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The Synthesis of Stable Force-Closure Grasps
by

Van-Duc Nguyen

Abstract

The thesis addresses the problem of synthesizing grasps that are force-closure
and stable. The synthesis of force-closure grasps constructs independent regions of
contact for the fingertips, such that the motion of the grasped object is totally con-
strained. The synthesis of stable grasps constructs virtual springs at the contacts,
such that the grasped object is stable, and has a desired stiffness matrix about its
stable equilibrium.

A grasp on an object is force-closure if and only if we can exert, through the set
of contacts, arbitrary forces and moments on the object. So force-closure implies
equilibrium exists because zero force and moment is spanned. In the reverse direc-
tion, we prove that a non-marginal equilibrium grasp is also a force-closure grasp,
if it has at least two point contacts with friction in 2D, or two soft-finger contacts
or three hard-finger contacts in 3D.

Next, we prove that all force-closure grasps can be made stable, by using either
active or passive springs at the contacts. The thesis develops a simple relation
between the stability and stiffness of the grasp and the spatial configuration of the
virtual springs at the contacts. The stiffness of the grasp depends also on whether
the points of contact stick, or slide without friction on straight or curved surfaces
of the object.

The thesis presents fast and simple algorithms for directly constructing stable
force-closure grasps based on the shape of the grasped object. The formal framework
of force-closure and stable grasps provides a partial explanation to why we stably
grasp objects so easily, and to why our fingers are better soft than hard.

Thesis Supervisor: Professor Tomés Lozano-Pérez
Title: Associate Professor of Electrical Engineering and
Computer Science
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Chapter 1

Introduction

1.1 How to Grasp an Object?

Robot end effectors have evolved from simple parallel grippers to multi-finger hands
to provide greater flexibility and dexterity in manipulation and assembly operations.
Robot hands come in many shapes, but they all have in common the ability of being
programmed and servoed from a computer. To take full advantage of the dexterity
offered by multi-purpose hands, we need to be able to not only analyze a grasp
but synthesize it. In other words, we would like to construct grasps that have such
features as feasibility, reachability, force-closure, equilibrium, stability, compliance,
etc...

o Feasibility — A grasp is kinematically feasible if there exist joint configura-
tions for the individual fingers, such that the fingertips contact the grasped
object at the desired grasp points.

e Reachability — A grasp is reachable if there exist collision-free paths for the
fingers from their current configurations to their respective grasp configura-
tions.

e Force-Closure — A grasp on an object is a force-closure grasp if and only if we
can exert, through the set of contacts, arbitrary forces and moments on this
object. Equivalently, any motion of the object is resisted by a contact force,
which means that the object cannot break contact with the fingers without
some non-zero external work.

o Equilibrium — A grasp is in equilibrium if and only if the sum of the forces
and moments acting on the object is zero. There is a balance between the
weight of the object and the contact forces exerted by the fingers.

e Stability — A grasp is stable if and only if the grasped object is always
pulled back to its equilibrium configuration, whenever it is displaced from
this configuration.



2 The Synthesis of Stable Force-Closure Grasps

e Compliance ~— A grasp is compliant if the grasped object behaves as a gener-
alized spring, damper, or impedance, in complying with external constraints
such as a hard surface, or in reacting to errors between controlled and actual
state variables, such as position, velocity, or force. Common examples are
generalized springs and dampers.

The thesis addresses the problem of synthesizing grasps that are force-closure,
equilibrium, stable, and compliant. Synthesizing a force-closure grasp is equivalent
to finding places to put the contacts, such that these contacts totally constrain the
motion of the grasped object. Constructing an equilibrium grasp is synthesizing
the forces and moments at the contacts, such that the object is in equilibrium.
Constructing a stable grasp is finding the virtual springs at the contacts, such
that the grasp has a positive definite stiffness matrix. Constructing a compliant
grasp is maping the desired stiffness matrix at the grasped object into the stiffness
matrices at the fingertips and at the finger joints. The compliance model used is
a generalized spring. The grasped object behaves as though there are independent
linear and angular springs attached at its compliance center.

1.2 Framework and Assumptions

A grasp is defined by a set of contacts. From a force-closure point of view, a
contact is described by either a wrench convex or a twist convex. The wrench
convex captures the range of forces and moments that can be applied through the
contact. The twist convex captures the set of motions that are unrestrained by the
contact. The wrench convexes from the individual contacts are ‘added’, until we get
the whole space, or the twist convexes are intersected until we get the null space.
The force-closure constraint is formalized by the theory of convexes and the theory
of systems of linear inequalities.

Finding »n independent regions of contact for the fingertips is formalized as find-
ing n disjoint wrench convexes, such that any n-tuple of wrenches from these con-
vexes is force-closure. By exploiting the line-based geometry of twists and wrenches,
the independent regions of contact can be constructed based on the shape of the
grasped object. Force-closure grasps on polygons and polyhedra are particularly
simple, especially with friction at the contacts.

Chapter 2 explores the analysis and synthesis of force-closure grasps, in both
2D and 3D. The focus is grasps on polygonal and polyhedral objects. The contacts
between the fingertips and the grasped object are modeled as point contacts with or
without friction in 2D, and as frictionless point contacts, hard-finger or soft-finger
contacts with friction in 3D.

From a stability point of view, each contact is described by a virtual spring. It
can be a linear or an angular spring, or a combination of linear and angular springs.
The virtual spring captures the passive stiffness at the fingertip and tendons, or the
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active stiffness control at the finger joints. All the virtual springs are independent,
and their potential functions are added into the potential of the grasp.

Chapter 3 assumes conservation of the grasp potential. So, the fingertips either
stick or slide without friction on the edges or faces of the grasped object. The equi-
librium condition of the grasp is obtained from zeroing the first partial derivatives
of the grasp potential. The second partial derivatives gives the stiffness matrix of
the grasp. This stiffness matrix depends on the spatial configuration of the virtual
springs, and on whether the fingertips stick or slide without friction on the object.

Chapter 4 explores the effect of slip on force-closure and stability of the grasp.
It shows slip makes grasps become more stable when there is friction. The effect of
slip on curved objects are also analyzed. The model is a set of linear springs sliding
without friction on arcs of circle.

1.3 Examples

Figure 1.1 shows examples of force-closure grasps found by the algorithms. The
independent regions of contact are highlighted with bold segments and circles. The
grasp is force-closure no matter where the finger tips are placed in these regions.
This flexibility is of great importance in manipulation since we always have position-
ing errors and many other uncertainties. The first two grasps are 2D grasps: one
with four frictionless point contacts, and one with two point contacts with friction.
The third and fourth grasps are 3D grasps: one with two soft-finger contacts, and
one with three hard-finger contacts with friction. The number of contacts shown
are the minimum number of contacts required for force-closure.

Figure 1.2 shows examples of stable grasps constructed by the algorithms. The
stiffness matrix at the grasped object is mapped into the virtual springs at the
contacts. These virtual springs are responsible for generating restoring forces and
moments whenever the grasped object is displaced from its stable equilibrium.

A Grasp Planner can construct a stable grasp G on a set of n edges or faces as
follows:

e Synthesize a set of grasp points {P,,..., P,} for which the grasp G at these
grasp points is force-closure.

Better yet, we find the optimal set of independent regions of contact
{s1,...,8,} for the given n grasping edges or faces. The regions are inde-
pendent from each other, in the sense that as long as we pick grasp point P,
in region s; the resulting grasp G = {Py,..., P,} is always force-closure. The
set is optimal in the sense that the set of independent regions has the largest
miminum radius for the given set of grasping edges or faces. We then pick the
mid point of the region s; as the optimal grasp point P;.
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Figure 1.1: Examples of force-closure grasps found by the synthesis.
The independent regions of contact are highlighted with bold segments and circles.
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6 The Synthesis of Stable Force-Closure Grasps

o Synthesize a corresponding set of virtual springs, such that grasp G is stable.
Each virtual spring has stiffness k; and compression o,,. We prove that the
stiffnesses k;’s and compressions o;,’s of the virtual springs can always be
chosen so as to make the grasp stable. We can also construct the set of
virtual springs such that the grasp has some desired compliance center and
stiffness matrix.

1.4 Contributions

The thesis presents a formal framework for analyzing and synthesizing grasps in
both 2D and 3D. Research is done in three areas: force-closure grasps, stable grasps,
and grasps with possible slip at the contacts.

The research on force-closure grasps leads to:

e Fast and simple algorithms for directly constructing force closure grasps. We
find not only single grasps but the complete set of all force-closure grasps on a
set of edges in 2D (resp. faces in 3D). We can also construct the independent
regions of contact for the finger tips. The construction of the independent
regions of contact is very simple for polygonal and polyhedral objects.

o A representational framework for describing contacts and grasps. A grasp is
described as the combination of individual contacts, which in turn are modeled
as the combination of a few primitive contacts: point contacts without and
with friction in 2D, and frictionless point contacts, hard-finger and soft-finger
contacts in 3D.

e A proof that non-marginal ! equilibrium grasps are also force-closure grasps,
if each grasp has at least two points contacts with friction in 2D, or two soft-
finger contacts or three hard-finger contacts in 3D. This proof supports a very
simple heuristic for grasping: “Increase friction at the contacts by covering
the finger tips with soft rubber. Then grasp the object on two opposite sides.”

The research on stable grasps leads to:

¢ A proof that all force-closure grasps can be made stable. The algorithm for
constructing stable grasps is both simple and efficient. It costs O(n) time to
synthesize a set of n virtual springs such that a given force-closure grasp is
stable.

o A relation between the stability of a grasp and the spatial configuration of
the virtual springs at the contacts. We show that the stiffness matrix K of
the grasp is the sum of two matrices Ks and Kp. The matrix Ks depends

! An equilibrium grasp is non marginal if the forces of contact point strictly within their respective
friction cones.
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on the spatial configuration of the virtual springs. Ks = SKS7T, where the
columns of S are the spatial vectors describing the lines of action of the
springs. The geometric relation can be viewed as a similarity transformation
from the stiffnesses at the contacts K to the stiffnesses in the frame of the
grasped object Kg. The stiffness matrix K5 is positive definite if and only if
there are at least three (resp. six) virtual springs with independent spatial
vectors for 2D (resp. 3D) grasps.

® A relation between the angular stiffness of the grasp and whether the fingers
stick or slide without friction on the object. We show that the stiffness matrix
Kp depends on whether the finger stick or slide on the straight edges or flat
faces of the object. Kp makes outside-in grasps more stable than inside-out
grasps, if the fingers slide without friction on the object. The reverse holds if
there is friction and the fingers stick.

e A relation between the position of the compliance center of the grasp and the
lines of action of the linear springs. We show that the compliance center of
the grasp must be inside a region delimited by the lines of action of the linear
springs. So a placement of the compliance center implies either a relative

orientation of the linear springs, or a placement of the points of contact, or
both.

A brief analysis of slip shows that:

¢ Virtual springs at the contacts can be synthesized such that the finger tips
are guaranteed to stick inside their respective grasping edges, after they slip.

e Frictionless grasps remain force-closure and stable for arbitrarily large trans-
lations and for small rotations of the grasped object. Grasps with friction
remain force-closure and stable, as long as the grasped object is in equilib-
rium, with the contact forces pointing strictly inside their respective friction
cones.

e Slip without friction on circular arcs affects the stability of the object. The
stiffness matrix K of the grasp is the sum of Ks and K. The stiffness matrix
Ks comes from the spatial configuration of the springs. The matrix K¢ plays
the role of the position-dependent matrix Kp. It describes the effect of the
fingers slipping on the circular arcs. It is negative (resp. positive) for convex
(resp. concave) arcs.

e Point contacts which stick or slide without friction on straight edges are good
approximations to finger tips slipping without friction respectively on convex
and concave arcs.
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’

1.5 Other Related Works

Related works can be grouped as follows:

o Feasible and reachable grasps. — Feasibility and reachability problems can be
solved using the Configuration Space approach (Lozano-Pérez 1983), which
grows the grasped object into a configuration obstacle in higher dimensional
space, and inversely shrinks the fingers into a configuration point. The two
problems become a search respectively for a feasible configuration point, and
a path to that feasible point, such that the path does not intersect the con-
figuration obstacle (Lozano-Pérez 1976, 1983). Related problems are finding
the workspace of the hand and fingers, and finding the forward and inverse
kinematics of the fingers (Paul 1981, Chiu 1985).

e Force-closure grasps — Force-closure and total freedom capture the main con-
straint between the fingers and the grasped object. Ohwovoriole analyzed the
geometry of the different repelling screw systems, and use the results to an-
alyze systems of contacting bodies such as an object grasped by a set of fin-
gers, or a pin being inserted into a hole (Ohwovoriole 1980, 1984). Related to
force-closure are the notion of degree of freedom (Bottema and Roth 1979),
(Hunt 1978), and the solution of systems of linear inequalities (Kuhn and
Tucker 1956).

e Form-closure grasps — A grasp is form-closure if the grasped object is totally
constrained by the set of contacts, irrespective of the magnitude of the contact
forces. A 2D grasp can be force-closure with two point contacts with friction.
Translations of the object tangential to the contact normals are resisted by
frictional forces. The magnitude of this resistance depends on the magnitude
of the normal contact forces. In a form-closure grasp, the constraints on the
object comes only from geometry of the contacts. Reuleaux (1875) proved
that a 2D grasp needs at least four point contacts for form-closure. Lakshmi-
narayana (1978) showed that a 3D grasp needs at least seven point contacts.
Form-closure can be viewed as force-closure with frictionless contacts only.

¢ Equilibrium grasps — There are many works on analyzing the equilibrium
of forces in a grasp with different types of contact (Salisbury 1982), with
flexible contacts (Cutkosky 1984), or with friction (Abel, Holzmann and Mc-
Carthy 1985). Finding a good grasp is often formalized as a search of the
space of all grasps with some goal function, such as optimum for internal
forces (Kerr 1984), or security of grasp (Jameson 1985).

e Stable grasps — A stable prehension of a planar hand on a polygon can be
found by centering the hand on the center of mass, and check for grasps that
are stable with respect to rotation, then stable with respect to translation
(Hanafusa and Asada 1977), (Asada 1979). Baker, Fortune and Grosse (1985)
proved that stable grasps on a convex polygon exist, and presented efficient
algorithms that require no incremental search.
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e Compliant grasps — We can have active stiffness control of the fingers and
the grasped object by using the Grip and Jacobian matrices as in (Salisbury
and Craig 1981), (Salisbury 1984, 1982), or build in some proximity damp-
ing as in (Jacobsen, Wood, Knutti and Biggers 1984, 1985). Grasps can be
achieved easily with active compliance and bounded slip at the fingers as in
(Fearing 1984), or by exploiting the friction and passive compliance of the
object with the fingers and the environment as in (Mason 1982, Brost 1986).
Grasping a peg and inserting it into a hole is currently done best with a passive
compliance wrist known as the Remote Center of Compliance (Whitney 1982).

This thesis is different from previous work on grasping in that it emphasizes the
synthesis rather than the analysis of grasps.



Chapter 2

Constructing Force-Closure Grasps

2.1 Where Should the Fingertips Be Placed?

Grasping an object is exerting force and moment on the object, to move it or to keep
it in stable equilibrium. Grasping is also constraining the motion of the object by
a set of contacts. These two descriptions are dual of each other. They correspond
respectively to a force-closure grasp and to zero total freedom of the object. A grasp
on an object is force-closure if and only if we can exert, through the set of contacts,
arbitrary force and moment on this object. Equivalently, any motion of the object
is resisted by a contact force. The object cannot break contact with the fingertips
without some non-zero external work.

The forward problem is to analyze whether a grasp, defined by a set of contacts,
is force-closure or not. The reverse problem is to find places to put the fingertips,
such that the grasp is force-closure. The synthesis method we develop finds large
independent regions of contact for the fingertips. We’ll explore the analysis and
the synthesis of force-closure grasps, in both 2D and 3D. The focus will be grasps
on polygonal and polyhedral objects. Extension to grasps on curved objects is also
discussed.

In 2D, grasped objects are arbitrary polygons. The contacts between the finger-
tips and the grasped object are modeled as point contacts with or without friction.
In 3D, grasped objects are arbitrary polyhedra. The fingertip contacts are modeled
as frictionless point contacts, hard-finger contacts, or soft-finger contacts.

Figure 2.1 shows examples of force-closure grasps in 2D and 3D. The independent
regions of contact for the fingertips are highlighted by bold segments and circles.

10
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Figure 2.1: Examples of force-closure grasps in 2D and 3D.
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2.2 Background Theory of Twists and Wrenches

The instantaneous motion of an object is described by a twist. A twist is a spatial
vector which captures the angular and linear displacements of the object. A wrench
describes the force and moment exerted by a contact on the object. Twists and
wrenches are represented in Pliicker coordinates.

The following mechanics review looks at Pliicker line coordinates, virtual work,
total freedom, and dual subsystems of twists and wrenches in 2D and 3D. A math-
ematics review looks at systems of linear inequalities, at convexes and operations
on convexes: convex addition, intersection and dual. For more extensive materi-
als on these topics, the reader is referred to (Featherstone 1983, 1984), (Ball 1900),
(Ohwovoriohle 1980, 1984), (Kuhn and Tucker 1956), and (Lakshminarayana 1978).

2.2.1 Pliucker Line Coordinates

A general spatial vector is the sum of a line vector and a free vector. A line vector
has a magnitude and a line of action, whereas a free vector has magnitude and
direction only. In rigid body mechanics, line vectors represent quantities like force
and rotation, which have a definite line of action. The line of action is respectively
the line of force and the axis of rotation. Free vectors describe quantities like torque
and translation, which are invariant respective to the point of application.

A free vector is a spatial vector with zero upper part. For example, a translation
d is represented in Pliicker coordinates by the following translational twist:

=14

The " notation is borrowed from (Featherstone 1984), to denote a 6-dimensional
spatial vector.

A line vector is a spatial vector with both upper and lower parts, called Pliicker
vectors. The upper part represents the magnitude and direction of the vector. The
lower part represents the moment of the vector about the origin of the reference
frame. Concretely, a line vector § is represented as:

>
fl

Sy (2.1)

Tyvsz — rzsy
T28; — TS,
L Tz8y — TySz |

where r is a vector from the origin of the reference frame to any point on the line
of action of §. For example, a rotation § about an axis A is represented by the
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following twist in Pliicker coordinates:

5 é
t = [r y 6] (2.2)
6 is the rotation vector, whose normalized vector is the direction of the axis of
rotation A, and whose magnitude is the equivalent angle of rotation. r is a vector
from the origin of the reference frame to any point on the axis of rotation A.
We recognize the upper and lower parts of the twist as the angular and linear
displacements of the origin of the reference frame.

Only instantaneous and infinitesimal twists can be composed and resolved like
vectors. The composition of finite twists is in general non-commutative. Finite
twists are commonly represented by transformation matrices (Paul 1981), and these
are composed by matrix multiplications. From now on, a twist will be written as
t = (67,d7)T to designate an infinitesimal displacement of the object.

A force f is a line vector which is represented in Pliicker coordinates by the

following wrench:
f
Vo= 2.3
w [ r x f ] (2:3)
The upper and lower parts of the wrench are respectively the equivalent force going
through the origin of the reference frame, and the moment of the force f about the
origin. Wrench W can be written as the sum of a line vector and a free vector:

= o] o0l

The same force f has a different wrench when its line of action is translated to the
origin. By representing the contact forces and the motion of the grasped object in
Plicker coordinates, we make explicit the line-based geometry of the domain.

2.2.2 Virtual Work and Total Freedom

A twist and a wrench are related by a spatial scalar product which describes the
virtual work done by the wrench against the infinitesimal twist (Featherstone 1984).
The virtual work is defined as follows:

Definition 2.1 The virtual work of a wrench W = (f7,m7)7T against an infinites-
imal twist displacement t = (6T,dT) T is the sum of the virtual work due separately
to the linear and angular components:

W't = f.-d+m-é (2.4)

We can define the virtual work as a scalar multiplication of the wrench W with
the spatial transpose of the twist t, denoted t°:

Wit = w - t5

][]
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Figure 2.2: Total freedom of a box lying on a frictionless plane.

The spatial transpose of twist t = (6T,dT)T is the twist t°5 = (d7,6T)T with the
upper and lower parts permuted.

The concept of total freedom (Ohwovoriole 1980) emerges from the sign of the
virtual work. We’d like to know not only the degrees of freedom of the object, but
also whether and when the object breaks contact or pushes against the other bodies
contacting it.

Definition 2.2 (Ohwovoriole 1980) A twist t and a wrench W are reciprocal to
each other if and only if their virtual work is zero. The pair (f, W) is repelling
(resp. contrary) if and only if their virtual work is strictly positive (resp. negative).

Let W be a set of wrenches acting on an object. The set of twists reciprocal to W
15 represented as linear combinations of n linearly independent twists. The object is
said to have n degrees of freedom.

Similarly, the set of twists reciprocal or repelling to W 1s represented by non-
negative combinations of non-zero twists. These twists form a convez basis which
describes the total freedom of the object.

A reciprocal twist corresponds to a degree of freedom in the system. For exam-
ple, look at the box in Figure 2.2. The box lies on a frictionless horizontal plane.
It has a reciprocal rotational twist about any vertical axis. In other words, it can
freely rotate about any vertical axis, and therefore has one degree of freedom. The
box can also translate in the plane, and so has two other degrees of freedom.



Constructing Force-Closure Grasps 15

The above three degrees of freedom do not completely describe the set of motions
possible to the object. For example, the box can be raised from the plane and
break contact. This half-free motion is different from the usual concept of degree of
freedom in that it is unisense. The upward motion is a twist repelling to the contact
force exerted by the plane onto the box. The downward motion is a twist contrary
to this contact force. Note that the plane will oppose the downward motion with
an upward reaction force, resulting in a negative virtual work. Finally, the box can
rotate about two horizontal axes, provided that the box does not enter the plane.
These two rotations define two other unconstrained motions. The box has three
degrees of freedom, but its total freedom or range of unconstrained motions is much
larger.

2.2.3 Convexes and Operations on Convexes

In grasping, the goal is to have force closure, or to fully constrain the motion of the
grasped object with a set of finger contacts. Through each contact, we can exert
a range of forces and moments, represented by a wrench convex. Just as many
contacts are combined to form a grasp, many wrench convexes are “added” until
their sum spans the whole space, or until we have force closure. Each contact can
also be described by a twist convex. The twist convexes are intersected until we get
the null space, or until the grasped object has zero total freedom. Let’s first define
convexes and three operations on convexes: convex addition, intersection, and dual.

Definition 2.3 Let C be a non-empty set of vectors. We define by conver C<, the
set of all non-negative combinations of vectors in C, formally:

C< = {§ l § = Zaié,’, a,‘ZO, éiEC} (25)

The vectors §; in C are called generating vectors of the conver C<. A convez is
polyhedral when the set of generating vectors is finite.

A convezx 1s null when it contains only the zero vector. A conver is total when
it 15 the entire space.

The convexes just defined are open-ended sets. They are also called convex
cones (Goldman and Tucker 1956) to differentiate them from convex sets, such as
convex polygons and polyhedra. An example of a convex is the friction cone in the
plane, Figure 2.3. The range of forces inside the friction cone can be represented
as the set of all positive combinations of the two extreme rays of the friction cone.
So, a 2D friction cone can be represented by a two-wrench convex. The friction
cone is no longer a polyhedral convex in 3D, because the set of generating vectors
is infinite.

Definition 2.4 Let C;<, C; be two convezes. The convez addition of CS and CT,
denoted C;~ U C,°, is the least convez that contains both CS and C5. Formally:
CrUCT = {8 |5 = ad + B3,

2.6
«a>0 8 >0, 8 €CT, 8, €C} (2:6)
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2¢

Figure 2.3: A 2D friction cone is represented by a two-wrench convex.

Convex addition ! is also known as the Minkowski sum. Convex addition is used
to combine wrench convexes from the various contacts on the grasped object. For
example, each point contact with friction in the plane gives a two-wrench convex,
Figure 2.3. A grasp with two point contacts with friction has a wrench convex
which is the Minkowski sum of the two convexes, describing the friction cones at
the two points of contact. From the above equation, the resulting convex can be
generated by the four wrenches, each is a force along an edge of the two friction
cones. The convex sum of polyhedral convexes can be represented by the union of
the generating vectors, except that the concatenated set of generating vectors may
not be minimal.

Convexes are closed under convex addition and intersection. The intersection of
two convexes is defined as follows:

Definition 2.5 Let C<, CS be two convezes. The intersection of CS and CJ,
denoted C~ ) C5, is the largest convez inside both CF and CS. Formally:

ceiNes = {§1§EC,<,§EC,<} (2.7)

Twist and wrench convexes are duals of each other. The dual operation on twist
or wrench convexes is defined as follows:

!Convex addition is not set union. We borrow the union sign |J to emphasize the duality of the
convex addition and the set intersection of two convexes, denoted ().
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Definition 2.6 Let C< be a twist or wrench convez. The dual of C<, denoted
C<, is the convez of vectors that are either reciprocal or repelling to all the vectors
in C<. Formally:

c< ={s1 cTs® > o} (2.8)
where C is the matriz whose columns are generating vectors of the conver C<.

One use of the dual operation is to calculate the twist convex T< which describes
the total freedom of an object. Solving for the twist convex is equivalent to solving
the following system of linear inequalities:

wTts > o (2.9)

where t 5 is the spatial transpose of the unknown twist, and each column of matrix
W is a generating wrench of W<. The product of t5 and the ith row of W T gives
the virtual work of twist t against wrench W; of W. This virtual work must be
either zero or positive. Similarly for all other rows.

The duality between twists and wrenches allows us to compute in the wrench-
space and deduce equivalent result in the twist-space, and vice versa. See Figure 2.5.
The following Lemma summarizes important facts about the dual operation, the
convex addition and intersection of twist and wrench convexes. For a proof see
(Goldman and Tucker 1956).

Lemma 2.1 Let W<, T< pe respectively a wrench and a twist convez. Let C< be
either a wrench or twist convexz.

1. c< = c<
2. W< = 1< ; T< = w<

3. c<nc< = null space ; C<U C< = total space

4. CF = CF ifandonlyif CX = CF (2.10)

5. CPNCS = CcRUCy

6. CrUCS = csney

2.2.4 Dual Subsystems

We have seen that twists and wrenches form dual systems. In planar mechanics, a
twist can be represented by a 3-dimensional spatial vector as follows:

6
t = | d, (2.11)
dU
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6, is the infinitesimal rotation about the z-axis, and (d;,d,) is the infinitesimal
translation of the origin in the zy-plane. Similarly, a planar wrench can be repre-

sented by:

fz
w o= | f, (2.12)

m,

where (f,, f,) are the two force-direction components in the zy-plane, and m, is
the moment component about the z-axis.

In this 3-dimensional space, we can identify two pairs of subspaces which form
interesting dual subsystems:

e The space of zy-translations, and its dual which is the space of all force
directions in the zy-plane.

e The space of pure moments or torques about the z-axis, and its dual which is
the space of clockwise and counter-clockwise rotations about the z-axis.

It is well known that any planar motion can be decomposed uniquely into a trans-
lation and a rotation about the origin. So, the space of clockwise and counter-
clockwise rotations, and the space of zy-translations are two independent subspaces
of the space of planar twists. Similarly, the space of torques and the space of force
directions are two independent subspaces of the space of planar wrenches.

Force closure for these two pairs is very simple for polygonal objects. Edges of a
polygonal object have constant normals, so force-direction closure becomes a simple
test of the angles between the edge normals. Only torque closure depends on the
position of the points of contact on the grasping edges. The same observations hold
for polyhedral objects in 3D.
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2.3 Force-Closure Grasps in 2D

2.3.1 Representing Contacts and Grasps
Primitive Contacts

Figure 2.4 depicts the different types of planar contacts. The first column describes
the physical contact with the finger on top and the grasped object below it. The
second and third columns describe respectively the wrench convex, representing the
range of forces that can be applied to the object, and the twist convex, representing
the total freedom of the object. Each convex is represented by a minimal set of
generating vectors. The twist convex is computed by taking the dual of the wrench
convex.

a. Frictionless point contact — We can apply only a single pure force, normal to
the segment, through a frictionless point contact. The wrench convex has a single
wrench. The twist convex has three twists: a rotation about the point of contact,
a translation along the edge of the object, and an unisense downward translation
which breaks contact with the finger. This downward translation is a repelling twist
whereas the first two twists are reciprocal ones.

b. Point contact with friction — The friction cone at the point of contact shows
the range of pure force that can be applied through the point contact. The wrench
convex has two wrenches which are along the two extreme rays of the friction
cone. Any force pointing inside this friction cone can be written uniquely as a
positive combination of the these two wrenches. The twist convex has two unisense
translations, each reciprocal to one wrench and repelling to the other. It also has a
free rotation about the point of contact as above.

¢, d. Edge contact with/without friction — It is well known that, for rigid ob-
Jects, any force distribution along the segment of contact is equivalent to a unique
force at some point inside the segment. This unique force is mathematically the pos-
itive combination of two ranges of force at the two ends of the segment of contact.
Specifically, the wrench convex of an edge contact with /without friction is equiv-
alent to the convex sum of two wrench convexes, each represents a point contact
with/without friction at one end of the edge of contact.

e. Soft finger contact — From a force closure point of view, a soft finger contact-
ing an edge is the same as an edge contact with friction. The pressure distribution
is irrelevant to our current focus, which is concerned with whether the object can be
constrained with the given contacts, rather than how much force should the fingers
apply to the object.

A soft finger becomes more useful when it contacts on the inside or outside of
a corner. Figure 2.4.e shows a soft finger contacting on the outside of a corner.
The wrench convex is the convex addition of two convexes, each describes the edge
contact with friction on one side of the corner. The object can only break contact
by sliding downward.
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Figure 2.4: Planar contacts and their twist and wrench convexes.
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People tend to grasp at the edges and corners if there is no reachable pair of
parallel faces. Why? One among many plausible answers is the availability of a
larger wrench convex, which means not a more stable grasp but a greater ability
to constrain and move the object, by applying necessary forces through the soft
contacts. A soft contact pressing at a vertex can be approximated as a point
contact with a much larger friction cone. So a grasp with two soft contacts is better
than a grasp with two point contacts with friction.

Gravity is not a contact, but it does play a role in constraining the total freedom
of the object. For example, the box of Figure 2.2 is immobile on the table because
the force of gravity is holding it down to the table. We can view the box as being
grasped, or more exactly constrained, by two contacts: a plane contact between the
bottom of the box and the table, and an imaginary point contact at the center of
gravity of the box. Gravity is useful in this case, because without gravity the box
can freely float upwards!

We conclude that point contacts without and with friction are the two primitive
contact types. A contact over a finite segment is the combination of all point
contacts over this segment. This infinite set of point contacts is the convex sum of
two point contacts at the two ends if the segment is straight. The straight segment
is a convex set, whereas the wrench convex is a convex cone. The description of a
contact over a finite segment is split into two independent parts: a convex set for
the point contact, and a convex cone for the range of force directions. This property
applies only to polygonal and polyhedral objects.

Dual Representations For Grasps

Twist and wrench convexes are two dual representations for contacts. We can add
wrench convexes from all the contacts or intersect the corresponding twist convexes
to find the resulting wrench or twist convex of the grasp. We have here two dual
view points:

¢ A constraint view point. — Wrench convex describes the set of forces and mo-
ments which constrain the object. A total wrench convex means we can arbitrarily
apply any force and moment on the object, and so we can grasp it, instantaneously
rotate or translate it in any way we want.

® A freedom view point. — Twist convex describes the total freedom of the
object. A total twist convex means the object can freely move relative to the fingers.
A null twist convex means the object cannot break contact without external work
against the contact forces exerted by the fingers.

Which representation, twist or wrench convexes, is better? For planning grasps,
wrench convexes are definitely more efficient since generating wrenches can be de-
duced readily from the type of contact, and we can just take the union of all the
generating wrenches to describe the grasp (Figure 2.5). The twist convex represen-
tation is more efficient for describing the total freedom at the end effectors of linked
manipulators. The infinitesimal motions and the velocities of the end effector due
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dual

dual

Figure 2.5: Duality between twist and wrench spaces.

to each joint are ‘added’. The end effector can have arbitrary motion if the twist
convexes of all the joints ‘add up’ to a total convex.

2.3.2 Resisting Translation and Rotation

The force closure problem can be formulated as solving a system of linear inequal-
ities:

wTts > o (2.13)

where the columns of W are generating wrenches collected from all the contacts
of the grasp. We can design a generate-and-test algorithm which enumerates all
the possible grasps, and test each grasp by solving the above system of linear in-
equalities. We get a force-closure grasp if and only if there is no non-zero solution
to the above system, i.e. zero total freedom. There are two main objections to
this scheme: first, the set of possible grasps is infinite; second, the grasp synthesis
uses an analytical formulation which does not exploit the geometry of the domain.
Polygonal objects have straight edges; contacts on straight edges have wrench con-
vexes which can be split into position-dependent and position-independent parts. A
force (resp. infinitesimal rotation) is a line vector while a torque (resp. infinitesimal
translation) is a free vector which does not depend on the point of contact. Our
key contribution is to make the force-closure constraint explicit for polygonal and
polyhedral objects.
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Figure 2.6: A geometrical view of force-direction closure.

Force-Direction Closure With Planar Forces

When can a grasp resists arbitrary planar translation of the object? Informally, the
contact forces of the grasp must have directions that span the space of all directions
in the plane, Figure 2.6. Formally:

Theorem 2.1 A set of wrenches W can generate force in any direction if and only
if there exists a three-tuple of wrenches (W1, W3, W3) whose respective force directions
1,1, f5 satisfy:

¢ Two of the three directions f,,f;,fs are independent.

o A strictly positive combination of the three directions is zero.

af1+ﬂf2+7f3 = 0

The first (resp. second) condition corresponds to no homogeneous (resp. par-
ticular) solutions to the system W7{5 > 0, where twist t = (0,d,,d,)” is an
infinitesimal translation of the object. For detailed proofs the reader is referred to
Appendix A.1. Theorem 2.1 can be captured in a more suggestive and compact
way as follows:

Corollary 2.1 A set of wrenches W can generate forces in any arbitrary direction
tf and only if there ezists a three-tuple of force-direction vectors (f1,f2,13) whose end
potnts draw a nonzero triangle that includes their common starting point.
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Figure 2.7: A geometrical view of torque closure.

Torque Closure With Planar Forces

Torque closure can be achieved easily by creating enough friction on some axis of
rotation of the object. The friction between the rotating object and its supporting
axis will create a torque which resists any clockwise or counter-clockwise rotation
of the object. Unfortunately, in most grasp configurations, we have only point
contacts, and through a point contact, a finger can exert only a pure force on the
object and not torque. The more interesting problem is to achieve torque closure
with only pure forces.

Theorem 2.2 A set of planar forces W ecan generate clockwise and counter-
clockwise torques if and only if there exists a four-tuple of forces (Wi, W,, W3, W)
such that:

o Three of the four forces have lines of action that do not intersect at a common
point or at infinity.

o Let fy,...,f( be the force directions of Wy,...,W,. Let P12 (resp. DPas) be the
point where the lines of action of W, and W, (resp. W3, and W) intersect. There
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exist a,3,7,6 all greater than zero, such that:

P3¢ — P12z = L (afi + 6f)
= F(vf3 + 6fy)

The first (resp. second) condition corresponds to no homogenous (resp. particu-
lar) solutions to system W T t5 > 0, where twist t = (6,,d,,d,)7 is an infinitesimal
rotation of the object. For detailed proofs the reader is referred to Appendix A.2.
Theorem 2.2 can be formulated in more geometrical terms as follows:

Corollary 2.2 A set of planar forces W can generate clockwise and counter-
clockurse torques if and only if there ezists a four-tuple of forces (Wi, W2, W3, Wy)
such that the segment PyyPs4, or P34 Pya, points out of and tnto the 2 cones C'1<2,
Cs5, formed by the two pairs (W1, W2), and (W3, W,).

From Figure 2.7, the reader can check for torque closure in the plane by drawing
a quadrilateral delimiting the overlapping region of the two cones C’lf, C’3§. From
this quadrilateral, he can generate clockwise and counter-clockwise torques from
positive combinations of the four pure forces.

2.3.3 Finding All Force Closure Grasps

Theorem 2.3 Let G be a planar grasp described by the set of wrenches W. Let’s
denote by W< the wrench conver spanned by W, and by T the twist convez recip-
rocal or repelling to W. The following clauses are equivalent:

1. G s a force closure grasp.

2. W can generate force with arbitrary direction, and moment.
W< = Oo[fzvfy’mz]

3. There is neither translational nor rotational twist that is free, or that breaks
contact with G.
T< = 0l6,,d,,d,]

We know from Section 2.2.4 that the convex addition of the convex of all force
directions oo [f;, f,] and the convex of all torques oo [m,] is the convex of all pla-
nar forces oo [fz, f,,m.]. So, from the above theorem, the necessary and sufficient
condition for force closure is contained in both Theorems 2.1 and 2.2. If we assume
that through any contact we can only exert force and not torque, then Theorem 2.2
subsumes Theorem 2.1. A translation can be viewed as a rotation with point of
rotation at the infinity. So, if there is no free rotation for the grasped object con-
strained by a set of contact forces, then there exists also no free translation. Thus
Corollary 2.2 describes the geometrical necessary and sufficient condition for force
closure with planar forces only.
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Figure 2.8: Finding frictionless grasps on four edges.
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Constructing Force-Closure Grasps

Grasps With Frictionless Contacts

Algorithm 2.1 A force closure grasp between four edges e,,...,eq can be con-
structed as follows:

1. Pair up two edges e, e, against e3, ey such that the two sectors Cqz, Csq are
non null. By sector Cy3, we denote the smallest sector between the normals —n,,
—1I112.

2. Check that the two sectors C13, C34 counter-overlap, i.e:

Ciz [] —Csa # 0 (2.14)

3. Find the parallelogram II; by intersecting the two infinite bands perpendicular
to and containing the edges e, and e;. Parallelogram I, is the locus of points Py
where the lines of force of W, W, intersect. Similarly, we find the parallelogram ITs,
which represents the locus of points Py, where lines of force of Ws, W, intersect.

4. Pick two points Py, Psy respectively from the parallelograms ITy3, 34, such
that the direction of the line joining Py, and Ps4 is in the counter-overlapping sector

C = C12 N —Caa.

5. From point Pia, backproject along the normal n,, (resp. n3), to find the grasp
point Py, (resp. P;), on edge e, (resp. e;). Similarly, we find the grasp points Ps,
and Py by backprojecting Psy respectively along the normals ns, ny.

6. The four grasp points Py, Py, P3, Py found as above form a force closure grasp
G(Py, Py, Ps, P,) between the four edges.

Lemma 2.2 The set of all possible grasps on four edges ey,...,es, denoted
G(e1,...,eq), is completely described by the two parallelograms I3, Iz, and the
counter-overlapping sector C = Ci3 [} —Caq.

It is obvious from the construction, and from Corollary 2.2 that the set of grasps
characterized as above is complete for the pairing of edges e;, e; against es, eq. The
reader may wonder whether the different pairings in step 1 of the above construction
give different sets of grasps. The answer is No. Different pairings certainly give
different parallelograms and counter-overlapping sectors. However, they all describe
the same set of grasps, This is supported by Lemma A.1 in Appendix A.2, which
says informally that the three pairings are equivalent to each other.

From Corollary 2.1, we must have at least three non-parallel forces to have force-
direction closure. So we need at least four contacts on three non-parallel edges, if
there is no friction between the fingers and the grasped object. With two of the four
contacts on the same edge, there are possibly three grasp-sets between three edges
ey, ez,€e3: G (e1,ez,e1,€3),G (€1,€2,€2,€3),G (€1, €3, €5,€3). The problem reduces to
one of finding grasp sets between four edges. From Section 2.3.1, we can replace
two frictionless point contacts on the common edge with a frictionless edge contact.
This is a good illustration of how we can grasp a same object with fewer fingers by
using edge contacts instead of point contacts.
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Grasps on Two Edges Require Friction

Corollary 2.3 Two point contacts with friction at P and Q form a force closure
grasp if and only if the segment PQ, or QP, points strictly into and out of the two
friction cones respectively at P and Q.

Proof: This is a well known fact of planar mechanics. Let’s however prove the
above corollary using a reduction from a grasp with 2 point contacts with friction
to a grasp with 4 point contacts without friction. A friction cone at P (resp. Q)
is equivalent to two forces W,,W; (resp. Wi, W,) along the edge of friction cone
and going through P (resp. Q), Figure 2.9. We recognize that point P (resp. Q)
is nothing more than the point Py, (resp. Ps4). So the above corollary is a special
case of Corollary 2.2. B

Now, let’s find the set of possible grasps from two edges e;, and e;. Since the
point of contact P, (resp: @), must lie on edge e;, (resp. e;), the parallelogram
IT,;, (resp. ITs4) reduces to the edge e;, (resp. e;). The construction of the set of
grasps from two edges ey, e, is similar to the construction given in Algorithm 2.1.

Lemma 2.3 The set of all possible grasps with friction on two edges ey, e;, denoted
G(er,e2), 1s completely described by the two edges e,, e;, and the counter-overlapping
sector C = Cy; N —C2 of the two friction cones resp. from edge e; and e,.

By definition, a force-closure grasp is a set of contacts which allows us to exert
arbitrary force and moment on the object by pushing at the contacts. So, we can
exert zero force and moment, i.e. have an equilibrium grasp. In the other direction,
it turns out that most equilibrium grasps with point contacts with friction are also
force-closure grasps:

Corollary 2.4 Let G be a grasp with at least two distinct point contacts with fric-
tion. G is a force closure grasp if it is an equilibrium grasp, and has contact forces
pointing strictly within their friction cones.

Proof: The two friction cones gives three lines of force which are not all par-
allel because the friction cones are not null. These three lines of forces do not all
intersect at the same point because the two points of contact are distinct. So, we
have three planar wrenches with independent spatial vectors. The set of contact
wrenches is also force closure, or vector closure, ? if there exists a strictly positive
combination of four contact wrenches that results in the zero wrench, or equilib-
rium. The coefficients of the contact wrenches must be strictly positive, i.e. the
contact forces must point strictly inside their respective friction cones. B

How does a soft finger contact compare with a point contact with friction? Due
to the non-zero segment, a soft finger contacting an edge gives us a range of friction

2The general vector closure theorem, Theorem 2.5, has the same form as Theorem 2.1, and is
given in Section 2.4.4.
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Figure 2.9: Finding grasps with friction on two edges.
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cones instead of a single friction cone (Figure 2.4.e). A more interesting comparison
is to compare the range of force directions when the soft-finger contacts a vertex.
A soft finger contacting at a vertex can be approximated as a point contact with
a much wider friction cone. From Corollary 2.3, we have seen that the larger
the friction cones at the points of contacts, the greater is the likelihood that they
counteroverlap, or that the grasp is force closure. So a soft finger gives us more
flexibility than a point contact with friction. This partially explains why people
grasp objects at edges and corners, and also why the contacting surface of human
fingers had better be soft than hard like the finger nails.

2.3.4 Finding Independent Regions of Contact
Independent Regions For Two Point Contacts With Friction

In task planning, we are interested in finding grasps that require as little accuracy
as possible. One aspect of that goal is to have grasps such that the fingers can be
positioned independently from each other, not at discrete points, but within large
regions of the edges.

Corollary 2.3 allows us to cast the problem of finding the independent regions
of contact on two edges into a problem of fitting a two-sided cone cutting these two
edges into two segments of largest minimum length, Figure 2.10.

Definition 2.7 A two-sided cone C* (I, £C) with vertez I and sector C, is the set
of points P such that the segment IP has orientation inside +C.

Algorithm 2.2 The independent regions of contact on two edges e; and e; can be
constructed as follows:

1. Find the two-sided cone C* (I, +C) that cuts all of edge e, and very little or
none of edge e;. We get a triangle [\) formed by edge e; and vertex I). This triangle
represents the set of vertices I, where the two-sided cone C* (I, £C) monotonically
cuts larger segment €} and smaller segment €}, as we move from edge e, to e;. Sim-
tlarly, we find the two-sided cone C* (I, +C) such that this later cuts ezactly the
edge ey and very little or none of edge €,. We get a triangle /N, formed by edge e,
and verter I,.

2. Find the trade-off region for vertez I by intersecting the triangle /\, with /.
The trade-off region describes the locus of vertex I, for which the two-sided cone
C* (I, £C) cuts both edges e; and e, into segments €, and €,. The length of the
independent segments €| and €}, is proportional to the distance from vertez I of the
two-sided cone to the respective edges.

3. We cut the trade-off region with the bisector of the two edges e,, and e;. The
intersection is the locus of vertex I for which the two segments €| and e, have the
same length. The optimal vertex I* is at one of the two endpoints of the intersecting
segment, or anywhere on this segment, depending on the angle between the two edges.
If no intersecting segment exists, then the optimal verter is the point of the trade-off
region which is nearest to the bisector.
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Figure 2.10: Finding the independent regions of contact on two edges.

4. From the optimal vertez I*, the independent regions of contact s, and s, are
found by cutting the two-sided cone C < (I*, £C) with the grasping edges e; and e,.

The computation of the optimum independent regions of contact for two point
contacts with friction on two edges takes about 0.05 seconds. The code is written
in Zeta Lisp, compiled and run on a Symbolics machine.

Independent Regions For Four Frictionless Point Contacts

Using Corollary 2.2, the problem of finding the independent regions of contact on
three or four edges becomes a problem of fitting a two-sided cone between two
parallelograms. Figure 2.11 illustrates the fitting of a two-sided cone between the
two parallelograms IT,; and ITs,. The two-sided cone has vertex at J , and sector
C = Ci2 N —Cs4. This two-sided cone cuts the two parallelograms IT,; and T,
into two disjoint regions, for which Corollary 2.2 is satisfied for any pair of points
(P12, Ps4) from these two regions. Better, we restrict the two disjoint regions to two
smaller parallelograms T}, and II;,, so that the point of contact P, (resp. Ps) can
be independently placed from P, (resp. Py). The problem is to find the optimum
position of the vertex I such that the parallelograms I1}, and II;, have largest
minimum distance between parallel edges. The independent contact regions are
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Figure 2.11: Independent regions for four frictionless point contacts.
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Figure 2.12: Search for the optimum vertex of the two-sided cone.
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found by backprojecting the smaller parallelogram 771/, on edges ¢, and €., similarly
for IT;,. The algorithm is similar to Algorithm 2.2.

As we translate one of the edges of the cone C* (I, £C), the parallelograms
IT), and IT§, vary monotonically in opposite directions. This monotonicity allows
us to consider only a finite number of boundary cases. We partition the plane
into regions R;’s depending on how the two-sided cone cuts the parallelogram I7;,.
In each region R;, the loci of vertex I, for which I1/, has constant area, form
parallel lines shown by dashed lines in Figure 2.12. We find similar regions R,’s and
loci, for parallelogram I134. The problem then reduces to computing all pairwise
intersections R;NR;, from the two sets of regions, and for each intersection, compute
the locally optimum vertex I from the two corresponding loci.

The computation of the four optimal independent regions of contact takes about
0.25 seconds on a Symbolics machine.

The synthesis of the four independent regions of contact can be viewed as finding

four convexes C~,...,CS, such that any 4-tuple of wrenches (W1,...,Wy) is vector
closure or:
4
W, = 0 o >0 (2.15)
=1

assuming that three of the four wrenches are always independent. The wrench W;
and the convex Ci< correspond respectively to a point contact and a range of point
contacts on edge e;.

The above equation can be rewritten as follows:

(al \;Vl) = —(ag\i/z -+ Q3W3 + Q4W4) (216)
(al W1+a2 Wg) = ‘(03\&3 + Oy W4)

which have the following necessary conditions:

(CS) N =(CF U CT UCT) # 0

2.17
(€5 U CR) n —(CS uCs) # 0 (217
By permutating the indexes, we get five other necessary conditions:
C) N —(CS U s u S
CS) N —(CF u e ucs
(CS (2.18)

)
)
U CS U CY)
CEUCT) n —(CS L)

) N —(CS uCy)

BN N N N 1
sSesae

The intersection of two convexes generally gives a smaller convex, so the above
necessary conditions restrict the edges e;,...,e, into smaller segments sp,...,s4.
These segments represent the independent regions of contact if their convexes are
also disjoint.
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In a plane, two non parallel lines always intersect. This is why Cl< U C,f can be
geometrically represented by point P, and the sector C;5. The geometric represen-
tation is exact, because it captures all the strictly positive combinations of vectors in
C= and C;°. The fitting of the two-sided cone in between the two parallelelograms
IT1; and Iy, captures the operation (C;~ U CyS) N —(C U CS). The enumer-
ation of the regions R,’s and R,’s and the pairwise intersection of these regions,
R; N R;, is just a geometric construction of the optimum set of four disjoint con-
vexes that satisfy the above seven necessary conditions. The geometric construction
makes explicit the location of the points of contact. The number of intersections to
test is exponential in the number of convexes, or the minimum number of required
contacts, c. So the optimal set of independent regions of contact costs O(2°).

2.3.5 Force-Closure with Redundant Contacts

Redundant contacts do not change the force closure property of the grasp, and so
can be placed anywhere on the object. For example, a frictionless force-closure grasp
needs at least four contacts. Grasping regions on n given edges, n > 4, can be found
by finding the four optimal independent regions of contact for all (:) 4-tuples of the
n grasping edges. The first four fingers must be inside the four independent regions
found, while the other n — 4 fingers can be anywhere in the remaining grasping
edges. So, the other n — 4 independent regions of contact are the grasping edges
that have not been used. We can pick the set of n independent regions of contact
with the largest minimum length, and this is the optimal set.

In general, finding the best set of independent regions of contact for n fin-
gertips on m edges requires an enumeration of (m“"(c""”)) combinations, and so
costs O(max(n,m)¢) time. ¢ is the minimum number of required contacts, and
¢ < max(n,m). It is four for frictionless point contacts, and is two for point con-
tacts with friction. Finding the set of all force-closure grasps for n fingers on m
edges costs O(max(n,m)¢) time, because we also need to enumerate all (ma"(c"’"‘))
combinations.

There is another constant factor in the construction of the independent regions
of contact. The constant factor comes from the optimal trade-off between the
independent regions of contact, for all possible combinations of ¢ wrench convexes
from the ¢ edges. The number of such combinations is O(2¢).

Complexity 2.1 Let B be a polygonal object grasped by n contacts on m edges.
Let ¢ be the minimum number of required contacts. For ¢ < max(n,m):

e Finding the set of all force-closure grasps, for n fingertips on m edges, costs
O(max(n,m)€) time.
e Finding the optimal set of independent regions of contact, for n fingertips on

m edges, costs O(max(n,m)¢2°) time.

In the minimal case where both the number of contacts and the number of
edges are minimal, the force-closure grasps can be constructed in constant time.
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2.4 Force-Closure Grasps in 3D

2.4.1 Primitive Contacts

The contacts between the fingertips and the object can be modeled as friction-
less point contacts, hard-finger contacts, or soft-finger contacts with friction. See
Figure 2.13.

e Frictionless point contact. — The finger can only exert a normal force through
the point of contact. The wrench convex has a single wrench, with line of
action going through the point of contact, and with direction the negative of
the contact normal.

e Hard-finger contact. — This is a point contact with friction. The finger can
exert any force pointing into the friction cone at the point of contact. This
friction cone describes the wrench convex, which mathematically has an infi-
nite number of generating wrenches. This friction cone can be approximated
by a polyhedral convex, with vertex at the point of contact (Kerr 1985).

e Soft-finger contact. — The friction over the area of contact allows the finger
to exert pure torques in addition to pure forces pointing into the friction cone.
The finger can exert torques in both directions, about the normal axis at the
point of contact. So the wrench convex is described by a one-sided friction
cone plus a two-sided torque.

Any complex contact can be described as a convex sum of the above primitive
contacts. Figure 2.14 shows an edge contact without friction whose wrench convex
is the convex sum of two wrench convexes, each describes the frictionless point
contact at one end of the edge of contact. Similarly, a face contact is the convex
sum of point contacts at the vertices of the face. If the face is non convex, then its
wrench convex is equivalent to the convex sum of point contacts on the convex hull
of the face only. The convex hull has fewer vertices than the non convex face.

Similar to the planar case, a soft finger contacting at a vertex (or an edge) of
a polyhedron can be approximated by a point contact (or an edge contact) with a
much larger friction cone. For a grasp with two soft finger contacts, the larger the
friction cone, the more likely the grasp is force closure. This explains why people
tends to grasp at sharp corners and edges.

2.4.2 Grasps with Two Soft-Finger Contacts

Figure 2.15.a shows two soft-finger contacts on two faces of a polyhedron. The
angle between the two contact planes is . The positive combination of the two
friction cones generate rays in any direction if and only if ¥ < 2¢, where tan ¢ is
the coefficient of friction.
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Contact Model Wrench Convex
Frictionless point contact.

Hard-finger contact.

Fot o

Soft-finger contact.

Figure 2.13: Primitive contacts in 3D.
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Contact Modcl Wrench Convex

=

Frictionless edge contact

Frictionless face contact

Figure 2.14: Complex contacts in 3D.

Soft-finger on a vertex.
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Lemma 2.4 A grasp with 2 soft-finger contacts is force-direction closure if and
only if the angle 1) between the two planes of contact is strictly less than the angle
of the friction cone 2¢.

By coupling opposite contact forces, we can generate arbitrary pure torques
perpendicular to the segment P, P, joining the two points of contact, Figure 2.15.a.
These torques can be generated if (1) ¥ < 2¢, and (2) the segment P, P,, or P,P;,
points strictly into and out of the two friction cones at the two points of contact Py
and P,. The pure torques about P, and P, have projections on the segment P, P;,
so the grasp drawn is also torque closure. The first condition is a prerequisite of the
second condition. The second condition is both a sufficient and necessary condition
for the case of two soft-finger contacts:

Theorem 2.4 A grasp with 2 soft-finger contacts is force-closure if and only if:
The segment P, P,, or P, Py, joining the two points of contact P, and P, points
strictly into and out of the friction cones respectively at Py, P,.

For polyhedral objects, the faces have constant normals, so the force-direction
closure condition reduces to a simple test of the angle between the two plane nor-
mals. Once the force-direction closure is satisfied, the two friction cones counter-
overlap, and the counter-overlapping range is C; N —C;. The torque closure con-
dition is satisfied if and only if the segment P, P,, or P, P;, has orientation inside
the counter-overlapping range C, N —C;. The independent contact regions can be
constructed by cutting the two faces with a two-sided cone, having cone angle
+(C2 N —C,), and vertex in between the two faces.

Figure 2.15.b shows examples of force-closure grasps with two soft-finger con-
tacts. The coefficient of friction used is 0.8. The construction is similar to its
2-dimensional analogue given in Algorithm 2.2. The faces are approximated by
their bounding circular disks. The counter-overlapping range C, N —(; is approxi-
mated by the maximum cone inside C, N —C1. The two-sided cone is positioned in
between the two disks bounding the two faces. The intersection between the two
disks and their respective cones give the independent contact regions. The approx-
imate computation of the independent regions for two soft-finger contacts on two
faces takes about 0.05 seconds.

If the face has holes, or if it is non convex, then the the circular disk bounding
the face no longer preserves the compactness or convexity property of the face.
A non-convex face is approximated by a set of overlapping circular disks, each
disk approximates a local convex region of the face. Local convex regions can be
computed from the Voronoi Diagram of the face (Shamos 1978). They can be
approximated by the generalized cones between facing edges as in (Nguyen 1984).

A force-closure grasp implies that equilibrium grasps exist since zero force and
moment is spanned by the set of contact forces. In the reverse direction, it turns out
that equilibrium grasps with soft-finger contacts are usually force-closure grasps:
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Figure 2.15: Force-closure with two soft-finger contacts.
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Figure 2.16: Two distinct soft-finger contacts give six independent wrenches.

Corollary 2.5 A grasp with at least two distinet soft-finger contacts is force-closure
if 1t 15 in equilibrium, with contact forces pointing strictly into the friction cones at
the respective points of contact.

Proof: Let’s first prove that two distinct soft-finger contacts gives six inde-
pendent contact wrenches. Let the origin of the reference frame be the first point
of contact, Figure 2.16. The first friction cones gives three contact forces in three
independent directions. All three contact forces have zero moment components.
The first soft-finger contact has also a pure torque. So, we have four independent
wrenches from the first soft-finger. Because the two point contacts are distinct, the
moment of the second friction cone about the first point contact gives at least two
different wrenches with different moment components than the first pure torque.
So, in total, two distinct soft-finger contacts gives six independent contact wrenches.

A non-marginal equilibrium, in which all the contact forces are strictly within
their respective friction cones, means a strictly positive sum of the contact wrenches
is zero. Let’s prove that we have a strictly positive sum of at least seven contact
wrenches, in which six of them are independent. Each soft-finger contact can be
approximated by a four-wrench convex (one pure torque and three forces), such
that the force and torque at the point of contact is a strictly positive combination
of the four wrenches. The grasp has at least two soft-finger contacts, i.e. has at
least eight contact wrenches, in which at least six of them are independent. The
contact forces and torques add to zero, so the strictly positive combination of at
least eight contact wrenches is zero. F rom the vector closure theorem, Theorem 2.5,
the grasp is definitively force closure. [ ]
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2.4.3 Grasps with Three Hard-Finger Contacts

A real fingertip, although soft, has very limited resistance to rotations about its
point of contact, and so behaves more like a hard-finger than a soft-finger. A
hard-finger contact differs from a soft-finger contact by a torque about the contact
normal. A grasp with two hard-finger contacts, instead of two soft-finger contacts,
cannot generate or resist torques about the line joining the two points of contact.
So, a force-closure grasp needs at least three hard-finger contacts with friction.

For polyhedra, the force-closure condition becomes a constraint on the relative
configuration of the friction cones. The independent contact regions are constructed
by cutting the two-sided cones and the faces of contact. The force-closure grasps
with three hard-finger contacts can be split into four classes, Figure 2.17, depending
on the number of friction cones that pairwise counter-overlap:

e The first grasp has no pair of counter-overlapping cones. An example is a
three point grasp on a ball with very little friction. The three grasp points
are symmetrically placed on a circle that has the same center as the ball. Note
that the ball will slip away from the fingers if one of the three contact points
is removed.

e The second grasp has one pair of counter-overlapping cones, from the top and
bottom contacts. The third contact contributes a torque component about
P, P,. This contact can be removed without having the object slip from the
fingers.

e The third grasp has two pairs of counter-overlapping cones. The second con-
tact serves as a pivot when either the first or third contact is added or removed.
An example is a three point grasp on two parallel faces, with two of the fingers
on one same face.

e The fourth grasp has three pairs of counter-overlapping cones. All three con-
tacts can be used as pivots, and any fingertip can be removed or added while
the other two grasp the object. This grasp exists only if the coefficient of
friction is greater than tan(n/6) degrees.

The above classification arises directly from the geometric construction of the
independent contact regions. The classification highlights the similarity and dif-
ference between grasps with soft-fingers and grasps with hard-fingers. From the -
classification, we can change from one grasp to another by searching for a sequence
of two-point and three-point grasps, Figure 2.18. The two-point grasps are force-
closure if the fingertips are soft. We’ll see in the next chapter, that the two-point
and three-point grasps are also stable. In other words, one grasp is changed to
another by a sequence of stable force-closure grasps. Only one finger is removed or
added at a time, while the other two fingers maintain a stable force-closure grasp
on the object.
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Figure 2.17: Force-closure grasps with three hard-finger contacts.
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Figure 2.18: Sequence of two-point and three-point grasps.
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Figure 2.19: Force-closure grasps with seven frictionless contacts.

Like grasps with soft-finger contacts, non-marginal equilibrium grasps with at
least three distinct hard contacts are also force-closure grasps:

Corollary 2.6 A grasp with at least three distinct hard-finger contacts is force-
closure if it is in equilibrium, with contact forces pointing strictly within the friction
cones at the respective points of contact.

2.4.4 Grasps with Seven Frictionless Point Contacts

Figure 2.19 shows a force-closure grasp on a cube, with seven frictionless point
contacts. Without friction, we need at least seven frictionless point contacts instead
of two soft-finger contacts, or three hard-finger contacts.

To have force-direction closure, a 3D grasp needs four frictionless contacts. Ex-
ample is a grasp on a tetrahedron. For polyhedral objects, the force-direction closure
problem reduces to a test of the n face normals. The test is formulated as deciding
whether solutions exist for a system of n linear inequalities, WTt® > 0 in three
unknowns (d;,d,,d,) of the translational twist t = (07,dT)7. The force-direction
closure problem does not depend on the location of the points of contact, because
the normals are constant on the planar faces.

To have torque closure with unisense contacts, seven contacts are needed. Again,
the test for torque closure is formulated as deciding whether solutions exist for a
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system of n linear inequalities, W7 t5 > 0 in six unknowns: (6246y,6.,d;.d,,d,) of
the rotational twist t = (67,d”)7. From linear algebra, the six unknowns are all
zero only if there are at least seven linear inequalities. In general, vector closure in
n-dimensional space needs at least n + 1 vectors. For completeness, let’s formulate
the general vector-closure theorem:

Theorem 2.5 (Goldman and Tucker) In an n-dimensional vector space, a set of
vectors V 1s vector closure if and only if V has at least n + 1 vectors (vy, ... »Vnr1)
such that:

® n of the n + 1 vectors are linearly independent.

o A strictly positive combination of the n + 1 vectors is the zero vector.

n+1
davi =0 o >0 (2.19)
1=1

The first statement expresses the necessary and sufficient condition for no ho-
mogeneous solutions to the system VTx > 0. V is the matrix with vectors v,
as columns. The number of independent vectors must be equal to the dimension
of the vector space. The second statement expresses the necessary and sufficient
condition for no particular solutions. The above theorem is just a slightly different
form of Lemma 6 proved by Goldman and Tucker. For proof, the reader is referred
to (Goldman and Tucker 1956).

Analyzing whether a grasp with n point contacts is force-closure, is equivalent
to deciding whether the system of linear inequalities WT£° > 0 has non-zero
homogeneous or particular solutions. Typically, the system of linear inequalities is
transformed into a system of linear equalities by introducing positive slack variables.
Then Gauss-Jordan elimination is done on the augmented system of linear equalities.
No homogeneous solution exists if the rank of the matrix is six. No particular
solutions exists if the rank is six, and if the slack variables must be all zero. Deciding
whether a system of n linear inequalities has solutions or not costs O(n) time.
However, solving for the solutions to a system of linear n inequalities costs O(n")
time, because there can be ((rfl)) number of particular solutions, r is the rank of
the system of linear inequalities.

Complexity 2.2 Analyzing whether a grasp constrained by n contact wrenches is
force-closure or not costs O(n) time.

Constructing the seven independent regions of contact is more expensive and
harder. A convex region for a point of contact on a planar face corresponds to a
wrench convex in the 6-dimensional wrench space. The problem is to find seven
disjoint wrench convexes in this 6-dimensional space, such that any seven-tuple of
wrenches from these seven convexes is torque closure. Due to the convexity of the
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domain, the problem is reduced to a discrete test on all combinations of the seven
convexes:

(Co)n —(cFucs uceses uecsucey) # 0

Cruch)n—(ciucsesucSucy) £ 0 (2.20)
1 2 3 4 5 6 7

(CRuciucs)n—(csesuecSuces) £ 0

There are (I) , (;), and (;) equations respectively similar to the above three. They
describe the necessary conditions of Equation (2.19). Note that two or three lines
in space do not always intersect, so there is no geometric construction for the 3D
case of seven frictionless point contacts like the 2D case of four frictionless point

contacts.

The number of combinations is exponential in the required number of contacts c.
This term makes the construction of independent regions of contact more expensive
for frictionless grasps (¢ = 7) than for grasps with friction (¢ = 2 or 3). Computing
the intersection and convex addition of the convexes also makes the construction
harder.

If there are redundant fingers or faces, then we need to enumerate all possible
minimal combinations of the fingers, or of the faces. Then for each minimal com-
bination, we compute the independent regions of contact. Similar to the 2D case,
the order of complexity is O(max(n,m)¢ 2¢) time. 3

The construction of the independent contact regions is transformed into the
problem of finding disjoint convexes satisfying necessary conditions like (2.20). This
transformation depends on the convexity property and on the correspondence be-
tween vectors in the convex and points of contact on the object. So any affine
combination of two point contacts P; and P, inside a contact region must be a
point contact P inside the same region:

a[sl]+(1—a)[szJ:[s} 0<a<l (2.21)

S10 S20 So

A frictionless point contact is represented by a pure force going through the
point of contact and normal to the surface. A pure force is a line vector, so the dot
product of the upper and lower parts of the spatial vector must be zero:

§;:810 O
= € S8y 0 (222)
§-8p 0
Eliminating s and sg, we get:
Sy S0 + 81082 = 0 (223)

SWe assume here that the intersection of two convexes 1s done in constant time.



Constructing Force-Closure Grasps 49

The equation expresses the condition that the two lines of force at points P, and
P, must intersect or be parallel. Extrapolating this condition to other points of the
contact region, the convexity property and the correspondence between vectors and
contact points imply that the region of contact must: (1) be either flat or spherical,
and (2) have a convex boundary. This explains why the construction of the contact
regions is so simple for polyhedral objects. This also suggests that grasps on curved
regions with constant center of curvature can be synthesized in the same way as
grasps on planar faces. *

4Friction may help in relaxing the condition that the center of curvature must be constant, for
grasps on curved objects.
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2.5 Conclusion

2.5.1 Main Results

The main results of this chapter are:

¢ The algorithms for constructing force closure grasps on polygons and poly-
hedra are direct, fast and simple. We find not only single grasps but the
complete set of all force-closure grasps on a set of edges (resp. faces) in 2D
(resp. 3D). We can also construct the independent regions of contact for the
fingers. The construction is exponential in the minimum number of required
fingers, and polynomial in the number of total fingers.

¢ We prove that non-marginal equilibrium grasps are also force-closure grasps if
each grasp has at least two points contacts with friction in 2D, two soft-finger
contacts or three hard-finger contacts in 3D. This proof supports a very simple
heuristic for grasping objects: “Increase friction at the contact by covering the
fingertips with soft rubber. Then grasp the object on two opposite sides.”

¢ A grasp is described as the combination of individual contacts, which in turn
are modeled as the combination of a few primitive contacts. In 2D, the prim-
itive contacts are point contacts without and with friction. In 3D, they are
frictionless point contacts, hard-finger and soft-finger contacts. A contact over
a finite segment or surface has a very compact representation if its contact
normal is constant. This explains why the synthesis of force-closure grasps is
very simple for polygonal and polyhedral objects.

e Wrench convexes and twist convexes describe the constraints and freedoms
of contacts and grasps. There are two dual view points: a constraint view
point which captures the forces and moments exerted on the object, and a
freedom view point which describes the motions of the object which are free
or which break contact. The effect of the individual contacts are combined by
taking the convex sum of the wrench convexes or the intersection of the twist
convexes.

e A grasp is more likely to be force closure if there is friction, if the contacts
are soft instead of hard, and especially if the soft fingers grasp the object at
sharp vertices or edges.

2.5.2 Extensions

We have not explored the synthesis of independent regions of contact for the fol-
lowing types of grasps:

¢ 2D grasps with three point contacts with friction, where the three friction
cones span all directions, but no two friction cones have counter-overlapping
sectors.
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e 3D grasps with three to six hard-finger contacts, where no two friction cones
have counter-overlapping cones of direction.

These are minimal cases which arise when the coefficient of friction is small, or when
the grasping edges or faces have almost the same normal.

For curved objects, the contact normal varies with the position of the point
of contact, and so both force-direction closure and torque closure are position-
dependent. The synthesis of independent regions of contact on curved objects be-
comes much harder. One obvious fix is to segment the boundary of the object into
regions with low and high curvatures. Low curvature regions are approximated by
straight edges (resp. planar faces) in 2D (resp. 3D), and high curvature regions by
circular arcs (resp. ellipsoid surfaces) in 2D (resp. 3D). Grasps on low curvature
regions are easily found. But, how about grasps on high curvature regions? How
about grasps on both high and low curvature regions? How about grasps that have
regions overlapping high and low curvature regions? The obvious fix very quickly
becomes a nuisance, because the segmentation is not compatible with the force-
closure constraint. We think the force-closure problem for curved objects needs
more research, both for theoretical and practical purposes.

There is however a good heuristic, which captures the grasps on curved regions
that are either convex or concave. We know that equilibrium grasps are also force-
closure grasps if the 2D grasps has point contacts with friction, or the 3D grasps
has soft-finger contacts. So, grasps at two curved regions which are back-to-back
(Figure 4.7) or face-to-face are force-closure. The force-closure constraint becomes
a constraint on the relative orientation of the curved regions.



Chapter 3

Constructing Stable Grasps

3.1 How Should the Fingers Be Servoed?

Chapter 2 answers the question: Where should the fingertips be placed? The
fingers grasp the object at points inside the independent regions of contact, for
which the grasp is always force closure. Force closure guarantees that arbitrary
force and moment can be exerted on the object by pushing through the set of
contacts. But, how much force should the fingers exert so as to have the grasped
object in equilibrium? Then, how should the fingers resist the displacements of the
object, such that this later is stable, and furthermore has a desired stiffness matrix?

Equilibrium is equivalent to having the sum of all contact forces equal to zero.
Stability is equivalent to having a stiffness matrix on the grasped object. The
stiffness at the grasped object comes from the active stiffness control of the fingers,
or from the stiffness of the tendons and of the rubber at the fingertips.

We assume that the fingers are controlled independently from each other. We
also assume that the linear and angular springs which model a fingertip are also
independent of one another. The net effect of all the virtual springs is described
by the potential function of the grasp, which is the the sum of the potentials from
all the springs. The forward problem is to derive from the potential function of the
grasp: 1) the analytical conditions for which the grasp is in stable equilibrium, and
2) the stiffness matrix and the center of compliance of the grasped object about its
stable equilibrium. The reverse problem is to find the virtual springs at the fingers
such that the grasp is stable and has a desired stiffness matrix. The link between
this chapter and the previous one is:

“All force-closure grasps can be made stable.”

Stable grasps are analyzed and synthesized in both 2D and 3D. Grasped objects
are arbitrary polygons in 2D, and arbitrary polyhedra in 3D. Curved objects and
the effect of local curvature on the stability of the grasp will be explored in the next
chapter. Figure 3.1 shows examples of stable grasps in 2D and 3D. The springs
shown are controlled independently from each other.

52
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Figure 3.1: Examples of stable grasps in 2D and 3D.
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3.2 Stable Grasps in 2D

3.2.1 Planar Grasps with Linear Springs
Potential Function of the Grasp

Figure 3.2 shows a finger F; contacting without friction at point P;. The softness of
the fingertip, the stiffness of the tendons attached to the finger, and/or the active
control of the finger joints are all modeled by a virtual spring with linear stiffness
k;. The linear spring k; has fixed line of action, with direction normal to edge e;,
k; = (cos a;,sine;)T, and moment ! yu; = p; x k;, about the origin O.

When the object is displaced by (z,y,8), the edge e; is translated by (z,y) and
rotated by 6 about the origin. The tip of spring k, slides on edge e; to its new
position P’ given by the intersection of the displaced edge ¢! and the line of action
of spring k;. The compression of linear spring k; when the grasped object is moved
away by (z,y,0) from its equilibrium is P, P,

di (1 ~cosb) + p;sinf + zcos(a; +8) + ysin (a; + 0)
cos @

oi({z,y,0) = o0;,, +
(3.1)
d; = p; - k; is the algebraic distance from O to edge e;.

The potential function of grasp G is equal to the sum of the potentials of all its
springs:

i 1
U .’C ya Z 5 ) SC yso) (32)

The potential function of the grasped object is the sum of the potentials from the
grasp and from the weight of the object (Hanafusa and Asada 1977, Asada 1979).
For now, we look only at the effect of the grasping fingers on the equilibrium and
stability of the object. We assume that the weight of the grasped object is negligible,
-or is perpendicular to the grasping plane of the object.

We assume that the potential energy of the grasp is conserved. We’ll look only
at grasps where the points of contact either slide without friction, or stick at the
same points. There is no dissipation of the potential energy. The next chapter will
look at dissipation of the potential energy of the grasp, due to slip at the fingertips
in the presence of friction.

Grasp Equilibrium

The grasp G is in equilibrium if and only if the sum of all forces and moments in
the grasping plane of G is zero. This is equivalent to the first partial derivatives of
the potential function U(z,y, ) being all zero:

!The cross product of two 2-dimensional vector is a scalar, which is the product of the two vector
magnitudes and the sin of the angle between the two vectors.
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Figure 3.2: A frictionless fingertip modeled as a linear spring.

Theorem 3.1 A grasp G composed of n virtual springs 1s in equilibrium if and only

if:
aa_g!(o'o’o) = Y kio,cosa; = 0
3_5’(0,0’0) = Y kioi,sineg = 0 (3.3)
%%](0'0,0) = it kioio =0

where the spring constants k;, and the compressions o;, are all positive.

In the above columns, we recognize the spatial vectors lAc.~ = (cos ¢y, sin oy, i) T
describing the lines of action of the linear springs k;, or as the unit wrenches de-
scribing the frictionless point contacts P;. The above system of equations can be
rewritten in a force-closure form:

Z fio ]A{:‘ = éa fio >0 (34)
=1

where f;, = k;0.,. Force equilibrium exists if and only if there exists a set of positive
contact forces 2 (fy,,..., fn,) such that equation (3.4) holds, or if the grasp is force-
closure. The force-closure condition is sufficient but not necessary for the existence
of force equilibrium. For example, a grasp on two parallel edges can have force

2The contact force is positive (resp. negative) if the finger is pushing into (resp. pulling out of)
the object.
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equilibrium with two opposite wrenches instead of the minimum of four wrenches
required for planar force-closure.

Corollary 3.1 If grasp G is force-closure, then we can always find a set of positive
contact forces at the points of contact, such that G is in equilibrium.

Grasp Stability

The grasp G is stable if and only if the potential function U(z,y,8) of G reaches
a local minimum. We can write the Taylor expansion of the potential function
U(z,y,0) about the equilibrium as follows:

Ul(z,y,9) Z

1
at'zo + X VU]OOO + EXT HI(O,O,O)X + ... (35)

NI»—!

where x = (z,y,6)7, and H| 0,0,0) is the Hessian matrix of the potential function
at the equilibrium grasp conﬁguratlon A multivariable function reaches a local
minimum if 1) the first partial derivatives are all zero, and 2) the Hessian matrix
of the second partial derivatives is positive definite. So:

Theorem 3.2 A grasp G composed of n virtual springs is in stable equilibrium if
both of the following hold:

* The gradient V U|, ) ts zero.

e The Hessian matriz H| (0,0,0) of the potential function U(z,y,0) is positive
definite.

38U 3%U B3

dz2 B8zd8y 08284

— 3 2°U 3 _

Ho = dydz Oy? 0yl at (z,y,8) = (0,0,0)
33U 3 3w

369z 368y 862
5o (3.6)
3 k;cos? oy Y kisina;cos o 3 kipicos o
= S kisina;cosa; Y k;sin® oy > k;u; sin oy

3 kipi cos oy 3 kipisin oy Tkl + T fiods
U(z,y,0) is the potential function of grasp G, where (z,y,8) is the displacement of

the object from its equilibrium configuration.

3.2.2 Compliance about Stable Equilibrium

The restoring wrench W applied on the grasped object is equal to the negative of the
gradient of U(z,y,0). Assuming that the disturbances of the grasped object from
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its stable equilibrium are small, we deduce from the Taylor expansion of U(z, y, 6)
that:
W = —VU(z,y,0)
= -V U!(o,o,o) - H‘(o,o,o) X
(3.7)

~ - H‘(o,o,o) d,

The compliance behavior of the grasped object about its stable equilibrium is de-
scribed by a stiffness matrix which is equal to the Hessian matrix.

The above approximation is good for displacements in orientation 6, less than
10 degrees, and for linear displacements (d;,dy) in the zy-plane less than one tenth
of the size of the grasped object. The size of the object is defined as the diameter
9f the minimum circle that contains the object inside it. The twist displacement

t is written as t = (62,d.,d,)T instead of t = (6,z,y)T to remind us of the small
displacement assumption.

The stiffness matrix of the grasp is more sensitive to errors in orientation than
location. The reason is that the stiffness normal to the edge of contact varies
drastically as we rotate the object close to 90 degrees. We might no longer have
restoring wrench in the correct direction, and the grasp might no longer be force-
closure. If there is no error in orientation, then the restoring force opposite to
a linear displacement always exists regardless of the amount of displacement. The
restoring force is nothing more than the non-null sum of the contact forces generated
by the springs.

Stiffness Matrix of the Grasp

The stiffness matrix K of the grasp is equal to the Hessian matrix Hy about the
stable equilibrium of the grasped object. The stiffness matrix K can be written as
a sum of two matrices:

K=K5+Kp

Ks = S§KST
C, --- C, ky C, S u;
= S - Sn) Do (3.8)
M1 - fn k., C. S, un
000
Kp = Y koi,d;} 000
001

The first matrix Kg is a product of three matrices SKST. S is an 3 X n
rectangular matrix, whose columns are the spatial vectors of the linear springs.
The matrix S is called the spatial configuration matriz of the linear springs. K is
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an n x n diagonal matrix with positive stiffnesses of the springs on its diagonal.
The product SKST is positive definite if and only if S has full row, or equivalently,
there are three linear springs with independent spatial vectors.

The second matrix Kp depends on the positions of the points of contact, and
on the contact forces. Kp affects only the angular stiffness of the grasp. If the
contact forces are small, or more concisely, if the compressions 0;, are small relative
to the size of the object, then I k;0,,d; is small compared to 3 k;p?. The stiffness
matrix K of the grasp is approximatively equal to K, which comes from the spatial
configuration of the linear springs acting on the grasped object.

A force closure grasp implies that the set of contact wrenches spans the whole
wrench space. If each contact wrench is generated by a linear spring, then the set
of linear springs has spatial vectors that span the whole vector space. The spatial
configuration matrix of the linear springs S has full row, and K is positive definite.
The compressions o;, can be chosen small compared to the size of the grasped object.
The stiffness matrix K of the grasp is approximatively equal to K, and is therefore
positive definite. In other words, a force-closure grasp implies a stable grasp exists.

Corollary 8.2 If grasp G is force closure, then we can always synthesize a set of
linear springs at the points of contact, such that G is in stable equibrium.

The stiffness matrix K is symmetric, and so has three perpendicular eigenvec-
tors. If the stiffness matrix K is positive definite, then it has three strictly positive
eigenvalues. The grasped object has three equivalent springs with spatial vectors
equal to the eigenvectors, and stiffness constants equal to the eigenvalues.

The center of compliance of a planar grasp is the point about which a pure
rotation of the object is resisted by a pure torque. More precisely, the center of
compliance is the reference point, about which the stiffness matrix K is diagonalized
into two blocks:

K = H((o,o,o)
3 ki cos? o S kisina;cosa; 0 (3.9)
= Skisina;cosoy Y k;sin® o 0
0 0 2 ki (N? + 0.0d;)

Note that the angular displacement is decoupled from the two linear displace-
ments of the object. The grasped object behaves as though there are three inde-
pendent springs attached to it. Figure 3.3.

e Two linear springs with respective stiffness k,, k;, along two perpendicular
axes in the grasping plane of the object. The stiffnesses and directions of
these two linear springs are respectively the eigenvalues and the eigenvectors
of the following 2 x 2 symmetric matrix:

S k;cos? a; 3 k; sin a; cos a;
K., = ( (3.10)

Skisina;cosa; Y k;sin® oy
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Figure 3.3: Compliance of the grasped object about its stable equilibrium.

® An angular spring with stiffness k,, and axis perpendicular to the grasping
plane and going through the center of compliance O of the object.

n

ke = > ki (ﬂ? + aiodi) (3.11)

i=1

The matrix K, is nothing more than the sum of the linear stiffness matrices of
the individual springs expressed in the global frame of the hand:

K, =

k C; S
C, -+ Cy . o
S -+ S, K Co

k, C, S,
2z, Rot (o) ( I(;" g ) Rot (—a;)

where Rot(q;) is the rotation from the base reference frame to the local frame at
the fingertip.

The angular effects of these linear springs add up into the first sum of the angular
stiffness kq:

n n
ko = 3 kiw? + Y fid;
i=1 =1
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This angular effect depends on the moments of the lines of action of the springs
about the center of rotation O.

The second sum comes from Kp. This sum comes from the second order varia-
tion of the compressions as the object rotates, 320, /36%. A more general expression
of the position-dependent stiffness matrix Kp is:

n 00O
Kp = = Z f,‘o (p,' k,) 000 (3.12)
=1 001

The sign is + (resp. —) if the fingers slide (resp. stick) on the grasping edges. The
reader is referred to Appendix A.3 for a similar derivation of the stiffness matrix,
when the fingers stick on the grasping edges. The assumption is that the energy
stored in the grasp is conserved. So, if there is friction, then the contact points
must not move, so that there is no loss of potential energy. The next chapter will
present a qualitative analysis of grasp stability when there is slip with friction.

Compliance Center of the Grasp

The stiffness matrix K is diagonalizable with independent linear and angular springs
if and only if:

> wikiki = 37 |wiki| (sign (u)k) = 0 (3.13)
i=1 i=1
When can we find a set of positive spring constants (ky,...,k,) such that the

above equation holds? The equation looks very much like the force-closure condition
in the plane, except that we deal with only force directions. It can always be satisfied
if the vectors {sign (u;) k,} span the space of all directions in the plane. The sign
of the moment yu; depends on the position of the compliance center with respect
to the line of action of the virtual springs. This means that the compliance center
must be inside some polygon delimited by the lines of action of the virtual springs.
This polygon is called the compliance polygon of the grasp. Figure 3.4 shows the
compliance polygon Q¢ within which the compliance center of grasp G must be.
Note that the compliance polygon can cover the whole plane if there are more than
four linear springs.

We now prove that if the grasp is force-closure then the compliance polygon
always exists, and so equation (3.13) can be satisfied. Note that if grasp G is
force-closure then the two cones generated by (—k:, —k2) and (—ks, —k4) counter-
overlap in a non-zero convex polygon C¢, Figure 3.5. If we pick the compliance
center O inside this convex polygon, then the springs k, and ks, resp. kp and ks,
have negative, resp. positive, moments about O. One can check that there exists a
positive linear combination of —ky,kj, —ks, k4 such that one walks counter-clock-
wise along the boundary of the convex polygon bounded by the lines of action of
the springs. Equation (3.13) holds, and so the compliance polygon is always non
null for force-closure grasps.
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Figure 3.4: Compliance polygon of a grasp.
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Figure 3.5: Compliance polygon always exists for force-closure grasps.
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Corollary 3.3 If grasp G is force-closure then:

e The compliance polygon of grasp G, denoted Q¢, is non empty. The compli-
ance polygon ¢ has boundary supports the lines of action of the springs.

o The conver polygon Cg bounded by the lines of action of the springs is included
tn the compliance polygon Qg.

o If we pick the compliance center O of grasp G within the polygon Q¢, then
there always ezists a set of spring constants ky, ..., k, such that the stiffness
matriz of grasp G is diagonalizable into linear and angular stiffness blocks.

We prefer to pick the compliance center within the convex polygon Cg so that the
spring constants are more or less equal. Within this polygon, the desired location
of the compliance center O in the global frame depends on the task at hand. For
example, to insert a peg into a hole, we ideally want to put the center of compliance
at the mouth of the hole (Whitney 1982). Note that force-closure with frictionless
contacts requires putting fingers on all four sides of the peg, which is infeasible!
Luckily we can have force-closure with two point contacts with friction, and so we
can grasp at the top of the peg and at the same time have a compliance center at the
mouth of the hole, Figure 3.7. We achieve the same effect as the RCC gripper. But,
with an active compliance hand, we have more flexibility in choosing the compliance
center and the stiffness matrix of the grasp. We can achieve both a stable grasp
and a desired compliant behavior of the grasped object during assembly.

Outside-in /Inside-out Grasps

To have restoring couples in the correct direction, the angular stiffness ks of grasp
G must be strictly positive:

ke = X, kip? £ T8, fid

The sign is + (resp. —) if the fingers slide (resp. stick) on the grasping edges.
The first sum in the above expression depends on the placement of the compliance
center inside the compliance polygon Q. This sum is positive and increases as the
compliance center moves to the boundary of 1. The second sum is invariant with
the location of the compliance center. It depends only on the contact forces and
the relative configuration of the contacting edges.

How can we have positive angular stiffness k4? First, if the distances d; are all
strictly positive, then the angular stiffness k; is also strictly positive. The line of
support of an edge e; divides the plane into two half-planes: interior or exterior
respectively if the distance d; = p-n; is negative or positive. This observation leads
to a classification of grasp configurations into three categories defined as follows:

® A grasp G is called an outside-in grasp if and only if the interior half planes
of the contacting edges of G intersect.

* A grasp G is called an inside-out grasp if and only if the exterior half planes
of the contacting edges of G intersect.
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Figure 3.6: Outside-in / inside-out / mixed grasps.

¢ A grasp G is called a mized grasp if and only if neither the interior half planes
nor the exterior half planes intersect.

Grasps on the boundary of convex objects are examples of outside-in grasps.
Grasps on the boundary of convex holes are examples of inside-out grasps. If a
grasp G has exactly the minimum number of contacts required for force-closure,
then grasp G is either outside-in or inside-out grasp. Mixed grasps come up only
when there are more contacts than the minimum of two for point contacts with
friction, and four for point contacts without friction, Figure 3.6.

From the expression of the angular stiffness k¢, we see that it is always strictly
positive for outside-in grasps. We can prove this by noting that the second sum
is invariant to the position of the origin, so we can pick the origin to be in the
intersection of the closed half planes, and have all the distances d; positive. Baker,
Fortune, and Grosse (1985) showed that outside-in grasps are stable if the springs
contact at places where the inscribed circle is tangent to the grasping edges. No
search is needed, the grasps are found in O(nlog n) time by computing the Voronoi
diagram of the polygonal object (Shamos 1978).

The angular stiffness ky, may be negative for inside-out, and mixed grasps. Fig-
ure 3.6 shows two frictionless grasps on a same triangular ring. One would suspect
that the two grasps on the triangular ring have the same behavior. But surprisingly,
one finds that the outside-in grasp is stable, while the inside-out grasp is unstable
relative to rotations.
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Luckily, with force-closure grasps, we have another positive term in the ex-
pression of k¢, which depends on the moments of the springs about the center of
compliance. By scaling up the set of spring constants while keeping constant the
set of contact forces, we can make the first sum greater than the second sum, and
have ky strictly positive. This is possible only if the moments u, are not all zero,
which means that the lines of action of the virtual springs do not all pass through
the compliance center. A sufficient condition is again the force-closure condition.

Corollary 3.4 A frictionless grasp G can be made stable relative to rotations if
either of the following is true:

e Grasp G 1s an outside-in grasp.

o Grasp G 1s force closure.

In conclusion, for the same set of grasp points, outside-in grasps are more stable
for rotations than inside-out grasps, if there is no friction between the fingers and
the object. The reverse holds if there is friction at the points of contact.

3.2.3 Finding Virtual Springs at the Fingertips
Synthesize a Compliant Grasp

We can not only make a force closure grasp stable, but also synthesize a compliance
center for the grasp:

Corollary 3.5 Let G be a planar grasp with n fingers, each is a linear spring with
arbitrary finite stiffness k; and compression o,,. If grasp G is force-closure then we
can always synthesize a set of n linear springs such that grasp G s stable and has
a compliance center O inside the compliance polygon Q.

The compliance center O must be inside the compliance polygon ¢, defined
by the lines of action of the linear springs, or the normals and points of contact in
a frictionless grasp. So, without friction, a choice of a compliance center implies a
choice of the placement of the points of contact. Pin and hole insertion cannot be
done without friction, because the four points of contact must be on all four sides
of the pin.

For point contacts with friction, Figure 3.7 shows an interesting comparison
between compliant fingertips that have passive and active stiffness. Examples of
passive stiffness are real physical springs, like fingertips covered with rubber, or the
Remote Center Compliance. With two fingers covered with rubber, the compliance
center is not only fixed, but can only be inside a compliance rectangle with two
diagonal corners at the two points of contact. The rectangle comes from the normal
and tangential springs which model the rubber at the points of contact. The Remote
Center of Compliance is a wrist built with fixed passive springs. The springs are
designed such that the center of compliance is at the tip of the pin.
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Figure 3.7: Pin and hole insertion with passive and active stiffness.

Active stiffness comes from stiffness control at the fingertips or at the joints. If
the fingers have active compliance, then the virtual springs at the fingertips can be
oriented such that the compliance polygon overlaps the desired compliance center.
So, with friction, a choice of a compliance center implies a choice of the orientation
of the virtual springs at the given points of contact.

Algorithm 3.1 Let G be a force-closure grasp with a desired compliance center O
inside the compliance polygon (g, defined by the lines of action of the n virtual
springs. The n virtual springs at the points of contact can be synthesized so that G
ts stable as follows:

1. Find a set of contact forces (fros-+ s fro) such that force equilibrium is
achieved. This is equivalent to solving a system of siz equations with n un-
knowns.

2. From the desired compliance center O, find a set of positive spring constants
(k1y...,kn) such that:

n
z uikiki = 0
=1
where k; and p; are respectively the direction and moment of the virtual spring

k; about the compliance center O. This is solving a system of two equations
in n unknowns.
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3. Check that the angular stiffness kg of grasp G is strictly positive:

n

ke = Z k; (#,2 + aiodi)

1=1

If not scale up the set of spring constants (ky,...,k,) and reduce the set of
compressions (01,, . .. ,0n,), keeping the set of contact forces (fio,. .., fno) un-
changed, until ky is greater than zero.

4. Find the virtual compressions at equilibrium:
1
Oip = ;C: fio

5. Output the set of spring constants (ki,...,k,), and the respective set of com-
presstons (01,,...,0p,) such that each finger F; behaves as a virtual spring as

follows:
f = fz'n _ ki 0 Oso — O
L fit - 0 0 0 - T

where f; is the force applied by the fingertip F; on the grasped object, and
(0:,7:)T is the displacement of the finger normal and tangential to the ith
contacting edge.

Using Gauss row elimination, a system of m equations in n unknowns can be
solved in (min(n,m) x n X m time. So, steps 1 and 2 can be solved in O(n) time,
where n is the number of linear springs. The other steps cost O(n) time each.

Complexity 3.1 A force-closure grasp G with a desired compliance center O tnside
the compliance polygon Qg can be made stable in O (n) time.

The four virtual springs of a 2D grasp are typically computed in about 0.2
seconds on a Symbolics machine.

Controlling a Compliant Grasp

Figure 3.8 shows the relationships between force and instantaneous displacement at
three different levels:

* At the grasped object, we want to choose a compliance center and a stiffness
matrix for grasp G such that the grasped object is stable and have restoring
wrenches as follows:

.7 = K(:dx

¢ From the desired compliance at the grasped object, we would like to deduce
the corresponding set of spring constants and compressions at the fingertips:

F = Krdr
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Figure 3.8: Linked chains and their loop equations.

e From the virtual springs at the fingertips, we then would like to derive the
stiffness at all of its joints:
T = K;dé

We can go further and derive the gains in the control loop of each joint, such
that the above joint compliance is enforced. Or we can assume that each joint
has a stiffness control loop with programmable stiffness.

From the kinematics of the grasp, the external and internal forces applied at the
grasped object relate with the fingertip forces by the grasp matrix G-7 (Salisbury
1980, Salisbury and Craig 1981, Salisbury 1982). Similarly, from the kinematics
of the linked fingers, the force and velocity at each fingertip relate with its corre-
sponding joint torques and velocities by the Jacobian matrices J~T and J. We get
loops from which we can derive easily the stiffness matrix of one level in terms of
the stiffness matrix of another level. For example, given the desired compliance K¢
at the grasped object, we deduce:

Kr = GTK; G

3.14
K; =JTGTK;GJ (3.14)

The mapping between the object forces and fingertip forces can be done as a
matrix multiplication, as a solution to a system of equations, or as a vector decom-
position along independent vectors (Hollerbach and Narasimhan 1986). Similarly,
for the mapping between the fingertip forces and the joint torques.
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The execution of frictionless grasps is greatly simplified and a lot less sensitive
to errors, because of the existence of stable configurations. Knowing that a stable
grasp exists on a set of edges, we can just grasp near the desired stable grasp points
with the computed virtual springs, and let the fingers adjust themselves on these
edges until they end up on the planned grasp points. Each finger can be servoed
independently, and so the execution of a grasp is fast. Any oscillation will hopefully
be damped by the mechanical damping in the fingers and some nominal damping
in the joint control loops.

The planning and execution of assembly operations is also greatly simplified
and a lot less sensitive to errors, because we can choose the center of compliance
and the stiffness matrix. Instead of planning for explicit force and trajectory, we
plan for a compliant behavior of the parts respective to each other. For example,
to do peg and hole insertion, we need to stably grasp the peg, put the compliance
center at the mouth of the hole, and push the peg into the hole. The values of the
virtual springs can be automatically computed from the shape of the peg and hole.
A dextrous hand with active compliance is therefore more flexible than the RCC
gripper, (Whitney 1982).

Comparison with Grip Matrix

The grip matrix G=T is an n x n matrix which relates the n external and internal
forces applied at the grasped object to the n fingertip forces. Kg is an n x n
generalized stiffness matrix at the grasped object which has the 6 linear and angular
stiffnesses plus n — 6 internal stiffnesses. Ky is an n x n matrix which describes the
springs at the fingertips, expressed in frames local to the points of contact. From
the conservation of equivalent work at the object and at the fingertips, Salisbury
and Craig deduced:

Ke = GT Kr G! (3.15)

The grip matrix G=T has a 6 x n block which is nothing more than the configu-
ration matrix S. Note that S relates only the 6 external forces and moments at the
grasped object to the n fingertip forces at the n springs. G~7 and S both capture
the spatial configuration of the finger tip springs. The 6 x 6 stiffness matrix at the
grasped object K, is a block of the generalized stiffness matrix K;. The stiffness
matrix K describes only the 6 linear and angular stiffnesses of the grasped object.
We have shown that the stiffness matrix K of the grasped object is the sum of two
matrices Ks and Kp:

K = Ks + Kp

Ks = SKST

K = Kpr if the local frames at the points of contact are oriented with the linear
springs at the fingertips. So the grip matrix G~T and the configuration matrix S
both are only a first order approximation of the linkages between the grasped object
and the fingertips. S is first order because its columns are spatial vectors k; which
come from Vo,.

(3.16)
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The second order approximation of the linkages between the grasped object and
fingertips shows up as a position-dependent stiffness matrix Kp, which comes from
the terms 9%c;/36%. Our derivation of the stiffness matrix, Equations (3.8) and
(3.12) is more accurate. The stiffnesses at the grasped object and at the fingertips
are related not only by the conservation of total energy in the system, but also
by the geometry about the grasp points. The geometry here is the point contacts
which either stick or slide without friction on straight edges.
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3.3 Stable Grasps in 3D

The 3D contacts between the fingertips and the grasped object are modeled as
frictionless point contacts, hard-finger contacts, or soft-finger contacts with friction.
Each contact is modeled as a virtual spring, which in turn is a set of independent
linear and angular springs. The stiffness of the grasp comes from the combination
of all these independent springs.

A frictionless point contact has one linear spring, having direction the normal
to the surface of contact, and going through the point of contact. A hard-finger
contact has three linear springs, all going through the point of contact, and oriented
along the normal and the two tangential directions of the surface of contact. A soft-
finger contact has in addition an angular spring, with axis going through the point
of contact, and oriented along the normal of the surface of contact.

The framework of stable grasps with independent linear springs in 2D generalizes
to 3D. To a first order approximation, linear and angular springs can be described by
their stiffness constants and spatial vectors. The spatial vector of a spring describes
the line of action of the wrench exerted by this spring on the object. It is a line
vector for a linear spring, and a free vector for an angular spring.

I will first derive the change in compression at the linear and angular springs,
when the object is moved away from its equilibrium. The potential function of the
grasp is the sum of the potential functions at all the linear and angular springs.
From the potential function of the grasp, I deduce the conditions for equilibrium
and stability, and the compliant behavior of the grasped object. In the 2D analysis,
I have assumed that the fingers slip without friction on the object. For variety, the
3D analysis assumes that the fingers stick at their points of contact. As before,
we’ll see that the two cases, with the fingers sticking or slipping without friction,
differ only by a sign in the position-dependent stiffness matrix Kp.

3.3.1 Ideal Independent Springs
Linear Spring Model

A linear spring k; is characterized by its stiffness constant k;, its direction k; oriented
with the normal of the surface of contact, and its tips P;. Figure 3.9. As the grasped
object is displaced by an infinitesimal twist £ = (6T,dT)T, the point of contact P,
is moved to its new location P, given by:

p;" = ROt(éz,éy’éz) P: + d (317)

The rotation Rot(é.,6,,6,) cannot be described as a Roll-Pitch-Yaw rotation ma-
trix, because Roll-Pitch-Yaw matrices have different high order terms with different
orderings of the three rotations: Roll(z,é,), Pitch(y,$,), and Yaw(z,5,). To get a
rotation matrix that is order-independent, I compute the equivalent angle and axis
of rotation, and from these, deduce the rotation matrix (Paul 1981). The equivalent
angle of rotation is the magnitude of the rotation vector §. The equivalent axis of
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Figure 3.9: Models for linear and angular springs in 3D.
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rotation is the normalized vector from 6. The angular stiffness matrix of the grasp

has second order partial derivatives in the angles 6,, 0y, 6,. So, the rotation matrix
must be at least expanded to second order terms. Assuming infinitesimal rotations,
the Taylor expansion up to second order terms of the rotation matrix is:

100 0 -6 &,
Rot(6,,6,6.) ~ |o010]| + | 6 o0 s,
001 -8 & 0
1 - (6;12 + 622) 2626:/ 5251 (318)
+1 5.8, ~— (6 +62) 6,6,
5,6, 8,6, — (62462

~ I + [6x] + 3((667) - (6-6)1)

The matrix of first order terms is an anti-symmetric matrix [6 x], describing the
cross-product with the rotation vector §. The matrix of second order terms can
be written as a difference of two matrices. The first matrix is the dyadic product,
or outer product, of the rotation vector § with itself, (66T). The dyadic product
3 of two vectors is the matrix obtained from multiplying the first vector with the
transpose of the second vector. The second matrix is a diagonal matrix with the
dot-product of the rotation vector with itself, (6 - 6), on the diagonal.

A linear spring k; exerts a pure force on the object, if and only if its tip P, is
displaced along the direction k;. Displacements perpendicular to k;, and rotations
about point P; have no effect on the spring k;. So the effective compression o; at a
linear spring k; due to a twist t = (67,d7)T of the object is:

o = 0, + ki - (p! - pi)

~ oo + ki (6xp) + ki -d + Fk - [(667) - (6:8)1] p;

ki ].[6
P: X k,‘ d
Piz

+ 3 ke kiy ki | ((687) ~ (5-6)1) | py
Pz

(3.19)

The first order term is the spatial dot product of the line vector k;, representing
the line of action of spring k;, and the twist displacement t of the object. So, to a
first order approximation, the spatial vector k; = (k7, (p; x k;)T)7T describes the
configuration of the linear spring k;. The second order term depends on the position
of the finger tip P;, which by assumption, does not slip during the rotation. We’ll

SThe dyadic product is different from its dot-product analogue, whose result is a scalar, not a
matrix. The dot-product of two vectors is the matrix multiplication of the transpose of the first
vector with the second vector.
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see that this term leads to a position-dependent term in the angular stiffness matrix
of the grasp.

The linear spring k; resists a twist displacement of the object with a pure force
along the line of action of the spring, or with a wrench along the spatial vector k;:

W, = —kio ki (3.20)

We’ll see next that angular springs are described by free vectors, and they obey the
same framework as linear springs.

Lemma 3.1 To a first order approzimation, a linear spring 1s represented by its
stiffness k; and its spatial vector k;. The spatial vector k; describes the line of force

of the linear spring:
. k;
k, = [ p: x k J (3.21)

P: 1s the position of the point of contact, and k; is the direction of the linear spring.

Angular Spring Model

A soft-finger contact can also resist rotations of the object about the axis passing
through the point of contact, and oriented with the normal at the surface of contact.
This resistance to rotations is captured with an angular spring having stiffness k;,
axis direction k;, and point of contact P;. The axis direction k; is oriented with the
normal to the surface of contact.

Let twist t = (67,d7)T be the small displacement of the object computed
relative to a fixed origin O. When computed relative to the point of contact P;, a
twist has the same angular part, but a different linear part:

-~

=t

!p,- o T [(po - 1()1) X 5} (3.22)

- [d- (f)ixii)}

So the twist seen at the point of contact P; has rotation vector 6 and translation
vector d — (p; x §).

The translation of the point of contact P. has no effect on the angular spring,
which counteracts only rotations along direction k;. The effective rotation seen
by the angular spring k; is the dot product of the rotation vector & and the axis
direction k;:

g; = k,‘ - 6
_ 0 d — (p: x é)
(][] 329
= ];,': 'E
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where k; = (07,kT)T is a free vector representing the angular spring k;.

The resisting effect will be a pure torque with direction along the axis of the
angular spring, or a wrench along the free vector k;:

~

Wi = —k,' oy k,’ (324)

Lemma 3.2 To a first order approrimation, an angular spring is represented by its
stiffness k; and its spatial vector k The spatial vector k describes the direction of
torque of the angular spring:

ki = [ki] (3.25)

k; 1s the direction of the angular spring.

In a real finger, the stiffness of the angular spring varies as a function of the
normal pressure at the finger contact. But for sake of simplicity, the angular stiffness
is assumed constant. I also assume there is no slipping at the point of contact, and -
there is no coupling between the linear and angular springs. However, we’ll see
that nothing much is lost because of the simplifying assumptions. On the contrary,
we obtain a simple and general framework that provides both a qualitative and a
quantitative explanation to why and when grasps are stable.

3.3.2 [Equilibrium and Stability Conditions
Potential Function of the Grasp

The potential function of the grasp is the sum of the potential functions from all
the n linear and angular springs:

U =23t tko
k] (1 (326)
) % [0’1 .o on} . M

k, Op

The Taylor expansion of the potential function U of the grasp about its equilib-
rium configuration can be written in a matrix form as follows:

U~ $&y kol + xTVU|,o + $xT H| g x (3.27)

where x = t5 is the 6 x 1 spatial transpose of the displacement twist t. H is the
Hessian matrix of second order partial derivatives.
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Equilibrium and Force-Closure

A grasp is in equilibrium, if and only if the gradient of its potential function U is
zero. From equations (3.19) and (3.26), the equilibrium condition can be written in
a matrix form as follows:

~

VUi =St kio, ki = 0

kl 010 (3.28)

- [kl 1}"]

k. Ono

The first matrix is the configuration matrix S of the linear and angular springs. We
recognize the negative of the gradient as the sum of the contact wrenches acting on
the grasped object. They are the contact forces and torques from the linear and
angular springs.

If the grasp is force-closure, then the wrench convexes at the contacts span the
total space of wrenches. In other words, we can generate an arbitrary wrench on the
object from non-negative combination of the contact wrenches. So, we can generate
a zero wrench, or have an equilibrium grasp. Force-closure is a sufficient but not
a necessary condition for equibrium. To have an equilibrium grasp we just need
the zero wrench to be in the subspace generated by the contact wrenches, and this
subspace does not have to be total.

Finding the set of n contact wrenches is equivalent to solving a system of
six equations in n compressions, 0yg,...,0n,, O in n contact forces and torques,
f10s- s froy fio = kioj,. There is at least one free variable, which is the internal
force of the grasp. For good numerical accuracy, Gaussian elimination with both
row and column pivotings is used (Strang 1976, 1986). Generalized inverses, along
with some optimizations are used when there are redundant contacts (Ben-Israel
and Greville 1974, Rao 1980). The time complexity is O(n), because the number
of equations is fixed.

Corollary 3.6 If a grasp G, defined the set of n contacts at Py,...,P,, is force-
closure, then the set of contact forces and torques for which grasp G is in equilibrium,
always ezists and can be computed in O(n) time.

In general, the weight mg of the object is not negligible, and so must be balanced
by the contact wrenches. In this case, to have an equilibrium grasp, we need the
opposite of the weight to be in the subspace generated by the contact wrenches.
The weight mg adds a gravity term —mg "t to the potential U of the grasp, and
the result is the potential function of the grasped object. The first derivative of the
gravity term, with respect to the twist displacement t, gives —mg, the opposite of
the weight. The second derivative is zero. So, the weight of the object only add a
bias force to the grasp, and does not affect the stability of the grasp.



76 The Synthesis of Stable Force-Closure Grasps

Stability and Six Independent Springs

The stiffness matrix K is the Hessian matrix H _, of the potential function U
of the grasp about the equilibrium configuration. The stiffness matrix of the grasp
comes from the stiffness contributions of the / linear springs and of the n —{ angular
springs: For clarity, the stiffness matrix K is rewritten as the sum of two matrices:

K = Ks; + Kp (3.29)

The first matrix, denoted by Ks, depends only on the spatial vectors of the [
linear and n — ! angular springs:

ky kT
KS = iﬁl PN lA(n ] , :
kn kT
r k, K, k le (P Xkl)T
N xky) - x k } o : :
(k) e ek k) LS (prx k)T
[ 0 --- 0 ] b 0% ki,
+ - P
ki -+ k, k. 0T kT
(3.30)

The second matrix Kp has four 3 x 3 block matrices that are all zeros, except
the lower-right block, denoted by Kps, which corresponds to the position of the
angular stiffness matrix:

Kp = =+ ({g% ][(‘l) (3.31)

The sign is + for contacts without friction, and — for contacts with friction. The
potential of the grasp is conserved only if there is no slip in the presence of friction.
So, the assumptions are that the fingertips either slide on the faces when there is no
friction, or stick when there is friction. Slip in the presence of friction is discussed
qualitatively in the next chapter.

The matrix Kps; comes from the second order effect of the ! linear springs, when
the object is rotated. Kps is a 3 x 3 angular stiffness matrix which depends on the
tip positions and the contact forces of the ! linear springs:

10 k[
Kps = (Eﬁ:l fio (pi'ki)) I — [pp ... pj " :

flo le
(3.32)

The grasp is stable if the stiffness matrix K is positive definite. The matrix K is
a product of three matrices. The first matrix, denoted by S, is a 6 X n matrix, whose
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columns are the spatial vectors of the n linear and angular springs. The matrix S
describes the spatial configurations of the springs in the grasp, and so is called the
configuration matriz of the virtual springs. The third matrix is ST, the transpose
of the configuration matrix S. The matrix in the middle is an n X n diagonal matrix
K, with the n stiffness constants on its diagonal. Multiplying the matrix ST with
the displacement x = t5 gives an n x 1 column of the n effective displacements at
the n linear and angular springs: STx. When multiplying SKS7T on the left with
xT, and on the right with x, we get a quadratic, (ST x)T K (ST x), which is either
zero or positive, because the matrix K has only positive values on its diagonal. In
particular, this product is zero if and only if the displacement x = 0, or the matrix
S has dependent rows (Strang 1976, 1986). In other words, the stiffness matrix
SKST from the configurations of the springs is positive definite, if and only if the
set of n linear and angular springs has at least six springs whose spatial vectors are
independent of each other.

If the grasp is force-closure, then the set of contact wrenches span the whole 6-
dimensional space of wrenches. If these contact wrenches are generated by springs,
either virtual * or real ®, then the spatial vectors of these springs also span the
whole 6-dimensional space. This means that we have six springs with independent
spatial vectors.

There is another term, Kps, which is subtracted from, or added to the angular
stifiness matrix of the grasp, depending on whether there is friction at the point
contacts or not. However, if the contact forces of the [ linear springs are small, then
Kps will be small compared to the angular stiffness matrix block in Ks. We can
make the contact forces small by scaling down ¢ the set of compressions found from
equilibrium. This scaling factor can be computed in O(n) time.

In other words, with stiffness at the contacts, and with the compressions at the
springs small compared to the size of the object, a force-closure grasp implies a
positive definite stiffness matrix K, or a stable grasp. The set of n contact forces
and torques are found from solving for an equilibrium grasp, with a desired internal
grasp force, Equation (3.28). The n stiffness constants can be set to some positive
default stiffness value. The compressions at the springs are then deduced, and they
can be scaled down if necessary. The algorithm is similar to Algorithm 3.1. So, a
force-closure grasp with n virtual springs can be made stable in O(n) time.

Corollary 3.7 If a grasp G, defined the set of n contacts at P,,...,P,, ts force-
closure, then the set of n virtual springs for which grasp G 1s stable, always ezists
and can be computed in O(n) time.

As in the planar case, the matrix Kps can make the angular stiffness matrix
of an outside-in grasp negative definite when there is friction, and more positive

4The stiffness at the fingertip can come from the stiffness control loops at the finger joints

®An example is a soft rubber tip, modeled as three orthogonal linear springs, and one angular
spring.

€A rule of thumb is to choose the compressions at the linear springs to be one-tenth of the size
of the object. By size, I mean average size, or diameter of the circumscribed sphere.
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definite, otherwise. For example, let’s pick an outside-in grasp on a convex object.
The dot products p; - k, are positive, 7 and they add up to a dominant diagonal
that is positive, or to large positive eigenvalues. The matrix Kp; will dominate the
lower-right 3 x 3 angular stiffness matrix from SKS7, if the linear compressions
o; are much larger than the size of the object. Subtracting (resp. adding) this
dominating Kp;s very likely will result in an angular stiffness block that is negative
definite (resp. more positive definite). The reverse is true for inside-out grasps. 8

We conclude that friction makes an outside-in (resp. inside-out) grasp less (resp.
more) stable respective to rotations. The reverse is true for grasps without friction.
The “in-between” stability comes from the configurations and the stiffness constants
of the springs, and has stiffness matrix Ks = SKS7.

Two Hard-Finger Contacts Versus Two Soft-Finger Contacts

Figure 3.10 shows two grasps G;, G, on a pair of parallel faces, that are identical
except that the first grasp has hard-finger contacts, and the second, soft-finger
contacts.

Grasp G has six linear springs, but only five are independent. In Section 2.4.3,
we have seen that a grasp with 2 hard-finger contacts cannot generate torques
parallel to the segment joining the two points of contact. So, the free vector which
has direction parallel to the segment P, P,, joining the two points of contact is not
inside the subspace generated by the spatial vectors of the six linear springs. The
matrix Ks = SKST is positive semi-definite, and the grasp will not resist rotations
of the object about segment P, P,. The stiffness Ks of the grasp shown is:

1001 0 O k. 1 00 00 —d
0100 -1 0 ks 0 10 00 O
Ke - 0010 0 1 ks 0 01 d0 0
s = 00d0 0 —d kq 1 00 00 d
0000 0 O ks 0-10 00 O
-d00d 0 O ks 0 01 -d0 0
ki + ky
ky + ks
_ ks + ke
o (k3+ke)d2
0
(ky + kq) d?
(3.33)

The stiffness matrix of the grasp K has another submatrix, Kps, which is sub-
tracted from its angular stiffness block. For the outside-in grasp in Figure 3.10, Kps

"The origin is taken to be inside the object
8This observation is only qualitative and approximate. There is no theorem which says about
the positive definiteness of a difference of two positive definite matrices.
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Figure 3.10: Two hard-finger contacts versus two soft-finger contacts.
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is a diagonal matrix with positive values, except a zero at the slot which corresponds
to rotations about segment P, Ps:

100
Kps = 2f,d] 010
001

0 1 00

000 0 O O f"o g (1)(1)

- ddd—-d -d —-d 0 L 00

000 O O O f, 0 -10

0 0 01
100
= 2f,d | 000
001

(3.34)

So, the grasp G; cannot resist rotations about segment P,P,. The stiffness

matrix K has negative eigenvalues for the two rotations perpendicular to P, P,, if

the virtual compressions, or the contact forces, at the fingertips are large. The

object is unstable, and tends to flip over. This flipping behavior has been reported
by Cutkosky (1984, 1985).

A soft-finger contact has in addition an angular spring in the direction of the
linear spring normal to the surface of contact. Grasp G has six linear springs
and two angular springs. The angular springs have free vectors with projections
in the direction P, P,, and so are independent from the six linear springs. The
configuration matrix S of the springs has full rank, and the stiffness matrix Ky is
positive definite.

If the compressions at the linear springs are small compared to the length of
segment P, P;, then Kps is small compared to the angular stiffness block from K,
then grasp G, is stable. The larger the virtual compressions at the fingertips, the
larger is Kps, and the less stable grasp G is, with respect to rotations perpendicular
to P P;. The rotation about segment P, P, is unaffected, and is due only to the
presence of the two angular springs. °

3.3.3 Compliance about Stable Equilibrium

The compliant behavior of the grasped object about its stable equilibrium is de-
scribed by the stiffness matrix of the grasp. We have seen that this stiffness matrix
is composed of two terms. The first term depends on the spatial configurations of
the springs, and the second term depends on whether the fingertips stick or slide
without friction on the faces of the grasped object. This section will explore the
properties of the stiffness matrices K, K5, and Kps. K5 is a good approximation

°In reality, as the normal pressure at the points of contact is increased, we get larger angular
stiffness, but this variation is not captured by our simple model of angular spring.
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to the real stiffness matrix K when the compressions of the linear springs are small
compared to the size of the object.

Stiffness Matrix of the Object

The matrix Ks = SKST is symmetric. To see that Kp; is also symmetric, let’s
rewrite it as:

Kps = ( Ly fio (pi'ki)) I — Tl fio (PikT) (3.35)

The first term is a diagonal matrix. The second term is a symmetric matrix if the
contact forces have zero total moment about the origin:

Y Pizfiz Zpizfiy X Pizfiz
i=1 fio (PikT) = | Triyfiz X Pivfiy Zpiyfiz
z:Pizfiz Epizft’y Zpizfiz

The off-diagonal terms M|, ;| in the above matrix are equal to their respective
transposed terms M(j,¢]. Their pairwise differences are equal to the moments of
the contact forces about the axes of the reference frame, which are all zero if the
grasp is in equilibrium with the / linear springs. For example, (M|[z,y] — M|y, z])
is the moment of the contact forces of the ! linear springs about the z-axis.

The stiffness matrix K of the grasp is the sum of two symmetric matrices, and
therefore is symmetric, Equation (3.29). This means that K has perpendicular
eigenvectors. If the grasp is stable, then the stiffness matrix K is positive definite,
and so the eigenvalues are all strictly positive.

The eigenvectors describe the spatial directions for which the restoring wrenches
W, applied on the object by the fingers, are proportional to the displacement x,
which is the spatial transpose of the twist t of the object. The corresponding
eigenvalues describe the stiffness of the grasp along these spatial directions. The
grasped object will behave as though it has six independent springs attached to it.
The configuration of these springs is described by the eigenvectors, and the stiffness
by the corresponding eigenvalues:

W =K t5
m) = () 6] o
m|  \ KT K; 6

K4, K;, K, are the 3 x 3 block matrices of the grasp stiffness matrix K. I will refer
to these block matrices as linear, angular, and cross matrices respectively.

One important special case is when the eigenvectors have only translational or
rotational parts. This case corresponds to a stiffness matrix K which is split into
two linear and angular 3 x 3 block matrices, K, and K;. The grasped object has the
origin O as compliance center, and translations and rotations of the object about
origin O are resisted respectively by pure forces and pure torques from the grasp.
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In other words, the object behaves as though it has three linear springs and three
angular springs, attached at its compliance center O. This case will be explored
further in the next section.

From the springs at the n contacts, we get a stiffness matrix of the grasp, and
analyze it to find the eigenvalues and eigenvectors, that is, the springs attached
to the grasped object. This is the analysis, or forward problem, which is straight-
forward, and costs O(n) time. In robotics, we most often need to solve the reverse
problem, which is: from a desired stiffness matrix at the grasped object, find the
virtual springs at the contacts. First, let’s do a counting argument to find the min-
imum number of fingers that are needed. Then, we’ll explore the reverse problem,
and its complexity. In solving the reverse problem, I assume the stiffness matrix of
the grasp is approximated by K, which describes the first-order effect of the linear
and angular springs.

A stiffness matrix is specified by its six eigenvalues, and its six eigenvectors.
Each eigenvector has six coordinates, so the six eigenvectors has thirty-six variables
to specify. However, not all thirty-six variables are independent. An eigenvector
must have unit magnitude, and must be perpendicular to the other eigenvectors.
There are six constraint equations from the six norms, and fifteen others from the
dot-product of pairs of eigenvectors. So, a stiffness matrix has twenty-one free
variables, six from the eigenvalues, and fifteen from the eigenvectors.

Given a desired stiffness matrix K at the grasped object, the springs at the
contacts are approximatively computed from:

K =8KST
=1 i t Iy
If the points of contact are fixed, for example, by a given force-closure grasp,
then the configurations of the springs are fixed. Then, the unknowns can only be
the stiffness constants k;,. To solve for an arbitrary stiffness matrix K, there must
be at least twenty-one independent springs, that is, six soft-finger contacts, or seven
hard-finger contacts, or twenty-one frictionless point contacts.

Equation (3.37) can be rewritten as a system of twenty-one equations, '° with
the stiffnesses k; as unknowns. The stiffness constants of the n virtual springs
can be solved, using Gaussian elimination, or least square error methods in O(n)
time. There is one constraint however: the stiffness values must be strictly positive.
Optimization with constraints must be used. (Rao 1980, Strang 1986).

To reduce the number of necessary fingers, we must choose the spatial configura-
tions of the springs, or the points of contact and the contact normals. For example,
from the desired stiffness K, we compute the eigenvalues and eigenvectors. The
grasping faces are chosen such that they have normals most closely oriented with

108ix equations for the diagonal terms, and fifteen others for the off-diagonal terms.
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the eigenvectors that have large eigenvalues. This alignment scheme also makes the
stiffness matrix of the grasp less dependent on friction.

A line vector has six coordinates, but only four are free variables. So a frictionless
point contact, modeled as a linear spring, has five free variables, four from the spatial
vector, and one from the stiffness constant. A hard-finger contact, modeled as three
perpendicular linear springs going through the same contact point, has eight free
variables, three from the common point of contact, two from the orientations of the
the three linear springs, and three from the three stiffness constants. A soft-finger
contact, modeled as a hard-finger contact plus an angular spring about the normal
at the point contact, has nine free variables, one more than a hard-finger contact for
the angular stiffness constant. So, to solve for an arbitrary stiffness matrix K, we
need at least five frictionless point contacts, or three hard-finger contacts, or three
soft-finger contacts. This assumes that we can choose both the grasp configuration
and the stiffness constants of the springs.

Center of Compliance of the Object

In general, the eigenvectors of the stiffness matrix X have both linear or angular
parts, and the cross matrix K, is non zero. From Equation (3.30), the matrix K
describes the weighted dyadic product of the Pliicker vectors of the springs, where
the weights are the stiffness constants. Since angular springs have one of the Pliicker
vectors zero, the cross matrix K, depends only on the linear springs:

K, = 5:1 k; (ki (p: x ki)T)

kiz (Pi x ki), kiz (Pi X ki), kiz (p: x ki), (3.38)
= Yier ki | ki (Pix ki), kiy (Pi % ki), ki, (pi x ki),
ki (pi x ki)z kiz (pi x ki)y kiz (pi % k.‘)z

The moment of the linear springs depends on the location of the origin. So, by
changing the origin of the reference frame, we can get K, to be smallest. If K,
becomes the zero matrix, the new origin is the center of compliance of the grasp,

The matrix K has nine elements, of which eight are independent. The three
diagonal elements of K, adds up to a weighted sum of the dot products between
the Pliicker vectors of the springs, which is always zero because line vectors have
perpendicular Pliicker vectors. We have eight equations in the three coordinates of
the center of compliance. So, a stable grasp with n independent springs does not
generally have a center of compliance. 1 typically solve for the least square error
compliance center, and this costs O(n) time.

Not all positions of the compliance center are feasible. Similar to the planar case,
the compliance center must be inside a region, called the compliance polyhedron,
for which there exist non-negative stiffness constants such that K, is a zero matrix.
The 3 x 3 matrix of the dyadic product can be written as a 9-element column vector,
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Figure 3.11: Compliance polyhedron in a grasp with 2 hard-finger contacts.

and the analytic condition for the existence of a compliance center is a system of
nine homogeneous equations:

n (p: x ki) _ Kk, 0
k,‘ (p, X ki)tl k,‘ = 0 (339)
i=1 (p, X k,’)z k,‘ 0

in which eight equations are independent. The stiffness constants ki must be non
negative. The above equation depends on the moments p: x k;, and so depends on
the placement of the compliance center O relative to the lines of action of the linear
springs.

A compliance center exists if and only if the dyadic products k; (p; x k;)T span
a convex which includes the zero matrix. A sufficient but not necessary condition is
that the 9-element dyadic vectors span the eight dimensional space. This sufficient
condition implies at least nine linear springs, or three soft-finger contacts, or three
hard-finger contacts, or nine frictionless point contacts in the grasp.

Figure 3.11 shows the region where the compliance center can be, in a grasp
with two hard or soft fingers contacting two parallel planes. The segment joining
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the two points of contact is always a valid locus for the compliance center. This
segment corresponds to two points of contact having proportional sets of springs.
The compliance polyhedron is in between the two points of contact for fingertips
covered by rubber. For two fingers with active stiffness control, we can orient
the lines of action of the linear springs at the two points of contact such that
the compliance polyhedron includes the desired compliance center. So, choosing a
compliance center is equivalent to orienting the compliance frames and choosing the
stiffnesses at the fingertips.

Not all positive definite or positive semi-definite stiffness matrices are feasible,
even with arbitrarily many fingers. We have seen that a stiffness matrix has twenty-
one free variables. We can count differently as follows: six free variables for the
diagonal, and fifteen others for the off-diagonal elements. However, the upper-right
block K, has eight independent elements instead of nine. So, a feasible stiffness
matrix has only twenty free variables instead of twenty-one. The range of feasible
stiffness matrices is strictly included in the domain of positive stiffness matrices,
because the physical contacts can not have arbitrary spatial vectors for their springs.

Corollary 3.8 The stiffness constants of the n virtual springs can be computed in
O(n) time, such that the grasp has approzimatively the desired stiffness matriz and
compliance center.

The linear springs of a two-point or three-point grasp are typically computed in
about 0.4 seconds on a Symbolics machine.
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3.4 Conclusion

3.4.1 Main Results

* We prove that all force-closure grasps can be made stable (Corollary 3.5, and
Corollary 3.7). The algorithm for constructing stable grasps is both simple
and efficient (Algorithm 3.1). It costs O(n) time to synthesize a set of n virtual
springs such that a given force-closure grasp is stable, and has approximatively
some desired stiffness matrix.

e We show that the stiffness matrix K of the grasp has a matrix Kg which
depends on the spatial configuration of the virtual springs. The geometric
relation is simple, Ks = SKST, where the columns of S are the spatial
vectors describing the lines of action of the springs. K is positive definite if
and only if there are at least three (resp. six) virtual springs with independent
spatial vectors for 2D (resp. 3D) grasps.

The stiffness matrix Ks is positive definite if the grasp has at least two soft
finger contacts. This explains why we get stable grasps so easily, most of the
times by just closing two soft fingers onto the grasped object.

e We show that the stiffness matrix has also a position-dependent matrix Kp
which depends on whether the finger stick or slide on the straight edges (resp.
flat faces) of the object. Kp makes outside-in grasps more stable than inside-
out grasps if the fingers slide without friction on the object. The reverse holds
if there is friction and the fingers stick.

e We show that the compliance center of the grasp must be inside a region
delimited by the lines of action of the linear springs. So a placement of the
compliance center implies either a relative orientation of the linear springs, or
a placement of the points of contact, or both.

¢ We can choose the compliance center and the stiffness matrix of the grasp,
or in other words, choose the behavior of the grasped object about its stable
equilibrium. The object behaves as though it is attached to independent linear
and angular springs at its compliance center (Figure 3.3). The grasp is robust
to disturbances. If the object is accidentally displaced, there will be restoring
wrenches that will pull it back to its stable equilibrium. All this is done
automatically, fast, and without any extra effort from planning or execution.

3.4.2 Experiments

The synthesis of stable force-closure grasps proceeds in two steps:

e Given a set of grasping edges or faces, construct the independent regions of
contact, for which the grasp is always force closure.
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Figure 3.12: A sequence of comnund'uv which executes a ;uip.
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® Pick the mid points of the independent regions as the desired grasp points.
Synthesize the virtual springs at the desired grasp points such that the grasp
is stable, and has some desired stiffness matrix or compliance center. Least
square error optimization is used when the stiffness matrix can not be achieved
exactly with the finite number of springs.

The grasp synthesis has been implemented for both 2D and 3D grasps. The code is
written in Zeta Lisp, compiled and run on Symbolics Lisp machines. It takes about
1/10 seconds to construct a force closure grasp, and about 1/5 seconds to construct
the virtual springs.

The grasp configuration and the contact regions are then given to a path planner
which finds collision-free paths for the fingers. We assume that the fingers do not
have intersecting paths, so their paths can be planned independently from each
other. Each finger is a revolute arm, with configuration represented by its joint
angles. Using the Configuration Space method (Lozano-Pérez 1983, Donald 1984),
the finger is shrunk to a configuration point in joint space, while the grasped object
is grown into a configuration obstacle. A collision-free path for the finger becomes a
path for the configuration point which does not intersect the configuration obstacle.
The find-path problem is transformed into a search for a path between two initial
and final configurations.

The output of the high level planning is a sequence of commands such as (move-
fingers-to ...), (grasp-at ...), all in joint space. For good accuracy, the fingers are
position controlled during move-fingers-to commands, and the trajectory is gener-
ated by a simple joint interpolation between collision-free via points. The fingers
must be stiffness controlled to have the fingers comply between themselves dur-
ing the grasping operation, and to get the desired stiffness matrix at the grasped
object. We insert approach points just before the grasp points. The approach
points are places where the fingers switch from position control to stiffness control.
Figure 3.12.

Experiments have been performed with the Stanford/JPL hand. The hand has
three identical fingers; each finger has three joints pulled by a set of four tendons
(Salisbury 1982). The fingers are position controlled at their innermost loop. Force
and stiffness control are added at the outer loop, (Salisbury 1980, Salisbury and
Craig 1981, Chiu 1985), Figure 3.13.

First, grasps are executed with the fingers in position control mode. The stiffness
at the grasp points comes from the rubber covers of the fingertips, and from the
tendons. The grasps are very stable. Then the grasped object is pushed until the
fingers slip on the grasping faces. We verified that after the fingers slip, the grasped
object remain stable. We also verified that the impulses or short disturbance forces
tend to make marginally stable grasps more stable.

Next, the fingers are stiffness controlled during the closing of the fingers onto
the grasp points. We observe:
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Figure 3.13: The Stanford/JPL hand.

e Very slow motions of the fingertips, due to the large friction in the tendons.
Note that the stiffness loop controls the forces that are exerted by the motors
at the ends of the tendons. These forces although correct, are too small to
overcome the high frictional forces in the tendons and pulleys. A fix will be
to add a feed-forward term to compensate for the frictional forces, and also
to compensate the gravity and inertia forces. However, feed-forward control
is sensitive to errors in modeling.

e The control loop becomes unstable at about two thirds of the physical stiffness
of the tendons. We have seen that the virtual compressions must be small
compared to the size of the grasped object. With low stiffness at the virtual
springs, small virtual compressions imply small contact forces, and so the
weight of the object must be small!

High stiffness requires faster servo rates (about 300 hz), and having force and
position sensors as close to the fingers as possible. Currently, due to slow servo
rates (currently 50 Hz), we are forced to rely on the friction and stiffness in
the tendons to provide a compliant interface between the joint motors and the
end effectors. '

The above observations are expected. After all, the real fingers have their own
physical limitations, such as the maximum stiffness is the stiffness of the tendons.
Since the fingers are stiffness-controlled, their stiffnesses are further limited by the
servo rate. Active stiffness gives us flexibility in choosing the stiffness values at the



90 The Synthesis of Stable Force-Closure Grasps

fingers. More importantly, active stiffiness allows us to abstract the complicated
behavior of the fingers by a set of idealized springs, then focus on the problem of
synthesizing grasps, not just analyzing grasps.

With the current three-finger hand, grasps are done best with a simple position
control of the fingers, (servo rate is 1000 hz). The stiffness that makes the grasp
stable and very compliant, does not come from active stiffness, but comes from the
stiffness in the tendons and in the fingertips. It may be that this is also why human
hands have passive stiffness built into the soft fingertips, into the tendons and the
muscles.



Chapter 4
Grasping With Slip

4.1 How to Deal with Slip?

How should one deal with slip in grasping an object? Should one avoid slip, and
plan the grasp and the motion of the fingers such that no slip will occur? Although
difficult, such a plan is not impossible to find and execute. The contact forces must
always point into the friction cones at the points of contact. The fingers must be
position-controlled with high accuracy to the desired grasp points. Then, the fingers
must make contact with the object at the same time.

Many previous papers have shown that slip can be used as a flexible transducer,
which results in an automatic compliance of the object to the physical constraints
of its environment. Fine motions of the object can be planned with slip and active
compliance models such as springs or dampers (Lozano-Pérez, Mason and Taylor
1983, Erdmann 1984, Buckley 1986). Pushing operations with slip reorient the
grasped object between the grippers (Mason 1982, Brost 1986). An analysis of how
the fingers slide on the object during grasping is used to plan a twirling motion of
a bar between three fingers (Fearing 1984, 1986).

This chapter takes the view-point that slip is beneficial, as a compliant interface
between the desired grasp and the actual grasp. Slip is allowed during and after
the initial grasp. By looking at when slip occurs, it is possible to compute bounds
on the allowed displacement of the object, and so deduce the stiffness required for
the grasp. By looking at where the fingers slip to, it is possible to plan grasps
where the fingers are guaranteed to be inside the grasping edges. Next, we’ll look
at how slip affects the force closure and stability properties of the grasp. It is easy
to plan grasps that are force-closure and stable as long as the fingers do not slip
beyond the grasping edges. Last, we explore the effect of curvature and slip on
the stability of the object. The fingers slide not on straight edges, but on curved
segments approximated by circular arcs.

91
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4.2 Analysis of Slip in 2D

4.2.1 When Do the Fingers Slip?

Figure 4.1 shows a compliant finger contacting a vertical edge. The contact is
modeled as a point contact with friction, and has two independent linear springs
attached to it. Each spring has a fixed line of action, and only counteracts displace-
ments along its line of action. The compression at the tip P of a linear spring k is
given by:

0 =0, + (Rot(z,0) p —p) -k + d -k (4.1)

in which 6 is the rotation, and d = (z,y)7 is the translation of the object.

The angle ¢ between the contact normal and contact force at point P is given
by:

kt Oy
= 4.2
tan ¢ P (4.2)

where 0, and o; are the normal and tangential compressions, found from the above
equation by replacing k, respectively by the normal and tangential directions at P.

The fingertip sticks if the angle ¢ is between —¢ and ¢, where tan¢ is the
coefficient of friction at the contact. We can find the variation of angle ¥ as the
object is rotated about a point on the contact normal, or translated along the normal
and tangential directions of the contact. For the simple case where the normal and
tangential stiffness constants are equal, the angle v varies as follows:

tany (z) = —%te

Ono +
tany (y) = tany, + g}w y (4.3)
01, + |plsind

tand) (8) = Ono + |P|(cosf —1)

Figure 4.2 plots the graphs of tan ¢, and shows the places where slip occurs as the
object is translated or rotated. The three graphs have respectively the shape of a
hyperbola, a straight line, and a tan curve.

The forward problem is to find when the fingers slip, which directly relates to how
much the grasped object is displaced. The reverse problem is to find conditions for
which the fingers do not slip. For example, given a grasp configuration, we compute
bounds on the maximum displacement of the object for which no slip will occur.
From the bounds on the disturbance forces, and from the allowed displacement of
the object, we deduce the order of magnitude of the stiffness matrix of the grasp,
and use it to scale the stiffness constants of all the virtual springs.

Corollary 4.1 Given a grasp and bounds on the disturbance force, the necessary
stiffness scale of the n wvirtual springs, for which the fingers will not slip, can be
computed in O(n) time.
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Figure 4.1: A fingertip modeled as two independent springs.

4.2.2 Where Will The Fingers Slip To?

We also need to find the direction towards which the fingers will slip, and calculate
bounds on the places where the fingers will stick at, after slipping. A fingertip can
be seen as being pulled by a virtual spring with the following stiffness behavior:

f = K(po_p)

- (o) (2] "

Figure 4.3 shows the regions where the fingertip will slip, stick, or loose contact.
The stick region is a cone with angle 245%. It is defined as the region of the fingertip
P where the contact force f, generated by the virtual spring, points into the friction
cone at the point of contact. The finger will slip towards the stick cone, and is
pulled towards its bias position p,, which is fixed not relative to the grasped object,
but relative to the base of the hand. When the object is displaced in the hand, the
finger will stick and move with the point of contact, until it reaches one of the edges
of the stick cone, then it slips.

The finger is guaranteed to stick inside the edge of contact, if the stick cone
cuts in the interior of the edge of contact. This condition can be satisfied by a
proper positioning of the bias position p,, and a proper ratio between the normal
and tangential stiffnesses. The finger will not loose contact with the object, if the
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Figure 4.3: Stick and slip regions for the fingertip.

Figure 4.4: Places where the fingers will slip to.
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normal compression 0,, is always greater than the translational displacement of
the object along this normal direction. We assume that the displacement of the
object is finite, and small compared to the normal compression, and the length of
the contact edges.

Figure 4.4 shows two point contacts on a pair of parallel edges. Each point
contact is pulled by a virtual spring towards its own bias position. As long as the
stick cones intersect in the interior of the edges of contact, the fingers are guaranteed
to stick on the contact edges. Better yet, the virtual springs can be synthesized
such that the fingertips will stick inside the independent regions of contact. The
bias positions of the virtual springs are constrained by the the equilibrium grasp
condition, and so can only be scaled.

Corollary 4.2 Given a desired grasp, the scale of the n virtual compressions o;,,
for which the fingers will stick inside the independent regions of contact, can be
computed in O(n) time.
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4.3 Effect of Slip on Force-Closure and Stability

We have modeled the physics of many fingers grasping an object as many virtual
springs pressing on the object. In this idealized model, the slip between the finger-
tips and the object comes from two primary sources:

o The spatial configurations of the virtual springs change and the object is fixed.
An example is Figure 4.4.a, where the two fingertips slip towards each other.
The lines of action the virtual springs change relative to each other.

e The object translates and rotates in between the fingers, while the virtual
springs have fixed spatial configurations. An example is a grasp without
friction. The virtual springs at the fingertips have fixed lines of action. The
object slips between the fingers, as it is displaced from its stable equilibrium.

Let’s assume that the initial grasp is force-closure and stable. We assume the
fingertips will not slip outside of the edges of contact. The final grasp is defined
by the set of grasp points where the fingers stick after they slip. The problem is to
find when the final grasp is force-closure and stable.

4.3.1 Grasps without Friction

Slip is always present in a frictionless grasp. If the finger tips slip relative to each
other, we have in effect a grasp with a completely different set of grasp points. This
new grasp is force-closure if the grasp points are still inside the independent contact
regions. A conservative bound on the slip, allowed at the fingers, can be computed
based on the lengths of the independent contact regions.

In a grasp without friction, the fingertips are controlled so that they behave as
linear springs with fixed lines of action. To a good approximation, we can assume
that the lines of action of these virtual springs are fixed. So, the major source of
slip comes from the translation and rotation of the object in between the fingers.

A pure translation of the object moves the points of contact, but leaves the
contact normals unchanged, Figure 4.5. The points of contact moves along the lines
of action of the linear springs, and these lines of action are unchanged. Force-closure
depends on the relative configuration of these lines of action, and so is unchanged
by a pure translation of the object. The grasp remains force-closure after arbitrary
translations of the grasped object, as long as the fingertips do not leave the grasping
edges, of course. An upper bound on the translation that preserves force-closure
can be found from the positions of the fingertips, and the lengths of the grasping
edges.

A pure rotation of the object not only moves the points of contact, but also
rotates the contact normals, Figure 4.5. Each fingertip has a different effective
spring on the object, because its contact normal has changed. The effective spring
has stiffness scaled by cos é,, and line of action going through the new contact point,
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Figure 4.5: Effect of large displacements on a frictionless grasp.
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and oriented with the new contact normal. The new grasp has a new set of grasp
points, and a new set of linear springs. The relative configuration of the linear
springs is no longer preserved. We deduce whether the new grasp is force-closure or
not, by looking at the new grasp points. A conservative bound on the rotation is the
maximum rotation such that the new grasp points are always inside the independent
contact regions.

With stiffness at the contacts, a force-closure grasp implies a stable grasp. The
compressions at the linear springs are assumed small compared to the size of the
object, therefore, the stiffness matrix K =~ K. The matrix Ks depends only on the
spatial configurations of the virtual springs. It is invariant with respect to arbitrary
translations, but changes drastically with large rotations of the object. Since the
stiffness matrix K is positive definite, an force-closure grasp is also a stable grasp,
Corollary 3.3. The potential function of the grasp has a local minimum at the
equilibrium grasp configuration. This local minimum is also a global minimum for
all translations of the object, due to the invariance of Kg respective to translations.
This means that the equilibrium grasp configuration is globally stable for the set of
contact edges, if we allow only translational errors, and very small rotational errors
(typically less than 10 degrees) of the grasped object.

Since there is no friction, the potential energy that is stored in the springs is
constant, and conserved. Gravity and other external wrenches displace the grasped
object. This displacement can be found from force and torque balance equations,
or from the external work which is added to the potential function of the grasp.
As the external wrenches are removed, the grasped object returns to its old stable
equilibrium.

We see that translations of the object preserve the force-closure and stability
properties of the grasp, whereas rotations quickly destroy them. In the worst case,
we have to rely on the independent contact regions to guarantee that force-closure
and stability are preserved:

Corollary 4.3 Without friction, a force-closure grasp with n linear springs is glob-
ally stable for arbitrary translations of the object, as long as the fingertips are still
inside their respective grasping edges. The grasp is stable only for small rotations
of the object.

4.3.2 Grasps with Friction

We’ve seen that we can synthesize the virtual springs at the point contacts with
friction, such that the fingers, if they slip, will always stick within the edges of
contact. These fingers are pulled, independently from each other, towards their own
bias positions. As the fingertip slips, the point of contact changes, and so either
or both the spatial configurations of the normal and tangential springs change. We
have shown that an equilibrium grasp with at least two point contacts with friction
is also a force-closure grasp, if the contact forces point strictly inside the friction
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cones. In other words, if the fingers stick and the equilibrium is not marginal, then
the grasp with friction is a force-closure grasp.

With stiffness at the contacts, a force-closure grasp implies a stable grasp, Corol-
lary 3.2. So, after the fingers slip, the grasp at the points where the fingers stick is
both force-closure and stable. To guarantee stability for rotations, the compressions
at the linear springs must be small compared to the size of the object.

Corollary 4.4 A planar grasp with friction is both force-closure and stable, as long
as the grasped object is in equilibrium, with contact forces from the virtual springs
pointing strictly inside their respective friction cones.

As the object slips, friction dissipates potential energy in the form of heat, and
the total potential energy of the object is less. The potential energy of the object is
the sum of the potential energy of the grasp, which is stored in the springs, and the
gravity potential from the height of the object in the gravity field. In Figure 4.4.a,
suppose the weight is perpendicular to the contact plane, and the fingers slips on the
object, due to some impulse force with negligible work. There is no external work
added into the system, and friction dissipates potential energy, so the new grasp
configuration must have a lower potential, and so is more stable. Disturbances
which are zero-integral impulses always slide the grasped object into a more stable
grasp. So, as long as the contact edges are long enough, slip and disturbances make
marginally stable grasp more stable. For the case of Figure 4.4.a, the two fingers
will slide towards each other, and the grasp has a lower potential.
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4.4 Slip on Circular Arcs

Up to now, the grasped object has been modeled as a polygon, and slip and stability
are studied with virtual springs contacting on straight edges. When the boundary
of the grasped object is curved instead of polygonal, the stability of the object is
greatly enhanced if the contacts slides inside concave arcs of the boundary (Hanafusa
and Asada 1977, Asada 1979). We’'ll see that the local curvature at the grasp points
does not affect the equilibrium of the grasp. But local curvature has a major effect
on the stability of the grasp. It adds another term K¢ to the stiffness matrix Ks,
which comes from the spatial configurations of the virtual springs.

4.4.1 Model Local Curvatures with Wide Circular Arcs

Arcs with low curvature are approximated as straight edges. Arcs with high curva-
ture are approximated as vertices. Arcs with medium curvature ! are approximated
as circular arcs, with radius equal to the radius of curvature r at the point of contact.

Depending on whether friction is significant or not, the stiffness at the 2D contact
can be modeled as one or two independent linear springs, Figure 4.6. A finger
contacting without friction at a convex corner is an extremely unstable contact,
and should be avoided. A frictionless contact at a concave corner is a very stable
contact respective to lateral translations and rotations. The more interesting cases
are when the fingers slip without friction on circular arcs with radi of curvature
comparable to the size of the grasped object.

Figure 4.7 shows a linear spring k; contacting a convex arc with radius r;. For
simplicity, the line of action of the spring k; originally goes through the center C;
of the convex arc. Let’s also assume that the displacement of the object is small,
so that the point of contact P, remains on its circular arc.

As the object is displaced by twist t = (62,dz,d,)T, the point of contact P,
moves to its new position P/, defined as the intersection of the displaced convex arc
(C/,r:) and the fixed line of action of the linear spring k;. The compression at the
linear spring k; is:

o = ol + (/-a) ki t g [(c/-c) - ((c/-c) k) K’

~ 0: + f(itf - (C,"k,‘) 62

z

B —

|~ 2CSidady — 2y + miC) diby + 2(cin — 1) dy 6,

(4.5)
where k; = (C;, S;,u;)7 is the spatial vector describing the line of action of the
linear spring k;. The sign is + (resp. —) for concave (resp. convex) arcs.

+

'A medium curvature is around 1/R, where R is the radius of the minimum circle containing the
grasped object. The diameter 2R has been referred as the size of the object.
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Figure 4.6: Point contacts slipping on curved segments.
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Figure 4.7: Model local curvature with a wide circular arc.

The above equation has first order term, a dot product between the spatial
vector of the spring k;, and the twist displacement of the object t. The gradient
of potential function U of the grasp gives again the sum of the contact wrenches
exerted on the object. The second order term gives the stiffness matrix of the grasp
about the equilibrium configuration.

4.4.2 Effect of Local Curvature on Stability

The stiffness matrix of the grasp, and of the object, can be written as a sum of two
matrices:

K = Ks + K¢
Ks = ?:1 ki (f(, f{:‘T)
00 0 (4.6)
Ke = - :1:1 fw 00 0
00 C; 'k,
1- C’i2 C,‘S,‘ —=Ciy — u,'C‘
= E?:l [r% -C;S; 1- S,'z Ciz — MiS;
—Ciy — /th Ciz — uiSi c;‘zz + C?y - H.z
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Figure 4.8: Two frictionless point contacts pressing at two concave half-circles.

K, also written as SK ST, is the stiffness matrix from the spatial configuration of
the virtual springs only. K¢ is a sum of the stiffness contributions from the circular
arcs (C;,r;). The sign is + (resp. —) for concave (resp. convex) arcs.

Figure 4.8 shows a frictionless grasp at two concavities. The finger contacts are
modeled as two linear springs with same stiffness constant k, and contact force f,.
The stiffness matrix from the spatial configurations of these two linear springs has
only the stiffness component along the common line of action of these springs:

1 00

—100
0
0
0

Ks

1
=2k |0
0

o OO

The stiffness matrix K¢ from frictionless slip within the two concavities of radius
r, and with two centers at (R,0) and (- R,0) is

000 00 0
Ke=-2f, |ooo| +2f,&l0 10 (4.8)
00 & 0 0 r
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Slipping inside the two concavities generates linear stiffness in the y-direction, and
angular stiffness about the z-direction. As expected, these stiffnesses are positive
for concave arcs and negative for convex arcs. The first term of K- depends on the
location of the centers of curvature. The second term of K is inversely proportional
to the radius of curvature.

e As r — oo, the circular arcs become straight edges. A straight edge is the limit
of either a concave arc or a convex arc. Unfortunately, the limit of K blows up
to +00 and —oo respectively for concave and convex arcs. The center of curvature
is not well defined for a straight edge. By taking the average of the two limits,
the terms in r and R drop out. After some reduction, the stiffness K¢ has only a
positive angular stiffness equal to 2f,d, where d is the distance from the origin to
the right vertical edge. We recognize this stiffness as equal to the angular stiffness
from the two frictionless points of contact: ¥ fi,(p; - k:). As expected, the limiting
contacts are two point contacts without friction sliding on straight edges.

e As r — 0, the circular arcs become corners. The second term in K- becomes
very large, and gives large negative (resp. positive) linear stiffness in the y-direction,
and angular stiffness about the z-direction, for convex (resp. concave) corners. The
grasp is therefore very stable for concave corners, and very unstable for convex
corners.

For small radius of curvature, the points of contact coincide with the centers of
curvatures. We can view a point of contact which does not slip as the limiting case
of either a convex or a concave arc with very small radius of curvature. The average
of the two limits is the first term of K¢, which is a negative angular stiffness —2f, R.
We recognize this stiffness as equal to the angular stiffness from two point contacts
with friction: — 3 fi,(p: - ki). So, a point contact with friction is the limiting case
of an arc with zero radius of curvature.

o Now, let’s look at the case of wide circular arcs, whose radius of curvature is
comparable to the size of the object. The stiffness matrix K. in equation 4.8 can
be rewritten as:

00 0
Ke=x287102L o (4.9)
0 0 p-k

The grasp is stable (resp. unstable) for concave (resp. convex) arcs, for y-
translations and z-rotations. The linear stiffness in the y-direction is:

k, = =3 k22 (4.10)
Ty
which is very small because o; < r;.

The angular stiffness is similar to point contacts with (resp. without) friction,
except there is a multiplying factor of R/r, when the segment of contact is curved
instead of straight:

ks, = = Z ?fio (p: - ki) (4.11)



106 ‘ ' The Synthesis of Suble" Force-Closure Grasps

: Due to this factor R/r, loca.l curvatures have a mqor impact on the stability of

N  grasps respective to rotations. The two medth of point contacts with and without
friction turn out to be a very close approximation to slip en convex and concave
arcs. The difference between: oumdt-m m and insbde-out grasps is the sign
of the dot-product (p; - k). Grasps without friction on concave (resp. convex)
arcs more (resp. leu)suhiuftheﬁmmmoum Thcm«nho!dnfar
inside-out grasps. _
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4.5 Conclusion

The main results of this chapter are:

e Virtual springs at the contacts can be synthesized such that the fingertips are
guaranteed to stick inside their respective grasping edges, after they slip. Typ-
ically, given the lengths of the grasping edges, and the expected disturbance
force, we compute the scales for the stiffness constants and the compressions of
the virtual springs. These scales are computable in linear time in the number
of contacts.

e Frictionless grasps remain force-closure and stable for arbitrarily large trans-
lations and for small rotations of the grasped object. Qualitatively, the object
will be pulled back to its stable equilibrium if it does not rotate drastically
due to the slipping between the fingers and the object.

o Grasps with friction remains force closure and stable, as long as the grasped
object is in equilibrium, with the contact forces pointing strictly inside their
respective friction cones. Qualitatively, if the fingers stick again on their
grasping edges, after they slip, then the new grasp is force closure and stable.

e Slip on circular arcs affects the stability of the object. The stiffness matrix
of the grasp is the sum of Ks and K¢. The stiffness matrix Ks comes from
the spatial configuration of the springs. The matrix K¢ plays the role of the
position-dependent matrix Kp. It describes the effect of the fingers slipping
on the circular arcs. It is negative (resp. positive) for convex (resp. concave)
arcs.

¢ Point contacts which stick or slide without friction on straight edges are good
approximations to fingertips slipping respectively on convex and concave arcs.

The above results extend from 2D to 3D. Future problems can be a full analysis
of slip on curved surfaces. It is interesting to enumerate all the simple cases where
a globally stable grasp exists. Then using these cases, one can address, at least in
part, the reverse problem of constructing grasps on curved objects.



Chapter 5

Conclusion

5.1 A Review

After all the equations and proofs, I want to conclude this thesis with the following
remark:

“Grasp synthesis is a simple geometric problem.”

Constructing grasps is definitely a geometric problem, and one which is very
simple for two point contacts with friction in 2D, or two soft-finger contacts in 3D:

* Chapter 2 shows how to construct the independent regions of contact for the
two finger tips. These two independent regions are either back-to-back or
face-to-face with each other. Force-closure is just a constraint on the relative
placement and orientation of these two contact regions. Remember that we
can only push on the object, not pull on it. This is basically why we need two
opposing fingers.

e Chapter 3 shows how to synthesize the virtual springs at the finger tips, so
that the grasp is stable and has a desired stiffness matrix. The key result here
is a simple geometric relation between stability and stiffness on the grasped
object and the spatial configurations of the virtual springs at the contacts.
Basically, the virtual springs must be along the stiffness directions of the
grasped object.

e Chapter 4 looks at how slip and curvature affect the force-closure and stability
of the grasps. It turns out that we have good reasons not to be afraid of slip,
even accidental slip in grasps where we rely on friction between the fingers
and the grasped object. This supports another approach to planning grasps,
which is to find places where the fingers will stick.

However, one should not be content with simple working cases, guided by ei-
ther heuristics or intuitions based on what people do. The most important lesson
from this research is the value of a general and formal framework which results in
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insights, not discovered or proved by intuitions or heuristics. A lot of the results
and explanations reported in this thesis come directly from the formal framework,
not the other way around.

5.2 Open Problems

There are still a lot of open problems for future research:

¢ Grasps on curved objects. — We have discussed why the independent regions
of contact are harder to construct, when the surface normal is not constant.
We have analyzed the effect of curvature on the stability of grasps in 2D. More
research is needed, especially on finding the independent regions of contact,
where the fingers stick and the grasp is force-closure. It is interesting to show
that such independent regions of contact can be constructed directly from the
shape of the object, and search as in (Hanafusa and Asada 1977, Asada 1979)
is not needed.

¢ Form-closure grasps. — Examples of form-closure grasps we have looked at
are: four frictionless point contact in 2D, and seven frictionless point contacts
in 3D. We have mainly looked at grasps which use the finger tip How about
grasps with frictionless edge and face contacts, or structural restraint from
many contacts on different links of a same finger? These grasps are called
form-closure grasps (Lakshminarayana 1978). Form-closure is a stronger con-
straint than force-closure. It might explain the power grasps found in humans,
(Cutkosky and Wright 1986). A general framework is needed to explain how
humans grasp objects .

¢ Reorienting the object within the fingers. — We have showed that grasps can
be changed by a sequence of stable force-closure grasps. Large manipulations
can be done by devising a sequence of stable force-closure grasps which ro-
tates the object into the desired configuration. Fearing (1984, 1986) shows
the twirling of a bar between three fingers. This twirling is an example of
a sequence of stable force-closure grasps. Small manipulations are currently
done best by treating the object grasped by the fingers as a linked mecha-
nism, assuming no slipping at the contacts (Chiu 1985). These two forms of
manipulations can generate a wide range of motions for the grasped object.
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A.1 Force-Direction Closure With Planar Forces

The necessary and sufficient condition for a set of wrenches W to generate force
with arbitrary direction is:

Theorem A.1 A set of wrenches W can generate force in any direction if and only
if there ezxists a three-tuple of wrenches (W1, W2, W3) whose respective force directions
1,12, 13 satisfy:

e Two of the three directions f,,f,,fs are independent.

o There exist o, 3,~ all greater than zero, such that:
afy, + gf; + 43 = 0

That is, a strictly positive combination of the three directions is zero.

Proof: No reciprocal or repelling translational twist means the system of linear

inequalities described by:
wTts > o (A.1)

has no non-zero solution t = (0,d.,d,)T.

Since a translational twist is a free vector with zero angular displacement, we get
a reduced system of homogeneous linear inequalities in only two unknowns d;,dy.
For such system to have no solution, we must need at least three inequalities, or W
must have at least three wrenches (Kuhn and Tucker 1956, Strang 1976).

Without loss of generality, let’s assume that W contains exactly one such three-
tuple (Wi, W3, W3). After dropping out the angular terms, system (A.1) reduces
to:

fiz Sy d 0
f2z f2y l:d:} 2 0 (A2)

sz f3y 0

There is no homogeneous solution if and only if the 3 x 2 matrix W7 is of rank
2, or if and only if two of the three force directions are non-parallel, Figure A.1.

Assuming that there is no homogeneous solution, the rank of W7T is r = 2.
Any particular solution must be a 1-face (Goldman and Tucker 1956) with a zero
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Figure A.1: A geometrical view of force-direction closure.

product with one row of W T and strictly positive products with the remaining rows
of WT. In other words, the necessary and sufficient condition for the existence of a
particular solution is that the solution has a zero product with one row of W7, and
two non-zero products having the same sign with the two remaining rows of W7, !

Conversely, there is no particular solution if and only if all 1-face vectors per-
pendicular to one row of W7 have products of different signs with the remaining
rows of WT. Concretely, let’s solve for the nonexistence of repelling translational
displacement d reciprocal to the force direction f;:

Sz fly d 0
Joe oy [ d: ] = b1 (A.3)
fsz f3v v N

B1,m are both of the same sign and non-zero.

From the first equation of system (A.3), we solve for d.,d, in terms of fi,, f1,,
and replace them in the second and third equations to get an equation in terms of
the three force directions fy,f,,f;. After simplifications, we get:

(f2x f5)fi + 6if; + fs = 0 (A.4)

The cross product of two 2-dimensional vectors is a scalar, which is the product
of the magnitudes of the two vectors, and the sin of the angle between these two

'In the case the two non-zero products are both negative, we can always negate the solution to
make the non-zero products positive.
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vectors. .

By rotating the subscripts and coefficients, we get two other equations for the
non-existence of repelling translational twist which is respectively reciprocal to the
force direction f;, and f5.

af, + (f3 X fl) f2 + ’72f3 = 0 (A5)

a3f1 + ,Bsf2 + (fl X fz) f3 =0 (A6)

In the above equations, (A.4) (A.5) (A.6), the coefficients a;, 5; must have the same
sign within each equation.

Without loss of generality, let’s assume that the force directions f,,f,,fs are or-
dered counter-clockwise, so that all the pairwise cross products are strictly greater
than zero. Since we have assumed that two of the three force directions are inde-
pendent, the third force direction can be uniquely expressed as a linear combination
of the first two. This implies that the three equations (A.4), (A.5), and (A.6) all
express one unique linear combination, describing the constraint that the positive
combination of the three force directions is null. We conclude that: assuming two
force directions are non parallel, there is no repelling translational twist if and only
if there exist «, 3,7~ all greater than zero, such that:

af1 + ,Bf2 + "7f3 = 0 (A7)
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A.2 Torque Closure With Planar Forces

The following theorem states the analytical necessary and sufficient condition for a
set of contact forces to generate clockwise and counter-clockwise torques.

Theorem A.2 A set of planar forces W can generate clockwise and counter-
clockwise torques if and only if there ezists a four-tuple of forces (W;, W2, W3, W,)
such that:

o Three of the four forces have lines of action that do not intersect at a common
point or at infinity.

o Let fy,...,f be the force directions of Wy,...,Wy. Let P12 (resp. Pas) be the
point where the lines of action of W, and W, (resp. W3, and W) intersect.
There exist a,3,~,6 all greater than zero, such that:

Pss — P12z = *(af; + 1)
= F(vfs + 6fy)

Proof: (The proof is quite long and has the same flavor as the proof of Theo-
rem A.l. On first reading, the reader is advised to skip this proof and return to it
later.)

No rotational twist reciprocal or repelling to W means the system of linear
inequations described by:

wTts > o (A.8)

has neither homogeneous nor particular solution. t = (65,8,7,,—6.7:)T is the in-
finitesimal rotation.

We get a system of homogeneous linear inequations in three unknowns. For such
a system to have no solution, we need at least four inequations, or four wrenches.
Without loss of generality, we assume that W is exactly one such four-tuple of
wrenches.

There is no homogeneous solution if and only if the 4 x 3 matrix W7 is of rank
3, or if and only if there is a 3 x 3 block from W T that has non zero determinant.
Assume that the first three rows form such block. The determinant is:

fiz fiy Pix i
det (W1, Wq,W3) = | fo, fo, P2x B2 (A.9)

faz f3y ps x f3

By expanding the determinant along the third column, we get:

det (WI,WQ,Ws) = (pl X fl) (f2 X f3)
+ (p2 x f3) (fs x f3) (A.10)
+ (ps x f3) (f1 x f2)
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/Pg;

w3

/ Pu

Figure A.2: A geometrical view of torque closure.

From the above equation, if the three lines of force are parallel with each other, then
the three cross products of the force directions are zero, and so is the determinant.
Let’s assume that they are not all three parallel, and that the lines of action of
Wi, W, intersect at p;;. We can choose P12 as the origin of our reference frame.
With this choice of origin, the moment components of the wrenches w;, W, become
zero, and so the first two terms in right hand side of equation (A.10) drop out. The
determinant reduces to: ‘

det (WI,WZ,W;;) = ((p3 — plz) X f3) (fl X fz) (All)

The determinant can be zero if and only if the first cross-product in equa-
tion (A.11) is zero, or if and only if the line of force of W3 also goes through py;.
We conclude that there is no free rotation if and only if both the followings do not
hold:

e The three lines of force intersect at a common point. In this case, the object
B can freely rotate about the z-axis going through this common point.

e The three lines of force are all parallel. This case corresponds to a free trans-
lation perpendicular to the direction of the three forces. We can think of this
translation as a rotation with point of rotation at infinity.

Assuming that the 4x3 matrix W7 is of rank 3, there is no particular solution
to system (A.8) if and only if any 2-face vector orthogonal to two rows of W 7T
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has products of different signs with the remaining rows of WT. Let’s solve for the
non-existence of rotational twist, reciprocal to the first two wrenches w,,w,, and
repelling to the two last wrenches W3, Wy:

fiz fly p1 x fi bor 0
f2: f2y P2 X f2 sy 0

—6,7, = A.12
Jsz fay P3 X f3 5 r Yo ( )
faz fay Pax §4 z —ég

~o, 60 are both of the same sign and non zero.

Without loss of generality, let’s factor out é,. Let P,, (resp. Ps4) be the point
where the lines of force of W;,W, (resp. W3, W,) intersect. From the first two
equations, we solve for the point of rotation p:

P = rig ((p2x )i~ (pyx 1)) (A.13)

= P12

The above equation makes sense: the point of free rotation is the point where
the two lines of force intersect. Similarly, from the third and fourth equations of
system (A.12), we solve for the instantaneous center of rotation p:

P = rog ((Pexf)f — (psx fo)f)

+ f—f_ai . (vofs + bofs) (A.14)
= P34 + ﬁ (vofs + 60f4)

Eliminating p from the two equations (A.13) (A.14), we find a constraint equa-
tion with the following form:

Piz—Pss = (mfs + 611y) (A.15)

where 7;, 6, have both the same sign and non zero.

By rotating the numbers 1,...,4 and the coefficients a,...,§, we get the equa-
tion expressing the nonexistence of repelling rotational twist t° which is reciprocal
to the wrenches w3, Wy:

Pt —P1z = (aufi + Bify) (A.16)

We also get four other equations for the other two pairings ((W;,W3), (W2, Wy))
and ((WI,W4), (Wz,\i/:;)):

P1s— P2« = (B2f2 + 62fy) (A.17)

P2« — P13 = (azfi + v.f3) (A.18)
Pis — P2z = (Bsf: + v3fs) (A.19)
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P2z —Pus = (asfy + 63f4) (A.20)

We use the fact that the points Pyq, Pj5, P14 are on the same line of action of
wrench Wy, etc ... to prove that the above six equations (A.15)—(A.20) are satisfied
if and only if all the coefficients ¢, . .., are of the same sign. We are able to prove
a stronger result which states that if one pair of equations like (A.15, A.16) holds,
with coefficients ey, ..., é; all of the same sign, then the other two pairs (A.17, A.18)
and (A.19, A.20) hold, and vice versa. See Lemma A.1.

With Lemma A.1, we conclude that there is no rotational twist repelling to W if
and only if any of the 3 pairs of equations (A.15, A.16), (A.17, A.18), (A.19, A.20)
hold. Namely, if and only if there exists a pairing such as [(W;,W,), (W3, W,)] with
a, 3,7, 6 all greater than zero, such that:

P3¢ — P12z = t(af, + G1)

(A.21)

Particular cases arise when the pairing ((W;,W2), (W3, W,)) has W, parallel to
W32, or W3 parallel to W,. We can avoid handling these particular cases by consider-
ing another pairing like (W, Ws), (W2, Wy)), or ((W1,W4), (Wq, Ws)). If we assume
that the four forces in W span the space of all force directions, then we never get
three forces that are parallel with each other. So there is always at least two pair-
ings that work to prove the nonexistence of rotational twists repelling to W if the
grasp has torque closure. B

To complete the discussion of this section, we state and prove Lemma A.1 which
allows us to consider only one pairing instead of all three possible pairings:

Lemma A.1 Let four lines with directions f;,f,, f5. £, intersect pairwise at sit potnts
P12,...,P34-

P —P1z = (aufy + 5 f,)

= —(mfs + & f,)

- = fi + 7. f
P24 — Pa3 (az 1 Y2 3) (A.22)

= —(6:f, + 6 fy)

P2s— P = (osfy + 6314)

= —(Bsf; + vsf3)

The above 6 equations all have Greek coefficients with the same sign within each
equation (not necessarily across all siz equations) if and only if o, B:,7:,6; all have
the same sign for either i = 1, or 2, or 3.

Proof: Let’s assume that we have the first two equations:

P3¢ — P12 = (anfy + O fs)

(A.23)
= —(nfs + &1y
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with a; > 0, 8; > 0, and 116; > 0. We’ll prove that the four coefficients a3, 81,1, 6;
are all greater than zero, that is, we have the scenario illustrated in Figure 7. We
compute the intersection points pss and pi4:

P2s = P12z + H f,
_ 1 x f
= P3¢ + m f3

: ¢ (A.24)
P14 = P12z + ﬁﬁ f,
_ 1 x f
= Pu + 5 , f,
where 1 = ps4 — p12. Next, we compute the expression for pz3 — pi4:
Ps-pu=-nmpifn + 6 pXhy )
A.25

_ f; x f _ f; x f.
R T AN o
Expressing pzs — P4 in terms of linear combination of (f;, fs) is difficult. Instead
of proving that there exist 83,~; non zero and of the same sign such that:

P23 — P = B3l + v3f;

we prove the equivalent: the vector p,3 — p14 has opposite sign cross-products with
the vectors fy, fs, i.e:

((P2s — P14) x £3) ((P2s —P1a) x f5) < O
From equations (A.25), we get:

(f1 X fz)z(fg, X f4)2
(fy x £)°

(P23 — P14) X £2) (P2s—Pua) x ) = —Bim (A.26)

We deduce that the necessary and sufficient condition for the two last equations
of (A.22) to hold is that 8, be of the same sign with ~,. We extrapolate this partial
proof and argue that:

o [=] The fact that the six equations of (A.22) hold implies that a,...,6; all
have the same sign for 7 = 1, or 2, or 3. We have proved this implication for
t = 1 using Equation (A.26). Similar proofs exist for i = 2 and 3.

¢ [«<] From Equation (A.26), if ay,...,6, all have the same sign then:
P23 — Py = Bafy + 3fs

with 833 > 0. Equations similar to (A.26) allow us to deduce that all the six
equations in (A.22) must hold.
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A.3 Stiffness Matrix When the Fingertips Stick

Figure A.3 shows a finger F; contacting with friction at point P,. We assume that
there is no dissipation of potential energy in grasp, so the point of contact P, is
constant. As the object is displaced by (z,y,6), the point P; is mapped into its new
position P, given by:

(@B (e (]

When the grasped object is moved away by (z,y, 8) from its equilibrium, the lin-
ear spring k; is compressed by an amount equal to the projection of the displacement
P; P/ onto the line of action of spring k;:

Oy (Ia Yy, 0) = 0O t+ (p{, - pt) * ki
= 0Oj + ((Ca - 1) Diz — Sapiy + I) Ci (A28)
+ (50 Diz — (00 - 1) Piy + y) S;

The first partial derivatives of the compression o, give the spatial vector of the
spring k;. The equilibrium equation is exactly the same as Equation (3.4). The
second partial derivatives are the same, except 8%0;/86?, which has a — sign:

820','

7 —pi - k; (A.29)

The stiffness matrix of the grasp is the same as in Equation (3.8), except that the
angular stiffness in Kp has a — sign:

(A.30)

oS o O
o O O
- O O

Kp = 'Z Jio (pi : ki)
1=]

Kp therefore depends on whether the finger tips stick, or slide without friction
on the grasping edge, and on whether the grasp is inside/out or outside/in. The
general expression of the position-dependent matrix Kp is:

(A.31)

o O O
o © O
= O O

Kp = =Y fi (pi - ki)
1=1

The sign is + (resp. —) if the fingers slide (resp. stick) on the grasping edges of the
object.
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