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Abstract

This thesis presents a new high level robot programming system. The program-
ming system can be used to construct strategies consisting of compliant motions, in
which a moving robot slides along obstacles in its environment. The programming
system is referred to as high level because the user is spared of many robot-level
details, such as the specification of conditional tests, motion termination conditions,
and compliance parameters. Instead, the user specifies task-level information, in-
cluding a geometric model of the robot and its environment. The user may also
have to specify some suggested motions. _

There are two main system components. The first component is an interactive
teaching system which accepts motion commands from a user and attempts to build
a compliant motion strategy using the specified motions as building blocks. The
second component is an autonomous compliant motion planner, which is intended
to spare the user from dealing with “simple” problems. The planner simplifies
the representation of the environment by decomposing the configuration space of
the robot into a finite state space, whose states are vertices, edges, faces, and
combinations thereof. States are linked to each other by arcs, which represent
reliable compliant motions. Using best first search, states are expanded until a
strategy is found from the start state to a goal state. This component represents
one of the first implemented compliant motion planners.

The programming system has been implemented on a Symbolics 3600 computer,
and tested on several examples. One of the resulting compliant motion strategies
was successfully executed on an IBM 7565 robot manipulator.

Thesis Supervisor: Prof. Tomés Lozano-Pérez
Title: Associate Professor of Computer Science
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Chapter 1

Introduction

This thesis presents a new high level robot programming system. The programming
system can be used to construct strategies consisting of compliant motions, in which
a moving robot slides along obstacles in its environment. The programming system
is referred to as high level because the user is spared of many robot-level details,
such as the specification of conditional tests, motion termination conditions, and
compliance parameters. Instead, the user specifies task-level information, including
a geometric model of the robot and its environment. The user may also have to
specify some suggested motions.

The introduction is organized as follows. In Section 1.1, we present an example
which illustrates the type of problem that the programming system is capable of
solving. Then, in Section 1.2, we discuss the general problem that is to be solved. In
Section 1.3, we present an overview of the robot programming system. Section 1.4
reviews previous robot programming systems. Section 1.5 summarizes the research
contributions of the thesis. Section 1.6 previews the remainder of the thesis.

1.1 An Example

At this point, we present an example to give the reader an idea of the type of
problem that the programming system is capable of solving. The example that we
have chosen is solvable by the programming system without the need for suggested
motions from the user.

Figure 1.1 depicts a three-dimensional T-shaped part, in the grasp of a robot.
! An obstacle is shown which contains a hole with an adjoining slot. First, the
T-shape is to be inserted into the hole. Then, the shaft of the T-shape is to be
slid into the adjoining slot. We will assume that the robot can translate in three
dimensions, but cannot rotate.

Finding a solution to this problem is complicated by uncertainty. There is
uncertainty in the position and force sensing of the robot. There is also uncertainty
in controlling the position and velocity of the robot. These uncertainties are typical
of those that are present in the real world. Our programming system requires that

1This example was inspired by a similar example of Valade [1985].
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Figure 1.1: An insertion task. A three-dimensional T-shaped part is in the grasp
of a robot. First, the T-shape is to be inserted into the hole of the obstacle. Then,
the shaft of the T-shape is to be slid into the slot which adjoins the hole.




these uncertainties are bounded. The bounds represent worst case conditions under
which a compliant motion strategy must succeed.

Let r be an arbitrarily chosen reference point on the robot. Consider the po-
sitions which r can take without causing a collision between the T-shape and the
obstacle. Each face of the obstacle imposes a constraint on the free motion of r.
These constraints are represented explicitly as surfaces in Figure 1.2. The explicit
constraints consist of a sequence of two holes. The first hole is entered from a hori-
zontal surface. This surface represents the constraints imposed by the topmost faces
of the obstacle. The first hole represents the constraints on the T-shape while it is
inserted into the hole in the obstacle. The second hole follows from an intermediate
chamber at the bottom of the first hole. The chamber represents the additional
play in the T-shape once it has fully entered the hole in the obstacle. The second
hole represents the constraints on the shaft of the T-shape while it is sliding into
the slot of the obstacle. Note that the geometry of the robot arm does not impose
any constraints on the T-shape insertion.

The constraints of Figure 1.2 comprise a representation of the task geometry
that is equivalent to that of Figure 1.1] but more explicit. This representation is
called the configuration space representation [Arnold 1978, Udupa 1977, Lozano-
Pérez 1983a). In the new representation, we can think of the robot simply as the
point r.

Assume that the programming system is given a configuration space model of
the task geometry. Initially, the T-shape is in contact with the top of the obstacle,
laterally aligned with the hole. The configuration space representation of this start
region is shown in Figure 1.2. The goal region is the bottom face of the second
hole, as shown in Figure 1.2. The programming system is to compute a motion
strategy which moves the T-shape from the start region to the goal region despite
bounded sensing and control errors in the robot. The programming system returns
a strategy which consists of a sequence of two commanded compliant motions.
Figure 1.3 shows the first commanded motion. The black polyhedron shown in the
figure contains a set of commanded positions. The robot is to aim for any point
in the polyhedron. The programming system has commanded this motion so that
the robot will reach and stop on a face of the first hole, as shown in the figure.
Friction between the T-shape and the hole face will cause it to stop there. The
black polyhedron is behind and more narrow than the stopping region to account
for possible trajectory errors. The stopping region then becomes the start region for
the second commanded motion. Figure 1.4 shows the second commanded motion.
If the robot aims for any commanded position in the black polyhedron shown in the
figure, then the robot will enter the second hole, slide along the lower side of the
hole, and stop in the goal region.

1.2 Problem Description

In this section, we describe the general problem that is to be solved. Section 1.2.1
describes the structure of a general motion planning problem. Section 1.2.2 explains

10
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Figure 1.2: Front and left views of the configuration space representation of the
T-shape insertion. The start region is an edge on the surface above the holes. The
goal region is the bottom face of the second hole.
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Front View
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Left View

*— subgoal

Figure 1.3: Front and left views of the first commanded motion. The start region
is an edge on the surface above the holes. The subgoal for the motion is a face
of the first hole, as shown. To attain the subgoal, the robot should aim for any

commanded position in the black polyhedron.



Front View

goal region

Left View

+ start rAegion

Figure 1.4: Front and left views of the second commanded motion. The start region
13 a face of the first hole, as shown. The goal region is the bottom of the second
hole. To attain the goal, the robot should aim for any commanded position in the
black polyhedron. ’
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why we have chosen to focus on compliant motions in our solution. Section 1.2.3
describes how compliant motions can be combined into motion strategies, which
represent the output of the problem. Section 1.2.4 describes the assumptions that we
will make about the capabilities of the robot. Section 1.2.5 explains the relationship
of the problem to the overall task of mechanical assembly.

1.2.1 Motion Planning

The programming system attempts to solve a motion planning problem. The input
to a motion planning problem includes a geometric model of the robot, and of
the environment in which it is to operate. The environment typically includes
workpieces, feeders, and fixtures. Chapter 2 describes the details of the geometric
models that we will employ.

The input also includes a start region, which contains possible initial positions
of the robot, and a goal region, where the robot is to be placed. For simplicity, we
will limit start and goal regions to positions in which the robot is in contact with
the environment.

1.2.2 Compliant Motions

The framework of the robot programming system is intended for a general class of
robot motions. However, this thesis will focus on a class of compliant motions. We
have chosen compliant motions as a testbed for the new programming system for
the following reasons:

1. Parts which are to be mated must come in contact at some point. Compliant
motions are necessary at that point.

2. It is often useful to bring parts in contact as early as possible, to reduce
the relative positioning uncertainty. The environment can often be used as a
geometric guide to a goal region. (See below.)

3. It is very difficult for a human programmer to specify compliant motions. To
specify a collision-free motion, a programmer must specify a position or a
directional velocity. These are easy enough to specify by guiding the robot.
But to specify a compliant motion, the relationship between the motion of the
robot and the reaction force of the environment must somehow be specified.
We need a programming system that computes compliant motion specifica-
tions based on task requirements and position or velocity specifications.

4. The success of a free space motion strategy with control uncertainty can be
verified by a human programmer ¢ priori by measuring the clearance of the
commanded trajectories from obstacle surfaces. In the case of compliant mo-
tions, however, the success depends on factors which are more difficult to
measure, such as the angle between an applied force and a surface (with un-
certainty), which determines whether a robot will stick or slide on the surface.
Programmers need a computational tool to verify compliant motion strategies.

14
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Figure 1.5: The goal G is a concave corner. Initially, the robot is known to be
within a distance ¢, of the free space position s. First, it eliminates uncertainty
in the z direction by moving to the vertical face on the right. Then, it eliminates
uncertainty in the z direction by sliding along the face to the bottom edge. Finally,
it eliminates uncertainty in the y direction by sliding along the edge to the corner.

The compliant motions that we are interested in must start and stop in contact
with the environment. They may pass through free space to get from one surface
to another. The details of their specification are given in Chapter 3.

The Environment as a Geometric Guide

When a part to be inserted is brought in contact with a surface, its degrees of
freedom are reduced by at least one. If the contact surface is known, then the part’s
position relative to the surface is known with certainty in at least one dimension.
When the part is brought in contact with k known surfaces, its position relative to
the surfaces is known in at least k¥ dimensions. For example, for a three dimensional
Cartesian robot which can only translate, a part to be inserted has three degrees of
freedom. If the part is brought in contact with a face of the environment, then its
degrees of freedom are reduced to two, and its position relative to the face in the
third dimension is known precisely. Contact with two surfaces reduces its degrees
of freedom to one. Under this type of contact, the part may be able to slide along
its only degree of freedom to a goal region. In this case, the environment acts as a
geometric guide to the goal. Figure 1.5 shows an example of this.

The environment does not always provide a convenient geometric guide to a goal
region. For example, consider the insertion task of Section 1.1. The top surface of
the configuration space environment provides a vertical guide to the first hole, but
there are no horizontal guides to ensure that the T-shape slides into the hole rather
than past it. The programming system was able to solve this problem successfully

15



because the positioning uncertainty of the robot was less than the hole clearance. 2

This is not to say that the example of Section 1.1 was useless. The example
demonstrates the feasibility of a planning mechanism that constructs a robust com-
pliant motion strategy in the presence of sensing and control uncertainty. The same
planning mechanism would be used even if the positioning uncertainty of the robot
were greater than the hole clearance. However, for the planning mechanism to suc-
ceed under this condition, we would have to add horizontal geometric guides to the
environment. This could be accomplished in the following ways:

1. Chamfers could be added to the actual hole.

2. The T-shape could be rotated, such that a smaller surface area is presented
upon entry to the hole [Inoue 1974]. This would increase the clearance between
the T-shape and the hole on entry. The T-shape would then have to be
compliantly rotated back into alignment as it penetrates the hole. This type
of insertion strategy creates an artificial chamfer in the configuration space
hole [Lozano-Pérez, Mason, and Taylor 1984).

For simplicity, the use of rotation is largely ignored in this thesis. Rotations
create technical complications that translations do not. The thesis focuses on the
basic issues in planning compliant motions in the presence of sensing and control
uncertainty. Initial feasibility will be established. Extensions to rotations are then
discussed in Section 7.4.

1.2.3 Motion Strategies

The programming system is to synthesize a compliant motion strategy that is guar-
anteed to transport the robot from any position in the start region to some position
in the goal region. A strategy may require that the robot stop in intermediate
contact positions, as we saw in the example of Section 1.1. A strategy may contain
conditional tests, using sensors to determine the next commanded motion. A strat-
egy should work in the presence of bounded sensing and control errors. Figure 1.6
shows an example of a compliant motion strategy. Asindicated in the figure, a strat-
egy is represented by a directed graph. We will make the simplifying assumption
that strategy graphs are acyclic, i.e., they do not have loops.

1.2.4 Robot Capabilities

We will make the following assumptions about the robot:

o The robot is a three-dimensional Cartesian robot which can translate but
cannot rotate.

¢ The robot is capable of executing both position and velocity commands.

*We will define the clearance between a part and a hole to be the minimum distance between the
part and the hole if the part is centered in the hole.
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Figure 1.6: A directed graph representing a compliant motion strategy. A node in
the graph represents a set of contact positions of the robot. An arc represents a
commanded motion. The robot starts in set S. After issuing motion m,, it tests
whether its position and force sensors are consistent with the sets I or I,. If the
sensors are consistent with I;, then the robot issues motion m, next, else it issues
ma. If the strategy is reliable, then the robot eventually stops in the goal set G,
despite bounded sensing and control errors.

o The robot is equipped with three-dimensional position and force sensors.

It should be noted that rotations are not always necessary. If parts are designed
with chamfers, and accurately fed to a Cartesian robot such as the IBM 7565 [Taylor
1983] or the MIT Precision Assembly Robot [Vaaler and Seering 1985], then we
might be able to apply our programming system directly to industrial tasks.

1.2.5 Relationship to Mechanical Assembly

In a mechanical assembly problem, a product is to be assembled by a robot from
its component parts. A typical mechanical assembly task can be expressed as a
sequence of motion planning problems. For example, consider Figure 1.7, in which
three planar parts are to be stacked inside each other. The subtasks that the robot
must solve are:

1. Grasp part 2.
Insert part 2 into part 3.
Release part 2.

Grasp part 1.

ok WD

Insert part 1 into part 2.
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Figure 1.7: A simple planar assembly problem. First, part 2 is to be inserted into
part 3. Then, part 1 is to be inserted into part 2.

6. Release part 1.

The start region of each subtask is determined by the goal region of the previous
subtask. Each subtask is a motion planning problem, including grasping and releas-
ing. One complication in formulating grasping or releasing as a motion planning
problem is that the end effector of the robot adds degrees of freedom to the prob-
lem. For example, consider the problem of grasping the T-shape of Figure 1.1 with
a parallel jaw gripper. We can formulate this as a motion planning problem with
four degrees of freedom, three for the translational axes of the robot, and one for the
gripper. Note that a more sophisticated robot hand would add even more degrees
of freedom.

1.3 Overview of the Robot Programming System

Figure 1.8 shows an operational view of the robot programming system. The user
submits a problem to the system, consisting of an environment, a start region, and
a goal region. The system then attempts to solve the problem autonomously. If it
succeeds, then the resulting compliant motion strategy is returned. Otherwise, user
interaction is required.

1.3.1 Modeling Robot Motions

A user needs an abstract model for specifying compliant motions. In Chapter 3,
we review a number of currently existing models. We then focus on two particular
models which fit our needs, the generalized spring model, and the generalized damper
model. Under the generalized spring model, the user specifies commanded positions
at which the robot is to aim. Under the generalized damper model, the user specifies
commanded velocities which define directions in which the robot is to move. Under
each of these models, a representation is developed for bounded control uncertainty,
in both free space and in contact. This representation of control uncertainty allows
trajectories to be simulated, which in turn facilitates autonomous motion planning.

18
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Figure 1.8: An operational view of the robot programming system. The user sub-
mits a problem to the system, consisting of an environment, a start region, and
a goal region, the system then attempts to solve the problem autonomously. If it
succeeds, then the resulting compliant motion strategy is returned. Otherwise, the
user is asked to supply suggested motions, which can be either commanded positions
or velocities.

1.3.2 The Teaching System

When user interaction is required, the programming system displays the start and
goal regions graphically, and prompts the yser. The user then submits a commanded
motion m, which can be either a commanded position or velocity. In principle, the
commanded motion could be entered by guiding the robot, or with a light pen.
For our initial implementation, the commanded motion was simply typed in. The
commanded motion should be one which the user hopes will reach the goal region
reliably from the start region. If this is impossible, then the user should submit
what is hoped will be the last motion in a reliable sequence of motions. Minimally,
the motion should be one which reliably reaches the goal region from somewhere.

The system then computes a set R of contact positions from which the goal
region can be reliably reached and terminated in via m. R is called a pre-image
of the goal region under m [Lozano-Pérez, Mason, and Taylor 1984]. Pre-images
can be computed for certain termination conditions by geometric backprojection
from a subset of the goal region, called a backprojection base [Erdmann 1984, 1986].
A backprojection base contains points that can be recognized as goal points using
sensing. Backprojection computes points which are guaranteed to reach the back-
projection base despite bounded sensing and control uncertainty. In our teaching
system, we will extend Erdmann’s algorithm to three Euclidean dimensions, under
both the generalized damper and spring trajectory models, for the case of compliant
motions.

Once the pre-image R has been computed, it is stored in a table, along with m
and the subset of the goal region that can be reached from R. R is now considered
to be solved, and is added to the goal region. If a subset S’ of the start region is
recognizably contained in R despite sensing uncertainty, then S’ is solved, and can
be removed from the start region. If the new start region is empty, then the problem
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is solved. Otherwise, the system attempts to solve the new problem autonomously.
If this fails, then the system displays the new start and goal regions, and user
interaction continues.

By iteratively reducing the size of the start region, and increasing the size of
the goal region, it is hoped that the user and system can together converge on a
successful strategy. However, this is not guaranteed. For instance, if no successful
strategy exists under the given error bounds, then the iterative process will fail.

The interaction between the programming system and the user defines a new
method for teaching motion strategies to robots. The main advantage of this teach-
ing system is that the user is spared the difficult tasks of generating conditional
sensor tests and motion termination conditions, and testing the program to ensure
that it works under bounded sensing and control errors.

1.3.3 Autonomous Planning

One might wonder why the teaching system is necessary, given an autonomous
compliant motion planning capability. The problem of planning compliant motions
with uncertainty is an instance of the general problem of planning motions with
uncertainty. Recently, Canny and Reif [1986] showed that the general problem is
exponential time hard. The general problem may actually be unsolvable [Erdmann
1984]. In spite of these theoretical constraints, our goal was to implement a working
planner. The result is an implemented planner which does not always succeed when
a solution exists. Experimentation has indicated that the planner can solve a useful
class of problems nevertheless.

An atom is a set of contiguous configurations which share a common set of
possible reaction forces. Any face, edge, or vertex from the configuration space
environment is an atom. All of free space is an atom. The planner characterizes
the state of the robot as a collection of atoms where the robot might be located,
under bounded sensing and control uncertainty.

The planner operates by repeatedly choosing a state, and constructing arcs
which connect the state to other states. Arcs represent reliable motions between
states. Arc construction proceeds from state to state until a successful compliant
motion strategy has been constructed from the start state to a goal state.

To expand the arcs of a state, the planner computes all possible commanded
motions from the state, grouping them into sets called weak arcs, which have a
common target atom. Weak arcs are then composed into reliable strong arcs, which
share a common set of target atoms. Subsets of the target atoms of a strong arc
represent target states that the robot might reach if it follows the arc. On execution,

the robot decides which target state it has actually reached using position and force
sensing.
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Figure 1.9: Typical steps in the design of a robot application. A robot programmer
often spends two thirds of the total development time debugging.

1.4 Previous Robot Programming Systems

Figure 1.9 shows typical steps in the design of a robot application. In the layout
planning stage, support hardware is designed. Then, in the operation planning stage,
the overall task is broken into simpler subtasks. Typical subtasks are grasping
a part, transporting a part to another location without collision (gross motion),
mating a part with another part (compliant motion), and releasing a part.

Next, in the motion planning stage, a skeletal motion strategy for each subtask
is generated, usually in the form of a procedure. In the verification stage, possible
errors in the strategy are computed, using estimates of uncertainties. Then, in the
strategy synthesis stage, a more robust motion strategy is generated which detects
and corrects predicted errors. Finally, in the debugging stage, the robot procedure
is tested and debugged. A bottleneck is shown at this stage, because two thirds of
the development time is often devoted to this activity in practice [Will 1981].

The robot programming system plays a critical role in this development process.
Different systems provide radically different capabilities. They can be classified into
three general categories: guiding systems, robot-level languages, and task planning
systems [Lozano-Pérez 1983b, Bonner and Shin 1982]. These categories are dis-
cussed below.

1.4.1 Guiding Systems

In a guiding system, or teaching system, the user leads the robot through the motions
to be performed, either by physically grasping the robot, or by manipulating a
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button box or joystick. Most guiding systems produce only decision-free point-to-
point motion strategies. The specification of conditional tests and sensing is difficult
or impossible. The narrow capabilities of these systems limit their utility to a small
set of applications, including painting and welding. See Lozano-Pérez [1983b] for a
survey of guiding systems of this nature.

Research efforts have concentrated on giving guiding systems more function,
but without much success. Buttons were added to teach pendants to do things like
switch between coordinate systems, adjust the speed, and save and recall taught
positions. Buttons were also added to perform special canned motion strategies.
For example, the FUNKY system [Grossman 1977] had a GRASP routine that used
finger sensors to regulate squeezing forces. In addition, FUNKY had a CENTER
command which centered the gripper over an object, and a SEARCH command
which performed a guarded move (a motion terminated by detected contact). The
POINTY system [Grossman and Taylor 1978] allowed object models to be defined
by touching objects with the manipulator while describing the objects interactively.
The resulting geometric models could then be referred to by a robot-level program
written in the AL language [Finkel et al 1974].

A number of subsequent systems allowed guarded moves to be taught. In
XPROBE [Summers and Grossman 1984}, the user informs the system before each
motion whether there are guard conditions for the motion. The system monitors the
force sensors during the motion and at its completion (which is also signalled by the
. user) determines whether the guard condition is being used to terminate the motion
normally or to detect unexpected contact. A similar system, TRIG [McLaughlin
1982, allows guarded moves to be taught, which result in a conditional test that
branches one of two ways depending on whether contact occurred.

A few guiding systems have attempted to generate conditional tests. In these
systems, the user must explicitly inform the system that a decision point has been
reached. Both FUNKY and TRIG fall into this category; conditional tests based
on sensor values are generated when a guarded move is taught.

Asada [1979] investigated the teaching of compliant motions for a three-fingered
hand. The teacher guides the robot to the neighborhood of the contact location
using position control. Then, the teacher presses or pulls the robot fingers until the
desired contact forces are obtained. The system then computes the finger stiffness
parameters required to replay the motion. Errorsin the calculations are (hopefully)
detected by replaying the compliant motion for the user’s approval.

Hirzinger and Landzettel [1985] implemented a similar system. A motion se-
quence is presented by the teacher using a joystick. During the guided motion
sequence, the system records sensed positions and forces at regular intervals. Each
recorded interval generates a commanded motion. The system derives a commanded
position for each interval which satisfies the equation of a generalized spring trajec- -
tory. On playback, the user can modify the trajectory with guided forces, to correct
errors in the original calculations.

All of the above systems are limited by the following characteristics:

1. The procedures that are generated by the system are not guaranteed to work
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under uncertainty. The debugging bottleneck remains.

2. The user is responsible for planning the decisions of the assembly. The system
has no ability to infer conditional tests.

Inference of procedures from example executions is an instance of learning, or
more specifically, procedural acquisition. A few recent papers from this area have
applied procedural acquisition to robot procedures. One system, by Selfridge and
Levas [1983], uses a knowledge-based approach. Guided input is matched with plans
in a planning library. If a portion of the input can be matched with a stored plan,
then the input can be used to fill in details that were left as parameters in the
plan. If not, then a new plan can be stored. This system considers only very simple
examples, and does not address conditional tests, compliant motions, or uncertainty.

Segre and DelJong used the explanation-based learning paradigm to general-
ize robot procedures. The input consists of a geometric model of the parts, and
a sequence of collision-free motions, such as grasps, translations, rotations, and
releases. Subsequences of input motions are matched against stored plans called
task schemata. Task schemata contain commanded motions and calls to other task
schemata. At the end, after subsequences have been matched, a new task schema
is stored. Matching of motions to task schemata is enhanced by two other types
of matching, of task parts to physical object schemata, and of assembled parts to
mechanism schemata. Physical object schemata are simplified geometric models of
parts. Mechanism schemata are kinematic descriptions of the relationship between
assembled parts. Matching to these other types of schemata gives the system a
more task-oriented basis for matching. Conditional tests, compliant motions, and
uncertainty are ignored.

Dufay and Latombe [1984] examined robot procedural generalization with con-
ditional tests and compliant motions. Their system consists of two modules, a
planner and an execution monitor. The planner generates a robot procedure from a
set of planning rules, and the execution monitor executes the procedure, examining
force and position feedback to see if it worked. If the procedure did not work, the
planner is notified and must produce an alternative plan. This process continues
until several successful procedures have been executed. These procedures are then
generalized into a single procedure which contains conditional tests and guarded
moves. Note that this system would be a teaching system if the plans came from
a human operator rather than a planning system. One criticism of this system is
that it lacks a general geometric reasoning capability. The interpretation of sensory
data is performed on a task basis by interpretation rules supplied with the planning
system. A more fundamental problem lies in the overall strategy for generating
procedures:

1. Tt tests suggested robot procedures by actually executing them. Each test
run is time consuming, and the application hardware has to be physically set
up before each test run. Physical testing may also be inadvisable. Assembly
applications consist of expensive robots, feeders, and fixtures, which should
not be subjected to unnecessary collisions.
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2. In general, after a finite number of test runs, the resulting procedure is not
guaranteed to work under uncertainty. For a given application, there is no
way to know how many test runs would be required before a procedure is
reliable. The debugging bottleneck is still present.

The generalization mechanism introduced by Dufay and Latombe consists of
merging redundant execution traces for the same part operation into a single pro-
cedure with conditional tests and loops to take care of the uncertainty-caused vari-
ations. Interestingly, it turns out that Dufay and Latombe’s generalization frame-
work with extensions can be used to solve an important higher level problem: the
construction of a procedure which performs multiple part operations or which per-
forms a common operation on different types of parts. This thesis does not address
that problem. For example, suppose some blocks are to be stacked. A human pro-
grammer would implement this as a loop surrounding a procedure to stack a single
block. The goal position for the stacking procedure would be written as an expres-
sion over a variable which varies with the block that is to be stacked. This thesis
only addresses motions where the goal region is fixed. The higher-level problem
would be to generalize a loop from procedures produced for individual blocks.

A recent system called NODDY [Andreae 1985] is concerned with this generaliza-
tion problem. NODDY is a domain-independent procedural generalization system
which has been applied to motion planning. NODDY ignores the kind of low-level
uncertainty that this thesis concentrates on. However, given outputs from the sys-
tem described here (procedures which can perform a single part operation with a
fixed goal region), NODDY would in principle be able to generalize a procedure
which performs a series of part operations.

1.4.2 Robot-level Languages

In a robot-level language, robot motions are controlled by commands from a pro-
gramming language such as AL [Finkel et al 1974], VAL [Unimation 1980, and AML
[Taylor et al 1982]. Modern programming languages allow a trained programmer
to specify parameterized robot motion and sensing commands, as well as standard
software functions such as data abstraction, procedural abstraction, conditional
branching, arithmetic, database management, and communication with other com-
puters. See Lozano-Pérez [1983b] and Buckley and Collins [1985] for discussions
and examples of robot-level programming.

Robot-level languages have exactly the opposite characteristics as guiding sys-
tems. Although they can be very powerful, the more powerful they get, the harder
they are to use. From my experience, an industrial robot programming applica-
tion can take six months or more to design and implement. Debugging the robot
procedure can involve as much as two thirds of this time.

Robot-level languages are inflexible because it takes so long to convert from
one application to another. The conversion time is long because of the difficulty of
designing and debugging a robot procedure. Many things can go wrong in a robot
application, and they all have to be accounted for in the procedure. However, it
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is difficult to predict what will go wrong before actually trying out the procedure.
This creates a bottleneck when testing and debugging a robot procedure.

1.4.3 Task Planning

The goal of task planning research [Lozano-Pérez 1976, Taylor 1976, Lieberman and
Wesley 1977] is to relieve the user of as many implementation decisions as possible.
This requires that the programming system perform many of the duties that are
shown in Figure 1.9. A task planner would be both powerful and easy to use.

Task planning provides flexibility in robot programming by supplying the neces-
sary robot functions without the associated debugging bottleneck. The idea is that
a robot procedure which systematically prepares for all likely errors will not need to
be debugged, thereby eliminating the bottleneck. Furthermore, if the procedure is
generated by computer, then the programmer is relieved of the tedium of predicting
and correcting for possible errors. However, many difficult research problems need
to be solved before a computer can generate such a robust procedure.

Motion planning is the only area of task planning that has received significant
attention, and it is not completely solved yet. The three key subproblems of motion
planning are grasp planning, gross motion planning, and compliant motion planning.

Grasp planning involves two basic problems, finding grasp points which stably
constrain a workpiece, and planning collision-free trajectories of the robot fingers to
grasp points. Representative research on the first problem includes Salisbury [1982],
Fearing [1984], Cutkosky [1985], Kerr [1985], and Nguyen [1986]. Representative
research on the second problem includes Lozano-Pérez [1976], Laugier [1981], and
Peshkin and Sanderson [1986].

Gross motion planning involves the construction of a sequence of motions that
will move a robot without collision to a goal region, using a perfectly controlled
robot in a perfectly known environment. This subproblem has been examined for
a rigid polyhedral robot moving through a polyhedral environment. Representa-
tive research in this area includes Udupa [1977], Lozano-Pérez and Wesley [1979],
Lozano-Pérez [1981], Schwartz and Sharir [1982], Lozano-Pérez [1983a], Brooks
[1983], Brooks and Lozano-Pérez [1983], Donald [1984], and Lozano-Pérez [1985).

Early research in compliant motion planning involved filling in the details of
partially specified procedures called skeleton strategies [Taylor 1976, Lozano-Pérez
1976] using actual model parameters. A basic assumption of this research was
that there would be a relatively small number of basic operations in a particular
domain. For example, peg-in-hole insertion is a common operation in the domain
of mechanical assembly [Draper 1983]. Inoue [1974] had previously formulated a
seemingly robust strategy for inserting a peg into a hole. The hope was that this
strategy could be parameterized in such a way that a task planner could use it for
virtually any insertion. Taylor [1976] designed skeleton strategies whose motion
commands were in terms of part locations, which in turn were a function of model
parameters and initial positions. In addition, strategies contained metadecisions, to
be resolved by the task planner, which offered a choice between several substrategies
based on part locations. For a particular task, part locations were computed by

25



the task planner from model parameters and initial positions by evaluating chains
of homogeneous transformations representing part relations. This evaluation was
performed by numerical propagation of model parameters, initial positions, and
associated uncertainties, using linear programming. Brooks [1982] designed a more
robust implementation for the propagation process, using symbolic algebra. His
technique resulted in backconstraints on model parameters and initial positions that
ensure the success of the strategy under uncertainty. The idea of backconstraining
the initial conditions of a skeleton strategy was first used by Lozano-Pérez [1976].
In his planner, after motion parameters had been instantiated in a strategy, the
strategy was geometrically simulated to detect undesired collisions. These collisions
were then used to constrain the initial positions of the subtask, in the hope that
previous subtasks in the assembly could achieve refined goal positions. Research
into skeleton strategies has received little attention of late, in light of the observation
that even simple variations in task geometry require radical changes in a motion
strategy [Lozano-Pérez, Mason, and Taylor 1984].

Lozano-Pérez, Mason, and Taylor [1984] took a different approach, based on
the idea of pre-images. Under their framework, a sequence of motions to move the
robot from a start region to the goal region would be found by backward chaining
from the goal region, recursively computing pre-image regions. The resulting strate-
gies might contain conditional tests. They did not propose an implementation for
the framework. However, the framework introduced many fundamental planning
concepts, including pre-images, the generalized damper trajectory model, a theory
of termination conditions, and backward chaining as applied to motion planning.
The teaching system of Chapter 5 is based on this framework. Mason [1984] estab-
lished completeness and correctness results for the framework under several types
of termination conditions.

Erdmann [1984,1986] continued the work on this framework. He showed that for
certain classes of termination conditions, pre-images can be computed by geometric
backprojection from a subset of the goal region. His algorithm was implemented for
planar robots with rotation. A key component of his algorithm was a representation
of friction in configuration spaces which describe rotation as well as translation.

The approach taken by Lozano-Pérez, Mason, and Taylor has thus far evaded im-
plementation in full generality. Other approaches to compliant motion planning use
simplifications or heuristics to make the problem more tractable. Some approaches
are simply manual procedures to be followed by human programmers; others are
implemented computer programs that have been tested on simulated environments.
Few approaches have been extensively tested on real robots, primarily because of
the unavailability of robots which can perform compliant motions. See Whitney
[1985] and An [1986] for discussions of current issues in compliance control.

Manual approaches to compliant motion planning were taken by a number of
researchers. Simunovic and Whitney [Simunovic 1979, Whitney 1982] developed a
one-step motion strategy for inserting a cylindrical peg into a cylindrical hole. The
strategy is valid for pegs and holes which meet certain parametric specifications.
They assumed the generalized spring trajectory model, choosing to command the
applied robot force. Their task was to compute the robot stiffness and applied force
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which causes the peg to enter the hole without sticking. They did this by solving
a set of quasi-static force balance equations generated by geometric and frictional
constraints when the peg is sliding into the hole. Ohwovoriole and Roth [1981]
derived a similar one-step strategy for inserting a peg into a hole.

Caine [1985] developed a manual process for designing decision-free multistep
motion strategies, in three dimensions with rotations. He assumed the force control
trajectory model (Chapter 3). His method decomposes a given environment into
states which characterize the type of contact between the robot and environment.
Although he does not compute them explicitly, his states correspond to obstacle
faces in the six dimensional configuration space that represents the possible trans-
lations and rotations of the robot. The states are manually searched for a connected
sequence which the robot can slide through without breaking contact. The com-
manded forces which effect the sliding motions must avoid sticking along the way,
and sliding to the wrong state due to control uncertainty. These constraints are
implemented by intersecting sets of generalized forces, obtained by solving complex
quasi-static force balance equations. In a six dimensional generalized force space,
this is quite tedious. The design process was applied to the insertion of a rectan-
gular peg into a rectangular hole. Although it is not algorithmic, Caine’s design
process generalizes the method of Simunovic and Whitney. The autonomous com-
pliant motion planner described in Chapter 6 is based on many of the principles
used in Caine’s method.

Koutsou [1985] proposed an automatic method for finding a sequence of sliding
motions of a robot in contact with an obstacle. The input includes a set of qual-
itative spatial relations describing the start and goal configurations of the robot.
The proposed method constructs a graph whose nodes represent obstacle faces in a
six-dimensional configuration space, and whose arcs represent physical connections
between faces. The spatial relations are compiled into start and goal faces in the
configuration space. The graph is then searched for a connected path from the start
face to the goal face. She did not consider whether compliant motions would actu-
ally be possible along the resultant path. It should be noted the Donald [1984,1985]
presented an earlier algorithm for computing obstacle faces in a six-dimensional
configuration space.

Laugier and Theveneau [1986] are building a system which will construct and
search a state graph, generating compliant motions between states. Each state de-
scribes a particular contact type between the robot and the environment, similar to
Koutsou. Arcs, which represent compliant motions, are constructed by backward
chaining from the goal state along heuristically chosen sliding directions. The sliding
directions consist of simple directions parallel and perpendicular to contact edges,
and directions chosen by expert rules. The sliding directions are extended until
a new, stable contact type is encountered. The location of the new contact type
becomes the start state of the compliant motion. The sliding motion is specified as
a generalized damper motion which avoids sticking on the surface, and terminates
when a reaction force of the goal state is encountered. At present, the system is
limited to translational motions. A similar approach by Valade [1984, 1985) per-
forms a heuristic search for translational sliding directions by analyzing concavities
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in the assembly parts.

Turk [1985] examined compliant motion planning in the plane without rotation.
He defines a state as a region of free space, bounded by a set of configuration space
edges. Arcs are constructed between states, labeled by the range of commanded
velocities that are guaranteed not to stick on a bounding edge of the initial region
on the way to the target region, under the generalized damper trajectory model.
Motions are terminated by a combination of position, force, and time conditions.
The state graph is then searched for a decision-free chain of motions which lead to
the goal region. The method works best in tunnels where one region of free space
naturally leads to another. It has problems in other situations, such as entering a
hole from an open space.

Erdmann and Mason [1986] examined compliant motion planning in the plane
with rotation. They define a state as a set of possible contact types between the
robot and the environment.: Defining a state as a set of possible contact types
rather than a single contact type is necessary because of uncertainty. Using forward
chaining from the start state, arcs are constructed between states, representing
reliable sliding motions between the states. Motions are terminated by sticking.
The computation of sliding motions is facilitated by Erdmann’s configuration space
representation of friction under rotation, as discussed above. Forward chaining ends
when a goal state is found. The resulting strategy is decision-free. The planner was
applied to a tray containing an Allen wrench. The Allen wrench is moved from an
arbitrary position and orientation to a known position and orientation by applying
a sequence of tilts to the tray. '

The paper by Erdmann and Mason illustrates the close link between plan-
ning compliant robot motions and planning general pushing and sliding operations.
Other research on pushing and sliding includes Mason [1982, 1986], Mani and Wil-
son [1985], Brost [1986], and Peshkin [1986].

Much of the compliant motion planning research assumes some type of uncer-
tainty in the sensing and control of the robot. More difficulty is encountered when
we consider errors in the geometric models of the robot and environment. Donald
[1986] has begun a study of this problem.

1.5 Summary of Research Contributions

This thesis makes the following new contributions to the theory of robot program-
ming:

1. An abstract model of a position controlled robot is developed, based on first
order dynamics with the robot modeled as a damped spring. This model can
be used by motion planners and human programmers to plan both collision-
free and compliant motions.

2. A method for verifying the correctness of a compliant motion strategy is de-
veloped and implemented for a particular model of compliant motions.

28



3.

4.

A method for teaching a compliant motion strategy is developed and imple-
mented for two models of compliant motions.

A method for autonomously planning a compliant motion strategy is devel-
oped and implemented for a particular model of compliant motions.

1.6 Outline of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 describes the geometric models that we will use to represent the
robot, workpieces, and other obstacles in the environment.

Chapter 3 describes the abstract models that we will use to specify robot
motions.

Chapter 4 presents a method for verifying the correctness of a compliant mo-
tion strategy. The need for a computational tool of this nature was mentioned
above. Also, the concepts involved in verifying correctness are building blocks
for the remainder of the thesis.

Chapter 5 presents the details of the teaching component of the robot pro-
gramming system.

Section 6 presents the details of the planning component of the robot pro-
gramming system.

Section 7 presents ideas for future work in this area.

Appendix A presents a method for computing visible surfaces in a three di-
mensional environment. This is used in the thesis to simulate commanded
motions for verification and teaching.

Appendix B contains some derivations for the generalized spring trajectory
model.

Appendix C contains a robot program which implements a peg-in-hole inser-
tion using results from the thesis.
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Chapter 2

Modeling Geometry

We will use polyhedral models to represent the geometry of the robot and its envi-
ronment. The environment of a typical mechanical assembly includes workpieces,
feeders, and fixtures. Many of these objects can be accurately modeled by polyhe-
dra. Furthermore, curved objects can be approximated by polyhedral models with
many faces. The accuracy of the approximation can be controlled by adjusting the
number of faces in the model. Artificial surface features that are introduced by
the approximation need not present a problem for a motion planner which takes
uncertainty into account.

The reason for using polyhedral models is that in many cases they simplify the
representation of an object. For example, interior points of a face need not be
represented explicitly. Furthermore, the reaction force of every point on a face can
be predicted by a single computation for the whole face. This simplifies the task of
reasoning about compliant motions.

For simplicity, we will assume that the geometric models are known perfectly.
Later, we will comment on the effects of geometric modeling error in Section 7.2.

2.1 Configuration Space

In section 1.1, we introduced by example a geometric representation called configura-
tton space [Arnold 1978, Udupa 1977, Lozano-Pérez 1983a), in which the constraints
that obstacles impose on a moving robot are explicitly represented as surfaces. In
this section, we discuss this representation in more detail.

The configuration of a moving robot is a set of parameters which completely
determines its position and orientation. The configuration space of a robot is defined
as the space of possible robot configurations.

The configuration of a three-dimensional Cartesian robot that can only trans-
late is given by three parameters, one for each dimension. Let r be an arbitrarily
chosen reference point on the robot. We can use the coordinates of r to represent
the configuration of the robot. The configuration space for this type of robot is
isomorphic to the three dimensional Euclidean space ®3.

There are many other types of configuration spaces, depending upon the kine-
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matics of the robot. Here are some examples:

¢ The configuration of a three-dimensional Cartesian robot that can both trans-
late and rotate is given by six parameters, three for its position, and three for
its orientation. The three positional parameters can be given by the coordi-
nates of a reference point. Rotations can be represented in a number of ways,
including Euler angles, roll-pitch-yaw coordinates, cylindrical coordinates, and
unit quaternions [Paul 1981, Canny 1986]. When rotations are represented
by unit quaternions, the space of three dimensional rotations is isomorphic to
the special orthogonal group of three parameters, SO(3). The configuration
space of the robot is then isomorphic to the product space ®2 x SO(3).

o The configuration of a robot with six rotary joints can be specified by six
parameters, one for each joint angle. The configuration space of each joint can
be represented by a subset of the circle §'. Each subset is limited by kinematic
constraints on joint travel. The configuration space of the robot can then be
represented by a subspace of the product space §!' x §! x §* x §* x §! x §1,
otherwise known as the six-torus.

There are a number of technical difficulties that arise when dealing with a config-
uration space of dimension higher than three, or with a non-Euclidean configuration
space such as a rotation space. We will discuss some of these difficulties in Chapter
7. For now, we will assume that the configuration space of the robot is the three
dimensional Euclidean space ®°.

2.2 Contact Space

Consider the specification of the start region S. For simplicity, S is limited to
configurations which correspond to contact between the robot and the environment.
S is a subset of contact space, the set of all configurations in which the robot is in
contact. Figure 2.1 shows the contact space for a planar example. For a planar
Cartesian robot which can only translate, contact space consists of a set of edges.
Each edge is generated by one of the following combinations:

¢ a vertex of the robot and an edge of the environment.

¢ an edge of the robot and a vertex of the environment.

The vertices of the planar contact space correspond to configurations in which the
robot is in contact with at least two environment surfaces.

For a three dimensional robot which can only translate, the contact space con-
sists of a set of faces. Each face is generated by one of the following combinations:

e a vertex of the robot and a face of the environment.

¢ a face of the robot and a vertex of the environment.
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Figure 2.1: The reference point r is chosen as a vertex of the robot A. The dotted
lines show the contact space of A with respect to the obstacles B and C.

¢ an edge of the robot and an edge of the environment.

Figure 2.2 shows these combinations. The edges of contact space correspond to con-
figurations in which the robot is in contact with at least two environment surfaces.
The vertices of contact space correspond to configurations in which the robot is in
contact with at least three environment surfaces.

Our start and goal regions are represented as collections of polygons from contact
space. But this is not the only use of contact space. Contact space is an explicit
representation of the constraints that obstacles impose on a moving robot. In
other words, contact space bounds free space, the free configurations of the robot.
To plan collision-free trajectories, a motion planner must pick trajectories which
remain in free space. To plan sliding trajectories, a motion planner must pick
trajectories which remain in contact space. When we use contact space in this
way, we are essentially shrinking the robot to its reference point r, and growing
the environment such that it is bounded by contact space. This representation
of a robot and its environment is called the configuration space representation.
For example, the configuration space representation of Figure 2.1 is obtained by
replacing the robot by its reference point r, and bounding the obstacles B and C
by the indicated contact space surfaces.

In Section 1.1, we showed a three dimensional example of the configuration
space representation. Figure 1.2 showed the configuration space representation of
the motion planning problem depicted in Figure 1.1. ‘

Lozano-Pérez [1983] and Donald [1984] developed algorithms for computing a
configuration space representation of a Cartesian robot, represented as a polyhedron
in a polyhedral environment. For the remainder of this thesis, we will simply assume
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Figure 2.2: The combinations of a robot R and an obstacle that generate a face of
contact space in three dimensions.

that the environment is given in a three-dimensional Euclidean configuration space
representation.

2.3 Friction

Compliant motions cause the robot to contact obstacle surfaces. When a robot
makes contact with an obstacle, the obstacle exerts a reaction force on the robot,
consisting of a normal force, and a tangential force which is caused by friction
between the robot and the obstacle. The vector sum of the robot force and the
reaction force yields a resultant force which determines the direction of motion.
Thus, a motion planner needs a geometric model of friction in order to reason
about compliant motions.

Consider a one-point contact between the robot and an obstacle. This one-point
contact defines a contact space face, with an associated normal vector (Figure 2.2).
The reaction force that the obstacle exerts on the robot is governed by Coulomb’s
Law [see Baumeister 1978]). Coulomb’s Law essentially states that:

1. The normal component of the reaction force with respect to the contact space
face is equal and opposite to the normal component of the robot force.

2. The tangential component of the reaction force is no greater than u times
the normal component of the robot force, where u is the coefficient of friction
between the materials in contact. ?

3. Within the limit imposed by (2), the obstacle will exert an equal and opposite
tangential reaction force.

!For simplicity, we will assume that the coefficients of static and dynamic friction are equal.
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Figure 2.3: A section of the friction cone of a point on a contact space face.

The coefficient of friction p has been measured experimentally for many combina-
tions of materials. For example, see Baumeister [1978]. For common ungreased
materials, u ranges from .04 (teflon on teflon) to 1.10 (nickel on nickel). Baumeister
lists 2 as .73 for soft steel on soft steel, and .78 for hard steel on hard steel. The
friction tables in the literature do not always agree. There are several factors which
could account for this variance:

e The hardness of materials may vary.
o The degree of machining of contact surfaces may vary.

o There may be small amounts of grease on contact surfaces.

In practice, one should experimentally determine the coefficient of friction.

For a given contact between the robot and an obstacle, it is useful for a compliant
motion planner to represent the set of all possible reaction forces. If the robot force
is equal to the inverse of a reaction force in this set, then the robot will stick on
the obstacle, because Coulomb’s Law says that the obstacle will meet the robot
force with an equal and opposite reaction force. If the robot force is not equal to
the inverse of a reaction force in this set, then Coulomb’s Law implies that the
robot will either slide or break contact. These properties will be used in subsequent
chapters to plan compliant motions.

For a one-point contact, Coulomb’s Law implies that all possible reaction forces
are contained in an infinite friction cone whose cone angle is equal to arctan(y). If
u = 0, then the contact is frictionless. This means that the obstacle is only capable
of exerting a reaction force which is normal to the contact surface. If u = oo,
then the obstacle is capable of meeting any robot force that is directed into the
contact surface with an equal and opposite reaction force. The fact that a friction
cone is infinite implies that a surface is capable of exerting a reaction force of any
magnitude.

In order to plan compliant motions in configuration space, we need to assign
friction cones to points in contact space. Each point on a contact space face inherits
the friction cone of the one-point contact that generates the face. Figure 2.3 shows
the friction cone of a point on a contact space face.

An edge in contact space is derived from contact between the robot and two
obstacles. The reaction force of such a contact is equal to the vector sum of the
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Figure 2.4: A section of the friction cone of a point on a convex edge in contact
space. The cone is equal to the vector sum of the friction cones of the edge’s
containing faces.

|

/\

Figure 2.5: A section of the friction cone of a convex vertex in contact space. The
cone is equal to the vector sum of the friction cones of the vertex’s containing faces.

reaction forces of the two obstacles. Thus, the friction cone of an edge in contact
space is equal to the vector sum of the friction cones of the contact space faces
which contain the edge. Figure 2.4 shows the friction cone of a point on a convex
edge in contact space. Note that the friction cone is not symmetric about an axis.
Technically, it is not a right circular cone, but to maintain historical consistency we
will continue to refer to it as such. It is similar to a right circular cone in that it
consists of a set of rays which have a common origin, and is bounded by a smooth
surface.

A vertex in contact space is derived from contact between the robot and three
or more obstacles. The reaction force of such a contact is equal to the vector sum
of the reaction forces of the obstacles. Thus, the friction cone of a vertex in contact
space is equal to the vector sum of the friction cones of the contact space faces
which contain the vertex. Figure 2.5 shows the friction cone of a convex vertex in
contact space. Again, the friction cone is not symmetric about an axis.
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2.4 Summary

In this chapter, we have described a model for three-dimensional geometric objects,
such as the robot, workpieces, feeders, and fixtures. The model that we have cho-
sen, the polyhedron, is useful because it simplifies the representation of an object.
For example, when one needs to reason about compliant motions, each point on a
‘particular polyhedron face, edge, or vertex is capable of the same set of reaction
forces. We transform a polyhedral environment to the configuration space represen-
tation, by reducing the robot to a point, and growing obstacles accordingly. This
representation makes it much simpler to reason about geometric constraints on the
motion of the robot.

The possible reaction forces of a configuration space face, edge, or vertex are
represented by a three-dimensional friction cone, which in the case of an edge or
vertex is not actually a right circular cone, but has similar properties. The friction
cone will allow us to reason about the motion of the robot when it is in contact.
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Chapter 3
Modeling Robot Motions

In this chapter, we will search for an abstract model for specifying robot motions.
The model is to be used by both human programmers and automatic motion plan-
ners. We will be looking for an abstraction which meets the following requirements:

1. Instances of the model should be easy to specify.
2. Using the model, one should be able to specify robot motions with wide utility.

3. The model should be implementable on a robot, with bounded error.

We will begin in Section 3.1 by reviewing a number of currently existing models.
From this list, we will focus in on two particular models which fit our needs in
planning compliant motions. We will then examine the properties of these models
in detail, in Sections 3.2 and 3.3. In Section 3.4, we will discuss the implementation
of these models on a robot.

3.1 Review of Current Models

A robot motion can be modeled by two components, a desired trajectory, and a set
of termination conditions. A desired tra Jectory is modeled by a differential equation
which describes the configuration of the robot with respect to time. In Section 3.1.1,
we will review currently existing trajectory models, and pick two that are suitable
for our purposes.

The termination conditions of a commanded motion specify situations in which
the robot is to terminate its trajectory. In Section 3.1.2, we will discuss termination
conditions in some generality, and identify the types of termination conditions that
we will be using.

Our models will allow for bounded errors in the execution of a commanded
motion. There are two types of errors that can cause a commanded motion to stray
from its commanded trajectory, control errors and sensing errors. A control error
is an inability of the robot to achieve a commanded position or velocity. We will
assume that the following bounds hold on control errors:
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€p: The maximum distance between a commanded position and the actual position
attained by the control system in free space.

6,: The maximum angle between a commanded velocity and the actual velocity
attained by the control system in free space. We will assume that 6, < 3

We will assume that the following bounds hold on Sensing errors:

€s¢ The maximum distance between a sensed position and an actual position.

6s: The maximum angle between a sensed reaction force vector and an actual re-
action force vector.

The notations ¢,, 4y, ¢,, and 6, will be used throughout the thesis to denote the
error bounds described here. :

3.1.1 Trajectory Models

The best known trajectory model is Newton’s second law of motion,

f= Mz, (3.1)

where f is the total force on the robot, x is its configuration, and M is an inertial
matrix, which depends on x. Since Newton’s law is second order, the trajectory
of the robot in response to an applied force is parabolic. Parabolic trajectories
are difficult to specify, however. Consider Figure 1.1, for example. How would you
specify the parameters of a parabolic trajectory for this insertion? It would be much
easier to command a linear trajectory. To do this, we need to reduce the order of
the differential equation to 1 or 0:

f= Bx (3.2)

f=Kx (3.3)

B and K are called damping and stiffness matrices, respectively.

Equations 3.2 and 3.3 do not match the physical world as accurately as Equation
3.1. Robot trajectory models are similar to Newton’s law in that they specify a
dynamic behavior, but different in that they only expect the behavior to hold to
within some tolerance. Another difference is that Newton expected the physical
world to uphold his law, while a robot programmer expects a robot control system
to implement a robot trajectory model.

Four currently existing types of trajectory models are phase trajectory models,
force trajectory models, hybrid trajectory models, and impedance trajectory models.
Phase trajectory models include the position trajectory model,

X = X, (3.4)
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the velocity trajectory model,

and the acceleration trajectory model,

i = % (3.6)

Equation 3.4 says that the actual position x is to be equal to a commanded position
X.. Equation 3.5 says that the actual velocity % is to be equal to a commanded
velocity x.. Equation 3.6 says that the actual acceleration ¥ is to be equal to a
commanded acceleration X.. Unfortunately, these models do not fully specify the
behavior of the robot. A commanded position may be unattainable because an
obstacle is in the way. A commanded velocity may be modified significantly by the
reaction force of an obstacle. The.trajectory models do not tell us what happens in
these cases. Essentially, the configuration of the robot is underdetermined when the
robot is in contact under these trajectory models. Additional dynamic constraints
are needed. One possibility would be to assume Newtonian dynamics (Equation
3.1). Alternatively, we could assume dynamics of the same order as the commanded
phase variable.

Force trajectory models specify the external force on the robot. A force trajectory
is given by the equation

£ =f. (3.7)

This says that the actual external force f, on the robot is to be equal to a commanded
force f.. A force trajectory also fails to fully specify the behavior of the robot.
Equation 3.7 does not specify the position of the robot, nor any of its derivatives.
In free space, where there is no external force on the robot, a force trajectory says
nothing. Again, additional dynamic constraints are needed.

Force trajectories have been combined with phase trajectories in the hybrid
trajectory model [Mason 1979, Raibert and Craig 1981}, in which certain robot axes
are assigned force trajectories, and others are assigned phase trajectories. It is as if
we have several coordinated one degree-of-freedom robots, some in free space, and
some in contact space. The problem with hybrid trajectories is that if a robot axis
in a phase trajectory establishes contact, the motion cannot continue smoothly into
contact space. Instead, the robot must terminate the motion, and initiate a new
force trajectory along the axis. This results in jerky robot motion, and leads to
larger and more complicated motion strategies.

The reason why hybrid trajectories do not allow smooth continuation from free
space to contact space is that they do not specify an explicit relationship between
the position of the robot and the reaction force on it. Trajectory models which
do this are called impedance trajectory models. They include the generalized spring
trajectory model [Salisbury 1980],

f = K(x-x.), (3.8)
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the generalized damper trajectory model [Whitney 1977],

£ = B(x — x.), (3.9)

and the generalized mass trajectory model,

£ = M(k - &), (3.10)

where f, is the reaction force imposed by the environment on the robot; x., X,
and X, are the commanded phase variables; and x, X, and % are the actual phase
variables. K, B, and M are spring, damping, and inertial matrices, respectively.
Impedance trajectory models pick an order for the differential equation of the
robot, and model the robot as an impedance of the highest order. For example,
the generalized mass trajectory model defines a second order system with the robot
modeled as a mass. Each of these trajectory models can be seen as an interpretation
of a phase trajectory, further constrained to obey a differential equation of the same
order as the commanded phase variable. For example, the generalized mass trajec-
tory model is an interpretation of an acceleration trajectory, further constrained to

obey Newtonian dynamics. To show this, we derive Equation 3.10 from Equation
3.1:

f = Mik
f, + M%, = M
f, = M@-%.)

The other two impedance trajectory models can be derived similarly, by starting
with a lower order differential equation.

Hogan [1984] has combined all of these impedance models into a single model, in
which the robot is modeled as a system consisting of a spring, damper, and inertia.
His trajectory equation is

f. = Mx + B(x — %x.) + K(x — x.). (3.11)

For the time being, we will focus on the individual impedance models. However, in
Section 3.3, we will show that the first order analog to this equation is needed to
properly model a generalized spring.

Under an impedance trajectory model, the user can specify both the commanded
phase variable, and the stiffness, damping, or inertial matrix. It is useful to specify
the stiffness, damping, or inertial matrix as a positive diagonal matrix, so that there
are no cross-coupling effects between commanded axes. It is also useful to assume
that the diagonal elements of the matrices are identical. K can then be treated
as a positive constant k, B as a positive constant b, and M as a positive constant
m. Under this convention, it is the commanded phase variable alone which controls
whether the robot will stick or slide on an environment surface. This is discussed
in detail below for each impedance trajectory model. The stiffness, damping, or
inertial constant controls the magnitude of the environmental reaction force, which
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affects the stability of the system. The value of the constant does not affect the
robot trajectory, as long as stability is maintained.

The generalized mass trajectory model is second order, and for reasons described
above, is not convenient to use. We have chosen to use the generalized damper and
spring trajectory models in our programming system. The user may command
motions from either model, as desired. Sections 3.2 and 3.3 discuss the properties
of these trajectory models in more detail.

3.1.2 Termination Conditions

The termination conditions of a commanded motion specify situations in which the
robot is to terminate its trajectory. They are a generalization of what Will and
Grossman [1975] called guarded moves.

To specify a termination condition, our programming system allows the following
termination parameters to be specified in a motion command:

P, is a set of positions.
F, is a set of reaction force directions.

The basic idea is that if the robot senses a position that is in the set P,, and a
reaction force vector that is in the set F, then it is to terminate the motion.

A motion planner faces the question of how these parameters can be used to
terminate a motion in a goal region G. Mason [1983] and Erdmann [1984] addressed
this question in some generality. We will review some of their findings here.

The termination parameters should contain positions and reaction forces of goal
points whose interpretations are all in G. even under maximal sensing error. This
way, the robot will not stop in a nongoal configuration by accident. There is infor-
mation available that supplements the sensed position and reaction force. For one
thing, the planner presumably has knowledge of a start region S, which contains
the initial configuration of the robot. § is a calculated bound, based on previous
motions in the planned strategy, under sensing and control uncertainty.

The planner also knows the commanded motion m, which is either a position or
a velocity. Define F,,(S) to be the set of contact configurations that are reachable
from S under m. F,,(S) is called the forward projection of S under m. Chapter 4
presents an algorithm for computing a forward projection, given the task geometry.
The planner can use the forward projection to compute larger sets of termination
parameters. These sets contain positions and reaction forces of goal points whose
interpretations are all in G or outside of F,,(S).

At runtime, for each motion, the robot knows the actual initial configuration
s, to within the position sensing uncertainty e,. Let B(s) be a ball of radius e;,
centered at s. If we use the forward projection

Fn.(B(s)(S) (3.12)

rather than F7,(S) to generate the termination parameters, then the forward projec-
tion will be smaller, and the termination parameters will be larger. A termination
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condition which uses the actual initial configuration s is called a termination con-
dition with history. However, this is a difficult termination condition to plan with,
since s is not available until runtime. Also, forward projections cannot currently
be computed in real time. Our programming system will not use s in termination
conditions.

Another source of information that our programming system will ignore is
elapsed time. Erdmann presented an example in which a robot used elapsed time
to terminate in a goal region. The example could not have been performed without
timing information. However, it remains an open problem to design a planner that
can utilize it.

3.2 The Generalized Damper Trajectory Model

In this section, we will discuss the properties of the generalized damper trajectory
model. We will answer the following questions:

¢ What free space trajectories are possible under the trajectory model?
e What contact space trajectories are possible under the trajectory model?

e In contact space, when does the robot stick and when does it slide under the
trajectory model?

Much of what follows is due to Lozano-Pérez, Mason, and Taylor [1983]. For
simplicity, we will assume that commanded velocities are limited to unit velocity
vectors. This does not limit the tasks that we can accomplish; it merely limits the
speed at which we can accomplish them. With this limitation, we can focus on the
effect of the direction of a commanded velocity.

3.2.1 Free Space Trajectories

In the absence of control error, a robot trajectory through free space under the
generalized damper trajectory model is given by a ray originating at the initial
configuration and parallel to the commanded velocity x.. With control error, there
may be directional errors in achieving X.. The actual velocities that are possible in
free space are contained in a cone, as shown in Figure 3.1. This cone is referred to
as the velocity cone. The angle 8, of the velocity cone provides a parametric bound
on velocity error. The knowledge of this cone would allow a planner to synthesize
collision-free motions if desired. .

We will assume that the robot can instantaneously switch between velocities
from its velocity cone. This is a conservative assumption, since in practice a delay
would occur on a switch between two velocities. However, second order dynamics
would be needed to model such a delay, and we would like to use first order dynamics.
An alternative would be to require that a velocity remain constant along a free space
trajectory, but this would be a bad assumption for general-purpose robots.
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Figure 3.1: All free space trajectories from an initial configuration s under the
generalized damper trajectory model are contained in a cone of angle 6,.

sliding
face — cone
free space
cone }

Figure 3.2: The initial configuration of the robot is s. The commanded velocity
is v. Under the generalized damper trajectory model, all sliding trajectories are
contained in the projection of the velocity cone onto the surface. The axis of the
sliding cone is the projection v’ of v onto the surface.

3.2.2 Contact Space Trajectories

Assume that the robot is in contact with a face, and that a commanded velocity is
directed into the plane of the face. For now, assume that the surface is frictionless.
(We will discuss the effects of friction below.) The sliding trajectories that are pos-
sible under the generalized damper trajectory model are contained in the projection
of the velocity cone onto the sliding surface, as shown in Figure 3.2.

3.2.3 Sticking and Sliding

Assume initially that there is no control error. In contact space, the robot either
sticks at a surface point or slides away from it, along the projection of the com-
manded velocity onto the surface. Whether the robot sticks or slides depends upon
the direction of x.. The damper force imparted by the commanded velocity, bx.,
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Figure 3.3: A cross section of a face, showing the resultant force when the com-
manded velocity is outside of the negative friction cone.
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Figure 3.4: A cross section of a face, showing commanded velocities which cause
sticking and sliding on the face, under the generalized damper trajectory model.

1s proportional to X.. If X is directed into the negative friction cone of a surface
point, then the surface point generates an equal and opposite reaction force, and
the robot sticks. If x. is directed outside of the negative friction cone, then the
reaction force is equal to the negative of the projection of the robot force onto the
friction cone, as shown in Figure 3.3. The resultant force is along the surface, as
shown in the figure. The resultant velocity is proportional to the resultant force,
causing sliding along the surface.

The knowledge of this behavior allows a planner to pick x. based on the desire
to either stick or slide on a particular surface. For example, Figure 3.4 shows
commanded velocities for which sticking and sliding will occur on a face. If x. is
outside of the negative friction cone, then the robot will slide along the length of
a face until it reaches another face, or a termination condition becomes satisfied.
This allows the robot to use a surface as a guide, as illustrated in Figure 1.5.

Now, let us consider the effect of control error. In order to ensure sticking or

44



friction cone

sliding sliding
velocities velocities

sticking

velocities

Figure 3.5: A cross section of a face, showing commanded velocities which ensure
sticking and sliding under the generalized damper trajectory model with bounded
velocity error.

sliding under bounded velocity error, one must ensure that %, is directed into or
outside of the negative friction cone, even if a maximal velocity error of 6, occurs.
For example, Figure 3.5 shows velocities which ensure sticking and sliding on a face
despite velocity error.

Figure 3.6 shows a case where generalized damper commands can be used to
reach a goal, despite significant velocity errors.

3.3 The Generalized Spring Trajectory Model

In this section, we will discuss the properties of the generalized spring trajectory
model. We will answer the same questions that we answered for the generalized
damper trajectory model.

The zero order dynamic system given by Equation 3.8 fails to fully define the
behavior of the robot. First, it does not define a desired behavior in free space for
the case where x is not equal to x., for there are no reaction forces in free space,
and the equation is unsatisfied. Also, it fails to define a desired behavior in certain
contact configurations. For example, in Figure 3.7, x. — x is outside of the negative
friction cone. According to Equation 3.8, f. should be proportional to x — x,, but
this contradicts Coulomb’s Law.

What kind of behavior would we like of our trajectory model? In free space, if
X is not equal to x., we would like the robot to move in a straight line from x to
X.. In contact space, if x. — x is outside of the negative friction cone, we would like
the robot to slide towards a contact configuration in which x. — x is directed into
the negative friction cone, and stick there.

The main problem with Equation 3.8 is that it is zero order, and thus does
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Figure 3.6: This is the same example as Figure 1.5. The goal is the concave corner.
The robot begins in free space. Using generalized damper motions, the robot is able
to proceed to the corner despite velocity errors. The trajectory of the first motion
is bounded by a three-dimensional cone. The trajectory of the second motion is
bounded by a two-dimensional cone. The third motion is one-dimensional, and
thus has no velocity error.

friction cone

W22 e
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/
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X /
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Figure 3.7: The cross section of a face. The commanded position is X.. The robot
1s in configuration X, and imparts a spring force towards x,. Under Equation 3.8,
the reaction force of the face should be f..,.0n. But this is impossible, for f....tion
1s outside of the friction cone.
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not describe any change in configuration. In short, the equation does not describe
motion. We need to formulate an equation of higher order. We do not want an
equation of second order, because we do not want to deal with parabolic motion.
Thus, we choose a first order equation, one in which the commanded phase variable
is position rather than velocity. To do this, we model the robot as a damped spring.
One simple way to formulate the dynamic equation is to start with the dynamic
equation of a generalized damper (Equation 3.9), and substitute the quantity x. —x
for x.. This has the effect of pulling the robot toward x, instead of letting it fan
out into the velocity cone. The resulting dynamic equation is

f = b(x — x. + x). (3.13)

Another way to derive this dynamic equation is to start with the first-order
equivalent of Newton’s law (Equation 3.2), model the robot as a spring with stiffness
k, and solve the force-balance equation for the reaction force:

f = bx
f.+k(x.—x) = bx
f. = k(x—x,)+0bx (3.14)

Note that Equation 3.14 is the first-order analog to Hogan’s impedance equation
(Equation 3.11). The imparted spring force of the robot is equal to k(x. —x). Since
we are free to choose k and b, we can set k = b, thus obtaining Equation 3.13.

In free space, the reaction force is 0, and Equation 3.13 reduces to

X = X, - X. (3.15)

This says that the velocity of the robot is directed along a vector from the actual
position to the commanded position, as desired.

In contact space, if x. — x is into the negative friction cone, then the surface is
able to respond to the spring force b(x. — x) with the equal and opposite reaction
force b(x — x.). Equation 3.13 reduces to

x =0, (3.16)

which means that the robot sticks. If x. — x is outside of the negative friction
cone, then f, is equal to the negative of the projection of the spring force b(x. — x)
onto the friction cone. This causes a resultant force along the surface, as shown in
Figure 3.8. The first order dynamics turn this force into a sliding velocity along the
surface. Equation 3.13 is thus the trajectory model that we were looking for.

3.3.1 Free Space Trajectories

What are the free space trajectories of a robot under Equation 3.13? Suppose that
the robot is initially in configuration s, and is commanded to go to configuration
p. Assume for now that there are velocity errors, but that positioning and position
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friction cone

Figure 3.8: The cross section of a face. The commanded position is x.. The robot
1s in configuration x, and imparts a spring force towards x.. The reaction force of
the face is f..oction. The resultant force is along the surface of the face.

%0

Figure 3.9: Under the generalized spring trajectory model with perfect positioning
and position sensing, the free space trajectories of a robot starting in configura-
tion s and commanded towards p are bounded the spiral curves shown here. The
maximum trajectory error is ¢, and the maximum overshoot is e, .

sensing is perfect. In its attempt to move directly from s to p, there may be a
directional velocity error, bounded by 8,. However, this does not mean that the
trajectories fan out into a cone, like generalized damper trajectories. Under the
generalized spring trajectory model, the robot is constantly being pulled towards p.
This has a corrective effect on trajectories which attain maximal directional error.
Figure 3.9 shows the possible trajectories that result from the corrective action.
The trajectories are bounded by a collection of spiral curves.

Two parameters of a generalized spring trajectory that a planner needs to know
are the maximum trajectory error ¢, and the maximum overshoot ,,, as shown in
Figure 3.9. Let p be the distance from s to p, and define:

b,

t, =
*7 tan 0,

(3.17)
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Figure 3.10: The initial position of the robot is s, with the indicated position sensing
uncertainty. The commanded position is p. The robot thinks that it is at position
s, and commands velocity v’. In actuality, the robot is at s, and velocity v results.
This is just as if the robot were aiming for the errant commanded position p.

Figure 3.11: Generalized spring free space trajectories with bounded velocity and
position sensing error.

6, + 1

to = 3.18

tan @, ( )
Then the spring trajectory parameters are given by:

€, = pe *sinb, (3.19)

€, = p(1 + e *sind,) (3.20)

These expressions are derived in Appendix B.

Let us now consider the effect of bounded position sensing error. The position
sensors of the robot are only accurate to within e, This means that the robot
may misjudge its current configuration by as much as ¢,. This is equivalent to
misjudging the commanded position p by €. (See Figure 3.10.) The resulting free
space trajectories are shown in Figure 3.11.

A generalized spring motion is in a sense more accurate than a generalized
damper motion because it does not fan out into a full cone. However, the accuracy
of a generalized spring motion depends on the distance p to the commanded position.
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Figure 3.12: Some extreme trajectories from an interpolated generalized spring
motion through free space. The initial configuration of the trajectories is s. p is the
interpolation distance.

This makes it difficult for a planner to utilize the increased accuracy. Fortunately, a
control system can remove this dependency by interpolating additional commanded
positions. A commanded motion from s to p can be broken up into segments of
fixed length p by a trajectory planner. The endpoints of the segments can then be
passed to the position controller in succession, so long as the robot remains in free
space (i.e. does not sense a reaction force).

What is the maximum trajectory error and overshoot for an interpolated free
space trajectory under sensing and control uncertainty? To answer this question,
recall that the final positioning accuracy of the robot is ¢,. This means that interpo-
lated positions can only be achieved to within ¢,. Since position sensing uncertainty
contributes to positioning error, it is assumed that ¢, < ¢,. Let us for a moment
make the conservative assumption that ¢, = ¢,. Then we can sketch out some ex-
treme trajectories, as shown in Figure 3.12. It can be seen from the figure that the
maximum trajectory error ¢, is bounded by

€ = €, + pe” " siné,, (3.21)

and the maximum overshoot ¢, is given by

€ =€+ (p+26,)(1 + e **siné,). (3.22)

If the trajectory planner is implemented as an analog circuit, then a continuous
stream of control positions can be passed to the position controller, reducing e, to
€p.

For planning purposes, it suffices to bound free space trajectories by a cylinder
of radius ¢, as shown in Figure 3.13. ¢, is given by Equation 3.21. The knowledge
of this cylinder would allow a planner to synthesize collision-free motions if desired.
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Figure 3.13: All possible free space trajectories from an initial configuration s under
the generalized spring trajectory model are contained in a cylinder of radius e;.

sliding
cylinder

free space
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Figure 3.14: The initial configuration of the robot is s. The commanded position
is p. Under the generalized spring trajectory model, all sliding trajectories are
contained in the projection of the freespace trajectory cylinder onto the surface. p’
is the projection of the commanded position onto the surface.

3.3.2 Contact Space Trajectories

When the robot strikes a surface, the cylinder of possible free space trajectories
is projected onto the surface, forming a planer cylinder of radius €:, as shown in
Figure 3.14. When the robot breaks contact, the trajectory controller must replan
the trajectory, using the breakaway configuration as the initial point of the new
trajectory. This is necessary because the interpolation distance may exceed p when
free space is reentered. If the robot is not able to detect the transition, then the
trajectory error for the next interpolation point may exceed e;.

3.3.3 Sticking and Sliding

The trajectory controller never explicitly checks for sticking termination. If a tra-
jectory plan has been issued to completion, and the robot has stuck somewhere,
then that is where it ends up. Since plans are always issued to completion, the final
commanded position p is what ultimately determines where the robot might stick
along a trajectory. A planner can thus compute commanded positions for sticking
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“4— friction cone

Figure 3.15: The cone of commanded positions which ensure sticking on a face
despite bounded velocity error.

termination without worrying about the effects of interpolation.

Suppose that the robot is in a contact configuration x on a face, and that the
commanded position is p. In the absence of sensing and control error, the force
imparted by the robot is equal to b(p — x), from Equation 3.13. If we negate the
friction cone at x, then we have the set of robot forces that will cause sticking at
x. Thus, the negative friction cone contains the set of commanded positions that
will cause sticking at x, in the absence of sensing and control error.

With bounded velocity error, the force imparted by the robot may err by an
angle that may be as large as §,. To ensure sticking at X, we need to decrease the
angle of the negative friction cone by 6,. The resulting cone, shown in Figure 3.15,
contains commanded positions which are guaranteed to cause sticking, even under
maximal velocity error.

Under bounded position sensing error, the robot may misjudge its position by
as much as ¢;. This may cause the robot to aim for a commanded position which is
off by as much as ¢,. This will alter the force imparted by the robot. We can take
this into account by shrinking the cone of commanded positions by ;.

To ensure sliding away from x, we must pick a p which satisfies two constraints:

1. p must not be in the negative friction cone of x, expanded in angle by 8,, and
then grown volumetrically by ¢,. This ensures that p will not cause sticking,
even under maximal velocity and position sensing error.

2. p must be interior to the face by at least ¢,. This ensures that the robot will
not fly off of the face, even under maximal position sensing error.

We assumed above that the contact configuration of the robot was given. We
then discussed the effects of different commanded positions on sticking and sliding
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Figure 3.16: A cross section of a face, showing contact configurations at which
sticking might and will occur under the generalized spring trajectory model, with
bounded position sensing and velocity error. The commanded position is p. The
strong sticking configurations are the configurations that will stick. All of the
sticking configurations are weak sticking configurations.

behavior. Alternatively, it is sometimes useful to assume that a commanded position
is given, and to ask which contact configurations will stick and which will slide.
Figure 3.16 answers this question for the contact configurations on a face. The
figure shows two types of sticking configurations, strong sticking configurations, at
which sticking is guaranteed under the given commanded position, and weak sticking
configurations, at which sticking is possible under the given commanded position.

3.4 Implementation

Stability issues have prevented the robust implementation of computer-controlled
compliant motions to date. (See Whitney [1985] and An [1986].) As a result,
we will not be able to demonstrate conclusively that our trajectory models are
implementable. Instead, we will propose a design for the implementation of the
trajectory models, and exhibit an experimental implementation of the design.

Let us review the main ideas behind the generalized damper and spring trajec-
tory models. It is assumed that the robot can move in a commanded direction, to
within an angular tolerance. Since we are assuming a first order dynamic system,
the robot imparts a force in the direction of motion. The generalized damper tra-
jectory model commands a constant motion direction. The generalized spring tra-
jectory model modifies the commanded motion direction such that it always points
at the commanded position. In contact, Coulomb’s law should tell us whether the
commanded direction will result in sticking or sliding.

There are thus two main tasks for the control system:
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o Infree space, the control system must cause the robot to move in a commanded
direction, to within a specified angular tolerance.

¢ In contact, the control system must cause the robot to impart a force in a
commanded direction, to within the same specified angular tolerance.

Suppose that we have a velocity controller at our disposal, such as that of Whitney
[1969]. Were it not for the second task, we could merely command the velocity
controller to move in the commanded direction. However, since the real world is
second order, this velocity would not necessarily cause a force in the commanded
direction.

An alternative scheme is to command the velocity controller to follow the desired
actual trajectory, based on force feedback. A commanded damper velocity %, can
be implemented by sending the desired actual velocity

X =%, + % (3.23)

to the velocity controller, where f. is the sensed reaction force vector, and b is the
damping constant. A commanded spring position X, can be implemented by sending
the desired actual velocity

)'(—_—xc—x—i-—flf (3.24)

to the velocity controller, where x is the sensed position. Here, we have simply
substituted the quantity x. — x for v, in Equation 3.23.

Now, suppose instead that we have a position controller at our disposal. Given a
commanded spring position p, an interpolated trajectory is constructed, consisting
of a series of closely spaced via points. For each via point x., the controller sends
the desired actual position

x=x.+f/k (3.25)

to the position controller, where k is the stiffness constant. When a transition
from contact to free space is detected, the trajectory is replanned, to prevent a
large motion from being commanded. For experimental purposes, this design was
implemented in the robot-level robot language AML, on an IBM 7565 robot. The
results of the experiment are summarized in Section 6.3.4 and Appendix C.
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Chapter 4

Verification

This chapter describes an algorithm which verifies the correctness of a class of com-
pliant motion strategies. The algorithm relies heavily on a geometric computation
called visibility analysis, which is used in computer graphics to compute visible
scenes. The reader is advised to read Appendix A before proceeding with this
chapter. The appendix provides vocabulary and algorithms relating to visibility
analysis.

The basic idea of the verifier is simple. Given a compliant motion strategy, and
a start region in the contact space of the robot, we compute all possible contact
space termination points, in the presence of bounded sensing and control uncer-
tainty. We then verify that the termination points are contained in the goal region.
Computing the possible termination points of a commanded motion from a start
region is referred to as simulating the motion.

4.1 Input to the Verifier

The input to the verifier consists of:

¢ a polyhedral environment, representing obstacles in the configuration space
of a Cartesian robot which can translate in three dimensions. We will assume
that the environment is bounded, and that the faces of the polyhedra are
convex.

® a start region, given by a list of convex surface polygons in the environment.

® a goal region, also given by list of convex surface polygons in the environment.

¢ a compliant motion strategy.

Figure 4.1 shows a simple example of an environment, consisting of two blocks.
We will be using this environment to illustrate the concepts of this chapter. All of
the results that we will show with respect to this environment were computed by a
verification program.
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Figure 4.1: An environment consisting of two blocks. The velocity cone is shown.
It’s angle is .25 radians.

We introduced compliant motions in Section 1.2.2. Recall that we are interested
in compliant motions which start and stop in a contact configuration. A compliant
motion is specified by a commanded velocity or position, together with a set of posi-
tion and force termination conditions. A commanded velocity is specified when the
generalized damper trajectory model is desired. A commanded position is specified
when the generalized spring trajectory model is desired. Chapter 3 discussed the
properties of compliant motions under each of these trajectory models.

Compliant motion strategies were introduced in Section 1.2.3. A compliant
motion strategy consists of a set of compliant motions, arranged in some execution
order. A motion strategy may contain conditional tests, which offer the robot a
choice of motions based on sensory feedback after a motion has been completed.
Figure 4.2 shows an example of a compliant motion strategy.

4.2 Overview of the Verifier

Initially, assume that we know how to simulate a single motion. To simulate a
compliant motion strategy without conditionals, we merely chain one-step simula-
tions together. The termination points of one motion are used as the start region
of the next motion. The termination points of the entire sequence are equal to the
termination points of the final motion in the sequence. To verify the reliability of
the sequence, we verify that all of the final termination points are contained in the
goal region.

Verifying a motion strategy with conditional tests, such as that of Figure 4.2, is

56



Figure 4.2: A directed graph representing a compliant motion strategy. A node in
the graph represents a set of contact positions of the robot. An arc represents a
commanded motion. The robot starts in set S. After issuing motion m;,, it tests
whether its position and force sensors are consistent with the sets I; or I,. If the
sensors are consistent with I, then the robot issues motion m; next, else it issues
mgs. If the strategy is reliable, then the robot eventually stops in the goal set G,
despite bounded sensing and control errors.

slightly more complicated. Beginning with the first motion, we must verify geomet-
rically that the termination points of each motion are contained in the nodes that
follow the motion. For example, in Figure 4.2, the termination points of m; must
be contained in I; U I;. If not, then the motion strategy can fail. If they are, then
all of the nodes that follow in the graph are recursively simulated, using the actual
termination points as start regions. For example, in Figure 4.2, let R, denote the
termination region of m;. If Ry C I, |JI,, then motion m, is simulated from the
start region R; () I, and motion mj3 is simulated from the start region R; N I;. The
recursive simulation ends when a leaf node (a node with no motion arcs) is reached.
If no simulated motion fails a containment test, and the final termination points
are contained in the goal region, then the motion strategy is reliable.

We have thus reduced the problem of verifying a compliant motion strategy to
the problems of simulating a single commanded motion, and testing for containment.
Initially, we will assume that motion termination is by sticking only. We will then
extend the method to sensing termination in Section 4.5.

Suppose that we are to compute the termination points of a commanded motion
m from a start region S under sticking termination. We will describe a framework
for performing this simulation. Then, we will discuss why the framework is correct,
and describe the implementation of the framework. Here is the framework:

Algorithm 4.1 Simulation Framework

1. Compute the set F,,(S) of contact points that the robot can reach via straight-
line trajectories from S under m.
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2. Add to F,,(S) the contact points that the robot can reach by sliding from F,(S)
under m. (Note that if the robot is guaranteed to stick at a point in F,(9),
then it cannot slide away from there.)

3. Recurswely call the framework with newly reachable edges as start regions.
Add to F,(S) any new reachable contact points that are returned.

4. If this is the top-level call, return Tn(S), the subset of F,,(S) at which the
robot might stick.

5. Otherwise, return F,(S).

This framework involves two basic tasks, (1) computing the set F,,(S) of contact
points that are reachable from S under m, and (2) reducing F,,(.S) to the set T,,(S)
of points at which the robot might terminate by sticking. F,,(S) is called the
forward projection of S under m. A forward projection defines a set of points which
are candidates for termination. The application of a termination condition to a
forward projection determines the set T,,(S) of actual termination points. Tp,(S)
is called the simulation of m from S, with respect to a particular termination
condition. In this case, the termination condition to be applied is sticking.

The framework is described in terms of points. In implementation, one must
actually deal with sets of points. Our implementation represents forward projections
and simulations as lists of polygons.

4.3 Generalized Damper Simulation

Section 4.3.1 establishes the correctness of the framework under the generalized
damper trajectory model. The rest of the section describes the implementation
of the framework. Section 4.3.2 discusses the computation of straight-line reach-
able contact points when the start region is a point. Section 4.3.3 discusses the
computation of straight-line reachable contact points when the start region is an
edge. Section 4.3.4 discusses the computation of straight-line reachable contact
points when the start region is a polygon. Section 4.3.5 discusses the computation
of contact points that are reachable by sliding.

4.3.1 Correctness of the Simulation Framework

We can solidify our confidence in the framework by proving that it works under
the generalized damper trajectory model. We will prove that in steps 1-3, the
framework computes the forward projection correctly. Since sticking termination
points are a subset of the forward projection, it should be clear that step 4 computes
the simulation correctly as long as steps 1-3 work. We will assume for now that the
individual steps of the framework can be implemented correctly.

Recall from Section 3.2 that the free space velocities of a robot under the gener-
alized damper trajectory model are contained in a cone, called the velocity cone, of
cone angle 8, < 7 (Figure 3.1). It is assumed that a trajectory may instantaneously
switch between velocities.
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start region

obstacle face

shadow

cone boundary

Figure 4.3: The volume R that can be traversed by straight-line trajectories from a
point. R is bounded by the start point, obstacle faces, free space boundaries of the
velocity cone, and free space shadows caused by straight-line reachable edges.

There are two types of reachable contact points. The first type is a contact
point that is reachable by a straight-line trajectory from the start region (even
though an actual trajectory may switch between velocities along the way). Figure
4.3 shows the volume R that can be reached by straight-line trajectories from a
start point. In general, R is bounded by (1) start points, (2) obstacle faces, (3)
free space boundaries of the velocity cone, and (4) free space shadows caused by
straight-line reachable edges. A shadow is a surface in free space that is formed by
extending rays from a start point past a straight-line reachable edge.

The second type of reachable contact point is not reachable by a straight-line
trajectory, for one of two reasons:

1. A contact point may be reachable by a free space trajectory which bends

around an obstacle and out of the straight-line reachable volume. (See Figure
4.4.)

2. A contact point may be reachable by a trajectory which strikes a surface, and
slides out of the straight-line reachable volume. (See Figure 4.5.)

We will argue that all reachable points are equivalently reachable by a straight-
line trajectory from either (a) the start region, or (b) a reachable obstacle edge. A
reachable point under case (b) is computed by the recursive call in the framework.
We will demonstrate the correctness of the framework by induction on the number
of obstacle faces. We will begin with the base case, in which there is just one
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face —

start region

actual sliding trajectory

actual free space trajectory

Figure 4.6: The case where there is only one obstacle face. All reachable points are
equivalently reachable by a combination of a straight-line free space trajectory and
a sliding trajectory.

obstacle face. Since velocity cones are convex, all reachable contact points are
equivalently reachable by a combination of a straight-line free space trajectory and
a sliding trajectory. This is true despite the fact that an actual trajectory may
consist of a number of different velocities, as shown in Figure 4.6. Steps 1 and 2 of
the framework thus compute all reachable contact points for the base case.

As the induction hypothesis, we now assume that the framework is correct when
there are n obstacle faces, for n > 1. Suppose that there are n + 1 obstacle faces.
Consider the volume R that can be traversed by straight-line trajectories from the
start region (Figure 4.3). The reachable contact points within R are precisely its
bounding obstacle faces. These faces are computed by step 1 of the framework. We
now have to show that the framework computes all reachable contact points that
are outside of R as well. For the robot to travel to a surface outside of R, it has
to pass through the boundary of R. Thus, we need only consider trajectories that
start at the boundary of R. We consider each type of boundary point in turn:

¢ Start points. The only way that the robot can exit R from a start point is by
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sliding. Step 2 of the framework computes these reachable points.

o Free space boundaries of the velocity cone. The robot cannot exit R from this
boundary. To do so would require a velocity not contained in the velocity
cone.

e Free space shadows. A shadow is reachable from the edge that causes it. Thus,
all contact points that are reachable from a shadow are also reachable from
the edge that causes the shadow. After the robot leaves an edge, the face that
the edge is on is no longer reachable, since 8, < Z. Thus, there are at most
n reachable faces from the edge. By the lnductlon hypothesxs step 3 of the
framework correctly computes all contact points that are reachable from the
edge. In the process, all contact points that are reachable from the shadow
are computed. Note that this computation returns contact pomts that are
reachable by bending around an obstacle.

o Obstacle faces. There are two ways that the robot can exit R from an obstacle
face:

1. By sliding along the face to a point on the face but not in R. Step 2 of
the framework computes these reachable points.

2. By exiting R from a reachable edge of the face. After the robot leaves the
edge, there are at most n faces left to reach. By the induction hypothesis,
step 3 of the framework correctly computes all contact points that are
reachable from the edge.

We have shown that the framework computes all contact points that are reach-
able within R and from the boundary of R. Thus, it computes all reachable contact
points. §

4.3.2 Reachable Points From a Point

The first step of the simulation framework is to compute the contact points that
are reachable by straight-line trajectories from the start region. There are several
possible types of start regions. Consider first the case where the start region is a
point. The commanded velocity is v, with velocity uncertainty 6,.

A natural tool for this computation is convex visibility analysis (Section A2).
Convex visibility analysis computes all contact points that can be seen by a viewer
looking along a viewing axis with a given viewing angle. Think of the start point
of the robot as the viewer, v as the viewing axis, 6, as the viewing angle, and the
velocity cone as the viewing volume.

Figure 4.7 shows an example of straight-line reachability from a point, using the
double block environment of Figure 4.1.
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Figure 4.7: An example of straight-line reachability from a point. The start point
is located at the vertex of the indicated velocity cone. The shaded regions shown
here contain the contact points that are reachable by straight-line trajectories from
the start point.

4.3.3 Reachable Points From an Edge

Figure 4.8 shows the reachable volume when the start region is an edge &. The
volume is the union of a wedge and two cones. The cones contain points that
are reachable from the endpoints of €& The wedge adds additional points that are
reachable from the interior of .

A naive algorithm to compute straight-line reachability within this volume would
be to discretize €, and compute the union of the reachable points from each discrete
edge point, using convex visibility analysis. A much better algorithm returns the
union of only three visibility computations, two from the endpoints of €, and one
from the interior. The endpoint computations are performed by convex visibility
analysis. The interior computation is performed by y-conver visibility analysis,
which is similar to convex visibility analysis, but with two differences. First, the
reachable volume is the wedge shown in Figure 4.8, rather than a cone. Second, a
different transformation is applied to the vertices of the environment, rather than
the convex perspective transformation. This transformation will be described below.

The algorithm for computing straight-line reachability from an edge is as follows:

Algorithm 4.2 Straight-line Reachability From an Edge (Generalized Damper)

1. Compute the set F of contact points that are straight-line reachable from the
endpoints of €, using conver visibility analysis.
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Figure 4.8: The commanded velocity is v. The start region is the edge & The
reachable volume is equal to the union of a wedge and two cones.

2. Add to F the contact points that are returned by y-convez visibility analysis
from €.

. Recursively call the algorithm, using newly reachable edges as start edges. Add
to F' any new reachable contact points that are returned.

4. Return F.

We said above that the algorithm would require only three visibility computa-
tions. Algorithm 4.2 would seem to require more than three, since it calls itself
recursively. However, the algorithm is called by the simulation framework (Algo-
rithm 4.1), which also calls itself recursively using newly reachable edges as start
edges. Step 3 can actually be left out of Algorithm 4.2, under the assumption that
the calling algorithm will perform this chore.

Y-convex Visibility Analysis

Consider Figure 4.9, which shows the coordinate system formed by € and v. The
origin of the coordinate system is placed at the rearmost endpoint of € along v. g
is the other endpoint of €. The viewing axis (the negative z-axis) is directed along
v. The x-axis is placed perpendicular to the negative z-axis. (Its orientation about
the z-axis will be discussed below.) Adding an appropriate y-axis completes the
right-handed viewer coordinate system for the computation.

The purpose of y-convex visibility analysis is to return all contact points that
are straight-line reachable from € by trajectories which have uncertainty in the y
direction but not in the x direction. Shortly, we will argue that Algorithm 4.2 works
correctly, despite the fact that it seems to ignore x uncertainty. It turns out that
the algorithm simulates x uncertainty implicitly by issuing the recursive calls.

In order to perform y-convex visibility analysis, we need a start edge which is
perpendicular to v. This is because the image is obtained from the whole edge, not
Just a point, and the image plane must be perpendicular to the viewing axis. We
will now show how to modify € so that it is perpendicular to v.
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Figure 4.9: The coordinate system formed by the start edge € and the commanded
velocity v. The origin is placed at the rearmost endpoint of € along v. q is the
other endpoint of & The negative z-axis is directed along v. The x-axis is placed
perpendicular to the negative z-axis. (Its orientation about the z-axis is not shown
in the figure.) ¢’ is the projection of & onto the x-axis.

Instead of €, the start edge will be the projection ¢ of € onto the x-axis. This
works only if the obstacle of which € is a part does not occlude the view from ¢ any
more than it does from €. This condition can be guaranteed by a careful choice of
the orientation of the x-axis about the z-axis. The orientation is chosen by picking
the point q' in Figure 4.9 such that the point q gets placed on the boundary of the
velocity cone emanating from q’. The cone from q' thus contains the cone from q.
There are two possible choices for q'; it is picked such that the obstacle containing
€ is exterior to the cone from q' if possible.

Although using € rather than & does not affect the correctness of the computa-
tion, it does affect the completeness. Some additional contact points which are not
actually reachable from € may be returned. This has a conservative effect on the
verification. The efficiency of the computation makes this conservatism worthwhile.

We are now ready to give the details of the transformation used in y-convex
visibility analysis. Recall that we want to simulate uncertainty along the y-axis but
not along the x-axis. Y-convex visibility analysis does this by applying the convex
perspective transformation to the y-coordinates of the vertices, while leaving the
x-coordinates alone (i.e. orthographically transforming them). This transformation
is called the y-convez perspective transformation, and produces faces in the image
plane whose boundary edges are parabolic. The reason for this is that the original y-
coordinate of a vertex is replaced by the term fy/(—z) (Equation A.2). This term is
quadratic because it has two independent variables, y and z. The x-coordinate is not
modified to preserve linearity, as it was in the convex perspective transformation.
To simplify the clipping operations that are used in visibility analysis, the projected
faces can be approximated by polygons.

Figure 4.10 shows an example of straight-line reachability from an edge, using
the double block environment of Figure 4.1.
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Figure 4.10: An example of straight-line reachability from an edge. The start edge
is located at the vertex of the velocity cone, as shown. The velocity uncertainty
angle 8, is equal to .25 radians. The shaded region shown here contains the contact
points that are reachable by straight-line trajectories from the start edge.

67



Figure 4.11: We slide a tight string along the edge from q towards q' until contact
1s made with the environment.

Correctness of the Edge Algorithm

The purpose of Algorithm 4.2 is to compute all contact points that are reachable
by straight-line trajectories from an edge €. If € is not perpendicular to v, then
we can modify it appropriately, as described above. We will thus assume that € is
perpendicular to v.

The algorithm consists of (1) applying convex visibility analysis from the end-
points of €, (2) applying y-convex visibility analysis from &, and (3) recursively
calling the algorithm from all newly reachable edges.

All contact points that are straight-line reachable from & are contained in the
union of a wedge and two cones, as shown in Figure 4.8. Let p be a point which is
straight-line reachable from a point q on €. If p is in one of the endpoint cones, then
convex visibility analysis from an endpoint will return p. If pq is perpendicular to
€, then pq corresponds to a trajectory which has no error in the x direction, and
y-convex visibility analysis from € will return p. The remaining case is when p is
in the wedge but not in an endpoint cone, and Pq is not perpendicular to &.

Let q' be the point on & where pq’ is perpendicular to &, as shown in Figure
4.11. q' exists, since p is in the wedge. Suppose that we connect p and q by a tight
string. Then, we slide the string along & toward q, keeping it tight, until the string
contacts an obstacle between € and p. The string cannot make it all the way to q,
for if it did then p would have been returned by y-convex visibility analysis. Thus,
a contact with the environment is guaranteed.

Let r; be the point in the environment where the string makes contact. (See
Figure 4.11.) Since r; is straight-line reachable from &, we have created a sub-
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Figure 4.12: We continue to find closer contact points to €, until the string becomes
perpendicular to €.

problem of the same form as the original problem, with r; substituted for p. The
distance from € to ry along the string is smaller than the distance from & to p. We
can find successively closer contact points ry, rj, ..., rx to € in this fashion, until
eventually the string from € to r, will become perpendicular to Z, as illustrated in
Figure 4.12. This is guaranteed to happen, since the distance from € to the contact
point is successively decreasing, and we will eventually run out of obstacles between
€ and the contact point.

We now have a connected chain of strings between € and p, for which the first
link is perpendicular to € Because of this perpendicularity, y-convex visibility
analysis from € can return an edge segment €’ containing r. (See Figure 4.12.) The
second link in the chain, from €’ to ry_;, is a subproblem of the same form as the
original problem involving € and p. Just as we did with the original problem, we
can replace this link by a subchain, in which the first sublink is either perpendicular
to ', or attached to ¢ at an endpoint. In either case, y-convex visibility analysis
can return the first contact point in the subchain. We now have a chain between
€ and p in which the first two contact points are computable by y-convex visibility
analysis. This process can be continued until all of the contact points in the chain
from € to p are computable by y-convex visibility analysis. Since Algorithm 4.2
calls itself recursively using newly reachable edges as start edges, it will work its
way down the chain from € until eventually p is returned.

Since the algorithm returns p, we can conclude that it returns all straight-line
reachable points. &
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start polygon

Figure 4.13: The commanded velocity is v. The start region is a polygon. The
reachable volume from the edges of the start polygon is shown.

4.3.4 Reachable Points From a Polygon

Now consider the case where the start region is a polygon. We begin by comput-
ing straight-line reachable points from the bounding edges of the polygon, using
Algorithm 4.2, as shown in Figure 4.13. This leaves a volume bounded by the
start polygon, some wedges, and some cones, for which reachability has not been
computed. Straight-line reachable points in this bounded volume can be computed
by orthographic visibility analysis (Section A.1l) in the reachable volume shown in
Figure 4.14. The union of all of these reachable points is returned. The proof that
this algorithm works is very similar to the proof for an edge start region.

4.3.5 Sliding and Sticking

This subsection discusses the simulation of sliding, and the computation of contact
points at which the robot might stick. Sliding and sticking under the generalized
damper trajectory model depends on the direction of the robot’s velocity in relation
to the orientation of the surface, and the surface’s friction cone. If the velocity is
directed into the negative friction cone of the surface, then the robot will stick. If
the velocity is directed outside of the negative friction cone, then the robot will slide
along the projection of the velocity onto the surface. With velocity uncertainty, it
is sometimes impossible to predict whether the actual velocity corresponding to
a commanded velocity will be into the negative friction cone or not. Figure 3.5
shows commanded velocities which ensure sticking and sliding. Other commanded
velocities may do either.

Each point of a particular face, edge, or vertex has the same friction cone. This
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start polygon

Figure 4.14: The commanded velocity is v. The start region is a polygon. The
reachable volume from the start polygon under orthographic visibility analysis is
shown.

means that if sliding is possible at a point of a particular face, edge, or vertex, then
it is possible anywhere on it. For a given commanded velocity, we can compute
whether sliding is possible on a face, edge, or vertex by subtracting its negative
friction cone from the velocity cone. If the difference is nonempty, then sliding is
possible. Similarly, we can compute whether sticking is possible on a face, edge,
or vertex by intersecting its negative friction cone with the velocity cone. If the
intersection is nonempty, then sticking is possible.

If sliding is possible, then the sliding trajectory on a face, edge or vertex is given
by projecting the sliding velocities onto the surface. Since edges and vertices are
boundaries of faces, it suffices to compute sliding trajectories on faces only. Note
that we have to compute sticking on edges and vertices individually. Edges and
vertices usually have larger friction cones that their cobounding faces, and thus can
sometimes cause sticking when their cobounding faces don'’t.

We will now show how to compute a sliding trajectory on a face F. First, we
need some new terminology:

® ¢ is the friction cone angle of F.

® u =tan¢ is the coefficient of friction of F.

f is the plane containing F.
¢ pis a point on F.

® n is the outward unit normal vector to F.

cone(v,0) is a cone whose vertex is at the origin, whose central axis is given
by v, and whose cone angle is 6.

ext(n) is the halfspace of 2 which is exterior to the plane through the origin
which has an outward unit normal vector n.
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Figure 4.15: If the robot were located at point p on face F, then its velocity cone
and the negative friction cone of the face might look like this.

Consider Figure 4.15. The set of sliding velocities I" is equal to

I = cone(v,6,) — cone(—n, $) — ezt(n). (4.1)

If I' is empty, then there is no possibility of sliding on F. To compute whether I is
empty, we can project the geometry of Figure 4.15 onto the plane which contains v
and —n, as shown in Figure 4.16. This projection is performed such that v projects
to the right of —n. f. and v, are extensions of —n and v, respectively. f; and f, are
the left and right extreme vectors of the projected friction cone, respectively. v, and
v, are the left and right extreme vectors of the projected velocity cone, respectively.
We can intersect the six vectors fi, f;, f,, v, v., and v, with a horizontal line [ one
unit below the plane f, as shown in Figure 4.16. The length of all of these vectors
is determined by the point at which they intersect I. Let fi, f., f,, v, v., and v, be
the horizontal components of the intersection points along [, respectively. Then I
is empty if and only if either of the following conditions hold:

¢ The friction cone angle is equal to Z.

¢ The velocity cone is completely contained in the friction cone (v; > f; and
v < fr).

There is a possibility of sticking on § if and only if the quantity

cone(v,0,)( ) cone(—n, §) (4.2)

is nonempty. This quantity is nonempty if and only if v; < f,.

Once we have determined that the robot may slide on F, we can compute the
sliding trajectories from S. The sliding cone is the planar cone of sliding velocities
which result from projecting T' onto the plane f. (See Figure 4.17.) The sliding
trajectories from S are equal to the union of the sliding cones that originate at all
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Figure 4.16: The sliding geometry, projected onto the plane containing v and —n.
f. and v, are extensions of ~n and v, respectively. f; and f, are the left and right
extreme vectors of the projected friction cone, respectively. v; and v, are the left and
right extreme vectors of the projected velocity cone, respectively. I is a horizontal
line one unit below f.

of the points in §, intersected with F, as shown in Figure 4.18. The sliding region
can be computed by the following algorithm:

Algorithm 4.3 Sliding Simulation (Generalized Damper)

1.

If the friction cone is contained inside the velocity cone (v < fi and v, > f,),
then the robot can slide in any direction, and all of F should be returned.

Compute the sliding cone angle and the bounding vectors b; and b, of the
sliding cone. (See below.) If the sliding cone angle is greater than %, then the
robot can slide in any direction, aend all of F should be returned. (See Figure

4.19.)

Connect the left bounding vector b; of the sliding cone to the left support vertez
of the polygon S with respect to the line containing b;. The left support vertez
of a polygon P with respect to a line I is the first vertez of P to contact | when
l is moved toward P from the left.

. Connect the right bounding vector b, of the sliding cone to the right support

vertez of the polygon S with respect to the line containing b,.
Eztend by and b, until they intersect the boundary of the face F.

Return the polygonal sliding region R bounded by by, some boundary edges of
F, b,, and some boundary edges of S. (See Figure {.18.)

Computing the Sliding Cone

The sliding cone can be parameterized by its cone axis and angle. It is an easy
matter to compute the extreme cone vectors b; and b,, given the cone axis and

angle.
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Figure 4.19: An example in which the sliding cone angle is greater than I. A
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‘The sliding cone axis is equal to the projection of v onto f,

v—(ven)n. (4.3)

Computing the sliding cone angle depends on whether the velocity cone inter-
sects the friction cone. If the cones do not intersect nontrivially (v; > f£,), then
the sliding cone angle is determined by projecting the velocity cone onto f. The
magnitude of the projection of v. onto the surface is v, — f.. (See Figure 4.16.) The
radius of the cone at v, is ||v.||tan 6,. Thus, the sliding cone angle is equal to

arctan(||v.||tan 8,,v. — f.). (4.49)

If the friction cone and the velocity cone intersect, then things get much more
difficult. Figure 4.20 shows a cross section of the two intersecting cones, in the plane
parallel to f and 1 unit below it. This figure applies only to the case where the
velocity cone is completely below the plane f. The origin of the coordinate system
is placed at the point where the friction cone axis intersects the cross sectional
plane. The cross section of the friction cone is a circle of radius K, centered at
the origin. The cross section of the velocity cone is an ellipse. The leftmost point
on the ellipse is e, = (v; — £.,0). The rightmost point is e, = (v, — fe,0). The
major axis has a length of |le, — e|| = v, — v;. The topmost point on the ellipse
is = (ve — f.,||ve[ tan§,). The foci are at f; = (f;,0) and f, = (f2,0), where f;
and f; are unknowns. These unknowns can be computed by solving the following
" ellipse equations together:

lle: = full + [les = £ = 2(v, — w) (4.5)

le: = & + llec — fal) = 2(v, — v,) (4.6)

The lengthy solutions for f; and £, are omitted here. Given the foci of the ellipse,
we can compute the points where the circle and ellipse intersect. The intersection
points are given by i) = (i,%,) and i; = (i;, —4,), where i, and 1, are unknowns.
The unknowns can be computed by solving the following ellipse and circle equations
simultaneously:

||i1 - f1|| +

il - fz” = 2(1.),- - ‘U[) (47)

Again, the lengthy solutions for i, and i, are omitted here.
If the velocity cone is partly above the plane f, then its cross section is a

parabola. The vertex of the parabola is at e,. e, is also on the parabola. The

distance a to the focus of the parabola can be computed by solving the following
parabola equation:

(llvel tan 8,)? = 4a(v. — v;) (4.9)
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Figure 4.20: This is a cross section of the friction cone, showing its intersection with
the velocity cone, for the case where the velocity cone is completely below the plane
f. The origin of the coordinate system is placed at the point where the friction
cone axis intersects the cross sectional plane. The cross section of the friction cone
is a circle of radius p centered at the origin. The cross section of the velocity cone
is an ellipse, as shown.

1o

The intersection point can now be computed by solving the following parabola
and circle equations simultaneously:

2 = da(i, — (v — £.)) (4.10)

12+ 10 =y (4.11)

Once the intersection points have been computed, the sliding cone angle can be
computed as

arctan(iy, ;). (4.12)

Although 6, < 7, the sliding cone angle may still be greater than - This occurs
when i, is negative. For this to occur, 8, must be larger than ¢. A sliding cone
angle greater than % implies that the robot can slide backwards, which means that

it can slide anywhere on the face F. (See Figure 4.19.)

A Sliding Example

Consider Figure 4.7, which shows the points which are reachable by straight-line
trajectories from a start point in the double block environment of Figure 4.1. The
velocity uncertainty angle 6, is equal to .25 radians. The coefficient of friction of
both blocks is equal to .25. Figure 4.21 shows the contact points that can be reached
by sliding from the reachable regions of Figure 4.7.
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Figure 4.21: An example of a sliding simulation. The start regions are the shaded
regions shown in Figure 4.7. The velocity uncertainty angle 8, is equal to .25 radians.
The coefficient of friction of both blocks is equal to .25. The shaded regions shown
here contain the contact points that are reachable by sliding.

4.3.6 A Simulation Example

Figure 4.22 shows the termination points of the double block environment of Figure

4.1. Intermediate calculations in the simulation were shown in Figures 4.7, 4.10,
and 4.21.

4.4 Generalized Spring Simulation

The generalized damper simulation was implemented as a service routine of the
teaching system (Chapter 5). For teaching generalized spring motions, a corre-
sponding simulation was not necessary. As a result, a corresponding simulation was
never completely implemented for the generalized spring trajectory model. Never-
theless, the simulation framework (Algorithm 4.1) can be adapted quite easily to
the generalized spring trajectory model. For reference, we propose an algorithm in
this section. Section 4.4.1 discusses the computation of straight-line reachable con-
tact points when the start region is a point. Section 4.4.2 discusses the computation
of straight-line reachable contact points when the start region is an edge. Section
4.4.3 discusses the computation of straight-line reachable contact points when the
start region is a polygon. Section 4.4.4 discusses the computation of contact points
that are reachable by sliding.
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Figure 4.22: The shaded regions contain the termination points of this simulation
problem.

4.4.1 Reachable Points From a Point

Suppose that the robot is in configuration s, and is assigned a commanded position
p. Figure 3.13 shows the cylinder of free space trajectories that can result. The
cylinder contains all points that are within the trajectory error ¢, of the commanded
trajectory (Equation 3.13). Straight-line reachable points within this cylinder can
be computed by convex visibility analysis. The only difference between this compu-
tation and the generalized damper analog (Section 4.3.2) is the reachable volume.
The methods are otherwise identical, because both trajectory models are based on
first-order dynamic systems.

4.4.2 Reachable Points From an Edge

Now suppose that the robot is located on an edge €, and is assigned a commanded
position p. Figure 4.23 shows the volume of free space trajectories that can result.
This volume contains all possible commanded trajectories, and all points that are
within the trajectory error ¢; of the commanded trajectories.

Straight-line reachable points from & can be computed by the same method used
in the generalized damper algorithm for an edge start region (Section 4.3.3). The
method returns the union of three visibility computations, two from the endpoints
of € and one from the interior. The endpoint computations are performed by
convex visibility analysis. The reachable volume for each computation is a cylinder
of radius ¢;, which extends from the endpoint to the commanded position, similar to
Figure 3.13. The interior computation is performed by y-convex visibility analysis,
using the reachable volume of Figure 4.23.
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Figure 4.23: All possible free space trajectories from a start edge & under generalized
spring dynamics are contained in the volume shown here.

4.4.3 Reachable Points From a Polygon

Now suppose that the robot is located in a polygon S, and is assigned a commanded
position p. Figure 4.24 shows the volume of free space trajectories that can result.
This volume contains all possible commanded trajectories, and all points that are
within the trajectory error €; of the commanded trajectories.

Straight-line reachable points from S can be computed by the same method used
in the generalized damper algorithm for a polygonal start region (Section 4.3.4). We
begin by computing straight-line reachable points from the bounding edges of S,
using the methods described above. Straight-line reachable points from the interior
of S can then be computed by orthographic visibility analysis, using the reachable
volume of Figure 4.24. The union of all of these reachable points is returned.

4.4.4 Sliding and Sticking

When a robot modeled as a generalized spring strikes a face F at a point s, it slides
along the surface of F' within the projection of the free space cylinder onto the
surface, towards the projection of the commanded position onto the face (Figure
3.14). It stops when its spring force is equaled by a reaction force of F. The subset
of F' in which sticking is possible with respect to p under position sensing and
velocity uncertainty is shown in Figure 3.16. This region is called the weak sticking
region of F' with respect to p. Also shown in the figure is the subset of F in which
sticking is guaranteed. This region is called the strong sticking region of F with
respect to p. No sliding is possible in this region.

Here is a proposed algorithm to simulate sliding on a face F from a start polygon
S under a commanded position p:

Algorithm 4.4 Slding Simulation (Generalized Spring)

1. Subtract the strong sticking region of F from S.
2. Compute the cylinder R C F which contains the sliding trajectories from S.
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Figure 4.24: All possible free space trajectories from a start polygon S under gen-
eralized spring dynamics are contained in the volume shown here.

3. Subtract the strong sticking region of F from R.
4. Return R.

4.5 Sensing Termination

This section describes the simulation of a motion m under sensing termination.
Sensing termination is specified by the parameters P, and F,. The robot is to stop

if the sensed position is in the set P,, and the direction of the sensed force is in the
set F.

Definition 4.1 A contact point x is weakly consistent with a set of position
measurements P, and a set of force measurements F, if x is within ¢, of some point
in P,, and some vector in the friction cone of x is within €7 of a vector in F,.

Definition 4.2 A contact point x is strongly consistent with a set of position
measurements P, and a set of force measurements F, if Ball(x,¢,) is contained in
P,, and the friction cone of x, ezpanded in angle by 04, is contained in F,.

Let T, be the set of contact points which are weakly consistent with P, and F,.
The points in T\, may stop the robot if reached. Let T, be the set of contact points
which are strongly consistent with P, and F,. The points in 7, are guaranteed to
stop the robot if reached.

To simulate m, we make the following modifications to the simulation framework
(Algorithm 4.1):
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Chapter 5

Teaching

This chapter describes a new method for teaching a compliant motion strategy to
a robot. The input to the teaching system consists of:

¢ a polyhedral environment, representing obstacles in the configuration space
of a Cartesian robot which can translate in three dimensions. We will assume
that the environment is bounded, and that the faces of the polyhedra are
convex.

* a start region, given by a list of convex surface polygons in the environment.

® a goal region, also given by list of convex surface polygons in the environment.

This is the same as the input to the verifier (Chapter 4), except that the verifier
was given a compliant motion, and asked to check its correctness. The teaching
system is to synthesize a compliant motion strategy. Figure 1.6 shows an example
of a compliant motion strategy.

Section 5.1 presents an overview of the teaching system. Section 5.2 presents
an example of the implemented teaching system in operation. Sections 5.3 and 5.4
describe the algorithms used by the teaching system.

5.1 Overview of the Teaching System

Figure 5.1 shows an operational view of the teaching system. The teacher submits
a problem to the system, consisting of an environment, a start region, and a goal
region. The programming system displays the start and goal regions graphically,
and prompts the teacher. The teacher then submits a commanded motion m, which
can be either a commanded position or velocity. In principle, the commanded
motion could be entered by guiding the robot, or with a light pen. For our initial
implementation, the commanded motion was simply typed in. The commanded
motion should be one which the teacher hopes will reach the goal region reliably
from the start region. If this is impossible, then the teacher should submit what
is hoped will be the last motion in a reliable sequence of motions. Minimally, the
motion should be one which reliably reaches the goal region from somewhere.
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Figure 5.1: An operational view of the robot teaching system. The teacher submits
a problem to the system, consisting of an environment, a start region, and a goal
region. Then, the teacher is asked to supply suggested motions, which can be either
commanded positions or velocities.

The system then computes a set R of contact configurations from which the goal
region can be reached reliably via m. R is stored in a table, along with m and the
subset of the goal region that can be reached from R. R is now said to be solved,
and is added to the goal region. If a subset S’ of the start region is recognizably
contained in R despite sensing uncertainty, then S’ is solved, and can be removed
from the start region. If the new start region is empty, then the problem is solved.
Otherwise, the system displays the new start and goal regions, and user interaction
continues.

By iteratively reducing the size of the start region, and increasing the size of
the goal region, it is hoped that the user and system can together converge on a
successful strategy. However, this is not guaranteed. For instance, if no successful
strategy exists under the given uncertainty bounds, then the iterative process will
fail.

If the teacher successfully solves the entire start region, then the table of solved
regions is used to generate a directed, acyclic graph, representing the resulting
compliant motion strategy. Each solved region R in the table is accompanied by (a)
a commanded motion m which is to be issued upon reaching R, and (b) the solved
regions that m might reach from R. From each solved region R, we generate a node
in the strategy graph. An arc is attached to the node, labeled by the motion m.
The heads of the arc point at the nodes corresponding to the solved regions that
m might reach from R. Following each motion on execution, the robot uses sensors
to determine which solved region it is in. If the solved region is a goal region, then
the robot stops. Otherwise, it executes the next commanded motion.

This teaching system has the following advantages:

1. If a proposed motion fails, it is not scrapped. The system attempts to use the
motion as a building block for a reliable procedure.

2. Conditional tests, which determine the solved region that each motion termi-
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nates in, are inferred automatically by the programming system. Conditional
tests make a motion strategy reliable under sensing and control uncertainty,
but they are difficult for a teacher to specify.

3. Motion termination conditions are inferred automatically by the programming
system. Termination conditions are also difficult for a teacher to specify.

4. The teacher need not test the resulting motion strategy; the system ensures
its reliability.

To implement the teaching system, we must answer the following questions:

¢ How can we determine whether a start point s is recognizably contained in a
solved region R despite sensing uncertainty?

For s to be recognizably contained in R, it must not be confusable with any contact
point outside of R by position and force sensing, under the given sensing uncertain-
ties. Intuitively, two points x and y are confusable of they are capable of generating

the same position and force measurements. Section 5.3 will develop this concept in
more detail.

¢ How can we compute the solved region R for a given goal region G and com-
manded motion m?

Here is an overview of the computation. Further details are given in Section 5.4.

R is called a pre-image of G under m [Lozano-Pérez, Mason, and Taylor 1984].
To compute R, we will extend the algorithm of Erdmann [1984,1986], under both
the generalized damper and spring trajectory models. In Erdmann’s algorithm, a
pre-image of G under m is computed by geometric backprojection from a subset X
of G. X is called a backprojection base. One way to pick X is to choose the set of
recognizably contained points in G. This ensures that when the robot reaches X,
it can recognize that it has attained G.

Geometric backprojection from X under m computes contact points from which
the robot is guaranteed to reach X under m despite sensing and control uncertainty.
This type of backprojection region is called a strong backprojection region. Another
type of backprojection region, a weak backprojection region, contains contact points
from which the robot might reach X under sensing and control uncertainty.

Trajectories originating in the strong backprojection region of X must avoid
contact points outside of X where the robot might terminate. For example, the
robot must avoid a weak sticking point under m that is outside of X. With this
in mind, the strong backprojection region of X under m can be computed as the
complement of the weak backprojection region of B under m, where B is the set of
points outside of X where the robot might terminate.

We have thus reduced the problem to that of computing the weak backprojection
region of a set B under motion m. An algorithm is presented to do this in Section
5.4.
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5.2 An Example

Figure 5.2 shows an environment consisting of a square hole in an obstacle surface.
Figure 5.3 shows another view of the hole. This configuration space environment
corresponds to a large number of mechanical insertions using three-dimensional
translational motion. The simplest of them is the insertion of a rectangular peg
into a rectangular hole. The peg is assumed to be rotationally aligned with the hole
at the start. The width of the hole is 2 inches. This corresponds to a peg clearance
of 1 inch. The coefficient of friction of the hole surfaces is .25.

The start region is an edge above the hole, as shown in Figures 5.2 and 5.3. This
start region corresponds to a contact configuration in which the peg is in contact
with a surface above the real hole. This start region implies that the peg is already
laterally aligned with the hole.

The goal region is the bottom of the configuration space hole. This region
corresponds to the peg when it is fully inserted into a real hole.

We will use generalized spring motions in our solution strategy. We will assume
the following sensing and control error bounds:

® ¢, = .2 inches
¢ §; = .3 radians
® ¢, = .2 inches

e 0, = .25 radians

Under these error bounds, the maximum free space trajectory error ¢, given by
Equation 3.21 is equal to .218 inches. This is approximately one quarter of the peg
clearance.

The teaching system initiates the session by prompting the teacher for a com-
manded position. The teacher is to submit the last commanded position in the
strategy. Since the goal region is the bottom of the hole, it makes sense to com-
mand a position p; which is beneath the hole. p, should be at least .2 inches
beneath the hole, so that the robot does not stop in free space. Figure 5.4 shows
Pi-

The programming system must now compute a backprojection base. It turns
out that every point in the goal region is recognizably contained in the goal by force
sensing under the given error bound, since the bottom of the hole is perpendicular
to the sides of the hole. Thus, the backprojection base is equal to the entire goal.

The robot must avoid sticking in a nongoal point on the way to p,. The pro-
gramming system thus computes the nongoal weak sticking points under p,. These
points are shown in Figure 5.4. The weak backprojection region of these points
under p, is shown in Figure 5.5. These weak backprojection points are not reliable
starting points under p,, for from them the robot may stick in nongoal points on
the way to p;. The complement of these points comprises the strong backprojection
region of the goal region under p,. These strong backprojection points are shown
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in Figure 5.6. As can be seen from the figure, the strong backprojection region
consists of the bottom and sides of the hole. The sides of the hole are new solved
regions. Since the start region does not intersect these new solved regions, the start
region is not solved yet, so user interaction must continue.

Since the sides of the hole are now solved, and the start region is an edge to the
left of the hole, the teacher picks the next commanded position p, behind the right
side of the hole. The depth of p, was chosen to be halfway into the hole, so that
the robot will drop into the hole after sliding to it. It is important not to make p,
too deep, or else the robot may stick on the way to the hole. Figure 5.7 shows p,.

The programming system must now compute a backprojection base for p,. Once
again, every point in the solved regions is recognizably contained in the goal by force
sensing. Thus, the backprojection base is equal to the entire set of solved regions.

The robot must avoid sticking in an unsolved point on the way to p,. The
programming system thus computes the unsolved weak sticking points under p,.
These points are shown in Figure 5.7. The weak backprojection region of these
points under p, is shown in Figure 5.8. These weak backprojection points are not
reliable starting points under p,, for from them the robot may stick in an unsolved
point on the way to p,. The complement of these points comprises the strong
backprojection region of the solved regions under p,. The strong backprojection
points are shown in Figure 5.9. These points are now solved. As can be seen from
the figure, the new solved regions contain the start region. We must be careful
that points in the start region can recognize that they are solved points. The
programming system thus computes the recognizably contained subset of the new
solved regions. The recognizable subset is shown in Figure 5.10. The start region is
fully contained in this region, and thus is completely solved. The resulting compliant
motion strategy consists of the decision-free sequence of motions (p,, p; ).

5.3 Recognizable Containment
Once we have computed a solved region R, we can eliminate any points from the
start region S which are recognizably contained in R despite sensing uncertainty.

The following definitions will aid us in this task:

Definition 5.1 Two contact points x and y are confusable by position and force
sensing if both of the following conditions hold:

1. X and y are within 2¢, of each other.

2. The friction cones of X and y are within an angle of 20; of each other.

Intuitively, x and y are confusable of they are capable of generating the same
position and force measurements.

Definition 5.2 The confusable set of a contact point x is the set of all contact
points that are confusable with x.
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3-D PEG-IN-HOLE PROBLEM

start region

Figure 5.2: An environment consisting of a square hole in an obstacle surface. The
start region is an edge on the surface of the obstacle. The goal region is the bottom

of the hole.
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Hole Problem, Top View

start region

goal region

Figure 5.3: A top view of the hole environment. The start region and goal regions
are shown.
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Commanded Position

Weak Sticking Points To Avoid

Figure 5.4: The first commanded position p, is beneath the hole, as shown at top.
'The nongoal weak sticking points under p, are shown at bottom.
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Weak Backprojection of Sticking Regions

Figure 5.5: The shaded regions comprise the weak backprojection region of the
nongoal weak sticking points under p;.
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Strong Backprojection of Goal Region

Figure 5.6: The shaded regions comprise the strong backprojection region of the
hole bottom under p,.
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Commanded Position

Weak Sticking Points To Avoid

Figure 5.7: The second commanded position p, is chosen to the right of the hole,
as shown at top. The nongoal weak sticking points under p, are shown at bottom.
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Weak Backprojection of Sticking Regions

Figure 5.8: The shaded regions comprise the weak backprojection region of the
unsolved weak sticking points under p,.
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Strong Backprojection of Goal Region

Figure 5.9: The shaded regions comprise the strong backprojection region of the
solved regions under p,.
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Definition 5.3 Let R be a set of contact points, and let s be a contact point. s 18

locally weakly consistent with R if a point in the confusable set of s is contained
in R.

Definition 5.4 Let R be a set of contact points, and let s be a contact point. s 1s
locally strongly consistent with R if the confusable set of s 18 contained in R.

If a contact point s is locally strongly consistent with R, then s is recognizably
contained in R under local sensing. We use the qualifier local here because in some
cases there are global constraints on the configuration of a robot that can be used
to establish containment. For example, suppose that the robot is known to have
made a motion m from a start region 4, prior to terminating at s. Then the
robot is constrained to lie in the simulation Tn(A) (Chapter 4). In this case, if
the intersection of the confusable set of s with T,,(A4) is contained in R, then s is
recognizably contained in R.

The following algorithm computes whether s is locally strongly consistent with

R:
Algorithm 5.1 Local Strong Consistency

1. Compute the set R. of contact points in R (the complement of R) that are
within 2€, of R, and whose friction cones are within 20; of R’s friction cone.

2. Grow R, by 2¢, in three dimensions.
3. Clip the resulting volume out of R.
4. Test whether s is in the reduced set R.

This algorithm eliminates any points from R which are confusable with other
contact points, leaving only points which are locally strongly consistent with R.
Note that step 1 is made easier by the fact that all points in a face, edge, or vertex
have the same friction cone.

5.4 Pre-Images

The central task of the teaching system is to compute a pre-image region R from
which a taught motion m can reliably terminate in the goal region G. Pre-images
were first proposed by Lozano-Pérez, Mason, and Taylor [1984] as a subtask in
a backward chaining motion planner. Their proposal did not specify an imple-
mentation for pre-images. Erdmann [1984,1986] showed that for certain classes
of termination conditions, pre-images can be computed by geometric backprojec-
tion from a backprojection base. The idea is to pick a termination condition, such
as local sensing, and reduce the goal region to a backprojection base X which is
recognizably contained in the goal region under the termination condition and its
associated sensing uncertainty. Backprojection from X computes points from which
the robot is guaranteed to reach X despite sensing and control uncertainty. When
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the robot reaches a point x € X from a point in the backprojection region, it can
then recognize x as strongly consistent with G under the termination condition
and its associated sensing uncertainty. Erdmann implemented his scheme for pla-
nar robots with rotation, under the generalized damper trajectory model. In this
section, we will extend Erdmann’s algorithm to three Euclidean dimensions, under
both the generalized damper and spring trajectory models, for the case of motions

which start and stop in contact space. We will assume the following termination
condition:

¢ The robot may terminate by sticking at a goal point. (This does not have to
be specified in commanded motions.)

o The robot may terminate by sensing a goal point which is strongly consistent
with G under local sensing, with respect to the forward projection F,,(R) of
the start region R under the commanded motion m.

Erdmann called this the termination predicate without history or time. The role
of the forward projection F,(R) in termination is discussed below. Most of the
ideas that follow are applications or interpretations of Erdmann’s thesis.

5.4.1 The Backprojection Base

Our termination condition defines two types of reliable termination points:

1. Goal points at which the robot is guaranteed to stick.

2. Goal points that can be consistently recognized as goal points by sensing
because their confusable set is contained in G F,,(R). Such points are said
to be strongly consistent with G under the forward projection F,,(R).

The set of reliable termination points comprises the backprojection base X. The
first type of base point is a goal point at which the robot is guaranteed to stick. The
second type of base point is a goal point which can only be confused with points
In G or with unreachable points in F,(R). A base point whose confusable set is a
subset of G can be computed by Algorithm 5.1. A base point with confusable points
in Fn(R) — G can be computed by substituting G|J F,,(R) for G in Algorithm 5.1,
and intersecting the result with G. Regrettably, this is a circular definition, for
R is precisely what we are trying to compute. It is currently an unsolved prob-
lem to remove this circularity without loss of pre-image points. Here, we propose
two algorithms to remove the circularity such that approximate pre-images can be
computed:

¢ Backprojection Base Algorithm A

One way to remove the dependency on R is to choose an initial approximation
set R', and compute X with respect to F,,(R'). For correctness, it is necessary
that R’ contain R, so that we do not leave any points in X which are confusable
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Figure 5.11: The goal region is the surface polygon G, on the face F. The position
sensing and velocity uncertainties are shown. A commanded velocity v is given
which slides on F. The backprojection base X is chosen as the set of goal points
which are locally strongly consistent with G. The pre-image R that can be computed
by backprojecting from X consists of a sliding region and a free space region, as
shown.

with nongoal points in F,,(R — R'). In practice, however, it is not clear how
one would choose R'. Choosing R’ as the entire configuration space would
result in a forward projection that is also equal to the entire configuration
space. X would then consist only of sticking goal points and locally strongly
consistent goal points. Choosing R’ as the entire configuration space works
well for the case where sliding to the goal is desired, as illustrated in Figure
5.11. In general, if R’ # R, then the technique might eliminate points from
the backprojection base whose nongoal interpretations would be unreachable
from R, as illustrated in Figure 5.12.

¢ Backprojection Base Algorithm B

Another way to remove the dependency on R is to pick the backprojection base
X independently. There are two modifications to Erdmann’s algorithm that
make this possible. First, the termination condition is modified to stop when
the sensors are locally weakly consistent with G, rather than locally strongly
consistent. Second, the backprojection region is computed so as to avoid
nongoal points which are confusable with goal points. The second modification
is necessitated by the change in the termination condition. One choice for
the backprojection base X is the entire goal region G. This technique may
overconstrain the forward projection so as not to contain some pre-image
points. For example, the technique cannot compute sliding motions, since
such motions must pass through a confusable nongoal layer surrounding the
goal, as illustrated in Figure 5.13. The technique does work well for surface
goals that are reachable by free space trajectories, also illustrated in F igure

99



position commanded
Sensing O velocity
uncertainty

Figure 5.12: The goal region is the union of the surface polygon G and the edge &,
on the face F. The position sensing and velocity uncertainties are shown. A com-
manded velocity is given which slides on F, and sticks on € The free space region
R is a pre-image, but R cannot be computed by Backprojection Base Algorithm
A when R' # R, since some of the backprojection base points would be confusable
with nongoal points in F,(R').

5.13.

We will settle for a hybrid solution. First, using Backprojection Base Algorithm
A, we will backproject from a base of points which are locally strongly consistent
with G. This will compute pre-image points from which G can be reached by sliding,
among others. Then, using Backprojection Base Algorithm B, we will backproject
from the entire goal region, avoiding nongoal points that are confusable with goal
points. This will compute pre-image points from which the goal can be reached by
free space trajectories. We will return the union of all of the backprojection points.

5.4.2 Backprojection

Backprojection from a set X under a motion m is basically a reversal of the simu-
lation presented in Chapter 4. In the simulation, we were give a start region R and
a commanded motion m, and asked to compute the set X of possible termination
points. Here, we are given m and X, and asked to compute R.

There are actually two types of backprojection regions. A weak backprojection
region W, (X) of a set X under a commanded motion m is a set R of contact
points from which m might reach X. A strong backprojection region $,(X) of a
set X under a commanded motion m is a set R of contact points from which m is
guaranteed to reach X. Here, we need to compute the strong backprojection region
of a backprojection base X, since our ultimate goal is to compute reliable motions.
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Figure 5.13: This is the same example as Figure 5.11. Here, the backprojection base
1s chosen as the entire goal region. Sensing termination is by local weak consistency.
Backprojection from G must avoid all nongoal points which are confusable with
goal points. Since G is surrounded by confusable points, sliding to G is impossible.
However, the backprojection region in free space is much larger than in Figure 5.11.

Sm(X) can be formulated in terms of W,,(X). Trajectories originating in S,.(X)
must avoid nongoal points where the robot might terminate. These include (a)
weak sticking points under m, and (b) nongoal points that are confusable with goal
points, if we are using Backprojection Base Algorithm B. The latter type of point
must be avoided because Backprojection Base Algorithm B uses a weak consistency
termination condition. With this in mind, Sm(X) is equal to the complement of
W.(B), where B is the set of nongoal points where the robot might terminate.
Avoiding nongoal termination points ensures that the robot will eventually reach
X, since the environment is bounded.

We have thus reduced the problem to that of computing Wn(B). An algorithm
for weak backprojection is now presented.

Algorithm 5.2 Weak Backprojection

1. Initialize W to B.

2. Add to W the set of contact points from which the robot maght reach B via

sliding under m. These new points are called weak backsliding points from
B under m.

3. Compute the set Y of contact points from which the robot might reach W wia
straight-line free space trajectories under m. Add'Y to W.

4. Recursively call the algorithm with B equal to Y, minus any points that have
already been backprojected from in previous recursive calls. Add to W any new
backprojection points that are returned.
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Figure 5.14: The left side shows the cone which contains straight-line weak back-
projection points from a point x. The right side shows the cone which contains
straight-line reachable points from a start point s. The cones are exactly the same.

5. Return W.

We are left with two subtasks, the computation of straight-line weak backprojec-
tion points, and the computation of weak backsliding points. The next two subsec-
tions discuss these computations for the generalized damper and spring trajectory
models, respectively.

5.4.3 Generalized Damper Weak Backprojection

Straight-line weak backprojection for the generalized damper trajectory model is
equivalent to computing straight-line reachability (Section 4.3), with the start and
goal regions interchanged. Consider Figure 5.14. The left side of the figure shows the
cone which contains straight-line weak backprojection points from a point x. The
right side shows the cone which contains straight-line reachable points from a start
point s. The cones are exactly the same. This makes sense, since the straight-line
weak backprojection cone represents a reverse simulation of the possible trajectories
of the robot. The case where X is an edge or polygon is also solved by an equivalent
straight-line reachability computation.

Similarly, weak backsliding points from an edge & can be computed by pretending
that € is a start edge for a forward sliding simulation.

5.4.4 Generalized Spring Weak Backprojection

Under the generalized spring trajectory model, the commanded motion is given by
a position p. Straight-line weak backprojection points from a backprojection base
X under p can be computed by convex visibility analysis using a polygonal lens
(Section A.4). The focal point for the visibility computation is set to the com-
manded position p. The reachable volume for the visibility computation contains
all straight-line trajectories that terminate at p and come within ¢; of X. These are
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Figure 5.15: The commanded position is p. The volume shown contains all trajec-
tories that may strike the point x under sensing and control uncertainty.

the trajectories that may strike X under sensing and control uncertainty. Figure
5.15 shows the reachable volume when X is a point. Figure 5.16 shows the reachable
volume when X is an edge. Figure 5.17 shows the reachable volume when X is a
polygon.

Now consider the computation of weak backsliding points from an edge & on
a face F' under the commanded position p. Recall that sliding trajectories from
a contact configuration s € F under the generalized spring trajectory model are
contained in the projection of a cylinder of radius ¢; onto F (Figure 3.14).

Let p’ be the projection of p onto the plane of F. The weak backsliding region
contains all straight-line trajectories on F' which aim at P’ and come within ¢, of €,
minus any straight-line trajectories that are guaranteed to stick before reaching €.
Figure 5.18 shows the weak backsliding area for one example.
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Figure 5.16: The commanded position is p. The volume shown contains all trajec-
tories that may strike the edge & under sensing and control uncertainty.
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Figure 5.17: The commanded position is p. The volume shown contains all trajec-
tories that may strike the polygon X under sensing and control uncertainty.
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Figure 5.18: A top view of a face F. The projection of the commanded position is
p’. €is an edge segment of F. S is the strong sticking region of F under p. R, is
the strong backsliding region of S under p. R is the weak backsliding region of &
under p.
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Chapter 6

Planning

This chapter presents an algorithm for autonomously planning a compliant motion
strategy. The input to the planner is the task geometry, a set of start polygons, and
a set of goal polygons. The output of the planner is a compliant motion strategy
(Figure 1.6). The input and output are the same as that of the teaching system
(Chapter 5). The difference between the two is that the planner does not require
any suggested motions from a teacher.

The problem of planning compliant motions with uncertainty is an instance of
the general problem of planning motions with uncertainty. Recently, Canny and
Reif [1986] showed that the general problem is exponential time hard. The general
problem may actually be unsolvable [Erdmann 1984]. In spite of these theoretical
constraints, our goal was to implement a working compliant motion planner. The
result is an implemented planner which does not always succeed when a solution
exists. Experimentation has indicated that the planner can solve a useful class of
problems nevertheless.

This chapter is organized as follows:

e Section 6.1 discusses special assumptions that will be made by the planner.
¢ Section 6.2 presents an overview of the planner.

e Section 6.3 describes some experiments that were conducted with an imple-
mented planner.

o Section 6.4 describes the planning space that we have chosen to represent the
state of the robot. Embedded in the planning space is a state graph, which
makes explicit the possible state transitions of the robot for a particular set
of inputs.

o Section 6.5 describes a method for obtaining a reliable motion strategy, given
a state graph.

o Section 6.6 describes a method for constructing a state graph, given the plan-
ner input.
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o Section 6.7 describes a method for simulating the possible motions of the
robot. This simulation is used to construct the arcs of a state graph.

o Section 6.8 discusses the computational complexity of the planner.

e Section 6.9 summarizes the chapter.

6.1 Assumptions

The framework of the planner is independent of the trajectory model used. The only
part of the planner that relies on the trajectory model is a set of functions which
simulate motions. These functions are described in Section 6.7. For simplicity, we
will assume the generalized spring trajectory model. To convert to the generalized
damper model, one would merely have to replace these functions by equivalent
functions which simulate generalized damper motions.

Motions can be terminated in three ways. For a type 1 (sticking) motion, the
robot approaches a commanded position, and stops by sticking along the way. For a
type 2 (position sensing) motion, the robot approaches a commanded position, and
stops when its force sensors detect contact, and its position sensors are contained in a
given set of termination positions. For a type 3 (position and force sensing) motion,
the robot approaches a commanded position, and stops when its force sensors are
contained in a given set of termination forces, and its position sensors are contained
in a given set of termination positions. For type 2 and 3 motions, it should be noted
that the robot might also stick somewhere along the way, depending on the task
geometry.

Since sticking is possible in a type 2 or 3 motion, these motion types can accom-
plish any task that a type 1 motion can. The reason for studying type 1 motions is
that (a) they are simpler, and (b) for compliant motions, one can accomplish quite a
bit without sensing termination. Since compliant motions involve contact, sticking
is a natural way to terminate a motion. If we were to allow free space goals, then
sensing termination would become much more critical.

Nevertheless, there are tasks that a type 2 motion can accomplish but a type 1
motion cannot. Suppose that the goal region is a frictionless face. Sticking on the
face requires that the robot issue a velocity which is precisely normal to it. If there
1s any velocity uncertainty at all, then the robot cannot do this reliably. It must
use sensing to recognize that it has reached the goal, and stop on its own accord.

A type 3 motion can accomplish any task that a type 2 motion can, because
type 3 motions are a generalization of type 2 motions. In a type 2 motion, the force
sensors can only distinguish between contact and free space. In a type 3 motion,
the force sensors can also detect the angle of the contact force, to within é;. This
allows certain surfaces to be distinguished that cannot be by a type 2 motion. For
an example, see Figure 6.1.
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Figure 6.1: An example where type 3 termination is needed. The robot starts in
the edge S. The goal region is the edge G. All points in G are within €, of S, so
position sensing cannot disambiguate G from S. The reaction forces of S and G are
disambiguable. The strategy is to issue a commanded position which causes sliding
on both S and G. Termination occurs when a reaction force of G is recognized.

6.2 Overview of the Planner

This section presents an overview of the planner. The rest of the chapter supplies
the details.

An atom is a set of contiguous configurations which share a common set of
possible reaction forces. Any face, edge, or vertex from the configuration space
environment is an atom. All of free space is an atom. The set of all atoms is a
partition of configuration space into complete, nonoverlapping subsets. The planner
characterizes the state of the robot as a collection of atoms where the robot might
be located, under bounded sensing and control uncertainty.

Figure 6.2 shows a simple triangular environment, consisting of three edges and
three vertices. The robot can move about the interior of the triangle. There are
seven atoms in this environment: three vertices, three edges, and free space. The
state of the robot is characterized as a subset of the seven atoms. For example,
the state {1,2} implies that the robot might be on vertex 1 or edge 2, but that it
cannot determine which one it is on due to sensing uncertainty. The state {1, 2,3}
1s impossible with reasonable position sensing, for if the robot were in this state,
then it could easily distinguish state 1 from state 3, and fix its state more precisely.
Similarly, the state {2,3,4} is impossible under reasonable force sensing, for if the
robot were in this state, then it could easily distinguish state 2 from state 4, and fix
its state more precisely. Thus, the only states that we need to consider are states
which contain atoms that are confusable with each other under position and force
sensing uncertainty.

The planner operates by repeatedly choosing a state, and constructing arcs
which connect the state to other states. Arcs represent reliable motions between
states. Arc construction proceeds from state to state until a successful compliant
motion strategy has been constructed from the start state to a goal state.

To construct arcs from a state, the planner computes all possible commanded
motions from the state, grouping them into sets called weak arcs, which each have
a common target atom. For example, consider the singleton state X = {1} from
Figure 6.2. We can construct seven weak arcs from X. Each weak arc represents the
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Figure 6.2: A simple planar environment consisting of seven atoms. Atoms 1, 3,
and 5 are vertices. Atoms 2, 4, and 6 are edges. Atom 7 represents free space.
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5 — 3

Figure 6.3: The set C% 4 of commanded positions which might reach atom 4 from
the state X = {1}.

possible commanded positions that might cause the robot to reach and terminate in
one of the seven atoms from X. Termination can be by sticking, position sensing,
and force sensing. Consider the construction of a weak arc from X to atom 4.
Figure 6.3 shows the set C% , of commanded positions which might cause the robot
to reach atom 4 from X. Figure 6.4 shows the set C; of commanded positions which
might cause the robot to stick in atom 4 if it reaches it. If we intersect C% , with
C3, we obtain the set Cx 4 of commanded positions which might cause the robot to
reach and stick in atom 4 from state X. C Xx,4 generates a weak arc from X to atom
4 under sticking termination.

Weak arcs are not reliable. A commanded position in Cx4 may also be in
Cx3. This implies that the commanded positions in Cx 4 are not guaranteed to
reach and terminate in atom 4. We need a strong arc, one which is guaranteed to
reach and terminate in its target. Weak arcs can be converted to strong arcs by a
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Figure 6.4: The set C; of commanded positions which might cause the robot to
stick in atom 4 if it reaches it.

Target Atoms | Commanded Positions
1,2 Cx1NCx,
1 Cx1—Cx.2
2 Cx2—Cxa

Table 6.1: Composition of the weak arcs Cx,; and Cx ; under sticking termination.

process called arc composition. Assume initially that there are only two atoms in an
environment, atom 1 and atom 2. We are to construct the arcs of a state X under
sticking termination. First, two weak arcs are constructed, Cx; and Cxs. The
composition of these two weak arcs is shown in Table 6.1. The first composed arc
contains the intersection of the commanded positions of the weak arcs. Its possible
target states are {1}, {2}, and {1, 2}, assuming that atoms 1 and 2 are confusable.
The other two arcs contain the differences of the commanded positions of the weak
arcs. The target states of these arcs are {1} and {2}, respectively. Assuming that
there are only two atoms in the environment, these three arcs are reliable.

Of course, in real environments, there are more than just two atoms. Any num-
ber of weak arcs can be converted to strong arcs by repeated pairwise composition,
as long as the initial set of weak arcs contains all possible motions from the source
state. Confusable collections of the target atoms of a strong arc form target states
that the robot might reach if it follows the arc. On execution, the robot decides
which target state it has actually reached using position and force sensing.

Weak and strong arcs can be extended to represent compliant motions which
use sensing termination. Assume initially that there are only two atoms in the
environment, and that we are to construct the arcs of a state X under position
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Target Atoms | Commanded Positions | Sensed Positions
1,2 Cx1NCx,: 51NS,
1 Cxa1—Cx,. S1
1 Cx S-S5,
2 Cx2—Cxa S,
2 Cx,z Sz — Sl

Table 6.2: Composition of the weak arcs (Cx.1,851) and (Cx,2, S2) under position
sensing termination.

sensing termination. First, two weak arcs are constructed. The first weak arc has
commanded positions Cx,;, and terminates on the sensed positions 5. Cx, is the
set of commanded positions which might reach atom 1 from X. S; is the set of
possible sensed positions of atom 1. The second weak arc has commanded positions
Cx,2, and terminates on the sensed positions S;. The composition of these two
weak arcs is shown in Table 6.2. The first composed arc contains the intersection of
the commanded positions and sensed positions of the weak arcs. Its possible target
states are {1}, {2}, and {1,2}, assuming that atoms 1 and 2 are confusable. The
target state of the second composed arc is {1}. The composed arc contains the
commanded positions of the first weak arc minus the commanded positions of the
second weak arc. This ensures that atom 2 is not reachable by the composed arc.
The target state of the third composed arc is also {1}. The composed arc contains
the sensed positions of the first weak arc minus the sensed positions of the second
weak arc. This ensures that if atom 2 is reached by the arc, the robot does not
terminate there by position sensing. The fourth and fifth composed arcs are the
analogs of the second and third composed arcs, for the case where the target state
is {2}. For any of these arcs, there is a possibility that the robot may terminate
in an intermediate atom due to sticking. This case is handled later in the chapter.
The case of force sensing termination is also discussed later in the chapter.

6.3 Examples

In this section, we present some examples that have been run on an implemented
planner. The planner is implemented in ZetaLisp, on a Symbolics 3600 computer.

6.3.1 Cube Environment With Sticking Termination

Figure 6.5 shows an environment consisting of a cube. The robot can slide around
on the inside faces of the cube, or travel through the free space inside the cube.

The width of the cube is 2 inches. The coefficient of friction of the cube faces is
.25. The sensing and control error bounds are as follows:
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v

goal region

Figure 6.5: An environment consisting of a cube. The robot is inside of the cube.

The start region is a top edge of the cube. The goal region is the interior of the
cube bottom.

¢ ¢, = .2 inches
e 8; = .3 radians
® ¢, = .2 inches

e 0, = .25 radians

Under these error bounds, the maximum free space trajectory error ¢, given by
Equation 3.21 is equal to .218 inches.

The start region is defined as a top edge of the cube, as shown in Figure 6.5. The
goal region is the interior of the cube bottom. Sticking termination is to be used.

The planner returns a compliant motion strategy consisting of a single commanded
motion, as shown in Figure 6.6.

6.3.2 Cube Environment With Position Sensing Termina-
tion

We will again use the cube environment. This time, the start region is defined as

a bottom edge of the cube, as shown in Figure 6.7. The goal region is again the

interior of the cube bottom. Position sensing termination is to be used. The planner
returns a compliant motion strategy consisting of a single commanded motion, as

shown in Figures 6.8 and 6.9.

6.3.3 Hole Environment With Sticking Termination

For this example, we will use the hole environment described in Section 5.2. We
will assume the same start and goal regions that were used in that section. The

112



Figure 6.6: The black polyhedron contains commanded positions that solve the
cube problem of Figure 6.5. Termination is by sticking on the cube bottom.

start region

goal region

Figure 6.7: The cube environment again. This time, the start region is a bottom
edge of the cube, and the goal region is the interior of the cube bottom.

Figure 6.8: The black polyhedron contains commanded positions that solve the cube

problem of Figure 6.7. Termination is by sensing the interior of the cube bottom,
as shown in Figure 6.9.
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Figure 6.9: The black polyhedron contains sensed positions that terminate the
motion of Figure 6.8 in the interior of the cube bottom.

coefficient of friction of the hole surfaces is now .48. The sensing and control un-
certainty bounds are the same as in Section 5.2, except for 6;, which is now .05
radians. Sticking termination is to be used. The planner returns a compliant mo-
tion strategy consisting of a sequence of two commanded motions, shown in Figures
6.10 and 6.11. Note the similarity between this strategy and the strategy that we
developed in Section 5.2.

6.3.4 Peg-in-Hole Insertion on a Real Robot

The strategy produced by the planner in Section 6.3.3 was tested on the insertion of
a rectangular steel peg into a rectangular steel hole, using an IBM 7565 robot. The
7565 is a Cartesian robot with a parallel jaw gripper and a three degree-of-freedom
wrist. The wrist maintained a fixed orientation during the insertion. The peg was
grasped from a corner of the hole, to ensure that it was rotationally aligned. To
eliminate misalignment during the insertion, the following steps were taken:

o The gripper fingers were aligned with the plane of motion, to prevent a reac-
tion force in the direction of motion from rotating the peg within the gripper
fingers.

o The peg and gripper fingers were lined with sandpaper, to prevent incidental
slippage.

The 7565 is programmed using the AML language [Taylor et al 1982]. The AML
program for the experiment is given in Appendix C.

There were a few minor differences between the parameters used in Section 6.3.3
and those of the physical experiment. The parameters of the physical experiment
were as follows:

e hole clearance = .025 inches

hole depth = .05 inches

hole coefficient of friction = .48

e ¢, = .005 inches

0; = .05 radians
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Front View
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Top View

goal region

Figure 6.10: Front and top views of the hole environment. The black polyhedra
contain commanded positions that comprise the first motion of the strategy that
solves the hole problem of Figure 5.2. The robot terminates by sticking on the side
face of the hole.
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FRONT VIEW

Figure 6.11: A front view of the hole environment. The black polyhedron contains
commanded positions that comprise the second and final motion of the strategy
that solves the hole problem of Figure 5.2. The robot terminates by sticking on the
bottom of the hole.
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® ¢, = .005 inches

e 8, = .25 radians

The coefficient of friction between the steel peg and hole was measured experimen-

tally. If we scale the geometry of the experiment by 40, then we obtain the following
parameters:

e hole clearance = 1 inch

e hole depth = 2 inches

o coefficient of friction = .48
® ¢, = .2 inches

e 0; = .05 radians

® ¢, = .2 inches

e 0, = .25 radians

These parameters are identical to those used in Section 6.3.3.

Since AML does not supply compliant motion commands, I implemented a slow
force feedback loop in AML, using the strain gauges in the robot fingers to measure
reaction forces. Given a final commanded position, a trajectory is constructed which

consists of a series of closely spaced via points. For each via point x., the feedback
loop commands the actual position

X = x. + f,/k, (6.1)
where f, is the sensed reaction force vector, and k is the stiffness constant. When
a transition from contact to free space is detected, the trajectory is replanned, to
prevent a large motion from being commanded. A trajectory is terminated when
either the final commanded position is reached, or two consecutive forces are sensed
which oppose motion with large magnitudes. The latter is assumed to indicate
sticking.

The critical motion in the strategy is the first one, in which the peg clears the
top of the hole. After the robot makes it into the hole, it is a simple matter to drop
to the bottom of the hole, since the peg is rotationally aligned. The insertion was
tested using extreme points from the rectangular polyhedra which represent the first
motion. All of the test points were successful. The insertion was also tested using
points which were exterior to the motion polyhedra. Many of these points were
successful; some were not. The successful points are indicative of the conservative
nature of the planner.

This particular insertion could have been performed by position control. How-
ever, the purpose of the exercise was to test initial feasibility of the compliant motion
strategies that are produced by the planner. Additional work is required to develop
robust implementations of compliant motion control. Once robust implementations
are available, we can investigate the ultimate goal: insertions that cannot be per-
formed by position control, at speeds that rival human assembly speed.
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6.3.5 Double Hole Environment With Sticking Termination

Section 1.1 discussed an example involving a double hole environment. The holes
of the example had the same clearances as the single hole above. The sensing and
control error bounds were also the same as above. Sticking termination was used to
solve the example, resulting in a decision-free strategy of two commanded motions.
The example showed that the planner can be used on environments in which there
are a fairly large number of faces.

6.4 Choosing a Planning Space

The first step in the design of a planner is to choose a planning space in which to
characterize the state of the robot. A point in this space would represent a state of
the robot. The start region and the goal region would be states in this space. When
possible, states would be connected by arcs, representing reliable motions between
states. The arcs would define a state graph, embedded in the planning space. The
state graph could then be searched for a path from the start state to the goal state.

One possible choice for the planning space is configuration space. A state in this
planning space would be defined as a configuration of the robot. The problem with
this choice is that a state of the robot cannot be limited to a single configuration,
due to sensing and control uncertainty.

A better choice for a state is a set of configurations. This is the type of state
that was used by the framework of Lozano-Pérez, Mason, and Taylor [1984]. Un-
fortunately, since a configuration space is continuous, it contains an uncountable
number of points. The set of states is thus uncountable as well. If we are to design
a working planner, we will have to come up with a simpler set of states.

One way to make the number of states countable is to form a uniform cell de-
composition of configuration space, and define a state as a union of cells from this
decomposition. The cell size could be equal to the commandable increment of the
robot. A robot’s commandable increment is the distance between commandable po-
sitions. This is usually determined by the interface between its computer controller
and its analog hardware.

The number of cells in a uniform decomposition of configuration space is count-
ably infinite, since configuration space is infinite. We can make the number of cells
finite by bounding the environment. In mechanical assembly tasks, this is a reason-
able thing to do, because an assembly robot normally has a limited range of motion.
The number of states is now finite. Suppose that the number of cells is k.. Then
the number of states is equal to 2%, This is a huge number.

To further reduce the number of states, we could decrease the resolution of the
uniform cell decomposition. We could also abandon the idea of having cells of
uniform size. Instead, we could partition configuration space into nonoverlapping
subsets called atoms, whose union is the configuration space. We would treat each
atom as we would a cell. If the robot arrives at a configuration in an atom A, then
the planner assumes that it could be anywhere within A.
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A useful definition for an atom is a set of contiguous points which share a
common set of possible reaction forces. This is a good choice because it makes it
easy to predict the possible behavior of the robot regardless of where it is within
an atom. Any face, edge, or vertex qualifies as an atom under this definition. Free
space also qualifies as an atom. A face is considered to be an open set, bounded by
edges and vertices. Similarly, an edge is considered to be an open set, bounded by
two vertices. These definitions make the decomposition nonoverlapping. It should
be noted that this is not the only possible choice for the atom decomposition. More
will be said about this later in this section.

The number of states is now equal to 2%, where k, is the number of atoms. This
is still unmanageable for most environments. A further reduction can be obtained
by pruning unnecessary states. Note that two atoms can often be disambiguated
from each other by position and force sensing. This observation is formalized in the
following definition:

Definition 6.1 Suppose that A, and A, are atoms. A; and A; are disambiguable
if either of the following conditions holds:

1. The closest points of A and A; are greater than 2¢, apart.

2. The closest pair of possible reaction force vectors of Ay and A, differ by an
angle which is greater than 26;.

In the first case, if the robot is in A;, then the maximum distance between the
sensed position and A4, is ¢,. The maximum distance between an interpretation of
the sensed position and A, is then 2¢,. Since every point of A, is greater than 2e,
from A,, there is no way that the sensed position can be interpreted as belonging
to Az.

In the second case, if the robot is in A;, then the maximum angle between the
sensed reaction force and the possible reaction forces of A4 is §;. The maximum
angle between an interpretation of the sensed reaction force and the possible reaction
forces of A, is then 26;. Since every reaction force of A; is greater than 26, from
those of A;, there is no way that the sensed reaction force can be interpreted as
belonging to A,.

If the robot reaches the state {A;, 4}, and A4, and A, are disambiguable, then
it can make a transition to either {A;} or {A,} without issuing a motion. More
generally, any state X of n atoms which contains a disambiguable pair of atoms
A; and A; can be subdivided into two states of n — 1 atoms each, with A; going
into one of the substates, and A; going into the other. If the robot reaches X,
then it can make a motionless transition to one of the substates. It can continue
making motionless transitions until it reaches a substate with no disambiguable pair
of atoms. A state with no disambiguable pair of atoms is said to be primitive.

Currently, a state arc represents a reliable motion from one state to another.
It is labeled by a commanded motion. The target state contains all possible next
atoms. We would like the robot to proceed directly to the primitive substate which
contains all atoms that are consistent with the sensor readings at execution time. To
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Figure 6.12: An arc of a state graph. The robot begins the motion m in state X.
It terminates in one of the states {¥;}.

do this, we need to replace the standard single-headed arc with a multi-headed arc,
as shown in Figure 6.12. Each head of the new arc points to a primitive state. On
the completion of the commanded motion, the robot computes the set of atoms that
are consistent with the sensor readings, and proceeds directly to the corresponding
primitive state.

In practice, we have found it necessary to reduce the number of states further, by
limiting the number of atoms per state. We found it adequate for simple examples
to concentrate on states with three or less atoms.

Table 6.3 shows the reduction in the number of states when we limit them to
primitive states, and when we limit the number of atoms per state. We generated
the states of three environments, under fairly large sensing uncertainty.

With the splitting of disambiguable states, the start and goal regions might now
be sets of states. Our job now is to find a motion strategy which reliably terminates
in a goal state from each start state. Since states are disambiguable, the start states
can be treated as separate planning problems. The robot need only determine at
execution time which start state it is in, and choose the motion strategy that has
been planned for that start state. For simplicity, we will assume from now on that
there is a single start state, and multiple goal states.

6.4.1 Computing Primitive States

Suppose that we are given a set ¥ of atoms. We are to construct the set of primitive
states that consist of atoms from X.

We certainly want to avoid a generate-and-test solution. Suppose that there are
n atoms in . A generate-and-test algorithm would enumerate all 2" subsets of the
atoms, and test whether each one is primitive.

We can avoid the exhaustive solution by careful pruning. The basic principle
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environment cube | hole | double hole

clearance 1lin 1in lin
friction coefficient .25 .25 .25
€s .2 in 2 1in .21n

CE 3 rad | .3 rad 3 rad
faces 6 14 26
atoms 26 66 118

all states 7E7 | TE19 3E35
primitive states 258 1714 3082
states < 3 atoms 226 934 1694
states < 2 atoms 122 386 708
states 1 atom 26 66 118

Table 6.3: The number of atoms, states, primitive states, and states with a limited
number of atoms, for three environments under the indicated clearances and sensing
uncertainties. Note: the clearance of the double hole applies to both holes.

is this: If a nonprimitive set of atoms is found, then we should not generate any
further states which contain this set as a subset. This principle can be put to action
by the following algorithm:

1. Create a state S; consisting of the first atom in 5.

2. Call the algorithm recursively to compute the primitive states that can be
constructed from the rest of the states in &. Set I'; to the new states.

3. Try to form new primitive states by adding S, to each state in I';, and testing
whether the new state is primitive. Set I'; to the new states.

4. Return S,, Iy, and T,.

This algorithm does not allow the first atom to be combined with any nonprim-
itive sets of atoms. Thus, it obeys the pruning principle. Note that every time we
test whether a state is primitive, we are adding one atom to an already primitive
state. Thus, to test whether a new state is primitive, we simply make sure that the
new atom is confusable with each of the atoms of the primitive state.

Recall that an atom is either a vertex, an edge, or a polygon. To test whether
two atoms are confusable, we test whether their closest points are within 2e,. Then,
we test whether their sets of possible sensed forces intersect. Section 6.7.7 describes
a method for constructing the set of possible sensed forces of an atom. The force
test can be avoided if two atoms share a common face.
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Figure 6.13: An example where the planner is incomplete. The robot is known to
be somewhere in the edge segment B. B is contained in the edge atom A. The
goal is the edge atom G. The obstacles O; and O, have infinite friction, so sliding
1s impossible on them. Although the forward projection of p from B does not
intersect the obstacles, the planner forward projects from A4, and concludes that p
is unreliable.

6.4.2 A Tradeoff Between Completeness and Efficiency

At the heart of the planning space is the decomposition of configuration space
into atoms. The choice of the atom decomposition affects the completeness of
the planner, but not its correctness. A motion planner is correct, or reliable, if
the motion strategies that it constructs are guaranteed to work under sensing and
control uncertainty. OQur planner is correct. A motion planner is complete if it is able
to find a motion strategy when one exists for a problem. Our planner is complete
in the sense that if a motion strategy exists for a particular input, then the planner
can find a motion strategy, using a uniform atom decomposition in which atoms are
smaller than the commandable increment of the robot. Unfortunately, this scheme
would take much longer than anyone would be willing to wait.

Choosing larger atoms, while more efficient, is not complete, since it amplifies
the position uncertainty of the robot. Figure 6.13 shows an example where this
occurs. Thus, the atom decomposition is a key factor in the success of the planner.
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Figure 6.14: An example of a state graph.

6.5 Obtaining a Motion Strategy From a State
Graph

A state graph represents the allowable state transitions of the robot. Figure 6.14
shows an example of a state graph. Section 6.6 will discuss how to construct a
state graph from the planner input. For now, assume that a state graph has been
constructed. How can we obtain a reliable motion strategy from it? A standard
search technique, such as depth-first search, won’t work, since the arcs in a state
graph are multi-headed, representing conditional branches.

6.5.1 Evaluating a State Graph

Consider the question of whether the robot can terminate in a goal state, when
starting in a particular state X. We will refer to this as the success of X. The
following observations can be made: A state is successful if it is a goal state, or one
of its arcs is successful. An arc is successful if all of its next states are successful.

These observations can be translated almost directly into recursive procedures
for evaluating the success of a state. To test the success of a state graph, we simply
evaluate the start state.

One snag is that a state graph may contain cycles. We have to avoid cycling in
the graph while testing for success. To do this, we mark a state as a failure when
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Figure 6.15: An example of an AND/OR tree. AND nodes are labeled with *.
OR nodes are labeled with +. Terminal nodes are labeled G for goal, or NG for
nongoal.

1t 1s reached for the first time. Then, if one of its arcs is successful, its evaluation is
changed to indicate success. If a state marked as a failure is reached again, then the
arc that reaches it fails. Reaching a failed state indicates one of two things. First,
the state may have been evaluated as a failure previously. Second, the state may
be currently active, meaning that a cycle has been detected. In this case, failure is
justified because of our assumption that motion strategies do not contain loops.

6.5.2 A State Graph is Like an AND/OR Tree

An AND/OR tree [Winston 1984] is a tree which has two types of nodes, AND
nodes and OR nodes. Figure 6.15 shows an example of an AND/OR tree. Terminal
nodes of the tree can be evaluated statically as either goal or nongoal. An AND
node is successful if all of its sons are successful. An OR node is successful if any
of its sons are successful. The success of an AND/OR tree is given by the success
of its root node.

A state graph is like an AND/OR tree. To see this, consider Figure 6.16, which
shows an alternative representation of the state graph arc of Figure 6.12. The source
state X is depicted as an OR node. X is shown pointing at an AND node, which
points at the target states {Y;}. The AND/OR representation makes the evaluation
procedure of Section 6.5.1 explicit.
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Figure 6.16: An alternative view of the state graph arc of Figure 6.12. The source
state X is seen as an OR node. The arc labeled by * is an AND node.

6.5.3 The Representation of a Motion Strategy

It can now be pointed out that the representation of a motion strategy is a state
graph which has been successfully evaluated. Failed nodes and arcs can be dis-
carded. Figure 1.6 is the result of removing failed nodes and arcs from the state
graph of Figure 6.14.

The resulting state graph is suitable for execution on a robot. The robot executes
the commanded motion which labels the arc of the start state. It then decides which
next state it has terminated in, using sensors. If the new state is a final state, then
the robot stops. Otherwise, it continues the execution/sensing cycle. The robot is
guaranteed to terminate in a final state.

6.6 Constructing a State Graph

Now that we know how to obtain a motion strategy from a state graph, we are
faced with the task of constructing a state graph from planner input. This involves
constructing an arc between a state and a set of states whenever a corresponding
motion is possible. We must decide how to construct arcs, and in what order.
Section 6.6.1 discusses the choice of a state to expand. Section 6.6.2 describes an
algorithm for constructing arcs.

6.6.1 Choosing a State to Expand

An arc is a mapping from a state to a set of states. Because arcs fan out, it is more
convenient expand states in the forward direction than the backward direction. That
1s, given a state, we will construct the arcs that emanate from it, rather than those
that terminate at it. We start with a state graph which consists of the start state
and the goal states. A best first strategy is used to pick an unexpanded nongoal
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state in the graph to expand. Currently, the planner picks the unexpanded nongoal
state which is closest to a goal state. After constructing the new states and arcs that
are generated by the expansion, the resulting state graph is evaluated. If the test
returns success, then the planner returns the resulting state graph. Otherwise, the
planner continues to expand states. This approach returns the first reliable motion
strategy that can be found. To find the best motion strategy (with respect to some
cost function), the planner would have to enumerate many strategies, evaluating
the cost of each one. This would take significantly longer, although it would not be
impossible in principle.

6.6.2 Expanding the Arcs of a State

Expanding a state means constructing its arcs. First, we will discuss how to compute
the arcs of a singleton state (a state with only one atom). Then, we will extend the
algorithm to states with multiple atoms.

Expanding the Arcs of a Singleton State

Suppose that a state contains a single atom A. We are to compute the reliable
motions that can be commanded from 4. One approach would be to enumerate
all possible motions. For each motion m, we could compute all atoms where m
might terminate, using forward projection. (See Chapter 4.) However, this method
is infeasible, since the number of motions is uncountable.

Note that the number of atoms is much smaller than the number of motions.
Suppose that we enumerate atoms, rather than motions. For each atom B, we
construct the set of all motions that might terminate in B when starting from A.
An algorithm to do this is described in Section 6.7. This algorithm can be thought
of as a simulation of the possible motions that can be commanded from A. The
simulation returns a list of weak arcs. An arc is comprised of the following fields:

type This field indicates whether the arc represents motions which terminate by
sticking (1), position sensing (2), or position and force sensing (3).

target The set of atoms where the robot may terminate.

cpositions The set of possible commanded positions. At execution time, the robot
need only choose one commanded position from this set. !

spositions The set of sensed positions that the robot will interpret as signals to
terminate.

sforces The set of sensed forces that the robot will interpret as signals to terminate.

'For the generalized damper trajectory model, this field would contain the set of possible com-
manded velocities.
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In this case, the target of each weak arc is a single atom. Each weak arc consists of
motions which might terminate in the target.

We are not done yet, for the weak arcs are not reliable. The reason is that two
weak arcs may intersect, i.e., there may be motions that are common to both arcs.
For type 1 arcs, intersection means that the cpositions intersect. For type 2 arcs,
intersection means that both the cpositions and the spositions intersect. For type 3
arcs, intersection means that the cpositions, spositions, and sforces all intersect. A
commanded motion common to two arcs may terminate in the target atom of either
arc, so neither arc can be guaranteed to terminate in its target atom. We need to
regroup the motions into a new set of nonoverlapping strong arcs. The motions
within a strong arc share a common set of target atoms. Intuitively, a strong arc is
reliable because each motion in it is not contained in any other arc, so the target
atoms of the arc are the only atoms that the motions can reach.

We now present some definitions that will allow us to formalize the notion of
reliability. The formalization will enable us to develop a provably correct method
for computing a reliable set of arcs.

Definition 6.2 A arc is said to be reliable with respect to an atom A if its com-
manded motions may cause termination only in its targets when starting from A.

A set of arcs is reliable if each arc in the set is reliable.

Definition 6.3 A set ¥ of arcs is said to be complete with respect to an atom A
if, for each motion m that is possible from A, each possible target of m from A is
contained in some arc of ¥ along with m.

We can now state sufficient conditions for the reliability of an arc:

Theorem 6.1 A set ¥ of arcs is reliable with respect to an atom A if ¥ is complete
with respect to A, and nonoverlapping.

Proof: Suppose that ¥ is complete with respect to 4, and nonoverlapping. Let m
be a possible motion from A. By completeness, m is in some arc « € ¥. Also, all
of the possible targets of m are in arcs that m is in. Because ¥ is nonoverlapping,
a is the only arc that m is in. This implies that all of the possible targets of m are

in a. Therefore, m is a reliable motion, and «a is a reliable arc, for each m and a in
V.1

For type 1, the simulation of Section 6.7 returns a complete set of arcs. Theorem
6.1 tells us that to make this set reliable, we need to make the set nonoverlapping,
while preserving its completeness. This process is called arc composition.

Note that the converse of Theorem 6.1 is false. Suppose that ¥ is reliable with
respect to A. Is ¥ then complete and nonoverlapping? ¥ may not be complete,
because it need not contain all possible motions from A. ¥ may be overlapping, as
long as the arcs which overlap have identical targets. This last observation is stated
in the following theorem:
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Arc | Cpositions | Target
Q1o CiNe; LUT;
al_ 01 - 02 Tl
012_ Cz —_ Cl T2

Table 6.4: Composition of a pair of type 1 arcs ay = (C1,T1) and a; = (C2, Tz).

Theorem 6.2 A set ¥ of arcs is reliable with respect to an atom A if ¥ is complete
with respect to A, and nonoverlapping, ezcept between pairs of atomns which have
identical targets.

Proof: Suppose that ¥ is a set of arcs that is complete with respect to a start atom
A, and nonoverlapping, except between pairs of arcs which have identical targets.
Consider a pair of overlapping arcs a; and a; of ¥. Although o; and a3 intersect,
composing them would not result in any new target sets. (See below.) Since ¥ is
complete with respect to A, and nonoverlapping between arcs with differing targets,
there are no other targets for the motions of a; and a;. Thus, a; and a; must be
reliable with respect to A, and furthermore, ¥ must be reliable with respect to A.
]

Type 1 Arcs

For type 1, the simulation of Section 6.7 returns a complete set of arcs. We now need
to make this set nonoverlapping, while maintaining completeness, as per Theorem
6.1.

Suppose that we have a complete pair of type 1 arcs a; and a, with respect
to an atom A. Denote the cpositions of a; by C;, and the targets by T;. Denote
the cpositions of a; by C,, and the targets by T,. We can compose the pair by
computing the three arcs shown in Table 6.4.

The following theorem establishes the reliability of pairwise type 1 arc compo-
sition:

Theorem 6.3 Suppose that oy and ay are a complete pair of type I arcs with respect
to an atom A. The arc set shown in Figure 6.4,

¥ =axaz = {maz, 07,05}, (6.2)
18 reliable with respect to A.
Proof: The commanded motions of a type 1 arc are given by its cpositions. It can be
seen from Table 6.4 that the union of the cpositions of ¥ is equal to C; |J C,. Since

the set {ay, a2} is complete with respect to A, ¥ contains all possible cpositions
with respect to A.
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The following observations make it clear that every cposition in ¥ is accompanied
by all of its possible targets:

o The cpositions C;NC; were in both a; and a;. Ty JT; thus represents all
possible targets of C;NC,. Note that C;NC; and T, YT, are together in
o1 0s.

¢ The cpositions C; —C, were in a; and did not intersect a;. Thus, T} represents
all possible targets of C; — C,. Note that C; — C; and T} are together in o .

¢ The cpositions C;—C, were in @, and did not intersect a;. Thus, T, represents
all possible targets of C; — C;. Note that C; — C; and T} are together in a5 .

Since ¥ contains all possible motions with respect to A4, and every cposition in ¥
is accompanied by all of its possible targets, ¥ is complete with respect to A.

The intersection of the cpositions of ¥ is empty, as can be seen from Table 6.4.
Thus, ¥ is nonoverlapping.

Since ¥ is complete with respect to A4, and nonoverlapping, it is reliable with
respect to A, by Theorem 6.1. §

How can pairwise composition be extended to an arbitrary set of arcs A? To do
this, we will maintain two lists of arcs, ¥; and ¥,. ¥, is a list of arcs to be inserted
into ¥, and is initialized to A. ¥, should always be nonoverlapping, and is initially
empty. The union of ¥; and ¥, should always be complete. An arc « is removed
from ¥; and inserted into ¥, by composing a with each arc 8 of ¥,. Specifically,
this involves the following steps for each g:

1. Compose o with 3, producing a8, o™, and 8.
2. Replace §in ¥, by a5 and §5~.

3. ae—a".

Once we have composed a with each 3 in ¥;, we insert « into ¥,. (Note that
a 1s updated after each composition.) When ¥; becomes empty, ¥, is a complete,
nonoverlapping set.

Type 2 Arcs

For type 2 arcs, the simulation of Section 6.7 does not return a complete set of
arcs. Each arc returned by the simulation represents the set of motions that might
terminate in a given atom by sensing. The simulation does not take sticking into
account. The robot might stick in an intermediate atom on the way to its intended
target.

The set of type 2 arcs returned by the simulation can be made complete by
composing it with a complete set of type 1 arcs. Suppose that o, is a type 1 arc,
and a; a type 2 arc. Denote the cpositions of a; by Ci, and the targets by Ti.

129



Arc | Cpositions | Spositions | Target
a1 CiNC, Sz ThUT,
a{ Cz - Cl Sz Tg

Table 6.5: Composition of a type 1 arc oy = (C,T}) with a type 2 arc a; =
(02352’T2)-

face —»

Figure 6.17: This is a top view of a face. A and C are edges of the face, and B is
the interior of the face. The robot starts in A. An arc is created with cpositions
P, and spositions S. Under P and S, the robot is guaranteed to reach B from A,
and stop. C is a sticking region under P, but is not reachable from A. The planner
cannot know this using arc composition alone.

Denote the cpositions of a,; by C,, the spositions by S;, and the targets by T;. The
composition of a; and a; produces the two type 2 arcs shown in Table 6.5.

Composing type 1 arcs with type 2 arcs has no effect on the type 1 arcs. We
are merely using the results of the type 1 simulation to add targets to the type 2
arcs. Performing this composition is conservative, since a sticking region which is
unreachable may be inserted into a type 2 arc as a target. For example, see Figure
6.17. It is difficult to avoid this without performing a forward projection of the
motions in the arc. Leaving a sticking region out of an arc is even worse, for this
might make the arc unreliable.

Once we have composed the results of the type 2 simulation with the results
of the type 1 simulation, we have a complete set of type 2 arcs. We now need to
make this set nonoverlapping, while maintaining completeness, as per Theorem 6.1.
Let a; and a3 be a complete pair of type 2 arcs with respect to an atom A. Their
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Arc | Cpositions | Spositions | Target
ajaz | CiNC, 5NS, |TWUT:
ai” C, - C; S1 T
ay” Cy 51— 5, Ty
a3 C,—-Cy S, T,
a;” C, Sy — 5 T,

Table 6.6: Composition of a pair of type 2 arcs a; =
(02,52’T2)-

(C1,S1,T1) and Qo =

composition produces five arcs. The first arc is the intersection of a; and a5; the
respective cpositions and spositions of a; and a; are intersected, and the targets are
unioned. The second and third arcs result from modifying o to avoid the targets
of a;. The second arc avoids the targets of a; by clipping cpositions from «; which
are in a3. The third arc avoids the targets of a; by clipping spositions which are in
az. The targets of the second and third arcs are the unmodified targets of ;. The
fourth and fifth arcs are analogs of the second and third arcs, for the case where a5
is modified to avoid the targets of a;. The targets of the fourth and fifth arcs are
the unmodified targets of a;. These five arcs are shown in Figure 6.6.

The above intuition can be verified using a more analytical approach. Denote
the cpositions of a; by C, the spositions by Sy, and the targets by T;. Denote the
cpositions of a; by C,, the spositions by S,, and the targets by T;. The commanded
motions of a type 2 arc are given by pairs of the form (c, s), where c is a cposition,
and s is an sposition. ¢ can come from one of three nonoverlapping sets, C; N C,
C, — €3, and C; — C;. Similarly, s can come from one of three nonoverlapping
sets, 51N Sz, S1 — Sz, and S; — S;. Crossing these two sets produces nine possible
pairings of sets. For a pair of type 2 motions to be equal, they must have the same
cposition and sposition. These nine set pairings are mutually nonoverlapping, since
they were generated by crossing two sets of nonoverlapping sets. Two of the set
pairings do not contain motions that are in either a; or ay:

(C1=C, 52— 51)
(C2 = C1, 51— 53)

Thus, there are seven feasible pairings of motion sets. These pairings generate the
seven arcs shown in Table 6.7. These arcs are complete, because we generated all
feasible motion set pairings from «; and a;, and we carried with them all possible
targets. They are reliable because they are complete and nonoverlapping.

When two type 2 arcs a; and a; have identical cpositions and targets, they can
be merged into a single type 2 arc whose spositions are the union of the spositions
of a; and a;. Similarly, when two type 2 arcs a; and a; have identical spositions
and targets, they can be merged into a single type 2 arc whose cpositions are the
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Arc | Cpositions | Spositions | Target
(238251 CiNC; S1N Sz hUT,
ay C, - C; 51— 82 T
aj” Cr—-C, 51N Sz Ty
ay” CiNC; S51-5; T
az C, - C4 S: -5 T,
a;” | C2—C 51N S T,
a;” CiNC; S, — 5 T,

Table 6.7: Composition of a pair of type 2 arcs oy = (C1,51,Th) and a, =
(CZaSZaT2)-

Arc | Cpositions | Spositions | Sforces | Target
a3 | CiNCs S3 F3 LhUTs
ag 03 - Cl Ss FB T3

Table 6.8: Composition of a type 1 arc a; = (C;,T}) with a type 3 arc a;z =
(037 S3aF3,T3)-

union of the cpositions of a; and a,. Iteratively applying these simplifications to
Table 6.7 reduces the table to the five arcs shown in Table 6.6.

Type 3 Arcs

The derivations for type 3 arcs are analogous to those for type 2 arcs. We present
the results here for reference.

For type 3, the simulation of Section 6.7 does not return a complete set of arcs,
because the simulation does not take sticking into account. Composing type 3 arcs
with a complete set of type 1 arcs makes the type 3 arcs complete. Suppose that
a; is a type 1 arc, and a3 a type 3 arc. Denote the cpositions of a; by Cy, and the
targets by T;. Denote the cpositions of a3 by Cs, the spositions by Ss, the sforces
by F3, and the targets by T3. The composition of ; and a3 produces the two type
3 arcs shown in Table 6.8.

We now have a complete set of type 3 arcs. We need to make this set nonover-
lapping, while maintaining completeness, as per Theorem 6.1. Let a; and a5 be a
complete pair of type 3 arcs with respect to an atom A. Their composition produces
seven arcs. The first arc is the intersection of &; and a3; the respective cpositions,
spositions, and sforces of a; and a, are intersected, and the targets are unioned.
The second, third, and fourth arcs result from modifying ; to avoid the targets
of a;. The second arc avoids the targets of a; by clipping cpositions which are in
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Arc | Cpositions | Spositions | Sforces | Target
aja; | C1NC; S5iNS: | ANFE | TUT:
ai' Cl - Cz Sl F1 T1
a{' C1 51 - 52 F1 T1
a{_ Cl Sl F1 - F2 T1
a;” C,-C Sa F; T;
ay” C, S; — 5 F T,
0‘;_ Cs S, F-F T,

Table 6.9: Composition of a pair of type 3 arcs oy = (4,51, Fi,Th) and a; =
(02, 521 F27 T2)

az. The third arc avoids the targets of a; by clipping spositions which are in «as.
The fourth arc avoids the targets of a, by clipping sforces which are in a;. The
targets of the second, third, and fourth arcs are the unmodified targets of a;. The
fifth, sixth, and seventh arcs are analogs of the second, third, and fourth arcs, for
the case where a; is modified to avoid the targets of a;. The targets of the fifth,
sixth, and seventh arcs are the unmodified targets of ;. The seven arcs are shown
in Figure 6.9.

The above intuition can be verified using a more analytical approach. Denote
the cpositions of a; by C}, the spositions by S, the sforces by F, and the targets
by T;. Denote the cpositions of a; by C;, the spositions by S, the sforces by Fs,
and the targets by T,. The commanded motions of a type 3 arc are given by triples
of the form (c, s, ), where ¢ is a cposition, s is an sposition, and f is an sforce. ¢
can come from one of three nonoverlapping sets, C;(C;, C1 — C;, and C; — C;. s
can come from one of three nonoverlapping sets, $; N Sz, S; — 53, and S;— S;. f can
come from one of three nonoverlapping sets, Fy N F;, F; — F;, and F, — F;. Crossing
these three sets produces 27 possible set triples. For a pair of type 3 motions to
be equal, they must have the same cposition, sposition, and sforce. These 27 set
triples are mutually nonoverlapping, since they were generated by crossing three
sets of nonoverlapping sets. 12 of the set triples do not contain motions that are in

either a; or aj:
(C1-C2,8: - S, i F)
(C1—=C3,8:— 8, F, — F)
(C1 - Cy, 2 - 51, F2 — Fy)
(C2~ C1,51 — 83, Fi[ ) F)
(C2=C1,5: = 53, Fi — F)
(C2 = C1, 51 = 53, F; - Fy)
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Arc | Cpositions | Spositions | Sforces | Target
123125 Ci:NC; 51N S: hNF, | THUT:
Otl— Cl - 02 S1 - Sg F1 - F2 T1
ai” C,-C, S1N S NF, T
ar” CiNeG, 5-8 | ANF, T,
alf_ CiNC; 51N S, Fy - F, T
ai" Cl - Cz 51 i 52 F1 ﬂFz T1
aif_ C,-C; 51N Sz R -F T
ol ane | S-S |R-F| T
az C,-C 52— 8 F-F T,
as” C.-Cy S1N S: ANE T,
ay” Ci:NC; S5:-8 | ANE T,
aé“ CiNC,; 51N S; F, - F T,
ay” | Ca—-C S5:-8 | ANE, T,
a;’f— Cg - Cl Sl n Sg F2 - F1 Tz
o | ane S5;-5 |FK-F T,

Table 6.10: Composition of a pair of type 3 arcs a; = (C1,51,F,T1) and o, =
(C27 SZ’F2aT2)'

(C1 =03, 8182 F2 - )
(C1—C3, 5 - 53, F, — F)
(C:—C1, 5 ()52, A - F)
(
(

Clﬂcz,sl -5, F, - Fy)
(Ci(C2, S: = 51, F, - F)

Thus, there are fifteen feasible triples of motion sets. These triples generate the
fifteen arcs shown in Table 6.10. These arcs are complete, because we generated all
feasible motion set triples from o; and a3, and we carried with them all possible
targets. They are reliable because they are complete and nonoverlapping.

When two type 3 arcs a; and a; have identical cpositions, spositions, and targets,
they can be merged into a single type 3 arc whose sforces are the union of the sforces
of @; and a;. When two type 3 arcs a; and a, have identical cpositions, sforces,
and targets, they can be merged into a single type 3 arc whose spositions are the
union of the spositions of a; and a;. When two type 3 arcs a; and a3 have identical
spositions, sforces, and targets, they can be merged into a single type 3 arc whose
cpositions are the union of the cpositions of ; and a,. Iteratively applying these
simplifications to Table 6.10 reduces the table to the seven arcs shown in Table 6.9.
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Expanding the Arcs of a State with Multiple Atoms

We have presented a method for computing the strong arcs of a singleton state. If
a state X consists of multiple atoms, then we can compute the strong arcs of each
atom in X individually, as if each atom were a singleton state. Composing all of
the resulting arcs together will then make them reliable with respect to X.

Removing Free Space Targets

We now have a state X, and a set ¥ of arcs that contains all reliable motions that
are possible from X. Recall that in our atom decomposition, an atom was reserved
for free space. Its purpose was essentially to prevent motions from terminating in
free space. In our implementation, we do not actually do this. Instead, we treat
free space as a special case. We construct a polyhedral volume which represents
free space. We then grow this volume by ¢,. The grown'volume represents all
positions that may cause the robot to terminate in free space, under the given
position uncertainty. Finally, we clip this volume out of the commnianded positions
of each arc of X.

Installing the Arcs in the State Graph

We now have a set of strong arcs from X, which must be installed in the state
graph. The origin of each arc « is at X. The heads of a point at the primitive
states that can be formed from the target atoms of «, using the algorithm described
in Section 6.4.1.

Summary

This subsection described a method for constructing the arcs of a state X. We
began by computing the set of motions that were possible from each atom A of
X. For each A, the motions were grouped into weak arcs whose motions share the
same target. The arcs of X were then composed together, producing reliable strong
arcs. Motions which might terminate in free space were then removed from the arcs.
Finally, each arc was installed in the state graph, with its origin at X and pointing
at primitive states composed of target atoms from the arc.

6.7 Simulation

The previous section assumed the existence of a simulation which computes the set
of all motions that are possible from a given atom. This section gives the details of
the simulation. Given an atom A, the simulation returns a set of weak arcs. The
motions of each weak arc share the same target when starting from A.

From A, the robot can do one of two things. First, it can terminate in 4 without
ever leaving it. Simulation of this case is described in Section 6.7.1. Termination
can be accomplished by some combination of sticking (Section 6.7.4), position sens-
ing (Section 6.7.6), and force sensing (Section 6.7.7). Alternatively, the robot can
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proceed directly to another atom B, and continue on from there. Simulation of this
case is described in Section 6.7.2. This case requires that we simulate the direct
reaching of one atom from another. Direct reaching is discussed in Section 6.7.5.

6.7.1 Termination in A

To represent termination in A, we will construct three arcs, one of each arc type.
The target of each arc is A.

¢ The first arc is a type 1 arc. Section 6.7.4 presents a method for computing
the set of commanded positions that may cause the robot to stick in an atom
if it reaches it. These positions become the cpositions of our arc.

o The second arcis a type 2 arc. Since the robot is already in A, any commanded
position will cause it to reach A. Thus, the cpositions of the arc are set to all
possible commanded positions. Section 6.7.6 presents a method for computing
the set of sensed positions that are consistent with an atom. These sensed
positions become the spositions of our arc.

¢ The third arc is a type 3 arc. Since the robot is already in 4, any commanded
position will cause it to reach A. Thus, the cpositions of the arc are set to all
possible commanded positions. Section 6.7.6 presents a method for computing
the set of sensed positions that are consistent with an atom. These sensed
positions become the spositions of our arc. Section 6.7.7 presents a method
for computing the set of sensed forces that are consistent with an atom. These
sensed forces become the sforces of our arc.

6.7.2 Termination in Other Atoms

If the robot is to terminate in another atom, then it must leave A, and proceed
directly to some other atom B. Once it has reached B, it can either terminate in
B, or go somewhere else.

To leave A, the robot must not stick in 4. We can compute the set S4 of
commanded positions which are guaranteed to stick in A. A method to do this is
described in Section 6.7.4. These commanded positions should be avoided to allow
the possibility of leaving A.

We then enumerate each atom B # A which is a candidate for direct reachability.
The candidate set should include all faces in the environment, and any edges and
vertices that are connected to A. Isolated edges and vertices can be ignored, since
the probability of reaching them from A is zero. Note that for two atoms to be
connected, one of them must bound the other.

For each B, we compute the set of commanded positions Cp that might cause
the robot to reach B directly from A. Section 6.7.5 presents a method to do this.
We then clip §4 from Cp, to remove trajectories that are guaranteed to stick in A.
We then recursively call the simulation to compute the set of arcs representing the
possible motions from B. For each arc ap in this set, we intersect the cpositions of
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ap with Cp. This ensures that the target of ag is reachable from A. We collect
the arcs for each B, until all reachable atoms have been processed.

The recursion ends when either there are no atoms that are reachable from A, or
A is active in the chain of atoms that are currently being expanded. If 4 is active,
then the caller is put on a waitlist for the results of A. A waitlist entry consists of

the following fields:

waiter The atom that is waiting.
waitee The atom that is being waited for.

cpositions The set of commanded positions that may cause the robot to reach the
waitee from the waiter.

A waitlist entry cannot be processed until the waitee is finished. For this reason,
the simulation returns a waitlist a well as a set of arcs.

When the simulation of 4 calls for a recursive simulation of B, the recursive call
returns a waitlist. On return, the simulation of A checks through this waitlist. If
an entry is found with B waiting for an atom J # A, then the simulation creates a
new waitlist entry with A waiting for J as well. The cpositions of A’s waitlist entry
are equal to Cp intersected with the cpositions of B’s waitlist entry.

When the simulation of A completes its computations, it checks through the
waitlist for atoms that are waiting for A. If one is found, it is removed from the
list. A new set of arcs is created by copying the arcs of A, and intersecting their
cpositions with the cpositions of the waitlist entry. This ensures that the targets of
the new arcs are reachable by the waiter. The new arcs are then appended to the
previous arcs of the waiter.

If A is on the waitlist when the simulation of A completes, then any atom waiting
for A must also wait for atoms that 4 is waiting for. The simulation checks through
the waitlist for an atom B that is waiting for A. If such a B is found, and there is
another waitlist entry in which A is waiting for an atom J # B, then a new waitlist
entry is created in which B is waiting for J. The cpositions of the new waitlist
entry are equal to the intersection of the cpositions of the other two waitlist entries.

6.7.3 Memoization

We can save the results of A’s simulation in a lookup table, in the event that A is
to be simulated again. This can happen when A is reachable from another atom in
the current state expansion, or when A is needed to expand another state.

Note that in the expansion of an atom A, the simulation calls itself recursively
on each atom B that is directly or indirectly reachable from A. Thus, after one
state has been expanded, it is likely that most of the atoms in an environment have
been expanded. This means that with memoization, state expansions beyond the
first can usually be performed cheaply.

There is one minor difficulty having to do with waitlists. The simulation of
an atom A may have completed but left A on a waitlist. When the results of the
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simulation are found in the lookup table by a subsequent call, all currently existing
waitlists must also be checked, to see if A is waiting for anything. Any waitlist
entries found must be returned along with the arcs in the lookup table.

The overall structure of the simulation has now been described. The rest of the
section concerns itself with the details of subtasks.

6.7.4 Sticking

The subtask here is to compute the set of commanded positions that cause sticking
on an atom A if the robot reaches it. There are two types of sticking calculations.
The weak sticking region of A consists of the commanded positions that might cause
sticking on A if the robot reaches it. The strong sticking region of A consists of the
commanded positions that are guaranteed to cause sticking on A if the robot reaches
it.

Let’s start with a simple case which demonstrates the basic principles of weak
and strong sticking. Suppose that A is a point on a face. The friction cone of A is
depicted in Figure 2.3. If we negate A’s friction cone, then we have the set of robot
forces that will cause sticking on 4. In the absence of control and sensing error, a
generalized spring command causes the robot to impart a force in the direction of
the commanded position. Thus, the negative friction cone also represents the set of
commanded positions that will cause sticking on A, in the absence of control and
sensing uncertainty.

Under velocity uncertainty, the force imparted by the robot may err by an angle
that may be as large as 8,. This is where weak and strong sticking come into play.
To represent the weak sticking region of A, we need to increase the angle of the
negative friction cone by 6,. We call the resulting cone the weak sticking cone of A.
This cone includes commanded positions which may cause the robot to stick due to
velocity error. Figure 6.18 shows the weak sticking cone of A.

To represent the strong sticking region of A, we need to decrease the angle of
the negative friction cone by 6,. The resulting cone is the strong sticking cone of A.
This cone contains commanded positions which are guaranteed to cause sticking,
even under maximal velocity error. Figure 6.19 shows the strong sticking cone of
A

Under position sensing uncertainty, the robot may misjudge its position by as
much as €,. This may cause the robot to aim for a commanded position which is off
by as much as €,. This will alter the force imparted by the robot. We can take this
into account by growing the weak sticking cone volumetrically by ¢, and shrinking
the strong sticking cone volumetrically by ;.

We have finished the case of a point on a face. The atoms that our planner deals
with are (a) entire faces, (b) edges that are at the intersection of two faces, and (c)
vertices that are at the intersection of a number of faces. These cases are detailed
below.

138



friction cone

weak sticking cone

Figure 6.18: The weak sticking cone of a point on a face, under velocity uncertainty.

“4— friction cone

Figure 6.19: The strong sticking cone of a point on a face, under velocity uncertainty.
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friction cone

weak sticking region

Figure 6.20: The weak sticking region of a face is equal to the union of the weak
sticking cones of the points on the face.

Sticking on a Face

Let F be a face, and ¢ its friction cone angle. We are to compute a set P of
commanded positions that cause sticking on A.

We begin with weak sticking. To compute the weak sticking region of a face, we
could compute the weak sticking cone for each point x € f, and union the resulting
cones together. See Figure 6.20. With this as intuition, we will present a more
efficient algorithm for computing P. In most cases, P will be a convex set. The
algorithm computes P by constructing its planar bounds.

Assume initially that ¢+ 6, < 2. In order that the robot stay on F', commanded
positions must be interior to F. For weak sticking, we bound P by a plane which
1s parallel to F, and exterior to it by €,. This region includes commanded positions
that might be interpreted as interior to F' under position sensing error.

The remaining bounds on P are generated from the bounding edges of F. For
each edge €, a bounding plane is constructed that contains &. To account for velocity
uncertainty, the plane makes an angle of ¢ + 6, with an interior normal vector to
F, as shown in Figure 6.21. To account for position sensing uncertainty, the plane
is then translated exterior to € by ;.

Figure 6.22 shows the weak sticking region of the bottom of a hole, as computed
by the planner.

For the case where ¢ + 6, > Z, it is possible to command a position that is
exterior to F, and have the robot stick on F. In this case, P will have a concavity.
For simplicity, we will skip the details of this construction.

The set P is always convex for strong sticking. In order that commanded posi-
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Figure 6.21: Each edge € of a face generates a bounding plane on the weak sticking

positions of the face. ¢ is the friction cone angle, and 6, is the velocity uncertainty
angle.

Figure 6.22: The weak sticking region of the bottom of a hole, as computed by the
planner.
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Figure 6.23: The strong sticking region of the bottom of a hole, as computed by
the planner.

tions be interior to F', we bound P by a plane which is parallel to F and interior
to it by e,. This region contains commanded positions that are guaranteed to be
interpreted as interior to F', even under maximal position sensing error.

Initially, one might suspect that strong sticking on F would require intersecting
the strong sticking cones for each x € f. This would ensure that no matter where
the robot strikes F, the commanded position will cause it to stick there. However,
this intersection will produce an empty set of commanded positions in most cases.

Fortunately, it is not necessary that the robot stick at the point where it strikes
F. 1t is acceptable for the robot to slide to another point on F and stick there, as
long as it does not fall off F' along the way. When the robot slides on F, it slides
toward the projection of the commanded position onto F. Sliding trajectories stay
within a planar cylinder of radius ¢, as shown in Figure 3.14. To avoid falling
off F', commanded positions must be at least ¢, inside the bounding edges of F.
To implement this constraint, we bound P for each edge € by a plane which is
perpendicular to F, parallel to €, and interior to € by ¢,. Figure 6.23 shows the
strong sticking region of the bottom of a hole, as computed by the planner.

Sticking on an Edge

Let € be an edge, cobounded by the faces f; and f,. We will compute the set of
commanded positions that cause sticking on &.

We begin with weak sticking. For each point x € &, we could compute the weak
sticking cone of x, and union all of the cones together. The actual algorithm merely
constructs the bounding planes of this set.

Figure 2.4 shows the friction cone for a point on a convex edge. The weak
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Figure 6.24: The weak sticking cone of a point on a convex edge.

sticking cone of x is equal to the negative friction cone, with the cone angle increased
by 6,, and the cone then grown volumetrically by ¢,, to account for velocity and
position sensing uncertainty. Note that the cone angle of a nonsymmetric cone
can be increased or decreased by rotating each bounding ray of the cone about a
perpendicular tangent at the vertex. Figure 6.24 shows the weak sticking cone of a
point on a convex edge. The weak sticking region of € is equal to the union of all

of the weak sticking cones. The weak sticking region of a convex edge is shown in
Figure 6.25.

The weak sticking region of an edge takes a radically different shape when the
maximum friction cone angle plus 6, exceeds Z. It is now possible to command a
position that is exterior to both f; and f;, and have the robot stick on €. In this
case, the weak sticking region will have a concavity. For simplicity we will skip the
details of this construction.

One might initially suspect that strong sticking on & would require intersecting
the strong sticking cones for each x € € This would ensure that no matter where
the robot strikes €, the commanded position will cause it to stick there. However,
this intersection would produce an empty set of commanded positions in most cases.
Fortunately, it is not necessary that the robot stick at the point where it strikes e.
It is acceptable for the robot to slide to another point on € and stick there, as long
as it does not fall off € along the way. It is possible to compute strong sticking on €
by unioning the strong sticking cones of each x € . Suppose that the commanded
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Figure 6.25: The weak sticking region of a convex edge.

position p is in the union of the strong sticking cones. If the robot strikes € at some
point X, and p is not in the strong sticking cone of x, then the edge imparts the
reaction force shown in Figure 6.26. The resulting force on the robot causes the
robot to slide along €, without falling off, until it sticks at the first point x’ which
contains p in its strong sticking cone.

The strong sticking cone of a point x € e is equal to the negative friction cone of
X, with the cone angle decreased by 6,, and the cone then shrunk by es, to account
for velocity and position sensing uncertainty. Figure 6.27 shows the strong sticking
cone of a point on a convex edge, under velocity uncertainty. The strong sticking
region of a convex edge is shown in Figure 6.28.

Sticking on a Vertex

Let v be a vertex, which is the intersection of a set of faces. We will compute a set
of commanded positions which stick on v.

The friction cone of a convex vertex v is shown in Figure 2.5. The weak sticking
region of v is equal to the negative friction cone, with the cone angle increased
by 6,, and the cone then grown volumetrically by ¢, to account for velocity and
position sensing uncertainty.

The strong sticking region of v is equal to the negative friction cone, with the
cone angle decreased by 6,, and the cone then shrunk volumetrically by e,, to
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Figure 6.26: A strong sticking point may cause sliding on an edge. The commanded
position is p. The robot strikes the edge at x, and imparts the force f. The reaction
force of the edge is r.

friction cone s

¢— strong sticking cone

Figure 6.27: The strong sticking cone of a point on a convex edge, under velocity
uncertainty.
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Figure 6.28: The strong sticking region of a convex edge, under velocity uncertainty.

account for velocity and position sensing uncertainty.

6.7.5 Direct Reaching

Our task here is to compute the commanded positions that cause the robot to reach
an atom B directly from an atom A. There are two types of reaching calculations.
Weak reaching positions are commanded positions that might cause the robot to
reach B directly from A. Strong reaching positions are commanded positions that
guarantee reaching B directly from A.

Suppose that we have a function to compute the set of commanded positions
that reach B directly from A, ignoring obstacles in between. Then we can make the
following observations:

e The commanded positions which weakly reach B directly from A are equal
to the commanded positions which weakly reach B directly from A, ignoring
obstacles, minus the commanded positions which strongly reach O directly
from A, ignoring obstacles, for all atoms O between A and B.

¢ The commanded positions which strongly reach B directly from A are equal
to the commanded positions which strongly reach B directly from A4, ignoring
obstacles, minus the commanded positions which weakly reach O directly from
A, ignoring obstacles, for all atoms O between 4 and B.

The first observation says that to reach B directly and weakly, the robot must
choose commanded positions which might strike B, and aren’t guaranteed to strike
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Figure 6.29: We are to compute the weak reaching positions of B directly from A.

some obstacle between A and B. The second observation says that to reach B
directly and strongly, the robot must choose commanded positions which will strike
B, and can’t possibly strike some obstacle between A and B.

These observations lead to a procedure for computing direct reaching positions.
The procedure calls two basic subfunctions. The first subfunction computes ob-
stacles that are between A and B. The second subfunction computes commanded
positions which reach B directly from A, ignoring obstacles. Both of these subfunc-
tions are described below.

An interesting bug arises in the case of weak reaching. Consider the two-
dimensional example shown in Figure 6.29. A is a point on the table, and B is
an edge at the bottom of a slanted hole. A connects two edges I; and I, above
the hole. We are to compute the weak reaching positions of B directly from A.
Figure 6.30 shows the weak reaching positions of B directly from A, ignoring obsta-
cles. Figure 6.31 shows the strong reaching positions of I, directly from A, ignoring
obstacles. Figure 6.32 shows the strong reaching positions of I; directly from A,
ignoring obstacles. Clipping the strong reaching positions of I; and I, from the
weak reaching positions of B yields the commanded positions shown in Figure 6.33.
These commanded positions supposedly will allow the robot to sneak between I
and I, which is impossible. The solution is to clip the weak reaching positions
of A from the result. The weak reaching positions of A from itself are equal to
all possible commanded positions. After clipping, no weak reaching positions of B
remain.

More generally, for weak reaching, if there exists an edge or vertex which con-
nects a set of faces that are all strongly reachable by commanded positions that
might reach B, then the above bug may occur. To prevent the bug, we must clip
commanded positions which can weakly reach the connecting edge or vertex from
the result. These commanded positions are precisely the ones that should not have
been clipped by the strong reaching computation.

Computing Obstacles

Here, our task is to compute the obstacle atoms that are in the path between two
atoms A and B. Since the robot can veer from its course by as much as ¢, we
are looking for obstacles that are in the volume of space between A and B, grown
laterally by e,.
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Figure 6.30: The weak reaching positions of B directly from A, ignoring obstacles.
A I,
A‘B//

Figure 6.31: The strong reaching positions of I; directly from A, ignoring obstacles.
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Figure 6.32: The strong reaching positions of I, directly from A, ignoring obstacles.
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Figure 6.33: The weak reaching positions of B directly from A, ignoring obstacles,
minus the strong reaching positions of I; and I, directly from A, ignoring obstacles.

If A and B are connected, then there are no obstacles between them. If A and
B are unconnected but share a common face, then the obstacle that separates them
is the face itself.

If A and B do not share a common face, then any atom which is connected to
A or B is an obstacle. The remaining obstacles are atoms which are in the volume
of space between A and B, grown laterally by ¢,. Each atom in the environment
which intersects this volume is an obstacle.

Direct Reaching Between Connected Atoms, Ignoring Obstacles

We are to compute the commanded positions that allow the robot to reach an atom
B directly from an atom A, ignoring obstacles between A and B. There are two
cases to consider. The first case, when A and B are connected, is discussed in
this subsection. The case where A and B are unconnected is discussed in the next
subsection.

Assume that A and B are connected on a common face F. We will compute a
convex polyhedron P of reaching positions.

In order that the robot slide from A to B, it must remain on F. This means
that commanded positions must be interior to F'. For weak reaching, we bound P
by a plane which is parallel to F, and exterior to it by e,. This region includes
commanded positions that might be interpreted as interior to F' under position
sensing error. For strong reaching, we bound P by a plane which is parallel to
F', and interior to it by ¢,. This region contains commanded positions that are
guaranteed to be interpreted as interior to F', even under maximal position sensing
error.

We need a constraint on P to make sure that the robot passes from 4 to B. To
do this, we construct separating planes between A and B. Figure 6.34 shows the
placement of the separating planes for various combinations of A and B. Normally,
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vertex/edge vertex/face edge/face

Figure 6.34: The placement of separating planes between two connected atoms, for
various combinations.

a single plane will do. If 4 is a vertex, and B is a face, or vice versa, then two
separating planes are needed, one for each edge that the vertex connects.

For each separating plane, we construct a bound on P to ensure that the robot
crosses the plane. For weak reaching, we move the separating plane toward A by e,
and bound P by it. Commanded positions must be on the B side of the plane. This
bound includes positions which might cause B to be reached due to trajectory error.
For strong reaching, we move the separating plane toward B by €y, and bound P
by it. This bound ensures reaching B even under maximal positioning error.

If A is a face, and B is a bounding edge, then two other planar bounds on P
are needed for strong reaching. Each bound is orthogonal to A, parallel to an edge
of A which is adjacent to B, and interior to the edge by ¢,. Figure 6.35 shows an
example. These additional bounds ensure that trajectories do not slide off 4 on the
way to B.

If B is a vertex, then strong reaching is impossible, since a point cannot be

reached accurately under control uncertainty. Similarly, if A is a vertex, and B is a
cobounding edge, then strong reaching is impossible.

Direct Reaching Between Unconnected Atoms, Ignoring Obstacles

Now we are to compute the commanded positions that allow the robot to reach an
atom B directly from an unconnected atom A, ignoring obstacles between 4 and
B.

To simplify the presentation, we will begin by describing the computation in two
dimensions. Assume that A and B are either vertices or edges in the plane. We
will construct a convex polygon P that contains the reaching positions of B from
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Figure 6.35: P contains the strong reaching positions of the edge B from its
cobounding face A. Linear bounds on P are derived from B and from its adja-
cent edges.

A. Keep in mind that an edge in the plane is the counterpart to a face in three
dimensions. Thus, an edge has a unique normal vector, which defines a half space
which is exterior to it.

First, we will treat the case where A and B face each other. For this to be true,
A must be exterior to B, and B exterior to A. To ensure this, we must compute a
normal vector for both. If A or B is an edge, then its normal vector is given. If A
is a vertex, and B is an edge, then A is assigned the reverse of B’s normal vector.
If B is a vertex, and A is an edge, then B is assigned the reverse of A’s normal
vector. If both A and B are vertices, then their normal vectors point at each other.
To ensure that A and B face each other, we clip from A the portion that is interior
to B, and from B the portion that is interior to A. We continue on, using what
remains of the two. :

Commanded positions must be behind B. To enforce this constraint, we bound
P by an edge which is perpendicular to B’s normal vector. For weak reaching, we
place this bound in front of B by e, to allow reaching B due to trajectory error. For
strong reaching, we place this bound behind B by ¢, to ensure reaching B despite
positioning error.

For weak reaching, for each p € P, a nominal trajectory of the robot for some
X € A must come within ¢, of B at some point. This allows for trajectories that
strike B due to trajectory error. We need to construct bounds on P such that this
property holds. Figure 6.36 shows the case where 4 and B are both vertices. Figure
6.37 shows the case where A is a vertex and B is an edge. Figure 6.38 shows the
case where A4 is an edge and B is a vertex. Figure 6.39 shows the case where A
and B are both edges. To construct one of these bounds, we construct a line which
connects an extreme point of A with the extreme point of B on the opposite side.
The line is then rotated about the extreme point of A such that it is exterior to B,

and its perpendicular distance from the extreme point of B is ¢. The rotated line
bounds P.
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Figure 6.36: The weak reaching positions for the case where A and B are both
vertices.

Figure 6.37: The weak reaching positions for the case where A is a vertex, and B
is an edge.
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Figure 6.38: The weak reaching positions for the case where A is an edge, and B is
a vertex.

Figure 6.39: The weak reaching positions for the case where A and B are both
edges.
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Figure 6.40: The strong reaching positions for the case where 4 is a vertex, and B
is an edge.
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Figure 6.41: The strong reaching positions for the case where A and B are both
edges.

For strong reaching, for each p € P, all nominal trajectories of the robot must
be interior to B by at least ¢; when they reach it. This ensures that they won’t
pass 1t by due to trajectory error. We need to construct bounds on P such that this
property holds. Due to control uncertainty, strongly reaching a vertex is impossible.
Figure 6.40 shows the case where A is a vertex and B is an edge. Figure 6.41 shows
case where 4 and B are both edges. To construct one of these bounds, we construct
a line which connects an extreme point of A with the extreme point of B on the
same side. The line is then rotated about the extreme point of A such that it is
interior to B, and its perpendicular distance from the extreme point of B is ¢;. The
rotated line bounds P.

If A and B do not face each other, then strong reaching is impossible. Weak
reaching may be possible, however. For example, Figure 6.42 shows a case where
weak reaching is possible between two unconnected parallel edges. Generally, weak
reaching positions between edges which do not face each other can be computed
as the union of weak reaching positions between vertices of A and the edge B. If
the vertices of A do not face B, as is the case in Figure 6.42, then weak reaching
positions can be computed as the union of weak reaching positions between vertices
of A and vertices of B.

The planar algorithm generalizes fairly easily to three dimensions. We will
construct a convex set P that contains the reaching positions of B from A.

For the case where A and B face each other, we must compute normal vectors
to both. There are more cases in three dimensions than two. For simplicity, we will
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Figure 6.42: P contains the weak reaching positions between the unconnected par-
allel edges A and B.

not describe them here. We then clip from A the portion that is interior to B, and
from B the portion that is interior to A. We continue on, using what remains of
the two.

Commanded positions must be behind B. To enforce this constraint, we bound
P by a plane which is perpendicular to B’s normal vector. For weak reaching, we
place this bound in front of B by ¢, For strong reaching, we place this bound
behind B by e,.

For weak reaching, there are two types of lateral bounds. For each bound of the
first type, we construct a plane which connects an edge of 4 with the extreme point
of B on the opposite side. This plane is then rotated about the edge of A such that
1t is exterior to B, and its perpendicular distance from the extreme point of B is ¢;.
For each bound of the second type, we construct a plane which connects an edge
of B with the extreme point of A on the opposite side. This plane is then rotated
about the extreme point of A such that it is exterior to B, and its perpendicular
distance from the edge of B is ¢;.

Strongly reaching a vertex or edge is impossible. When the goal is a face, there
are two types of lateral bounds. For each bound of the first type, we construct a
plane which connects an edge of A with the extreme point of B on the same side.
This plane is then rotated about the edge of A such that it is interior to B, and its
perpendicular distance from the extreme point of B is ¢. For each bound of the
second type, we construct a plane which connects an edge of B with the extreme
point of A on the same side. This plane is then rotated about the extreme point of
A such that it is interior to B, and its perpendicular distance from the edge of B is
€.

Figures 6.43 through 6.45 show examples of reaching computations between
unconnected atoms. These examples were all generated by the planner.

If A and B do not face each other, then strong reaching is impossible. Weak
reaching may be possible, however. For example, consider Figure 6.42 as a cross
section of a three dimensional environment. Here, weak reaching is possible be-
tween two unconnected parallel faces. Generally, weak reaching positions between
faces which do not face each other can be computed as the union of weak reaching
positions between edges of A and the face B. If the edges of A do not face B, as is
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Figure 6.43: The weak reaching positions of the bottom of a cube, when starting
from the top left edge, as computed by the planner.

Figure 6.44: The strong reaching positions of the bottom of a cube, when starting
from the top left edge, as computed by the planner.
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Figure 6.45: The weak reaching positions of the top left edge of a cube, when
starting from the bottom, as computed by the planner.

the case in Figure 6.42, then weak reaching positions can be computed as the union
of weak reaching positions between edges of A and edges of B.

6.7.6 Sensed Positions

Computing the set of possible sensed positions of an atom A is simply a matter of
growing A in three dimensions by €,. If A is a vertex, we obtain a sphere of radius
€s. If A is an edge, we obtain a cylinder of radius ¢,. If A is a face, we obtain a block
which is rounded at its vertices. In practice, all of these sets can be approximated
by convex polyhedra. Figure 6.46 shows the possible sensed positions of the bottom
of a hole.

6.7.7 Sénsed Forces -

The possible sensed forces of a point is equal to its friction cone, with the cone angle
increased by 6.

e Figure 2.3 shows the friction cone of a point on face.

o Figure 2.4 shows the friction cone of a point on a convex edge. This cone is
the set sum of the friction cones of the containing faces of the edge.
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Figure 6.46: The possible sensed positions of the bottom of a hole.

e Figure 2.5 shows the friction cone of a convex vertex. This cone is the set sum
of the friction cones of the containing faces of the vertex.

6.8 Computational Complexity

This section examines the worst case time complexity of the planner. The analysis
results in an upper bound on the time that it will take for an application. The
analysis does not necessarily characterize a realistic example, but it does serve as a
warning of what might happen in an arbitrarily chosen example.

We will measure the complexity of a computation by the number of arc opera-
tions that it takes. Arc operations include union, intersection, and differencing. An
arc is composed of a set of polyhedra. Polyhedral operations can be performed in
constant time with respect to the size of the environment.

The central computation of the planner is the expansion of a state. Expanding a
state involves computing weak arcs for all component atoms, and composing them
together. Thanks to memoization, after the first state has been expanded, most of
the atoms in an environment will have been expanded. Thus, expanding subsequent
states will take much less time. It is thus reasonable to characterize the complexity
of the planner by the complexity of a state expansion.

If we limit the number of atoms per state, then the number of weak arcs per
state is equal in order to the number of weak arcs per atom. Thus, it suffices to

compute the number of arc operations required to compose all of the weak arcs of
an atom.
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Let k, be the number of atoms. The number of weak arcs per atom is equal to
k. times the number of weak arcs from an atom A to an atom B. The maximum
number of atoms in a path from A to B is k,. The maximum number of topologically
different paths from A to B is equal to the number of permutations of k, —2 objects,
since the first and last atoms in the path are fixed. Thus, there are at most (k, — 2)!
different paths from A to B. This is a conservative bound, since many paths are
impossible, as we shall see below. Using the various types of termination, there are
then O((k, — 2)!) different arcs from A to B. Thus, there are O(k,(k, — 2)!) weak

arcs per state.

6.8.1 Sticking Termination

Type 1 arcs have a useful property: If two type 1 arcs have identical targets, then
they can be unioned together into a single arc. This property allows us to combine
the weak type 1 arcs of a state into only O(k,) different arcs. O(k,(k, — 2)!) arc
operations are required to do this for the first state.

Composing k. different weak type 1 arcs results in O(2*) different arcs. The
target of each resultant arc is a subset of the k, weak targets. The composition can
be performed in O(2*<~!) arc operations, using the algorithm of Section 6.6.2. The
algorithm inserts each arc into a nonoverlapping queue. The first arc is inserted
into the queue in 0 arc operations, resulting in a queue of length 1. The second arc
1s inserted into the queue in O(1) arc operations, resulting in a queue of maximal
length 3. The third arc is inserted into the queue in O(3) arc operations, resulting
in a queue of maximal length 7. The k,th arc is inserted into the queue in O(2%~1)
arc operations, resulting in a queue of length O(2*).

The total number of arc operations required to expand the first state is

O(kqy(ky — 2)! + 2571, (6.3)

Although this expression is exponential, in practice the number of arc operations
is expected to be much less. There are two exponential terms in the expression.
The first, O((k. — 2)!), represents the number of topologically different paths from
an atom A to an atom B. Many of these paths can be pruned by the following
constraints:

¢ An edge or vertex can only follow an atom that it is physically connected to.
¢ Faces which are oceluded from each other cannot follow each other in a path.

The second exponential term, O(2*~!), represents the number of different target
sets that the robot can terminate in. Most target sets are not feasible, under the
constraint that they must be reachable under a common commanded position.

6.8.2 Sensing Termination

In general, a pair of type 2 or 3 arcs which have identical targets cannot be unioned
together. We will show this for type 2 arcs. Suppose that {a;, az, a3} is a reliable
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set of type 2 arcs. a; and a; have identical targets; a; has a different target than
the other two. The cpositions of a; and a3 intersect, but the spositions do not. The
spositions of a; and a3 intersect, but the cpositions do not. Since the unioned arc
a3 U a; intersects a3, the set {a; |J @z, a3} is unreliable.

Thus, we are stuck with O(k.(k, — 2)!) weak arcs per state. Composing these
arcs results in O(2%s(*a=2)") different arcs. Each resulting arc is a subset of the
ko(ke — 2)! weak arcs. The composition can be performed in

0(2ka(k¢—2)!—1) (64)

arc operations. This expression also represents the total number of arc operations
required to expand the first state using type 2 or 3 termination.

6.8.3 Conclusion

In the worst case, expanding a state under sticking termination may require an
exponential number of arc operations. It is expected that in practice, the actual
number of arc operations required is much less.

In the worst case, expanding a state under sensing termination may require a
doubly exponential number of arc operations. This gives us reason to believe that
in practice this computation is much more difficult than sticking termination. Our
experiments supported this belief.

6.9 Summary

In this chapter, we described a compliant motion planner. The input to the plan-
ner is a polyhedral environment representing the configuration space of a robot
which can translate in three dimensions, along with surface start and goal regions.
The planner attempts to compute an executable graph called a state graph which
contains generalized spring motions with conditional tests after each motion. The
motions may be terminated by either sticking or sensing.

The planner characterizes the state of the robot as a set of atoms where the
robot might be located under bounded sensing and control uncertainty. An atom
is a set of configurations. The set of atoms is a partition of configuration space
into complete, nonoverlapping subsets. We chose an atom decomposition in which
atoms are vertices, edges, and faces from the environment, plus one atom for all of
free space.

The planner operates by expanding the arcs of heuristically chosen states, and
testing the resulting state graph using an AND/OR tree evaluator. To expand a
state, the planner computes all possible motions from the state, grouping them
into weak arcs, which have a common target atom. Weak arcs are then composed
into reliable strong arcs, which share a common set of target atoms. A strong arc
points at states that are composed of confusable collections of its target atoms. On

execution, the robot decides which target state it has reached using position and
force sensing.
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Chapter 7
Future Work

This chapter presents ideas for future work.

7.1 Automatic Atom Decomposition

A critical component of the planner input is a decomposition of the environment
into faces. This decomposition is used to generate atoms. The success of the planner
depends on the atom decomposition. We need an algorithm for performing the atom
decomposition automatically.

Figure 6.13 showed an example where an atom was so large that a reliable
strategy was overlooked. Referring to the figure, one way to solve this task is to
make the region B C A an atom. This reduces the positional uncertainty of the
robot such that the obstacles O; and O; can be avoided by the forward projection
of the start region under the commanded position p.

7.1.1 Subset Atoms

In thinking about atom decomposition in tasks like that of Figure 6.13, one wonders
to what extent a robot can attain an accurate placement B on a face A once it has
reached an arbitrary point of A. It turns out that under certain conditions, the
robot can position itself on a face to within ¢, of a desired position x4, starting at
any point of A. To do this, we command a generalized spring position p which
causes the robot to slide across the face within a cylinder of radius ¢ toward xg.
The sliding trajectory is terminated by sensing a position that is within €, of x4.
This technique works under the following conditions:

1. The commanded position p must be past x4, such that the weak sticking region
of A due to p does not intersect the desired sliding trajectory. Otherwise,
premature termination due to sticking may occur. Whether this is possible
depends on the friction cone of A. For example, if A has infinite friction, then
sliding is impossible.

2. x4 must be within the border of A by at least ¢,, so that the robot does not
fall off of A while sliding to xg.
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Our conclusion is that on most faces we can arbitrarily define subset atoms,
circles of radius ¢ that are reachable from every point on the face. The idea is
that a motion strategy which reaches the face should proceed to a subset atom
before exiting the face. This reduces the size of forward projections from the face.
Choosing the placement of subset atoms is an open problem.

7.1.2 Dynamic Decomposition

A dynamic decomposition would compute the atom decomposition while planning.
For example, the planner might be able to use forward or backward projections to
determine the placement of subset atoms.

7.1.3 Static Decomposition

A static decomposition would decompose an environment into faces prior to plan-
ning. For example, consider the hole problem of Figure 5.2, and its solution in
Figures 6.10 and 6.11. The surface above the hole has been decomposed into four
faces. The start region is an edge on a face which is aligned with the hole, and of the
same width. If the width of that face were any larger, the solution of the problem
would have been much more difficult. It is difficult to slide into the hole from one
of the two large faces above the hole. The reason is that a motion which attempts
to slide into the hole may also slide onto one of the two smaller faces above the
hole. A possible solution to this problem is a decomposition in which the interior
angles at vertices are always acute. Figure 7.1 shows a new decomposition of the
hole environment using this approach. This approach seems to work for sliding
trajectories, but does not help the free space problem of Figure 6.13.

7.2 Modeling Error

We have allowed for errors in the sensing and control of the robot, but have ignored
geometric errors in the parts of an assembly. These errors could be due to either
physical variations in parts, or geometric modeling errors.

One approach would be to treat these errors as parametric errors, and establish
bounds on them. For example, polyhedral models can be seen as data structures of
vertices. We could model vertez uncertainty, in which uncertainty balls are used to
bound the possible locations of vertices in configuration space. These uncertainty
balls would define a range of orientations for each face. To compute sticking and
sliding on a face, we would need to include uncertainty in the orientation of the
face in the weak and strong sticking cones. The uncertainty balls would also define
a range of volumes for each obstacle. For example, Figure 7.2 shows the maximal
volume for an obstacle. To compute collision free trajectories, we could represent all
obstacles by their maximal volume. Alternatively, to compute all reachable contact
points on an obstacle B, we could represent all obstacles O # B by their minimal
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start region

Figure 7.1: An environment consisting of a square hole in an obstacle surface. All
interior face angles are acute.
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Figure 7.2: An object and its maximal volume under vertex uncertainty.

volume. This would maximize free space travel to B. Many details would have to
be considered to complete this approach.

Another approach, currently being pursued by Donald [1986], is to represent
variations in the parts by additional configuration space dimensions. Many con-
figuration space planning concepts, such as pre-images, extend naturally to the
new space. Some problems caused by higher dimensional configuration spaces are
described in Section 7.5.

7.3 Free Space Goals

The programming system allows motions whose start and goal regions are in contact
space. It would be nice to have the option of planning motions which start and stop
in free space.

This would not be difficult to implement for the teaching system. The teaching
system computes backprojections by constructing reachable volumes in configura-
tion space, and performing hidden surface analysis to remove unreachable contact
points. Instead of returning contact regions, we could return volumes of free space
between contact regions and the backprojection base.

Extending the planner to free space goals would be more difficult. Currently,
we group all of free space into one atom. We would have to decompose free space
into multiple atoms. This decomposition could be done in many ways. This task
falls into the realm of automatic atom decomposition (Section 7.1). The collision-
free motion planning literature has been considering this decomposition problem
for some time. See Yap [1985] for a survey.

7.4 Rotations

Since many applications require rotations, extensions are needed in this area. Ro-
tations create a number of problems for our algorithms. The first problem is that
rotations add more dimensions to the configuration space. Adding a complete set
of rotations to a three-dimensional robot results in a six-dimensional configuration
space. Aspects of this problem are examined in Section 7.5.
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7.4.1 Planar Cartesian Robots with Rotation

If we examine the case of a planar Cartesian robot which can rotate, then we
can consider the effects of rotation in a three-dimensional configuration space. A
configuration space of this type consists of two translational dimensions and one
rotational dimension.

Euclidean Approximation

Rotation spaces wrap around. If we rotate an object incrementally in the positive
or negative direction, we will eventually get back to where we started. Since our
system assumes Euclidean space coordinates, we could approximate one-dimensional
rotations by a subset of ®!. In order to avoid redundancy, we could choose the
subset [—m,7]. Unfortunately, this would eliminate trajectories which achieve a
desired orientation by rotating beyond —m or 7. However, many tasks could be
performed within this limitation.

When constructing a three-dimensional space where one of the dimensions repre-
sents rotations, we are faced with the question of how to scale rotational coordinates
so that they relate meaningfully to translational coordinates. Erdmann [1984] ob-
served that the normal vector at a contact point should represent the reaction force

of the surface in the absence of friction. He showed that this property can be
satisfied as follows:

1. The reference point of the robot should be chosen at its center of mass. This
ensures that pure forces at the reference point result in pure translations, and
that pure torques result in pure rotations.

2. Rotational coordinates should be scaled by p, the radius of gyration of the
robot, i.e., the distance from the reference point of the robot at which we
would place its total mass in order to obtain the correct moment of inertia.

A configuration in this configuration space is thus given by the coordinates (z,y, q),
where ¢ = pf. A rotational force is given by 7/p, where 7 is the corresponding real
space torque.

Position Sensing Errors

The maximum position sensing error in this configuration space is equal to

€ = /€, + (pesr)?, (7.1)

where ¢, ; is the maximum real space position sensing error, and ¢, , is the maximum
real space rotational sensing error.

166



Force Sensing Errors

The maximum angular force sensing error ; in this configuration space is equal to
arctan(es), where €; is the maximum distance between the tip of a unit force vector
and the tip of a resultant sensed force vector in configuration space. € s is given by

e = /€4, + (e1.-/p)?, (7.2)

where ¢/, is the maximum sensing error in a unit force in real space, and € #, 1s the
maximum sensing error in a unit torque in real space.

Positioning Errors

The maximum positioning error ¢, in this configuration space is equal to

NERT (7.3)

where €, is the maximum real space positioning error, and €p,» 1s the maximum
real space rotational error.

Velocity Errors

The maximum angular velocity error 6, in this configuration space is equal to
arctan(e,), where €, is the maximum distance between the tip of a commanded
unit velocity vector and a resultant velocity vector in free space. ¢, is given by

@=y\e e, (7.4)

where €, is the maximum error in a commanded unit translational velocity in real
space, and ¢,, is the maximum error in a commanded unit rotational velocity in
real space.

Friction

Erdmann showed that friction cones in this three-dimensional configuration space
are actually two-dimensional regions. This is because rotations are not subject to
friction. Our algorithms could be modified to work with these friction cones instead
of those that are presently used.

Curved Faces

When rotations are allowed, configuration space faces are curved. The reason is
that as we rotate the robot about a point contact, the reference point of the robot
traces out a circular arc in real space. The configuration space face is composed of
a collection of these circular arcs, one for each of point contacts which generate the
configuration space face.

We rely on the flatness of faces in our algorithms. Forward projections in free
space use visibility computations which depend on flat faces. Forward projections
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in contact space assume that friction cones are uniform across a face. This problem
could be solved by decomposing curved faces into collections of flat faces, and using
geometric modeling error (Section 7.2) to account for the approximation error.

7.4.2 Pure Three-Dimensional Rotations

If we examine the case of a three-dimensional Cartesian robot which can only rotate,
then we can consider the effects of pure rotations in a three-dimensional configu-
ration space. Rotations can be expressed as three-dimensional vectors from the
special orthogonal group SO(3). Canny [1986] showed that straight lines in this
space correspond to approximately uniform rotations of a Cartesian robot. Erd-
mann [1984] showed that coordinates in this space should be scaled respectively by
P1, P2, and p3, the radii of gyration about the three orthogonal principle axes of
the robot. Again, this ensures that surface normals represent reaction forces in the
absence of friction.

If we denote the coordinates of a rotation by (61,62,63), then the coordinates
of the corresponding configuration are (p,6,, p26,, p3f3). Maximal errors can be
computed as we did in Section 7.4.1. Faces are curved, and would have to be
decomposed into flat faces with geometric modeling error.

There are no friction cones in this space, although there are reaction forces due
to surface normals. Note that at edges and vertices, surface normals are sets given
by summing the possible reaction forces of the containing faces. Thus, even without
friction, it is possible to stick on a surface.

7.5 Higher Dimensional Configuration Spaces

Many extensions to the programming system would add new dimensions to the
configuration space. These extensions include:

o Rotations.

¢ Grasping and releasing. A parallel jaw gripper adds one dimension. A multi-
fingered hand such as the Salisbury hand [Salisbury 1982] or the Utah-MIT
hand [Jacobsen 1984] adds several more dimensions.

o Geometric modeling error.

7.5.1 Slices

One approach would be to constrain motion to only three dimensions at a time.
For example, an application might be implemented as a sequence of independent
translations and rotations.

To plan translations, we would decompose the six-dimensional configuration
space into three-dimensional slices [Lozano-Pérez 1983a]. Each slice would represent
three-dimensional translations over a particular range of orientations. Geometric
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modeling error (Section 7.2) could be used to account for the variation within a
slice. The method of Chapter 6 could be used to plan motions within each slice in
this space.

To plan rotations, we would decompose the configuration space into three-
dimensional slices representing three-dimensional rotations over a particular range
of translations. The method introduced in Section 7.4.2 could be used to plan
motions within each slice in this space.

There is reason to think that pure rotations about the reference point of the robot
are limited without allowing free space goals (Section 7.3). Requiring termination
in contact configurations would seem to severely limit the types of reorientation
that can occur in a pure rotation.

7.5.2 Direct Computation

A second approach would be to work directly in the higher dimensional configu-
ration space. This approach would require major reformulations of the algorithms
described in this thesis.

7.6 Optimal Strategies

The planner returns the first reliable strategy that it can find. For our implemen-
tation, finding the best strategy would have taken too much time. The next section
describes an approach to speed up the planner. If the planner were fast enough, we
might want to consider how we would find optimal strategies. First, we would have
to devise an evaluation function for motion strategies. Then, we would have to de-
velop an algorithm for finding the best motion strategy under the given evaluation
function.

7.7 Parallel Implementation

Currently, the planner takes quite a bit of time. To obtain experimental results, we
had to limit the number of atoms per state (Section 6.4). One approach to speed up
the planner would be to parallelize it. To do this, we would have to identify modules
within the planner which could run in parallel. Here are some initial thoughts:

e One of the tasks of the planner is to compute all possible motions from each
atom. We could process each atom in parallel. Since these calculations depend
on each other, an atom would sometimes have to wait for others to complete.
However, many calculations would be independent of other atoms, such as
partition composition, and could be performed in parallel. Note that a method
for avoiding deadlock would be required.

¢ Once all atoms have been processed, the arcs of a state can be expanded
independently. We could assign one processor to each state.
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Appendix A

Visibility Analysis

The primary application of visibility analysis is computer graphics. Computer
graphics involves computing and displaying the surface regions of a three dimen-
sional environment that are visible to a viewer looking along a viewing axis. The
surface regions that the viewer can see depend upon the imaging system used. In
this appendix, we develop an algorithm which solves this problem for several dif-
ferent types of imaging systems. Our algorithm is neither new nor optimal. It is
provided to establish background vocabulary and nominal algorithms for Chapters
4 and 5, and as a tutorial for readers unfamiliar with the topic.

A.1 Orthographic Imaging Systems

Consider the orthographic imaging system depicted in Figure A.1. The viewer looks
at an environment of polyhedral objects through a flat, circular lens, of radius 1.
Since the lens is flat, the viewer can only see surface regions in the cylinder of the
lens. An image plane with an associated xy coordinate system is placed in the
plane of the lens, as shown in the figure. The negative z-axis is extended along

y

Figure A.1: An orthographic imaging system. The viewer looks at an environment
of polyhedral objects through a flat, circular lens.
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Figure A.2: A convex imaging system. The viewer is located at the focal point p.

the viewing axis, completing a right handed coordinate system. Using this set of
coordinate axes, the environment can be described in eye coordinates by applying
a standard homogeneous transformation to its vertices.

Visible surface regions can be computed in this imaging system as follows. Sur-
face regions that are behind the viewer and outside of the cylinder are eliminated
by a process called polygon clipping, which is described in Section A.6. All vertices
are then projected onto the image plane by orthographic projection, which in this
case means simply ignoring their z-coordinates. Surface regions that are occluded
by closer surface regions are clipped away. This process is called hidden surface re-
moval, and is described in Section A.5. The surface regions that remain are visible.

Orthographic projections of visible surface regions are sufficient to display them
on a video screen. If the actual three dimensional visible surface regions are needed,
then the orthographic projection must be inverted. This can be done by keeping
the z-coordinates of projected vertices around, and computing backprojected z-
coordinates for any new vertices that are created by intersections in the image
plane during clipping.

The process that we have just described is called orthographic visibility analysis,
since an orthographic imaging system is used. There are other kinds of imaging
systems. The following sections describe visibility analysis for some other imaging
systems.

A.2 Convex Imaging Systems

Standard computer graphics applications are based on the kinds of scenes that the
human visual system perceives. The lens of the human eye is convex, and as a
result perspection occurs - objects appear to shrink as they get farther away from
the viewer. The shrinkage is linear, and can be modeled by the convezr imaging
system depicted in Figure A.2. In this system, the viewer is located at the vertex
of a viewing cone. This vertex is called the focal point of the imaging system. Only
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surface regions inside the cone can be seen by the viewer. The lens has radius 1.
The convexity of the lens determines the shape of the cone. The convexity can
be measured by the focal length f, the distance from the focal point to the lens.
Equivalently, the convexity can be measured by the viewing cone angle, which is
equal to arctan(1/f).

Visibility analysis in this imaging system is called convez vistbility analysis.
First, we clip surface regions that are outside of the viewing cone. Then, we trans-
form the objects of the system to orthographic coordinates by applying the convez
perspective transformation to the vertices, as described below. Next, we perform
hidden surface removal. The resulting visible surface regions can be transformed
back to the original coordinate system by applying the inverse convex perspective
transformation to the vertices.

The convex perspective transformation from a point (z,y, z) in eye coordinates
to a point (Tnew, Ynew, Znew) in orthographic coordinates is given by the following
equations [Sutherland et al 1974]:

Tpew = f—m (A.1)
—Z

Ynew = f'}i (AZ)
—Zz

Znew = (Z+Tf)f (A3)

In Equation A.1, the term z/(—2z) causes the object to shrink linearly as it gets
farther away from the viewer. (Recall that the viewing axis is along the negative
z-axis.) Multiplication by f causes visible points to be transformed to the interval
[-1,1] on the x-axis. Equation A.2 performs the same computation for the y-axis.
Equation A.3 modifies the z-component of points to preserve straight lines and
flat faces in the transformed coordinate system. This equation assumes that the
original z-coordinate is negative. This assumption is valid since surfaces outside of
the viewing cone are clipped before the transformation.

The convex perspective transformation can be inverted by the following equa-
tions:

2
z = z_;f———f (A4)
y= ‘y}mz (A.5)
z = —T'}ewz (A.6)

We have extended our visibility algorithm to perform either orthographic or
convex visibility analysis. We can summarize the algorithm as follows:

Algorithm A.1 Visibility Analysis
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Figure A.3: A concave imaging system. The focal point is p. The viewer is located
to the left of the lens.

1. Transform the environment into eye coordinates.
2. Clip surface regions behind the viewer and outside of the viewing volume.

3. Transform the system into orthographic coordinates, if necessary, using per-
spective transformation.

4. Perform hidden surface removal.

5. Transform the vistble surface regions back to perspective coordinates, if neces-
sary, using inverse perspective transformation.

6. Transform the visible surface regions back to world coordinates.

7. Return the visible surface regions.

A.3 Concave Imaging Systems

Consider the concave imaging system shown in Figure A.3. In this system, the
viewer is located to the left behind a concave lens of radius 1. The concave lens
causes objects to appear to grow linearly as they get farther from the viewer. Only
surface regions inside an inverted cone containing the lens can be seen by the viewer.
The vertex of the cone (the focal point of the imaging system) is the last point along
the viewing axis that can be seen by the viewer. The focal length is defined as the
distance along the viewing axis from the image plane to the focal point. A good
example of a concave imaging system is a magnifying glass.

Visibility analysis in this imaging system is called concave visibility analysis.
Algorithm A.1 suffices for this system, under the condition that surfaces behind
the focal point must be clipped as well. Objects are converted to orthographic
coordinates by the concave perspective transformation. The concave imaging system
of Figure A.3 is similar to the convex imaging system of Figure A.2 except that the
cone is inverted. In the convex imaging system, a point whose z-coordinate is z is
located a distance —z from the focal point. In the concave imaging system, the same
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Figure A.4: A concave imaging system with a polygonal lens. The focal point is p.
The viewer is located to the left of the lens.

point is located a distance z + f from the focal point. Substituting z + f for —z in
Equations A.1- A.3 yields the equations for the concave perspective transformation:

_ =

Tnew = A (A.7)
_Jy AR

Ynew = A+ f ( . )
__=2f

Znew = . (A.9)

Concave perspective coordinates can be recovered from the orthographic coor-

dinates of visible surface regions by applying the inverse concave perspective trans-
formation:

.o ffjn:w (A.10)
y = y———“‘“(; + /) (A.11)
= "””—”(f—“Lﬁ (A.12)

A.4 Polygonal Lens

We have generalized visibility analysis to handle orthographic, convex, and concave
imaging systems. We can generalize it further by allowing an arbitrary polygonal
lens. Consider a concave imaging system, for example. Suppose that a desired focal
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Figure A.5: The viewing volume of a concave imaging system with a polygonal lens
1s a pyramid.

point p is given, and that the lens is of a desired polygonal shape, as illustrated in
Figure A.4. The surface regions that are visible in this imaging system are contained
in a pyramid, as shown in Figure A.5. Visible surface regions in this system can
be computed by concave visibility analysis. The choice of focal length is relatively
unimportant. If it is desired that viewing coordinates be in the range [1,1], then the
focal length can be set to the distance along the viewing axis from the focal point
at which the maximum radius of the generalized cone is 1.

A.5 Hidden Surface Removal

Hidden surface removal involves clipping surface regions that are occluded by other
surface regions. The input to the problem is a list of three-dimensional polygons,
possibly concave, and a viewing axis. The imaging system for the problem is as-
sumed to be orthographic.

We use the following simple algorithm:

Algorithm A.2 Hidden Surface Removal

1. Sort the polygons along the viewing azis.

2. For each polygon, clip out all nearer polygons.

This algorithm was chosen because it is conceptually simple, and because it
returns 3-dimensional visible surface regions, not projections of them.

Step 2 can be implemented by polygon clipping, as described in Section A.6.
This step takes O(p?) clipping operations in the worst case, where p is the number
of input polygons. At best, the step can take O(p) clipping operations. This
occurs for example when one input polygon completely occludes all of the other
input polygons. If the clipping is performed in closest-to-farthest order, then each
occluded polygon disappears after only one clipping operation, and only p — 1 total
clipping operations are required.
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Figure A.6: A cycle under local or global occlusion.

A.5.1 Sorting

The sorting operation is performed using an occlusion relation on the input poly-
gons. If polygon P, occludes P,, then (P, P,) is an ordered pair in the occlusion
relation, and P, comes before P, in the polygon ordering. One simple occlusion
relation is local occlusion. Given a particular viewing axis, polygon P, occludes P,
if P, intersects P; in the xy plane, and is in front of P, with respect to the viewing
axis.

One disadvantage of local occlusion is that it requires quadratic worst-case time
in the number of edges, because of the polygon intersection. A more serious disad-
vantage is that the polygons must be sorted each time visibility analysis is to be
performed on an environment. In many applications, such as the geometric simula-
tion of Chapter 4, visibility analysis is performed many times on an environment.
In this type of application, it would be desirable if a global occlusion relation could
be computed for all of the visibility computations. In global occlusion, no viewing
direction is assumed. A polygon P, occludes P; if for some viewing axis, P; occludes
P,. This relation can be computed by testing whether a vertex of P, is exterior to
P, and a vertex of P, is interior to P;. Passing the first test implies that a light ray
can travel from P; to the visible side of P. Passing the second test ensures that P,
is visible when the light ray penetrates it.

Let us examine the properties of local and global occlusion. In a numerical
sort, the ordering relation < is a total ordering. Neither local nor global occlusion
are total orderings. Under local occlusion, there is no ordered pair in the relation
corresponding to two polygons which do not intersect in the xy plane. In global
occlusion, two polygons which are parallel and nonintersecting are not represented
in the relation.

The lack of a total ordering means that we must perform a topological sort on
the polygons. But a topological sort requires that the relation is a partial order, i.e.
that it has no nontrivial cycles. Figure A.6 shows an environment that produces a
cycle under local or global occlusion.

There is a very simple algorithm which eliminates cycles in all local occlusion
relations. If all of the input polygons are split by the plane of all other input
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Figure A.7: A cycle using global occlusion. Face 1 can occlude face 2. Face 2 can
occlude face 3. Face 3 can occlude face 4. Face 4 can occlude face 1.

polygons, then no cycles are possible under local occlusion. The reason is that after
splitting, no polygon is both exterior and interior to another polygon. Thus, a
light ray which leaves one polygon and penetrates another polygon cannot possibly
return to the original polygon.

Unfortunately, there is no algorithm to eliminate cycles in a global occlusion
relation. The reason is that a global occlusion relation is the set of all possible local
occlusions. This allows cycles consisting of light rays with different directions, as
shown in Figure A.7. This situation cannot really happen, because of the straight-
line nature of light, but global occlusion doesn’t know that. This means that it
is not possible in general to construct a global occlusion relation that is a partial
relation.

However, our algorithm doesn’t give up completely on global occlusion. We
define an environment as a set of clusters. A cluster is a set of polygons which (1)
has no internal global occlusion cycles, and (2) is linearly separable from all other
clusters. The no-cycle criterion ensures that the cluster can be topologically sorted.
Since global occlusion is being used, this has to be done only once. The separability
criterion ensures that a cluster can be treated as a single object with respect to
occlusion.

An example of a cluster is a convex polyhedron. In a convex polyhedron, no
face can be exterior to another face. No occlusions are possible, and thus no cycles
are possible. Clusters are not limited to convex polyhedra, however. They must
simply be consistent with the cluster criterion.

Our algorithm topologically sorts the polygons within clusters only once. Then,
for each visibility computation, the clusters are topologically sorted. For a given
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viewing axis, we can compute whether cluster C; occludes C, by computing the
projections of C; and C, onto the xy plane, and testing for intersection. If they
intersect, and the viewer is on the same side of the separating plane between the
clusters as C1, then Cy occludes C,. Although this test is expensive, it is often
avoided by performing a minimax test.

This clustering algorithm is based on ideas from [Schumacker et al 1969]. Al-
though we didn’t implement it, they present a faster way of sorting clusters. For
a given environment, a decision tree is generated which computes the sorted list of
clusters, given a viewpoint. The decision tree only has to be generated once, and
can be evaluated in time O(c), where ¢ is the number of clusters. Our cluster sort
is a topological sort, which requires making O(c?) occlusion computations, each of
which may be expensive.

A.6 Polygon Clipping

Polygon clipping is ubiquitous in visibility analysis. Almost all of the problems
discussed in this appendix can be implemented by some form of polygon clipping.
The purpose of polygon clipping is to clip sections from a polygon. Our algo-
rithms must work on concave polygons, since the applications that we encounter in
this thesis are not limited to convex polygons.
Here are some common clipping problems:

1. Clip( Py, P;): Given two coplanar polygons P; and P, clip the shape of P;
out of P;. Either polygon may be concave.

2. Cut(P,n,q): Given a polygon P and a plane with unit normal vector n
through point q, clip out all portions of P that are interior to the plane.

3. Cut(H,n,q): Given a polyhedron H and a plane (n, q), clip out all portions
of H that are interior to the plane.

The problem Cut(H,n,q) can be used to solve the visibility analysis problem
of clipping all surface regions that are behind the viewer and outside of the visible
volume. The polyhedron H represents an obstacle in the environment. The plane
(n,q) bounds the visible volume. This problem can be reduced to the problem
Cut(P,n,q) by calling Cut(Py,n,q) for each face polygon Py of H. An article by
Sutherland and Hodgman [1974] describes an efficient algorithm for the problem
Cut(P,n,q).

The problem Clip(Py, P;) is used in hidden surface removal (Section A.5). The
rest of this section presents an algorithm for this problem.

A.6.1 Minimax Test

The algorithm for Clip( Py, P;) involves finding all intersections between edges of
P, and edges of P,. This operation dominates the running time of the algorithm.
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A total of eje; edge intersections are called for, where e; is the number of edges
in P, and e; is the number of edges in P,. The rest of the algorithm is linear in
e; and e;. Therefore, it is a good idea to perform a minimaz test on the polygons
before intersecting them. The minimax test examines a common case in which
the polygons clearly do not intersect. The test determines whether a horizontal or
vertical line can be drawn between the polygons without intersecting either one.
Our representation for polygons contains slots for the maximum and minimum X
and Y values of the vertices. The polygons P, and P, do not intersect if any of the
following conditions hold:

Plrza.z < P;zin
2r;a.:z: < l'r;in
Pl'r:a.:x: < Pznyu'n
ér;a.:c < ln;in
If none of the conditions hold, then the test is inconclusive, and the polygons
may or may not intersect. However, the test can be performed in constant time, so

it is well worth running before the rest of the algorithm. In practice, it eliminates
a surprising number of cases from further consideration.

A.6.2 Edge Intersection and Labeling

The next step of the algorithm is to intersect edges of P; with edges of P;. The
intersection of two edges can lead to one of the following results:

1. They do not intersect.
2. They intersect at a point.

3. They overlap.

The information obtained by intersecting two edges that overlap is redundant,
since edges which adjoin the overlapping edges provide point intersections which
bound the intersection region. Figure A.8 illustrates this. Thus, we will concentrate
on point intersections. When two edges intersect at a point, an intersection vertez
is inserted into both polygons. The intersection vertices are connected to each other
by a link. This connection will be used to trace out the clipped region from P;.

The edge of P, which follows each intersection vertex is labeled for visibility at
this time. Denote the original vertices of P, and P, before intersection as corner
vertices. The interior angle at a non-corner intersection vertex is always equal to 7.
This fact allows us to quickly compute the visibility of edges which follow non-corner
intersection vertices, as follows. The vertices of each polygon are stored in counter-
clockwise order. By examining the sign of the cross product of two intersecting
edges, it is possible to determine whether the edge of P, is crossing into or out of
P,. If it is crossing into Py, then the next edge of P, is visible. If it is crossing out
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Figure A.8: Edges e; of P, and e; of P, overlap. The intersection points which
bound the intersection region, q, and q,, can be obtained by intersecting edges e;
and e4 with e;.

1
o v o=occluded
» ..
v=visible
P
e, 2 €,

Figure A.9: Computation of edge visibility. By examining the sign of the cross
product of two edges at a noncorner intersection vertex, we can determine whether
the edge of P, is crossing into or out of P,. If it is crossing into Py, like €; above,
then the next edge of P, is visible. If it is crossing out of P, like & above, then the
next edge of P, is occluded.
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Figure A.10: An intersection involving a corner vertex of P;. Edge e, appears to
cross out of P, but the next edge of P, is not occluded.

of Py, then the next edge of P, is occluded. Figure A.9 illustrates this computation.
This computation is only guaranteed to work at non-corner intersection vertices. At
these vertices, the previous and next edge are parallel in both polygons, and thus
there is a clear crossing of the boundary of P,.

Figure A.10 shows an intersection involving a corner vertex of P. Edge e.
appears to cross out of P, but the next edge of P, is not occluded. Figure A.11
shows an intersection involving a corner vertex of P,. Again, edge e, appears to
cross out of P, but the next edge of P, is not occluded. At corner vertices, we can
compute whether the next edge of P; is occluded by checking whether it is in the
interior span of the previous and next edges of P;.

After all intersection vertices have been computed, visibility labels are propa-
gated along P, in the counter-clockwise direction to unlabeled edges (edges that
are not preceded by an intersection vertex). For example, in Figure A.9, the visible
label can be propagated along to the rest of the unlabeled edges of P;.

There are a number of special cases to check for after edge intersection and
labeling have been performed. If all edges of P, are occluded, then we return
nothing. If all edges of P, are visible, then we return a copy of P,. If no edge
intersections are detected, then none of the edges of P; can be labeled, since the
edge labeling scheme requires at least one label to propagate. In this case, one of
the following statements is true:

1. P is completely occluded by P;.
2. P, is completely visible.

3. P; forms a hole inside P,.

We can test for case 1 by picking a point of P, and tésting for polygon con-
tainment in P;. This can be done in linear time [Shamos 1975]; we use the linear
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Figure A.11: An intersection involving a corner vertex of P,. Edge e, appears to
cross out of P;, but the next edge of P, is not occluded.

Figure A.12: Clipping P, from P, produces a hole in P;.

algorithm presented by Sedgewick [Sedgewick 1983]. If case 1 holds, then we return
nothing.

If case 1 does not hold, then we can test for case 2 by picking a point of P, and
testing whether it is exterior to P,. If case 2 holds, then we return a copy of P;.

If case 2 does not hold, then we have to represent a hole in P;.

A.6.3 Holes

One way to represent holes is to keep a list of hole polygons for each polygon. We
chose not to use this representation because it forces all polygon operations to deal
with holes. This makes polygon operations like intersection and containment much
more difficult to implement.

Consider the hole created by clipping P, out of P, in Figure A.12. We represent
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Figure A.13: The resulting polygons after clipping P, from P; in Figure A.12.
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Figure A.14: The tracing algorithm. Starting at a visible edge of P,, we traverse the
boundary in the counter-clockwise direction until an intersection vertex is reached.
At this point, we jump onto P, and traverse P, in the clockwise direction until
another intersection vertex is reached. Then, we jump back onto Py, and continue
in the counter-clockwise direction until we return to the starting edge.

this hole by splitting P, in two and clipping P, out of the resulting halves. This
results in the two concave polygons shown in Figure A.13.

A.6.4 Tracing

Now that all of the unusual cases have been taken care of, we are left to solve the
case where P; and P, partially intersect. This case can be solved by a tracing algo-
rithm [Weiler and Atherton 1977]. Starting at a visible edge of P;, we traverse the
boundary in the counter-clockwise direction until an intersection vertex is reached.
At this point, we jump onto P;, and traverse P; in the clockwise direction until
another intersection vertex is reached. Then, we jump back onto P;, and continue
in the counter-clockwise direction. This process continues until we return to the
starting edge. Figure A.14 shows an example of this computation.
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Figure A.15: A clipping application that produces multiple polygons.

A special case to watch out for while tracing is illustrated by Figures A.10
and A.11, in which a point contact occurs with an exterior polygon. This type of
intersection vertex should be ignored. It only occurs when the intersection vertex
1s a corner vertex of Py or P,. It can be avoided by making sure that the edge of P;
that is to be followed is in the interior span of the previous and next edges of P;.

The clipping operation may produce more than one resulting polygon. Figure
A.15 shows an example of this. To obtain all of the resulting polygons, the tracing
operation must be repeated until all visible edges of P, have been traversed.
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Appendix B

Generalized Spring Trajectory
Error and Overshoot

This chapter derives the maximum trajectory error and overshoot of a generalized
spring trajectory, assuming perfect position sensing.

Suppose that the robot is initially in configuration s, and is commanded to
go to configuration p. In its attempt to move directly from s to p, there may
be a directional velocity error, bounded by 6,. The robot is continuously being
pulled towards p. This has a corrective effect on trajectories which attain maximal
directional error. Figure 3.9 shows the possible trajectories that result from the
corrective action. The trajectories are bounded by a collection of spiral curves.

Two parameters of generalized spring trajectories that a planner needs to know
are the maximum trajectory error ¢,, and the maximum overshoot €0y, as shown in
Figure 3.9. We will compute these parameters for the planar case. The results will
hold in three dimensions as well.

Consider a trajectory on one of the bounding spiral curves. The extreme point
of this trajectory in the y direction is the point where the maximum tra jectory error
€, occurs. The extreme point of this trajectory in the z direction is the point where
the maximum overshoot ¢,, occurs. We will use calculus to solve for these extrema.

Referring to Figure B.1, we place s at the origin of a planar coordinate system,
and assign p the coordinates (p,0)T. The distance from s to p is p. Let x = (z,y)7
be a point on one of the bounding spiral curves. A vector in the direction of the
commanded velocity from x is

vc=p—x=(p_$>. (B.1)
-y
An outward perpendicular vector to v, with the same magnitude is

v, =( Y ) (B.2)

z—-p

A vector in the direction of the instantaneous velocity of the boundary point x is
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Figure B.1: x is a configuration on one of the spiral curves which bound generalized
spring free space trajectories. v, is a vector in the direction of the commanded
velocity from Xx. X is a vector in the direction of the instantaneous velocity at x.

) p—z—yT
x=v.+v,T= , B.3
. (—y+(I—P)T) (8:3)

where T' = tan#,. The magnitude of x doesn’t affect the shape of the boundary
trajectory. The linear system of Equation B.3 can be written in the form:

X = Ax+B (B.4)
A = (“Tl f) (B.5)

B = (_I;T) (B.6)

We can solve this linear system for x in terms of p and T using standard linear
system techniques (for example, see Luenberger [1979]). The general solution is
equal to the convolution of the exponential matrix of A, e4t, with B:

t
x(t) = /0 A7) Bgr (B.7)

e#* can be computed by the equation

eAt = MMM, (B.8)

where M is a matrix whose columns are eigenvectors of A, and A is a diagonal
matrix with the eigenvalues of A on the diagonal. The eigenvalues of A are equal
to
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—1+Ts. (B.9)

(42)

M:(? 3) (B.11)

Two eigenvectors of A are:

We then obtain:

1 =
M = (% : ) (B.12)
2 2
(—1-Ti)t 0
A €
et = ( 0 (~14+Ti)t ) (B.13)
Substituting these values into Equation B.8, we obtain
LezT"+1)e_T“" i@Ttt_l)e—th—t
eAt = - ezTn_zl)e-Tu—t (ezT"+12)e'T"" (B14)
2 2

Plugging this into Equation B.7, and integrating, we obtain
_ [ p(1 —etcos(Tt))
x(t) = ( —pe~tsin(Tt) ' (B.15)

The maximum trajectory error occurs when y = 0. Substituting Equation B.15 into
the bottom half of Equation B.3, and setting the result to 0, we obtain

pe~*sin(Tt) — pe™*T cos(Tt) = 0. (B.16)
Thus, the maximum trajectory error occurs at time
8,
t = T (B.17)

From Equations B.15 and B.17, the maximum trajectory error is

~te

€, = pe *sind,. (B.18)

The maximum overshoot occurs when ¢ = 0. Substituting Equation B.15 into the
top half of Equation B.3, and setting the result to 0, we obtain

pe™* cos(T't) + pe™*T sin(Tt) = 0. (B.19)

This equation has multiple solutions, since the spiral encircles the commanded po-
sition infinitely. The maximum overshoot occurs the first time that # = 0, which is
given by
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Appendix C
AML Program for Peg-in-Hole

Insertion

This appendix contains a partial listing of an AML program to insert a rectangu-
lar peg into a rectangular hole. The subroutine SMOVE is a force feedback loop
which implements a compliant motion towards a commanded position with a given
stiffness. SDMOVE is like SMOVE except that the commanded position is given
as an offset from the current position. CALIBRATE_HOLE picks up the peg from
a corner of the hole, and computes the location and size of the hole, using the force
sensors. This makes the program independent of the absolute location of the hole.
PEG moves the robot to a start position above the hole, and inserts the peg into
the hole, using a two-step compliant motion strategy.

XYZ: STATIC <(JX,JY,JdZ); -- TRANSLATIONAL JOINTS
RFEY: STATIC (JR,JF,JWD; -- ROTARY JOINTS
RFEYHOME: STATIC <0.,0.,45.%; ~- HOME ROTATION
STRAING: STATIC (SLS,SLF,SLT,SRS,SRF,SRTY; -- STRAIN GAUGES
BASE_STRAINS: STATIC 6 OF REAL; -~ BASE READINGS
GUARD_FORCE: STATIC 100.; -- STOFPS A GUARDED MOVE
STICK_FORCE: STATIC 3000.; ~= INDICATES STICKING
GRASF_FORCE: STATIC 5000.; —- GRASFING FORCE
MOVEINC: STATIC .005; ~= MOVE DISTANCE
NOM_STIFFNESS: STATIC 1000./MOVEINC; -— NOMINAL STIFFNESS

-~ FEG-IN~HOLE FARAMETERS

FEG_X_RADIUS: STATIC .5;
FEG_Y_RADIUS: STATIC .6;
HOLE _X_CLEARANCE: STATIC .0
HOLE_Y_CLEARANCE: STATIC .0c:
HOLE_HEIGHT: STATIC 1.25;
HOLE_LEFT: STATIC REAL;
HOLE_RIGHT: STATIC REAL;
HOLE_FRONT: STATIC REAL;
HOLE_RACK: STATIC REAL;
HOLE_ROTTOM: STATIC REAL;
HOLE_TOF: STATIC REAL;

J I
a
e e

r
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SMOVE: SUBRR(F,
FMAX DEFAULT GUARL_FORCE,

K DEFAULT NOM_STIFFNESS)

-- FURFOSE: FERFORMS A GENERALIZED SFRING COMPLIANT MOTION

- IN WHICH THE REACTION FORCE F = K(X~-F), WHERE F

- IS THE COMMANDED FOSITION, X IS THE ACTUAL FOSITION,
- ANI! K IS A VECTOR OF STIFFNESS CONSTANTS. THE

MOTION IS TERMINATED WHEN THE REACTION FORCE

IN THE DIRECTION AGAINST MOTION EXCEEDS FMAX.

== INFUT: F = COMMANDED FOSITION (3 OF REAL)

- FMAX = MINIMUM TERMINATING FORCE (REAL, OFT)

-= K = STIFFNESS VECTOR (3 OF REAL, OR JUST ONE REAL, OFT)

S: NEW QGOAL(XYZ);
FNEXT: NEW S;
NSEGS: NEW INT IS MAG(F-S)/MOVEINC;
V: NEW (F-S)/NSEGS;
FOIR: NEW -V/MAG(V);
I: NEW 0O}
F: NEW FORCES;
FOLD: NEW 3 OF 0.0;
WHILE (I LT NSEGS) AND
(DOTC(FOLD,FDIR) LT FMAX) OR (DOT(F,FOIR) LT FMAX)
L0 BEGIN
I = I+1;
FNEXT = PNEXT+V;
DISFLAY ('FOS=",Q60AL(XYZ),' F=',00T(F,FOIR),EQL);
MOVE(XYZ ,PNEXT+F/K)
FOLDI = F;
F = FORCES;
-— ON TRANSITION FROM CONTACT TO FREE SPACE,
-— REFLAN THE INTERFOLATED TRAJECTORY.
IF (I LT NSEGS) ANDI (MAG(FOLD) GT GUARL_FORCE)
ANDIY (MAG(F) LE GUARLD_FORCE)
THEN EBEGIN
S = PNEXT = QGOAL(XYZ);
NSEGS = MAG(F-8)/MOVEINC;
V = (FP-5)/NSEGS;
FIOIR = ~VU/MAG(V);
I = 0
END;
END
IF I LT NSEGS THEN
DISFLAY('MOTION TERMINATED RY FORCE ',UOT<(F,FDIR),EOQL);

END;

197



SDMOVE: SUBR(DF,
FMAX DEFAULT GUARD_FORCE,

K DEFAULT NOM_STIFFNESS);

— PURFPOSE: FERFORMS A GENERALIZED STIFFNESS COMFLIANT MOTION
- TO A DIFFERENTIAL COMMANDED FOSITION.

—— INFUT: DF = OFFSET OF COMMANDED POSITION (3 OF REAL)

- FMAX = MINIMUM TERMINATING FORCE (REAL, OFT)

- K = STIFFNESS VECTOR (3 OF REAL, OR JUST ONE REAL, OFT)
SMOVE (RGOAL (XYZ) +DF ,FMAX,K) ;
END;

FPEG! SUHR(XI)YI)ZI;XQ;YQ)ZQ)J

- PURFOSE: INSERTS FEG IN HOLE.
NISTANCE EBEHIND HOLE FOR FIRST MOTION

-— INPUT: X1
- Y1 LATERAL OFFSET OF FIRST MOTION
- Z1 DEFTH BELOW TOF OF HOLE FOR FIRST MOTION

X OFFSET FROM HOLE CENTER FOR SECOND MOTION
Y OFFSET FROM HOLE CENTER FOR SECOND MOTION
DEFTH BENEATH HOLE BOTTOM FOR SECOND MOTION

- X2
- Y2
- z2

-— MOVE ARM TO START FOSITION.

DISFLAY('MOVE ARM TO CLEAR FOSITION',EQL) ;

GUIDE (ARM) ;

MOVE (RFY ,RFYHOME) }
MOUE((JX;JY);<HOLE_FRONT+PEG_X~RADIUS;(HULE‘LEFT+HOLE,RIGHT)/2.))}
MOVE (JZ ,HOLE_TOF+.1);

DELAY(1.0);

SET_RASE_STRAINS;
SOMOVE (¢0.,0.,-1.%,GUARL_FORCE) ;

-— COMFLIANT MOTION TO EACK OF HOLE.

SMOVE ( (HOLE _RACK-X1,
(HOLE _LEFT+HOLE _RIGHT)/2.+4Y1,

HOLE_TOF-Z1>,
STICK_FORCE) ;
~— COMPLIANT MOTION TO BOTTOM OF HOLE.
SMOVE ¢ ¢ (HOLE _FRONT+HOLE_BACK)/2.+X2,
(HOLE_LEFT+HOLE_RIGHT)/2.+YZ,
HOLE _ROTTOM-Z2),
STICK_FORCE);
END;
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FORCES: SUER;

- FURFOSE: COMFUTES XYZ FORCES FROM STRAIN GAUGES.
-- QUTPUT: FORCE VECTOR (3 OF REAL)

STR: NEW SENSIO(STRAINS,é6 OF REAL)-BASE_STRAINS;
RETURN ({~STR(2)+STR(%5) ,-STR(1)-STR(4) ,8TR(3)+5TR(6)>)

END;
SET_HRASE_STRAINS: SUER;
-- FURFOSE: SETS THE BASE STRAIN GAUGE READINGS.

RETURN(BASE _STRAINS=SENSIO(STRAINS,6 OF REAL));
END;

CALIBRATE_HOLE: SUER;
-- PURFOSE: CALIBRATES ABSOLUTE HOLE LOCATIONS.

~—~ GRASF FEG WHILE IT IS IN THE HOLE.
DISFLAY('GUIDE HANDN TO CLEAR FOSITION.',EOL)
GUIDE (ARM) ;

MOVE (RFY , RFYHOME) }

MOVE (JG,2.0%FEG_X_RANIUS+1.0);

DISFLAY('GUIDE HAND TO GRASFING FOSITION',EOL);
GUIDE(XYZ) ;

CGRASF (0. ,GRASF_FORCE) ;

HOLE_EROTTOM = QGOAL(JZ);

-~ MEASURE THE LOCATION OF THE HOLE.

IMOVE (JZ ,HOLE _HEIGHT/2.);

DISFLAY('ADJUST FEG IF DESIRED.',EOQL);

GUIDE(JG) ;

SET_RASE_STRAINS;

SIMOVE (0. ,2.5%HOLE_Y_CLEARANCE ,0.) ,GUARD_FORCE) ;
HOLE_RIGHT = QGOAL(JY);

DMOVE (JY , ~HOLE _Y_CLEARANCE) ;

SOMOVE (0. ,-1.5S%HOLE _Y_CLEARANCE ,0.),GUARD_FORCE) ;
HOLE_LEFT = QGOAL(JY);

MOVE (JY, (HOLE _LEFT+HOLE_RIGHT)/2.);

SIIMOVE ( (-2 . S*%HOLE _X_CLEARANCE ,0.,0.),GUARDI_FORCE) ;
HOLE_BACK = QGOAL(JX);

DMOVE (X, HOLE _X_CLEARANCE) ;

SDMOVE( (1.5*%HOLE X _CLEARANCE, 0, ,0.>,GUARD_FORCE) ;
HOLE_FRONT = QGOAL(JX);

MOVE (JX, (HOLE_FRONT+HOLE _EACK)/2.);

-—- MOVE TO THE START FOSITION.

MOVE (JZ ,HOLE _EOTTOM+HOLE _HEIGHT+.2);

MOVE ( JX ,HOLE _FRONT+PEG_X_RADIUS) ;

DELAY(1.0);

SET_RASE_STRAINS;

SOMOVE (<0.,0.,-1.5),GUARD_FORCE) ;
HOLE_TOF = QGOAL(JZ);

END;
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