Technical Report 906

Learning by
Failing to
Explain

Robert Joseph Hall

MIT Artificial Intelligence Laboratory



Tius blank page was inserted to preserve pagination.




Learning by Failing to Explain

by
Robert Joseph Hall

© Robert Joseph Hall, 1086 |
© Massachusetts Imtitmam 1986

This report is a revised version gf o,, Um;
Rules, a thesis submitted to the Department
Science in December m in pertial fub




Learning by Failing to Explain

by
Robert Joseph Hall

ABSTRACT:

Explanation-based Generalization requires that the learner obtain an explana-
tion of why a precedent exemplifies a concept. It is, therefore, useless if the system
fails to find this explanation. However, it is not necessary to give up and resort
to purely empirical generalization methods. In fact, the system may already know
almost everything it needs to explain the precedent. Learning by Failing to Ezplain
is a method which is able to exploit current knowledge to prune complex prece-
dents, isolating the mysterious parts of the precedent. The idea has two parts: the
notion of partially analyzing a precedent to get rid of the parts which are already
explainable, and the notion of re-analyzing old rules in terms of new ones, so that
more general rules are obtained.
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Chapter 1

Introduction and Overview

v

A primary motivation for learning from precedents is the intuition that it is easier
for a domain expert to present a set of illustrative examples than it would be to come
up with a useful set of rules. Explanation-Based Learning Methods use explanations
of why a precedent exemplifies a concept in order to find a weaker precondition for
which the explanation of concept membership still holds. This weaker precondition
describes the generalization of the precedent. Mahadevan|9] has applied this to logic
design. Smith, et al[17], have applied explanation-based techniques to knowledge
base refinement. Mooney and DeJong have applied it to learning schemata for
natural language processing[13!. Winston[21] abstracts analogy-based explanations
to form rules.

This notion of using a domain theory to guide generalization is a powerful way
of finding justifiable generalizations of concepts, in contrast to the unjustified leaps
made by purely empirical methods. Unfortunately, the problem of explaining things
is hard; after all, theorem proving is a special case of it. Thus, any method which
tries to learn in complex domains is bound to fail at explanation a good part of
the time. There are at least two reasons why an explainer can fail: the theory
is incomplete, so that there is no explanation; or the explainer simply can’t find
the explanation, even though it exists. The latter case is not just mathematical
nitpicking: the complexity of VLSI circuits and the rich set of optimizations possible
creates large problems for any circuit-understander. ,

On the other hand, it is seldom the case that a learner knows absolutely nothing
about an example it fails to explain; frequently, a small mysterious thing comes
embedded in a large, mostly well-understood example. For instance, consider a
multiplier circuit where the only difference between its design and a known one is
in the way one particular XOR gate is implemented. It would be a shame to retain
the complexity of the entire multiplier when the only new structural information
was in one small subdevice. Rather than just reverting to completely empirical
techniques when the explainer fails, the learner needs some method for focusing
attention on the new information contained in the precedent. That is, the efficient
student should, as much as possible, know what it is that he doesn’t know. The
student who is able to say, “I don't understand step 5” learns more quickly (and
less painfully) than the student who is only able to respond, “Huh?” This notion of



pruning away parts of the precedent which are explainable is what I call Learning
by Fasling to Ezplain'. It is a complementary notion to explanation-based learning:
the former operates precisely when the latter fails, and when the latter succeeds
there is no reason to try the former.

There are at least two techniques which comprise Learning by Failing to Explain:
the first is where the learner analyzes the given precedent as much as possible, then
extracts the mysterious part as a new rule (or pair of rules). I call this Precedent
Analysis. The second technique uses new rules to re-analyze old rules. That is,
Precedent Analysis needn’t be applied only to precedents; there are cases where it
is beneficial to have another look at (possibly over-specific) rules found previously.
This is called Rule Re-analysts.

Methodological Note

This work is not a study of human learning or human designing. While being
motivated in some cases by intuitions about human behavior, it does not claim to
model it in any way.

1.1 Overview

The main goal of this work is to study how current knowledge may be used to
constrain the generalization of examples. A second goal of this work is to explore
the representation and use of Design knowledge. This is both because design is
interesting in itself, and because it is important to know that a learning system is
acquiring useful knowledge. Thus, the domain of the current system’s learning is
design knowledge. In particular, the system learns structure/function knowledge,
that is, knowledge about which structures implement which functions. It is agreed
at the outset that this is not all the knowledge necessary to succeed at design;
however, it is argued below that this type of knowledge can be usefully applied
in concert with other types (for example, search control knowledge and analytic
knowledge) to produce interesting design behavior.

The system uses a Design Grammar to represent structure/function knowledge.
As a formal system, a Design Grammar is defined similarly to a string grammar,:
with the difference being that the “elements of the language” are not strings (t.e.
linear graphs) but arbitrary graphs which represent functional blocks and intercon-
nection. The learning system learns Design Grammar rules from precedents.

A Design Grammar is an interesting representation of structural design knowl-
edge both because it is learnable from examples via the methods described here?,
and because it enables four interesting design competences:

e Top-Down Design: the ability to take a relatively high level specification of
the function of a device and refine it successively by choosing implementations
of subfunctions, then refining the refinement, and so on.

!Note that “failing to explain” connotes something stronger than “not explaining.”
2...and presumably other methods as well



e Optimization: the ability to take one device and replace a piece of it with
some other piece so that the resulting device is functionally the same.

e Analysis: the problem of establishing a justification for why some device per-
forms some given function.

e Analogical Design: the ability to solve a new problem in a way similar to some
already solved problem, or by combining elements of the solutions to many
old problems.

The current system has been run on examples from two actual design domains.
The two experimental domains I've chosen to study are CMOS world and Gear
World. The former is a simplified version of a digital logic circuit domain in which
the basic building blocks of devices are CMOS transistors. (Issues such as speed,
area, and cost are not taken into account explicitly.) There are two types of tran-
sistors: the PTRANS takes three inputs and acts like a negative-active switch (if
the “gate” input is 0, then the “source” and “drain” outputs are connected by a
wire. Otherwise they are unconnected). The NTRANS also takes three inputs but
is active when its gate is connected to 1. These combine with power and ground
connections to yield Boolean functions.

The Gear World is a simple version of the realm of gears, sprockets, chains
and shafts. Gears are taken to be circles with infinitesimal teeth that always fit
together. Sprockets likewise are circles with infinitesimal teeth that always fit into
the chain. These may be mounted on shafts, possibly more than one to a shaft.
They combine functionally to produce angular speed ratios between input shafts
and output shafts.

The essence of the learning mechanism to be presented here, Learning by Failing
to Explain, is that the learner should not just accept something it can’t understand
as a new thing to remember; rather, it should try to understand as much of the
mysterious thing as possible and then formulate a conjecture about what is new.

Learning from an example design is a matter of deciding what previously un-
known techniques were used by the designer. The approach taken here is to par-
tially reconstruct the problem solving process used by the designer by recognizing
instances of known techniques, then conjecturing that the difference between the
partially reconstructed solution and the entire solution can be explained by a single
transformation. As will become apparent later, this last conjecture step is based
solely on syntactic similarity and can lead to false conjectures.

In Design Grammar terms, the process of reconstructing the design process is
the problem of parsing the design. Thus, the task of the system is to parse the
example “as much as possible.” This leads to the notion of a mazimal partial parse
and a heuristic algorithm for finding one.

Examples may actually be constructed using more than one technique which is
unknown to the learner. Thus, the maximal partial parse produced by the learner
will not go as far toward understanding the precedent, leaving a conjectured rule
which really consists of many techniques applied together. This rule is clearly not
as general as the collection of single-technique rules would be. The system has no
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way of inferring the more general rules. Later on, however, after analyzing more
precedents, the system may be able to go farther in partially analyzing the old
precedent, thereby obtaining a more general rule. On the other hand, the system
has already analyzed some of the old precedent, so this needn’t be redone. Thus,
the rule derived from the old precedent is treated as a precedent and analyzed using
the new rules. This process is known as Rule Re-analysis. I will show in a later
Chapter that this process is more powerful, in that it leads to more general rules in
fewer precedents, than just using Precedent Analysis alone.

1.2 Summary of the Main Ideas

In the pages to follow, I will

define the notion of Design Grammar.

show how the four competences arise from having knowledge encoded in a
Design Grammar.

explain Precedent Analysis, wherein the learner first applies its current knowl-
edge to a precedent to deduce the essence of what is new about it, then makes
a plausible conjecture as to a new design rule.

explain Rule Re-analysis, wherein the system makes good use of examples by
using new rules to re-analyze old rules.

give a sufficient condition to ensure that the rule generated is true independent
of context.

explain the matching algorithm whose good performance is crucial to recog-
nizing previously known substructures: subgraph isomorphism via constraint
propagation.

11



Chapter 2

Scenarios

This Chapter presents scenarios illustrative of the two techniques which comprise
Learning by Failing to Explain. Due to the forward reference problem, it may be
advisable to skim this Chapter on first reading. It should be possible to get the
general idea without understanding the details of the representation.

2.1 A Note on Diagram Interpretation

Many of the Figures in this document were produced by the system which imple-
ments Learning by Failing to Explain. In order that the reader can understand
them, it is important to understand how the program produces them.

The system has only a rudimentary method of placing graph nodes and routing
arcs between them. The scheme it uses is to pretend that the graphs are all forests,
with data flowing upward from leaves to roots. (See Figure 2.1 for an example.) It
therefore places all output connection points on the highest row (those numbered
6 and 7), with the functional blocks driving those on the next row down (those
numbered 11 and 9 in the left graph and 12 in the right graph), the connection
points input to those on the next row, etc. Forest edges are drawn between the
nodes so placed. The direction of dataflow along an arc goes toward the end of the
arc closest to the black dot!. Any non-forest graph will have edges which either
flow downward or flow between children of different roots (in Figure 2.1, node 6 in’
the right graph is both an input and an output to the circuit, so it has a non-forest
edge flowing down into 14). These are added as an after thought by the drawing
program. There is no attempt to route arcs around obstacles; hence, there may
occasionally be labels overwritten by other labels.

The labels in the boxes indicate what type of node the box represents. Any label
prefixed by “FB-” represents a functional block of the type following the hyphen.
Any label which is just a number is a connection point (always of type bit in this
implementation). Arc labels appear midway between the endpoints of the arc. Arc
labels are prefixed by their input/output type. Any box with just a period in it
should be ignored:; consider it, together with the two arcs incident with it, to be

! There is a small black dot 90% of the way from one end of an arc to the other.

12



Figure 2.1: Precedent Analysis Scenario Precedent: the left graph is a high-level de-
scription of a one-bit incrementer with delayed output; the right graph is a low-level, -
optimized description.
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one arc of the same type as the incident arcs (their types will always coincide).
These nodes are put in for reasons having to do with unimportant details of the
implementation.

Highlighted nodes (ones with thick boxes) indicate isomorphisms and correspon-
dences between the two graphs. That is, the sets of highlighted nodes in each of
the two graphs correspond in some way, usually in being isomorphic subgraphs. (In
Figure 2.1, the highlighted nodes are the circuit inputs and outputs.)

Function Names. Most of the functional block names have their usual meanings
from logic, e.g. NAND. MUX stands for the multiplexor block, which has three
inputs and one output. If the select (s) input is 0, then the output is equal to the
value on the a0 data input. If s is 1, then the output is equal to the value on the
bl input.

ADDI1 stands for a one-bit addition cell with carry input and carry output. That
is, it has three inputs (a, b, ¢z} and two outputs (s, co). The s output has the value
a + b+ ¢i mod 2, and the co output has the value 1 if at least two of the three
inputs are 1, 0 otherwise.

ADD?2 stands for a two-bit addition cell, likewise with carry in and carry out.
This implements two-bit, twos-complement addition.

PG stands for a pass gate block. (This corresponds to a CMOS transistor.) It
has two inputs and one output, where the values come from the set {0,1,X}, X
standing for high impedance. When the ¢ input is 1, the d output is equal to the
value on the s input. When the g input is 0, the d output has the value X.

Z stands for a single unit of time delay. (The text may sometimes refer to this
as a Z7! block.) Its single output is equal at time ¢ to the value of its single input
at time ¢t — 1.

CLK1 and CLK2 are functional blocks representing clock generators. CLK1
represents a phase 1 clock signal, and CLK2 represents a phase 2 clock signal.

2.2 Precedent Analysis Scenario

Suppose the Learning by Failing to Explain system is given an initial knowledge-
base consisting of the (CMOS World) Design Grammar of Appendix D. This means
it has, a priori, those rules available for analyzing precedents.

Next, suppose the system is shown the precedent in Figure 2.1. A precedent
consists of two different descriptions of the same device, together with the variable
correspondences. The variable correspondences are indicated by highlighting the
nodes in the Figure. The Figure is somewhat ambiguous in that it is not explicitly
indicated which node on the right corresponds to which node on the left. This was
done to reduce clutter on the diagram. The system knows this information; it is
simply not shown in the diagram. In some cases, the diagram may be augmented
by hand to indicate the actual correspondences.

Figure 2.1 represents two different descriptions, the left one high level and the
right one low level, of the same device. This device is a “one bit incrementer with

14



Figure 2.2: An Equivalence Derived from the Precedent Using Grammar Rules: the
system has deduced, through grammar derivation, that the left graph is a statement
of the function of the right graph. The highlighted subgraphs are deemed to perform
the same subfunctions in the two graphs.

delayed output.” Such a device might be found as a bit slice in an incrementer
circuit, used for incrementing the program counter in a CPU.

The left hand graph is a high level functional description of the device: it in-
dicates that the single bit input is to be added, using the one-bit add cell, to the
constant ONE, with carry input ZERO. The result bit is then fed through a delay
box (the FB-Z box).

It should be clear that the system can not fully explain, in terms of a grammar -
derivation using the rules in Appendix D, why the right hand graph implements
the same functionality as the left hand graph. One reason is that there are no rules
known to the system which involve an FB-Z box in any way.

On the other hand, it can derive that the left hand description in Figure 2.2
is functionally equivalent to the left hand graph in Figure 2.1. This involves a
somewhat lengthy derivation of 25 steps. See Appendix E for the derivation and
further examples of the implemented system’s behavior.

Once the system has reached this point, the reasoning is as follows. Notice that
Connection Point 4 in the left graph of Figure 2.2 is driven by the syntactically
identical function of the corresponding inputs as Connection Point 5 in the right
graph. Since the overall functions of the two graphs are the same. and these two
connection points are constrained always to be equal, the subdevices corresponding

15



Figure 2.3: Rule Resulting from Precedent Analysis

to the complementary subgraphs of these devices must compute similar functions.
The system therefore extracts those two subgraphs and induces a new grammar
rule. The new rule is shown in Figure 2.3.

This is in fact a correct, new rule which represents an implementation rule for
a delay function box.

2.3 Rule Re-analysis Scenario

Rule Re-analysis is a simple idea. This section illustrates it with a simple example.
A later Chapter presents some of the subtleties involved.

Suppose, first of all, that the system is without any rules. Suppose, next, that the
system is presented first with the precedent shown in Figure 2.4. (This represents
two descriptions of the function AND(NOT(al), a2, a3).) Since the system has no
rules, it can not analyze this precedent; that is, it can not apply any derivations to
it in order to construct an explanation. It therefore simply stores the precedent as
a new rule. The system now has one rule.

Suppose that the system next gets the precedent shown in Figure 2.5. (This
is simply an implementation rule for NOR.) Clearly, neither side of the system’s
only rule (the one corresponding to the first precedent) is a subgraph of the second
precedent. Therefore the system can not explain the second precedent, either.

This is where Rule Re-analysis enters the picture. If the system were now to

16



Figure 2.4: First Rule Re-analysis Precedent: the graphs are functionally equivalent
to a three-input AND with one input complemented.

reconsider the first precedent, which is now a rule, it could succeed at Precedent
Analysis. In fact, with a single application of the second rule, it could derive the
equivalence shown in Figure 2.6. The partial match deduced is shown highlighted.
Precedent Analysis would then extract the more general NAND rule shown in Figure
2.7. It should be obvious that the rule set so obtained, containing the NAND and
NOR rules in addition to the rule corresponding to precedent 1, is more desirable
than that without the NAND rule, because it allows the derivation of strictly more
equivalences.

This method of using Precedent Analysis to re-analyze previously mferred rules
is the essence of the technique of Rule Re-analysis.
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Figure 2.6: Intermediate Derived Equivalence: using Precedent Analysis, the system
deduces this intermediate equivalence by looking back at the rule concluded from the.
first precedent (which was just that precedent) and applying the second precedent.
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Chapter 3

Design Grammars

A Design Grammar is intended to encode knowledge about structure and function.
Specifically, it records different implementations of given functions.

A Design Grammar consists of a set transformation rules, which associate one
description of a device with another. It is somewhat reminiscent of a context-free
string grammar in that it consists of rules whose left-hand side is a non-terminal
symbol and whose right-hand side is something consisting of symbols that may be
either terminals or non-terminals. There are two important differences: the right-
hand sides of the rules in a design grammar are graph structures instead of strings,
and the rules may be used in either direction in producing a terminal graph.

Appendix D has an example of a Design Grammar actually used by the prototype
system.

3.1 Some Justification of This Approach

As in most work in the field of Artificial Intelligence and certainly all work in
Machine Learning, the researcher must attempt to cleave a problem into a tractable
chunk that is small enough to work on, yet that may still combine with other work
to accomplish the entire goal. Thus, every Al researcher makes an assumption
about how the larger problem may be decomposed and then picks one subgoal to
work on. This work is no exception. It is the purpose of this section to make these
assumptions explicit and to justify them.

3.1.1 Separating Out Structure and Function

Design is a vast Al problem. Consider all the factors that go into designing some
device: say a gear train that transfers power in a high performance machine. The
specification of the problem begins with stating the desired gear ratio between
input and output. But in addition, the whole device must fit into some particular
(possibly very strange) space. It must not break under vibrations of less than a
given amplitude. 1t must stand up to temperature extremes. It must not cost too
much, and so on.



In this thesis, I choose to separate out the subproblem of generating candidate
implementations of functional specifications. (In the gear train example, this would
correspond to generating a set of possible structures that give the correct transfer
ratio.) The other subproblem, the one I don’t deal with directly, is searching this
space of candidate implementations. Epistemologically speaking, the idea is that
knowledge about structure and function, t.e. what can itmplement what, can be
separated from knowledge about controlling search through the space of implemen-
tations. The system encodes knowledge of structure and function in a grammar
formalism, and learns the grammar rules from precedents.

3.1.2 A Precedent in the Literature

Ressler{15] has taken a similar approach in his thesis on op-amp design. He showed
how knowledge about how to build operational amplifiers that meet certain speci-
fications can be encoded in a grammar structure.

His program had other knowledge that helped constrain the search among the
different types of amplifiers generated. There was a parameter analysis portion of
the program that looked at a candidate design choice and tried to see if it could
possibly satisfy the specs. If not, then yet another source of knowledge, his failure
rules, took over to suggest where next to look for a solution.

This shows how knowledge of structure and function can be separated from
knowledge about controlling search. His grammar generates a space of candidate
designs that are indexed by certain specifications (my system uses only functional
specifications, where his uses other considerations). The analytical and empirical
(failure) knowledge is then used to guide the search.

3.1.3 How Other Knowledge Might Be Added

This work may be viewed as a generalization of the epistemological idea contained
in Ressler’s paper. The idea is to encode knowledge of structure and function in a
grammar formalism. Then other knowledge, which can help guide the search, may
be added as it becomes available. _

Ressler’s analytical component might be seen as a kind of “static evaluator,” a
la chess-playing programs. So one possible way of adding knowledge to the system
would be to develop a lookahead-and-evaluate paradigm, where the system tries all
possibilities out to a certain depth of search, then evaluates each resulting graph to
see which could lead to successful designs. It throws out those that it can show are
inferior.

Another method for adding knowledge would be to incorporate the knowledge
required for dependency-directed backtracking!. An example of this type of knowl-

"dependency-directed backtracking is a technical term that is meant to denote the paradigm where
whenever a search path ends in failure, only those decisions are withdrawn that had some part in
causing the failure; this is as opposed to automatically withdrawing the most recent decision made.
This last technique is referred to as chronological backtracking

22



edge would be a rule like “if the device isn’t durable enough, try replacing the
belt-drive with gear meshes.” This knowledge corresponds to Ressler’s failure rules.

Analogical methods might also be added, like noticing when a problem is similar
to a solved problem and using syntactic similarity to justify trying certain paths
over others. For example, one might reason that the current device needs to be just
as durable as a certain precedent that used only gears (for that reason), so restrict
the search to solutions that only use gears and not belt drives or pulleys.

3.2 What a Design Grammar Is

The purpose of this section is to make the definition more precise. The subsequent
Section will deal with how to use a Design Grammar.

3.2.1 SvsFand T vs NT

A Design Grammar is a special type of graph grammar. See Appendix A for the
relevant definitions. The goal of the learning component of the system is to construct
a graph grammar that encodes structure and function knowledge in such a way
that the system may use the grammar (possibly together with other knowledge)
to generate efficient, functionally correct designs. Rather than get embroiled in
the controversy about what is the real and true difference between structure and
function, I avoid defining those terms. Instead I will appeal to the intuitive meaning
of each: structure is roughly how to build something, and function is the set of
interesting constraints that something enforces between its inputs and outputs.

I will, however, distinguish between two different senses of the word “function.”
(These are my definitions, which may or may not correspond with the reader’s
intuitive definitions.) A behavior is a mapping from a set of inputs to a single
output value, defined on every combination of input values. This is distinguished
from a role: a mapping of inputs to sets of allowable outputs. Note that a
behavior can be identified with a particular kind of role, namely a role with all
singleton images. Also, for example, a function about whose value on input a we
don’t care is really a role that sends a to the set of all possible values.

A role ry satisfies a role r; if and only if the value-set of r, for a given input set
is a subset of the value-set of r, on the same inputs. If role r; has multiple outputs,
r1 must put out at least the outputs of r,.

For example, an AND gate has a unique behavior that maps pairs of bits to
their boolean product. It satisfies many roles, however. It can, for example, fill the
role of carry circuitry in a two bit adder, if the adder’s input space is restricted to
the case when one of the inputs is the constant 01. This is because with such a
restriction, the carry signal is high exactly when the other input number is 3, which
is exactly when the AND of its bits is 1. Note that if the other input to the adder
were 2 instead of 1, then AND would be insufficient to fill the role of the carry
circuitry. :
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A functional block represents a role; it is the black box form of it. That is, a func-
tional block is a box which takes in certain inputs and puts out values constrained
by the role to lie in certain sets of allowable outputs.

Design problems are of the form, “using elements from set E, implement role
f.” The elements of the set E are things like transistors, wires, gears, or chains:
directly usable, known operators. This is as opposed to the role f, which is more
like square root(z), multiply(a,b), or compile-Fortran-program (P)2. Now, it may be
that the set E contains something called a “multiplier” which in fact implements
that role, but I nevertheless distinguish between the operator, which comes from
the set E, and the role, which does not.

E may also contain directly implementable combination operations, like “weld
together” or “connect with wire.”

Note that in describing the function of something it may be impossible to de-
scribe it with one function name from the vocabulary; it might be necessary to
compose functions. For example, the function (2z + 4y)(3z — 6) is represented in
just such a manner as the composition of multiplies, adds, and subtracts. It may
be, however, that there is not necessarily any variable whose value represents the
intermediate value (2z + 4y}, so representing the function requires another rep-
resentational primitive, the connection point (cp)®. A cp can be thought of as a
“variable” in that it represents a value (hence it has a type), except that there need
be no physical (implementational) counterpart to it.

The role f stands for constraints between inputs and outputs. These inputs
and outputs must be measurable somehow to be useful, thus they must have some
structural manifestation. I will call a measurable (hence implemented) cp of an
E-element, which is constrained by the role of devices that contain it, a variable.

I define a terminal element to be something from the set E. I define a non-
terminal element to be either a functional block name like “plus”, or a cp.

3.2.2 Base Representation

At the lowest level, structure/function knowledge is represented in a kind of seman-
tic net. In particular, a functional or structural description is a graph consisting of
typed nodes and typed links. Each terminal element has a representation as either a
node or a link. A terminal graph is a graph that consists only of terminal elements.
For a more formal definition of graphs, see Appendix A.

Any functional block or cp is represented by a non-terminal node of appropriate
type. A functional block has arcs emanating from it. These arcs correspond to

2The role of a compiler is not a behavior, in general. Given a source program, we will accept any
of many possible behaviorally equivalent results.

>The attentive reader may have noted that the notion of composition is unclear with regard to
general roles. Define the composition of two single-input, single-output roles to be the unique role
which maps any member of the domain of the first role to the union of the output sets of the second
role, the union being taken over all elements of the output set of the first role on the given input.
This definition reduces to the familiar one when both roles are behaviors. Extend this in the natural
way to multiple-input. multiple-output roles.
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Figure 3.1: Terminal graph representation of gear train structure: this indicates
that there are sprockets of radii 2 and 3 wrapped by a chain and mounted at level
1 on shafts at (3,5) and (7,—-2). Also, there are two gears, one of radius 1 at level
2 on the second shaft, and one of radius 4 at level 2 on a shaft at (12, —2).

“ports”. Each type of port has a unique arctype associated with it. The arc points
in the direction of data flow. Note that there may be more than one port of a given
type.

Terminal graphs are intended to represent the lowest level of structural descrip-
tion of some device. Graphs consisting only of non-terminals represent the behavior
of the device. There are hybrid graphs, and these have both structural and func-
tional aspects. Typically, a device will have many levels of behavioral (or role)
description, arranged hierarchically.

Note that it may be convenient to represent classes of structural or functional
elements by a single node type with a parameter whose value distinguishes the
members of the class. The class of gears, for example, is conveniently represented as_
a “gear” node with a “radius” parameter. Therefore it is possible to represent a class
of devices with a single graph that contains parameterized elements and relations
among the values. See Figures 3.1 and 3.2 for examples of graph representations of
structure and function of a device.

3.2.3 Design Grammar Rules

As stated above, a Design Grammar consists of a set of rules. Each rule is of the
form
LHS — RHS

where LHS (Left-Hand Side) is a non-terminal graph (graph with exactly one non-
terminal node) representing a behavior of the function denoted by the non-terminal.
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Figure 3.2: Graph representation of gear train function: this indicates that the
angular speed of the shaft at (12, -2) is one-sixth as large as that of the shaft at
(3,5).

and RHS (Right-Hand Side) is a graph representing some implementation of the
functional block. It represents that combination of the behaviors of its constituents
compatible with the semantics of the connections. It therefore also represents an
overall behavior.

Along with this comes an association between the input and output variables of
the LHS and those of the RHS, which indicates which variables of the RHS corre-
spond to which variables of the LHS. Thus, I am interpreting inputs and outputs
as the connection points of the graph grammar rules. This needn’t be a one-to-one
correspondence®.

It is not required a priori that the LHS represent the same behavior as that rep-
resented by the RHS. It is also useful to have rules around that associate things that
only share some useful role, rather than an entire behavior. Thus, an implementa-,
tion of “double-the-input” might be one that can only double integers between 0
and 15. These are not equivalent, because. the implementation can’t handle non-
integers or too big or too small integers. But the role which is defined only on the
range 0..15 might be a very useful one.

I will say that a grammar rule is equivalence-preserving if the LHS represents
the same behavior is the RHS. See Figure 3.3 for an example of a grammar rule that
does not preserve equivalence, and Figure 3.4 for an equivalence-preserving rule.

*e.g. one implementation of the non-terminal “buffer” (output — input} is simply a variable to
which all connections are made. Thus both the input variable of the buffer and the output variable
correspond to the same variable of the implementation.
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Figure 3.4: An equivalence-preserving grammar rule: this is true in all contexts.
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3.2.4 Derived vs Primitive Rules

Consider the NAND rules in the Design Grammar of Appendix D. NAND has two
equivalence-preserving implementations: NOT (AND (z,y)) and OR (NOT (z),
NOT (y)). It would seem, at first glance, that these are two independent rules;
however consider the following derivation.
NAND (z,y) = NOT (AND (z,y)
NAND, Version 1
= NOT (AND (BUFFER (z), BUFFER (y)))

BUFFER, Version 5
NOT (AND (NOT (NOT (z)), NOT (NOT (y))))

BUFFER, Version 6
= NOT (NOR (NOT (z), NOT (y)))

NOR, Version 2
= NOT (NOT (OR (NOT (z), NOT (v))))
NOR, Version 1
= BUFFER (OR (NOT (z), NOT (y)))
BUFFER, Version 6
= OR (NOT (z), NOT (y))
BUFFER, Version 5

This shows that the Design Grammar gains no generational power by having
both implementations of NAND: just as many graphs are generated having (either)
one as are generated by having both®.

There may be efficiency reasons for keeping around both implementations. How-
ever, it is also useful to record the sequence of rules that derives a rule. A derived
rule is one that is not only derivable from others, but also has a known derivation. A
primitive rule is any other rule. It is quite possible to have rules that are derivable,
but recorded as primitive simply because no derivation is known.

A Design Grammar may contain both kinds of rule.

3.2.5 The Induced Role of a Subdevice

Suppose that some graph S, possibly a RHS or LHS of some rule, matches a sub-
graph of some graph, G. Then there is a distinguished role, rs.¢ which S implements
in G. That is, G is composed of graph-elements that together represent a role f. For
this to be true, S must map certain combinations of its inputs to certain acceptable
sets of outputs. But this is precisely the definition of a role: a mapping of inputs to
sets of acceptable outputs. If S has multiple outputs, then this is a mapping from
input vectors to sets of output vectors.

Consider the set of all roles, A which satisfy the condition that if S is replaced by
the block for A, then the resulting graph still implements f. For each input vector,
form the union of the output sets of each of these roles. Then rsc is the role which
maps an input vector to this union.

“...assuming that the grammar also contains all the rules used in the derivation, of course.
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Figure 3.5: An Induced Role Example: the induced role of the subgraph enclosed
in dashes is weaker than the AND box which fills it in the left graph; the overall
circuit still works with the BUFFER, as shown in the right graph.

Call r5¢ the induced role of R in G. This will become important later, as it
helps shed light on when rules inferred by Learning by Failing to Explain represent
allowable transformations.

As an example, consider the behavior represented in Figure 3.5 (a). Let G
denote the overall behavior. Note that an equivalent statement of the behavior of
G is that f = OR (z, y). Let S denote the subgraph enclosed in dashes; i.e. the
one consisting of the AND box, a, b, and z.

Now, if y has value 1, then f is 1 regardless of the value of a. However, if y is
0, then f is equal to the value of a. But because y is 0, b must have value 1. Also,
because G behaves like OR, a must be exactly equal to the value of z. Thus, rsg,
a role defined on the inputs z and b and mapping to the sets of allowable values of
a, must do the following:

{0,1} 5=0,z € {0,1}
r(z,b)=¢ {0} b=1z=0
{1}y b=1z=1

This is not identical to the behavior of the AND gate, which is used to implement
the role. In fact, a BUFFER would satisfy this role equally well. See Figure 3.5

(b).
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3.2.6 Allowability of a Rule Transformation

Suppose a rule is equivalence-preserving. And suppose that its RHS matches a
subgraph of some other graph. Then the overall graph behaves precisely the same
as the graph that has the LHS inserted in place of the RHS.

Suppose, more generally, that one side of a rule satisfies the role induced by the
other side in the graph. Then, again, the overall behavior remains the same if the
second side is replaced with the first side. When this condition obtains, I will say
that the rule application is allowable.

The system can tremendously increase its power to generate implementations
by using rules in all allowable directions. This leads, in Section 3.3, to a method of
generating “optimizations” of devices.

The problem of determining when a rule application is allowable is a deep one;
in fact, this thesis will not deal directly with it. I discuss this decision later in more
detail.

A Design Grammar is defined to allow equivalence-preserving rules to be used
backwards. In fact it is defined so that any allowable rule transformation may be
applied. This is not really a change of the definition of graph grammar; it can be
viewed as merely a bookkeeping convention, which avoids having roughly twice as
many rules as necessary.

3.2.7 Generic Rules and Subtleties in Functional Represen-
tations

There is a class of domain-independent transformations which are always allowable.
These arise out of the semantics of functions. The system should have these available
in addition to the domain-dependent transformations. Because they are domain-
independent, they can come “built-in”. I term these generic rules.

The first such class involves the case where an instance of a side of a rule appears
in the design, but two or more of its input connection points are the same connection
point. (For example, PLUS (a,a).) This is a problem, because then the graph which
represents the rule side (say PLUS (z,y)) is not isomorphic as a subgraph to the
instance. The semantics of function, however, allow the substitution. Thus, special
provision must be made in matching to allow for recognizing this case. When this
occurs, it is necessary to alter the other side of the rule, usually, as there will be fewer
inputs for it. This recognition and alteration process is relatively straight-forward;
the difficulty is just in realizing that it must be done.

The second class of generic transformations involves output-sharing. Consider
the behavior represented in Figure 3.6 (a). This is equivalent semantically to that
represented in (b). The difference is that there only needs to be one AND node. 1
term the transformation represented by the move from (a) to (b) output sharing.
The inverse transformation, from (b) to (a), I will call node splitting.

The currently implemented system handles these transformations implicitly.
Whenever any rule is to be tried. if there are more connection points to the matched
subgraph than exist in the rule’s non-terminal graph, this means that therc is po-

30



o]

AND AND

o]

a b

(@ (&)

Figure 3.6: (a) AND Output Split, (b) AND Output Shared

tential for splitting off a subgraph. The system does just that. It allows the rule
to be applied, but keeps all of the old nodes that contribute to (that is, are in the
input graph of) some external node. It gets rid of all others.

For example, AND (1, z) matches the RHS of a BUFFER rule, so could be
removed and substituted for. However, if the constant 1 is also tied to the input of
another subgraph, the system performs the surgery as follows: remove the matched
instance of the RHS, except leave the node representing the constant 1. Remove
the connections from the remaining graph to the excised nodes (this removes one
connection from the 1 node). Introduce an instance of the LHS graph into the
remaining graph and merge the variables of the LHS-graph instance with the ap-
propriate nodes in the remaining graph. Note that this has the effect of leaving the
1-node’s other connection intact.

This would seem to create a problem if the rule’s implementation contains feed-
back: in a feedback loop, all the nodes are necessary, as the input graph has a cycle.
Tracing back from any output to see which nodes it depends on, one comes back to
the original output; hence, all nodes in the cycle must be retained. Thus, no nodes
are excised, so the same rule which was just applied, if its RHS consists of exactly
the nodes of the cycle, is applicable again!

The smart system avoids this by noting that even if all the nodes must stay,
there must be some arc that can be removed. This is the arc that drives the output
variablé of the rule. It can be replaced, because there is another arc from the new
(replacement) non-terminal graph that will drive that node instead. The result
will be equivalent functionally. Because the arc is missing, the rule will not be
applicable in the same place again. Voild. See Figure 3.7. In the Figure, once the
arc is excised, some of the nodes disappear, because they are useless (they don’t
contribute to the value of some output of the system). These are represented as
dashed boxes and arcs.

This introduces another class of generic transformations which are really just a
bookkeeping convention that should be done whenever possible. Suppose in Figure
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Figure 3.7: A Pathological Case of Automatic Node Splitting: as there is recursion
in the input graph of f, none of the nodes would appear to be candidates for
removal. However, the output arc of the AND is removable, because it is replaced
by the output arc of the G box.
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Figure 3.8: Excising Useless Pieces of the Graph: the NOT and f1 nodes in (b) are
useless, because they affect no external or internal values.

3.8 (a) a transformation is made by replacing the AND (0, f1) subgraph with the
ZERO non-terminal. That leaves the strange looking graph in (b). This is strange
looking because f1 is a cp which has no physical (observable) counterpart. Therefore
part of the graph is computing a value that is not used! This is semantically
equivalent to the graph of part (¢). If one allowed these loose ends to remain in
graphs, there would be a proliferation of different representations of the same graph.
This would be bad and useless. Therefore, the implemented system calls a simple
routine for cleaning up these useless nodes after every rule application.



Figure 3.9: A Sample Design Problem: this indicates the desire for some implemen-
tation of the one-bit multiplexor function.

3.3 Why Want a Design Grammar

This Section will show how the four competences arise from having knowledge en-
coded in a Design Grammar. Examples throughout will refer to one of the particular
design grammars presented in Appendix D. These are for the CMOS World and
the Gear World domains.

3.3.1 Top-Down Design

Top-Down design arises quite naturally from a Design Grammar. The initial design
problem is stated in the form of a graph representing the desired behavior. An
acceptable answer is some terminal graph whose behavior satisfies the behavior of
the original graph. In Figure 3.9, the desired function is that of a one-bit multiplezor
circuit: it takes in a select bit s, data bit a, and data bit b. It puts out y, where y
equals a if s is 0, and b if s is 1.

Using the name of the functional block as an index, i.e. “MUX”, the system
quickly retrieves all rules whose LHS contains the MUX functional block. The sys-
temn then has a possible avenue to follow for each rule so retrieved. Choosing version
2, the task is done immediately: version 2 is a terminal graph implementation of
a MUX. See Figure 3.10. For reasons other than functional, version 2 can be un-
desirable. So the system could then try version 1, which expands the MUX into a
network of other blocks, see Figure 3.11.

At this point, instead of being done, the system must expand some more. Now,
all rules are retrieved that have LHS containing any one of the non-terminals in
the current (expanded) description. As it turns out, all blocks have exactly one
implementation, so they are all used. These are all terminal graphs, so the resulting
graph is the other possible implementation of MUX generated by the system. See
Figure 3.12.

In the Gear World, the problem is essentially the same. However, because the
elements have parameters and the rules have relations among parameters, an addi-
tional step is required. After choosing a candidate implementation, some parameter
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Figure 3.10: The MUX, Version 2: this is in CMOS transistor notation. This is a
terminal graph.

Figure 3.11: The MUX, Version 1: this is an implementation in terms of lower level
functional blocks.
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Figure 3.12: The Terminal Graph Resulting From MUX, Version 1; this is obtained
by simply replacing each lower-level block with its terminal graph implementation.

analysis may be required before the next choice is made. This type of knowledge
is not dealt with here. See Ressler{15] for an example of the use of this type of
knowledge.

Of course, the simplicity of the example avoids the search control problem:
whenever two or more implementations exist for a block, it has the potential to
cause branching in the search tree. The control of this search requires additional
knowledge, as discussed in Chapter 1.

Another problem exists with this scheme: the set of candidate designs generated
with this method may not contain the best designs. Suppose in the previous example
that input a were tied to the constant 1. Then the grammar would generate the
same two terminal graphs, except that a connection to power would replace the
input a. In the design resulting from version 1 of the MUX, much of the circuitry
is unnecessary. In fact it is equivalent to the circuit in Figure 3.13, but the given
design grammar can’t generate this circuit from the MUX using only the top-down
technique.. The next subsection presents a solution to this problem.

3.3.2 Optimization
As mentioned in Chapter 3.2, if a rule preserves equivalence, then it makes sense to
consider replacing either side of it with the other, And more generally, any allowable

rule transformation (not just LHS replaced by RHS) makes sense in that it preserves
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Figure 3.13: Optimized Version of the Modified Design Problem: this is an imple-
mentation of the MUX with one input tied to one.

the overall behavior®. By induction, any sequence of such transformations must
preserve the overall behavior.

This enables optimizing a design: generate a first pass at the design by top-
down techniques, then look for instances of RHSs of rules in the current design
(“analyze” the current design). Replace one by the corresponding LHS, by reversing
the rule, and either try another implementation of the non-terminal or look for
another instance of a RHS. By evaluating the design at each stage according to
some optimization criteria, the system can choose the best alternative from among
the possible implementations. Here again, control of search is an issue that should
be handled separately.

As an example of this technique, consider the MUX example mentioned at the
end of the previous subsection. This is where the a0 input is tied to 1. See Figure
3.14. The design has proceeded through top-down techniques to the point shown.
Continuing with top-down techniques leads to a rather inefficient implementation
that uses more transistors than necessary.

Note that the RHS of the BUFFER, Version 2, rule is isomorphic to the subgraph
enclosed in dashed lines. Using that rule in reverse, the system produces the graph
in Figure 3.15.

As an aside, the rule just used may seem to be useful only in one direction;
that is, it is not clear why would one ever implement a BUFFER as AND (1, z).
It is not entirely implausible, however. One difference between this and a wire is

®One may easily convince oneself of this. Suppose it were not the case. Then after transformation
there must exist an input vector to the whole device that results in some output being different than
the original behavior. But this must be because some output of the subgraph lies outside the value-
set of the induced role, else the change couldn’t have affected the output of the circnit. But the rule
application was assumed to be allowable, a contradiction.
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Figure 3.14: Initial Graph For Optimization Example: this is the MUX-ONE ex-
ample after expanding the MUX by version 1. The highlighted nodes are found by
the system to be isomorphic to the RHS of a BUFFER rule.

Figure 3.15: After Using BUFFER, Version 2, in reverse.



Figure 3.16: After BUFFER, Version 5, in forward direction.

that this is active; it amplifies the input signal to produce a more strongly driven
output signal. Other reasons for choosing this implementation could be that the user
doesn’t know another active implementation, other implementations aren’t possible
given resource restrictions (as in gate array or standard cell methods of design), or
it makes a layout more regular to have all AND gates present. Granted, rules may
have strongly preferred directions of use, and some may even never be used in one
direction, but there are many useful rules which are used in both directions.

Returning to the example, Version 5 is a better implementation than Version 2
if we are optimizing far transistor count. So the system may apply the BUFFER,
Version 5, rule in the forward direction to get Figure 3.16.

Further optimization might be possible, but note that already the “direct” im-
plementation, that obtained by choosing all terminal graphs, would contain 4 fewer
transistors than would the direct implementation of the initial graph (Figure 3.14).

Determining Allowability

There is this problem of deciding when a given rule application is allowable. The
currently implemented system deals with this-crudely by just assuming that every
possible rule application is allowable, except backwards applications of rules whose
RHSs are terminal graphs (i.e. once it decides on a terminal implementation of
some block it never changes its mind).

The general way of handling this, that requiring the most semantic knowledge,
is to have a behavioral analyzer that can perform some reasoning based on the
semantics of the elements and decide whether the substitution would affect the
overall behavior.
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The justification for not taking this approach is methodological and empirical.
First, the system may not have the knowledge. It is beyond the scope of this
thesis to study acquisition of the type of semantic knowledge required to perform
behavioral reasoning. Second, almost all of the rules the system has used have been
equivalence-preserving. Also, there haven’t been too many rules with a given LHS
or RHS, so just trying each out and testing the result is not too costly. So for
practical reasons, it hasn’t been necessary to attempt to determine allowability on
a case by case basis. When this method is applied later to larger scale examples
it will probably be necessary to deal with this problem, because highly optimized
designs tend to capitalize on “don’t cares” in the circuit, etc.

It may be that a stringent system of value types imposed on the connection
points in the graphs will alleviate this problem; that way the system wouldn’t keep
trying, for example, positive-logic (TRUE = 1) implementations for negative-logic
(TRUE = 0) behaviors. It might even be possible to introduce a type hierarchy, so
that things of type twos-complement integer can match things of type integer, and
so on. This probably won’t completely remedy the problem, but it may render it
small enough to handle by extra search.

Graph Matching

In the foregoing example, the system kept “looking for instances of the RHS” of
various rules. This is, of course, a non-trivial problem, because arbitrary graph
structures can be encoded in these graphs and the Subgraph Isomorphism Problem
is known to be NP-complete|[4].

The subgraph isomorphism problem can be stated simply: given two graphs, G1
and G2, determine whether G1 is isomorphic to a subgraph of G2.

The task this system faces would appear to be even harder: not only decide if
one is isomorphic to a subgraph of the other, but find the matchings if they exist.
That is, find the functions f mapping vertices of one into vertices of the other so
that f is a graph isomorphism.

The bad news is that, yes, in the worst case the problem can be shown to require
exponential time, because there are cases where a graph is isomorphic to a subgraph
of another in exponentially many ways’. Even if the small graph is not isomorphic’
to a subgraph of the big graph, it can require an exponentially large amount of time
to determine that, assuming P # NP.

The -good news, however, is that there are domain features constraining the
graphs that the system encounters. Nodes have types, and we don’t allow matches
that associate two nodes of different types. Arcs have types, so for a pair of neigh-
boring nodes to match two nodes in the big graph, the pair in the small graph can
be connected by an arc of a given type if and only if the pair in the large graph is.
By encoding domain constraints like “two outputs are never connected to the same
variable™ in the graphs as arc/node type conventions, constraint can be added to

“Consider, for example, how many ways the complete graph on m vertices is isomorphic to a
subgraph of the complete graph on n vertices for m < n: n™
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the matching process. This is true only if the matching algorithm can take them
into account, of course.

One result of this research is just such an algorithm. See the Appendix for a
more detailed description of how this works. In a nutshell, it uses a local con-
straint propagation technique to throw away candidate matches that are obviously
bad. The method is reminiscent of (and inspired by) the line labeling algorithm
employed by the Waltz and Huffman-Clowes line-drawing recognition programs. In
fact it is a direct generalization of those techniques. It is similar to a number of
other approaches to the general problem of finding consistent labelings(6]. See the
Appendix for the relation to other work.

3.3.3 Analysis

Analysis problems are hard. Specifically, problems of the form, “Show that X
implements Y,” are essentially problems in parsing, finding a derivation of X in
grammar rules starting from Y. In Appendix A the recognition problem for arbitrary
Design Grammars is shown to be uncomputable.

It follows from the uncomputability of recognition, that even if it is guaranteed
that the graph is derivable from the grammar, there can be no algorithm that finds
the derivation of it in a time bounded by a total computable function. There will
always be cases on which a given algorithm either fails or takes impossibly long®.

To see this, suppose there is an algorithm A, which, assuming the input actually
is a derivable graph, is guaranteed to find a derivation of it in no more than f(n)
steps, where n is the size of the graph to be tested. Well, then we could recogn:ze
derivable graphs by simply running A on any candidate, ¢, and simultaneously
counting the steps A uses. If A ever reaches f(| t |) steps, then halt in failure,
because if t were derivable, 4 would have stopped by now. But we already know
that recognition is uncomputable, so by contradiction, we find that A can’t exist.

Thus, the best one may hope for is an algorithm that can analyze designs in many
cases. It is this perspective that influenced the design of the analysis algorithm to
be given here.

The method is essentially a top-down parsing method: we start from the high-
level graph and apply rules to it, searching for a way to transform it into the other.
graph. It may be viewed as a “greedy” method, in that it seizes upon the first
sequence of operations that seems to make progress, and it never tries an operation
that would undo any of the progress. The algorithm uses breadth-first search with
heuristic pruning: it prunes those sequences which have yielded no progress after a
given number of steps from the current start node °. It evaluates each state resulting
from an operator application for progress. If no progress is made by any sequence
of operators out to the search depth, then the program gives up. If progress is ever
found, all searching is stopped and the state in which progress was made is taken

8A British Museum algorithm will certainly work every time, but its time complexity is not
bounded by any total computable function.

°This given number, the “depth,” is a parameter which may be changed. Appendix E shows
examples which indicate the effect of changing this parameter’s value.
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Figure 3.17: An Incorrect Matching of AND Boxes: the AND boxes do not corre-
spond functionally, as the right one drives the output z and the left one can not
possibly do so (z is NOT of its output). :

as a new starting point from which to search. The progress is recorded, however,
and no search path will be considered that requires altering a portion of the graph
that already matches the target. ,

The algorithm measures progress by keeping track of how much the current
state and the target look alike, and if this increases, then progress is made. As
the target is fixed, and the size of the common subgraph increases, the algorithm
will eventually consume the entire target graph and halt in success, unless after
searching a fixed depth it found no progress. Then it halts in failure. Hence, the
algorithm always halts. Moreover, it only keeps going as long as it makes some
progress.

Looking Alike and Criterion R

The rest of this subsection describes the algorithm’s method of deciding when two
subgraphs “look” enough “alike” to merit associating them. Looking alike can be
taken to be partial graph isomorphism: the program incrementally builds up a
matching between the two graphs. This problem is a very interesting one: it would
be useless simply to take any partial matching between the two. The simple reason
is that even though two subgraphs match, it may be that the match won'’t extend to
a total match, even after other derivations. An AND gate across two of the circuit
inputs won’t match one whose output is a circuit output, unless the entire circuit is
an AND gate. Thus, matching the AND subgraphs would be incorrect. See Figure
3.17.

Note, however, that if both AND gates were across corresponding circuit in-
puts. or indeed any set of inputs already matched, then it would almost certainly
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Figure 3.18: A Correct Matching of AND Boxes: these appear (syntactically) to
compute the same subfunction of the overall circuit.

be correct to match them. See Figure 3.18. This fallible assumption is based on
the following reasoning. We first assume that any nodes already matched are be-
haviorally equivalent. Because the inputs to the ANDs correspond, the outputs
of the ANDs must be equivalent behaviorally. Thus, if the circuit outputs are
equivalent and depend on the value computed by the outputs, then the functions
computed between the outputs of the ANDs and the circuit outputs must be equiv-
alent. Therefore, the grammar should be able to derive that equivalence. So the
program might as well associate the AND outputs.

This must certainly be true if the role induced by the unmatched portion of the
graph is a behavior. Call this CRITERION R. The partial matching algorithm can
only fail when Criterion R fails to hold!°. If the induced role is a behavior, then it
must certainly match precisely the behavior of the unmatched portion, else there
would be some combination of input values that forced an incorrect value on the
outputs of the unmatched subgraph, causing an incorrect value on the outputs of
the entire graph. Criterion R is a sufficient condition for success, but not necessary.

Consider, for example, a circuit with some inputs tied to constants. It is always
the case that the role induced by the complement of a constant function is not a
behavior: because the input to the complement corresponding to the constant never
sees the other values, its behavior on those forbidden values is not determined by
the overall behavior. One could associate any pair of constant-functions (with the
same value), as all are functionally equivalent, but it would be erroneous to assume

“or when one or more of the rule applications which led to the current situation was unallowable.

This implies that the two graphs are no longer behaviorally equivalent overall. For the purposes of
this discussion I will assume that the rule applications are allowable, since determining allowability
1s an issue which may be treated separately; failure of Criterion R, on the other hand 1§ an issue
which can’t be avoided when using this algorithm.
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Figure 3.19: An Example With Confusing Possible Associations: which left-hand
ZERO should the system match with the right hand ZERO, if any?

that the subgraphs they are input to are functionally equivalent; they could have
different values on inputs not allowed by the constants. See Figure 3.19 for an
example where some associations of ZERO boxes are correct, and others aren’t. Of
course, this generalizes to more than just roles induced by constant functions.

Another potential failure is when two nodes in the target graph are driven by
isomorphic input graphs. That is, associating to one might be erroneous, because
it actually should have been associated to the other. This is solved by computing
equivalence classes of nodes of the target graph and associating a node in the prob-
lem graph to an equivalence class of nodes in the target graph, rather than any
single node in the target graph.

The other method of associating nodes in the two graphs is looking for cases of
invertible functions driving associated (matched) outputs. “Invertible” is defined
heuristically as any time some output of a function is associated and all but one
input is associated’!. A better term for this might be pseudo-tnvertible. See Figure
3.20 for an example.

This may only fail if Criterion R fails to hold. A simple example of its failure
is when we associate the ANDs in the two expressions “AND (f(a), 0)” and “AND
(g(a), 0).” f and g may clearly be any functions, not necessarily equivalent.

In summary, the matching creeps in from the input and output edges of the
graphs.

ttActually, we can look for the even weaker condition of all but one input of a given input-type
being associated. Consider the MUX, for example, which has distinguishable inputs: we would
consider it invertible even if no inputs (all but one, for each input type!) were associated.
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Figure 3.20: Associating Pseudo-Invertible Functions: as z and a have matches,
and OR only has one other input, it is reasonable to assume that the ORs (and
hence the outputs of f and g) should be matched.

Another Progress Criterion

There is another way in which a transformation can bring about a graph which looks
more like the target graph than the source graph. If there exists a node whose inverse
image under the partial match decreases in size because of the transformation, then
that is deemed to have increased the quality of the partial match.

This obscure condition is important for parsing many optimized designs. For
example, consider the pair of functions: y = BUFFER (NOT (z)) and y = NOT
(z). The algorithm would match the right-hand y to both the left-hand y and the
connection point between the BUFFER and the NOT!2. Now, if the BUFFER —
(conn'ection point) transformation were applied subsequently, no progress would be
observed without the inverse-image condition! With this condition, however, the
right-hand y would have its inverse image decrease in size from two to one, so the
system would judge that progress was made.

3.3.4 Analoéical Design

Analogical Design is the process of using a known derivation of the solution to
a problem to guide the search for a solution to a similar new problem. Either a
teacher can give the program the derivations of the precedents, or the system can
find them by analysis, if they’re not too difficult for the analysis program to figure
out. Two questions are addressed in this subsection: How and Why.

How

Analogy is such a general technique that it can be applied to all types of knowledge.
The method used here applies it to structure/function knowledge. It is not meant

121t would also match the NOT boxes.



to be all-inclusive of methods of Analogical Design.

The strategy is straightforward, given the Design Grammar formalism. Suppose
the problem solver has a grammar derivation of a previously solved problem. This is
a derivation that starts from a high-level graph and proceeds via rules to a low-level
implementation. The problem solver is then posed a new problem in the form of a
high-level specification:

The analogical method presented here looks for the best partial match between
the problem graph and the precedent high-level graph. A partial match is an iso-
morphism of a subgraph of one to a subgraph of the other. “Best” is temporarily
defined as “one involving the most nodes.” This definition is expedient, and other
approaches, like importance-dominated matching{22', might be more fruitful.

Once a partial match has been decided upon, the system proceeds to follow the
sequence of transformations used on the precedent. For any given rule application,
if the subgraph replaced in the precedent is contained in the domain of the partial
match!3, then the transformation is performed on the problem graph. The partial
match is updated to reflect the change; all nodes spliced into the problem graph are
matched to the corresponding nodes spliced into the precedent graph. This way,
sequences of expansions can be applied. Figure 3.21 illustrates this technique.

If, on the other hand, some node in the to-be-replaced subgraph of the precedent
graph has no match in the problem graph, then the rule is not used on the problem
graph. The partial match is pruned by eliminating all nodes in the to-be-replaced
subgraph. Thus, every inapplicable operator tends to reduce the size of the partial
match. The process is finished either when the partial match becomes empty or at
the end of the precedent’s operator sequence. Figure 3.22 illustrates.

The process of following a sequence of precedent operations is fast, because there
is no search involved. The implemented system has performed analogical design on
a 46 step derivation, 35 of the steps being applicable, in only the time required to
apply the steps without search.

This method for using precedents is quite similar to the way they are used in
Steinberg and Mitchell’'s REDESIGN system [19]. In that system, however, the
authors supplied the partial matching by telling the system just what was different
between the precedent and problem.

Why

One reason to use precedents this way is that it is one way to approach the search
control issue: cut down search by restricting attention to search paths “near” ones
known to-have worked in the past. This is of course a heuristic notion, but with
much support in everyday experience.

It is a nearly painless way of traveling far down a search tree to increase looka-
head, with a fair chance of being on the right track. It is nearly painless because
the algorithm given requires no search to follow a derivation, hence can do it fast.
The only complex operation might be the partial matching at the beginning, but
because initial problem specifications tend to be high-level they tend to be small

L that is, every node is matched to some node in the problem graph
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Figure 3.21: A Successful Analogical Rule Application: as the RHS of the NAND
transformation, which was applied in the precedent derivation (left graph), matches
a subgraph which is completely contained in the domain of the partial match (dashed
lines), the system applies the same transformation to the problem graph (right
graph). ~
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Figure 3.22: A Failed Analogical Rule Application: the domain of the NOR trans-
formation is not contained in the domain of the partial match, because the OR does

not match anything.
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graphs. Small things are always easy to match. It is only the implementations that
get large, and the method doesn’t require partial matching after the beginning.

Another advantage of this technique is that one can effectively store and access a
large amount of information with a relatively low cost. Because there are potentially
exponentially many partial matches of the initial graph, there could be exponentially
many different outcomes of applying Analogical Design to the precedent. That is,
for any partial match of problem to initial graph, a certain subset of the operations
in the sequence will remain applicable. Thus, as there are many subsets of the
nodes of the initial graph, there are many potentially useful subsets of the operator
sequence (they need not be subsequences; that is, they need not be contiguous).
Thus, a single precedent encodes exponentially many explained Design Grammar
rules. Accessing these is relatively easy as explained above. This is much more
space-efficient than having all those rules explicitly represented in the grammar®.
Especially because it is quite plausible that only a small portion of those rules is
actually useful.

It may seem strange to argue that something is good because it encodes many
rules, most of which are useless. The problem is that it is difficult to know in
advance which are useful and which aren’t. Thus, rather than storing many useless
rules in order to be sure to have the useful rules, we store one precedent. (It may
still be a win, even if the useful rules are known in advance, as the system still has
to store and use more than one, instead of one.)

This sort of Analogical Design is not a new idea. As mentioned above, Steinberg
and Mitchell explored it. Winston {21] uses this technique in reasoning about func-
tion. The MACROPS idea in STRIPS{3] can also be viewed as an implementation
of Analogical Design in a state/operator formalism that far predates (1972) Mitchell
and Steinberg’s use. There are significant differences between the STRIPS triangle
table approach and Analogical Design. One is that STRIPS’s formalism is based
on a sequential, state-space model which imposes a total order on the precedent’s
operation sequence. This is not the most natural model for design, because trans-
formations of separated parts of the current graph are only loosely coupled if at
all. Also, non-contiguous subsequences are found naturally with Analogical Design,
while the STRIPS system would seem to favor only contiguous subsequences. It
appears that it would take extra effort to get a non-contiguous subsequence out of
a triangle table than out of an Analogical Design precedent.

3.3.5 - Some Desirable Properties a Design Grammar Should
Have

In the next Chapter, I'll deal with how the system learns Design Grammar rules
from example designs. But first, it is necessary to understand what properties the
DG should have in order to maximize power and efficiency.

For example, if the system simply stored a precedent, it could be said to “learn”

141t is probably faster, too. at least on serial architectures. Consider the problem of accessing a
large database of rules versus using this method once.
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in that it could then solve a new problem: precisely the one solved by the precedent.
This wouldn’t be too bad from an efficiency-of-use standpoint. After all, there
would only be a small number of rules which probably wouldn’t combine very well,
so virtually no search would be possible in design, optimization, or analysis; and
analogical design precedents would all be one rule long.

Obviously, however, the system would not be very powerful, either. We could
ask that the teacher be kinder and only give precedents that are generally useful
rules and store these. This would be nice in a perfect world, with a perfect teacher.
But this is just what knowledge engineers try to get experts to do in programming
an expert system. The problems with this technique, also known as the knowledge
bottleneck, are well documented: it is hard to get experts to agree on which rules
are useful, it is hard to keep the rules consistent, it is hard to keep out redundancy
and its concomitant inefficiency, and it is hard to know when the expert is finished
(the rules are complete).

So what is needed is a technique whereby the system can help organize the
database itself and learn from complex precedents, thereby taking some pressure
off of the teacher. Separating rules into derived and primitive rules can help with
this.

e If a rule is derivable in terms of other rules, then it is definitely consistent
with those rules. If an inconsistency is found, those rules derived from the
bad rule are known, so they can be reexamined. The others don’t need to be
checked, because they are independently justified.

e If some rule is “an obvious consequence” of some rules, then it can be thrown
out of the database, thereby helping to alleviate the canonical expert system
problem: becoming so smart it takes forever to do anything. What “obvious”
means depends on the task and the algorithms, but intuitively it means that
one rule is a short derivation from one or more others. After all, the only
reason to keep derived rules at all is to cut down search by having common
search paths made explicit. If the path is short, why not save space and just
regenerate it every time it’s needed? Another reason to throw away a derived
rule is if occasions of its use don’t arise very often. This is an instance of
The Lemma Problem: which derivable facts should be kept for efficiency, and
which should be thrown out for efficiency? To my knowledge there hasn’t been
much progress made on this problem, but it seems clear that some derived
rules should be discarded.

e Analogical Design as I've defined it can only be used with derived rules or
precedents. Thus, the system gains more power to do this type of problem
solving if it can derive more equivalences.

e Analysis is obviously made easier by having general rules that explain many

equivalences. Also, having explained lemmata (macros) around can help speed
up the search involved in Analysis.
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* Some primitive transformations are so small that they virtually never occur,
except embedded in one particular sequence. The sequence, however, occurs
frequently. Then, too, it would make sense to keep the sequence around for
efficiency. It would not, however, make sense to throw away the primitive
rule; there are those rare cases where it is used differently. Contrast this with
the case of a little-used derived rule.

The common theme in these observations is that it is better to derive most of
the equivalences that the system knows. Therefore, one goal of the Learning
system is to acquire as general a set of primitive rules as possible.

Another consideration, which is related more to efficiency than power, is the issue
of recognizing instances of RHSs as subgraphs. Even though the graph matching
algorithm seems to be fairly efficient, it still takes much longer to match large
graphs than small ones. So the NP-completeness of subgraph matching leads to the
second learning goal: the RHS graphs of the rules should be small. Size is
measured by the number of nodes in the graph. Thus, representation is an issue
here as always: it may be worthwhile to create a macro symbol for a useful subgraph
simply to speed up the matching process. '

The final interesting thing to note is that these goals are compatible. Primi-
tive rules tend to be smaller than rules they help derive because they tend to be
subgraphs of them.

3.4 Summary

A Design Grammar is a graph grammar whose rules encode knowledge about struc-
ture and function. That is, the LHS represents a functional block and the RHS
represents one decomposition (implementation) of that function. Terminal graphs
are composed of directly implementable elements and combination operations. A
behavior is a function from an input space to an output space, while a role is a
mapping from the input space into the power set of the output space. The induced
role of a subdevice is the least constrained role that the subdevice must satisfy to
preserve overall behavior of the device. Equivalence-preserving rules are those for
which the behavior of the LHS is identical to the behavior of the RHS. Equivalence--
preserving rules may be used in either direction. More generally, any time the role
induced by a recognized rule-side is satisfied by the other side of the rule, the rule
application is allowable. A rule is recorded as either primitive or derived, according
to whether it has a known derivation in terms of other rules. There are a few generic
transformations that every system should have available.

Top-Down Design arises from the system using grammar rules in the forward
direction. Optimization arises when rules may be used in all allowable directions.
Analysis is a matter of parsing. Analogical Design can be achieved by creating a
partial match between high-level graphs of the problem and a derived precedent,
then re-running the derivation, throwing out the steps not covered by the partial
match.



Chapter 4

Learning by Failing to Explain:
Precedent Analysis

This chapter and the next will discuss how a Design Grammar is learned from
example designs by the system which implements Learning by Failing to Explain.
This Chapter discusses how a new rule is conjectured from a precedent. I call this
Precedent Analysis. The next Chapter discusses what to do once the conjecture
is made. The first section discusses what a precedent is, and why learning from
precedents is not only a matter of generalization. The second section presents an
algorithm that exhibits this behavior. The third section demonstrates how the
system can conjecture rules that are not equivalence preserving. The fourth section
deals with learning rules whose graphs contain parameterized elements.

4.1 Precedents As Complexes of Examples

A typical input to the learner will be a precedent, by which I mean a pair of de-
scriptions of the same device, together with the correspondence between the inputs
and outputs. That is, the system needn’t guess what the variables are or which
implement which. Either description can be thought of as an implementation of the
other. However, because of the way the algorithm is implemented, it is convenient
to think of one graph as being “more high-level” than the other. I will refer to one
graph as the high level graph and the other as the low-level graph. See Figure 4.1
for an example.

From some set of precedents, the learner is to build up a Design Grammar that
generates™at least the precedents seen. It should also, however, strive toward the
goals of maximum power and efficiency, as discussed in the previous chapter.

One key idea for attacking this problem is to assume that the precedents are
constructed from Design Grammar rules’. Hence, each precedent is a combination
of instances of several concepts. For example, the precedent in Figure 4.1 consists

!This is no loss of generality, because every precedent could be taken as a pair of rules by creating
a non-terminal with each graph as an implementation. Granted this wouldn’t be very powerful, but
it certainly covers every conceivable case.
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Figure 4.1: A Precedent: dashed lines indicate correspondences given to the system
with the precedent.



of?
1. An instance of NAND, Version 1, down. (applied to device 1)

2. An instance of NAND, Version 1, down. (applied to device 2)

3. An instance of NAND, Version 1, down. (applied to device 3)

|
|

4. An instance of BUFFER, Version 6, up. (two successive NOTs)
-

5. An instance of BUFFER, Version 6, up. (two successive NOTs)

6. An instance of BUFFER, Version 5, down.
7. An instance of BUFFER, Version 5, down.
8. An instance of MUX, Version 1, up. (all of them together)

Note that multiple interpretations are sometimes possible. For example, NOT
(NOT (NOT (z))) = NOT (BUFFER (z)) = NOT (z); or NOT (NOT (NOT
(z))) = BUFFER (NOT (z)) = NOT (z).

This work is concerned with learning many concepts from complezes of examples.
A complex of examples is a single thing that is composed of instances of many
concepts, such that the boundaries between instances are not a prior clearly defined.
Note the contrast between this and many Machine Learning studies: it is not trying
to induce a single concept from a number of examples, presented as instances of the
concept.

The difference between the two paradigms is that in addition to generalizing
examples of a concept, the learner must first find the examples and group them
into appropriate classes for generalization. This thesis will deal primarily with
finding and grouping examples, although the implemented system also does some
generalization in the Gear World.

4.2 The Algorithm

The key idea in this Learning algorithm is simply stated: Use knowledge you
already have to recognize which parts of the precedents are new. The
examples in this section will refer to the Design Grammar of Appendix D. Suppose
the system has already acquired it somehow, possibly by this method3.

4.2.1 What Happens

The teacher shows the system the precedent in Figure 4.2. The Z boxes represent
the function whose output is equal to its input of the previous clock cycle. The

“See Appendix D for definitions of the rules used.
“The base case of this apparent recursion is that the system simply remembers the first precedent
It sees,
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Figure 4.2: Learning Example Precedent: Z boxes are delays; the two input variables
of the right graph are just off the bottom of the Figure.



High-Level-Graph is a straight-forward transcription of the requirement, “After
any clock cycle, if K was 0 on the cycle before, then y is 0; else if K was 1, then
output is the XOR of the values of a, b, and ¢ two cycles ago.” This is plausible as
a description of a portion of the function of an ALU.

The Low-Level-Graph is an optimized version that is faster, because it allows a
shorter clock cycle time. The two XORs together result in 6 gate delays between
clocks, while putting the XORs on different clock cycles allows the cycle time to be
as little as four gate delays (second XOR plus MUX) in this case.

One possible rule to glean from this is just the entire precedent. But this is
rather conservative; it may be that a new, useful rule was used in addition to many
that the learner already knew. It would be nice to find out what the new rule was;
then the whole precedent would be derivable from a set of smaller, more general
rules. This is the central idea behind Precedent Analysis: use what you know to
help find the most general candidate rule.

The reasoning behind the algorithm is as follows. “Because I assume the de-
signer used grammar rules to derive the precedent, there must exist a sequence of
transformations that transforms the High-Level-Graph into the Low-Level-Graph.
I'll try to generate that sequence from my own rules. If I can’t quite make it, then
what’s leftover must be either a rule or a simpler complex of rules, because the
unmatched subgraphs induce the same roles. Because the unmatched subgraphs
induce the same roles, they are probably behaviorally equivalent, or at least they
probably fill many of the same roles; therefore it is probably useful to remember
the association.”

Note that this problem is at least as hard, in general, as the recognition problem?,
because learning from a precedent implies being able to tell whether you already
knew it. The trick here is to be able to generate a partial derivation that “gets close”
to the real derivation before failing. But it was precisely this consideration that drove
the design of the Analysis algorithm. (See Chapter 3.) The Analysis algorithm
searches incrementally through sequences of grammar rules always making some
progress, lest it halt. If it halts, then either it hasn’t got the knowledge (i.e., it’s
missing a grammar rule), or the sequence of transformations required to get it closer
to the goal is too long.

The Learning algorithm calls the Analysis algorithm to do as much as it can,
returning the partial derivation and the partial match it constructed. The system
then conjectures that the two unmatched subgraphs, one from the transformed
High-Level-Graph, one from the Low-Level-Graph, are functionally equivalent.

Note, however, that one of the stated goals for the Design Grammar is that the
graphs be small. This is to avoid the problems of NP-completeness, among other
reasons. Thus, it is desirable, before forming a rule, to choose the smallest (in num-
ber of nodes) member of the class of graphs equivalent to those of the transformed
graph. The implemented analysis algorithm actually returns the smallest graph it
examined before failure. That is, it returns the sequence of steps leading to the

*._.which is uncomputable. See Appendix A.
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smallest graph which looks as much like the low level graph as possible’. This
was used, for example, in the precedent demonstrated in the Precedent Analysis
scenario in Chapter 2.

Figure 4.3 shows the transformed High-Level-Graph and the Low-Level-Graph,
together with the partial match produced by the Analysis algorithm. The un-
matched subgraphs are shown enclosed in dashed curves. The conjecture generated
is that Z(XOR (z, y)) is equivalent to XOR (Z (z), Z (y)). ©

This conjecture does not usually have the form of a Design Grammar rule:
neither side need be a non-terminal graph. Call the unexplained subgraphs of the
transformed High-Level-Graph and the Low-Level-Graph the extracted transformed
High-Level-Graph and the extracted Low-Level-Graph respectively. If the extracted
transformed High-Level-Graph is a non-terminal graph, then the system simply adds
the equivalence as a new version of the non-terminal. (Recall that a non-terminal
graph is a graph with a single non-terminal node, plus possibly some variable nodes
connected.) If the extracted transformed High-Level-Graph is not a non-terminal
graph, however, there are a number of options available, depending on the knowledge
available to the system.

o It can ask the teacher to tell it the name of a non-terminal to use, and create
two rules, one using the extracted transformed High-Level-Graph as RHS and
the other using the extracted Low-Level-Graph as RHS.

e It can just make up a name on its own and create the two rules. Figure 4.4
shows how the system creates rules via this method.

¢ It can look through the grammar rules it knows, and try to find a previously
known non-terminal that is equivalent to either the extracted transformed
High-Level-Graph or the extracted Low-Level-Graph. It might do this by
functional simulation, for example, or other functional reasoning.

The system can also, once a new rule is formulated, complete the original deriva-
tion and create new derived rules whose RHSs correspond to the precedent’s two
original graphs. -

4.2.2 What Is Going On

In contrast to many learning algorithms, it is possible to get some insight into how
this one can fail. To do this, we need to examine the assumptions underlying its
operation. The process of generating a conjecture consists of creating a maximal
partial parse, using the current knowledge base, and then extracting the unexplained
part as a new equivalence to be made into rules. The Algorithm

It maximizes “look-alike” before minimizing size.

°The Analysis algorithm expanded the MUX, optimized it because it has a constant tied to an
input, and matched the resulting AND gate. The XOR gate across a and & was noticed and matched
first.
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Figure 4.4: Creating Rules From Learned Associations: system creates new
non-terminal symbol “FOO” and two rules; left graph is RHS of one, right graph is
RHS of other.

o assumes the partial parse generated by the Analysis algorithm s correct; i.e.
that all node associations produced by it represent behavioral equivalences.
This can fail exactly when the Analysis algorithm can (see Chapter 3).

e assumes that the conjectured equivalence will be true in general. This is a form
of analogy: because the two subgraphs fill the same induced role, they must be
capable of filling many of the same roles. This is based on the intuitions that
(a) design rules are generally useful, and (b) because the design was produced
using design rules, and the matched portions of the graphs correspond to a set
of rule applications, the design must “cleave” along the matched/unmatched
boundary limre. Notice that it does not depend on the unmatched portion being
exactly one rule instance, just a constellation of instances whose boundaries
all go up to the unmatched frontier and stop. The system later may be able to
cleave the conjecture further, after it has more rules on hand, by re-analysis
(see Chapter 5).

—

It is interesting to compare this with the learning aspect of Winston’s ANAL-
OGY program, as applied in the cup learning world[21]. ANALOGY accepts prece-
dents passively and formulates conjectures about rules only when faced with a
problem. To solve a given problem, ANALOGY matches precedents to it and finds
causal structure that can be used to transfer knowledge. It then summarizes the
causal chain which resulted in the transferred knowledge as a rule.

Casting this into the terms of the Learning system described here, ANALOGY
accepts a derived precedent (it is given the explanatory links in the input), and
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when it comes time to solve a problem, it applies what I've called Analogical Design
(which is really just a technique for controlling the search for derivations) to the
problem, using the store of derived precedents. It then collects all the derivation
steps which were applied (as opposed to those which were skipped because they
were inapplicable), and stores the initial graph and the final graph as a new derived
rule, and gives an explanation based on the applicable derivation steps. ANALOGY
learns only rules it can explain previously; in my jargon, it learns new derived rules.
It was not designed to learn primitive rules.

We can gain another perspective on the algorithm by asking the question: given
the truth of assumption one, that the partial parse returned by Analysis is correct,
how is it possible for the conjecture to be wrong? Well, we need to understand
what “wrong” means. It can certainly be “wrong” in the sense that the conjecture
fails to represent a behavioral equivalence. The only guarantee is that the two
graphs are role equivalent in the particular induced roles of the precedent graphs.
But this reflects the real world of design: designers frequently take advantage of
“don’t-cares” in optimizing implementations.

An example of a useful everyday-life rule that does not preserve equivalence is
using a screwdriver to pound tacks: a hammer is not behavijorally equivalent to the
screwdriver because it is impossible to turn screws with a hammer, but both satisfy
the role of tack-pounding implement.

On the other hand, the conjecture must definitely represent a role equivalence 7.
Therefore, it must represent some kind of rule. Moreover, it is a rule which has been
used at least once, so it is more useful than the many possible conjectures which
will never be used. It might be that the precedent is a completely special case, so
that the conjecture will never be useful again. If so, the algorithm has done its job:
it is the teacher who has failed by showing the system a pathological example.

For the same reasons as in the Analysis case, this sort of conjecture can only arise
when Criterion R fails to hold®. That is, if Criterion R holds, then the conjecture
must be equivalence preserving. The next section discusses an example of this
phenomenon in more detail.

Another reason why the system appears to come up with useful rules is that in
designed systems, all the objects and features are usually teleologically justifiable.
That is, everything present has a relevant purpose. In other domains, this may not
be the case. For example, in understanding a story there are often many irrelevant
details present which have no clear explanation. Why does the main character have
red hair? Well, why not? The effect this has on Precedent Analysis is that it would
create overly specific rules, since it couldn’t explain why someone had red hair.

7 After all, given assumption one, the transformed High-Level-Graph is behaviorally equivalent
to the Low-Level-Graph. This means the induced role of the unmatched portion of the transformed
High-Level-Graph must be identical to the induced role of the unmatched portion of the Low-Level-
Graph, because they arise from the syntactically identical, matched subgraphs. Hence, the extracted
transformed High-Level-Graph must satisfy the same behavior as the extracted Low-Level-Graph.
QED.

®Criterion R states that the induced role of a subgraph is a behavior. See Chapter 3.
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Figure 4.5: A Tricky Precedent: f?(a) with delays, read every other clock cycle.

4.3 A Failure?

This section gives an example where the system conjectures a non-equivalence-
preserving rule. Consider the precedent in Figure 4.5. The High-Level-Graph is an
implementation of the function y(a, z) that is equal to z; on odd clock cycles ¢, and
f(f(at-2)) on even clock cycles t. The Low-Level-Graph is another implementation
of the same function. The difference is that because the f is only really used on every
other clock cycle, we can reuse the same box by feeding the partial result back to
the input. Applying the analysis algorithm to this precedent associates the portions
enclosed in dashes. The learning program then extracts the extracted transformed.
High-Level-Graph and extracted Low-Level-Graph shown in Figure 4.6.

The devices represented by these two graphs are certainly not equivalent. The
extracted transformed High-Level-Graph puts out f(f(a:-2)) on every cycle, while
the extfaq;ed Low-Level-Graph puts out f(f(a;-2)) on even cycles and f(a¢-1) on
odd cycles. The reason this occurs is that the “rule” corresponding to this associ-
ation is context dependent: if the external circuit samples its output only on the
even cycles then it’s true. If it uses the output on an odd cycle, then it’s not.

As expected, Criterion R fails in the situation shown in Figure 4.5. The induced
role of the unmatched part is the function shown below.

r(a) - { {f(f(az—z))}, t even
{0,1}, t odd
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Figure 4.6: The Learned Association: this is only true in contexts where the output
is used on odd clock cycles only.
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Figure 4.7: Different Rules? These represent specific gear mesh rules; differences
may be described as parameter variations.

This is not a behavior, because it allows any value on odd clock cycles.

4.4 Parameters

There are domains where instead of having a small, finite number of structural
operators_(terminal elements), there are effectively infinite classes of them. The
Gear World is one such domain. There are gears and sprockets of different radii,
and elements have different spatial positions.

This creates special problems in representing grammar rules: it is obviously
unsatisfactory to have infinitely many rules, one for each instantiation of the pa-
rameters of the elements making it up. See Figure 4.7.

One can represent these rules much more compactly in the style shown in the
Appendix for TIMES-MINUS, Version 1. That is, represent the elements in a graph,
their parameter values left indefinite, and record the relationships that must exist
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between the parameter values for the rule’s RHS to be matched. Note that the
functional description elements (non-terminal elements) may also have parameters.

This, howeyer, poses another learning problem: how can a learner acquire the
parameter relations? The learning algorithm given so far is sufficient to extract
particular fully parameterized rules, rules where every parameter value is specified
with a constant. It does not as yet address the problem of the relations.

This is clearly a problem in inductive generalization, but with an added twist.
Not only doesn’t the learner know what the final form of the generalization is, but
it does not even know which examples belong to which rules (concepts). This is the
ezample grouping problem alluded to previously.

The program solves this problem as follows. Call the graph representation of
a precedent with the parameter values left indefinite the gualitative component of
the description. The program simply assumes that any two rules whose qualitative
components are isomorphic are instances of the same concept. Both the (qualitative)
structural descriptions and the (qualitative) functional descriptions must match
correspondingly. This technique is not limited to rules where the RHS consists
of terminal elements. It may be just as well applied to any rule. Thus, the three
examples in Figure 4.7 are all qualitatively alike, so the system groups them together
for generalization.

It may, as in the non-parameterized case, be necessary to create a non-terminal
that stands for the two halves of the equivalence learned from a precedent. This
happens just the same way, but the created non-terminal must have exactly as
many parameters as the graph representing the functional implementation (the
High-Level-Graph). So one rule created associates the new LHS to the High-Level-
Graph, and the parameter relations are simply statements of equality; that is,
each parameter of the LHS is equal to the appropriate parameter of the RHS. The
other rule, the one corresponding to the Low-Level-Graph, is the one where the
generalization takes place. See Figure 4.8 for an example.

This, too, is a form of analogy. The judgment of similarity is based on matching
“up to parameters”. Parameters provide a way of expressing a class of things
that are closely related. This is the mark of a good representation: make things
that are semantically closely related appear syntactically close. Differing in only
parameter values is a very close match. Thus, the success of this approach to the
grouping problem hinges (as do the other uses of énalogy) on the degree to which
the semantics of the domain is represented faithfully.

Whenever two or more examples of the same concept are found, they are given
to a coﬁsguctive generalization program®. The database is maintained in such a
way as to keep the current generalization of the concept as the only version of the
rule used by the system for analysis, etc., thereby reducing the sheer number of
rules to search through.

The currently implemented system employs a crude constructive generalizer for

° Constructive Generalization is generalization where the program must not only climb a generality
hierarchy, but it must create the generalized descriptions from lower level primitives as well. Having
an a priorz description language, in terms of which the concept is guaranteed to be expressed. is a
powerful constraint.
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demonstration purposes, but as this topic is covered at great length elsewhere[1];101,
I'will not go into it here. Suffice it to say that, as always, the crucial thing in creating
generalizations is having the correct descriptive terms available. For discussion of
the algorithm:Ztually used by the system, see Section C.2 in the Appendix.

4.5 Summary

A precedent is defined to be a pair of different descriptions of the same behavior,
together with variable correspondences. For convenience of implementation, I view
one graph as being more high-level than the other.

In the current implementation of Precedent Analysis the algorithm attacks the
problem of learning from examples by using the knowledge it already has to come
up with a mazimal partial parse of a precedent, then conjecturing a rule to finish
the parse in a single step. The current implementation is merely the first pass at
this task. Its main weaknesses are that it comes up with a single parse and forms
a single rule (thereby possibly missing some conjectures), and it requires a large
amount of search.

The algorithm can only fail when Criterion R also fails with regard to the partial
parse. Beyond that, there is little to be said in general about when it fails. It can,
however, be useful to learn rules that fail to preserve equivalence because they are
useful in some common cases.

It handles parameters by grouping examples based on qualitative isomorphism
and then calling a constructive generalizer.
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Chapter 5

Learning by Failing to Explain:
Rule Re-analysis

The last chapter dealt with how the system finds what is new about a single prece-
dent. This chapter deals with how the system restructures the Grammar after it
discovers a new, primitive rule. Rule Re-analysis is a method for making good use of
a given set of precedents. Unlike the rest of the thesis, the ezamples in this Chapter
will assume that the system has no rules to begin with. This is only done for clarity;
the method applies equally to the general case.

Precedent Analysis may produce rules which are not very general, because there
might be more than one unknown rule used in constructing the precedent. Thus,
the learned rules will have RHSs which are some combination of more than one
unknown rule. It is much less likely to see again a complex group of rule instances
than it is to see instances of the rules singly. It is possible, however, later to learn
new rules which allow one to tease apart the more general rules of which the first
one was constructed. This leads to the idea of re-analyzing old learned rules in
terms of newer rules.

For illustration, suppose the system learns the following two RHSs for the (made
up) “NANDNOR” functional block:

=_(OR (NOT (AND a b)) (AND (NOT ¢) (NOT d)))

= (OR (OR (NOT a) (NOT b)) (NOT (OR ¢ d)))

Note that this implies it does not know either the NAND or NOR imple-
mentations involved. @ However, from a later precedent, it learns that the
“NAND”_block has the following two 1mplementatlons y = (NOT (AND z y));
and y = (OR (NOT z) (NOT y)).

If the system now goes back to the first pair of rules it learned, the NANDNOR
rules, it finds that it can partially analyze them. For example, it can derive that

= (OR (OR (NOT a) (NOT b)) (AND (NOT ¢) (NOT d)))
is equivalent to the original:

= (OR (OR (NOT a) (NOT b)) (NOT (OR ¢ d)))
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Constructing the partial match between these expressions and eliminating the
common parts, the system is left with the following equivalence: y = (AND (NOT
¢) (NOT d))_is equivalent to y = (NOT (OR ¢ d)). This can get turned into two
new rules for a new block, which corresponds to the NOR function.

Suppose the rules are always presented to the learning system in the best pos-
sible order. Might it not be, then, that Rule Re-analysis is a waste of time? The
answer to this is no. This is demonstrated, by counterexample, as follows. Suppose
that, unknown as yet to the system, there are four general design rules involved in
constructing three precedents. The four design rules are as follows.

* filz) = gqi(z)

* fa(z) = ga2(z)

* f3(z,y) = gs(z,y)

* fi(z) => g4(2)

The three precedents are the following:

1. g5(fi(z), f2(v)) = fa(g1(2), 92(v))

2. f2(fu(t)) = g2(g4(t))

3. l0s(f1(2), f2(2)), 2 = fa(w)] = [fs(91(2"), 02(2")), 2" = ga(w)]

Suppose that the Learning by Failing to Explain system is presented with these
precedents in the order 1, 2, 3. On seeing 1, the system is not able to analyze it
at all. Likewise, on seeing 2, the system can not analyze it at all. Thus far, the
system has 4 rules: two rules implementing blocks representing each of the overall
functions of the precedents!.

Now, on seeing precedent 3, the system may analyze it using rules derived from
precedent 1. This results in one new rule: fa(z) => g4(z). Rule Re-analysis applies
this new rule to precedent 2. This results in the rule, f2(z) = g¢2(z). The system .
may then re-analyze the precedent-1 rules and arrive at two simpler rules. One has
RHS g¢3(f1(z)), the other has RHS f3(g1(z)). Hence, the system is left with the
following rules.

o fo(z] = g4(),
o fa(z) => go(2),
® h(z,w) = g3(fi(2),w),

o hiz,w) = fa(g1(2), w).

!...one rule for each graph of each precedent.
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On the other hand, if one picks any of the six possible orders of presentation and
applies Precedent Analysis without Rule Re-analysis, the set of rules conjectured is
less general th_afn the four rules. For example, suppose they are given in the order 1,
2, 3. Without Rule Re-analysis, Precedent Analysis conjectures the following set of
rules as an addition to those made from each entire precedent. (k is a block created
by the system.)

o fu(z) = gu(2)
o h(z,w) = g3(f1(2),w)
* h(z,w) = f3(g:1(z),w)

It thus failed to find the f, rule.

We decide which rule set is more general by asking which is capable of generating
the other. Clearly, the set produced using Rule Re-analysis suffices to generate all
the rules in the other set. However, there is no derivation of the f2 rule in terms
of the rules produced without Rule Re-analysis. Thus, Rule Re-analysis resulted in
more general rules.

5.1 Summary

The algorithm presented gives an evolutionary view of design performance. As the
system sees more and more precedents, it reorganizes its database by finding smaller
and more general rules, thereby being able to derive more designs. The system’s
problem solving competence increases.

Two approaches to handling sequences of precedents are given: one which just
accepts the precedents in order and applies Precedent Analysis to each, and Rule
Re-analysis, which uses newly derived primitive rules to analyze old primitive rules.
One uses less time per precedent, but is not as powerful as the other. The fact is
that without re-analysis, the system requires more precedents to reach a given level
of generality. Since precedents are in general much harder to come by than the time
needed for Rule Re-analysis, it is clear that re-analysis is worthwhile.
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Chapter 6

Conclusions

This report has been about a particular computational mechanism for generating
conjectures as to structure/function design knowledge, and showing that the con-
jectures generated are useful in that they enable interesting design competences.
A system has been implemented which illustrates these learning techniques. In
[5), I document a prototype system which demonstrates the competences which are
enabled by having knowledge encoded in a Design Grammar.

There is a question raised, however, by any work like this: under what circum-
stances is the given technique preferable to other techniques for solving the same
task (if at all)? Although I do not have a complete answer to this question, I will
approach it by comparing this technique to another method of acquiring design
knowledge: Explanation-Based Generalization.

I will also discuss briefly a few general limitations and the relation to other work.

As usual, I have suggestions for future investigation which arise from this work.
I have included these at the end of this Chapter. Appendix C deals with the related
topic of the idea-history of the research. It, too, indicates potential future work:
those areas I started but never finished for one reason or another.

6.1 Recapitulation

The research set out to investigate ways in which current knowledge could help
constrain the search for new knowledge. As opposed to Explanation-based Gen-
eralization, however, it did not assume the ability to explain all input examples.
The domain for learning is Design Knowledge. The problem of Design is too hard,
however, to tackle all at once, so I separated the problem of learning about structure-
to-function relationships from other issues, like controlling the search through the
space of alternatives and taking into account other design specifications like cost
and performance. This was partially justified by reference to the literature and was
also partly an act of faith.

In learning research, one needs to state what it is that the system is going to
learn, so that progress can be judged. To do this, I gave four design competences,
which a system that does design should be able to exhibit. These were Top-Down
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Design, Optimization, Analysis, and Analogical Design.

The thesis was that having knowledge encoded in a Design Grammar enabled
these competences, and the Learning method given in Chapters 4 and 5 was a viable
method of generating plausible conjectures about Design Grammar rules.

The Learning method presented here has two parts. The first is called Precedent
Analysis. Its key idea is that in order to generate useful, powerful conjectures, one
must partially analyze the precedent to understand what is old, before attempting
to formulate a rule about what s new. This can be thought of as Role Analogy,
because it finds devices that fill analogous roles in the two graphs of the precedent
and conjectures rules based on the analogy. Criterion R provides some insight into
when the conjectured rule will be true independent of the circuit context.

A kind of rule base evolution is a natural outgrowth of this technique. This is
the second part of the Learning method: Rule Re-analysis. 1 gave an incremental
algorithm that re-analyzes old rules using new rules, thereby finding even more
general rules by cleaving the old rules along rule boundaries. This is inherently
more powerful than not re-analyzing, even if optimal precedent ordering is assumed.

6.2 Explanation-Based Generalization

Explanation-Based Generalization! is a method of finding justifiable generalizations
of single examples by explaining why the example satisfies the goal concept and then
generalizing the explanation in an explanation-preserving way. The system can, in
principle, build up a description of the precise class of instances to which the same
general explanation can be applied to show concept membership.

The current efforts in the literature typically do not find the precise class; rather,
they only find a subset of the class by finding a suffieient description which is not
necessary for concept membership.

Other efforts have focused on refining a knowledge base by seeing where a faulty
explanation breaks down.

6.2.1 The EBG Method

For a quick example of the technique, reconsider the example in Figures 4.5 - 4.6.
The Learning by Failing to Explain learner conjectured the equivalence shown in
Figure 4.6. An Explanation-Based Generalizer, by contrast, would be given the
equivaléng_e in Figure 4.6. It would also get an explanation of why the equivalence
was true in the context of Figure 4.5. The explanation would be something like?

e On odd numbered clock cycles, both behaviors (in Figure 4.5) put out the
value of z, because of the arrangement of the NOT-Z circuitry on the select
line of the output MUX. Therefore, on odd cycles, from the standpoint of
circuit outputs, the two subgraphs (Figure 4.6) are equivalent.

!Here are some references: |9, [12°, (14}, 17}, 131
2This is somewhat idealized. The actual details would be more complicated.
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e On an even clock cycle, the output of the HLG is selected to be the output
of the upper f box, whose output is f(Z~!(f(Z7*(a)))). Also, because of
the NOT-Z circuitry on the output of the LLG, the y output is equal to the
value at the output of the Z~! box on even clock cycles. But because of
the coordinated way the NOT-Z circuitry is set up on the input end of the
LLG, the Z=! box’s output is also f(Z~!(f(Z !(a)))), for even clock cycles.
Therefore, for even clock cycles, the y outputs must be equivalent.

* Since every output is on either an even or an odd clock cycle, by these two
steps the outputs are equivalent for all time. QED.

Looking at this explanation, the algorithm asks: what is it about the contezt
which was crucial to this proof? From the third step, it is clear that it is sufficient
that the y outputs by equivalent on both odd and even clock cycles. The even-
cycle case was proved using the context fact that the y outputs were equivalent to
the same functions of the outputs (in this case MUX) of the two subgraphs. The
odd-cycle case depended on the fact that the outputs were equivalent functions of
equivalent arguments (not necessarily MUX of a free input).

In some better formalism than English, it would be clearer exactly what the
proof depended on, but one can imagine that the inference rules used were more
general than the specific case shown. Intuitively, it is clearly overly specific to
require that the y output be produced by a single multiplexor whose select line is
tied to a one-bit counter and which has one input tied to a free variable, etc. As
far as the proof is concerned, the only important characteristics were that on odd
cycles, the outputs were explainably equivalent functions, and on even clock cycles
they were explainably equivalent to the outputs of the subgraphs.

The Explanation-Based method would produce a description something like that
in Figure 6.1 of the context required to make the explanation of equivalence hold. h,
and h; stand for arbitrary functions, which can have any numbers of other inputs.
Note this is now potentially more useful than the conjectured rule (from Figure
4.6), because it will always be allowable if it matches the situation.

6.2.2 Comparison

Learning by Failing to Explain is not an Explanation-Based Learner in the sense of
the above definition. In fact, it only learns when it can not explain the situation.

There Js no direct comparison between the two methods; they complement each
other. It does not make sense to ask which is more powerful in general, as neither
has its applicability domain included in that of the other. The point is that different
situations call for different methods, and where one is most useful the other one
won’t be, necessarily.

Forming explanations for things is an inherently hard problem; after all, theorem
proving is a special case of it. Any method which relies on being able to come up with
an explanation every time it wants to generalize must fail to generalize sometimes.
There are two reasons such a system could fail to generalize: its domain theory
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Figure 6.1: EBG-Produced Description of the Required Context.

is incomplete, so that no explanation exists, or the explanation is too hard for its
explainer (parser, theorem prover) to find.

It should now be clear why a system which could only learn analytically would
be limited: even if its domain theory were perfect, i.e. every true thing were in
principle explainable, there would still be complex situations that it couldn’t justify.
This is not just mathematical nitpicking: the complexity of VLSI circuits provides
a rich source of highly complex objects to explain.

A system which learns by explaining as much as possible and then making a
reasonable conjecture, can deal with these complex situations in a useful way.

The other case in which Explanation-Based Generalization could fail is where
the system’s domain theory is insufficient to explain the situation, even in principle.
Note, by the way, that this situation obtains in nearly all physical world domains
to some degree, as there are always some special cases which aren’t explainable in
terms of the current theory® Not only does an exclusively explanation-based system
fail to generalize a particular instance, it does not even have a hope of ever being
able to generalize it. The most it could do would be to pile up a lot of highly specific
instances which would probably never again be useful.

Contrast this with “inductive, syntactic” methods, in particular the Learning
Algorithm given here: cases of in-principle unexplainable things are handled in
the same way as in-practice unexplainable things: they are generalized as much as
possible by partial analysis and then stored. Later, after the rule base evolves some
more, the system could even go back and generalize further by discovering a rule
which cleaves the original, mysterious example.

A syntactic learner could start without any knowledge of a domain and eventu-

3For example, the perturbations in the orbit of Mercury weren’t explainable in terms of Newtonian
Physics; the theory of Relativity was needed. Similarly, the classical theory of Relativity fails on
the quantum level, etc.
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ally hope to become an expert; an explanation-based learner could not.

On the pro side, however, there are clear situations where Explanation-Based
methods are superior to inductive methods. A Physics student, on seeing that
a bowling ball and an eight-ball dropped simultaneously off of a building land
simultaneously, should not immediately generalize to “All black things fall at the
same rate.” * The student should use Physics knowledge to reason about gravity
and air friction. In particular, this would avoid the non sequitur about the color
black.

To summarize, both Learning by Failing to Explain and Explanation-Based
generalization methods have places in a learning system. Use Explanation-Based on
the cases which are obvious, and use Learning by Failing to Explain when mysterious
situations arise.

6.3 Relation to Other Work.

It would seem that there is an interesting relationship between this work and that
of Berwick[2]. Berwick’s model of learning can be construed as a Learning by
Failing to Explain method. His domain was natural language learning, where the
grammars are, of course, string grammars. His mechanism attempted to parse
an input sentence according to its current rules as much as possible, then if the
result satisfied certain criteria the system proposed a new rule. His system did not
attempt Rule Re-analysis. This is because (he argues) natural languages satisfy
certain constraints which enable them to be learned in this manner. Thus, his
system could be described as Precedent Analysis, together with some additional
criteria regarding when to actually form a new rule.

Inasmuch as there is no reason to believe that the world of design obeys such
a learnability constraint, it is not to be expected that Berwick’s mechanism would
work in learning Design Grammars from any kind of realistic examples. (Of course,
if the most general rules were simply handed the system as precedents, any system
could learn that way.) It is possible, however, that the use of Rule Re-analysis
can substitute, at-least in part, for the missing learnability constraint. It is also
possible that more powerful language acquisition could occur if Berwick’s method
incorporated Rule Re-analysis. Of course, fidelity to psychological data might not
be maintained.

6.4 Limitations and Suggested Future Work

Experimentation with some examples on the system (most notably those docu-
mented in Appendix E) reveals the following limitations of both the basic idea and
the current implementation approach.

*This would be wrong: a bowling ball and a black piece of paper do not fall at the same rate off
of a building.
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e Sometimes, the mazimal partial parse is not the most desirable partial parse
to use. In_some cases a much more context independent rule can be obtained
if a non-rgaximal partial parse is used.

e This method only finds one partial parse. In some cases it may be desirable
to find many candidates, giving potentially different rules.

e The greedy algorithm can be too greédy, causing the system to miss a better
partial parse.

e The system needs some better approaches to search control in the analysis al-
gorithm. In particular, some method of focusing attention on sections of large
graphs would be much more efficient. Adding a simple chunking mechanism
for learning useful derived rules would help greatly.

These of course suggest that one major area of future research is investigation
of control strategies and knowledge for guiding the Analysis process.

In addition, here are some higher level research questions raised, but not an-
swered in this work.

® As emphasized throughout the thesis, I did not address how search control
knowledge could be learned and used by the system. In particular, there is
a need for the study of specifying constraints other than function, like cost,
performance, and resources, and using these to help guide the search. There
has been some work on learning search heuristics from problem-solving traces,
for example Mitchell[11]. Much more thinking remains to be done to learn
these things in complex domains.

¢ More ways of creating useful descriptions of devices are needed. For example,
it would be nice to collapse the rules for 2-bit, 3-bit, 4-bit,...,n-bit adders into
a single parameterized rule without the necessity of the teacher providing it
explicitly.

o It would also be useful to be able represent generalized functions by having
a vocabulary of descriptive terms arranged in a generalization hierarchy. For
example, the system learned in Chapter 4 that one can slide delay boxes (Z~!)’
from output to inputs of an XOR box. It would be nice if the system could
somehow generalize this to any “combinational” block, not just XOR.

. Oﬁepf the original intentions of this work was to explore problem solving in
general, not just in design. Does this work extend to other problem solving
formalisms and domains? My intuition is that it does, because in most prob-
lem solving domains there seem to be (1) notions of structure: the domain
operations and connections between their use; (2) notions of function: what
goals the operations perform and how to combine goals to achieve more com-
plex goals; and (3) problem-solving “techniques” (rules, schemata, etc) which
associate structural constellations with specific goals. A solved problem con-
stitutes a precedent, so it would seem that a learner could try to understand
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as much of the precedent as possible, in terms of the techniques it already
knows, before conjecturing new rules.

Here are some implementation oriented directions which are worth thinking
about.

e The parser currently implemented could be improved a great deal through
further research. In particular, it is essentially a top-down parser. A combi-
nation of top-down and bottom-up methods is probably better. It must, of
course, still produce partial parses so the Learning Algorithm can still use it.
Another idea is to use the Design search heuristics to speed up the top-down
parsing, reasoning that any designed precedent was probably designed using
similar heuristics to guide its search.

e The system currently looks through all its rules and tries (graph) matching
each to the problem. It would be desirable to avoid some of the matching
involved. This can be alleviated by a parallel architecture, as each precedent
can be checked separately. Also, it is not necessary to rematch a rule to the
entire design if only a small part has changed. If the graph matcher could
be focusable to a neighborhood of the changes, significant speedup could be
obtained.

e A marriage between the Learning method discussed here and the Explanation-
Based methods discussed elsewhere[12] would seem to combine the best of
both worlds: an inductive method which can learn even in situations it can
not fully understand, and an analytic method which finds justifiable general-
izations in well-understood situations. After all, it is silly to use superstitious
(inductive) methods when you know an explanation. But on the other hand
if you can’t explain something (either because you can’t in principle prove it,
or because you can’t in practice prove it) you still need some method that will
produce plausible conjectures.

e It would be interesting to apply the method to other design domains, like
programming.
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Appendix A

Graphs, Grammars, and the
Parsing Problem

A.1 Graph Grammars

A Design Grammar is a slightly restricted form of a graph grammar, a formal entity,
whose definition is the subject of this section.

A.1.1 Graphs
A graph' is a quadruple (V, E,T,,T,) where

e V is a set of ordered pairs, each of whose first element is a primitive thing
called a vertex and whose second element is an element of T,. I will overload
the term vertez by calling elements of V vertices as well as the first element
of the ordered pair. I will also refer to a vertex as a node.

e E is a set of ordered triples. The first two elements of each are vertices, and
the third element is an element of 7,. Each of these shall be called an edge,
arc, or link, interchangeably.

e T, is a set of primitive things called node types.
o T. is a set of primitive things called arc types.

If T, and T, are singletons, the definition coincides with the standard definition
of directed graphs. If these conditions obtain and if for every edge (z,y,*) in E the
edge (y,z,+) is also in E, then we get the standard version of undirected graph?.

Two graphs G,,G; are isomorphic if and only if there exists a 1-1 corre-
spondence f that maps V; onto V, such that A = (z,y,t) € E, if and only if

! This definition is more general than the usual definition of a graph one sees in graph theory. It
subsumes both the notion of “graph” and that of “directed graph” as special cases.

“Well, almost. This kind will have twice as many things called edges as a standard graph would.
but this is a mere technicality. :
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fA = (f(z), f(y),t) € E;, and so that if v € G1, f(v) € G; then the type compo-
nents of v and f(v) are the same.

A graph H = (Vy,Ey,T.y,T.y) is a subgraph of a a graph G =
(VG, EG,T,,G,Teg) if and only if

. VH - VG, and

o For every vy,v; € Vi and for every t € T.c,(v1,v2,t) € Ey if and only if
(v1,v2,t) € Eg

A node, v is a connection point (cp) of a subgraph H of a graph G if and only
if there is an arc A between v and some node w that is not in the subgraph.

A.1.2 Grammars

A grammar is a formal scheme that encapsulates the rules governing a language. A
language (in this case) is a particular set of graphs. A grammar for the language
is a set of production rules that generate all and only the allowed graphs in the
language. That is, a graph is in the language if and only if there exists a string
of productions starting from some single non-terminal node (see below) and ending
with the desired graph.

A rule (production rule) is an ordered triple consisting of a graph, a graph, and
a mapping from connection points of the first to connection points of the second.
Call these the LHS, RHS, and the mapping respectively.

A rule can be used by applying it to some graph G. That is, if the LHS is
isomorphic to some subgraph H of G, and connection points are preserved under
the isomorphism, then H can be removed from G and the RHS inserted in its place
with the mapping dictating how the connections are made.

If the LHS consists of one node which is not a connection point and all the rest
connection points, then term that graph a non-terminal graph.

A graph is in the language generated by a graph grammar if and only if there
exists a finite sequence of rules such that the first rule’s LHS is a non-terminal graph
and the result of applying the rules in order is a graph isomorphic to the graph in
question. :

The recognition problem for a grammar is to determine for an arbitrary graph
whether it is generated by the grammar. The parsing problem for a graph and a
grammar is to determine, given that the graph is generated by the grammar, a
sequence of productions that produces the graph.

A.2 The Parsing Problem

The purpose of this section is to prove that the recognition problem for Design
Grammars is uncomputable. In fact, I'll show that every recursively enumerable
language is the language of some Design Grammar. Thus, because the set of Turing
Machines that halt on their own numbers is r.e., and not recursive, there can be
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no algoritﬁm that can take a graph and a Design Grammar as inputs and decide
whether the Design Grammar generates the graph.
I'll also remark that every Design Grammar generates an r.e. language.

Theorem. For every recursively enumerable language L, there erists a Design
Grammar that generates it.

Pf. The form of the proof is a reduction. It is known that every r.e. language
is generated by some Type 0 (string) grammar. I'll show that by encoding strings
as linear graphs, a Design Grammar can be constructed that generates exactly the
encodings of the language’s strings.

A Type 0 Grammar is a finite set of (string) productions of the form a — 3,
where o and § are strings over the finite set of symbols. The symbols may be
terminal symbols or non-terminal symbols. There is a distinguished non-terminal
symbol, S, called the start symbol. The only restriction on the rules is that a may
not be ¢, the empty string. § may be. A string of terminals is generated by the
Type 0 grammar iff there exists a finite sequence of rule applications starting from
the single symbol S, which ends with the desired string. A rule applicatjon is the
act of replacing the LHS as a substring of the current string with the RHS.

Lemma. Every r.e. language is generated by some Type 0 Grammar.

pf of Lemma. The reader is referred to Section 9.2 of Hoperoft and Ullman 8]
for a real proof of this. The basic idea is that Type 0 Grammars are so expressive
that one can encode any Turing Machine’s finite state transitions as grammar rules,
with the current string acting as the TM’s tape. The input is the string asked about,
and the grammar rules act on the string, mimicking the action of the TM on the
string. If the start symbol is ever reached, then the grammar “accepts” the string,
otherwise not. Hence, deciding whether a given string has a grammar derivation is
at least as hard as deciding when some TM accepts a given input. But because one
could do this for any TM, and because a language is r.e. if and only if there exists
some TM which accepts it, one concludes that any r.e. language is generated by
some Type 0 Grammar. QED Lemma. .

Now, given a Type 0 Grammar, G, construct a Design Grammar, D as follows.
Define node types, one for each distinct symbol of the vocabulary of G. In addition,
define a node type, distinct from all others, called C P (for Connection Point). Also
define a—sillgle arctype, r, interpreted as “to the right”.

To encode a string w as a graph, create | w | ~1 nodes of type C P and one node
of the appropriate type for each symbol of the string. Starting and ending with
connection points, build a graph using the nodes by connecting them in a linear
sequence with the arctype r, so that every odd numbered place is a connection
point and every even numbered spot is a string symbol node. Preserve “to the
right” order with the r links.

Now for every rule ¢ of G, create a distinct non-terminal symbol, denoted R,.
Build two rules of D: each has as LHS an encoding of the string “R,”. One has as
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RHS the encoding of a, and the other has as RHS the encoding of 3. Record R, —
o as equivalencespreserving, and record R, — 3 as non-equivalence-preserving.

Now by the pules of use for Design Grammars, a terminal string has a derivation
in G if and only if the graph that encodes it has a derivation in D. This is because
the extra non-terminals created appear on exactly one side of two rules, so if they
ever appear in the current graph, they must be eliminated by one of the two rules.
If one is eliminated by the same rule that introduced it, then it is as if the two
had never happened at all. Alternatively, if one is eliminated by the other rule,
then it is exactly as if the corresponding grammar rule had operated on a section of
the string. Note that this is true even if other rule applications intervene between
the introduction of the special non-terminal and its elimination: the other rules
can’t affect the non-terminal because they can’t match it. Also, the operation of
the graph rules only allow replacing & by 3, not 3 by a, because the “4 rule” is
non-equivalence-preserving.

Now suppose that a D derivation exists, starting from the non-terminal graph
encoding “S™. By reordering the operations, we can put the introduction and
elimination of any special non-terminal together in the sequence. Then we simply
transcribe in a straight-forward way the corresponding G derivation.

Conversely, given a G derivation, we may even more straight-forwardly write
down a D derivation by substituting pairs of graph rule applications for single rule
applications. QED.

Theorem. Suppose D ts a Design Grammar with non-parameterized graph ele-
ments. Given any starting graph in the language of D, D generates an r.e. language
of graphs from it.

pf. The only real technicality here is that a Design Grammar, as defined, has
no distinguished start symbol. This is taken care of by allowing any graph to be
the start symbol and taking the particular one as input.

A very straight-forward breadth-first, British Museum algorithm suffices. Start
with the input graph on a queue. Do until the queue is empty (which may be never):
Consider the graph on the head of the queue. If it consists of terminals only, and if
it hasn’t been output before, then write it out as an output. Otherwise, for every
one of the finitely many possible rule applications, generate the result of applying
it. Put these on the back of the queue. Repeat.

Clearly, if some graph has a derivation in D, then the algorithm will eventually
put it out. If not, then it won’t, because the algorithm puts out only graphs which
appear asthe result of a sequence of applications of rules. QED.

Note that if the rules are parameterized, then they may be parameterized by
real numbers. Because there are potentially uncountably many terminal graphs in
that case, no TM can exist that enumerates the them. Thus, the theorem won’t be
true of arbitrarily parameterized Design Grammars.
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Appendix B

Matching via Constraint
Propagation

The purpose of this Appendix is to explain the subgraph isomorphism algorithm
used by the implemented system. The task of the algorithm is to take in a large
graph and a small graph and put out a list of all possible matches (subgraph iso-
morphisms) between the two.

The intuition behind the algorithm is that for almost any pair of graphs there
are a large number of ways of trying to match them which are obviously ridiculous.
For example, a candidate match might try to associate a node of one type to a node
of a different type. Alternatively, the types might match, but the node of the small
graph has more neighbors via a given arc type than does the associated node.

If an algorithm could eliminate these poor guesses at the outset in a small amount
of time, then the system could eliminate some search. As remarked previously, if
there are actually many matches (isomorphisms) between the graphs then it takes a
long time to find all of them simply because there are many matches. Any algorithm
must take a long time on those cases.

The interesting case (the situation which prevails most often, at least in this
system) is when the small graph is not a subgraph of the LG at all. One would
like an algorithm to find this out quickly if possible. From the limited set of cases
which the system tried this on, graphs used by the design and learning systems, -
the empirical results are encouraging: it seems that most such problems have lots
of obviously bad possible matches. The algorithm behaves very well on them.

B.1 The Algorithm

A match is represented by a data structure I'll call a graph-match (GM). It is
essentially an association list: for each node of the small graph there is a length one
list of nodes (possible-match-set or PMS) of the other graph to which it may be
matched. I will term the domain of the GM, i.e. the “keys” of the alist, the left-set
or simply the domain. I will term the range of the GM, the union of all PMSs, the
right-set or simply the range.
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More generally, a GM may associate more than one right-set node to each left-
set node; in that case it does not represent an isomorphism of graphs, just an
association of nodes.

Initialize a GM with left-set equal to the set of nodes in the small graph and each
possible-match-set to the set of all large graph nodes whose type and parameters
are compatible with the given left-set node. (Intuitively, the PMS of a left-set node
contains nodes which remain possibilities for matching to the left-set node in an
isomorphism. The algorithm will see to it that no node is eliminated from a PMS
if the association can take part in an isomorphism.)

Call Algorithm SG with the initial GM.

ALGORITHM SG

¢ Call subroutine P with the initial GM and a queue of all nodes in the left-set.
Subroutine P is defined as follows, taking a GM and a queue of left-set nodes
to check. It puts out an altered GM, one with all ridiculous possible node
matches eliminated.

SUBROUTINE P

— While the queue is not empty, for the head of the queue, n, and for each
possible match, m, in its PMS, check to see if constraint LC (definition
below) is satisfied by (n, m, <current GM>). If so, do nothing; if not,
eliminate m from from the PMS of n.

— When all possible matches have been tried for n, if any were eliminated,
then adjoin all neighbors of n to the back of the queue (if they are not
already on it), and process the next queue entry.

~ When the queue finally empties (as it must since it only keeps going
as long as nodes get eliminated from the GM) P checks constraint GC
(defined below) and eliminates matches as necessary from the GM. If
constraint GC eliminates any possible matches, make a new queue from
all neighbors of those left-set nodes which had matches eliminated and.
go back two paces and process the queue again.

— By getting to this point, both LC and GC must pass the GM without
eliminations, so P returns the latest GM.

-

o If the returned GM has all PMSs empty, then halt, returning the empty list.

If the returned GM has all PMSs singletons, then halt, returning the length
one list consisting of the returned GM.

® Otherwise, call routine SEARCH, passing the current GM.

Halt, returning SEARCH’s result.
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Routine SEARCH is defined as follows, taking a GM as input and returning a
list of isomorphisms.

ALGORITHM SEARCH
e Establish a list (initially empty) to hold the isomorphisms to be found.

e Pick some left-set node, n, whose PMS is not a singleton. (One such will
exist, by construction.) Save the input GM somewhere.

e For each element, m, of n’s PMS, do the following.

— Build a new GM identical to the original, saved version, except put n's
PMS equal to the singleton containing m.

— Call SG with the new GM and a list of all the left-set nodes in the new
GM. Append its results to the list of results.

e Halt, returning the list of results built up by the loop.

Note that by definition of isomorphism it must be that if a node is not an a-
neighbor of n then it can match no a-neighbor of m, else m is an invalid match.
Thus, for each arc type a, we define a negative arc type < a >, and enforce that
every pair of nodes n;, n; of either graph are either a-neighbors or < a >-neighbors’.

CONSTRAINT LC is a local constraint which must be satisfied by a candidate
node match and the current GM (n, m, gm): For any arctype a there must be a
one-to-one’ mapping from the a-neighbors of n (neighbors of n via arctype a) to
the a-neighbors of m such that each image node of a neighbor is in the PMS of the
neighbor in gm.

CONSTRAINT GC is a global constraint on the entire GM. Essentially, there
must exist a one-to-one function mapping left-set nodes into right-set nodes such
that the image of a left-set node lies in its PMS.

GC finds sets of left-set nodes which are “critical.” A set {n,nz,...n,} of left-set
nodes is critical if the union of their PMSs has at most p nodes. If it has fewer
than p, then no global isomorphism could exist, so GC sets all PMSs of GM to the
empty set, indicating failure. If the critical set has exactly p nodes, then no other
node of the left-set may have a PMS which contains a range node of the critical set.
Thus, GC returns a GM with the appropriate possible matches eliminated. It does
this for all critical sets in GM before returning the result.

Both of LC and GC may be implemented in a straight-forward way using the
po]ynomTal-time algorithm for finding a mazimal graph-matching in a bipartite
graph®, as GMs may be viewed as bipartite graphs.

'This does not force the graphs always to have the extra baggage of the negative arc types
explicitly represented. It is quite simple to decide which possibility holds just from a being present
or not.

“f is one-to-one if and only if f(z) = f(y) = z =y

>This is something of a pun, since the usual (graph theory) meaning of graph-matching has
nothing to do with matching two different graphs. For definitions and the polynomial-time algorithm.
see for example Sedgewick{16].
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B.2 Correctness

Theorem. TheeGM g is a subgraph tsomorphism of graph s to graph ! if and only
if g 1s in the list put out by Algorithm SG on input i, where ¢ is a GM associating
each node of s to the set of all nodes of | which are type/parameter-compatible to st.

pf. (<=) Suppose g is in the list produced by Algorithm SG applied to the
appropriate 1. By construction, SEARCH only returns results produced by some
call to SG. SG only returns a match if it is all singletons. Thus g must be all
singletons. Thus, every node of s has exactly one associate in g. g must be one-
to-one; otherwise there would be two or more nodes of s which form a critical set
whose range is of size one. Thus GC would have disallowed g.

Denote the unique element of the PMS of n by g(n).

There are now two cases in which g could fail to be an isomorphism. (1) There
are two nodes n;,n; of s such that n, is an a-neighbor of n,, but g(n,;) is not an a-
neighbor of g(n,). This can’t be true, for LC must have checked each of the possible
matches at least once (we called SG initially with the queue consisting of all nodes)
and the last time LC checked n,’s PMS, LC would have failed, because by then
all neighbors of n, would have had singleton PMSs (else when they became so, n;
would have been checked again), and the only possible map of the a-neighbors of
nl compatible with g would not have associated n; to an a-neighbor of g(n;). Thus
(1) can not hold for any arc type.

(2) There are two nodes n;,n; of s such that n, is not an a-neighbor of n,, but
g(n1) is an a-neighbor of g(n;). This must also fail to hold, because if it did then
case (1) would hold for the arc type < a >. But case (1) can’t hold for any arc
type. Thus, (2) can not hold either.

Therefore, ¢ must be an isomorphism of s to [.

(=) Suppose g is an isomorphism of s to [. If f is any GM whose left-set is
the nodes of s, I will say that ¢ is compatible with f if and only if g(rn) € PMS(n)
under f. By definition of isomorphism, g must respect node types/parameters, so
g is compatible with i.

I will first show that P never renders g incompatible with the current GM
through elimination of a match. For P to do so, either LC would have to fail
at a node n and match g(n) in current GM A, or GC would have to eliminate g(n)
from PMS (n) under h.

Suppose g is compatible with h and LC considers the match n — g(n) in h.
Clearly, i?a(n) is the set of a-neighbors of n, the one-to-one mapping ¢ | is
compatible with &, so LC won't eliminate g(n) from PMS(n).

Suppose g is compatible with A and GC considers h. Furthermore, suppose it
finds a critical set, {n,,...,n,}. Since for each n;, g(n;) € PMS(n;), the h-image of
the critical set must be exactly the g-image. Then suppose that some other node,
n has a match in the h-image of the critical set. Then GC will eliminate that
association. But that association can not be g(n), else g would not be one-to-one,
by the Pigeon Hole Principle. Thus, GC will not eliminate any ¢ associations.
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Thus, since neither LC nor GC can eliminate a g-association, P can’t either.

Thus, if SG_halts without calling SEARCH, ¢ will be returned by SG.

Suppose that whenever SG is called with a GM h, with which the subgraph
isomorphism g‘is compatible, and whenever h forces SG to at most n levels of
recursion in calling SEARCH, SG returns g among its outputs. Also suppose that
the GM 1, with which ¢ is compatible, forces SG to recur to exactly n + 1 levels.
Since g is compatible with ¢, the first call to P will not eliminate any g-associations
from the current GM, so SEARCH will be called with a g-compatible GM, 7',

SEARCH will pick some node, ¢, and successively call SG with GMs " which
have PMS(q) set to a singleton from the i PMS. In particular, then, SG will at some
point be called with PMS(g) in " being the singleton containing g(g). But in that
case, as the algorithm is already at a depth of one in recursion, " can only force
SG to n levels. But notice that g is compatible with 7". Hence, by the induction
hypothesis, the recursive call to SG will return g among its outputs. Then the top-
level call to SEARCH will return the union of all of its calls to SG, so its output
will include g. The output of the original call to SG is just the result of the call to
SEARCH, so SG will return a list containing g.

Hence, by induction on n, Algorithm SG will always return g whenever it is an
isomorphism of s to .

Combining the two halves of the proof, it is now clear that Algorithm SG finds
all and only the isomorphisms from s to I. QED.

B.3 A Few Words About Complexity

The first remark is that Subroutine P must run in time polynomial in the size of the
graphs involved. LC and GC may only be called as long as the current GM has non-
empty PMSs. Each constraint only serves to decrease the size of the PMSs. At most
mn match-eliminations, where the small graph has m nodes and the large graph
has n nodes, can occur, because this is the largest number of elements of PMSs
there can be initially. Hence, at most m + nm? (each elimination can cause all m
nodes to be added) queue entries can be made. Since GC is only called after LC’s
queue is emptied,then GC can be called at most (assuming LC’s queue is emptied
2(m + nm?) times) 2(m + nm?) + 1 times. As remarked above, LC and GC run
in time polynomial in m and n, so let p(m,n) denote the worst of the two?®. Then
the entire run time of Subroutine P is at worst ¢(m,n) = (2(m + nm?) + 1)p(m,n),
which is polynomial in m and n. This is a very loose upper bound.

The sétond remark is that if SEARCH is called to a recursion depth of d, 0 <
d < m, then Algorithm SG requires less than or equal to g(m,n) T3, n* which is
less than ¢(m, n)n?*!,

The algorithm can be viewed as a standard search algorithm that is augmented
by a polynomial-time “filter” which cuts out a large amount of the branching and

4The time complexity of the bipartite graph matching algorithm dominates their complexities.
Sedgewick{16] quotes this at O(V?) for graphs with V vertices. In our case, we can identify V with
m + mn in the worst case, giving a loose upper bound of (mn)®
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[
Figure B.1: An Exponential Class of Graph Pairs

depth of the search tree.

The question remains, under what circumstances does the algorithm behave
poorly? The high-level answer is that it behaves poorly when the graphs are highly
homogeneous: few arc types, few node types, lots of symmetry, highly similar node-
degree distributions, etc.

For example, consider the class of graph pairs schematically depicted in Figure
B.1. The nth pair is constructed as follows. The small graph consists of n disjoint
squares and the large graph consists of n—1 disjoint squares and a disjoint pentagon.
All nodes are of the same type and all arcs are duplicated so they go both ways. The
algorithm goes to at least level n of recursion on the nth pair. This is exponential
behavior.

B.4 Relat_ion to Other Work

Ullman [20] gives a fast algorithm which is basically the same as Algorithm SG,
but he does not employ anything like Constraint GC. He is also solving a slightly
different isomorphism problem: he allows two nodes which are not neighbors in the
small gfaph to be neighbors in the large graph. One could convert Algorithm SG so
that it allowed this simply by ignoring negative arc types. He gives some empirical
results, based on an assembly language coding of the program, which reflect the ex-
perience I've obtained. The algorithm behaves polynomially on randomly generated
graphs; this is reflected in the good performance on all the graphs encountered by
my system in practice. When a referee of his paper suggested he try the program on
a class of strongly regular graphs, the performance went from 2 seconds for random
graphs of size roughly 25 nodes, to greater than 3000 seconds on regular graphs
with 25 nodes. This reflects the poor behavior of Algorithm SG on highly regular
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graphs.

Haralick and Shapiro ([6},(7) formalize the notion of the Consistent Labeling
Problem. It is a generalization of numerous problems, such as Subgraph Isomor-
phism, Latin Squares, Graph and Automata Automorphism, Line Labeling, and
many others. It consists basically of a set of units (things to be labeled), labels,

and a constraint relation which restricts the allowed assignments of labels to units.
They define a two parameter class of local constraint operators which essentially

generalizes Constraint LC above. They do nat seem ta use the Glsbal Caiifiting
technique of Constraint GC above. Their basic conclusion seems to be in line with
Uliman’s: in practice, the algorithm performs well on graphs derived from real life
situations, but can perform poorly on regular (homogeneous) graphs. I believe that
Constraint GC can be generalized to the general consistent labeling problem when
the labeling must be one to one.

B.5 Summary

This Appendix has given an algorithm for solving the subgraph isomorphism prob-
lem on graphs with labeled nodes and labeled arcs. The reason it is of note is that
it allows the matcher to take into account domain constraints to limit the search
involved in this NP-complete problem. The domain constraints are encoded into
the representation through the node- and arc-labels.

In fact the algorithm actually finds all subgraph isomorphisms between the two
graphs, rather than just returning yes/no, so in the case where there are many
matches between the two graphs the algorithm will take time at least proportional
to the number of matches.

Experience with hundreds of “real life” graphs which came up in testing the
learning/design system has shown that whenever there was no match between the
input graphs, the algorithm went no deeper than one level of recursion, so behaved
polynomially. This is in line with the empirical results of others who have used
algorithms similar to this one. The actual implementation chosen here was a pro-
totype version designed more for convenience in debugging than speed, so I expect
that a tight coding could increase its speed quite significantly. (It won’t change the
depth of recursion, of course.) ‘ '



Appendix C

Thesis History

The intent of this Appendix is to outline two of the ideas which did not make it
into the thesis. One failed to make it because it turned out to be a bad idea; it is
nevertheless an idea which might occur to someone else, so it is important to say
why it did not work out. The other idea is mentioned because some aspect of it
may be worth pursuing.

C.1 Representing Constraints Other Than Func-
tion

One of the initial topics of interest to me was analogical problem solving. Specif-
ically, how might a program use previous problem-solving experience to constrain
the search for a solution to a design problem? The interest was in applying analogy
to all classes of constraints in a problem at once.

It is easy to think of scenarios of this type of behavior; for example, “I need
a low cost mechanism to transfer low power at low speeds between shafts in this
sewing machine. That dishwasher transfers low speeds at low power in its agitator,
and uses a cheap belt drive mechanism. I'll try a belt drive in the sewing machine,
by analogy with the dishwasher.”

There is also the complementary use of analogy: “I need a low cost mechanism
to transfer low speeds between shafts in this sewing machine. The use of jeweled
bearings in the high speed drill caused it to cost ten thousand dollars. Ten thousand
dollars is expensive for a drill. By analogy with the drill, I will not use jeweled bear-
ings in the design, because even though it performs a necessary part of the function
and satisfies the power and speed requirements it is likely to be too expensive.”

There are many more such scenarios, where a designer makes a design decision
based on knowledge of how it worked out in a similar situation. This is still an
interesting sort of problem-solving behavior; I think it needs further investigation.
A few questions arose, however, during the thesis work.

Specifically, this suggests the following problem-solving paradigm: start with an
initial design specification, then pick the rule or precedent which matches the best
to its constraint specifications, then try it out. If it is a precedent, then it may be
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necessary to throw out certain things which are not relevant. This can be viewed
as a form of GPS, in that the program looks at the constraints left to be satisfied
in the goal description and picks the operator (precedent or rule) which seems to
get the closest.”

In this scheme, many different classes of constraints need to be represented, like
function, resource usage, and performance. In a typical real-world gear problem
one might need to represent all of the following: shaft-speed ratios (function), space
usage, cost, power transfer, operating speed range, even design time of the device.

Suppose we have such a representation for each precedent, rule, or problem.
How well would the proposed problem-solving method work? The key observation
is that stmilarity 1s a good heuristic for some classes of constraint, but it seems to
fail miserably for others. Specifically, it seems to work well for function constraints;
that is what Analogical Design is about. But consider space usage constraints. It
could be that a precedent problem was solved subject to identical space resource
requirements as those imposed on a given problem, but because of differences in
other constraint specs, the precedent’s solution is bad in the problem context in
that it leads to large cost, insufficient durability, or some other problem. Clearly
our similarity heuristic would take into account the identical space requirements
and weight that precedent higher.

Note that this is not a statement about the domain itself, rather about classes
of constraints present in any design domain.

To make matters worse, suppose all of the problem’s constraint classes have
identical problem specs to some precedent, except one crucial specification. Also
suppose that the crucial one acts to rule out the precedent’s solution completely
(e.g. make the same device, but at one tenth the cost). It would appear that the
similarity between problem and precedent is overwhelming in this case, but to use
it would be totally wrong.

The problem is that these types of constraints satisfy all or nothing matching
criteria: a proposed solution is no good unless it completely satisfies the resource,
cost, performance constraints. Contrast this with functional constraints. It 1s useful
to try a proposed solution which only partially matches the functional constraints;
some other partial solution can match the rest. An example of this would be
combining a crankshaft, an idler gear, and a reduction gear to make up an entire
mechanism. Each piece satisfied some aspect of the function, but not the entire
specification. It is to no advantage to try a solution which almost stays within the
spatial limits of the problem, or costs just a bit over the upper cost bound. On
the othér hand, if the candidate solution does satisfy the constraints, then it seems
intuitively that one should try the one which uses the fewest resources; but that
would be the one which was the worst match to the problem’s resources.

One idea for getting around this problem would be to have some representation
where each type of constraint had a description in some type of representation where
partial matches did combine in the way function does. For example, if the spatial
constraints of a gear problem were translated into the form, “first transfer power
down this narrow channel, then around the obstacle, then across the long, open
space,” then partial solutions would combine. One part could transfer power down
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the narrow channel, one around the obstacle, and one across the open space.

One problem with this scheme is that even though it might work for spatial (re-
source) constraints, other constraints do not seem to lend themselves to it. Consider
cost. “First spe:ld less than a thousand dollars, then spend less than another thou-
sand dollars, then spend less than eight thousand dollars.” If this representation is
useful, where did it come from?

Another difficulty is that design problems are not usually stated in these terms.
Usually, the problem is just one large, complex mass of interacting constraints. Even
if the initial problem is of this nice form, the process of introducing structures as
partial solutions changes the resource descriptions drastically, so the intermediate
stages would have to be re-expressed. How this dynamic representation changing
might take place is mysterious.

It was about at this point that I decided to concentrate on functional complexity,
since those constraints seemed to be amenable to analogical problem solving in a
GPS sort of framework.

C.2 Leveled Closure Approach to Generalization

As mentioned in Chapter 4, to deal with parameterized representations the system
must do constructive generalization !.

The approach I tried is the following very general one. I suppose the system
has a store of knowledge in the form of representation-maintaining subroutines.
That is, any representational predicate which the system knows has a subroutine
which is capable of deciding whether it is true. For example, there might be such a
subroutine which can tell whether its two integer inputs are equal. Also, there are
“functions” which are little algorithms which take in values and return new values.
There might, for example, be a binary function which returns the sum of its two
integer arguments.

When the system sees two descriptions which are supposed to represent instances
of the same concept, it tries every subroutine it knows on every combination of the
parameter values (which are type compatible with the subroutine) to decide what
the maximally specific description is that is true of both instances. When every.
possible predicate is found, we say the program has reached the closure of the
current description. In fact, we’ll call the closure of the two input instances the
level 0 closure.

Sup'pgﬁe the system goes along seeing positive and negative instances, possibly
throwing relation-instances out of the current generalization-description if the new
positive instance does not satisfy them. If it ever ends up throwing away all of
them, so that the current generalization-description becomes empty, then a crisis
has occurred.

! Constructive Generalization is generalization where the program must not only climb a generality
hierarchy, but it must create the generalized descriptions from lower level primitives as well. Having
an a prior: description language, in terms of which the concept is guaranteed to be expressed. is a
powerful constraint. :
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The program takes the following action. Call all of the known functions on each
type-compatible combination of values, and create a new set of derived values for
each instance. For example, compute all sums of integers and denote each different
sum by its symbolic representation (e.g. (SUM (GEAR-1 RADIUS) (GEAR-2 RA-
DIUS))). Then compute the closure of the augmented descriptions. Call the result
the level 1 closure. ‘

Continue receiving examples until either the examples stop coming or another
crisis occurs. Each time a crisis occurs, compute the next level’s closure. Eventually
the correct description will emerge, assuming it is representable.

This is very general, in that it does not require knowledge of the semantics of
the representational predicates. Also, the number of new representational entities
examined is polynomial in both the number of parameter values and the number of
subroutines and functions.

Unfortunately, it turns out to be doubly ezponential in the level of the closure.
That is in the worst case. If the functions and predicates are commutative and
associative and the program takes that into account, this can be improved to a
mere exponential?. Practical experience with a real system trying to do this, even
giving it knowledge about dimensions (i.e. it never adds meters to seconds, etc),
shows that the run time at level 0 is okay, at level 1 is borderline, and at level 2 is
ridiculous.

This shows that the program’s power comes directly from its underlying repre-
sentational primitives. If the concept under consideration lies at level 0, then the
program will find it with no problem. If it lies at level 1, then the program must
be heroic to find it, and at level 2 it simply will not find it.

My initial hope was that most relevant concepts would be near the surface, so
to speak. That is, the underlying representational primitives would be so powerful
that all concepts had expression as level 1 or less concepts. I subsequently found
out that they could be made so only by giving the system highly specific and ad
hoc seeming functions and subroutines.

One example of the system needing powerful primitives is in one relation needed
in defining the gear-mesh rule in the Gear World Design Grammar. It turns out
that the structure only works if the distance between the gear shafts is equal to the
sum of the gears’ radii. Now if the system has only the predicate EQUAL and the
functions PLUS and TIMES, then this concept, '

(ritr2) *«(ri+r) = (21~ 22) * (T4 — 22) + (11 — v2) * (V1 — v2)

lies at a whopping level 3. .

On the other hand, if the system has a DISTANCE function, then it is at only
level one: (r; + r;) = DISTANCE (z,,y1, 13, ¥2).

Supposing the system has a DISTANCE function isn’t so incredible; however, I
found the system needing the predicate IS-TWICE-AS-BIG-AS (z,y) to make the
concept of gear differential be level 1. If it has that one, why not IS-THRICE-AS-
BIG-AS?

2For example, plus and times satisfy this.
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The final blow to this method is the realization that, often, a little semantic
knowledge goes a long way. Specifically, suppose the system has only the function
PLUS. The concept y = 8z is at level 3: '

y=((z+z)+(c+2))+ ((z+z) + (z + 7))

However, if the system knows one little technique, it can quickly find (or rule
out) any linear function. It simply assumes the form y = az and uses the examples
to get a number of equations. If @ = y/z is the same in all examples then it is found,
otherwise it is ruled out. This is very much quicker than trying all combinations of
additions of z and y to level 3.

Intuitively, it seems that there are many systems of representational primitives
which exhibit regularities which may be exploited. Simple algebra is one example.
Also, with some more domain knowledge, it is likely that almost all possibilities
can be ruled out a priori. Using dimensions is an example where this is true.
The difference between using dimensions and not using dimensions to constrain the
number of combinations tried introduced a performance speedup of about a factor
of 3 (from about 30000 to about 10000) on the small set of examples I was using.

There was one clever trick that came out of dealing with this algorithm. The
trick used in the program actually made a major difference in the performance.
This algorithm tends to produce lots of tautological relation-instances and useless
constants, like (EQUAL z, z) and (¢ + £ — z — z). This can increase the number
of relations to check and carry around by an order of magnitude. It is desirable to
get rid of these.

The clever way I found of doing this® is to try each relation and object expression
on several random values. If the result always matches the values computed on
the examples, then it is probably tautological or constant, so throw it away. It
is necessary to make sure the random values always match the example’s values,
because the examples’ value might be extremely rare. It is extremely unlikely, for
example, to find a triple of integers z,y, z such that z +y = 2. Therefore, it is likely
that several random instantiations will all yield the same result. But if the examples
satisfy the constraint, then the random values will not match the examples’ values.

My conclusionds that the leveled closure method is to be used only as the very
last resort, when no domain-specific knowledge is available. And then, the concepts-
had better be close to the surface of the representation language. An example of
where this could conceivably be of use is in teaching a student: teach the student
the relevant representational elements (like how to find the distance between points)
and don’t-introduce the constraint-concept until all the representational elements
are firmly in place. The only reason it works here is that in the right representation
almost anything will work.

e . . . . o . . .
“I subsequently found out it is a technique sometimes used by mathematicians to decide if a
theorem is worth working on.
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Appendix D

Example Design Grammar

This Appendix contains the Design Grammars referred to in the text examples.
The first section has the CMOS World Design Grammar, and the second has the
Gear World Design Grammar.

D.1 CMOS World Grammar

Rules with the same LHS are represented together and the LHS is represented only
once. Rather than an entire graph, the LHS will be represented in the notation
illustrated in Figure D.1.

For example, “in ci (a0 b0) (al bl)” indicates that there are five input variables
with the names ci, a0, b0, al, bl. Two variables in parentheses are neighbors via the
same arc type; thus, they are interchangeable (commutative) inputs (or outputs).

In writing a RHS, if all inputs to a block are interchangeable, or if there is only
one input, the arc types are left out. Similar treatment is afforded outputs. Data
flows generally upward and to the right in these diagrams; if there is ambiguity, an
arrowhead indicates the direction of data flow. Connection points are indicated by
a black dot. Lines crossing without a dot at the intersection do not connect at that
point.

Terminal graphs are shown in transistor notation.
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D.2 Gear World Grammar

As the elements in GW have parameters, parameters are shown as lower case letters
and relations are indicated by writing them below the RHS. The non-terminals have
parameters also; these are put in parentheses next to the non-terminal name.

Terminal graphs here are drawn schematically instead of in graph notation.
Circles indicate either sprockets or gears. A line wrapping two circles indicates a
chain wrapping two sprockets. A small x indicates a shaft to which the gear or
sprocket is mounted.
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Appendix E

The System and Some Actual
Examples

The purpose of this Appendix is to give a sense of the strengths and weaknesses
of the current implementation of the Analysis/Precedent Analysis algorithm. The
original implementation is documented in [5]. It had some major weaknesses which
served to obscure some issues. However, the second generation, on which these
examples were run, is much improved.

E.1 The Implementation

The original implementation had demonstration routines for all of the design compe-
tences, as well as Precedent Analysis and Rule Re-analysis. The re-implementation
focused on the analysis algorithm itself, as this is the heart of the entire system.
Rule Re-analysis has not been re-implemented as yet, mostly because the system’s
database design has not been completely specified. From here on, “the system”
shall refer to the re-implementation of the Analysis/Precedent Analysis algorithm
and its supporting code.

The entire system, except the graphics, is implemented in Common Lisp|18]
on a Symbolics 3600. Its architecture is founded on a package of utilities which
implement a graph data type. One may represent any labeled digraph, except those
with more than one arc of a given type between the same pair of nodes. Among
the primitive operators for graphs are creation, combination, surgery, node and
arc deletion, subgraph isomorphism, and quotient by a vertex equivalence relation.
There are no side effects in any of the operations; any graph resulting from an
operation on one or more graphs is completely disjoint from the input graphs. There
is an auxiliary data structure, called a gmap, which maps nodes from one graph to
single nodes of another. Gmaps represent such things as subgraph isomorphisms.
and the partial matches built by the Analysis algorithm. The subgraph isomorphism
algorithm is described in Appendix B.
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E.2 Experiments

To describe an example, I will describe the inputs given to the system, the output
(partial) derivation, the rule which is generated (if the example is not completely
explained), and some statistics. The inputs are the Design Grammar with which
the system starts the run, the pair of graphs which make up the precedent, and
the *SEARCH-DEPTH* parameter (the maximum lookahead depth referred to in
Chapter 3). In the diagrams, the left hand graph is considered to be the high
level description. The diagrams indicate the current state of the partial match by
highlighting the nodes which correspond. Again, the diagram is slightly ambiguous
in that it does not precisely indicate the exact correspondence. It should be obvious
however.

The statistics include the approximate real time duration of the run and the
progress history: a list of the numbers of derivation steps between successive dis-
coveries of progress. For example, (2,6,2) indicates that in the ten step partial
derivation the system found progress after the second, eighth, and tenth steps. If
the derivation is partial, the last term will appear parenthesized to indicate that,
instead of progress having been found, the graph resulting is the smallest graph con-
sidered in the last, unsuccessful round of search. (See Section 4.2.1 for a discussion
of this criterion.)

E.2.1 MUX-0 (Depth First)

The original implementation of this algorithm used depth-first lookahead instead
of the breadth-first strategy described here. This has a severe drawback: it is
possible to waste much time finding unnecessarily long and inefficient derivations.
The reason is that the system might try a completely arbitrary rule application first,
then apply the correct rule, making progress in two steps when it could have made
the same progress using only one derivation step. Since the algorithm is greedy, it
takes the long derivation as soon as it finds it. The following example illustrates.

(This was produced with an older version of the system, so only the initial and
final graphs have both graphs shown. The intervening derivation steps show only
the current state of the left-hand graph.)

¢ Initial grammar: Appendix D
¢ Search Depth: 4

¢ Nodes Searched: 59

e Time: about 2 minutes

e Progress History: (2,4)

Note that the first and third steps are inverses, and hence could be left out.
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Figure E.1: The Input Precedent

Figure E.2: After One Step
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Figure E.5: After Four Steps
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Figure E.6: After Five Steps

Figure E.7: After Six Steps
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E.2.2 MUX-0 (Breadth First)

The same example was run on the breadth-first system. (All further examples are
run breadth-firs®) The derivation produced was the same as that of the depth-first
system, except that the first and third steps are left out.

e Initial grammar: Appendix D
o Search Depth: 3
¢ Nodes Searched: 27

e Time: about 30 seconds

Progress History: (1,3)

E.2.3 Effect of *SEARCH-DEPTH*, 1

This Section and the next demonstrate the effect of lookahead search-depth on power
of the algorithm. The run in this Section was done with *SEARCH-DEPTH* at 2.
The result was that the system failed to find a complete explanation and deduced
the rule: NOT(NOR(z, y)) = OR(z, y).

¢ Initial grammar: Appendix D
¢ Search Depth: 2
¢ Nodes Searched: 21

¢ Time: about 1 minute

Progress History: (1,1,2,(2))
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Figure E.9: After One Step
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Figure E.10: After Two Steps
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Figure E.11: After Three Steps
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Figure E.12: After Four Steps
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Figure E.13: After Five Steps



Figure E.14: After Six Steps
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E.2.4 Effect of *SEARCH-DEPTH?*, 11

The same example as in the previous section was done with *SEARCH-DEPTH*
increased from 2to 3. This resulted in the system completely explaining the prece-
dent.

e Initial grammar: Appendix D
e Search Depth: 3
o Nodes Searched: 31

e Time: about 2 minutes

Progress History: (1,1,2,3,2)

The first four steps of this result derivation were the same as the first four of
the previous derivation, so the following sequence of steps starts after the fifth step.

117



Figure E.15: After Five Steps
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Figure E.16: After Six Steps
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Figure E.17: After Seven Steps
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Figure E.18: After Eight Steps



Figure E.19: After Nine Steps



E.2.5 Effect of the Grammar, I

The example of this Section (XOR, with one input tied to 0) was attempted with
the Grammar of*Appendix D, but the run time was prohibitively long (>> 2 hours,
hundreds of nodes searched). There are a few reasons for this: the minimum search
depth required to find the derivation is 8; because of the ZERO — NOT (ONE)
— NOT (NOT (ZERO)) cycle the search tree has a large branching factor; the
intermediate graphs become large, so that matching the RHS of the ADDI1 rule to
the large graphs requires a long time.

Thus, it became of interest to vary the input grammar. The variation chosen
was to prohibit the system from trying certain of the rule directions at all. Define
GRAMMARI1 as the grammar of Appendix D, but where the ZERO and ONE rules
are never allowed in the forward direction, and the ADD1 rule is never allowed in
reverse.

¢ Initial grammar: GRAMMARI1

Search Depth: 8
Nodes Searched: 42

Time: about 1 minute, 30 seconds

Progress History: (8)

A
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Figure E.21: After One S‘tep -
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Figure E.23: After Three Steps
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Figure E.24: After Four Steps

Figure E.25: After Five Steps
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Figure E.27: After Seven Stq.
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E.2.6 Effect of the Grammar, 11

The previous section illustrated that having too many relatively useless rules avail-
able can cause & catastrophic increase in search. This section will illustrate that
an inability to focus attention to a small portion of the design can have the same
effect.

Consider the precedent in Figure E.29. This is the two-bit incrementer circuit
with carry output. A straight-forward attack by the system using either Appendix
D’s grammar or GRAMMARI1 would in principle succeed. Unfortunately, the search
takes far too long. It was not run to completion, but a crude estimate is that it
would take at least 12 hours and explore over 10000 search nodes. (The resulting
derivation has 41 GRAMMARI steps.)

The reason is not that there were too many rules around, but that there were
too many ways to make progress! That is, to optimize the circuit, one could first
simplify the low order bit, then do the high order bit. Also, in simplifying each bit
slice, one can simplify the XOR part or the carry circuitry. The analysis algorithm,
with its breadth first approach, effectively does all at once. One can readily see that
all of the possible attacks do not combine linearly. The size of the search tree is
roughly k" for some constant k. If there were four disjoint methods of attack on
the problem, there would be k*" search nodes, as opposed to 4k".

The system can deal with this problem by using derived rules. If the system
explains a precedent, then it may use that equivalence as a rule. This makes both
the effective path length of the derivation and the maximum search depth small.
The system was asked to derive the following three rules based on GRAMMARI:

e XOR (0,a) =a
e XOR (1,a) = NOT (a)
e MUX (s=1,b1=z,a0=y) =z

Using those in addition to GRAMMARI, the system was able to derive the
one-bit incrementer rule: (out-co out-s) ADD1 (z, 1, ci= 0) = (z, NOT (z))

This last derivation required about 20 minutes, searching 123 search nodes. The
progress history was (2,2, 8).

Define GRAMMARZ2 to be GRAMMARI1 together with these rules. For brev1ty,
the last six steps of the derivation have been left out.

e Initial grammar: GRAMMAR?2

Search Depth: 6
Nodes Searched: 19

Time: about 1 minute

Progress History: (2,1,1,6)
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Figure E.31: After Two Steps
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E.2.7 Greed

The greed of the‘algorithm can be a detriment at times. This problem is much worse
for the depth-fimst version of the algorithm, but it can also hurt the breadth-first.
An example of this is in the trivial case of deriving a derived rule from a grammar
which already contains it. For example, suppose we add the XOR (1,z) =NOT (z)
to GRAMMARI. Then pose the same equivalence as a precedent. If the system
happens to pick the derived rule first, then it will find progress and stop, as one
hopes. On the other hand, if it finds the expansion of XOR into (MUX and NOT)
first, it will do that, since the NOT represents progress. The derived rule is no
longer applicable, so the system will have to continue from there and rederive the
entire rule!

This problem arose when the system was attempting to derive the one-bit incre-
menter precedent mentioned in the previous section. At some point, an XOR block
had one input tied to ONE. The grammar had the appropriate derived rule for this
case, but the system chose the XOR expansion first. It then would have had to
rederive the XOR-ONE rule. This is why the system was also given the MUX-ONE
rule to derive and use.

Note that the MUX-ONE derivation is a postfix of the XOR-ONE derivation.
Thus, a STRIPS-like “triangle-table” setup might alleviate this problem.

E.2.8 The Scenario Example

With these insights, we are ready to attack the scenario example. See Figure E.34.
As it stands, it is much too complex to be attacked using only the grammar of
Appendix D. The full story is shown below. (Note that the search depth parameter
was set higher than necessary. This probably inflated the real time figure by about
5 to 10 minutes, by causing the system to search seven levels on the last round
instead of five.)

e Initial grammar: GRAMMARI, plus the XOR-0, XOR-1, MUX-1
rules; AND (a,a) = a,NOT (NOT a) = ¢, AND (q,1) = g, OR (q,0) = a; all
BUFFER rules removed.

e Search Depth: 7
¢ Nodes Searched: 808

° Time: about 95 minutes

Progress History: (2,5, (2))

Steps three through five are left out for brevity.
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Figure E.34: Scenario Precedent

Figure E.35: After One Step
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Figure E.36: After Two Steps

Figure E.37: After Six Steps
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Figure E.38: After Seven Steps

Figure E.39: After Eight Steps
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Figure E.40: After Nine Steps
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E.3 Summary

e The depth-:first approach taken in the original system is severely flawed, in that
it often causes the system to find unnecessarily long and inefficient derivations.
This leads to a large increase in run-time. Breadth-first search alleviates this
problem.

o The "SEARCH-DEPTH* parameter allows a tradeoff between length of time
searching and power of the algorithm. With this parameter set too small, the
system will fail to explain some precedents which it could otherwise explain.

e The grammar rules available to the system have an enormous effect on the
speed of the system. Having too many useless grammar rules is bad, and an
inability to focus attention on a small portion of the problem is also.

¢ The system can be too greedy, by accepting the first step it sees which makes
progress. This can cause it to miss a valuable rule application.
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