyle.

Editing {#>KYLE} >>Edit
Which elot of {#>KYLE} would you like to edit?Lee
““Lee’’ isn't the name of a defined slot.

We accidently referred to the unit to edit, instead of the slot of Kyle we
wished to edit. Fortunately, the unit editor was clever enough to warn us of our

mistake, but not clever enough to see through 1t.

40

Ken Haase

ARLO Ken Haase

Did you make a mistake?(Y or 1) Yes.

“Which slot of {#>KYLE} would you like to edit?Supervisor

Editing {#>LEE} >>Set

Yhich slet of {#>LEE} would you like to set?Hacking

What would you like in the Hacking slot of {#>LEE}?Engineering Design
Editing {#>LEE} >>Quit

Finished editing {#>LEE}

The world should be back to normal now...

Editing {#>KYLE} >>G -- Describe Slot Value
Which slot of {#>KYLE} would you like to see?Hacking
The Hacking slot of {#>KYLE} ie: Engineering Design

And indeed 1t 15....

This is justified by:

The Hacking.slot of {#>LEE} is: Engineering Design

The To Get Value slot of {#>HACKIIG} ie: #'TYPED-DEFAULTING-GET
The Supervisor slot of {#>KYLE} is: {#>LEE}

The To Get Value slot of {#>SUPERVISOR} is: #’TYPED-DEFAULTING-GET

The To Default Value slot of {#>HACKING} is:
#> INHERIT-THR OUGH- SUPERVISOR-OR-ARLD : ASK-USER-FOR-SLOT-0R-ELSE
The To Get Value slot of {#>TO-DEFAULT-VALUE} is: # TYPED-DEFAULTING-GET

41

ARLO Ken Haase

3.6.3 Other slots

Editing {#>KYLE} >>New unit
Yhat unit would you like to edit?Alice
Description of the ARLD unit {#>ALICE}:

Description: The description of ALICE was not provided.
Prototype: {#>PERSON }

Prototype 0f:

My Creator: Ken Haase

My File 0f Definition: ARLO: SOURCES; INQUIR x >

My Time 0f Creation: Saturday the twenty-eighth of July, 1984; 12:02:02 am
Full MName: Alice Adams

Last Name: Adams

My Name: #>ALICE

My To Deacribe Self: #'LOOK-AT-UNIT

My To Print Self: #'DEFAULT-UNIT-PRINTER

Personal lame: Alice

Editing {#>ALICE} >>G -- Describe Slot Value
Which elot of {#>ALICE} would you like to see? Working In Field

The Working-In-Field slot - as defined on Page 3.8 - 1s the slot composi-
tion of the Hacking slot of ones Supervisor slot. As before though, it needs to
know her supervisor slot in order to default a value.

“ho is Alice hacking for?Rodgers
The Vorking In Field sict of {#>ALICE} is: Emotional Analouge Robots

And again, ARLO provides the dependencies of the computation:

This is justified by:

The Hacking slot of {#>RODGERS} is: Emotional Analouge Robote

The To Get Value slot of {#>HACKING} is: #'TYPED-DEFAULTING-GET
The Supervisor slot of {#>ALICE} is: {#>RODGERS}

The To Get Value slot of {*)SUPERVISDR} is: #'TYPED-DEFAULTING-GET

The To Default Value slot of {#>WORKING-IN-FIELD} is:
#>THE-VALUE-OF-THE-HACKING-0F-THE-SUPERVISOR- OF
The To Get Value slot of {#>TD'DEFAUL'I_"VALUE} is: #'TYPED-DEFAULTING-GET

Finally, we ask for Alice’s description again, to see that the appropriate slot
has been cached on the unit descripition.

42

;. Baitiag. {$>ALICE} >>Descride {Dessribes the wnit.. |
Description of the ARLO wait {#>ALICK}:

Description: The description of ALICE \vu ot pmm
Prototype:) {e>rzason}

Prototype Of:

My Creator: Ken Hasse

My File 0f Definition: ARLD: SUDRCES; INQUIR + >

My Tims Of Creation: Baturday the tweaty-eighth of July, 1884; 12:02:02 am

Full Bame: Alice Mdams

Laat Name: Adame

My Hame: #>ALICE

My To Describe Self: #'LODK-AT-UNIT

My To Priat Self: #'DEFAVLT-UNIT-PRINTER '

Parsosal lHume: Alics

Saparviser: {®oxopenns)

Working In Field: ~ IEmetiomal Asalenge Rebata [mwmmm]

Bditing {»Autz} 1" Quit
Finished editing {#>ALICE}

43

Ken Haase

ARLO Ken Haase

3.6.4 Errors

Back to editing {#>KYLE}
Editing {#>KYLE} >>G -- Describe Slot Value
Which slot of {#>KVLE} would you like to see?Wedging

If you remember the definition on page 81, this slot has a defintion which
“defaults” by referring to itself again. Attempting to gel this slot from a unit will
recurse Jatally of a value 1sn°t already avaiable. (In which case that value would

sitmply be returned.) Let’s watch sparks fly.

>>ARLO-Error: I seem to be fatally recursing on getting the Yedging slot of {#>KYLE}
(%hile getting the Wedging slot of {#>KYLE})

A description of the current slot operation being atlempted 1s always provided
to the user when she is asked to handle an ARLQO condition.

GET-VALUE:
Arg O (IN-UNIT): {#>KYLE}
Arg 1 (OF-SLGT): {#>WEDGING}

s-4, [RESUME]: Perform the operation using subprimitivee.

s-B, ¢-7: Print out the current state of ARLD's computations.
s-C, [ABORT]: Return to the examining the unit {#>KYLE}

s-D: Return to Dribbling Lisp Listener

s-E: Return to Lisp Top Level in Lisp Listener 1%

->c-7 Print out the current state of ARLO's computations.

ARLD ie currently:

3: getting the Yedging slot of {#>KVLE}

2: wvhile trying to compute a default for the Yedging slot of {#>KYLE}
1 while getting the Wedging slot of {#>KVLE}

This 1s the trace produced by the WHERE function.

-> [RESUME] Perform the operation using subprimitives.

The subprimitives, unfortunately, merely return NIL of a slot doesn’t exists.
Since Kyle has no edging slot, the value NIL 1¢ computed as one. But the
Wedging slot requires — as 1t 12 defined on page §1 - a siring and ARLO complains

about this inconsistency.

14

ARLO

>>ARL0-Condition: The Wedging slot cannot accept the value NIL
(it isn't of type STRING-TYPE)

While caching NIL on the Wedging slot of {#>KYLE}
#>SLOT-VERIFIER-FOR-WEDGING:
Arg O (UNIT): {#>KYLE}

Arg 1 (SLDT): {#>WEDGING}
Arg 2 (VALUE): JIL

s-A, [RESUME]: Accept the value anyway

8-B, c-7: Print out the current state of ARLO's computations.
e-C, [ABORT]: Return to the examining the unit {#>KYLE}

s-D: Return to Dribbling Lisp Listener

s-E: Return to Lisp Top Level in Lisp Listener 1

->¢c-? Print out the current state of ARLO’'s computations.
ARLO is currently:

2. caching WIL on the YWedging slot of {#>KYLE}

1: vhile getting the Vedging slot of {#>KYLE}

-> [RESUME] Accept the value anyvay

And finally we get a final result, after all of our running arvund in the error

system.

The Wedging slot of {#>KVLE} is: IIL

This is justified by:

The Functional Value slot of {#>DESCRIPTIUIZ‘-DF-‘.’.’EDGE} is:
#<DTP-COMPILED-FUNCTION WEDGE 21016762>

The To Default Value slot of {#>VEDGING} is: # WEDGE

Ken Haase

ARLO

3.6.5 Shadowing Definitions

Editing {#>KYLE} >>New unit
What unit would you like to edit? Brian
Description of the ARLO unit {#>BRIAN}:

Description: The description of BRIAN was not provided.
Prototype: {#>WINNER }

Prototype 0f:

My Creator: Ken Haase

My File 0f Definition: ARLO: SOURCES; INQUIR + >

My Time Of Creationm: Saturday the twenty-eighth of July, 1981; 12:02:02 am
Full lame: Brian Yalking-Song

Last lame: Welking-Song

My lame: #>BRIAN

My To Describe Self: #'LOOK-AT-UNIT

My To Print Self: #'DEFAULT-UNIT-PRINTER

Personal Hame: Brian

Supervisor: {#>CHARD}

Here we ask for the hacking slol of Brian, whose prototype 1s Winner. As
defined wnitially, the Winner prototype. provides a different definition of Hacking
from the default. Precisely, 1t asks the user for the hacking slot directly, rather
than first irying to tnherit 1t through the Supervisor relation.

Editing {#>BRIAN} >>G -- Describe Slot Value

Which slot of {#>BRIAN} would you like to see?Hacking

“hat is Brian hacking?Intelligent Mystic Systems

The Hacking slot of {#>BRIAN} is: Intelligent Mystic Systems
This is justified by: Ken Haase said so.

Thie citation - referring to myself, the person using the program - 1s recorded
by a dependency record which 1s a SLOT-CITATION-RECORD, documented in Section
2.2.1.

46

Ken Haase

ARLO Ken Haase

Editing {#>BRIAN} >>Describe [Describes the unit.. |
Description of the ARLD unit {#>BRIAU}:

Description: The description of BRIAN was not provided.
Prototype: {#>WINNER}

Prototype 0f:

My Creator: Ken Haase

My File Of Definition: ARLO: SOURCES; INIQUIR + >

My Time Of Creation: Saturday the twenty-eighth of July, 1984; 12:02:02 am
Full lame: Brian %alking-Song

Hacking: Intelligent Movie Systems |The value has been cached.. |
Last liame: alking-Song

My lame: #>BRIAN

My To Describe Self: #'LOOK-AT-UNIT

iy To Print Self: #'DEFAULT-UNIT-PRINTER

Personal Hame: Brian

Supervisor: {#>CHAROD}

Let’s look at where Brian’s description got its replacement hacking definition
— which asked us for a value directly — from. The shadowed definition of hacking
you remember - from Page 82 - looks on the prototypes of the unit it is accessing.
So we edit the prototype of #>BRIAL...

Editing {#>BRIAL} >>Edit
Which slot of {#>BRIAlI} would you like to edit?Prototype
Description of the ARLO unit {#>WINNER}:

Description: Somone who doesn’'t always follow their supervisor.
Prototype: {#>PERSOL }

Prototype 0f: {#>BRIAN}

My Creator: Ken Haase

by File Of Definition: ARLD: SOURCES; ILQUIR - >

My Time 0f Creation: Saturday the twenty-eighth of July, 1884; 12:02:00 am
My lame: #>INNER

My Specific Type: {#>YWINNER-TYPE}

vy To Describe Self: #'LOCK-AT-UNIT

My To Print Self: #'DEFAULT-UNIT-PRIUTER

Shadovwed Hacking Definition: {#>HACKING-0}
{And here is the shadowed defination of Hacking. |

We can look deeper into this new definition of hacking by editing 1ts descrip-
tion. Every ARLO :lot, since it 1s explicitly described in ARLO, 15 accessible in
this way.

47

ARLO

Yhich slot of {#>BRIAN}
Deacription of the ARLO
Dascription:

Prototype:

Prototype 0f:

To Default Vilge:

Makes Sense For:

Data Type:

My Creator:

My File Of Definition:
My Time 0f Creation:
Actual Get Value:

My Hame:

. My To Describe Self:

My To Priant Self:
To Cache Valus:

To Describe Value:
To Get Valuse:

To Help Find Value:

Te Priat’ Valua: — =

To Prompt For Value:
To Read Value:
To Verify Type:

. Editing {®>BRIAN} >»>Edit

would you like to edit? Shadowed Hacking Definition
slot {$EACKING-0}:

The description of HACKING-O0 was not provided.
{#>BACKING) :

ASX-USER-FOR-SLOT

{#>VIRNER-TYPE)}

{#>8MRING-TYPE}

Ken Haase

ARLO: XBases; INQUIR.BIN.NEWEST
Satarday the sixth of April, 1986; 9:11:58 am
#' CHECK-VALUE :
®EUACKING

#'LO0K-AT-8L0T

#'DEFAULT-UNIT-PRINTER

#' TYPED-CACKE

(LAMBDA (IGNORE) IQNORE)
#°'TYPED-DEFAULTING-GET

- #'EVAL-READ-AS-ESCAPE
S TPRINTC - e e

#'CUTE-PROMPT-FOR-VALUE
#'READLINE

#°COAE : INQUIR: SLOT-VERIFIER-FOR-HACKIRG-0
Editing {#>HACKING-0} >>Quit

Finished editing {#>BACKING-0)

Editing {®>VINFER} >>Quit

Finished editing {#>WINNER}

Editing {#>BRIAN} >>Quit
-Finished editing {#>BRIAN}

Back to editing {#>XYLE)}

48

Ken Haase

ARLO

3.6.6 Modifying our language

Editing {#>KYLE} >>New unit

Yhat unit would you like to edit?Alice

Description of the ARLD unit {#>ALICE}:

Description: The description of ALICE was not provided.
Prototype: {#>PERSO} }

Prototype 0f:

My Creator: Ken Haase

My File 0f Definition: ARLD: SOURCES; INQUIR * >
My Time Of Creation:

Saturday the twenty-eighth of July, 1984; 12:02:02 am
Editing {#>ALICE} >>Describe [Describes the unit.. |
Description of the ARLO unit {#>ALICE}:

Description: The description of ALICE was not provided.
Prototype: {#>PERSOl }

Prototype Of:

My Creator: Ken Haase

My File Of Definition: ARLD: SOURCES; INQUIR # >

My Time 0f Creation: Saturday the twenty-eighth of July, 1984; 12:02:02 am
Full liame: Alice Adams

Last liame: Adams

My Lame: #>ALICE

My To Describe Self: #'LOOK-AT-UNIT

My To Print Self: #'DEFAULT-UNIT-PRINTER

Personal lName: Alice

Supervisor: {#>RODGERS}

Working In Field: Emotional Analouge Robots

[This is the value defaulted earlier in the ezample (Section 9.6.9, Page 43). |

Now we will change the definttion of how defaults for Working-In-Field
should be computed, and this modification will make previous derivations — based
on a different definition - invalid.

49

Ken Haase

ARLO

Editing {#>ALICE} >>New unit
What unit would you like to edit?Working in Field
Description of the ARLO slot {#>WORKING-IN-FIELD}:

Description:

Prototype:

Prototype 0f:

To

Default Value:

This is the field a person ie working in.
{#>PERSOI'-SLOT }

#>THE-VALUE-OF-THE-HACKING-O0F-THE-SUPERVISOR- OF
Makes Sense For:

Data Type:

My
My
My

Creator:

File 0f Definition:

Time 0f Creation:

Actual Get Value:

High Level Definition:

My
My
My
To
To
To
To
To
To

lame :

To Describe Self:
To Print Self:
Cache Value:
Describe Value:
Get Value:

Print Value:
Process Slot:
Verify Type:

{#>PERSOlI-TYPE }

{#>STRIIG-TYPE}

Ken Haase

ARLO: SOURCES: INQUIR * >

Saturday the twenty-eighth of July, 1984; 12:01:58 am
#'CHECK-VALVE

#'CORE: INQUIR: THE-VALUE-OF-THE-HACKING-0F- THE-SUPERVISOR-OF
#>WORKING-IN-FIELD

#'LO0K-AT-SLOT

#'DEFAULT-URIT-PRINTER

' TYPED-CACHE

(LAMBDA (IGNORE) IGHORE)

#'TYPED-DEFAULTING-GET

#'GPRILTC

#'DEFAULT-PROCESS-SLOT

#'CORE: INQUIR:SLOT-VERIF IER-FOR-'ORKING-IN-FIELD

We define the new defaulting method by using the automatic coder SLOT-COMPOS
Just as we defined #>HACKING-0, we define the new #>WORKING-IN-FIELD to tnherst
from the ¥>BACKING slot {wo supervisors away.

TION.

Ken Haasze

ARLO

Editing {#>YORKIlG-II-FIELD} >>Set Slot Value

Which slot of {#>WORKIUG-IN-FIELD} would you like to edit? To Default Value

What value would you like in the {#>To-Default-Value} slot of {#>WORKING-IN-FIELD}-
(Slot-Composition (list #>Hacking #>Supervisor #>Supervisor))

Editing {#>WORKING-IN-FIELD} >>Describe

Description of the ARLD slot {#>%ORKING-IlN-FIELD}:

Description: Thie is the field a person is working in.

Prototype: {#>PERSD!I-SLOT }

Prototype 0f

To Default Value:
#>THE-VALUE-OF-THE-HACKINIG- OF-THE-SUPERVISOR-0F-THE-SUPERVISOR-OF

Makes Sense For: {#>PERSO!-TYPE}

Data Type: {#>STRING-TYPE}

My Creator: Ken Haase

My File Of Definition: ARLO: SDURCES; INQUIR + >

My Time 0f Creation: Saturday the twenty-eighth of July, 1984; 12:01:58 am
Actual Get Value: #'CHECK-VALUE

High Level Definition:
#'CORE: IiiQUIR: THE-VALUE-OF-THE-HACKIIIG-0OF - THE-SUPERV ISOR- OF - THE-SUPERVISOR-OF
[The new high level defindtion, all compiled.. |

My liame #>WORKILNG-IN-FIELD

My To Describe Self: #'LOOK-AT-SLOT

My To Print Self: # DEFAULT-ULIT-PRIITER
To Cache Value: #'TYPED-CACHE

To Decache Value: #'REMOVE-VALUE

To Describe Value: (LAMBDA (IGHORE) IGHORE)
To Get Value: #'TYPED-DEFAULTING-GET
To Print Value: #'GPRINTC

To Process Siot: #'DEFAULT-PROCESS-SLOT

To Verify Type:
#'CORE:IVQUIR:SLOT-VERIFIER-FOR-%ORKIUG-II-FIELD
Editing {#>“ORKING-IN-FIELD} >>Quit

Finished editing {#>%ORKING-IN-FIELD}

Back to editing {#>ALICE}

Sinee we changed the way vorking-In-Field ts defined, any values whach
were defaulted in the old way should be wnvalidated. Let’s look back to Alice’s

description to see 1f this 18 indeed the case.

Ken Haase

ARLO Ken Haase

Editing {#>ALICE} >>Describe
Description of the ARLO unit {#>ALICE}:

Description: The description of ALICE was not provided.
Prototype: {#>PERSOIl }

Prototype 0f:

My Creator: Ken Haase

My File 0f Definition: ARLO: SOURCES; INQUIR * >

My Time 0f Creation: Saturday the twenty-eighth of July, 1981; 12:02:02 am
Full Name: Alice Adams

Last lame: Adams

My lName: #>ALICE

My To Describe Self: #'LO0K-AT-UNIT

My To Print Self: #'DEFAULT-UKIT-PRINTER

Personal lame: Alice

Supervisor: {#>RODGERS}

[And the cached Uorking-In-Field has indeed disappeared. |

Let’s regenerate 1t.

Editing {#>ALICE} >>G -- Describe Slot Value
¥hich slot of {#>ALICE} would you like to see? Working In Field
The Yorking In Field slot of {#>ALICE} is: Robote

You can see from the justifications of the value that it did the right thing,
looking at Rodger’s supervisor and getting her Hacking slot.

This is justified by:

The Hacking slot of {#>CALVII} is: Robots

The To Get Value slot of {#>HACKING} is: #'TYPED-DEFAULTING-GET
The Supervisor slot of {#>RODGERS} is: {#>CALVIl!l}

The Supervisor slot of {#>ALICE} is: {#>RODGERS}

The To Get Value slot of {#>SUPERVISDR} is: #'TYPED-DEFAULTING-GET

The To Default Value slot of {#>WORKING-IN-FIELD} is:
#>THE-VALUE-OF-THE-HACKING- OF-THE-SUPERVISOR-0F-THE-SUPERVISOR-OF
The To Get Value slot of {#>TU-DEFAULT—VALUE} is: #'TYPED-DEFAULTING-GET

And finally, we check that the value we have generated has been appropriately
cached....

‘ ,lsm ot m L0 wait {am}

Description: e mmu of ALICE was m previded.
Protetype: o {»M}
Feotatype 0f:

Ny Creator: Xen Naxsn

’ My File Of Definition: ARLO: SOURCRS; IBQUIR * >
My Time Uf Creation: Saturday the tweaty-eighth of ‘July, 1084; lM'ﬁlam

Full Hame: Alice Adams
Last Hame: Adams
Ny Name: #$4LICE

My Y9 Describe Self: #'LO0K-AY-UNIY

Ny Yo Priat Self: #' DEFAULT-UNIT-MRIRIER
Personal lame: Alice

Sapervisor: {#>20DEERE}

Working In Field: Robots

[And, of course, the value is cached again. |

‘o
5 eh
LS i §
R i i t ;
3% .
wy ¢ EEETE £ FE}
3 IS F
. 4l §
i L
N s Tt
£ W . 2
B i
- b ERE
’ \
- £ g

DA Bo2 433 S]

ARLO Ken Haase

Chapter 4
An Example: Introspection

This chapter describes an automatic explanation system — implemented in and for ARLO — that examines
a collection of ARLO units and generates a structured English explanation of them. These units would
typically describe some particular domain or embedded representation language, and be organized to aid
users or programmers mtroducing themselves to the domain or language. The system analyzes a collection of
units by trying to extract their salient features as an organizational focus for its explanation. Unfortunately,
since the text it generates is primitively template driven (currently), the system does not — at this time —
use these extracted features as the focus for discourse or individual explanations.

This 1s an example of the sort of general self-referential facility which users may implement in ARLO.
With something comparable to this explanation system, a user need merely point at some collection of
units and ask “Explain this” to acquire an organized explanation capturing whatever special “observable”

structure the units possessed.
4.1 Explanation Structures

The explanation system takes the collection of units handed to it and generates another set of units called
an explanation structure describing them. This structure is a hierarchy of explanations, each level of which
partitions the set of units over one of a numher of possible relationships. These possible relationships are the
possible structural slots of a given explanation, and defaults to the union of a collection of system defaults
and the slot descriptions in the set of units being explained.

The explanation process takes the set of units being explained and generates a partion of it for each
structural slot. The resulting partitions — one over each structural slot /relation — are then compared,
and the slot whose partition contains the largest subgroups is selected as the focus of the explanation. The
intuition thiz supports i+ that the organizational focus for an explanation of some collection of units should
be the relation which organizes those units into the biggst “chunks”. If a user doesn’t like the partition chose

at one level though. the explanation structure can be directly altered to focus on another divisive relation.

54

ARLO Ken Haase

For each of the subgroups in the partition selected, a sub ezplanation is generated, whose relevant units
are the elements of the subgroup, -and whose structural slots are inherited from the original explanation,
modulo the slot partitioned over. The explanation mechanism then recurs on these sub explanations, stopping
when the section size — the number of units being explained by a given chunk of structure — drops below
some explanation-wide threshold for specialization of sections.

The explanation structure produced by this process may then be passed to a text-generator, a graphical
exploration environment, or even a theory-making mechanism trying to classify regularities among generated
or accumulated ARLO structures.

4.2 Textual Generation

Textual generation from the explanation structure currently produces organized and formatted 15 output,
appropriately sectionized and structured so as to produce readable, structured output. On both the level
of describing individual units and organizing explanations into sections, the documentation process is data-
directed by reference to descriptions in ARLO.

For individual units, their english explanation is provided by calling a LISP function on the unit’s
#>My-Scribe-To-Document-Sel? slot, which is inherited (by default) over the #>Prototype relation. (Of course
this inheritance mechanism may be shadowed arbitrarily.) These inherited description functions will produce
useful — for human consumption — descriptive text. Slot definitions, automatically coded LISP functions,
"ARLO coders, and user-défined functions-are all described in different ways so-as-to provide appropriate
information to the user. In a more advanced form, the documentation system might take into account
interests of the user, information already related, and “trivial” aspects of the description (for instance,
expected colors, planets, languages, etc).

For every node in the explanation structure which has a relational focus — which partitions a set of
units over some particular slot — the manner of sectionization (determining section titles, order of sections,
discourse restrictions of sub-sections, etc) is determined by the slot being partitioned over (taken as the
organizational focus of the explanation). For instance, relations which are posited by the user as hierarchical
16 are ordered into sections by a breadth first enumeration of the hierarchy they define. Other slots may
organize their documented partitions on ages, execution speeds, size, or frequencies of appearance of their
associated values.

4.3 Graphical Presentation

The explanation structure generated by the system can also be hooked up to a graphical interface for
examining nested structures. Particularly, ARLO’s generated explanation structure has been hooked up
to the Information-Waldo, a gestural interface for manipulating abstract objects in an information space.
This information space is constructed of interconnected rooms containing objects with various properties

15The text produced is either formatted for the terminal or (if going to a file) for some appropriate text formatting
program.

18We could imagine the discovery of such relational properties (like being hierarchical) being made by an intel-
ligent program generalizing from examples. [Cha83] describes a system which does just this sort of relational
generalization from examples in the “world”.

ARLO Ken Haase

Units with a Prototype slot of {#>PERSON}
¥ copy

@Boor To fAin Explanation Of The Inquir Exssple.

Units orqenized by Supervisor

@Door To Units Mot Classifisble By etlsupervisor] (defined In Th
@Daor Te Units Hith A Supervisor Slat Of Mil

m E]ooor To Units Hith R Supervisor Slat Of {w>calvin}
@Dear Te Units With A Sucervisar Slat Of (a>chara}

E]mm To Units With A Suoervisor Slot Of (m>lee}

t would you like to inspect?(]

E_-_]m Listener Pane 1

Units with a Supervisor slot of {#>CALVIN}
$ COPY @Daer To Units With A Prototype Slot Of {W>person}

Units with o sTlSupervisor] (defined in the knouledse base INQUIR) slot
OMIL

at would yau [ika to inspect?(JN

Haldo Listener Pane 1

Figure 4-1. Using the Information Waldo in the INQUIR museum structure.

56

ARLO Ken Haase

and powers. A user wields the information waldo to explore this network of rooms and manipulate their
contents, moving from place to place-and description to -description by physically. immediate gesture and
action.

A user moves a hand shaped grip across a flat surface to move a hand on the screen — and “information
waldo” existing in an abstract “information space” — from location to location. Stylized gestures of grasping,
pointing, or squeezing are detected by the grip and cause the hand on the screen to manipulate the objects
it is moving among. To examine an ARLO description with the information waldo, you merely pick up the
roll-shaped description and squeeze it: its relations leap out from its bodyj; to retract a relation, you rub out
the label attaching it to the description; to move from one room to another, simply put your hand through
an open door, and the new room opens itself up on the display. This gestural interface to ARLO is used
as the basis of an explanation-based browser for ARLO structures. Structured explanations of collections
of ARLO units are used in the design and construction of multi-room museums portraying and describing
them.

The explanation structure produced for ARLO descriptions can generate a museum of the units ex-
plained; this museum consists of a network of rooms reflecting the connections and groupings of the expla-
nation structure. A user exploring some particular implementation or representation with this facility can
use spatial metaphors to organize her understanding. In a more advanced form, a sophisticated interface
would design the museum with the explicit goal of providing such metaphors and mnemonic arrangements.
- Figure 4-1 shows the museum interface being used to explore the INQUIR knowledge base of the previous
example.

4.4 An Explanation of the INQUIR system

The following is an automatically generated explanation for the INQUIR example of the previous chapter.
It was produced by applying the above explanation system to the in-core implementation of the INQUIR
system (determined by all of the units in the INQUIR knowledge base).

These units are best organized by the Prototype relation.

4.4.1 Units without any prototype.

Person is a protypical person description in the “INQUIR” knowledge base. This is the prototypical
person.
4.4.2 Units with a prototype of Hacking

Hacking (as defined by HACKING-0) is a slot which accepts values of type String Type and makes sense

for units of type Winner Type. The description of HACKING-0 was not provided. Its value defaults by the
function ARLO:QUESTION-6, which:

Ask the user a question by:
(FORMAT QUERY-I0 “What 1s a hacking on?” (GET-VALUE UNIT #>PERSONAL-HAME)

4.4.3 Units with a prototype of Hand Coded Function

These units are best organized by the Prototype relation.

57

ARLO Ken Haase

4.4.4 Units without any prototype.

Person is a protypical person description in the “UINQUIR” knowledge base. This is the prototypical
person.

4.4.5 Units with a prototype of Hacking

Hacking (as defined by HACKING-0) is a slot which accepts values of type String Type and makes sense
for units of type Winner Type. The description of HACKING-0 was not provided. Its value defaults by the
function ARLO:QUESTION-6, which:

Ask the user a question by:
(FORMAT QUERY-IO “What is a hacking on?” (GET-VALUE UNIT #>PERSOHAL-NAME)

4.4.6 Units with a prototype of Hand Coded Function

DATA-TYPE-GENERATOR is a user defined lisp function which has an argument list of (UNIT SLOT), and is
documented as: “Looks through the prototypes of a slot for its data-type”.
DEFAULT-DESCRIPTION-GENERATOR is a user defined lisp function which has an argument list of (IN-UNIT
IGNORE), and is documented as: “This generates a description excuse.”.
-+ ~FIND-HACKING-SLOT is a user defined lisp. function which-has an argument list of (UNIT IN-SLOT), and
is documented as: “Looks for a replacement hacking definition tn a persons prototypes.”.
GENERATE-EXPLANATION-TITLE is a user defined lisp function which has an argument list of (EXPLANA-
TION IGNORE), and is documented as: “Generates an title for a given ezplanation.”.
TO-GENERATE-LAST-NAME is a user defined lisp function which has an argument list of (UNIT IGNORE),
.and is documented as: “Eztracts a person’s last name from her full name.”.
TO-GENERATE-PERSONAL-HAME is a user defined lisp function which has an argument list of (UNIT IG-
NORE), and is documented as: “Eztracts a person’s first name from her full name.”.
WEDGE is a user defined lisp function which has an argument list of (UN SL}, and is documented as:
“Recurses infinitely.”.

4.4.7 Units with a prototype of Person Slot

Full-Name is a slot which accepts values of type String Type and makes sense for units of type Person
Type. This is the full, formal name of a person. Its value defaults by the function ARLO:QUESTION-3,
which:

Ask the user a question by:
(FORMAT QUERY-10 “ &What 1s the full name of the person described by a?” UNIT)

Hacking is a slot which accepts values of type String Type and makes sense for units of type Person Type.
This is what a person is hacking on. Its value defaults by the function ARLO:TRY-AND-TRY-AGAIN-1,
which: '

Tries to compute a value by two distinct methods:
Searches through the CORE':INQUIR:SUPERVISOR slots of a unit for a value.

58

ARLO Ken Haase

Ask the user a question by:
(FORMAT QUERY-10 “What is a hacking?” (GET-VALUE UNIT #>PERSOUAL-UIAME)

Last-lame is a slot which accepts values of type String Type and makes sense for units of type Person

Type. This is the last name of a person. Its value defaults by the function ARLO:TO-GENERATE-LAST-
NAME, which:

Ezxtracts a person’s last name from her full name.

Personal-lame is a slot which accepts values of type Siring Type and makes sense for units of type Person
Type. This is the informal name of a person. Its value defaults by the function ARLO:TO-GENERATE-
PERSONAL-NAME, which:

Eztracts a person’s first name from her full name.

Supervisor is a slot which accepts values of type Person Type and makes sense for units of type Person
Tuype. This is the supervisor of a person. Its value defaults by the function ARLO:QUESTION-4, which:

Ask the user a question by:

(FORMAT QUERY-10 “ &Who is a hacking for?” (GET-VALUE UNIT #>PERSOUAL-1AME)

Wedging is a slot which accepts values of type String Type and makes sense for units of type Person
Tupe. This breaks. Its value defaults by the function ARLO:WEDGE, which:

Recurses infinitely.

orking-In-Field is a slot which accepts values of type String Type and makes sense for units of type
Person Type. This is the field a person is working in. Its value defaults by the function THE-VALUE-OF-
THE-HACKING-OF-THE-SUPERVISOR-OF, which:

Gets the CORE:INQUIR:HACKING of the CORE:INQUIR:SUPERVISOR of some unait.

4.4.8 Units with a prototype of Person

These units are best organized by the Supervisor relation.
4.4.8.1 People without any supervisor

Susan Calvin iz working on Robots.
4.4.8.2 People working for Susan Calvin

Alice Adams is working on Robots for Susan Calvin.

Elizabeth Charo is working on Cognitive Fundamentals for Susan Calvin.
Pat Lee is working on Engineering Design for Susan Calvin.

Robert Rodgers 1s working on Emotional Analouge Robots for Susan Calvin.

4.4.8.3 People working for Elizabeth Charo

Arthur Pendragon is working on Fantasy Games for Elizabeth Charo.

4.4.8.4 People working for Pat Lee
Kyle O’Shea is working on Engineering Design for Pat Lee.

59

ARLO Ken Haase

4.4.8.5 Units not classifiable by Supervisor

Winner is a protypical person description in the “INQUIR” knowledge base. Somone who doesn't
always follow their supervisor.

4.4.9 Units with a prototype of Slot

Person-Slot is a slot which accepts values of type Any Type and makes sense for units of type Person
Type. This is the prototypical slot which attaches to people.

4.4.10 Units with a prototype of Shadow Slot

Shadoved-Hacking-Definition is a slot which accepts values of type Slot Type and makes sense for units
of type Slot Type. This is a shadowed definition for hacking. Its value defaults by the function ARLO:FIND-
HACKING-SLOT, which:

Looks for a replacement hacking definition 1n a persons prototypes.

4.4.11 Units with a prototype of Type

Person-Type specifies a class of LISP objects which are classified by Unit-Type and which additionally
satisfy the predicate TEST-4 (documented as “An arbitardy hairy test.”). This 1s a type satisifed by any unit
inheriting from Person.

yinner-Type specifies a class of LISP objects which are classified by Unit-Type and which addition-
ally satisfy the predicate PROTOTYPE-OF-wINIER? (documented as “Checks to see of a unit inherits from
CORE:INQUIR:WINNER via CORE:PROTOTYPE.”). This is a type satisifed by units inheriting (via

the Prototype relation) from the unit Winner.

4.4.12 Units with a prototype of Winner

Brian Walking-Song is working on Intelligent Mystic Systems for Elizabeth Charo.

60

ARLO Ken Haase

Chapter 5
Conclusion

The preceding chapters may have seemed like an attempt to ‘sell’ ARLO as a panacea for all one’s rep-
resentation problems. Unfortunately. when pushed to the limit, ARLO broke down for fairly fundamental
reasons. This conclusion examines those reasons and presents arguments for which of ARLO’s ideas are
worth keeping in new implementations, and which caused basic problems.

The version of ARLO described here was developed largely in the summer of 1983 and the spring of 1984.
In the fall of 1984, a discovery program implemented in ARLO (Clyrano-0) acheived about half of the results
of AM and Eurisko in elementary mathematics, discovering the notion of number and synthesizing operations
such as multiplication over numbers. Due to an insufficent theory for the representation of inverses, the step
to factorization and AM’s subsequent discoveries in elementary number theory were not acheived. However,
this work did reveal some fundamental properties of discovery programs, which are described in {Haa86hi.

At the same time that the initial development of Cyrano-0 was proceeding, Dave McDonald and his
students at UMASS-Ambherst were using ARLO as the representational backbone for generating English text
(using McDonald’s MUMBLE McD83]) for an ‘intelligent encyclopedia. This work is described in MP34].

Implementing Cyrano-0 in ARLO revealed a variety of cumbersome properties of ARLO:; in the late
winter and early spring of 1985, an effort to reimplement ARLO was undertaken. The key points of this
implementation (in particular its differences with respect to the ARLO described here) are presented below.
A manual for this version of ARLO is available as [Haagon . Work with this new ARLO, however, revealed
deep problems (for purposes of automated discovery programs) in the ‘frame-slot’ orientation of ARLO.
These problems, broached in detail in [Haag6c], are also sketched below.

Despite these criticims, many of the ideas belind ARLO are still neccessary constituents of Allanguages.
The ability to refer to abstract descriptions of properties allows programs to easily use meta-knowledge in
describing their own constructions. In particular, knowledge about the semantic restrictions on properties

allows a program to understand its own representation in i general way.

61

ARLO Ken Haase

5.1 Flaws in ARLO

In developing Cyrano-0, ARLO was found cumbersome for a variety of reasons. Some of the reasons are
endemic to RLL’s in general and will be described in Section 5.2; others are particular to the implementation
described in the preceding chapters. These problems are the topic of this section.

Most of the problems in uzing ARLO were not real problems of expressiveness; since a user could encode
arbitrary patterns of activity into LISP procedures. ARLO was arbitrarily expressive in a weak way. The

problems were rather problems of perspicuity; in order to say certain things that one wished to say, it was
neccessary to descend into LISP. The magic grab-Lag of LISP extensions became a cloak over the operation
of the system, requiring that each modification and analysis module have special properties for special casing
various opaque extensions of ARLO. '

This problem revealed itself in two particular components of ARLO: the dependency network and the
accretion of slot behaviours. In each of these, the usefulness and extensibility of the module was hampered by
the lack of sufficiently explicit representations of ARLO’s implementation; the module had to be extensively
special-cased to handle opaquely distinct representational constructs.

5.1.1 Flaws in the Dependency Network

The dependency network, implemented in LISP Machine flavors, suffered from a variety of flaws. Most had
to-do with the opaqueness of the dependency implementation; user interface utilities, debuggers, and special
network updating code had to deal with the vagaries of message passing in LISP as well as ARLO’s unit-slot
representation. There was also the familiar crossbar problem of introducing new sorts of dependencies; in
order to introduce a new type of dependency, it was neccessary to determine the interaction of the new
dependency type with all existing dependency types and tools. The standard protocol for invalidation helps
this process, but managing details is still difficult. In particular, a user interface must special case its
presentations for each different sort of dependency.

The general result of these opacities in the dependency network is the same as opacity anywhere; a
significant increase in the amount of LISP code and programming required rather than a modest increase in
the amount of specified representation. We would like to be able to extend and use the dependency network
in much the same way as we use ARLO units. Unfortunately, dependency records are not units but are
special purpose LISP data structures encumbered with methods and procedural semantics couched in LISP
Machine LISP.

The obvious solution to this, implemented in [Haa86a], is to make dependency records into units. In
Haag&6a! the values of slots may actually be ‘value descriptions’ which go through another level of interpre-
tation to get ‘actual valnes’, but which provide useful information about the status of the value {where it
came from, how reasonable it is, etc). These values are similar to the ‘active values’ of Loops {BS83] CYC
ILSP&5!; the are annotated values abont which arbitrary properties may be stated or inferred.

5.1.2 Flaws in Combining Slot Actions

The flaws described in this section arize from ARLO's answer to the question: “How do we add new he-
haviours to a slot or type of slot” In ARLO. the way to add behaviours is to write LISP code which will

execute the behavionrs. The way te modify hehaviowrs {mucl simpler} is to simply use one function instead

62

ARLO Ken Huase

of another as one slot of the abstract slot description being modified. This is made possible by the use of
reflexive operators. For adding behaviours, the presence of reflexive operators makes writing general code
simpler; we may simply say “do the inversion side-effects of the slot” rather than having to specify whatever
particular function implements “do the inversion side-effects of the MOTHER slot.” However the problem is
that new behaviours — specified in LISP — the become largely opaque to the other behaviours and functions
of the zystem.

The one point where this problem became most obvious in ARLO was in attempting to maintain a
distinction between ‘syntactic’ and ‘semantic’ information about slots. For instance, to implement many-
to-many relations with slots, the values of slots must be interpreted as multiple values; the content of a
slot iz then (say) a list. But the semantic restrictions placed on a slot (properties like Makes-Sense-For and
Data-Type) should apply to the individual elements of the list, rather than the list itself. This distinction
(neccessary due to the focus of ARLO on single-valued slots17) is impossible to patch by using prototype
inheritance for abstraction, for we wish to speak of semantic AND syntactic inheritance. Thus we can
say that the Children slot is syntactically a set and semantically only accepts human beings on both ends
(as attachement and value). We wish these properties to inherit differently. In ARLO, however, this was
impossible.

The solution to this particular problem in [Huu86a] is to simply have two different inheritance relations
and two distinct levels of operation for fetching slots: an implementation level of accessing a slot and an
interpretation level of getting slots. The first level is a ‘syntactic’ level; the second level is ‘semantic.’

This solution is effective but introduces some problems of its own. In particular, though we would
like ‘syntax’ and ‘semantics’ to be orthogonal, they turn out not to be. When a new syntactic or semantic
primitive is introduced into the language, provision must often be made in the ‘other half’ of the implemen-
tation. This is better than in the implementation described in this document (where adding a non-primitive
construction involves combining LISP code from several places) but still not ideal. An argument that this
problem is endemic to RLLs is offered in Section 5.2.

5.2 Why RLL’s are no good

All of the problems described in the previous section arise from the opacity of extensions to the RLL. These
opacities result from the inclusion of arbitrary LISP code in the specification of slot behaviours. In each case,
in {Haa86a) the problem was resclved by factoring out the LISP code into primitives in the representation.
Thus the methods for handling dependency propogation were assigned to properties of value descriptions and
the discinction between syntactic specification and semantic specification moved from implicit specification
in LISP code to a distinction between hierarchies in the representation. We might hope that — given enough
such migrations — that the right ‘primitives’ would be found to avoid any need to escape to LISP.
Unfortunately, we already know — in some sense — what this ‘right’ set of primitives should be: 1t’s
called a programming language. Users of RLLs are forced into LISP (aud therefore weaken the utility of the
RLL) when they need to do something which the RLL (as given) cannot adequately express. A sufficently

powerful RLL 15 a full-fledged programmang language. It must be however — a programming language

17ARLO might be criticized for thiz basic assumption. but the problem is that any basic assumpticn of the lan-

anage may be short cirenited’ suly by descending inte the murky opagueness of LISP code.

63

ARLO Ken Haase

which has a manipulable and perspicuous representation of itself. ‘Limited RLLs,” like ARLO and the
language described in [Haa86a], are useful for particular applications but eventually lose generality when
users require the full power of a programming language. For instance, slots defining individual slot actions
are fine until one wishes to compose new actions to existing ones. At this point, since the notion of a slot is
a weakened and limited version of the notion of a function, to define the composition of slot executions, the

user must escape to LISP where she can wse the full notion of functional composition and sequencing.

The solution to this problem, as 1 suggest in [Haag6cl, is to develop a programming language with the
self-descriptive capacity of RLLs. In brief, this language is a higher order language similar to FP [Bac78] with
inferred typing of functions (much as in ML IMil78] and the addition of a special class of functions — called
mutable mappings — which replace the functionality of slots and properties. The function MAKE-MUTABLE
constructs a mutable function which is simply a pairwise mapping of objects. The function MUTATOR returns a
procedure for storing mappings for the mutable function. For example, the following uses mutable operations
to define the COLOR function and set the color of a few objects.

(define color (make-mutable))
COLOR
(color ’apple)
<UNKNOWN> ; Indicates a value with no mapping.
(define define-color! (mutator color))
DEFIIE-COLOR
(define-color! ’apple ’'red)
<UNKNOWN> ; the previous return value.
(define-color! ’orange ’orange)
<UNKNOWN>
(color ‘apple)
RED
(color ’orange)
ORA!IGE
These mutatable functions can be combined with higher order operators, like COMPOSE or RESTRICT-RAIGE.

Here we defined a special subset of colors and compose this with a class of fruits:

(define real-colors (set-of ’(red green blue yellow orange pink)))
REAL-COLORS ; The value of this is a type.

(define real-color (restrict-range color real-colors))

REAL-COLOR

(define fruit (make-mutable))

FRUIT

(define fruit-color (compose fruit real-color))

FRUIT-COLOR

So defined, we can set and access the color of fruits by using the procedures we have defined and their

64

ARLO Ken Haase

associated mutators.

((mutator fruit) ’apple-tree ’apple)
<UNKNOWN>

(fruit-color ’apple-tree)

RED

Knowledge about procedures can be accessed by other procedures, in particular, DO:ATL and RANGE.

(domain color)

#[ANYTHING]

(range color)

#[ANYTHING]

(range real-color)

#[One of RED GREE!l BLUE YELLOY ORANGE PIIK]

(range fruit-color)

#[0ne of RED GREE! BLUE YELLOY ORAIGE PIIK]
By defining all of ones representational constructs in this way, the expressive power of our representation
language is nearly equal to that of LISP-like languages while still giving us the power of an RLL.

5.3 Why RLL’s Aren’t So Bad

In the previous section, an argument was introduced for a new sort of representation language language,
criticizing fundamental flaws in most representation language languages to date. An important point to
make however, is that the criticism applies primarily to programs which must learn by accquiring new
representations and definitions. For implementing any given Al program — capturing a given domain’s
expertise — an RLL provides a powerful toolkit for building a specially tailored representation. Only when
new tools must be built do traditional RLLs falter or fail.

In conclusion, the reasons for wanting to have an RLL are sustained: self-debugging, self-explanation,
and self-modification are greatly enhanced by having a representation of the representation being used.
Unfortunately, these reasons are countervailed as the expressive demands on the language require escape to
a ‘real’ programming language. The solution —- it then seems= — must be to make an RLL which is a ‘real’

programming language.

65

ARLO Ken Huase

Chapter A-1
An ARLO ‘Explanation’

These units are best organized by the My File Of Definition relation.
A-1.1 Units defined in Arlo: SOURCES; BOOT

These units are best organized by the Makes Sense For relation.

A-1.1.1 Units with a Makes Sense For slot of Any-Type

The unit Defaulting Slot is defined in the knowledge base Core. This is the prototype for slots which
default their values.

The unit Generic Slot is defined in the knowledge base Core. This is a prototypical “generic” slot
which looks for local slot definitions on each unit.

The unit Primitive Slot is defined in the knowledge base Core. This is the simplest prototype slot.

The unit Prototype 1s defined in the knowledge base Core. This is a unit's prototype.

A-1.1.2 Units with a Makes Sense For slot of Slot-Type

These units all have PROTOTYPE slots of siot.
These units are best organized by the Data Type relation.
Units with a Data Type slot of Function-Type

These units are best organized by the To Default Value relation.

Units with a To Default Value slot of # ' DECACHE-FINDER

To-Decache-Value 1s a slot which accepts values of type Function Type and makes sense for units of type
Slot Type. This iz a slot’s function for invalidating it’s value on a unit. Its value defaults by the function
ARLO:DECACHE-FINDER, which:

This finds the deaching function for a unit by looking through its prototypes.

Units with a To Default Value slot of #’ DONT-DEFAULT-SLOT

66

ARLO Ken Haase

To-Default-Value is a slot which accepts values of type Function Type and makes sense for units of type

_ Slot Type. This is the function for computing the value of a slot at need. Its value defaults by the function

ARLO:DONT-DEFAULT-SLOT, which:
Stgnals an error if called to default a value.

Units with a To Default Value slot of # ’FIND-VALUE

Actual-Put-Value is a slot which accepts values of type Function Type and makes sense for units of type
Slot Type. This is a slot’s function for “physically” depositing its value. Its value defaults by the function
ARLO:FIND-VALUE, which:

Look through the prototoypes of a unit for a particular slot.

To-Cache-Value is a slot which accepts values of type Function Type and makes sense for units of type Slot
Type. This is a slot’s function for caching its value. Its value defaults by the function ARLO:FIND-VALUE,
which:

Look through the prototoypes of a unit for a particular slot.

To-Get-Value is a slot which accepts values of type Function Type and makes sense for units of type Slot
Type. This is a slot’s procedure for fetching its value. Its value defanlts by the function ARLO:FIND-VALUE,
which:

Look through the prototoypes of a unit for a particular slot.

To-Process-Slot is a slot which accepts values of type Function Type and makes sense for units of type

Slot Type. This is a slot’s function for transforming its description into “print-queue” form. Its value defaults
by the function ARLO:FIND-VALUE, which:

Look through the prototoypes of a unit for a particular slot.
To-Put-Value is a slot which accepts values of type Function Type and makes sense for units of type Slot

Type. This is a slot’s procedure for storing a value. Its value defaults by the function ARLO:FIND-VALUE,
which:

Look through the prototoypes of a unit for a particular slot.

To-Retract-Value is a slot which accepts values of type Function Type and makes sense for units of type
Slot Type. This is a slots procedure for removing its value. Its value defaults by the function ARLO:FIND-
VALUE, which:

Look through the prototoypes of a unit for a particular slot.
Units with a To Default Value slot of #’TO-GENERATE-SLOT-DESCRIBER

To-Describe-Valueis a slot which accepts values of type Function Type and makes sense for units of type
Slot Type. This is a slot’s function for describing its value. Its value defaults by the function ARLO:TO-
GENERATE-SLOT-DESCRIBER, which:

Generates a function for describing a slot’s value.

Units with a To Default Value slot of #'TO-GENERATE-SLOT-PRINTER

67

ARLO Ken Hause

To-Print-Value is a slot which accepts values of type Function Type and makes sense for units of type
Slot Type. This is the function for printing the value of this kind of slot. Its value defaults by the function

ARLO:TO-GENERATE-SLOT-PRINTER. which:
Gets the funciion for printing a slot’s value.

Units with a To Default Value slot of #’TO-GENERATE-SLOT-READER

To-Read-Value is a slot which accepts values of type Functrion Type and makes sense for units of type
Slot Type. This is a slot’s function for reading in its value. Its value defaults by the function ARLO:TO-
GENERATE-SLOT-READER, which:

Gels the function for reading in a #lot’s value.

Units with a To Default Value slot of #’TO-GENERATE-TO-VERIFY-TYPE
To-Verify-Type is a slot which accepts values of type Function Type and makes sense for units of type
Slot Type. This iz the function which verifies the suitability of a slot’s attachment. Its value defaults by the

function ARLO:TO-GENERATE-TO-VERIFY-TYPE, which:

Compute a slot’s type checker with the Type-Checker coder.

Units not classifiable by To-Default-Value

Actual-Get-Value is a slot which accepts values of type Function Type and makes sense for units of type
Slot Type. This is-a slot’s function for “physically” extracting its value.
Units with a Data Type slot of Slot-Type
Shadov-Slot is a slot which accepts values of type Sloi Type and makes sense for units of type Slot Type.
This is the prototype for all slots which shadow other slots.
Units with a Data Type slot of Type-Type

Data-Type is a slot which accepts values of type Type Type and makes sense for units of type Slot Type. This
is a slot’s description of its acceptable values— its range. lts value defaults by the function ARLO:DATA-
TYPE-GENERATOR, which:

Looks through the prototypes of a slot for its daia-lype

Makes-Sense-For is a slot which accepts values of type Type Type and makes zense for units of type Slot
Type. This describes the sorts of units a slot may attach to— itz domain. Itz value defaults by the function

ARLO:MAKES-SENSE-FOR-GENERATOR, which:
Looks through the prototypes of a slot for 1ts attechment type.

A-1.1.3 Units with a Makes Sense For slot of Unit-Type

These units are bhest organized by the Prototype relation.

Units with a prototype of Generic Slot

The unit Typed Slot is defined in the knowledge base Core. This is the prototype for slots which perform
type checking.

Units with a prototype of Defaulting Slot

68

ARLO Ken Haase

Slot is a slot which accepts values of type Any Type and makes sense for units of type Unit Type. This is

- - the prototype for slots which both default and type check their values.

Units with a prototype of Slot
These units are best organized by the Data Type relation.

Units with a Data Type slot of Any-Type

My-File-Of-Definition is a slot which accepts values of type Any Type and makes sense for units of type
Unit Type. This is the file in which a unit was defined. Its value defaults by the function ARLO:GET-TIME,
which:

Gets the current universal time.

My-Name is a slot which accepts values of type Any Type and makes sense for units of type Unit Type.
This is a unit’s name. Its value defaults by the function ARLO:GENERATE-UNIT-NAME, which:

Generates a unit name. (Never really called?)

Shadow-S1lot-Slot is a slot which accepts values of type Any Type and makes sense for units of type Unit
Type. This stores the slot referring to ways to find a slot.

Units with a Data Type slot of Function-Type

My-To-Describe-Sel? is a slot which accepts values of type Function Type and makes sense for units of

- type- Unit Type- This is a unit’s function for describing itself.: Its value defaults by the function ARLO:UNIT-

DESCRIBER-GENERATOR, which:
Looks through the prootypes of a unit for a description function.

My-To-Print-Sel? is a slot which accepts values of type Function Type and makes sense for units of type
Unit Type. This is a unit’s function for printing itself. Its value defaults by the function ARLO:UNIT-
PRINTER-GENERATOR, which:

Looks through the prootypes of a unit for a printer function.
Units with a Data Type slot of List-Type
High-Level-Definition is a slot which accepts values of type List Type and makes sense for units of type

Unit Type. This is a definition for some function in a high level language. Its value defaults by the function
ARLO:ASK-USER-FOR-SLOT, which:

Asks user for a slot on a window that’s big enough.
Units with a Data Type slot of String-Type
Description is a slot which accepts values of type String Type and makes sense for units of type Unit

Type. This is a string describing what this unit is. Its value defaults by the function ARLO:DEFAULT-
DESCRIPTION-GENERATOR, which:

This generates a description ezcuse.

My-Creator is a slot which accepts values of type String Type and makes sense for units of type Unit Type.
This is the user who created (actually, compiled) a unit. Its value defaults by the function ARLO:GET-
HACKER, which:

Returns the full name of the current user, as a string.

69

ARLO Ken Haase

EXPECTING is an ARLO coder. This defines a try and try again function which expects certain
errors.. The functions it generates are specified by two parameters: Errors-Expected and Possible-Methods.
It’s body is generated by the function GENERATE-EXPECTING.

INHERIT-THROUGH is an ARLO coder. This defines functions which search for values along some
relation.. The functions it generates are specified by one paraiueter: Slot-To-Inherit-Through . It’s body is
generated by the function GENERATE-INHERIT-THROUGH.

INHERITS? is an ARLO coder. This implements a function for confirming inheritance along some
relation.. The functions it generates are specified by two parameters: From-Unit and Slot-To-Search-Through.
It’s body is generated by the function GENERATE-INHERITS?.

METHODS is an ARLO coder. This builds a try and try again function.. The functions it generates
are specified by one parameter: Possible-Methods . It’s body is generated by the function GENERATE-
METHODS.

SLOT-COMPOSITION is an ARLO coder. This generates a slot composition function. The functions
it generates are specified by one parameter: Slots-To-Combine . It’s body is generated by the function
GENERATE-SLOT-COMPOSITION. ’

TEST is an ARLO coder. This defines a complicated conjunction of many predicates.. The func-
tions it generates are specified by one parameter: Test-Criterion . It’s body is generated by the function

. .GENERATE-TEST.

Units with a prototype of Hand Coded Function
GENERATE-METHOD-DESCRIPTIONS is a user defined lisp function which has an argument list of (UNIT IGNORE),
and is documented as: “Generates descriptions for each method in e try-and-try-again function.”.

A-+1.3 Units defined in Arlo: SOURCES; CODING

These units are best organized by the Makes Sense For relation.
A-1.3.1 Units with a Makes Sense For slot of Coded-Function-Type
Coded-By is a slot which accepts values of type Coder Type and makes sense for units of type Coded

Function Type. This is the unit describing the implementation of this function. Its value defaults by the -
function ARLO:DONT-DEFAULT-SLOT, which:

Signals an error of called to default a value.

Internal-liame is a slot which accepts values of type Symbol Type and makes sense for units of type
Coded Function Type. This is the unit describing the implementation of this function. Its value defaults by
the function ARLO:GENERATE-INTERNAL-FUNCTION-NAME, which:

This conses an ugly internal function name for a description.

A-1.3.2 Units with a Makes Sense For slot of Coder-Type

Coder-5lot is a slot which accepts values of type Any Type and makes sense for units of type Coder
Type. This is the prototype for all parts of coder descriptions. lts value defaults by the function ARLO:ASK-

71

ARLO Ken Huaase

USER-FOR-SLOT, which:

Asks user for a slot on a window that’s big enough.

Description-Parameters is a slot which accepts values of type Lisi Type and makes sense for units of
type Coder Type. These are the specifications from which the function is generated.

Documentor is a slot which accepts values of type Function Type and makes sense for units of type Coder
Type. This is the function which documents this sort of function.

Implementor is a slot which accepts values of type Function Type and makes sense for units of type Coder
Type. This is the function which codes up this sort of function.

Jame-Generator is a slot which accepts values of type Function Type and makes sense for units of type

Coder Type. This is the function which names this sort of function. Its value defaults by the function

ARLO:TO-DEFAULT-NAME-GENERATOR, which:

This generates a function which generates function name generators.

A-1.3.3 Units with a Makes Sense For slot of @T[Function-Type|

Function-Debugging-Info is a slot which accepts values of type List Type and makes sense for units of
type Function Type. This is random debugging information for a function. (Generated by the compiler) Itz

value defaults by the function ARLO:TO-DEFAULT-FUNCTION-DEBUGGING-INFO, which:
This finds the internal debugging information for a function.

Function-Max-Args is a slot which accepts values of type Integer Type and makes sense for units of type
Function Type. This is the maximum number of arguments a function may take. Its value defaults by the

function ARLO:TO-DEFAULT-MAX-ARGS, which:
This returns the marimnum number of args a function may take.

Function-Min-Args is a slot which accepts values of type Integer Type and makes sense for units of type
Function Tuype. This iz the minimum number of args a function requires. Its value defaults by the function

ARLO:TO-DEFAULT-MIN-ARGS, which:
This returns the minimum number of args a function takes.

lacros-Used is a slot which accepts values of type List Typc and makes sense for units of type Function
Tupe. This is the macros used in defining a function. Its value defaults by the function ARLO:TO-DEFAULT-
MACROS-USED, which:

Thiz determanes whal macros were expanded for a grven functzon.

lagic-Argument-Descriptor is a slot which accepts values of type Integer Type and makes sense for units
of type Function Type. This is a magic number describing a functions arguments (generated by the compiler)

Its value defanlts by the function ARLO:TO-DEFAULT-MAGIC-ARGUMENT-DESCRIPTOR, which:

This returns a magical argument descriptor for a function.

A-1.3.4 Units with a Makes Sense For slot of Implemented-Function-Type
These unitz are best organized by the Prototype relation.

72

ARLO Ken Haase

Units with a prototype of Slot

Function-Descriptor is a slot which accepts values of type Any Tupe and makes sense for units of type
Implemented Function Type. This the prototype for attributes describing functions.

Units with a prototype of Function Descriptor
These units are best organized by the Data Type relation.

Units with a Data Type slot of Lisp-Function-Type

Functional-Value is a slot which accepts values of type Lisp Function Type and makes sense for units of
type Implemented Function Type. This is a version of the function acceptable to APPLY. Its value defaults
by the function ARLO:TO-DEFAULT-FUNCTIONAL-VALUE, which:

Gets the functional value - compiled or interpreted ~ of a function.

Units with a Data Type slot of List-Type

Arglist is a slot which accepts values of type List Type and makes sense for units of type Implemented
Function Type. This is the argument list for a function. Its value defaults by the function ARLO:TO-
DEFAULT-ARGLIST, which:

Defaults the arglist of a function.

Lambda-Body is a slot which accepts values of type List Type and makes sense for units of type Implemented
. Function Type. This is the body of the function. Its value defaults by the function ARLO:TO-DEFAULT-
LAMBDA-BODY, which:

Finds or generates a lambda body for a function.

Lambda-Definition is a slot which accepts values of type List Type and makes sense for units of type
Implemented Function Type. This is the lambda definition of a function. Its value defaults by the function
ARLO.TO-DEFAULT-LAMBDA-DEFINITION, which:

This tries to compute a lambda definttion for a slot.

Units with a Data Type slot of String-Type

Documentation is a slot which accepts values of type String Type and makes sense for units of type
Implemented Function Type. This is the documentation for a function. Its value defaults by the function
ARLO:TO-DEFAULT-DOCUMENTATION. which:

Finds the documentation for a function.

Units with a Data Type slot of Subr-Type

Compiled-Definition is a slot which accepts values of type Subr Type and makes sense for units of type
Implemented Function Type. This is the compiled definition of a function. Its value defaults by the function
ARLO:TO-DEFAULT-COMPILED-DEFINITION, which:

Compiles the definttion of a function.

Units with a Data Type slot of Valid-Function-liame-Type

Function-llame is a slot which accepts values of type Valid Function Name Type and makes sense for
units of type Implemented Function Type. This is the function spec for the function described by a umt. Its
value defaults by the function ARLO:TO-DEFAULT-FUNCTION-NAME, which:

Computes a function name by looking on a coder slot.

73

ARLO Ken Haase

A-1.3.5 Units not classifiable by Makes-Sense-For

The unit Coder i: defined in the knowledge base Core. This is the prototype for all ARLO’s automatic
coders.

The unit Hand Coded Function is defined in the knowledge base Core. This is the prototype for
functions defined by DEFINE.

The unit Implemented Function is defined in the knowledge base Core. This is the prototype for
implemented LISP function descriptiouns.

A-1.4 Units defined in Arlo: SOURCES; LISP

These units all have PROTOTYPE slots of Hand-Coded-Function. FIND-VALUE is a user defined lisp
function which has an argument list of (UNIT SLOT), and is documented as: “Look through the prototoypes
of a unat for a particular slot.”.

GENERATE- INTERHAL-FUNCTION-HAME is a user defined lisp function which has an argument list of (UNIT
IGNORE), and is documented as: “Thus conses an ugly internal function name for a description.”.

MAKES-SEISE-FOR-GENERATOR is a user defined lisp function which has an argument list of (UNIT SLOT),
and 1s documented as: “Looks through the prototypes of a slot for its attachment type.”.

TO-DEFAULT-COMPILED-DEFINITION is a user defined lizsp function which has an argument list of (UNIT
IGNORE]), and is documented as: “Compiles the definition of a function.”.

TO-DEFAULT-DOCUMENTATIC!H is a user defined lisp function which has an argument list of {UNIT IGNORE),
and is documented as: “Finds the documentation for a function.”.

TC-DEFAULT-FUIICTION-HAME is a user defined lisp function which has an argument list of {UNIT IGNORE]},
and is documented as: “Computes a function name by looking on a coder slot.”.

TO-DEFAULT-FUIICTIOHAL-VALUE is a user defined lisp function which has an argument list of (UNIT IG-
NORE), and is documented as: “Gets the functional value - compiled or interpreted ~ of a functron.”.

TO-DEFAULT-LAMBDA-BODY is a user defined lisp function which has an argument list of (UNIT IGNORE),
and is documented as: “Finds or generates a lambda body for a function.”.

TO-DEFAULT-LAMBDA-DEFIUITION is a user defined lisp function which has an argument list of {UNIT
IGNORE]), and iz documented as: “This tries to compute a lambda definition for a slot.”.

TO-GELERATE-TO-VERIFY-TYPE is a user defined lisp function which has an argument list of (SLOT IG-
NORE), and is documented as: “Compute a slot’s tupe checker with the Type-Checker coder.”.

UIIT-PRINITER-GELERATOR ix a user defined lisp function which has an argument list of (UUNIT SLOT), and
12 documented as: “Looks through the prootypes of a unit for a printer function.”.

A-1.5 Units defined in Arlo: SOURCES; TYPES

These units are best organized by the Prototype relation.

A-1.5.1 Units without any prototype.

The umit Type 1z defined in the knowledge base Core. This is the prototype for all types. It accepts

anythimg.

ARLO Ken Haase

A-1.5.2 Units with a prototype of Coder

TYPE-CHECKER is an ARLO coder. Generates a type checking function for a slot.. The func-
tions it generates are specified by ome parameter: Relevant-Slot . It’s body 1= generated by the function

GENERATE-TYPE-CBECKER.
A-1.5.3 Units with a prototype of Function Descriptor

Relevant-Slot iz a =lot which accepts values of type Any Type and makes sense for units of type Imple-
mented Function Type. A descriptor for the TYPE-CHECKER coder.

A-1.5.4 Units with a prototype of Hand Coded Function

TO-GENERATE-SLOT-DESCRIBER is a user defined lisp function which has an argument list of (UNIT IG-
NORE), and is documented as: “Generates a function for describing a slot’s value.”.

T0-GE!IERATE-SLOT-PRIITER is a user defined lisp function which has an argument list of (UNIT IGNORE),
and is documented as: “Gets the function for printing a slot’s value.”.

TO-GENERATE-SLOT-READER is a user defined lisp function which has an argument list of (UNIT IGNORE),
and is docnmented as: “Gets the function for reading tn a slot’s value.”.

TD-GEIERATE-TYPE-CHECKER is a user defined lisp function which has an argument list of (UNIT IGNORE),
and is documented as: “Generates the type checking function for a type.”.

A-1.5.5 Units with a prototype of Slot

These units are best organized by the Data Type relation.

Units with a Data Type slot of Function-Type

Function-To-Describe is a slot which accepts values of type Function Type and makes sense for units of type
Type Type. This is the function for describing a value of a particular type. Its value defaults by the function

INHERIT-THROUGH-GENERALIZATION, which:
Searches through the CORE:GENERALIZATION slots of a unit for a value.

Function-To-Print is a slot which accepts values of type Function Type and makes sense for units of type
Tuype Tupe. This is the function for printing a value of a particular type. Its value defaults by the function
INHERIT-THROUGH-GENERALIZATION, which:

Searches through the CORE:GENERALIZATION slots of a unit for a value.

Function-To-Read is a slot which accepts values of type Function Typc and makes sense for units of type

Type Tuype. This is the function for reading a value of a particular type. Its value defaults by the function

INHERIT-THROUGH-GENERALIZATION, which:
Searches through the CORE:GENERALIZATION :lots of a unit for a value.

Specification is a slot which accepts values of type Function Type and makes sense for units of type Type
Tupe. This is the function which specializes this type. Its value defaults by the function ARLO:QUESTION-
2, which:

Ask the user a gucstion by:
ol !

ARLO Ken Haase

(FORMAT QUERY-10
“ @What predicate specifies a from a?”
UNIT
(GET-VALUE UNIT #>GENERALIZATION))

Type-Checking-Functionis a slot which accepts values of type Function Type and makes sense for units of
_type Type Type. This is the predicate for a type. Its value defaults by the function ARLO:TO-GENERATE-
TYPE-CHECKER, which: '

Generates the type checking function for a type.

Units with a Data Type slot of Type-Type
Generalization is a slot which accepts values of type Type Type and makes sense for units of type Type Type.
This is the type upon which a given type is built. Its value defaults by the function ARLO:QUESTION-1,
which:

Ask the user a question by:

(FORMAT QUERY-10 “ 8What vs a a specialization of?” UNIT)

My-Specific-Type is a slot which accepts values of type Type Type and makes sense for units of type
Unit Type. This is how to tell if a unit inherits from this unit.

A-1.5.6 Units with a prototype of Type

These units are best organized by the Generalization relation.

Types without any generalizations.

- Any-Type specifies the class of LISP objects which satisfy the predicate ANYTHINGP (documented as “A
unparticular type predicate.”). This is the top of the type hierarchy.

Types which are specializations of Any Type

‘Function-Type specifies a class of lisp objects which are classified by Any-Type and which additionally satisfy
the predicate CALLABLEP (documented as “Determines if an object is esther a function or a function-
describing unif”). This is a type satisifed by any callable object (including function descriptions).

Integer-Type specifies a class of lisp objects which are classified by Any-Type and which additionally
satisfy the predicate FIXP. This is a type requiring a LISP integer. (a fixnum or a bignum)

List-Type specifies a class of lisp objects which are classified by Any-Type and which additionally satisfy
the predicate LIST-OR-NIL-P {documented as “A predicate which accepts conses and NIL.”). This is a type
satisfied by any list (including NIL).

Pathname-Type specifies a class of lisp objects which are classified by Any-Type and which additionally
satisfy the predicate PATHNAMEP. This is a type which is satisfied by any pathname

String-Type specifies a class of lisp objects which are classified by Any-Type and which additionally satisfy
the predicate STRINGP. This is a type satisifed by any string.

Symbol-Type specifies a class of lisp objects which are classified by Any-Type and which additionally satisfy
the predicate SYMBOLP. This 1s a type satisified by any LISP symbol.

76

ARLO Ken Haase

Unit-Type specifies a class of lisp objects which are classified by Any-Type and which additionally satisfy

-the predicate UNITP (documented as “Function determining if somethmg ts 'a unit— used by TYPEP”). This

is a type describing any ARLO unit.
Types which are specializations of Function Type

Implemented-Function-Type specifies a class of lisp objects which are classified by Function-Type and which
additionally satisfy the predicate IMPLEMENTED-FUNCTION?. This is a type satisifed by any lisp func-
tion.

Lisp-Function-Type specifies a class of lisp objects which are classified by Function-Type and which

"additionally satisfy the predicate FUNCTIONP. This is a type satisifed by any lisp function.

Subr-Type specifies a class of lisp objects which are classified by Function-Type and which addltlonally
satisfy the predicate SUBRP. This is a type satisfied by any LISP callable object (i.e. APPLIcable)

Valid-Function-lame-Type specifies a class of lisp objects which are classified by Function-Type and
which additionally satisfy the predicate VALIDATE-FUNCTION-SPEC. This is a type satisifed by any lisp

function spec.

Types which are specializations of Implemented Function Type

Coded-Function-Type specifies a class of lisp objects which are classified by. Implemented-Function-Type and
which additionally satisfy the predicate PROTOTYPE-OF-CODED-FUNCTION? (documented as “Checks
to see if a unit inherits from CORE:CODED-FUNCTION via CORE:PROTOTYPE.”). This is a type
satisifed by any lisp function.

Types which are specializations of Integer Type

Time-Type specifies a class of lisp objects which are classified by Integer-Type and which additionally satisfy
the predicate FIXP. This is a type requiring an integer indicating seconds past the turn of the century.

Types which are specializations of Unit Type
Coder-Type specifies a class of lisp objects which are classified by Unit-Type and which additionally satisfy
the predicate CODER?. This is a type describing any ARLO slot.

S1ot-Type specifies a class of lisp objects which are classified by Unit-Type and which additionally satisfy
the predicate SLOT? (documented as “Determines tf a unit 1is a slot- (i.e. has PRIMITIVE-SLOT as a
prototype). This is a type describing any ARLO slot.

Type-Type specifies a class of lisp objects which are classified by Unit-Type and which additionally satisfy
the predicate IS-IT-A-TYPE-P (documented as “Determines if something 1s a unit inheriting from TYPE.”).
This is a type which is satisified by any type describing ARLO unit.

A-1.6 Units defined in Arlo: SOURCES; WHISTLES

(PROPERTY ARLO-UNIT HAMED-STRUCTURE-IHVOKE) is a user defined lisp function which has an argument list
of (OP UNIT &REST MISC-ARGS), and is documented as: “Data directed pretty printing and describing

for unats.”.

77

-USER-POR-RLOT is & weer defined

ARLO Ken Haase

Chapter A-2
An Explanation ‘Explanation’

These units are best organized by the My File Of Definition relation.
A-2.1 Units defined in Arlo: AI; DOCUMENT

These units are best organized by the Prototype relation.

A-2.1.1 Units with a prototype of Explanation Slot

Positional-Assumptions 1s a slot which accepts values of type Any Type and makes sense for units of
type Ezplanation Type. These are The slots distinguished by this explanations superiors. Its value defaults

by the function ARLO:TO-DEFAULT-POSITIONAL-ASSUMPTIONS, which:
Adds a untts superiors primary division to ils positional assumptions.

Scribe-Documentor is a slot which accepts values of type Function Type and makes sense for units of
type Ezplanation Type. This is the function SCRIBE documentation for an explanation. Its value defaults

by the function ARLO:FIND-VALUE, which:
Look through the prototoypes of a unit for a particular slot.

Scribe-Explanation-Title is a slot which accepts values of type Any Type and makes sense for units of
type Ezplanation Type. This is the section title SCRIBE should use for this explanation. ITts value defaults

by the function ARLO:GENERATE-SCRIBE-EXPLANATION-TITLE, which:

Attempts to generate an appropriate scribe-style heading for a section.
A-2.1.2 Units with a prototype of Hand Coded Function

DOCUMENT-FILE is a user defined lisp function which has an argument list of (PATHNAME KB TITLE),
and is documented as: “Documents all the unit= an a given KB coming from a given file.”.
DOUT-DEFAULT-SLOT is a user defined lisp function which has an argument list of (UNIT SLOT), and 1s

documented as: “Stignals an crror of called to dofault o vaive. ™.

79

ARLO Ken Haase

EXPLANATION-PRECEDENCE is a user defined lisp function which has an argument list of (EXPLANATION1
EXPLANATION2), and is documentedas: ““Establishes an order on a hierarchy of ezplanations.”.

GENERATE-SCRIBE-DOCUMENTATION - FOR-COMPLEX-EXPLANATION is a user defined lisp function which has an
argument list of (EXPLANATION STREAM), and is documented as: “Produces scribe documentation for
an ezplanation of a set of units.”.

GEHERATE- SCRIBE-DOCUMENTATI0K-FOR-UNIT-EXPLANATION is a user defined lisp function which has an argu-
ment list of (EXPLANATION STREAM), and is documented as: “Documents a unit by looking for a scribe
documentor on its prototypes.”.

GENERATE- SCRIBE-EXPLANATION-TITLE is a user defined lisp function which has an argument list of (EX-
PLANATION IGNORE), and is documented as: “Attempts to generate an appropriate scribe-style heading
for a section.”.

INHERITING? is a user defined lisp function which has an argument list of (SUPER UNIT BY-RELATION),
and is documented as: “Determines if some unit inherits another by some relation.”.

PRINT-UNIT-FOR-SCRIBE is a user defined lisp function which has an argument list of (UNIT STREAM),
and is documented as: “Prints a unit for SORIBE, being cute about knowledge bases.”.

RUN-SCRIBE-DOCUHENTOR is a user defined lisp function which has an argument list of (ON-EXPLANATION
TO-BUFFER), and is documented as: “Runs the documentor on some ezplanation.”.

SAY-SLOT-VALUEis a ‘user-defined lisp function which has an argument list ‘of (UNIT SLOT STREAM),
and is documented as: “Produces a psuedo-english description of some slot value.”.

SCRIBE-ALPHABETIZE-EXPLANATIONS is a user defined lisp function which has an argument list of (EXPLA-
NATIONS), and is documented as: “Sorts a set of ezplanations alphabetically by SCRIBE-EXPLANATION-
TITLE”.

SCRIBE-DOCUMENT-EXPLANATION is a user defined lisp function which has an argument list of (EXPLANA-
TION TO-STREAM]), and is documented as: “Generates scribe documentation for an ezplanation.”.

SCRIBE-DOCUME!T-PERSON-EXPLANATION is a user defined lisp function which has an argument list of (EX-
PLANATION STREAM), and is documented as: “Produces SCRIBE documentation for a person descrip-
tion.”.

SCRIBE-DOCUMELT - RANDON-COMPLEX~EXPLANATION is a user defined lisp function which has an argument list
of (EXPLANATION STREAM), and is documented as: “Documents an indistinctive collection of units.”.

SCRIBE-DOCUMENTOR-FOR-CODED-FUNCTIONS is a user defined lisp function which has an argument list of
(EXPLANATION STREAM), and is documented as: “Produces SCRIBE documentation for an automat:-
cally coded function.”.

SCRIBE-DOCUMENTOR-FOR-CODERS is a user defined lisp function which has an argument list of (EXPLA-
NATION STREAM), and is documented as: “Produces SCRIBE documentation for an ARLO coder.”.

SCRIBE-DOCUMENTOR-FOR-RAIDOM-UNIT-EXPLANATIONS is a user defined lisp function which has an argument
list of (EXPLANATION STREAM), and is documented as: “Generates a scribe ezplanation for a unit
explanation.”.

SCRIBE-DOCUMENTOR-FOR-SLOT-EXPLANATIONS is a user defined lisp function which has an argument list of
(EXPLANATION STREAM), and is documented as: “Generates a scribe explanation for some slot.”.

80

ARLO : Ken Haase

SCRIBE-DOCUMENTOR-FOR-TYPE-EXPLANATIONS is a user defined lisp function which has an argument list of
(EXPLANATION STREAM), and is documented as: “Generates a scribe ezplanation for some slot.”.

SCRIBE-DOCUMENTOR-FOR-USER-FUNCTIONS is a user defined lisp function which has an argument list of
(EXPLANATION STREAM), and is documented as: “Produces SCRIBE documentation for an ezplanation
of a user function.”.

SECTIONIZE-BY-HIERARCHICAL-SLOT is a user defined lisp function which has an argument list of (EXPLA-
NATION STREAM), and is documented as: “Documents a collection of units organized by a hierarchical
relation.”.

SECTIONIZE-FILE-OF-DEFIHITION-SLOT is a user defined lisp function which has an argument list of (EX-
PLANATION STREAM), and is documented as: “Sets sectionization determinéd by file of definition.”.

SECTIONIZE-GENERALIZATION-SLOT is a user defined lisp function which has an argument list of (EXPLA-
NATION STREAM), and is documented as: “Sectionizes based on the GENERALIZATION slot.”.

SECTIONIZE-PROTOTYPE-SLOT is a user defined lisp function which has an argument list of {(EXPLANA-
TION STREAM), and is documented as: “Sectionizes based on the PROTOTYPE slot.”.

SECTIONIZE-SUPERVISOR-SLOT is a user defined lisp function which has an argument list of (EXPLANA-
TION STREAM), and is documented as: “Sectionizes based on the INQUIR:SUPERVISOR slot.”.

TO-DEFAULT-MY-TO-SCRIBE-DOCUMENT-SELF is a user defined lisp function which has an argument list of
(UNIT SLOT), and. is - documented as: “Looks on ones prototypes for a function and otherwise returns a
default.”.

TO-DEFAULT-POSITIONAL-ASSUMPTIONS is a user defined lisp function which has an argument list of (EX-
PLANATION IGNORE]}, and is documented as: “Adds a units superiors primary division to its positional
assumptions.”. :

TO-DEFAULT-TO-SECTIONIZE-BY is a user defined lisp function which has an argument list of (UNIT SLOT),
and is documented as: “Looks on ones prototypes for a function and otherwise returns a default.”.”

A-2.1.3 Units with a prototype of Slot

My-To-Scribe-Document-Self is a slot which accepts values of type Function Type and makes sense for
units of type Unit Type. This is the function for writing SCRIBE documentation for a unit. Its value defaults
by the function ARLO:TO-DEFAULT-MY-TO-SCRIBE-DOCUMENT-SELF, which:

Looks on ones prototypes for a function and otherwise returns a default.

To-Sectionize-By is a slot which accepts values of type Function Type and makes sense for units of type
Slot Type. This is the function for sectionizing a description focussed on this slot. Its value defaults by the
function ARLO:TO-DEFAULT-TO-SECTIONIZE-BY, which:

Looks on ones prototypes for a function and otherwise returns a default.

To-Speak-Value is a slot which accepts values of type Funcizon Type and makes sense for units of type
Slot Type. This describes how to say this slot in English (sort of).

A-2.2 Units defined in Arlo: AI; EXPLAIN
These units are best organized by the Prototype relation.

81

ARLO Ken Haase

A-2.2.1 Units without any prototype.

The unit Explanation is defined in the knowledge base Explain. This is the prototypical explanation.

A-2.2.2 Units with a prototype of Explanation Slot

Explanation-Kb is a slot which accepts values of type Any Type and makes sense for units of type -
Ezplanation Type. This is the knowledge base in which this explanation is consed up. Its value defaults by
the function ARLO:GET-ORIGINAL-KB, which:

Ezxtracts the knowledge base a unit was originally in.

Explanation-Title is a slot which accepts values of type String Type and makes sense for units of type
Ezplanation Type. This is a string describing this explanation.

Relevant-Slots is a slot which accepts values of type Any Type and makes sense for units of type
Ezplanation Type. This is a list of the slots relevant to this explanation. Its value defaults by the function
INHERIT-THROUGH-SUPER-EXPLANATION, which:

Searches through the CORE:EXPLAIN:SUPER-EXPLANATION slots of a unit for a value.

Super-Explanation is a slot which accepts values of type Any Type and makes sense for units of type
Ezplanation Type. This is the explanation this explanation is a component of.

A-2.2.3 Units with a prototype of Explanation

The unit Unit Explanation is defined in the knowledge base Explain. This is the prototypical expla-
nation of an individual unit.

The unit Unit Set Explanation is defined in the knowledge base Explain. This is the prototypical
explanation of a set of units.

A-2.2.4 Units with a prototype of Hand Coded Function

COMPUTE-CHUNK-SIZE is a user defined lisp function which has an argument list of (PARTITION), and is
documented as: “Computes the average size of classified chunks in this partition.”.

CONSTRUCT-EXPLAHATION is a user defined lisp function which has an argument list of (TITLE SYMBOLIC-
DIVISION IN-EXPLANATION UNITS STRUCTURE), and is documented as: “Constructs an ezplanation
for a set of units.”.

EXTEND-PARTITION is a user defined lisp function which has an argument list of (PARTITION ELEMENT
GROUP), and is documented as: “This adds an element - and 1ts associated group - to a partition.”.

EXTRACT-SIMPLEST-PARTITION is a user defined lisp function which has an argument list of (PARTITIONS),
and is documented as: “Selects the partition with the largest ‘chunks’ from a list of partitions.”.

GEIIERATE-EXCUSES is a user defined lisp function which has an argument list of (EXPLANATION), and
is documented as: “Generates an ezplanation for the ‘misfits’ of an ezplanation.”.

GENERATE-SET-PARTITIONS is a user defined lisp function which has an argument list of (FOR-EXPLANATION]),

and is documented as: “Computes or reduces (from its super-ezplanation) the partitions for an ezplanation.”.
GENERATE-SUB-EXPLANATIONS is a user defined lisp function which has an argument list of (EXPLANA-
TION), and is documented as: “Generates sub ezplanations from the partition of an ezplanation.”.

82

ARLO Ken Haase

GENERATE-UNIT-EXPLANATION is a user defined lisp function which has an argument list of (UNIT SUPER-
EXPLANATION), and is documented as: “This generates an ezplanation object for a particular unit.”.

GET-ORIGINAL-KB is a user defined lisp function which has an argument list of (UNIT IGNORE), and is
documented as: “Eztracts the knowledge base a unit was originally n.”.

PARTITION-UNITS is a user defined lisp function which has an argument list of (UNITS BY-SLOT}), and
is documented as: “This takes some units and returns the partition defined over them by some slot.”.

REDUCE-PARTITION is a user defined lisp function which has an argument list of (PARTITION OVER-
UNITS), and is documented as: “This takes the subset of a partition determined by some set of units.”.

REDUCE-PARTITION-SET is a user defined lisp function which has an argument list of (PARTITION-SET
OVER-UNITS OVER-SLOTS), and is documented as: “This takes a set of partitions and reduces each one.”.

TO-DEFAULT-SET-PARTITIONS is a user defined lisp function which has an argument list of (FOR-EXPLANATION
IGNORE), and is documented as: “Computes or reduces (from its super-ezplanation) the partitions for an
ezplanation.”.

TO-DEFAULT-SUB-DIVISIONS is a user defined lisp function which has an argument list of (EXPLANATION
IGNORE), and is documented as: “Selects the partition with the largest ‘chunks’ from a list of partitions.”.

TO-DEFAULT-SUB-EXPLANATIONS is a user defined lisp function which has an argument list of (EXPLANA-
TION IGNORE), and is documented as: “Generates sub ezplanations from the partition of an ezplanation.”.

TO-DEFAULT-UNEXPLAINED-UNITS is a user defined lisp function which has an argument list of (EXPLA-
NATION IGNORE), and is documented as: “Generates an ezplanation for the ‘misfits’ of an explanation.”.

A-2.2.5 Units with a prototype of Slot

Explanation-Slot is a slot which accepts values of type Any Type and makes sense for units of type
Ezplanation Type. This is the prototypical slot referring to explanations. .

To-Partition-By is a slot which accepts values of type Any Type and makes sense for units of type
Slot Type. This tells how to partition by a particular slot. Its value defaults by the function INHERIT-
THROUGH-PROTOTYPE, which:

Searches through the CORE:PROTOTYPE slots of a unit for a value.

Unit-Explanation-Slot is a slot which accepts values of type Any Type and makes sense for units of type
Unit Ezplanation Type. This is the prototypical slot referring to unit explanations.

Unit-Set-Explanation-Slot is a slot which accepts values of type Any Type and makes sense for units of
type Unit Set Ezplanation Type. This is the prototypical slot referring to unit set explanations.

A-2.2.6 Units with a prototype of Type

Explanation-Type specifies a class of LISP objects which are classified by Unit-Type and which addition-
ally satisfy the predicate PROTOTYPE-OF-EXPLANATION? {(documented as “Checks to see if a unit inherits from
CORE:EXPLAIN:EXPLANATION via CORE:PROTOTYPE.”). This is a type satisifed by units inheriting
(via the Prototype relation) from the unit Explanation.

Unit-Explanation-Type specifies a class of LISP objects which are classified by Unit-Type and which ad-
ditionally satisfy the predicate PROTOTYPE-OF-UNIT-EXPLAIATION? {documented as “Checks to see of a unit in-

83

ARLO Ken Haase

herits from CORE:EXPLAIN:UNIT-EXPLANATION vie CORE:PROTOTYPE.”). This is a type satisifed
by units inheriting (via the Prototype relation) from the unit Unit Explanation.

Unit-Set-Explanation-Type specifies a class of LISP objects which are classified by Unit-Type and which
additionally satisfy the predicate PROTOTYPE-OF-UNIT-SET-EXPLAIATION? (documented as “Checks to see if a
unit inherits from CORE:EXPLAIN:UNIT-SET-EXPLANATION via CORE:PROTOTYPE.”). Thisis a
type satisifed by units inheriting (via the Prototype relation) from the unit Unit Set Explanation.

A-2.2.7 Units with a prototype of Unit Explanation Slot
Unit-To-Explain is a slot which accepts values of type Any Type and makes sense for units of type Unit
Ezplanation Type. This is the individual unit this explanation is about.

A-2.2.8 Units with a prototype of Unit Set Explanation Slot

These units all have MAKES-SENSE-FOR slots of Unit-Set-Explanation-Type.
These units are best organized by the Data Type relation.
Units with a Data Type slot of Any-Type

Sub-Explanations is a slot which accepts values of type Any Type and makes sense for units of type Unit Set
Ezplanation Type. These are the explanations which are component to this explanation. Its value defaults

. by.the function - ARLO:TO-DEFAULT-SUB-EXPLANATIONS; which: -~

Generates sub explanations from the partition of an explanation.

Symbolic-Division is a slot which accepts values of type Any Type and makes sense for units of type
Unat Set Ezplanation Type. This is a symbolic description of the focus of this explanation.

Unexplained-Units is a slot which accepts values of type Any Type and makes sense for units of type

Unit Set Ezplanation Type. This is an explanation of the units not covered in this explanation. Its value
defaults by the function ARLO:TO-DEFAULT-UNEXPLAINED-UNITS, which:

Generates an ezplanation for the ‘misfits’ of an exzplanation.

Units with a Data Type slot of Integer-Type

Section-Size is a slot which accepts values of type Integer Type and makes sense for units of type Unit Set
Ezplanation Type. This is the threshold when explanation sectionization is attempted.

Units with a Data Type slot of List-Type

Relevant-Units is a slot which accepts values of type List Type and makes sense for units of type Unit Set
Ezplanation Type. This is a list of the units this explanation refers to.

Set-Partitions is a slot which accepts values of type List Type and makes sense for units of type Unit
Set Ezplanation Type. This is a list of the possible partitions of this set of units. Its value defaults by the
function ARLO:TO-DEFAULT-SET-PARTITIONS, which:

Computes or reduces (from its super-ezplanation) the partitions for an ezplanation.

Structural-Slots is a slot which accepts values of type List Type and makes sense for units of type Unit
Set Ezplanation Type. This is a list of the slots which may sectionize this explanation.

84

/\ ARLO ' . Ken Haase

Sub-Divisions is a slot which accepts values of type List &paﬁds&nm for units of type Unit Set
Ezplanation Type. Thmuthmmmmumﬁmwd* "f._:_hmmwthefulwﬂon
ARLO: TOhDEFAULT—SUB-DIVfSiOKS which: ’

Selects the partmon with the largest ‘chunks’ from a list of ;orﬁma

A-2 8 Units defined in Arlo: SOURCES; LISP

DECACHE-FINDER is a user defined lisp function which has an W list of (UNIT SLOT), and is
documented as: “This finds the deaching function for a wmst hy laahal theough sts. pmtot”ea

85

ARLO

iBac78]
IBS83]
g('anSB}
{Cha83]
[Doy77]
|GR84]
[Gre80]
Haa8Gal
‘Haa86h]
‘Haa86c,
[Hil&5:
[Hof80
[Len82:

|Len83:

Ken Haase

Chapter A-3
References

John Backus. Can programming be liberated from the von neumanu style? a functional style and
its algebra of programs. Communications of the ACM, 21(8), Augnst 1978.

Daniel Bobrow and Mark Stefik. The Loops Manual. Xerox Corporation, 1983,

Howard Cannon. Programmang with Flavors. Symbolics, Inc.. Cambridge, Massacussets, 1983.
David Chapman. Naive Mathematics and Naive Problem Solving. Working Paper 249, Artifical
Intelligence Laboratory, MIT, June 1983.

Jon Doyle. A Truth Maintenance System. Master’s thesis, Massachussets Institute of Technology,
1977. Available as MIT AT Technical Report.

Adele Goldberg and David Robson. Smalltalk-80: The Language an its Implementation. Addison-
Wesley, Reading, Massachusetts, 1984.

Russel Greiner. RLL-1: A Representation Langauge Language. Working Paper 80-9, Stanford
Heuristic Programming Project, October 1980.

Ken Haase. ARLO’: Describing Representations. Memo 955, Artificial Intelligence Laboratory,
MIT, 1986.

Ken Haase. Dizcovery systems. In ECAI] 26 Proceedings, ECAL August 1086, Also available as
MIT Al Memo 899.

Ken Haase. Why Represcntation Language Languages are No Good. Al Memo 943, Artificial
Intelhigence Laboratory. MIT| October 1086.

Danny Hillis. The Connection Machine. MIT Press, 1985,

Douglas Hofstader. Godel, Ezcher. Bach: An Eternal Golden Brawd. Basic Books, 1980.

Douglas B. Lenat. Am: discovery in mathematics as heuristic scarch. In Knowledge- Based Systems
e Artifeedal Intelivgence, McGraw 11il. 1982,

Dong Lenat. Eurisko: a program that learus new heuristics and domain concepts. The Al Journal,

March 19%83. This is the Tast in a sertes of articles on henristics about heuristics.

86

ARLO

[LSP8s5]
[McAT78]
[McD83]
[Mil78]
|MP&84]
[RG77]
[Ric80]

ISR76]

[Ste79]
[Ste84]
[Wat78]
[Wei83]

[WM82]

Ken Haase

Doug Lenat, Mary Shepherd, and Mayank Prakash. Cyc: a large common-sense knowledge base.
Al Magazine, June 1985. -

David McAllester. A three-valued truth maintenance system. Al Memo 473, Artificial Intelligence
Laboratory, MIT, 1978.

David McDonald. Mumble: a natural language generation system. In Computational Theories of
Discourse, MIT Press, 1983. '

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System
Science 17, 1978.

David McDonald and Robert Putojevsky. Generating text for an intelligent encyclopedia. In
AAAIL-84, AAAIL August 1984.

Bruce Roberts and Ira Goldstein. FRL Users Menual. Al Memo 408, Artificial Intelligence
Laboratory, MIT, 1977. ‘

Charles Rich. Inspection Methods In Programming. PhD thesis, Massachussets Institute of Tech-
nology, 1980. Also available as MIT AI Lab Technical Report 604.

Howard Shrobe and Charles Rich. Initial Report on a LISP Programmers Apprentice. Master’s
thesis, Massachussets Institute of Technology, 1976. Also available as MIT AI Lab Technical
Report 354.

Mark Stefik. An examination of a frame-structured representation system. In Proceedings of the
Sizth International Joint Conference on Artificial Intelligence, 1JCAI, August 1979.

Guy L. et al Steele. Common Lisp Reference Manual. Digital Equipment Corporation, Maynard,
Massacussets, 1984.

Richard Waters. Automatic Analysis of the Logical Structure Of Programs. PhD thesis, Mas-
sachussets Institute of Technology, 1978. Also available as MIT AI Lab Technical Report 492.
Daniel Weinreb. Signalling and Handling Conditions. Symbolics, Inc., Cambridge, Massacussets,
1983. ,

Daniel Weinreb and David Moon. Lisp Machine Manual. Symbolics, Inc., Cambridge, Massacus-
sets, 1982.

87

Tius blank page was inserted to preserve pagination.

CS-TR Scanning Project
Document Control Form Date: 10 /26 /95

Report # AL-TR- 90!

Each of the following should be identified by a checkmark:
Originating Department:

)Z(Artificial Intellegence Laboratory (Al)
O Laboratory for Computer Science (LCS)

Document Type:

X Technical Report (TR) [Technical Memo (TM)
O other:

Document Information Number of pages: 99('%-:‘%0{5)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
Single-sided or O Single-sided or
O Double-sided X Double-sided
Print type:

[Typewriter [offsetPress [] Laser Print
[] inketPrinter [Unknown B(Other coey ?

Check each if included with document:

DOD Form (‘1 O Funding Agent Form XI Cover Page
:& Spine (¢~ <ovs=) O Printers Notes O Photo negatives
O Other:
Page Data:

Blank Pageswy page numben.

Photographs/Tonal Material ey ege numben.

Other (noe description/page numbed).
Description : Page Number: WORF AN Uadr w un
Imace MEE! (\ -Qﬁ)) TTLE’BLRNK) AQKJ BLKJ\M/BLK)II:-\}:»)OLK)
3- 99) Preces H'so |- 87
(/00 ~ log)SCANQO,JWL,COUERIWSTH sP,‘J_)%MQ_\))TWTS(J)

Scanning Agent Signoff:
Date Received: /0 / 26/ 1y Date Scanned: _/[/ /3/_75" Date Retumed: [16195

Scanning Agent Signature: %&AL_%L_@L_ v 004 DSACS D Contro Form cetorm.ved

UNCLASSIFIED

SECURITY CLASS'FICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AI-TR~-901
4. TITLE (and Subtitie) S. YYPE OF REPORT & PERIOD COVERED
ARLO Technical Report
Another Representation 6. PERFORMING ORG, REPORT NUMBER
Language Offer
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Kenneth W. Haase Jr. NO0OO14-85-K-0124
9. PE.RF‘OR?ING ORGANIZ.ATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Artificial Inteligence Laboratory AREA & WORK UNIT NUMBERS

545 Technology Square
Cambridge, MA 02139

11, CONTROLLING OFFICE NAME ANP ADDRESS 12. REPORT DATE
Advanced Research Projects Agency October, 1986
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, VA 22209 . 95

4. MONITORING AGENCY NAME & ADORESS(If different from Controlling Olfice) 18. SECURITY CL ASS. rof thia report)
Office of Naval Research

Information Systems Unclassified
Arlington, VA 22217 %a, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

j16. DISTRIBUTION STATEMENT (of this Report)

Distribution is unlimited.

17. DISTRIBUTION STATEMENT (of tHe abetract entered in Block 20, !{ different trom Repert)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side i1 nec y and | tty by block number)

Knowledge Representation, Representation Languages, Meta-Representation,
Reflection, Artificial Intelligence, AI Languages, RLL, Representation
Language Languages

20. ABSTRACT (Continue on reverse elde if necessary and identity by block number)

This paper describes ARLO, a representation language language loosely
modelled after Greiner and Lenat's RLL-1. ARLO is a structure-based
representation language for describing structure-based representation
languages, including itself. A given representation language is specified
in ARLO by a collection of structures describing how its descriptions
are interpreted, defaulted, and verified. This high level description is
compiled into LISP code and ARLO structures whose interpretation fullfills

DD ,5%%'5; 1473 eoimion oF 1 nov €8s omsoLETE UNCLASSIFIED

S/N 0:02-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Bnterec

the specified semantics of the language. In addition, ARLO itself -—-

as a language for expressing and compiling partial and complete language
specifications: --- is described and interpted in the same manner as the
languages it describes and implements. This self description can be extended
or modified to expand or alter the expressive power of ARLO's initial
configuration. Languages which describe themselves —-- like ARLO ---

provide powerful mediums for systems which perform automatic self-modification,
optimization, debugging, or documentation. AI systems implemented in such

a self-descriptive language can reflect on their own capabilities, applying
general problem solving and learning strategies to enlarge or correct them.

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under

Grant;: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the ML.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt. wpw Rev. 9/94

