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Abstract

Reconstructing a surface from sparse sensory data is a well known prob-
lem in computer vision. Early vision modules typically supply sparse depth,
orientation and discontinuity information. The surface reconstruction module
incorporates these sparse and possibly conflicting measurements of a surface into
a consistent, dense depth map. The coupled depth/slope model developed here
provides a novel computational solution to the surface reconstruction problem.
This method explicitly computes dense slope representations as well as dense
depth representations. This marked change from previous surface reconstruc-
tion algorithms allows a natural integration of orientation constraints into the
surface description, a feature not easily incorporated into earlier algorithms. In
addition, the coupled depth/slope model generalizes to allow for varying amounts
of smoothness at different locations on the surface.

This computational model helps conceptualize the problem and leads to two
possible implementations — analog and digital. The model can be implemented
as an electrical or biological analog network since the only computations re-
quired at each locally connected node are averages, additions and subtractions.
A parallel digital algorithm can be derived by using finite difference approxima-
tions. The resulting system of coupled equations can be solved iteratively on
a mesh-of-processors computer, such as the Connection Machine. Furthermore,
concurrent multi-grid methods are designed to speed the convergence of this
digital algorithm.
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CHAPTER 1
INTRODUCTION

This report studies surface reconstruction, a well known problem in com-
puter vision. Computer vision is an active topic of current research for two
reasons. First, we want to build artificial vision systems for use in robotics, fac-
tory automation, parts inspection and other industrial applications. Second, we
study computer vision in order to understand the information processing tasks

necessary for biological vision systems.

This computational approach to vision was first proposed by Marr [1982].
Marr partitioned visual processing into three levels: early vision, in which various
modules detect shape, depth or discontinuities from raw images; intermediate
vision, which uses the outputs from early vision modules and reconstructs sur-
faces in a viewer-centered coordinate frame, and late vision, in which processes
such as recognition are performed on objects in an object-centered coordinate

frame.

In the years since Marr’s original work, a tremendous amount of research has
been done in early vision. Underlying much of this work is the concept that early
vision algorithms exhibit extraordinarily fine-grained locality and thus fit neatly
onto the coming wave of massively parallel computers. It has not been clear,
however, how the speedups achievable in early vision algorithms, through the

use of parallel computation, can be extended to later levels of visual processing.

This report concentrates on increasing the processing speed for intermediate
vision by developing a novel way of conceptualizing surface reconstruction. This
new approach, called the coupled depth /slope model, lends itself to implementa-

tion on a fine-grained parallel machine. Furthermore, it also maps naturally to
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an analog network realization for an even faster solution. Analog network ideas
are not new to computer vision. Horn [1974] designed an analog network for
the solution of the lightness from brightness problem. Poggio and Koch [1985]
used regularization analysis to devise analog hardware to solve most of the prob-
lems in early vision. Here we develop an analog network model to solve the full

surface reconstruction problem in intermediate vision.

Perhaps an even more interesting result of this work is the emerging resem-
blance of the artificial vision systems we are constructing to the biological vision
systems that we are studying. This convergence of the two research directions,

although not required, is not coincidental either.

Necessary criteria for biologically feasible information processing systems
have been compiled by [Ullman 1979, p. 88; Grimson 1981, p. 163; Knight

1983, p. 7| and can be summarized as follows:

1. Massive parallelism - a large number of independent nodes performing com-

putations.
2. Uniform, simple nodes.
3. Local interconnect scheme between nodes.
4. Fault tolerance - performance does not depend critically on any one node.

These same constraints for biological feasibility carry over to the domains
of VLSI design and the construction and programming of massively parallel ar-
chitectures. In VLSI design, parallelism on chip provides more efficient use of
real estate; uniform, simple cells shorten layout time; local interconnect reduces
the need for long wires, and fault tolerance increases yield, as a chip can still
function even though some parts are broken. In parallel architecture design and
use, highly parallel algorithms keep the maximum number of processors busy;

uniformity in both hardware and software shortens the time for design, testing



and debugging; local communication in algorithms allows for simpler communi-
cation hardware, and fault tolerance enables the machine to keep running even
though some processors or connections may become disabled. These same con-
straints that hamper VLSI and computer architecture designers seem to exist
in the biological world as well. Since these three implementation mediums are
bound by similar constraints, it should not be surprising that similar algorithms

result.

Parallelism, locality, simplicity and uniformity are features of the algorithms
developed in this report. This work concentrates on the artificial machine vision
approach to computer vision. We try to reconstruct the original surface as
fast and as accurately as possible in both digital and analog hardware. Some
psychophysical tests have shown that there exist some similarities between the
coupled depth/slope approach and human vision. These similarities are welcome

and noted, but are not required.

Through surface reconstruction we seek to find a plausible surface given
sparse, noisy and possibly conflicting measurements of an original surface [Grim-
son 1981; Terzopoulos 1984]. Surface interpolation and surface approximation
are two special cases of surface reconstruction. A surface interpolation algorithm
fits a smooth surface over sparse but exact depth measurements. Surface approx-
imation extends this idea to fit surfaces over noisy depth measurements. The
final computed surface is not required to pass through the data measurements.
Surface reconstruction is a more general problem, combining information from
many modalities. This report considers the integration of depth and orientation
constraints with surface discontinuity information. A solution of this problem is
extremely computationally intensive. Chapter 2 describes surface reconstruction

more fully.

Chapter 3 develops the new coupled depth/slope model for surface recon-



struction. This network model is shown to be well suited for the surface recon-
struction problem. The coupled depth/slope model is an improvement on the
thin plate model used by Terzopoulos [1984] and other biharmonic models for

the following reasons:

1. Orientation constraints are integrated into the surface solution very nat-
urally. Other models, such as the thin plate model, contain no inherent

notion of slope.

2. The model generalizes to arbitrary levels of smoothness. In fact it directly

implements the controlled continuity models of Terzopoulos [1986].

3. Both digital and analog network implementations of the coupled depth/slope
model are possible and both are discussed in this report. The parallel ver-
sion of the standard biharmonic mask used by Terzopoulos and Grimson
does not converge; an extra local weighting step must be added to regain
convergence. The parallel version of the coupled depth/slope algorithm
described here, converges by simply alternating between depth and slope

calculations.

4. Both the analog and digital implementations of this model require only near-
est neighbor communication throughout the entire algorithm. This com-
munication feature, plus the fact that the nodes are performing extremely
simple arithmetic and averaging operations, simplifies both the analog and

the parallel digital implementations.

Chapter 4 derives the finite difference equations and the resulting iterative
scheme necessarv for a digital algorithm. This algorithm is well suited for a
fine-grain massively parallel computer, such as the Connection Machine [Hillis
1985]. The single-grid digital implementation of this model suffers from slow
convergence rate problems common to all local iterative methods. We propose

a simple but fast extension to analog network theory to speed up convergence
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through the use of coarser levels of resolution. This idea is inspired by the
concurrent multigrid work of Kuo [1985] and Terzopoulos [1984], but is a much
simpler realization. This multigrid network is useful in speeding up both the

analog and digital realizations of the coupled depth/slope model.

Ideas for an analog implementation of the coupled slope/depth network are
detailed in Chapter 5. Analog networks are interesting for a number of rea-
sons. Most important for this work is that these networks are extremely fast.
For example, they can compute solutions to the surface reconstruction prob-
lem several orders of magnitude faster than the corresponding parallel digital
algorithms. Also analog networks are interesting because the algorithms they
implement may be similar to the ones used by biological systems for vision.
This raises the possibility for someday “growing” and “programming” neurons
to create special purpose vision systems. Chapter 6 discusses promising research

directions based upon this work.
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CHAPTER 2
BACKGROUND

Surface reconstruction is an integral part of the approach to vision described
by Marr [1982]. Marr proposed several intermediate stages in his representa-
tional framework for deriving shape information from images. His representa-

tional stages are as follows:

e  Greyscale images - arrays of intensity information presented as the input to

the visual system.

e Edges - the primal sketch makes explicit the sharp changes of intensity in

images.

° 2%-D sketch - an explicit representation of the depth and orientation at
each point on the visible surfaces, plus discontinuities in its smoothness.
The 2%-D sketch is taken from the same viewer centered coordinate system

where the original images were sampled.

e The 3-D model representation - an object centered coordinate system that

represents explicitly the volumes of space that objects occupy.

Early vision modules include the stereo module, the “shape from” modules,
and the edge detection module, which provide sparse and possibly conflicting
sets of data for input to the surface reconstruction module. For example, stereo
‘Marr and Poggio 1979] supplies an extremely sparse set of depth values, the
shape from shading module [Horn 1975] provides local surface orientations, and
edge detection {Hildreth 1980; Canny 1983] provides possible locations for surface
discontinuities. The relationship of the surface reconstruction module to these

earlier stages is diagrammed in Figure 2-1.
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Stereo

Shape from Shading ——— Surlace Reconstruction

Discontinuity Detection

tfigure 2-1. Simpliied view of carly and intermediate vision.

In this report, these carly vision stages are considered as black boxes. We do
not look inside them to see how they work; we enly process their outputs with the
surface reconstruction module. We do, however, open up the sucface reconstruc-
tion black box and explain its operation. In the future, we will want to blur the
clean distinction between carly and intermediate vision to improve the overall
systemi. For example, the sterco module and the surface reconstruction module
would both produce more accurate results if there were feedback between the
two systems. There is also evidence that the carly vision modules interact with
one another [Poggio 1984]. The disconlinuity detector would operate much bet-
ter if it had a closer interface to the stereo module, to the surface reconstruction,
and to other visual cues such as structure from motion. Nonectheless, placing
a clear dividing line between early vision modules and surface reconstruction

suflices for this report.

Grimison [1981] implemented the Marr-Poggio sterco algorithm. This al-

gorithm calculates a sparse set of depth values from the disparities of all the
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matched zero crossings in stereo images. Grimson was faced with the problem
of interpolating a dense surface from a sparse set of depth measurements. The
problem is that there are an infinite number of surfaces which pass through the
measured points. Which of these surfaces is most likely to be the original surface

from which the original images were taken?

Grimson reasoned that there should be no wild undulations in the surface in
between measured depth points. If wild undulations were present, then it would
be likely that more points would be marked by zero crossings and produce depth
measurements in the stereo module. He called this the “no news in good news”
constraint. Because there is no unique solution, surface interpolation is an ill-
posed problem in the sense of Hadamard, and therefore must be “regularized”
[Poggio and Torre 1984!. The “no news is good news constraint” leads to the

necessary stabilizing functional which ensures the uniqueness of the solution.

Using this smoothness constraint of Grimson’s, we present a very simple
treatment of the mathematics for the two-dimensional surface interpolation case.
Surface interpolation requires finding a surface which exactly passes through
sparsely measured depth points. These measurements are exact and no other
types of measurements are included in the final interpolated surface. A possible
set of such measurements are depicted in Figure 2-2. We want to find a surface

which passes exactly through these points.

Another way of stating the “no news is good news constraint” is that we
would like to minimize the first derivative between the data points. Given sparse
depth points u in the z-y plane, we would like to minimize the following energy
functional:

Bi= [ [5G0+ (o) dedy (2.1
The energy E; can be thought of as the energy of a rubber membrane [Courant

and Hilbert 1953, p. 247]. This functional should only be minimized in the
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IFigure 2-2. Sparse 2D depth points

regions between the depth points. The exact values of the solution surface at

the depth points are fixed.

We now use the uler-Lagrange equations [Courant and Iilbert 1962] to find
an cxpression for the stationary point where the minimum encrgy must occur.
An application of the Euler Lagrange equations to (2.1) yields the foilow'mg
solution:

Viu=0 (2.2)
in between the constraint points (where V2 = (££)Z+ (5’”—)2) This is equivalent
to fitting a flexible membrane between the constraint points. The membrane

solution to the example problem is shown in Figure 2-3.

The membrane solution can also be modeled with a mesh of resistors. Tlere,
the voltages are proportional to depths in the viewed surface. The energy term,
equation (2.1) corresponds to the energy dissipated in all of the resistors in
the mesh. Equation (2.2) is a restatement of Kirchoff’s current law that all
the currents flowing into a node must sum to zero. Constraints are added by

applying voltage sources sparsely throughout the mesh.
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Figuve 2-3. Membrance Solution.

———— P S

There are three fundamental problems with the membrane solution of sur-

face reconstruction:

1. As seen in Figure 2-3, the membrane does not extrapolate beyond the con-

straint points. The surface is always flat outside the given points.

2. A membrane does not have cnough rigidity to incorporate orientation con-

straints.

3. It has been shown with random dot stercograms that humans do not in-
terpolate surfaces by fitting straight lines in this way [Grimson 1981, p.
102]. We tend to fit smoother surfaces that do not bend sharply at the data

points , for example sce Figure 2-4.

A more realistic interpolation operator must be derived. A better operator
results from an energy functional which minimizes the sharp bends in the solu-
tion, minimizing the change in the first derivative. This means minimizing the
second derivative, so

2 32
E; = //(g;;)z + 6—!-;;)2 dz dy (2.3)
Grimson calls this energy the quadratic variation of the surface. It can also be

modeled as the energy of a thin plate [Courant and Hilbert 1953]. Applying



Iigure 2-4. Thin plate solution.

[uler’s equations to minimize Iy, we get
. )
ViViu =0 (2.4)
which is equivalent to litting cubic splines in cach interval. Solution of this

equation yiclds the curve surface shown in Figure 2-4. Notice that extrapolation

is done around the exterior and the surface changes smoothly.

Grimson developed an iterative algorithm based upon minimizing the quadratic

variation F,. lle worked on the surface approximation problem since he did not
deal with surface discontinuities or orientation constraints. Grimson’s algorithm

was also plagued by an extremely slow convergence rate.

The primary contribution of Terzopoulos [1984] was improved computa-
tional efficiency of surface reconstruction. Ie used multigrid mcthods (Brandt
1977] to speed up his algorithm by orders of magnitude over the single-grid
approach. Multigrid speedup ideas will be discussed in detail in Chapter 4. Ter-
zopoulos addressed the full surface reconstruction problem since he integrated
both depth and orientation constraints provided by various visual modalities. In
addition, he studied techniques for the detection and the explicit representation

of surface discontinuities. As mentioned in the beginning of this chapter, the
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Figure 2-5. 2D Biharimonic operator.

location of discontinuities is assumed to be input to the surface reconstruction
module. Some thoughts aboutl how we might combine discontinuity detection

with the coupled depth/slope network are discussed in Chapter 6.

Roth Grimson and Terzopoulos used the standard discrete biharmonic op-
erator for their surface reconstruction algorithms. Grimson used finite difference
methods [L981, p. 180] to arrive at the biharmonic mask. Terzopoulos used more
general finite element techniques but chose simple uniform squares to produce
the same biharmonic mask. The biharmonic mask, pictured in Figure 2-5, can
be viewed as a constraint equation relating neighboring depth points. The mask
can equivalently be expressed as

20u; 5
= 8(tir g b Uigr F Uit b U 1)
b 20U oty b Vit et A Uit gt Ui tgt) (2.5)

+ (it Uigay b2+ Uije2) =0

The large number of relations of this type form an enormous systemn of linear
cquations to be solved. Many solution techniques are available for solving linear
systems and they fall logically into two main categories: direct and iterative
methods. Direct methods take a finite number of steps to come up with an

answer. [terative methods start with some initial guess of the solution and
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gradually converge. lterative methods are preferred for large problems such
as this because they are faster, casier to program and take less storage than
the corresponding dircct methods. Grimson ased a gradient projection iterative
algorithin while Terzopoulos chose the Gauss-Seidel iterative method on cach

grid in a hierarchy of grids to speed convergence.

The Gauss-Seidel method is the sequential replacement of cach point in the
mesh by some function of other points in the mesh. One Gauss-Scidel realization

of (2.5) is:

kit l o kFL ok gt k
L [8(“1' g Ty g b 1)
20
o kil 0ok IR | i k
2(u; IR e B SRS B O D S R TP )
k-t k R k
=gty bl gy bl bl )]

Notice that each node replaces itself by a function of its neighbors-some of
them old and some of thein new. For this rcason, the Ganss-Seidel scheme is
inherently sequential. A Jacobi iterative scheme calls for the replacement of all
node values simullaneously, and so can be parallel. The simple extension of the

Gauss-Seidel relaxation to the fully parallel Jacobi scheme results in:

il 5% [Bui_ gy +ufy iy Fulyy +ul, )
""2(“:'6-— (i1 Ufﬁl,giu + “f+1,j-—1 + uﬁ-l,j»}-.l) (26)
“(uf gyt ufyay bulg +ul,s)]
Unfortunately, the standard biharmonic mask is unstable when used i a par-
allel Jacobi iteration. See [igure 2-6 for an example of this instability. The

mathematical reasons for the instability of the parallel biharmonic mask are

well krown. See [Varga 1962; Young 1971] for more detail.

Brandt {1977] describes a technique called the weighting of coirections to
obtain convergence for the parallel biharinonic operator. A single iteration con-

sists of two steps: a biharmenic application and a local weighting. In the first
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Figure 2-6. Jacobi algorithm diverging for a 2D problem.
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step we calculate the required correction, 6uf’j, given by the Jacobi biharmonic

replacement (2.6), where u* + 6% = u*+!. That is,

k _ .k 1 k k k k
bugy = —ui;+ o5 [8(ui 1 + iy, +uijo1 + Ui i)

k k k k
=2(uf g1 T Uy T U o T Uis1,41)
k k k k )
_(ui—Q,j + Uit2,j + Uy j—2 + ui,]’+2)J
We do not use éu; ; as the correction term since the method does not converge.
Instead we choose some linear combination of the local éu;; as the correction

term. In particular, Brandt suggests:

k+1

k k k
uiy ' = ulyt wa(Bufy) +ws(Suiy; + buiy;+ bul;_y +6ul; 1)

For the optimal smoothing rate Brandt derived:

wq = 1.552

wg = 0.353
Brandt points out that this technique is very sensitive to changes. For example,
if w, were changed to 1.4 the method would not converge. In one sense, this
weighting scheme is equivalent to the application of a 25-point operator. That
is, a single iteration step at each point in the mesh requires the values of 24

neighboring points.

There is no natural way to integrate orientation constraints short of going
back to the original energy functional and adding some kind of penalty term.
In fact this is the method used by Terzopoulos [1984]. At points where the
orientation is known, he creates a new energy term which is the square of the
difference between the orientation measurement and the explicitly calculated
slope. Terzopoulos adds this term into his energy functional with some appro-

priately chosen weighting factor.

Chapter 3 develops the coupled depth/slope model. This new approach to

surface reconstruction leads to a digital algorithm which has a smaller mask size
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CHAPTER 3
THE COUPLED DEPTH/SLOPE MODEL

The coupled depth/slope model is a network of ideal subtractor elements
connected by two planes of resistor meshes. This novel model, based upon
analog network considerations, has significant advantages over previous models

of surface reconstruction.

3.1. 1D Form of the Coupled Depth/Slope Model

For simplicity, we first discuss the model in one dimension. The proposed
network consists of depth nodes connected to slope nodes by ideal subtract
constraint boxes. The continuous 1D network is shown in Figure 3-1. A resistor
mesh is used to smooth the slope points. The voltage at the u nodes represent
actual depths and the the values of p correspond to slope. Note that u and p are
continuous functions of z. This model is called the coupled depth /slope model
because of the coupling between the depth and slope representations provided
by the ideal subtractor elements. The subtractors explicitly calculate a slope
representation of the surface. We smooth out any sudden changes in the slope
with a resistor mesh and pass the information back up to the depth plane. Any
depth or slope node can be made into a constraint by fixing an ideal voltage
source to the proper place in the network. For now, assume that the data are
exact, forcing the reconstructed depth and slope values to pass through the given

constraint values. Noisy and conflicting data are discussed in section 3.3.

The subtractor device is shown in Figure 3-2. If nodes A and B are set with

ideal voltage sources then node C will be set to A — B by the device. The device
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» u(x) u(x + dx)
/\ p(x) p(x + dx)
g(x) <4- dx >

Figure 3-1. 1D network for coupled depth/slope surface reconstruction

is unusual in that all of its terminals can act as inputs or outputs. If nodes B
and C are held constant with voltage sources, then the A terminal is fixed to

B4 C. If Aand C are input, then B becomes A — C.

Now we show that this coupled model has the right properties for surface
reconstruction as defined in Chapter 2. The model must find a smooth surface
which fits the given depth constraints. In addition, orientation constraints and

surface discontinuities must be incorporated into the final surface description.

First, we show that the network provides for biharmonic smoothness, used
by Grimson and Terzopoulos, when depth constraints only are provided. This is
shown by first writing the power, I, dissipated in the network. The minimization
of this power yiclds the biharmonic equation. The power dissipated in a single
resistor equals the square of the voltage drop through the resistor times the
conductance of the resistor (/£ = gV'2). We assume that the vertical resistors
have unity conductance and the ideal subtractor elements consume negligible

power. To find the total power dissipated we integrate over all z values.
du dp
E= [(+ —-p)? —=)%d 3.1
= [ -0+ e () de (3.1)
The first and second terms in the integral represent the power dissipated in the

vertical and horizontal resistors of the network, respectively.
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IFigure 3-2. Tri-dircctional subtraction device.”

Maxwell’s minimuin heat theorem states that the distribution of currents
and voltages in a circuit is such that the total power dissipated as heat is mini-
mized. The Euler-Lagrange equation are used to find the minimum ecnergy state

reached by the network. The appropriate 1D Euler-Lagrange equations are:

d

d—m*Euz - Eu =0 (32)
d \

;{;E"Z - Ep = 0 (3.3)

Assume for now that g(z) = 1 for all z. Applying these Euler-Lagrange equations

to find the stationary points of the energy functional, F, results in:

d*u dp

—_— = 4
dc?  dz (3-4)
d?p du

mi=PT , (3.5)

These are a pair of coupled second order cquations relating u and p. These
- - 3 - ’
equations are shown to reduce to the biharmonic equation by first taking ilﬁ of

(3.4) and - of (3.5) giving:

du  d%

dai 4l (3-6)
3 2 ‘

ey _dp s o)

“dr3  dz  dz?
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or
4 2
dv _dp d°u (3.8)
dz4 dzr dz?
But we know that % - ‘;z‘; = 0 from (3.4), so
diu
— =0 3.9
I8 (3.9)

This is the one-dimensional form of the biharmonic equation.

3.2. Similarities to the Human Visual System

There is a lot of redundancy in the 2%-D sketch described here because both
depth and slopes are explicitly represented. Only one of these measures need
by stored, and the other can be recovered with a simple derivative or integral.
Marr {1982, p. 279] draws on psychophysical evidence to argue that the human
biological 2%—D sketch makes explicit representations of orientation as well as

depth.

3.3. Extending the Model to Handle Noisy Constraints

Thus far we have assumed that the given depth and orientation constraints
are exact. We force the depth and slope planes to pass exactly through the
constraint points. In reality, there are additive noise components for each con-
straint measurement. It would be unwise to force the reconstructed surface to
pass through noisy, inaccurate points. This problem is solved by adding another

term to the energy functional. We rewrite the energy in (3.1) as:
E = /(uI - )2+ (p:)? + a(z)(u — 4)2 + B(z)(p — p)* dx - (3.10)

The @ and p are the values of the depth and slope measurements respectively.
The variables a(z) and 8(z) represent the confidence of the measured values in
depth and slope. For example, if we knew that the measurement @(zo) was

inaccurate we could set the corresponding a(zo) to zero.



Figure 3-3. Handling noisy constraints.

Similar energy terms were used by Terzopoulos, Grimson and Marroquin.

According to Marroquin [1985],

alz) = E;—;@j (3.11)
B(z) = ————2021(13) ' (3.12)

where o (i) represents the standard deviation of zero mean, white, additive Gaus-
sian noise of the measurement 4. Therefore a(z) and B(z) represent a tradeoff
between surface smoothness and how close the surface fits to the depth and

orientation constraints.

The added noise term can be modeled as a conductance times the square of
a voltage and so is casily added to our electrical model. We now sct constraints
with a voltage source through a series resistor to the constraint point in the
network. Thesc connections are shown in Figure 3-3. The voltage source has a
value of the depth measurement #. This voltage is applied through a resistor
with conductance az), where a(z) is related to the amount of noise in 4 by
equation (3.11). If there is no depth constraint at a particular location, say zo,

we choose an arbitrary constraint value i(zg) for the voltage source with an
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open circuit, a(zg) = 0. This is equivalent to saying that there is infinite noise
q ying

in #(zo) and that we have no confidence in that surface measurement.

Minimizing (3.10) gives:
d’v d

14 N
- =z - 3.13
22 = dz + a(u - i) (3.13)
d’p du
B it — 9 3.1
Zaz =P~ 3 tAlP-P) (3.14)

The solution of these equations gives a smooth surface which performs a
least squares averaging reduction of noise. A very different method for handling
noise is proposed in Chapter 4. In a digital algorithm, we may want to assume
noiseless measurements and solve the problem exactly. Then we can perform
some amount of smoothing dependent on how much noise is present. This post

smoothing step is very fast since we are dealing with dense surface data.

3.4. Generalized Smoothness

How much smoothness should we require of a surface? Some surfaces are
very jagged and the biharmonic reconstructs a surface that is much too smooth.
On the other hand, some surfaces are even more smooth than the biharmonic;
they may have smooth second or third derivatives. The biharmonic is typically
used for surface interpolation because it seems to do reasonably well over all

possible surfaces.

Terzopoulos [1986] proposes Tikhonov stabilizers [Tikhonov 1977] to gen-
eralize smoothness to any order of derivative. For example, the 1D Tikhonov

stabilizer appropriate for our problem is:
P
dm
E= /gm(z)(—-'i(i))zdx (3.15)
m=0

where the g,,,(z) are continuous weighting functions and %2 is the m*" deriva-

tive of u. The generalized coupled depth/slope network directly implements
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Figure 3-4. 1D coupled depth/slope model for generalized smootlimess

the controlled-continuity stabilizers of Terzopoulos. The gencralized network is
shown in IMigure 3-4. IHere ug(z) represents the depth values, while u () repre-
th

sents the first derivative of ug(z). Naturally, u,n(z) represents the m*™ derivative

function of ug(z), and g,,(z) denotes the conductance function of level m of the

network.

As before, we can write the energy dissipated in all the resistors in the

network as:

E = }:; ‘/[g,,,(:c)(il-u}'i'—;;(_x)-f -+ (;1% U (z) -~ u,,H,l(:z;))Q] dr (3.16)

The first term in the integral represents the power dissipated in the horizontal

resistors on the m*"* level, and the second term is the power lost in the vertical
resistors.
This very general network can incorporate constraints of any order of deriva-

tive into the surface solution. This is done simply by setting the proper mesh

points with a voltage source. Also, discontinuities in the m*"* order derivalive at
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depth discontinuity
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Tigure 3-5. A depth discontinuity.

T = x( can be incorporated by setting g,.(zo) = 0. For example, a depth discon-
tinuity can be implemented by such a circuit as shown in Figure 3-5. Iere, we
have broken the resistors that smooth the first (aud higher) derivatives. Depth

discontinuities occur in between points in the u mesh.

Terzopoulos handles orientation discontinuities by switching to a membrane
model instead of the thin plate at the location of the discontinuity. This allows
the reconstructed surface to crease sharply but still remain continuous. In the
coupled depth/slope model, membrane smoothness is provided by the top re-
sistor mesh, which smoothes the depth values. The resistors on all other levels
are broken. Orientation discontinuities occar exactly on u mesh locations. An
example of an orientation discontinuity is shown in Figure 3-6. The thin plate
model is not rigid enough to allow other even higher order discontinuities, but

the coupled depth/slope network can handle discontinuities of any order.



oricntation discontinuity

Figure 3-6. An orientation discontinuity.

For some surfaces, the thin plate solution is too smooth. Ilowever, we cannot
use the membrane solution because of its tendency to crease and its poor ex-
trapolation properties. Splines under tension were inverited to combat a similar
problem in graphics [Pilcher 1974]. Splines under tension provide a mechanism
for combining varying amounts of smoothness from the thin plate and mem-
brane smoothness. They are also proposed as a surface interpolation technique
to reconstruct surfaces with intermediate smoothness between thin plates and
membranes [Terzopoulos 1984]. The coupled depth/slope network generalizes
splines under tension since the nctwork can integrate arbitrary combinations of

membrane, thin plate and any higher order smoothness.

The general coupled depth/slope network generalizes the surface reconstruc-
tion algorithm of Terzopoulos [1984]. Information at arbitrary orders of smooth-

ness can be uscfully combined into the surface description.
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Figure 3-7. 2D extcusion — the p plane.

3.5. 2D Extension of the Coupled Depth/Slope Method

The 2D network for the coupled depth/élope method is shown in Figures
3-7 and 3-8. For simplicity, we revert back to biharmonic smoothness only, but
the generalized smoothness ideas developed in the last section apply equally well
in two dimensions. The 2D network is more complicated because the slopes in
both the x and the y directions must be included. Therelore we use two resistor
meshes to smooth the p and q slope planes, where p is the slope of u in the z

direction and q is the slope in the y direction.

Again, the power dissipated in the total network is found to be:

E = //[(Uz - P)2 + (’U-y - Q)2 +P3; + p;;'; + qf + qz] dz dy (3_17)
The extension for noisy constraints described in section 3.3 for the 1D case is

also applicable here. The appropriate 2D Euler-Lagrange equations for (3.17)
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q(x.y)

Figure 3-8. The q plane.

are:

a d

=y — I, —FE, =0
dc 7 + dy "

d a

A E‘l’m + yEp,, "'Ep =0
a | J

"3‘;1'41, + dy L, —L£,=0

Applying these Euler-Lagrange equations to the energy function results in

the following system of coupled differential equations:
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Viu = p; + gy (3.18)
Vip=p-u, (3.19)
Vig=gq-u, (3.20)

where V2 = (5‘9;)2 + (8%)2.

Taking V2 of (3.18) and £ of (3.19) and a% of (3.20) gives:

ViViy = V3p, + Vi, (3.21)
V2ps = pr — ttzz (3.22)

Substituting (3.22) and (3.23) into (3.21) yields:
VIViu = ps+ gy — Uzs — Uyy = Pz + ¢y — Vu
We know from equation (3.18) that p, + ¢, — V*u = 0, so
ViViu=0 (3.24)
which is the two-dimensional biharmonic equation.
From the coupled differential equations, we cannot show that p and ¢ must

converge to u; and u,. A simple combination of the original three coupled
y P

equations gives:

0 a
ViViy = a—x(p— ug) + b—!;(q —uy) =0
We can only show that u; = p and uy, = ¢ if some boundary conditions are

assumed or else we define p, = g¢;.

3.6. Other Computational Models

Computational models which solve the biharmonic equation must neces-

sarily contain some active devices. It can be shown that the biharmonic mask



[Figure 3-9. Arbitrary configuration of resistors and sources.

cannot be synthesized out of purely positive valued resistive components. The
extrapolation mechanism required for biharmonic smoothness can boost the volt-
age on the exteriors of the array to higher and lower voltages than that which
appear interior to the array. The resistor network alone cannot boost a voltage
at a node higher than the voltage of any of the sources in the system. This is
secn in Figure 3-9. The voltage at node A, for example, cannot be higher than
the voltage at its neighboring nodes. If this were the case, than all currents will

flow out of node A, violating Kirchofl’s Current Law (KCL).

Nonetheless, there are applications for the simple membrane solution given
by a mesh of equal valued resistors. For example, controlled industrial enviror_l-
ments consisting of flat, zcro-slope planes, problems with undetectable disconti-
nuities, and scenes with no discontinuities are all good applications for membrane
smoothness. However, we should not attempt to tackle the full vision problem
without a more rigid smoothing technique. In general, the membrane solution

gives a fast, first approximation to the surface.

Another way to solve the biharmonic equation is to split it into two Poisson
equations and solve them sequentially. It will be shown that this procedure only

results in an approximate solution to our surface interpolation problem.
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For example, the biharmonic equation is given by:

Viu = [+ V2V = f (3.25)

The twe poisson equations are as follows:
Vi = f (3.26)
Vii=wv (3.27)

We solve for v in (3.26) and then use the result to sclve for u in (3.27).

An actual implementation of this inethod shows that the solution of the
first equation is slow compared to the solution of the second. This is because
we are solving a very sparse system in the first equation. The solution of the
second equation merely results in local perturbations of the dense values of v.
Since the values of v are equally spaced, we could solve the second equation
with a simple gaussian convolution step. The convolution method has been
implemented since it has an additional advantage: any amount of smoothness
can be integrated into the surface by varying the size of the Gaussian operator.
A very narrow Gaussian will have little effect on the surface and so return
membrane smoothness. A wider Gaussian will return thin plate and smoother
surfaces. Using cither method, the time it takes to solve the first equation is
still much greater than the time to solve the second.

Thus, the dua} Poisson method is another way to geucraie a quick, crude
solution to the surface interpolation problem. This method improves upon the
membrane solution by forcing the surface to be smooth withont too much extra
computation. The main dificulty with the dual-Poisson appreach is the bound-
ary conditions. Either the slope or the depth values must be specified around

the boundary.

3.7. Summary

In summary, we have developed the coupled depth/slope model for surface
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reconstruction. This is a computational model which has a number of features:

1. If depths only are given, the model reconstructs a surface with the same
biharmonic smoothness used by Terzopoulos and Grimson. In addition, in
the process of computing the depths, a dense slope representation is also
calculated. For this reason, orientation constraints can be incorporated into

the surface description with no extra work.

2. Like Terzopoulos’ model, discontinuities in depth and orientation can be
used to compute the reconstructed surface. However, the coupled depth/slope
model generalizes to handle constraints of any order derivative. In addition,
the model can handle discontinuities at any order of derivative of the sur-

face.

3. The model seems to be biologically feasible. It fits the four criteria given in
Chapter 1: parallelism, uniformity, locality and fault tolerance. The model’s
biharmonic smoothness properties are observed in psychophysical tests of
humans. Also, Marr argues that the human 2%-D sketch redundantly repre-
sents both slopes and depths. This compares favorably with the dense depth

and slope representations generated by the coupled depth/slope network.

4. Finally, both digital and analog implementations of the coupled depth/slope

method are possible.
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CHAPTER 4
DIGITAL IMPLEMENTATION

This chapter develops a digital algorithm based upon the coupled depth/slope
model. Again, we start with the 1D case before we progress to the 2D ver-
sion. We apply standard finite difference methods to the continuous differential
equations derived in the last chapter to get a large system of linear equations,
which we solve with a parallel iterative algorithm. It is shown that this itera-
tive algorithm is very well suited to a mesh-of-processors computer such as the

Connection Machine.

4.1. The Discrete 1D Case

The coupled differential equations for u and p derived in Chapter 3 were:

d*v  dp

_— = — 3.
dz? dz (3-4)
d*p du .
E_’;i = — ;1—;1; (30)

Applying simple finite difference approximations for first and second derivatives

[Smith 1978, p. 6], as illustrated in Figure 4-1 yields:
Uiy — 2u; + U1 = Pi — Pica
Pi—1 = 2pi + Piv1 = pi — (Uig1 — uy)
Rearranging to solve for u; and p; gives:
wi = = [(wic1 + pic1) + (ig1 — pi)] (4.1)

1

Huisr —wi) +pior + Pi+1] (4.2)

L

QO ret D =

Di =

A full Jacobi iteration method (simultaneous displacement) for these equa-

tions fails to converge to a solution. A proof of this divergence for the 2D case will
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Figure 4-1. Discrete coupled depth/slope model.

be shown in section 4.2. However, a simple alternating process of first calculat-
ing the new depth values and then the new slope values guarantees convergence.

The iteration method is therelore:

1 . . . ,

U:~c+l = i[(uf_l Fpiiy) + (uf+1 - Pf)] (4.3)
.. 1 :

it = S l(uily — o) ol 4] (4.4)

where the superscript & denote the iteration step. A proof of convergence for

the 2D the alternating depth/slope algorithm is given in section 4.2.

4.2. The 2D Discrete Case

We would now like to extend our analysis to two-dimensions. We know

from Chapter 3,

Viu=p,+gq, (3.16)
Vip=p-u, (3.17)
Vg =q—uy (3.18)

Applying 2D finite difference approximations to the coupled differential equa-

tions and rearranging terms results in the following discrete equations:
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1
Uiy = Z[(Ui—m‘ + pic1,y) F (i1 + Gij—1) + (wij+1 — @ig) + (Mit1,; — Pij)]

1
Pi; = g[(ui+1,j - ui,j) + Pi+1,; T Pi—1,; T+ Pij+1+ Pi,j-l}
1 3
%5 = g{( ij+1 — i) F Giv1; F G-+ Qi1+ Gig-1! (4.5)

These finite difference equations make up a large but sparse system of equations
that must be solved. Because of the size of the system, iterative methods are
generally used. Standard iterative techniques will be used, but other alternatives

are discussed later in the chapter.

The discretized equations for u, p and ¢ derived above map directly into
a Gauss-Seidel scheme for a conventional sequential computer. This direction,
though important, is not developed. We will concentrate on Jacobi iterative
schemes which are suitable for fine grain, parallel computers. The architectures
of primary concern are locally connected meshes of very simple processing ele-

ments such as the Connection Machine [Hillis 1985!.

These architectures have a number of features in common. They all consist
of a 2D rectangular mesh of tens of thousands of extremely simple processing
elements. Inter-processor communication is performed through nearest neigh-
bor connections only. Machines such as the Connection Machine have special
hardware for arbitrary global communication but this communication is much
slower than local communication and is not appropriate for any of the algo-
rithms developed in this report. The processing elements typically contain only
a one-bit ALU. This necessarily requires that all arithmetic be performed bit
serially. Since many processors are packaged per chip, each processing element

is allotted only a limited amount of on chip memory.

The algorithms developed in this chapter have been devised to match the

architecture constraints of machines such as the Connection Machine, so that



39

surfaces can be calculated as fast as possible. Thus the algorithms exhibit local
operations which can be performed in parallel over all points in the mesh, can

be calculated easily with fixed point arithmetic, and require very little memory.

A first approach at developing a Jacobi iterative scheme can be constructed

from the coupled difference equations (4.5):

1
k k , k k k k
upfl = e, + pEu) + (ufioy 4 afn0) + (w0 —af)) + (uhi; - pk))]

k+1 _ 1ok k k k k k
Pij = g[(ui+1,j —ui;) +Piy1; T Picr; t Pije1 T P

1
k+1 k k k k
g9, = g[(ui,j+1 —uf )+ afa el el + el (4.6)

Like its 1D counterpart, this method does not converge to a solution. This
should not be surprising since it has been shown that this method solves the
biharmonic equation for depths and that the Jacobi biharmonic iteration does
not converge. Local Fourier analysis is now be used to show rigorously that the

above iteration method does not converge.

First, we define the error values Au*, Ap* and Ag¢* as the differences
between the values of u, p, and ¢ at a given iteration step k, and the final values

of the true solution.
Auk P = Uiy — uﬁj
[ - k
APi; = Pij ~Piy
ko k
It is hoped that:
. k _
lim Au;; =0
k—oo ?
. ko
pm Api; =0
. k _
Jim Agi; =0
Similarly we define the errors between the values at step k + 1 And the final

solution as:
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k+1

k+1 _ .
Au; 7" = u,y u;

1,
ApfTt = pij - o}
AgT =iy -]
These equations can be expanded by taking the difference of equations (4.5)

from (4.6):
1
k k k k k
A“i,}” = Z[(Aui—l,j +Ap;_y,;) + (Augj + Aq;’,j-l)
k k k k
+(Auf i — Ag;) + (Augyy j — Api ;)]
1
k k k
Apitt = g[(AuH—l,j — Augj)
k k
+ AP:'C+1,J' +Api_y,; + APﬁj«H + Apiji)

[(Au:'c,j+l - Auf,j)

| et

k k k
+ Aq:':—l,j + Aqi—l,j + Aqi,j+l + Aqi,j—l] (47)

Now, let’s assume that the error occurs with some Fourier spatial frequency
(w1,ws2) over the surface. We assume a different Fourier error for both the depth

and slope values.

Ap:c’j - Pkei(iw,—f—ng)
AQ,k,, — lei(iw,—i-ng)
and

Au:c;—l — Uk+let(tw1+]uJ3)

Apfjl - Pk+lel(lw1+.7w2)

Aqf’jl — Qk+lei(iw1+jw2)
where U, P and @ are the magnitudes of the associated Fourier error. Sub-

stituting these expressions into the equation (4.7), dividing by ettwitiwz) and
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rearranging terms gives:

4 0 0\ (U\* [(if ¢ in\ (U\®
0 5 0 P =|4%¢g 25 O P
0 0 5 Q \th 0 Z2f Q

where
[ = cos(wy) + cos(w2)
g — eiwl _ 1
h=e —1
The amplification matrix A(wl,wg) shows how much the magnitude of the

errors decreases for each iteration. A(wy,wz) is defined as:

U k+1 U k
P = A(wl,w‘g) P
Q Q

A simple calculation for w; = we = 7 yields cigenvalues greater than one
in magnitude. This means that certain frequency components of the error are

amplified during cach iteration, preventing the calculation {rom converging.

However, we can add more stability to the iteration by requiring that we
alternate between depth and slope valuss. That is, first we calculate all of
the depths in parallel and then we calculate all of the slopes in parallel. This

iteration scheme looks like the following:

. 1 . . .
”f,jH = Z[(u:\—-l,j + Pf—l,j) + (“?,;’-1 + qek,j--.l) + (‘u:’,ﬂ«l ar )+ (u (uf itlg Pf;)]

k+1 __ k+1 k'+1
pz,] - [(ui—}-l,j - 1_7 )+pz+LJ +pz—' J + pz J+1 sz,] 1]
1
k+1 __ k41 P--Ll
ai; = plluiie —uwii )+ Griy T A1+ W1+ 0]

Notice that the new u*t! values arc computed using old values of depths and

slope (u*, p*, and ¢¥). However, the new p**! and g**1 values need the newly

computed values of the depth (u**1). Theve is an inherent sequential nature to

the algorithm since the depths must be computed first and then the slopes.
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Going through the same type of error analysis as above yields the Fourier

error equation of:

k+1 k
4 0 0\ (U 3f 19 in\ (U
-g 5 0 P =l 0o 2f o P
-h 0 5/ \Q 0o o %f/\@Q

with f, g and h defined as above. This results in an amplification matrix
A{wy,ws) of
2 49 ih

16/ 3 +369° 69k

Bih deh 31+ dom
It has been shown numerically with the EISPACK routines [Goos and Hartmanis
1976] that the maximum eigenvalue of the amplification matrix for this case has
a value of .953 at w; = ws = 2.79. This shows that the method converges but

has a very high smoothing rate and so would not be appropriate for a standard

multigrid implementation.

This algorithm fits nicely on a computer such as the Connection Machine.
Assume for now, that there are enough processors to fit each u; ; value in each
processor. The corresponding p;; and g;; values are also stored in the same

processor that contains u; ;. This mapping scheme is shown in Figure 4-3.

There are two key advantages of this scheme. First, we pay no penalty for
sequentially computing all of the depths (in parallel of course) and then com-
puting all of the slopes (again in parallel). We couldn’t compute the depths and
slopes simultaneously anyway since they are calculated using the same proces-

SOrs.

Secondly, the iterative scheme requires that processors communicate only
with their nearest four neighbors. This is in direct contrast to a 13-point bi-
harmonic mask implementation, where 12 neighboring values must be collected.

To make the 13-point biharmonic operator converge, an extra local weighting
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Figure 14-3. Mapping onto the Connecction Machine

step must be added which turns cach iteration into the equivalent of a 25-point

operator application.

Another advantage of this scheme is that it requires no floating point op-
erations. Floating point operations take thousands of cycles on processors with
single bit ALUs typically found in these machines. These serial ALUs actually
give these machines an advantage over conventional 16-bit or 32-bit computers.
The inputs to the surface reconstruction module are fairly inaccurate and noisy.
The most accuracy we should expect is about 8 bits. It is advantagcous to only
have to do 8-10 bit word arithmetic bit-serially. A conventional 32-bit computer

gains nothing from this reduced word size.

4.3. Examples of Surface Reconstruction

The coupled depth/slope algorithm has been implemented and tested on
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a number of different synthetic surfaces. Figure 4-4a shows some sparse data
measurements that have been sampled from a synthetic surface. The surface re-
constructed by the coupled depth /slope network is shown in Figure 4-4b. Figure

4-4¢c shows the result given the location of the circular discontinuity.

The next example, shown in 4-5 shows the reconstruction of a surface given
only one u constraint and 100% of the p constraints. In effect, the coupled depth
slope algorithm integrates the slope values and uses the single depth constraint

to find the constant of integration.

Ikeuchi discusses a similar type problem in [Ikeuchi 1983]. Here, some shape
from shading module has produced the p and g slopes everywhere in the image.
Ikeuchi employs the following least squares energy functional shown to recover
the surface:

E= //(uI —p)* + (uy — q)*dzdy (4.7)

Minimizing this energy gives,
Viu=p, + qy (4.8)
This leads to a simple iterative scheme to recover depth from the slope mea-
surements. It should be noted that equation (4.8) derived by Ikeuchi is identical
to the first of the three equations (3.18) describing the coupled depth/slope
method. The coupled depth/slope method is therefore a generalization of the

depth from shape algorithm developed by Ikeuchi.

How many constraints must be given in order for the coupled depth/slope
problem to be well formulated? Terzopoulos [1984, p. 73] gives the minimal set

of input constraints for the surface reconstruction problem to be well-posed as:
1. Three noncolinear depth constraints,
2. Two depth constraints as well as a single (nonaligned) p or q constraint,

3. A single depth constraint as well as a single p and a single q constraint.
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a) 1 depth point

b) 100% p points

c) reconstructed surface

Figure 4-5. Reconstructing a surface given only p slopes
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4.4. Extension for Handling Noisy Constraints

We now propose a different way for handling noise than that discussed in
Chapter 3. In a digital algorithm on a Connection Machine, we assume noiseless
measurements and solve the problem exactly. This keeps the critical loop which
determines the speed of the algorithm as fast and simple as possible. After an
exact solution is reached, we do some amount of smoothing dependent on how
much noise is present in the constraint measurements. This post smoothing step

is very fast since it deals with dense data.

An example of this post smoothing approach for handling noisy constraints
is shown in Figure 4-6. Initially, the exact solution is very bumpy. We perform
a number of smoothing steps proportional to how much noise we believe is in
the data. These smoothing steps reduce the bumps in the surface. Different
confidence values are handled by allowing the high noise points to change more
than the low noise ones. This technique is similar but not equivalent to the least

squares averaging approach used by Grimson and Terzopoulos.

4.5. Fault Tolerance

Fault tolerance is a significant problem that has to be dealt with in massively
parallel architectures. Suppose we fabricate a 32 x 32 array of processing ele-
ments on a wafer and that 10% of them are broken. Nevertheless, we would like
the algorithm’s performance to degrade gracefully as more processors become
faulty. A diagnostic routine can be run in which processors check their neighbors
to see if they are functioning properly. If a neighbor is faulty, a discontinuity is

marked in that direction.

Notice here that it doesn’t matter if a neighboring processor is faulty or if

the wire connecting them is broken. For example, in Figure 4-7, processor A
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Figure 4-7. Faulty processor array.

marks B3 as being broken since A gets no response over their connecling wire. B’s
other neighbors however think that B is in fine shape and can do a good job. Of
course, B thinks that it is A that is broken since A never responds to his queries.
An example of a solution of a problem given 10% random broken processors out
of an array of 32 by 32 is given in Ifigure 4-8. Notice that the overall solution
stays very much correct, we only lose a small amount of resolution at the location

of bad processor sites.

4.6. Concurrent Multigrid Speedup - The Pyramid Network

Like all local iterative algorithms, the coupled depth/slope method takes
a long time to converge. For realistic images, it literally takes thousands of
iterations to calculate a surface. In this section, we propose a new concurrent

multigrid algorithm to speedup the coupled depth/slope calculations.

Terzopoulos [1984] used multigrid methods to improve the convergence rate
of his surface reconstruction algorithm. This was done for normal sequential

computers. Multigrid methods [Brandt 1977; Hackbusch and Trottenberg 1981]



Figure 4-8. Example of fault tolerance result

are a standard set of mathematical techniques designed to speed the convergence
of an iterative algorithm. The basic idca is to solve the problem first on a coarse

level and then use that solution as a first approximation for a finer level.

Multigrid methods are often many orders of magnitude faster than their
single level counterparts. For instance, suppose we are given an N by N grid
on which to calculate the solution of a surface. The computation can first be
mapped to a coarser grid of N/2 by N/2 mesh points. There are two reasons for
the multigrid speedup. A single iteration on this coarse grid takes one-fourth
the number of the operations of a single iteration on the finer grid. In addition,
since signals do not have to propagate as far on the coarse grid, it takes fewer
iterations to converge to a solution. So convergence on the coarse grid is much

faster since fewer iterations are needed and less computation is required for each

iteration.

When a multigrid algorithm is run on a problem which has already been
mapped to a parallel machine, the relative speedup is not as great as a multigrid

algorithm running on a sequential machine. This is because, on a parallel ma-
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chine, the time it takes to do a single iteration on any level is the same no matter
which level of coarseness is being solved. In the sequential case, iterations on the
next coarser level take one-quarter the speed of the finer level, but in a parallel
machine, all the nodal computations are done in parallel so all grids do iterations
equally fast. However, multigrid methods still give some algorithmic speedup on
a parallel machine because it takes fewer iterations to converge on coarser levels.
It’s just that the overall relative speedup for introducing multigrid methods is

not as great as for a sequential machine.

There is a problem with mapping these multigrid algorithms to a parallel
computer like the Connection Machine. The multigrid methods presently used
can only process data on one level at a time. In this sense these algorithms
are inherently sequential. Recently, Terzopoulos [1985] developed an algorithm
which allows all of the levels to run in parallel. He does away with the complex
coarse-to-fine and fine-to-coarse transfers of data normally seen in multigrid
algorithms. However, Terzopoulos’ algorithm requires the use of global switching
parameters which control the information flow between coarse and fine levels.
During the initial stages of the algorithm, a larger percentage of information will
flow from the coarser levels down to the finer levels. As the algorithm progresses,

more information flows up from the finer levels, correcting the coarser levels.

We propose a better solution. We model the multigrid problem as a network
of resistors and capacitors arranged in a pyramid. This pyramid network is
composed of meshes of resistors and capacitors, where different levels of meshes
correspond to varying degrees of coarseness. We develop this new approach by
studying the simple 1D membrane problem first. In a membrane smoothing
algorithm, straight lines are fit to sparse depth constraints through a parallel
iterative averaging process. Figure 4-9a shows sparse constraints along a line

with 65 mesh points. If an initial guess of zeroes is assumed, the result after 50
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Figure 4-9. Single grid example

iterations, Figure 4-9b, is far from convergence. Alter 250 iterations, Figure 4-9c¢,
the solution has still not converged. Convergence is reached after more than 500

iterations. The slow convergence problem is solved with the pyramid network.

For the 1D mecmbrane problein, we can model the computation as a dis-
tributed RC line as shown in Figure 4-10. The exact values of R and C must be
carefully chosen to accurately reflect the amount of information that can pass

between processors during each cycle. Kach iterative step corresponds to some
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Figure 4-10. Simple RC line model of computation

small time step for the analog network. The effect of a single constraint will be
modecled here as a voltage step applied to one end of the line. The initial guess

is represented as the initial voltages on all of the capacitors.

Electrically, the line will exponentially converge to a solution with some RC
time constant. Glasser and Dobberpuhl [1985] give an upper bound on the time

constant as
N(N +1)
2
with N being the number of nodes in the mesh. The speed of the delay line

r=RC

varies quadratically with the its length. An obvious speed up is to add a coarser
RC line such as that shown in Figure 4-11. This line will solve the problem four
times as fast since it has half the length and the same R and C valucs as the
finer level. The constraint on the finer level is used as a constraint on the coarser

level at the same spatial location.

Problems occur when constraints don’t occur on mesh points, This difficulty
is resolved through careful selection of inter-grid information flow. Suppose we
are given constraint values at locations 0 and 7 in the ninc node arrangement
shown in Iligure 4-12. We use a hicrarchy of four grids of varying levels of reso-
lution to solve the membrane problem here. We observe that in this simple case,
wires connecting different levels need only be unidirectional. The direction of

information flow is determined by the location of the constraints. Information
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Figurce 4-11. Two level speedup

flows up towards coarser grids where there are constraints and it flows down
where there are no constraints. This information flow between levels is an injec-
tion process. The recipient of this information just takes these values and does

not do any neighborhood averaging.

This method of transferring constraints to coarser levels is very eflective.
Tnitially, only approximate constraint values are passed up to the coarser grids.
As the problem is solved on coarser grids information flows down to the finer
srids, creating better constraint values to pass to the coarser grids. Terzopoulos
used a static local weighting technique to pass constraint values to coarser grids.
His method has the disadvantage that the approximate constraint values are
not improved over time and so the coarser grids can never have an accurate

representation of the surface.

How many coarse grids should be used? This pyramid algorithm uses as
many levels as it needs and uses them all in parallel. Notice in Figure 4-12
that the two coarsest levels, although built in, are not used. Data only flows
into them - no lower levels get information from them. If this surface patch was
adjacent to a sparser region, these coarser levels would then be able to efliciently

pass data there. Generally, the sparser the data in a particular region, the more
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Figure 4-12. Inter-grid information flow.

f

levels of the pyramid that are used. If data is very dense, multigrid methods

will not enable any appreciable speedup.

This pyramid network algorithm has been implemented for the 1D mem-
brane case. The solution, shown in Figure 4-13, took only 50 iterations. This
is more than an order of magnitude speed increase over the single grid solution.
The pyramid algorithm converges even faster with the addition of a heuristic

that uses the pyramid structure to develop a good iuitial guess.

We have developed a concurrent multigrid acceleration technique to speed
up the surface reconstruction problem. This pyramid network is better suited

for a parallel machine than conventional multigrid techniques because:
1. The pyramid network runs all of the grids concurrently.

2. The algorithm is much simpler to program than standard multigrid algo-

rithms.

The pyramid algorithm has the following advantages over Terzopoulos’ con-

current multigrid approach:

1. The system does not rely on any dynamically changing global parameters.
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Figure 4-13. Multigrid example, convergence in 50 iterations.

2. The coarser level solutions have the potential to be more accurate since
the coarse constraint values improve gradually when the finer grid solution

improves.
3. An analog network implementation seems feasible.

4. The system automatically chooses how many coarse levels are used. Regions

where information is sparse tend to use the most grid levels.
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4.7. Digital Alternatives

Historically, direct methods for solving extremely large partial differential
equation problems have been prohibitively expensive. The advent of locally con-
nected, massively parallel machines has provided iterative algorithms with even
more advantage over direct methods. Recently, Pan and Reif [1985] have pro-
posed the parallel nested dissection algorithm for solving linear systems. Their
algorithm for solving large sparse systems maps particularly well on a computer
such as the Connection Machine. Such a technique could be applied to solve
the system of coupled difference equations given by the coupled depth/slope

method.

In general, direct methods are much more difficult to implement and require
more memory than iterative methods. Iterative methods can easily make good
use of approximate solutions. This is important in solving problems like optical
flow. The optical flow in one time frame should be very close to the optical flow
in the next frame. Direct methods cannot make use of good approximations. For
extremely large problems, iterative methods are more efficient, that is, less work
is required to achieve a solution of a given accuracy. Low accuracy solutions,
can be generated very rapidly. The iterative multigrid methods have optimal
time complexity rates for the solution of linear systems. These multigrid solvers
can also work with the same efficiency on nonlinear and eigenvalue problems.
Multigrid algorithms have been successfully adapted to nonlinear flow problems

such as transonic flows and incompressible Navier-Stokes equations [Brandt 81].

Terrence Boult describes yet another way to perform surface reconstruction.
He uses continuous thin plate splines [Boult 1985a!, but does not attempt to
integrate orientation information, does not provide for discontinuities of different

types and makes no provisions for handling noisy measurements. Therefore,
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from the definition given in Chapter 1, he does not address the full surface

reconstruction problem, only surface interpolation.

Boult compares the gradient projection based algorithm used by Grimson
with his own method of reproducing kernels [Boult 1985b!. He argues that the
reproducing kernel method has better parallel time complexity than the single
level algorithm of Grimson. Assume k depth points are given in an m x m mesh.
Define the number of grid points m? to be n and assume a typical 10% sampling
of depth points so k = n/10. The time consuming computation for this method
is the solution of a (k — 3) by (k — 3) dense linear system of equations which
takes O(k?) or equivalently O(n?) time to solve (assuming zero communication
time). This compares favorably with O(nlogn), the parallel time complexity
that the Boult gives for Grimson’s algorithm. The multigrid methods used by
Terzopoulos lowers this time complexity to O(n) on a sequential machine [Brandt

1977)

J

In this analysis, communication time complexity is ignored, despite the
fact that this seems to be the major bottleneck in Boult’s approach. The thin
plate spline generating algorithm does not exploit the locality that exists in
the problem. This contrasts with the coupled depth/slope algorithm. Surface
reconstruction using iterative multigrid methods has better computation and

communication time complexities.

Recently Jim Clark has developed a novel approach to surface interpola-
tion [Clark 1985]. His idea consists of three steps. First, he maps the sparse
sensory data to regularly spaced points in the 2D grid. Second, he uses stan-
dard techniques from sampling theorems in digital signal processing and does
a single convolution of regularly spaced points to recreate a surface. Finally,
an inverse mapping is performed to map the reconstructed surface back to the

original domain. Unfortunately, his work does not extend to handle arbitrary
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discontinuities. Furthermore, his method fails to extrapolate the unconstrained

edges of the surface as, for example, the biharmonic operator would.

4.8. Summary

This chapter has developed a digital algorithm based upon the coupled
slope depth model to solve the surface reconstruction problem. The algorithm is
extremely well suited for a locally-connected massively-parallel computer such
as the Connection Machine. Since this algorithm comes directly from the cou-
pled depth/slope model, the algorithm can handle constraints and discontinu-
ities at any order of derivative of the surface. In addition, the digital coupled
depth/slope algorithm was shown to have the following advantages for a Con-

nection Machine type implementation:

1. It requires only nearest neighbor communication between processors. No
information from processors other than the four nearest neighbors is ever
needed. This includes depth and orientation constraints, discontinuity lo-

cations as well as current parameter values.

2. The algorithm was shown to be extremely fault tolerant. Broken processors

merely cause a loss of resolution; the solution is still roughly correct.

3. Each node requires only fixed point additions, subtractions and averages.
This constraint is extremely important for a computer such as the Connec-

tion Machine which uses simple one-bit processors.
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CHAPTER 5
ANALOG IMPLEMENTATION

The coupled depth/slope algorithm discussed in Chapter 4 runs much faster
when implemented with analog circuitry. Instead of simulating an analog net-
work with a digital computer, this chapter describes possible analog implemen-
tations of the coupled depth/slope network. First, we discuss how to build
the necessary subtractor constraint device and then we discuss how to set the

constraint values.

5.1. Building the Subtractor Constraint Element

The hardest part of building the coupled depth slope network.is the con-
struction of the subtractor elements which are responsible for the coupling be-
tween the slope and depth planes. As Chapter 3 states, any of the terminals of
this device can be inputs or outputs. One way of building this device is with
an ideal transformer in the configuration shown in Figure 5-1. Here we rely on
the mutual inductance of the two coils to produce the desired coupling effect
{Senturia and Wedlock 1975, p. 135]. With a turns ratio of one, the voltages
across the two inductors will be the same, so A — B = C. The transformer

circuit requires alternating current to function and dissipates no power.

The use of transformers makes the coupled network equiizalent to the elastic
plate analogy built by MacNeal [1951] in the early 1950’s. His elastic plate
analogy network contained twelve nodes and could be extended to solve problems
such as beam deflections and transient vibrations. There are several problems
with any transformer-based network. The most severe problem is building error-

free transformers. A second problem is that it is virtually impossible to build
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Figure 5-1. Transformer implementation of subtractor

a reasonable transformer on a VLSI chip. This precludes the possibility of

constructing a large scale system.

Another way of constructing the ideal subtractor element is with the help
of negative resistors as shown in Figure 5-2. By Kirchoff’s current law the sum
of the currents into the central node node X is zero, so

X-A X-B X-C X
+ + +

R R R 70

or rearranging terms,
A-B=C
There are a number of ways of building negative rcsistances. One possibility
is to use a careful combination of capacitors and inductors as shown in Figure

5-3. From above, we require:

Zr = —2Z¢
or
1
ol = — 1
e JwC
1
w=1\—=
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Figure 5-2. Negative resistance implementation.

~ - Rt

C

Figure 5-3. Trequency domain implementation.

Not only is alternating current required, but the frequency has to exactly match
the values of L and C. This is a difficult circuit to build correctly, and again we

cannot build it onto an intcgrated circuit.

Another implementation strategy is to implement the device with two ana-
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log subtractors and one analog adder, as was shown in Figure 3-2. An adder is
needed to compute B + C and the two subtractors are used to compute A — C
and A — B. Adders and subtractors are simple to build with operational am-
plifiers. The full subtract constraint element circuit is shown in Figure 5-4. A

working version of this circuit has been built and tested.

Problems occur in real life when we try to construct ideal devices out of non-
ideal parts. Each op amp adder and subtractor circuit has tiny errors in resis-
tance values, finite gain, finite input impedance and non-zero output impedance.
These errors cause slight inaccuracies in the calculated values and the constraint
A — B = C will not be true in general. The small error doesn’t bother us from
an algorithmic standpoint since the inaccuracies are very small and are averaged
together in each constraint element. There is a problem from the electrical point
of view, though. The circuit described sets the output of all of its op amps to
values which are slightly different from their normal output. Since op amps have
an extremely small output impedance a lot of current will flow, possibly burning
the op amp. The problem is reduced by explicitly increasing the op amp output

impedance with an extra resistor in the feedback path.

Perhaps a better approach is to implement directly the negative resistance
values given in Figure 5-3 with negative impedance converters [Siebert 1986].
With two negative impedance circuits, the subtract constraint element can be
constructed with two op amps and eight resistors as shown in Figure 5-5. Also,
the rivalry and error problems described for the circuit in Figure 5-4 aren’t

present in this implementation.

The big advantage of these op amp circuits is that operational amplifiers
are readily fabricated with VLSI technology. The idea of surface reconstruction

on a chip is not too far in the future. The op amps need not consume excessive
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Figure 5-4. Operational amplifier implementation.

chip space since the the DC biasing circuitry can be shared among many op

amps.
5.2. Setting Constraint Values

In Chapter 3, we proposed to set constraint values with a voltage source
connected through a resistor to the constraint mesh point, the Theévenin equiv-
alent, see Figure 5-6a. The depth measurement @ corresponds to the value of

the voltage source and the conductance of the resistor is «, with « defined as
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Tigure 5-5. Negative impedance couverter implementation.

a measure of the confidence in the measurements. The more typical connection
proposed in surface approximation networks [Marroquin 1985; Koch, Marroquin
and Yuille 1986; Poggio and Koch 1985; Hutchinson 1986] is to use the Norton

equivalent circuit, shown in TFigure 5-6b.

The Thévenin equivalent used to set constraints has several important im-

plementation advantages.

1. While resistor meshes are generally insensitive to resistor value variations
[Karplus 1958], the Norton circuit is very sensitive to the resistance varia-
tions that are common over VLSI process corners [Hutchinson 1986]. The
voltage scen at u varies directly with variations in resistor values. The sim-
ilar problem does not occur for the Thévenin circuit. Variation in a resistor

value simply changes the confidence in 4.



g= a
u u
- A
o Tt au g= a
a) b)

Figure 5-6. a) Thévenin equivalent b) Norton Equivalent

2. Using the Thevenin equivalent circuit also has the advantage of reduced
power consumption. We want to maximize the voltage swing in the resistor
mesh to achieve the largest resolution possible. Power dissipation is a prob-
lem, therefore, since power is Y (V2/R). We sct the resistor values in the
mesh as large as possible to minimize circuit power. It can be shown that
the Norton circuit dissipates much more power than the Thévenin circuit

when driving a large resistive load.

3. Finally, it is easier to implement the Thévenin circuit since the variable o
o 3 p

parameter scts only the resistance value and is not involved with the value

of the voltage source. The a value plays a part in both the current source

and the resistance values for the Norton cquivalent circuit.

Unfortunately, it is simpler to build current sources than voltage sources
with today’s silicon technology. Nonethcless, the Theévenin circuit has the po-
tential for more process variation immunity, less power dissipation, and simpler

overall system implementation.

5.3. Alternative Analog Networks

There are other possible analog networks which implement biharmonic smooth-
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Figure 5-7. Elcctrical network realization in the frequency domain.

ness. The biharmonic mask can be synthesized electrically by using the tricks
discussed in the last scction for manufacturing negative resistance components.
For example, the biharmonic mask can be realized in the frequency domain with
a network of resistors, capacitors and inductors [Volynskii 65). Figure 5-7 shows
a typical circuit. Unfortunately, these networks are hard to build in today’s
VLSI technology because inductors are difficult to fabricate. Also, small errors
in capacitance and inductance values will cause large variations in the solution.
A more plausible network would take advantage of the negative impedance con-

verters used in Figure 5-5.

The dual-Poisson nctwork described in Chapter 3 can be implemented
straightforwardly. Ilowever, depth values (or slope values) must be given at
each point around the entire boundary. This network cannot implement the
biharmonic free-edge condition required for surface reconstruction. Also, there
can be no discontinuitics in the interior of the image unless the slope or depth
is known at every point on both sides of all discontinuities. The dual Poisson

network may be appropriate for restricted domains but is not useful for general
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surface reconstruction applications.

5.4. Summary

We have proposed implementation strategies for building an analog ver-
sion of the coupled depth/slope method. The rough estimated speed of such a
network is on the order of microseconds. Unfortunately, this network will be
plagued by the problems common to all analog networks: 1/0 boundedness,
inflexibility and limited resolution. Clearly, the speed of the system will be de-
termined by how fast data can be loaded and unloaded into the network. It is
very difficult to modify the algorithms when they are compiled into hardware.
Noise limits the precision of voltages stored on nodes in the system. Because of
these problems, analog networks have been little more than a curiosity in the

past.
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CHAPTER 6
FUTURE DIRECTIONS

The coupled depth/slope model provides a new way to think about surface
reconstruction. As always, new solutions tend to open new areas of research.
Previously, we ignored the black boxes that performed discontinuity detection,
“shape from”, and stereo. We assumed that the results of these early vision
procedures were available as input to the surface reconstruction module. An area
for future research is to combine these early vision processes with the surface

reconstruction module to improve the performance of the overall system.

6.1. Combining Vision Modules

Discontinuity detection is an active area of research in computer vision to-
day. Terzopoulos [1985] and Marroquin [1985! both looked at combining discon-
tinuity detection with surface reconstruction. Terzopoulos developed a heuristic
for recognizing discontinuities. After a surface has been fully reconstructed, he
looks for significant changes in curvature in order to establish the placement
of discontinuities. Marroquin used binary line processes to represent surface
discontinuities. He minimizes a non-quadratic cost function to locate disconti-

nuities.

Either of the above methods can be incorporated into the coupled depth/slope
model. Terzopoulos’ method can be implemented by building the resistors in
the resistor mesh as fuses. The resistors open circuit when the current passing
through them exceeds some threshold. This threshold should be set to some fi-

nite value only at the locations of edges in the primal sketch. This will decrease
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the possibility of false discontinuity detections. In this way, discontinuities at any
level of smoothness could be detected. With the concurrent multigrid approach,

discontinuities at different levels of resolution can be detected and represented.

Similarly, the stereo module could be effectively combined with the coupled
depth/slope algorithm. Stereo modules typically use a hierarchical style ap-
proach to solve the stereo matching problem. The simpler, more obvious matches
are done on coarser grids. These coarser matches are then carried through onto
the finer grids. If the surface reconstruction module were integrated and per-
formed concurrently with the stereo module, the following advantages would
be seen. First, coarser surface reconstruction could start as soon as the stereo
module registered some coarse matches with disparities. This would speed the
running time of the surface reconstruction module. Second, coarse reconstructed
surfaces could be fed back to the stereo module to aid matching at finer levels.
This will help the stereo module to find more depth points with fewer errors,

resulting in a faster convergence and a more accurate reconstructed surface.

6.2. Other Applications

The coupled depth/slope network is not restricted to solving only the surface
reconstruction problem. This network generalizes to arbitrary dimensions and
arbitrary levels of smoothness. For example, we have seen that Laplacian, Pois-
son, and biharmonic type problems are easily solved with this network. These
partial differential equations arise in such computationally demanding fields as
hydrodynamics, aerodynamics, weather forecasting and structural analysis. The
hardware described in Chapter 5 is being studied for use in thin beams or can-
tilever problems in structural analysis. A simple example is shown in Figure 6-1

where an elastic beam is fixed on its right and left edges and a downward force
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Figure 6-1. Elastic Bcam Problem

is applied at the center of the beam. The final displacement of the beam must

be found.

The coupled depth/slope network casily handles problems such as these.
The input forces are fed as input at the bottom of the network (sec Figure
6-2) using appropriately valued voltage sources. There is no nced for any of
the resistor meshes because these are dense constraints. No minimization is
necessary; only integration is performed. Extra constraints are nccessary to
regain the constants of integration. Alternatively, we could feed dense deflection
data into the top of the array and read the forces from the bottom. Or we could
feed only sparse data and add a resistor mesh for some appropriate level of
smoothness. In summary, we can give the network any data that we have about
the moments, forces, slopes, or deflections of the beam. These constraint values,
with their corresponding confidence values, are incorporated into the final beam
solution. We can directly read dense solutions of the loading, the shearing force,

the bending moment and the beam deflection.

6.3. Problems to be addressed

The coupled depth/slope network has raised a number of questions which

remain to be answered.
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Figure 6-2. Elastic Beam Solution: a) Loading diagram b) Shearing force diagram

¢) Bending moment d) Deflection line

e Ilow similar is the post-smoothing approach (Section 4.4) to the conven-

tional least squares averaging approach?

e  This report has concentrated on parallel implementations of the coupled
depth/slope network. How well does tlﬁs algorithm work with a Gauss
Seidel iterative scheme on a sequential scheme? Does the method have
a low enough smoothing rate to be appropriate for a standard multigrid

implementation?

e The concurrent multigrid algorithm described in Section 4.6 has been im-
plemented for solving one-dimensional membrane problems. It must be
modified for the 2D membrane case and for the coupled depth/slope algo-
rithm. What are the exact spceds of these algorithm on the Connection
Machine and on a pyramid machine? How do these rates compare to the.

speedup afforded by conventional multigrid algorithms?

e The 2D form of the generalized coupled depth/slope network must be de-



veloped. It should be possible to show o

network and its digital implementation.

What is the best way to beild the anslog subtrae

the circuits proposed in Chapter 5 convarg
- diverge?
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CHAPTER 7
CONCLUSION

In summary, we have developed the coupled depth/slope model for surface
reconstruction. This is a computational model with a number of advantages over
earlier models. If only depths are given, the model reconstructs a surface with the
same biharmonic smoothness used by Terzopoulos and Grimson. In addition, as
depths are computed, orientation constraints can be incorporated with no extra
work. Discontinuities in depth and orientation can be used to compute the
reconstructed surface. Furthermore, the coupled depth/slope model generalizes

to handle constraints and discontinuities of any order derivative.

The model appears to be biologically feasible in that it fits the four cri-
terion given in Chapter 1: parallelism, uniformity, locality and fault tolerance.
Its biharmonic smoothness properties are observed in psychophysical tests of
humans. Also, Marr argues that the human 2%~D sketch redundantly represents
both slopes and depths. This compares favorably with the dense depth and slope

representations generated by the coupled depth/slope network.

Besides appearing to be biologically feasible, the coupled depth/slope model
leads naturally to compuational solutions on both digital computers and in ana-
log circuitry. In fact, a digital algorithm based upon the coupled depth/slope
model was implemented and was found to be extremely well suited for a locally-
connected massively-parallel computer such as the Connection Machine. Since
this algorithm comes directly from the coupled model, the algorithm can handle

constraints and discontinuities at any order of derivative.

The coupled depth/slope algorithm was shown to have the following ad-

vantages for a Connection Machine implementation. It required only nearest
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neighbor communication between processors. No information from processors
other than the four nearest neighbors is ever needed. This includes depth and
orientation constraints, and discontinuity locations as well as current depth and
slope values. The algorithm was shown to exhibit a high degree of fault toler-
ance. Broken processors cause only a loss of resolution; the overall solution is
still correct. Each node requires only fixed point additions, subtractions and
averages. This constraint is extremely important for a computer such as the

Connection Machine which uses simple 1-bit processors.

In addition to the above results, we have suggested a new concurrent multi-
grid strategy for speeding up a massively parallel digital implementation. The
pyramid network allows iterations to be performed on every level simultaneously.
The implementation is much simpler than that of the conventional multigrid
algorithm. The system converges to a solution without the addition of any dy-
namically changing parameters. The coarser level solutions are potentially more
accurate since the coarser constraint values improve gradually when the finer
grid solution improves. An analog implementation of the pyramid network is

plausible.

In terms of biological vision systems, our computational model for surface
reconstruction possesses remarkable similarities to the human vision system.
It remains to be seen if biological systems actually do create a dense surface

description or whether they perform some more complicated process.

In terms of the construction of artificial machine vision systems, it is quite
clear that we will be able to build systems which can perform surface recon-
struction at video scan rates. Unfortunately, no artificial later vision algorithms
exist that can make good use of this immense volume of data at these fast rates.
In effect, we have shifted the vision bottleneck from early to immediate vision

and we are now pushing it further towards later vision.
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