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Abstract

This thesis describes the development of a model-based vision system that exploits hi-
erarchies of both object structure and object scale. The focus of the research is to use
these hierarchies to achieve robust recognition based on effective organization and index-
ing schemes for model libraries. The goal of the system is to recognize parameterized
instances of non-rigid model objects contained in a large knowledge base despite the pres-
ence of noise and occlusion. Robustness is achieved by developing a system that can
recognize viewed objects that are scaled or mirror-image instances of the known models
or that contain component sub-parts with different relative scaling, rotation, or transla-
tion than in the models. The approach taken in this thesis is to develop an object shape
representation that incorporates a component sub-part hierarchy——to allow for efficient
and correct indexing into an automatically generated model library as well as for rela-
tive parameterization among sub-parts, and a scale hierarchy—to allow for a general to
specific recognition procedure. After analysis of the issues and inherent tradeoffs in the
recognition process, a system is implemented using a representation based on significant
contour curvature changes and a recognition engine based on geometric constraints of fea-
ture properties. Examples of the system’s performance are given, followed by an analysis
of the results. In conclusion, the system’s benefits and limitations are presented.

Revised version of a thesis submitted to the Department of Electrical Engineering and
Computer Science of the Massachusetts Institute of Technology on May 15, 1987 in partial
fulfillment of the requirements for the Degree of Master of Science in Electrical Engineering
and Computer Science.
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Chapter 1
Introduction

A main goal of robotics research is to impart in machines an ability to intelligently
interact with their environments. This ability requires sensing the surroundings, accu-
rately interpreting the signals from these sensors, and acting on these interpretations
appropriately. Machine vision is concerned with the interpretation link of this process.
While the name of the field implies that only optical sensors are used, it also applies to
other forms of sensing modalities such as range or tactile data. Optical sensors, such
as TV cameras, are often used since they are readily available and provide a rich and
dense source of information about viewed scenes. The main aim of machine vision is to
develop a symbolic description of a scene that may be effectively used in accomplishing
a particular task such as inspection, path planning, target classification, or part identi-
fication. Many of these taské require recognition of objects in the scene. This process
is normally comprised of identifying objects in the environment and localizing them by

computing their transformation from model coordinates to scene coordinates.

The recognition process can only be accomplished if the system has some prior
knowledge of the type of objects it is viewing. The characterization of the knowledge
depends on many factors such as the type of sensors used to extract information from
the environment, the method used to process the available data, and the task to be
performed. As a result, the knowledge base can consist of many properties of objects,
a few of which might be shape, functionality, texture, reflectance, stiffness, or heat
conductivity. A general recognition system would combine all of these properties with
information from many input sources, such as light intensity, color, stereo, and motion,
in order to reason about a viewed scene. Unfortunately, such a general system is not

possible yet due to the existence of many unresolved questions encountered in solving
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Chapter 1 Introduction 11

much smaller problems. One such problem is the shape recognition problem. This prob-
lem involves recognizing a 2D object based on the arrangement of its outline segments
or a 3D object based on the arrangement of its visible surfaces or their projection onto
a 2D image. Since shape is an intrinsic property of objects and one normally associates
the definition of an object with its shape, it forms an appealing basis for an object
recognition system. The shape recognition problem is motivated by the well-developed
human ability to recognize objects when presented solely with their bounding contours.
In addition, most recognition tasks are intended to identify aerial scenes or man-made
objects, such as tools, machined parts, and communication symbols, where object shape
is the primary descriptive medium as opposed to color, texture, or surface reflectance.
As a result of these factors, shape recognition has been the subject of much recent re-
search activity and some advancements in this field, especially in low level processing

such as edge detection, have already been made.

Prior to any recognition attempts, one must instill the shape knowledge of the known
objects into the system. The model objects must be internally represented in such a way
that these representations can be matched to representations produced from a viewed
scene. This knowledge acquisition process may be accomplished by manual training, by
a separate learning module, or by the same module that is used for the actual recognition
task. Manual training involves the off-line generation of the representations to be used
by the system. These representations may originate from a CAD /CAM database or
may be processed by hand to precisely extract the relevant features that the system
can employ. Manual training leads to the most accurate models, but is a lengthy, time
consuming process. A more effective knowledge acquisition procedure would consist of
the system constructing the representations automatically and possibly interacting with
users to correct mistaken labelings and to query questionable features. Such a system
would be far more independent and easier to use and modify. Furthermore, knowledge
acquisition by using the same recognition module would be advantageous to using a
separate learning module since the same object would be guaranteed to have the same
representation whether viewed as a model or as a component in an unknown scene. As
well, any biases in the system would show up equally well in the models and in the
scene representations. In addition, new models could be learned or old ones could be

modified at the same time that the system is performing its recognitions tasks.

Based on the knowledge in its model library and the information given by its input

sensors, a recognition system attempts to interpret a scene by searching through the
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space of possible matches between model features and scene features. The interpretation
process attempts to identify the objects in the scene that gave rise to the sensor signals.
This problem is ill posed since not all the information about the viewed objects is
preserved by the input sensors. The sensors provide intensity or depth values derived
from the scene without knowledge of the objects’ identity or configuration, or the scene
factors giving rise to these values. These scene factors include presence of occlusion,
attitude of light sources, attitude of viewer, reflectance of surfaces, and sensor noise and
distortion. In order to limit the large number of possible interpretations of a scene and
to provide accurate results, natural as well as assumed constraints are applied by the
system. These constraints consist of such real world knowledge as continuity of surfaces,
and such assumed knowledge as background color. The application of these constraints
aids in the identification of the parameters that cannot be recovered from the input

sensor data. The selection of appropriate constraints constitutes a large research effort
in the field.

1.1 An approach to Model-Based Recognition

In designing a model-based recognition system, one must first decide on the desired
domain and type of performance. Some of the issues of interest include correctness,
efficiency, number and class of objects recognized, complexity of scenes, stability of
interpretations, independence from outside intervention, and extensibility into larger
and more complex domains. While it is desirable to optimize each of these goals, it will
become apparent that they tend to conflict with each other and as a result the tradeoffs
must be analyzed. While, in general, a large domain of applicability is desirable, it
is often restricted by efficiency and stability requirements. These factors are further
counteracted by the ability to recognize objects under diverse conditions without being

overly noise sensitive. These issues are studied in detail in Chapter 3.

In general, the task of a recognition system consists of identifying and localizing all
instances of all objects in a scene. This problem is studied in this thesis in the domain
of two-dimensional objects where shape information is the primary source of data. For
example, we would like to identify the object in the image in Figure 1.1! as an instance

of the model in Figure 1.2 even though the two objects have different style arrows and

1This image as well as all other grey level images shown in this thesis have been halftoned for

reproducibility.
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Figure 1.1: Sample grey level scene presented to a vision system that is at-
tempting to recognize traffic signs.

different relationships between their components. This task may be performed by the
system by breaking the model into its component sub-parts, as shown in Figure 1.3, and
allowing some displacement between the sub-parts in the scene. Figure 1.4 shows the
configuration of the sub-parts found in the scene and Figure 1.5 overlays the original
model on the scene as specified by the identified sub-parts. The superimposition is
derived by transforming the model object as specified by the average transformation of
all the sub-parts and does not overlay exactly since the two objects are different.

The approach of this research is to design a robust recognition system with the

following characteristics:

¢ Develop an object representation that is both hierarchical in scale {gross to fine fea-
tures) and structure (whole object to component sub-parts). Features are defined
as any identification primitives that capture and abstract some shape information
of the object. Features are generally the lowest level primitives that compose the
representation. Sub-parts consist of subsets of these features that partition the ob-
ject into components. These hierarchies allow the system to stress the important

features of the object and to reduce the large problem of recognizing the whole



14 Chapter 1 Introduction

—A‘——-.x“‘*\..
; 5, .
o i) o
/ AN '
£ - N
; s Ny "
Su S S \

b O

o >
N L\ -~
Vv L
¢
\
\,
\ p
N,
\,\.\ |

s
- L

Figure 1.2: One of the model objects known to the system, indicating no left
turn. Bounding contours of the object are shown.
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Figure 1.3: Sub-parts of the no left turn sign. Letters indicate the coarse fea-
tures of the sub-parts: E = End, CO = Corner.
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Figure 1.4: Configuration of model sub-parts found in the scene.

Figure 1.5: Superimposition of the model on the scene.
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object into several much smaller problems of recognizing the object’s sub-parts.
The system thus demonstrates a recognition behavior of focusing on the correct

interpretation while reducing the combinatorics of the process.

Create model libraries automatically based on the hierarchical nature of the model
representations. A recognition system should be able to identify any of a large set
of objects that are stored in its library. The library should drive the recognition

process in order to yield efficient retrieval of the correct model objects.

Recognize all instances of all known model objects. Attempt to find the closest
match for unknown objects by using the abstract features of the representation
and by varying the sub-parts parameters. Close matches are defined by relatively
high percentages of matched abstract features. This behavior allows the system
to achieve an important recognition task of non-exact matching. For example, the
system should be able to recognize hammers with handles longer than the one(s)

in the database.

The novel contributions of such a system are the incorporation of both scale and

structure hierarchies resulting in recognition of a wide class of objects under complex

viewing configurations, and the development of an automatically created, sub-part in-

dexed model library system to drive the recognition process.

In order to demonstrate these contributions, the following goals are set forth. These

goals are accompanied by their measures of success that will be used to measure the

degrees to which the goals were met.

1. Efficient derivation of the scene interpretations.

The system should attempt to construct as small a search space as possible and
then explore as little of the search space as possible without pruning any correct
matches. It should narrow in on the final interpretations quickly and not spend

much time considering wrong interpretations.

In order to measure the efficiency of the system, we can confirm attempts to
reduce the search space size and measure the ratio of the number of interpretations

explored to the total number of interpretations possible.

. Efficient and accurate indexing of candidate models from a library of

object models.
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The system should be able to automatically construct a model library that pro-
vides for fast and accurate indexing of candidate models based on feature cues
provided by the image. The library should provide a means of focusing the search
for interpretations of the scene and for drastically reducing recognition search

times when compared with a non-sub-part, linear library search scheme.

Sample libraries should be constructed by the system and its hierarchical recog-
nition behavior should be studied. The accuracy of the system with increased
library size should not be affected and recognition time should increase slowly (in
less than linear time) as the size of library grows. The behavior of the sub-part
driven system should also be contrasted with the effectiveness of the system using

only whole object descriptions.

3. Correct identification and localization.
The system should identify all instances of all objects contained in its database
and not form any extraneous interpretations. Close inexact interpretations should
be given if they form the best matches. The orientation, translation, and scaling

factor of the identified objects should be determined as accurately as possible.

The accuracy of the system may be verified by checking that all the given inter-
pretations of the scene are correct and all possible interpretations of the scene are
given for various degrees of scene complexity. Localization should be checked by

overlaying the interpretation on top of the scene.

4. Tolerance for occlusion and noise.
An object should be recognized even when some of its components are not visi-
ble due to occlusion caused by itself or other objects, as long as enough features
are still visible to accurately recognize it. The additional features introduced by
overlapping objects should not interfere with the computation of the correct con-
figuration. The system’s performance should degrade gracefully with added noise

introduced by sensor imprecision and distortions or by poor lighting conditions.

Noise sensitivity may be measured by testing the system with various degrees
of naturally and artificially perturbed scenes in order to introduce overlapping
objects and shadows, reduce resolution, alter lighting conditions, and modify the

sensor viewpoint.

5. Stability in the presence of variations of global and sub-part parame-
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ters.

The system should be able to identify objects despite variations in scale of the
whole object or of its sub-parts, or fluctuations in the spatial layout of its fea-
tures or of its sub-parts. This capability allows the system to recognize non-rigid

objects.

In order to measure the stability of the system, it should be tested with a wide
array of complex scenes that incorporate mirror images, globally and locally scaled

parts, and displaced and rotated sub-parts.

. Large domain of applicability.

The system should be able to recognize a wide class of objects with varying char-
acteristics and complexity. Objects can consist of both polygonal and curved
segments, can contain many concavities, and consist of various degrees of detailed
features. The recognition system should also strive to achieve a high degree of

independence from outside intervention by performing its tasks automatically.

The types of objects and the complexity of scenes that the system can analyze
should be determined. In addition, the circumstances under which the system
fails should be outlined.

1.2 Upcoming Attractions

In order to analyze the work in this thesis, related work is presented in Chapter 2.

Chapter 3 then develops a theoretical basis for model-based recognition systems and

outlines many of the factors that affect the behavior of these systems. With these

issues in mind, the following chapter describes the recognition system developed using

the scale/structure hierarchy approach. Chapter 5 presents several examples of the

performance of the system using a library of traffic sign objects. The performance is

then analyzed in Chapter 6 in the context of the goals outlined in Section 1.1 and the

issues described in Chapter 3.



Chapter 2
Overview of Recognition Systems

Numerous systems have been developed to perform model-based recognition. These sys-
tems differ in their domains, sensing modalities, representations, recognition engines,
interfaces between the representations and the engines, and constraints that they im-
pose on the scenes to be recognized. Many of the systems have been intended to perform
specialized tasks and are not flexible enough to be extended into other domains. Other
systems have been designed to be general purpose, but have been limited by such factors
as: non-descriptive representations that do not capture enough knowledge about the ob-
jects in order to perform robust recognition, abstract representations whose complexity
prevents them from being interpreted accurately and are therefore unstable, and ineffi-
cient recognition engines that suffer from unmanageable combinatorics. For composite

overviews of model-based systems see [Binford 82] and [Besl 85].

While object shape is the standard basis for most recognition systems, the methods
used to acquire it vary greatly. Bounding contours of an object can be located by finding
image intensity gradients computed by an edge finder. Visible surfaces of an object can
be determined from laser range or sonar data as well as by computing disparities from
stereo or motion sequence images. In addition, active methods, such as tactile sensing,
may be used to identify depth at certain points from which the surface structure can

be interpolated.

The recognition procedure consists of two main steps: processing the input image
in order to obtain the representational primitives that are then used by the recogni-
tion engine to match against similar primitives stored with or derived from the set of
known models. This idea of separating the knowledge (the object features and primi-

tives) from the control (the recognition engine) is a common one in the field of artificial

19
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intelligence. The representational primitives should abstract some information about
the shape in an organized and structured manner. The representation should convey as
much knowledge as possible about the object in order to perform accurate and efficient
recognition. Different representations and recognition engines have been developed in
order to achieve varying degrees of flexibility, accuracy, and robustness. These systems
provide distinct advantages and disadvantages and it remains to be seen if they can be
combined in ways that achieve a more effective system than they each offer indepen-
dently. These representations and recognition engines are briefly described followed by
a description of some recognition systems that attempt to incorporate an object library

approach.

2.1 Current Types of Representations

A common representation for object shape proposed in the machine vision literature
is the generalized cylinder (or generalized cone) [Hollerbach 75| [Nevatia 77] [Marr 78]
[Brooks 81]. This representation is a volumetric description consisting of an axis of
symmetry and a sweeping rule that defines a specific volume when run along the axis.
Generalized cylinders can be combined to form a large class of shapes, but are best suited
for elongated symmetric shapes where the axis and sweeping rule are easily identifiable.
A recognition system based on generalized cylinders attempts to identify the symmetry
axis and then define some simple properties of the sweeping rule. While generalized
cylinders have proven useful for describing how objects are constructed, the problem of
extracting from the image the generalized cylinders that comprise the object remains
ambiguous. In addition, the determination of cylinders requires global information
that is not available under all viewing conditions. Research is progressing, though,
in reducing these drawbacks and exploiting the compact and descriptive qualities of
generalized cylinders [Ponce 87(a)] [Ponce 87(b)].

Another frequently-used representation is the description of the surfaces of an object
using polyhedral approzimations [Faugeras 84] [Bhanu 84(a)] [Bhanu 84(b)] [Grimson 84|
[Hebert 84] [Ayache 86]. The analogous representation in the 2D domain is the use of
polygonal approximations to describe the object contour. Since few parameters are re-
quired to define polyhedra, they form a compact representation. If the connectivity of
the polyhedral primitives is used along with the polyhedral specification, a good shape

description is obtained. This shape description can be matched to model descriptions
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that were obtained in the same manner, or to CAD/CAM models that contain surface
and edge information. A problem with this representation is that the polyhedral ap-
proximation for non-polyhedral surfaces is highly sensitive to noise and object attitude
and as a result the representation for curved surfaces is not stable. Partially occluded
surfaces also present a problem since small surface patches must be matched against

large model surfaces, creating a large search space.

An alternative to using polyhedral approximation is the use of actual surface patches.
This representation has been applied in the 2D domain with the use of contour seg-
ments [Knoll 85} [Turney 85], and in the 3D domain with the use of edges and surfaces
[Tomita 85). The contour segments are described as sequences of points and are matched
on a point-by-point basis. As a result of this matching procedure, the representation
can lead to inefficient recognition. This representation may be adequate for small tasks,
but the primitives do not abstract much shape information and are not well suited for

general recognition.

Another approach to representation is the use of predefined distinctive features
[Bolles 82] [Bolles 86] [Lowe 85]. This representation consists of the spatial relation-
ships of semantically rich features that are distinctive in the context of the object.
With the appropriate selection of reliably identifiable features and the incorporation of
their relationships, accurate and efficient recognition is feasible. In the Local Feature
Focus method, by Bolles and Cain, the recognition process attempts to locate sets of
distinguishing features, such as holes and corners, in an ordered manner that is deter-
mined from a precompilation of the knowledge of the model. The selection of these
distinguishing features, though, can be difficult since it is dependent on the recognition

domain.

A descriptive global representation is the eztended Gaussian image (EGI) [Horn 84]
[Brou 84] [Little 85]. This representation consists of vectors on the Gaussian sphere
whose orientation corresponds to the orientation of a face of the polyhedron and whose
magnitude corresponds to the area of that face. The EGI is a descriptive representation
for 3D objects, but is only unique for convex objects. This representation separates the
problem of orientation determination from translation determination and is therefore
useful for coarse grain matching or pruning of the search space. It is limited, though, in
its applicability to recognition since it is removed from much of the shape knowledge of
the objects and is limited by occlusion, sensitivity to orientation variations, and domain

of application.
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A representation that has been used to describe natural form is the superquadric
[Barr 81| [Barr 84] [Pentland 85] [Bajcsy 87]. This representation consists of param-
eterized solids that may be deformed in various ways and combined by boolean and
fractal operators. The representation has proved to be well suited for building complex
scenes, especially of natural objects. Its complexity, though, prevents it from being
used in a recognition system in a straightforward manner since the recovery of the large
number of parameters used in describing the primitives, and the segmentation of the

scene into these primitives are difficult tasks.

2.2 Current Types of Recognition Engines

One of the earliest recognition engines was the Hough transform [Ballard 82] [Turney 85].
Various versions of the Hough transform exist, but they all perform some type of his-
togramming operation to find probable configurations. A common form of its use,
termed the extended Hough transform, is to match all possible model and scene fea-
tures to each other and for each match compute the transformation bringing the model
into correspondence with the proposed object in the scene. The transformations are
mapped onto a histogram where peaks suggest actual transformations that should be
verified. The Hough transform thus provides a coarse filter on the search space and is
best used in directing the search or for speeding up a more exact recognition scheme.
A popular form of recognition engine is the hypothesis-prediction-verification
paradigm [Brooks 81| [Hebert 84] [Lowe 85] [Tomita 85| [Ayache 86]. This control mech-
anism incorporates bottom-up (scene-driven) and top-down (model-driven) approaches
to take advantage of the system’s knowledge of the objects. Based on features found in
the scene, the system hypothesizes possible configurations in order to avoid searching
the whole space of possible feature matches. Based on the features of the model, the
system is then able to predict locations of other features in the scene. The system can
precompute a search tree from knowledge of the model features in order to drive the hy-
pothesis step in an efficient manner. The system proceeds by verifying these predictions
and modifying its hypotheses accordingly. These systems work well, but are susceptible
to errors and missed interpretations since they make assumptions during the hypothesis
phase that may be incorrect or misleading. Since these methods do not explore the
whole search space, good interpretations may not be found if the hypotheses are not

based on descriptive features.
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A novel recognition engine is the constrained search scheme |[Grimson 84|
[Grimson 85|. This paradigm considers the whole space matching scene features to
model features, but prunes many configurations in the search space early in the search
process to achieve favorable combinatorics. The pruning is performed by using simple
geometric constraints between pairs of features to remove invalid matching configu-
rations from the search space. Many of the matches are pruned after analyzing the
match between very few features. Only the well matched configurations are expanded
to match all the features. The constraints compare the following properties between
pairs of model primitives and their matching pairs of scene primitives: distance, ori-
entation difference, and direction vectors. The scheme has been shown to work well
with sparse input data points, assigning points in the scene to lie on model faces in a
consistent manner. It depends, though, on the selection of meaningful input data points
that survey the complete shape of the object. The contribution of this method has been
the demonstration that simple constraints used in concert lead to very effective pruning

of the search space, even in the presence of noise |Grimson 86|.

Another approach to recognition is the relazation scheme [Bhanu 84(a)]
[Bhanu 84(b)]. In this method, an initial assignment of model features to scene fea-
tures is made and these assignments are modified as the validity of the overall match
is propagated along the set of features. The process iterates and the interpretation
is refined until an accurate configuration is found. This recognition engine depends
on effective propagation along the matching nodes, good initial assignments, and con-
vexity of the configuration space and the domain. The convexity requirements ensure
the system does not identify local maxima/minima as global and are usually difficult

requirements to satisfy.

Rule-based production systems have also been used as recognition engines [Nagao 79]
[McKeown 85]. These systems incorporate extensive context knowledge of certain types
of scenes in their rule base instead of using geometric knowledge of the models. The
rules are then used to evaluate hypotheses and ensure their consistency. While the
incorporation of specific domain knowledge aids in the derivation of viable interpreta-
tions, these types of systems are limited by their control structure and efficiency. The
control mechanism of production systems is usually very weak and does not lend it-
self well to more powerful processes that exploit shape information to constrain the
interpretation process. The result of this weakness is that these systems are often very

inefficient. Production systems are also difficult to develop since the construction of
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the knowledge base is a lengthy process. Another drawback is the dependence on an
initial segmentation phase that decomposes the scene into regions that are used as the
primitives to be input into the system. Segmentation is often difficult to perform at a
low level since it is greatly affected by noise and viewing conditions. As a result, errors
generated by the segmentation step can be propagated all the way to final interpreta-
tion. While production systems may be suited for situations where shape knowledge is
limited, their benefits may be best realized by combining them with more powerful sys-
tems that benefit from the incorporation of contextual knowledge, such as ACRONYM
[Brooks 81].

2.3 Library-Based Recognition Systems

Most of the developed recognition systems are designed to identify a single model object
at a time. The issue of effectively recognizing objects from a large library of models
has been generally neglected due to its complexity. The problems encountered in this
task are how to organize the library and how to index into it in order to avoid a linear
search of all the model objects. Despite these open-ended problems, many researchers
point out the need for developing well structured object libraries to be used for quick
identification of model instances as well as of related objects. Without this capability
a general recognition system cannot be achieved. As the ability of recognition systems
to identify single models in a scene improves, the problems of library-based recognition

must be explored. Some systems that have addressed this issue are described below.

2.3.1 ACRONYM

One of the first systems to eﬁcplore recognition of multiple objects is the ACRONYM
system [Brooks 81] [Brooks 83]. This system models objects hierarchically in object
classes by using relaxed parameters at the higher levels and tighter parameters at the
lower levels. A constraint manipulation system is then used to constrain the parameters
based on the relation of the features found in the scene and the features of the models.
As the parameters are refined the identity of the object is established by progressing
down the object class tree. The system performs recognition of 3D objects from single
images by using different representations for the models and scenes. The models are
represented as collections of generalized cylinders while the scene features consist of

projections of the cylinders, namely ribbons and ellipses. While this representation
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adapts well to the complex recognition of 3D objects from 2D images, it is global in
nature (does not extend well to occlusion), and applies to a limited domain of objects
(elongated objects with identifiable axes).

While this innovative approach benefits by its generality and flexibility, it does not
display an effective library indexing scheme. ACRONYM attempts to match each object
in the library in a linear fashion and is therefore not efficient. In addition, the library
must be manually constructed—the criteria used to organize the object classes are
externally supplied. In a general recognition system these criteria would have to be

known internally.

2.3.2 Schwartz & Sharir

Schwartz and Sharir developed a 2D model-based recognition system [Schwartz 85|
[Kalvin 86] that is capable of recognizing a model from a large library of objects (up
to 100 in one experiment). The objects are represented by their footprints, which are
derived from the relationships of the lengths and relative orientations of the segments of
the polygonal approximation to the bounding contour. These footprints are then hashed
into library slots that point to all the objects that consist of the contained footprints. As
a result, the system can quickly derive possible candidate models by hashing footprints
processed from the scene. These candidates can then be verified by comparing scene
edges with the proposed model edges.

While this system displays impressive library indexing performance, its representa-
tion does not symbolically capture much of the shape information of the models. The
domain of the representation is limited by a scale invariance restriction and the inability
to accurately model objects with concavities since concave corners are used to segment

the bounding contour of the scene into its component objects.

2.3.3 Turney, Mudge & Volz

Another system that attempts to incorporate libraries into the recognition process is the
system developed by Turney, Mudge, and Volz [Turney 85|. This system automatically
builds the library by finding salient features that uniquely identify each object relative
to all the other models in the library. The identification of these features allows the
system to easily recognize objects if these salient features are found in the scene, even if

a large portion of it is occluded. The features used by the system are actual bounding
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contour segments so the matching process consists of a pixel by pixel Hough transform
match of all possible scene contour segments to model segments. Any model segments
matches increase the likelihood of an instance of that model existing in the scene. Since
the salient features are weighted much more than the others, their identification leads
to (and is required for) the identification of the whole object, while features common to
many objects do not affect the match likelihood.

Clearly, this representation does not abstract much of the shape information of an
object. As a result, it does not extend well to recognition of scaled objects, mirror
images, or sub-part variations. Its lack of compactness results in a combinatorial explo-
sion for complex objects and large libraries. In addition, while the salient features are
intended to allow recognition despite occlusion, recognition fails if the salient features
are occluded and the rest of the object is not. While this system may perform well for
such tasks as anomaly detection where many of the scene parameters are known and
the use of the actual bounding contour is preferable, it is not well suited for general
recognition tasks. The use of a scale hierarchy is suggested to reduce the system’s noise

sensitivity and running time, and will likely aid its performance.

2.3.4 Knoll & Jain

Knoll and Jain developed the Feature Indexed Hypotheses method to perform model
library indexing [Knoll 85]. Instead of using unique features, features common to several
objects in the library are used. The system constructs the library automatically by
finding all objects that contain each feature. Assuming that the cost of matching a
feature is equal to the cost of verifying a resulting hypothesis, Knoll and Jain show that
the ideal number of matches per feature in the library is proportional to the square
root of the total number of objects. The recognition process attempts to match features
ordered by their commonality relative to the library and by their location relative to
other features on their contained objects. Model features matched in the scene lead to
hypotheses that may then be verified by checking if locations of predicted model edges
are supported by data in the scene.

The representation used by this scheme is again actual bounding contour segments
so it too does not extend well to the recognition of globally and locally parameterized
objects. While the recognition costs made for this system may be appropriate, they
depend on this representation and will not hold in general since the cost of generating

good hypotheses is usually much greater than verifying them. The hypothesis generation
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Chapter 3
Recognizing the Issues

Since the recognition process consists of searching for the best interpretation of a scene,
much of the work in this area centers around optimizing this search. This work often
involves extracting and structuring appropriate knowledge about the model objects in
order to effectively limit the search. As has been observed in Chapter 2 many different
techniques are possible to both reduce the size of the search space and the fraction
of the search space that is actually explored. These methods include top-down and
bottom-up approaches, preprocessors to determine specific contexts of scenes, statistical
analysis, exploitation of high-level and low-level descriptions, and use of local and global
representations. The selection and combination of these methods can drastically affect
the performance in terms of correctness, accuracy, efficiency, complexity and stability
of interpretations, and applicable domain. This chapter describes how the performance
is affected by issues that arise in the development of a recognition system using a

scale/structure hierarchical approach to construct large object libraries.

3.1 Recognition System Capabilities

The type of behavior desired of a recognition system is dependent on the application.
Specific needs often dictate many of the choices that may be made during the system’s
development. For example, if the system is to be used for inspection, it probably knows
the identity of the object it is viewing and needs to perform very exact matching of the
detected edges, while for categorization purposes the system may only need to identify
rough features. In order to realize the wide range of possible capabilities, we can explore

various questions that may be asked of the system:

28
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e Does the system recognize:

— a (single) particular object in the scene?

— if a particular object is not in the scene?

all instances of all objects in the scene?

— related objects as members of the same class?
e Is the aim of recognition:

— to perform localization of objects only? (e.g. obstacle avoidance)
— to perform identification of objects only? (e.g. if you see a bear, run)

— to perform both localization and identification?
¢ If any incorrect interpretations are generated, is their nature:

— to not find existing model instances in the scene?
— to find extraneous model instances in the scene?
— to misidentify model instances?

— to inaccurately localize correctly identified model instances?

The most beneficial system would be able to identify and localize large classes of
objects and be able to realize quickly when an object does not exist in a scene. The
introduction of some errors is usually unavoidable since a system based solely on object
shape is bound to make mistakes for certain conditions. Even the much richer human
visual system can be fooled into making wrong interpretations. Recognition systems,
though, can be designed to be conservative, at one extreme, and not introduce extra-
neous interpretations at the cost of missing certain interpretations or, at the opposite
extreme, ensure that all objects in the scene are identified at the cost of deriving some
possibly erroneous configurations.

One aspect of the recognition capability is the number of degrees of freedom allowed
in the scenes. This dimensionality of the recognition task can be divided into three
categories: 2D objects from single images, 3D objects from depth maps, or 3D objects
from single images. Many systems are initially implemented to perform recognition

of 2D objects and then extended to recognition of 3D objects from depth data. The
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extension requires recovery of more parameters since 2D objects usually have three
degrees of freedom while 3D objects have up to six degrees of freedom. The depth map,
though, provides a rich source of added constraint to aid in the recovery of the additional
parameters. Some systems [Brooks 81| [Lowe 85] [Goad 86] [Huttenlocher 87] have been
designed to recognize 3D objects from single images and have demonstrated promising
results. Even though 2D images do not usually provide enough constraints to recover
the many parameters contained in the scenes, these systems have been shown to work

well in some domains.

An important capability criterion is the class of objects that may be recognized.
Many variables are used in defining the acceptable object class for a recognition system.
One issue is flat versus curved regions. Representations may favor straight edges (or
planar surfaces) and either ignore curved edges (or curved surfaces) or, worse, exhibit
degraded performance with their introduction. Another variable is convex versus con-
cave objects. Some schemes can only represent convex objects and as a result can use
concavities to segment the scene into its component objects. A third point is the gener-
ality of the object features. Some systems require objects to contain certain predefined
features while others impose complexity restrictions and limitations on the number of
features objects may have. It is often the case that representations can be optimized if
the class of objects is restricted, while general representations may not be as accurate
or as efficient. In addition to the type of objects, the number of objects that may be
recognized also defines the system’s capabilities. While it is often desirable to recog-
nize many objects of complex nature, the task is often simplified by using few complex

models or many simple ones.

Another factor that defines the domain of a recognition system is tolerance for
variations in the image introduced by the sensing modality. A system should be robust
in the presence of noise introduced by the sensing device. Camera resolution and lens
distortion reduce the accuracy of image features. Lighting conditions also introduce
shadows that may reduce the effectiveness of the system. As a result, images of the same
objects may appear differently and reveal different features when viewed at a different
orientation or a different scale. Most visual recognition systems do not attempt to filter
out the noise since they use higher level information to abstract major features and
employ enough flexibility in matching to allow some variability in the characteristics of
the image. High frequency noise filtering and various rﬁethods of image enhancements

may be used to improve the image quality, but any recognition system should be able
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to tolerate some inaccuracies in the model object specification.

Variability in the configuration of the objects themselves should also be tolerated.
Such variations may arise from interference from other objects or modifications to the
actual object of interest. Occlusion, whether caused by other objects or by parts of the
same object, introduce new features and remove features for which the system may be
searching. As a result, systems that handle occlusion must extract local features that
remain unchanged when part of the object is hidden from view, and be able to recognize
the object correctly when enough (but not all) features are visible to distinguish it from
all other possible configurations of objects. A system should not be led astray by the
introduction of other model features or features that are created at the point of overlap
of two objects.

A robust system should be able to integrate variability in the parameters of an
individual object into the recognition process. Such variability may arise from scaling
the whole object or parts of the object, mirror images of 2D objects (corresponding
to flipping the object to its back side), or relative parameters between parts of the
object such as rotation of the blades of a pair of scissors. Many objects contain some
parameterization that allows some degrees of freedom while maintaining some of the
same basic shape cues. The type and amount of such parameterization form another
restriction on the domain of applicability.

Whi]e the work in this thesis is directed only towards recognition of 2D objects,
or 3D objects in stable configurations, it does aim to achieve many of the robustness
criteria outlined above, as described by the goals detailed in Section 1.1. These criteria
include recognition of a large number of objects in the presence of noise and occlusion
where the models are non-rigid and the viewed objects may be inexact instances of

models. Extensions to 3D recognition are considered in Section 6.6.

3.2 Recognition Efficiency

A common goal for recognition systems is to achieve correct interpretations as quickly
as possible. Efficiency, thus, plays an important role in the design of these systems.
Since the problem is structured in terms of searching for the best matches of model
objects to viewed objects in the scene, the aim is to explore as few configurations as
possible without sacrificing the desired performance of finding correct interpretations.

This goal may be accomplished by, first, structuring the problem in such a way as to
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minimize the size of the search space matching all combinations of scene features to
all combinations of model features and, second, minimizing the fraction of the search
space to be explored. These issues of matching individual models to scene features are
analyzed in this section. The efficiency of library-directed model retrieval is addressed

in Section 3.3.

3.2.1 Reducing the Size of the Search Space

Since the recognition time is roughly proportional to the size of the search space (using
the same recognition scheme, complex objects are harder to recognize than simpler
ones), reducing the size of the search space will improve the efficiency of the system. A
simple method to reduce the size of the search space consists of using a representation
that enforces a one-to-one matching of model features to scene features. For example,
a representation consisting of knot points of the bounding contour of the object will
match each model feature to exactly one scene feature and vice versa. This matching
behavior allows the recognition system to be guided by either the scene data (iteratively
matching model features to each scene feature) or the model data (iteratively matching
scene features to each model feature). The system can thus select the method that
yields the smaller search space. A many-to-one matching scheme, such as one matching
scene edge segments to model edges, may match many scene features to one model
feature. As a result, the many-to-one scheme results in larger search spaces that must
be guided by the scene data. The scene-guided matching restriction can be costly since
recognition tasks usually involve more scene features than model features. As shown
below, the ability to guide recognition by using the model features instead of the scene
features results in a significantly reduced search space. Given a model features and B

scene features, the size of the search space is:

(ﬂ{&aﬁ using model-guided search,a <

o for one-to-one matching: :
{azpy using scene-guided search,a >

e for many-to-one matching: o using scene-guided search.

It is apparent that one-to-one matching provides a significantly smaller search space
than the many-to-one matching scheme for @ < 8. As an example, given 10 model
features and 25 scene features, a many-to-one (scene-guided) matching scheme would

consist of 10?® configurations while a one-to-one (model-guided) matching system would
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only need to consider 103 configurations. Since « is usually less than 3, the efficiency
analysis below assumes model-guided search.

The search space size can also be reduced by dividing the problem of recognizing a
single object into several much smaller problems of recognizing the object’s component
sub-parts. Since the size of a search space basically grows exponentially with the number
of features, reducing the number of features reduces the exponential growth of each sub-
part’s search space while only linearly increasing the number of those sub-spaces. This
scheme can achieve favorable results as long as the recognition of the sub-parts can
easily be combined to reach an interpretation for the whole object. This check for
consistency among the components can usually be done very quickly by checking the
relative scaling, rotation, and translation of the sub-parts. The size of the search space
for a one-to-one matching scheme of o model features and 3 scene features (assuming

a < f) using N object sub-parts (assuming uniform distribution of the model features

N(F—%F

In order to get an idea of the reduction power of sub-parts, increasing the number of

among the N sub-parts) is:

sub-parts from 1 to 2 for the 10-model-feature/25-scene-feature example reduces the
size of the search space from 10'® to 107 configurations.

The most obvious method for reducing the size of the search space is to use a compact
representation for the object models in order to reduce the number of representational
primitives needed to describe an object. This goal implies that individual features
should be complex and capture a significant amount of the shape information of the
object. As a result, the features are difficult to derive accurately and efficiently. On the
other hand, if the representation consists of a large number of simple features, each of
which does not capture much shape information, many features need to be matched in
order to derive scene interpretations. This issue defines a major tradeoff in recognition

systems and is further analyzed in Section 3.6.2.

3.2.2 Reducing the Fraction of Search Space Explored

Once the size of the search space has been reduced, a 'recognition system should attempt
to minimize the number of configurations in the search space that it explores. One
method for reducing the fraction of the search space to be explored is to use a descriptive

representation that only allows primitives of similar semantics to be matched. By using
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Figure 3.1: The amount of the search space to be explored as a function of
the number of feature types. Several plots are shown for different values of
a (number of model features) and 8 (number of scene features); these values
are shown as the pair (o, ().

different feature types, the system avoids matching all possible combinations of model
features to scene features. The benefits of this method can be reaped-only if the type of
feature can be determined reliably and if ambiguous feature classifications can still be
matched. The cost of this scheme is the additional processing that must be performed in
order to classify the model and scene features. This processing, though, will generally
only grow linearly with the number of features. The combinatoric benefit of feature
classification will then manifest itself in the following formula showing the amount of
the search space to be explored given a model features, § scene features, and A feature

types (assuming uniform distribution of features among the A feature types):

(2ihm)
An example of this combinatoric advantage is shown in Figure 3.1, which shows the
reduction of the number of nodes to be explored with an increasing number of feature
types. As an example, only 0.00003% of the search space for a 10-model-feature/25-
scene-feature case need be explored when using 5 feature types instead of 1.
Another important way to reduce the number of nodes that are explored is to use a

coarse to fine recognition scheme, or a scale hierarchy. The idea is to take advantage of
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the coarse shape cues first to derive rough interpretations and then use the finer features
to refine them. An object should be described by its coarsest primitives, the ones that
abstract the main shape features, at the top level, and by more detailed primitives
at lower levels. A recognition scheme can then consider matching only the abstract
features of the model to the abstract features of the scene in order to derive likely, but
possibly inexact, configurations. The finer features can then come into play in order
to differentiate between those configurations and better localize them. The benefit of
this scheme is that all the features do not have to be considered at once. Thus, by the
time the fine features are being matched vast portions of the search space have already
been pruned. This approach works well if the coarse primitives of the representation
abstract enough information to remove the burden of initial matching of the detailed
features, without abstracting too much information which would lead to spurious and
ambiguous configurations.

Another approach aimed at exploring only a small portion of the search space is to
hypothesize the branches of the search space that contain the best configurations and
then only explore those nodes. This task is performed by running a fast preprocessor
or by selecting certain salient features and only exploring configurations where those
features are appropriately matched. A powerful and widely used preprocessor is the
Hough transform (see Section 2.2) that basically votes for likely paths to take in the
search space. Since the preprocessor outputs preconceived notions of the feature as-
signments, the behavior of the system is to verify those predictions while exploring the

search space.

3.3 Effective Libraries

One of the main aims of this research is to study the problem of structuring a large
database of model objects. A recognition system should incorporate a vast store of
knowledge that it can use to identify and differentiate between a large set of objects.
The knowledge base usually consists of the representations of the various objects and the
relationships between them. By incorporating different types of objects in the library,
various types of recognition performance can be achieved. By entering widely varying
model objects in the library, where each model may define a separate class, and by
increasing the variation tolerance levels of matched features, the system can achieve

an object classification behavior. The recognition system can also display an object
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discrimination behavior by differentiating between similar objects entered in the library
and by enforcing tight constraints between measured properties of features.

The most difficult problem that arises with library usage is how to retrieve the best
matched models without exploring all the possible object matches. This task requires
a library design that allows quick indexing of the likely model candidates based on the
features observable in the scene. The goal is to achieve correct recognition that grows

sub-linearly with the size of the library. Two measures are given to assess this goal:

1. The fraction of the composite search space that is explored should decrease as
more objects are added to the library. With X objects in the library, the size of
the composite search space is approximately XV, where ¥ is the average number
of explored nodes of the search space of individual objects. The number of nodes
that is explored by the system should be smaller than XV since we do not want
to attempt to match each object in a linear fashion. Some benefit can be derived
by taking advantage of commonality among models to avoid searching similar
portions of the search space. But, in addition, we would like the indexing keys
of the model database to contain enough shape information to uniquely define

subsets of likely model candidates when given observed scene features.

2. The number of configurations explored should grow sub-linearly with the number
of objects in the library. This behavior is easily measurable and will serve to

further confirm the efficiency of the library system.

Once a preferred library structure is determined, the problem of library creation must
be addressed. This issue of learning the model descriptions and relating them to previous
knowledge is a complex problem that usually requires some form of tutoring from the
user. Some proposals have been made to relate whole model representations to each
other in order to build object classes. Connell’s system [Connell 85|, for example, uses
analogies between instances of similar objects to infer the important shape cues common
to whole sets of objects and the detailed shape cues that differentiate between related
models. A tutor tells the system if objects are related so that the analogy processing
can take place. A tutor is needed since he understands the functionality of the objects,
which is the usual criterion for object similarity, but functionality is generally difficult
to represent directly to the system. After being presented with enough examples from
the user, the system can then construct internal canonical representations based on the

shape representations of the individual objects and their interrelationships.
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Shapiro and Haralick [Shapiro 82] propose clustering objects into classes based on
a metric measuring the similarity of the object feature relations and then using the
one object closest to the average metric value to represent the whole class. While this
approach to canonical representations requires less user interaction, it is unclear as to
which types of representations will work well with this type of global metric measure.
Their approach does not abstract important shape information and as a result the object
classes might not necessarily be meaningful.

The approach taken in this work is to construct the model library automatically by
using shape information and as a result avoid the thorny issue of object functionality
which is beyond the scope of this thesis. Since the use of global metrics to relate objects
is not a robust method, we relate objects by their common sub-parts. Thus object classes
are defined by the degree of sharing of their component sub-parts, leading to possibly
overlapping object classes. Multiple object classes are useful for converging on the best
object match—the iterative identification of shared components among the remaining
model candidates continually reduces the candidate list. The use of sub-parts to index
into the model library thus leads to an appealing recognition behavior, as outlined in
Section 3.4.

The efficiency criteria for libraries outlined above have not been studied in the past
in order to show efficient library-driven recognition. In addition, most past library
systems, as described in Section 2.3, do not achieve effective recognition of complex
objects. They are only shown to work with very simple objects and it is not known if
they can be extended to a more complex domain. A goal of this work is therefore to start

diminishing these deficiencies and to develop a theory of model library organization.

3.4 Need for Sub-parts

Section 3.2.1 already demonstrated the combinatoric benefits of using sub-parts by
showing how their use leads to a reduction in the size of the search space. In addition
to this efficiency advantage, sub-parts also lead to two other benefits: indexing keys
for the model library, and parameterization of sub-parts. Sub-parts are defined as
subsets of object features that partition the object into its components. Many different
partitions of the object into sub-parts are possible, but for any one partition the sub-
parts are assumed to be non-overlapping. One example of a sub-part partition is given

in Chapter 1 where Figure 1.3 shows the sub-parts found for the model in Figure
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1.2. Other examples are shown in Section 4.2 and Appendix A. In general only one
partition is used to represent the object, but several could be used as well. In addition,
each sub-part could be further partitioned into smaller sub-sub-parts. This structure
hierarchy can contain an arbitrary number of levels, but is limited by the size of the
smallest component. The smallest sub-part can contain just one feature, which cannot
be readily broken down into smaller parts since features are generally the lowest level

primitives used.

The reason sub-parts are used to index into the model library is that individual
features are too small to index a reasonable set of candidate models, while whole objects
are too large. Individual features may have many matches with many models and
thus do not converge on a set of likely model matches. Using whole objects to index
into the library is equivalent to performing a linear search through the library, which
is exactly what we are trying to avoid. As a result we would like to use subsets of
object features as keys to the objects in the database since they are small enough to
match easily, but are large enough to limit the search to a small set of models that
contain those sub-parts. Since sub-parts can be shared by several objects, the number
of sub-parts generally grows sub-linearly with the number of objects. Thus, common
sub-parts further enhance the desired sub-linear recognition behavior relative to the
number of objects in the library. If too many objects share the same sub-part, however,
the discrimination ability of the sub-part is hindered since the recognition of the sub-
part does not significantly limit the number of objects to be potentially matched. To get
an idea of the desired degree of sub-part sharing we can extend Knoll and Jain’s results
for the ideal number of object matches per feature. Under their assumption that the
cost of hypothesizing an object match is equal to the cost of verifying that hypothesis,
total recognition cost is minimized if the degree of feature sharing is proportional to the
square root of the number of objects in the library [Knoll 85]. Although Knoll and Jain
do not use a structure hierarchy, and hypothesis generation is generally more expensive
than verification, their measure supports our intuitive notion of sharing sub-parts to

improve performance.

Even though sub-parts are defined as any subsets of object features, we gain the
benefit of local parameterization if the sub-parts are also semantically meaningful. If
the sub-parts are separated where variations may occur, the system can explicitly allow
for these variations rather than trying to account for them by allowing increased noise

fluctuations. These points of variations can be identified by the system by finding such
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features as concave corners, as described below. Thus the system can readily identify
objects with rotational or translational articulations as well as objects with relative
scaling variability among their sub-parts. The recognition of the model in Figure 1.2 in
the scene in Figure 1.1 exhibits this type of behavior. While the sub-parts are assumed

to be rigid, the rigidity does not apply to the whole object.

The reason that the recognition process itself does not actually place any constraints
on the way sub-parts are generated is that only the models need to be decomposed
into sub-parts and not the viewed scene. A system does not need to break up both
the models and scene into component sub-parts and then compare those sub-parts.
Instead the system may attempt to match any model sub-parts anywhere in the scene
and then verify that identified instances of the model components are consistent. The
scene therefore does not need to be segmented into its component sub-parts prior to the
recognition step, a task that is often difficult to accomplish due to occlusion. In addition,
an initial segmentation phase is inefficient since we would like to use the knowledge of any
identified sub-parts in the scene to help predict the identity of related sub-parts, rather
than attempt to independently identify the sub-parts. There are also no constraints
on the appearance of sub-parts since they may consist of any configuration of object
features. There is no need to define predetermined categories of parts and spatial
relations. Instead, the requirement placed on sub-parts is that they capture some shape
property of the object that tends to remain consistent—any object variations should

occur between sub-parts rather than within them.

The idea of breaking objects into their components for the purpose of object repre-
sentation has been explored before, but has not been implemented in many recognition
systems. Hoffman and Richards [Hoffman 86] argue that the human visual system cuts
surfaces into sub-parts in order to interpret scenes. They also propose that sub-parts
should be separated at points of concavity since when two arbitrarily shaped surfaces
are made to intersect, they usually form a concave corner. An interesting point about
their proposal is that objects are decomposed into sub-parts based purely on the bound-
ing contours rather than on properties of the circumscribed region. Their claim can be
supported by examining some optical illusions. In Figure 3.2, for example, the dots
appear to lie either on the same step or on adjacent steps depending on which side
of the staircase corresponds to the foreground of the figure. In one configuration, the
concavities separate the step sub-parts such that the two dots are one step. In the

other configuration, the two dots are separated by a concavity and thus lie on two dif-
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Figure 3.2: The Schroder staircase, published by H. Schroder in 1858, shows
that sub-part boundaries change when foreground and background reverse.
Rotating the figure helps reverse the orientation. The two dots appear to
lie (;:1 a slilngle step sub-part in one configuration, and on two adjacent steps
in the other.

ferent steps. Figure 3.3 shows a similar behavior for stacked cubes, where the perceived
concavities may break down the figure into two different cube configurations.

Shapiro and Haralick [Shapiro 79] also propose to decompose shapes into nearly
convex sub-parts in order to extract the simpler parts of the whole object. They use a
complex graph based technique to cluster together compact regions. Brady [Brady 84],
Heide [Heide 84], and Bagley [Bagley 85] propose a contour and region based sub-part
decomposition scheme that analyzes various discontinuities in splines (axes) of objects.
These sub-part decomposition techniques point out that sub-parts are usually described
as convex components and may be generated automatically by the recognition system.

Once the sub-parts have been generated, the representation must specify the rela-
tionship between them. One characteristic of this relationship is the type of connection
between the sub-parts. The connection may be the description of the concavity separat-
ing the components or the point along each sub-part where the other sub-part intersects
it. The geometric relationship between the components should also be specified. This
association can be specified symbolically, such as above, to-the-right-of, or between, or,
more accurately, by specifying the relative translation, rotation, and scaling factors of

the sub-parts. The latter method has the advantages of easy specification and com-



3.5 The Hierarchical Nature of Recognition 41

Figure 3.3: Concavities can appear in two different configurations for this
arrangement of stacked cubes. As a result, the three dots may first appear
to lie on a single cube, but. they may then appear to lie on three different
cubes when the figure reverses.

putation. The transformation between two scene sub-parts can simply be compared
against the model transformation to ensure that it falls within a specified threshold.
The symbolic sub-part associations, however, may consist of numerous labels in order

to be complete and as a result may be difficult to compute and compare for similarity.

3.5 The Hierarchical Nature of Recognition

In order to harness the advantages of the structure and scale hierarchies, a recognition

system must satisfy the following criteria:

e automatic generation of the hierarchies,
e incorporation of hierarchies into a single representation paradigm, and

o exploitation of both hierarchies in the recognition engine.

In order to allow the system to function independently it is desirable to generate
the structure and scale hierarchies automatically. Section 3.4 supports the feasibility
of sub-part separation based on object shape. The methods for generating structure

hierarchies can be grouped into two categories: concavity localization and clustering.
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Concave points along the contour of a shape can easily be found by measuring the
orientation change along the contour. Concavities that are distinctive can then be used
as sub-part boundaries. These concavities may be identified at the coarse levels of
the scale hierarchy in order to extract them reliably. Region based clustering may be
accomplished by grouping all features that are visible to each other through the interior
of the object. This grouping yields compact sub-parts. Contour based clustering may
be performed by measuring the spatial proximity of neighboring features and grouping
features that are relatively close to one another. This process yields sub-parts that have
high feature densities.

Scale hierarchies may be generated by using a scale-space filtering approach
[Witkin 86]. This process smoothes a signal with several filters, continually decreasing
in size, in order to separate dominant features from less significant ones. In process-
ing bounding contours of shapes, the orientation and curvature of the contour may be

convolved with a range of Gaussian filters. These convolutions are of the form:

f(s)® (Wlﬁe"sz/z"z)

where f(s) is the orientation or curvature in terms of arc length along the contour,
and o, the standard deviation of the Gaussian, defines the size of the filter. Larger
scale filtering is used for detection of coarse features while the smaller scales detect
finer features. Since the features on the various scale levels are associated with each
other, they may be linked in order to form a scale-space tree. The location of the coarse
features can be traced down the scale-space tree in order to accurately localize them
at the fine scales. The coarse primitives cannot be localized accurately at the coarse
scales since the large filters smear out the contour so that the primitive locations at
those scales might not correspond exactly to their locations on the actual contour. The
behavior of the primitives at the various scales can also be used to refine the symbolic
labels of those features. For example, a corner at a coarse scale may actually be an end
point consisting of two smaller corners at the finer scales and can thus be labelled more

accurately as a two-corner-end rather than a corner.

In order to reap the benefits of both structure and scale hierarchies, it is important
to differentiate between them as well as combine them into a single representation. One
way to integrate both hierarchies into a single descriptive representation is to define
two orthogonal dimensions along which the hierarchies operate, as in Figure 3.4. Along

one dimension whole models are decomposed into their component sub-parts. The
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Figure 3.4: Structure and scale hierarchies may be thought of defining or-
thogonal axes of the representation. The model object shown consists of
three geometric shapes connected together, with their edges perturbed at
fine scales.

other dimension consists of a fine to coarse description of these components. With this
paradigm, the system can explore either one of the object decomposition methods by
processing the representation along one of the axes, or both hierarchical methods by

stepping through the representation in both horizontal and vertical steps.

The model libraries consist of collections of these two-dimensional representations of
objects. Another type of hierarchy can be developed within the library to define object
classes. These classes are specified by the degree of sharing of their component sub-parts.
Figure 3.5 shows an example of a hammer class that is defined by connecting a common
(possibly scaled) handle sub-part by two concave corners to a hammer head sub-part.
The different head sub-parts, while differentiating the hammers, all have at least one
striking surface sub-sub-part in common. Such a class hierarchy allows a system to
compare two objects and reason about their similarity, but does not define canonical
types—single models that represent all the objects in the class. In order to derive

representative types for a class, the object components and their relationships must be
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Fligure 3.5: The sharing of components in the structure hierarchy of a hammer
class.

analyzed in order to determine which characteristics determine class memberships and
which features can be derived from all members of the class. These criteria are usually
determined by analyzing functionality issues since objects are often grouped together

by virtue of their ability to perform the same task.

Since the approach in this thesis is to classify objects solely based on shape, func-
tional issues are not used in determining canonical object models. Knowledge of function
requires much more information than just object shape. This knowledge must be pro-
vided by extensive user interaction or by learning from the experience of using the
objects. These types of representation pose interesting and challenging problems in the
field of recognition which should certainly be pursued in future work. A simple shape-
based method of determining representative models without user intervention may be
to average the matched features of model components that are determined to be similar
and then use the averaged component to represent the whole class of components. This
averaging process may consist of averaging relative sub-part transformations (scaling
factors, rotations, translations) and feature properties (feature orientations and loca-
tions, corner angles). The problem with this approach, though, is that the averaging
process does not necessarily abstract the important features that unite objects in a class.
Instead the canonical object, in the context of this work, is defined by the interaction
of the scale and structure hierarchies. The shared components in a class define the
commonality among its members and the coarse features of these components abstract

their important shape information.
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This type of class hierarchy may be used in a recognition engine to achieve a focusing
general-to-specific recognition behavior. In order to index into a class of objects, the
system attempts to identify its common sub-parts and connectivity relations in the
viewed scene. The recognition of these elements is performed by first using their coarsest
features to ensure that an approximate match exists and then using the finer features to
verify and refine their interpretation. Once an accurate identification and localization of
these indexing components is performed, the unique member of the object class may be
identified by attempting to match sub-parts that continually narrow the sub-class under
consideration. Since the configuration of some of the sub-parts is already known, the
configuration of components that differentiate between class members may be predicted

and quickly verified by the system.

3.6 Inherent Tradeoffs

The correctness, efficiency, and robustness goals of a recognition system place many
constraints on its design and performance, such as the representation that may be
used or the number of scenes that may be recognized. In order to effectively evaluate a
recognition system, it is necessary to outline how the constraints interact with each other
in order that we may analyze which ones are stressed and which ones are compromised in
reaching the desired type of performance. As the constraints on the system are varied,
certain system performance parameters vary too. These parameters define a multi-
dimensional space of recognition behavior, where along each dimension a parameter
defines a performance tradeoff. This section describes some of these dimensions in

terms of the recognition behavior that is achieved with variations in the tradeofs.

3.6.1 Model-Driven versus Scene-Driven

One dimension along which the recognition behavior can vary is the direction the recog-
nition is driven. A top-down, or model-driven, approach uses the information contained
in the model library to direct the search for appropriate model matches in the scene.
A bottom-up, or scene-driven, approach constructs the interpretation by using features
found in the scene to index into the library and hypothesize matches.

A totally model-driven system would attempt to match each model in the library
against features in the scene and then return the best match (or matches) as its inter-

pretation. The best match may be based on the number of features that are matched
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or the fraction of the model that is supported in the scene (e.g. the normalized length
of the object contour that is found in the scene). Since this search is exhaustive, it
guarantees finding the best interpretation, but by virtue of being exhaustive, it is also
very inefficient. One of the goals in the development of object libraries is to index into

a small subset of models and not explore every model/scene match.

A scene-driven system is much more efficient at the cost of possibly missing the
best interpretation. Such systems attempt to hypothesize (or make educated guesses
of) probable model configurations by (1) grouping together some scene features into
larger primitives that can index a subset of object models or by (2) executing a fast
preprocessor over the library models to find the configurations that are most compatible
with the scene features. These hypotheses are then verified by actually matching the
features of the hypothesized model configuration with the scene features. Since com-
pletely exact matches are unlikely due to occlusion and noise, the system returns any
complete interpretations that are found to exceed a preset match threshold. The search
continues until all scene features are accounted for or no hypotheses remain. Since this
scheme does not explore the complete search space of model/scene matches, it may miss
interpretations that are better than the ones that it derived. It therefore strongly relies
on accurate hypothesizing capabilities in order to include the best final configuration(s)

among its initial candidates.

The model-driven approaches and scene-driven approaches may be combined in order
to achieve a hybrid system. For example, some hypothesizing capabilities can be added
to the model-driven scheme so that only a few of the possible configurations are searched.
Alternatively, the system can begin by matching all models in a model-driven fashion,
but after matching only small parts of the models determine the best matches and
hypothesize the complete configurations. The main problems in such a system are
deciding how many parameters of the interpretation to actually hypothesize and at

what point to perform the hypothesis step.

The risk of making bad hypotheses can be lowered by reducing the number of pa-
rameters that are hypothesized. For example, we can just hypothesize the identity of
the model object and then perform the recognition for that object in a model-driven
manner. Increasing the amount of information that is hypothesized reduces the amount
of verification work remaining to be done, but if one of the hypothesized parameters
is wrong, we might miss a good interpretation, even if all the other parameters are

correct. For instance, if we hypothesize both the identity and the transformation of a
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model object, but the hypothesized scaling factor is wrong, we might mistakenly con-
clude that the object is not in the scene. Based on the nature of the hypothesis step,

several requirements are imposed on its performance:

o Conservative behavior.
The list of hypotheses must include the seeds for the correct interpretations—the
parameters that are hypothesized should be accurate. The hypothesizing process
must therefore avoid inadvertently pruning any parts of the search space that lead

to the correct matches.

e Good foresight.
While being conservative, the hypotheses should also not include very many wrong
predictions that the system would needlessly attempt to verify. The hypothesis
module should attach preferences to its predictions so that the recognizer can know
which ones to try first. This ranking is desirable so that the recognition system
can find the correct interpretations early and remove the scene features which

contributed to that configuration, therefore simplifying the remaining process.

¢ Efficiency.
Since it is just a preprocessor, the hypothesis step should be very efficient. Its
running time should be negligible compared to the time the rest of the recognition
process takes. Since this module will usually scan all the objects in the library,
its time complexity will be linear in the number of objects. Even though the
time complexity of the whole recognition system is designed to be sub-linear,
the execution time of the hypothesis module should not overtake the time of the

recognition module for any reasonable size library.

The general goal of the hypothesis module is thus to efficiently generate rough ideas of
the scene interpretations. The information in the scene is used to focus the search since
we do not want to blindly start matching library models in the scene.

Hypothesis generation can be performed at many steps during the recognition pro-
cess, leading to a distinct tradeoff. Clemens [Clemens 86| provides an in-depth discus-
sion of this tradeoff. If we hypothesize too much too early, we risk misidentification
of the best configuration. If we wait to hypothesize until we are almost sure of the
best configuration, we reduce the efficiency of the system. The optimal point would
thus seem to be where we can explore as little of the search space as possible without

sacrificing our confidence in the derived interpretations.
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3.6.2 Feature Complexity versus Matching Complexity

The primitives that form the basis for the representation of a model object must be
chosen judiciously since all interpretations are based on their degree of matching. The
purpose of these features is to make the important shape information explicit in the
representation so that feature matches can lead directly to object recognition. This
goal tends to require complex primitives that demand much computational processing
of the image and as a result may be difficult to construct accurately. Simpler primitives
are easier to detect, but since they contain less information, they are more difficult
to match against the object models. Thus, an inherent tradeoff exists between the
complexity of the representation, corresponding to the amount of processing needed to
derive the primitives, and the size of the search space, corresponding to the amount of
processing needed to derive scene interpretations.

Some points along this tradeoff continuum are presented in Section 2.1, which de-
scribes some of the types of representations used in current recognition systems. At one
extreme is the use of actual contour patches as the representational primitives. These
features are simply derived by breaking the bounding contour into variable length seg-
ments and do not require much processing. Matching of these features, though, is costly
since they are matched on a point-by-point basis of pixels of model features against
contour pixels in the scene. Since this representation does not abstract much shape
information, it also does not extend well to scale variations and sub-part parameteriza-
tion. As features abstract more shape information, the representation adapts better to
more robust recognition. A higher level representation can compensate for scaling of the
object, variations in its sub-part relationships, or mirror image reversal by understand-
ing how these changes modify the lower level primitives. The matching combinatorics
with more complex features is also reduced since the representation is more compact.
The tradeoff is that now more processing is needed to derive the features and to decide
whether two features actually match. The more complex features are usually defined
by many parameters and since exact matching is not usually possible, rules must be
developed that define the tolerance levels for variations in feature parameters. As more
flexibility is added to the system, it becomes more complex, possibly leading to less
accuracy and more noise sensitivity.

In order to better judge the advantages and disadvantages of the feature complexity

tradeoff, the following criteria for shape features are outlined.

¢ Large domain.
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The features used for the representation should be able to represent a large class
of objects. Some features, such as polyhedra, are limited by their inability to
represent curved surfaces well and are only suitable for planar regions. Other
features do not extend well to concave objects since concavities are used to segment
objects. A general representation should not be limited by the types of shapes that
it can represent. Of course, restricted domains of objects may often be recognized

with a small set of simple features, simplifying the problem greatly.

e Stable and sensitive.
This criterion, defined by Marr and Nishihara [Marr 78], suggests that feature
specifications should not fluctuate greatly in the presence of sensor noise or dis-
tortions, variations in viewing conditions, or small variations in shape geometry.
Features should be generated reliably so that instances in the model and the
scene can be matched accurately. At the same time, though, the features should
be able to differentiate between similar shapes. A scale hierarchy adapts well to
the separation of the stable features from detailed sensitive features. The coarse
features remain stable in the face of small fluctuations of the shape which will only
be noticeable at the finer levels. The derivation of a hierarchical representation
adds some complexity to the feature generation step, but simplifies the matching

process by converging on the correct interpretations.

¢ Local support.
The complexity of the features is limited by their size. Features should be based
on local shape cues in order to handle occlusion. If features are used to represent
large sections of the shape, they may be more difficult to recognize if that part
of the shape in the scene is occluded or perturbed. Features such as object area,
for example, that are based on global shape information cannot be extracted

accurately in the presence of occlusion.

¢ Information preserving.
The model representation should be information preserving—the original shape,
and only that shape, can be reconstructed from the representational features. The
reconstruction should be accurate enough so that the recognition system cannot
distinguish between the original shape and the reconstructed one. This criterion
guarantees that the representation is unique relative to the recognition system in

which it is used. If features abstract too much information they yield ambiguous
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matches and thus multiple interpretations can result. Global features, such as

object area, tend to exhibit this form of ambiguity.

e Multiple feature types.
The use of several feature types achieves a combinatoric benefit, as shown in
Section 3.2. These distinctive features are easier to match as long as the feature

stability criterion is met.

3.6.3 Sub-part Size versus Number of Sub-parts

Since objects can be decomposed into a variable number of sub-parts of various sizes, it
is worthwhile to analyze the effect of this tradeoff. At one extreme, the hierarchy can
contain just one level—the whole object. At the other extreme, the object is broken
down into many small components, the smallest of which contain a single feature. The
object can be broken down directly into these small components, or recursively into
smaller and smaller components, resulting in many levels in the hierarchy. By virtue
of the benefits of the structure hierarchy outlined in Section 3.4, we would like at least
two levels in the hierarchy. The smallest sub-parts should also consist of at least a few
features since recognition of single feature sub-parts is meaningless. The recognition of
one feature sub-parts for the purpose of recognizing their parent component consists
of the same procedure as the recognition of that component in terms of its constituent
features.

The smallest components in the structure hierarchy should be large enough (con-
tain enough features) that their identification indexes some proper subset of the model
objects, i.e. the components are not contained by all the models. Many individual
features will generally be contained by many, if not all, model objects, and as a result
their identification does not limit the number of models still to be considered. It is also
desirable, though, to use sub-parts that are not unique and as a result may be shared
by several objects. If all the components are salient in the library, their identification
quickly leads to the identification of the model object, but the recognition process con-
sists of a linear search through these components until one is identified. While it is
possible to use various hypothesis techniques to attempt to find probable components,
the use of sharable components would increase the probability of recognition of these
components. Once a component is identified we can begin focusing on the complete in-

terpretation by considering only parent components that contain the identified one and
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by matching finer features to refine the constructed configurations. Since the focusing
process cannot begin until at least one sub-part is identified, we would like to identify
that component as fast as possible. Thus a high degree of sharing is preferable to no
sharing at all since, even though identification of a highly shared component does not
greatly reduce the number of models that need to be considered, it does determine the
localization of each of these models [Ullman 86|, thus constraining the remaining search.
An optimal degree of sub-part sharing among model objects is difficult to define since
that task would require the ability to choose any part of the object to be a sub-part.
We would instead prefer the sub-parts to be semantically meaningful so that a more
robust recognition can be performed—the identification of sub-part parameters. Thus
we are not really free to break objects into sub-parts at those points that would result
in some optimal measure of sub-part sharing.

The recognition process will usually commence with the identification of the compo-
nents on the bottom level of the structure hierarchy and progress into higher levels until
a complete object interpretation is derived. The components on the lowest level must
be matched in order to conclude a match for components higher in the hierarchy. As a
result, the lowest level is the one for which the size, number, and shareability criteria
apply. Since any intermediate sub-part levels must be combined to yield a complete ob-
ject interpretation using the smallest components, we may just think of the object being
divided directly into those small sub-parts. Using this type of recognition scheme, the
number of levels in the hierarchy will generally not affect the recognition process since
the system will need to explore matching all the components on the lowest level regard-
less of the number of levels between the lowest level and the top level. The intermediate
levels would only be useful in providing names for components composed of subsets of
sub-parts and for providing more effective parameterization of these components. If an
intermediate component, such as the hammer head in Figure 3.5, is found to be rotated
relative to other components, we only need one parameter to describe that variation

rather than a parameter for each of the smaller sub-parts.

3.6.4 Binary Matches versus Qualitative Matches

Different methods may be used to indicate similarity of features, sub-parts, or objects.
Since matching of these elements will usually not be exact, due to quantization vari-
ations and occlusion, measures of similarity must be defined to take into account the

possibility of various forms of noise. One way to define similarity is to use a binary
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measure where elements are either concluded to match or not to match [Grimson 84].
A threshold for the maximum amount of noise can be defined for the measurement of
feature parameters and if (and only if) the difference in the values of a parameter in
the model and scene falls within that threshold, the features are matched. For example,
in verifying the location of matched model and scene features, a tolerance sphere can
be defined around each scene feature within which the model feature may be located.
Similarly, a predefined cone of error can be used to allow some orientation variation
between matched features. The goal of this scheme is to allow enough flexibility in
the system to match inexact components without introducing spurious interpretations.
The method is appealing due to its simplicity. The system does not depend on the
particular setting of tolerance values. Rather, the system’s performance will gradually
vary from recognition of exact instances of models to more inexact recognition as the
tolerance levels increase. This behavior can occur as long as the representation is based
on descriptive features, and the recognition engine exploits constraints between these

features so that invalid interpretations are not derived even with large tolerance levels.

An alternative method of defining similarity is to define a quality measure of the
goodness of match [Bhanu 84(a)] [Turney 85| [Ayache 86]. A quality factor, such as a
number in the range [0, 1], can be assigned to indicate the closeness of the match of two
features. These factors can then be combined to yield quality factors of sub-part matches
and object matches. If these object match measures exceed a certain threshold, then
an object match is concluded. The problems with this scheme relate to the problems
with inexact reasoning in other areas of artificial intelligence. While it is desirable to
assign a number to measure the goodness of fit, the source of this number tends to
be arbitrary. For example, when measuring the difference in orientations of features,
should the match value decrease linearly, polynomially, or exponentially with increasing
orientation difference? Another problem is the manner in which these quality factors
are combined to reach a conclusion that is based on several measurements. Various
schemes, such as fuzzy reasoning [Zadeh 65] or Dempster-Shafer probabilistic reasoning
[Shafer 76], have been proposed to solve this evidential reasoning problem. While these
mechanisms exhibit varying kinds of behavior, it is unclear how to select the desired

manner in which the measures of uncertainty should be combined.

While quality measures provide an easy way to evaluate matches, they suffer from a
lack of expressiveness. These measures abstract away all the information incorporated in

their formation and as a result that information cannot be considered when the measures
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are later combined [Bagley 85]. Since the match values are propagated through larger
and larger interpretation, errors in the setting of these values may expand and lead to
incorrect interpretations. These errors are hard to measure, though, since it is difficult
to decide on what the correct value of the quality measures should be. As a result,
the performance would be sensitive to variations in the setting of these measures. In
general, recognition systems would be more dependent on the setting of the quality
measures than the setting of the tolerance levels for the binary matching scheme.

The tradeoffs described in this chapter, model-driven recognition versus image-
driven recognition, feature complexity versus matching complexity, sub-part size versus
number of sub-parts, and binary matches versus qualitative matches, have been ex-
plored experimentally in an implemented recognition system, as described in Chapters

4 and 6. An analysis of these tradeoffs is then given in Section 6.3.



Chapter 4

The SAPPHIRE Recognition
System

A complete library-driven recognition system combining scale and structure hierarchies
was developed in order to demonstrate and test its advantages, evaluate its performance
criteria, and define its limitations. The resultant system, named SAPPHIRE (Sub-
part Analysis Procedure for Parameterized Hlerarchical REcognition), is described in
this chapter. SAPPHIRE is designed to recognize two-dimensional objects using visual
camera input to derive their shape, based on the goals specified in Section 1.1. The
system was completely implemented on Symbolics 3600 series Lisp Machines.

Figure 4.1 shows a description of the system. Each of the main modules: repre-
sentation processor, sub-part/library processor, and recognition engine are presented

below.

4.1 Representation Processor

The representation processor is used to process both models and scenes in order to
ensure that the same representation is derived for a model and its instance in a scene.
It receives as input a two-dimensional array of grey values that are furnished by a TV
camera. Its output consists of a scale hierarchy of features that represent the viewed
object(s).

The input intensity pixels are processed by an edge detector [Canny 86] in order to
find step changes in intensity. The output of the edge detector consists of the location

and orientation of the edge points. These points are then strung together by a boundary
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Figure 4.1: A top level description of the SAPPHIRE recognition system.
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tracker that follows the edge points based on their orientation, possibly jumping across
small gaps that the edge detector was not able to identify accurately. Short contours
are removed at this point since the system will not be able to identify features on them.

The resulting contours define the shapes in the image.

These contours are then processed by a feature extractor in order to derive the
actual representation. The representation is based on the Curvature Primal Sketch
(CPS), developed by Asada and Brady [Asada 86]. It is in turn based on the primal
sketch representation advocated by Marr [Marr 82] who used this representation to
describe significant intensity changes. Marr used symbolic primitives as the lowest
level features—edges, bars, blobs, and terminations of discontinuities. The Curvature
Primal Sketch extends this idea to finding significant changes in the curvature along
the bounding contour of a planar shape. These curvature changes correspond to knot
points of the contour, such as corners or points of inflection. A similar representation
is the codon [Richards 84] [Richards 85, which identifies maxima, minima, and zeros of
curvature as well as constraints between them. The CPS representation is used for the
SAPPHIRE system since it has the added advantage of a scale hierarchy.

In order to derive the CPS representation, a scale-space filtering approach is used
to identify and localize discontinuities in contour orientation and curvature, resulting
in a multi-scale interpretation of the contour. The contour is convolved with several
Gaussian filters with varying standard deviations, o. In this implementation, four dif-
ferent filters are used, usually with o € {34,24,17,12} (measured in pixels). Starting
with the coarsest scale, the contour is examined for step changes in orientation and
curvature by locating zero crossings in the second derivative of that property. When
such a discontinuity is encountered, the scale at which it is found is used to define the
coarseness of each feature. It is then tracked through the finer scales in order to better

identify its type and to better localize it.

The features used to represent the significant changes in curvature are shown in Fig-
ure 4.2. The simple primitives consist of a corner, signifying a step change in orientation,
and a smooth-join, signifying a step change in curvature (but not in orientation). An
inflection is a smooth-join with a change in the sign of the curvature. Based on these
simple primitives, three compound features are defined for configurations of closely
spaced occurrences of simple features. These consist of an end, two corners of the same
sign; a crank, two corners of opposite sign; and a bump, three corners of alternating

signs. These compound primitives are usually identified by the way they break up
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Figure 4.2: The CPS representational primitives showing the definition of the
feature angle and orientation.

into their sub-primitives at finer scales. Even though the sub-primitives are not always
identifiable at the finer scales, the compound features can still be identified by their

discontinuity pattern at the coarser scales.

Some of the representational primitives are more reliably extracted and contain
stronger shape cues than others. As a result, they are divided into two groups based
on their significance. Type I primitives, the major set, consists of the end, crank, and
corner. Type II primitives, the minor set, consists of the smooth-join, inflection, and
bump. The smooth-join and inflection are more difficult to derive since they require an
additional derivative (curvature is computed as the derivative of the orientation of the

contour) to identify. They are also difficult to localize since it is often unclear exactly
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where the curvature changes along a curve. Bumps are less significant since by their
definition they are small features defining only fine details of the shape. Within each
group, features are further ordered by their significance. Compound primitives tend to
be more prominent than simple features. Primitives also become less significant as their
angles approach 180°. This ranking of features is used in driving the recognition process
since the matching of the significant primitives leads to more accurate configurations.
In order to adapt the CPS representation for a recognition system, the following
properties are defined for each feature: type, scale, location, orientation, and angle.
Compound primitives are also described by their sub-primitives and the distance be-
tween their outer primitives. These properties allow the system to compare features and
match compatible ones. The concept of feature edge vector is also described since it is
used in the definition of angle and orientation. The feature properties are summarized

below and demonstrated in Figure 4.3.

e Type — The type of feature is one of: corner, end, crank, smooth-join, inflection,
or bump. These types are abbreviated as: CO, E, CR, SJ, I, and B, respectively,

in the recognition examples.

e Scale — The scale field is the coarsest scale in which the feature is noticeable.
Processing commences with the coarsest scale and progresses to the finer ones.
The first scale in which a feature is identified by the CPS processor defines the

coarseness of the feature.

e Location — The feature location is defined as the center point of the feature,
which is the actual feature point for simple primitives, and the midpoint of the

chord connecting the two sub-primitives for compound primitives.

e Feature edge vectors — Simple primitives are defined at points where different
contour segments meet. Define the direction of the edge vector to be the direction
of the tangent to each segment at the feature point. Each simple primitive has
two unit edge vectors emanating from it. The edges of compound primitives are

the outer edges of its sub-primitives.

¢ Orientation — The feature orientation is defined as the outward pointing normal
to the feature. For simple primitives the orientation is the angle of the vector

bisecting the edge vector, but aligned to point from the object outward. For
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compound primitives, the orientation is defined as the (unweighted) average of

the orientations of its sub-primitives.

o Angle — The feature angle is defined as the interior angle between its outer edge

vectors, as shown in Figures 4.2 and 4.3.

¢ Sub-primitives — Compound primitives are composed of finer features that
may be distinguishable at lower scales if the range of scales used is fine enough to

identify them. The sub-primitives are defined using the parameters above.

e Displacement — For compound primitives the displacement value is the distance
between the two sub-primitives that compose it. This value is only defined if these

sub-primitives are identifiable.

The output of the representation processor consists of a list of object features, or-
ganized by type, scale, and contour identification (the contour from which they were
extracted). An example of this representation is given for the model object shown in
Figure 4.4. The model is an image of a bike viewed on a bikes allowed traffic sign. The
edges found by the edge finder are shown in Figure 4.5. Some noisy edges are found,
but most of these are filtered by the boundary tracker and CPS processor. The derived
representation is shown in Figures 4.6 through 4.9, the coarsest through finest sets of
features. Each figure shows the features that are first found at that scale. The features
are indicated by their symbols: E — end, CO - corner, SJ — smooth-join. The shown
contour is the shape generated directly from the representation. Only contours on which
features were found are shown since featureless contours, such as smooth circles, are not
easily recognizable by this system. The featureless contours do not contain distinctive
points and as a result are difficult to localize.

It is worthwhile to note a few characteristics of the representation. While perfectly
smooth straight or circular segments do not contain any features, the CPS processor
does locate a few features on noisy or distorted such curves. As a result, a smooth-join
is found on one of the outer circles of the figure and three corners are found on the
wheels of the bike (see Figure 4.6). The recognition is not greatly effected by these
ambiguous features since it is designed to tolerate some noise. These features are also
classified as less significant features since their angles are close to 180°. Note also that
while some of the fine features reflect details that are not visible at the coarser scales,

others are the sub-primitives of ends at coarser scales. For example, the coarse scale
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Figure 4.3: The definition of feature properties shown for a corner (top) and
a two-corner end (bottom).
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Figure 4.4: Sample model object—a bike on a traffic sign.

Figure 4.5: The edges of the bike object found by the edge finder.
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Figure 4.6: The features found at the coarsest scale of the representation.

Figure 4.7: The features found at the second scale of the representation.
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Figure 4.8: The features found at the third scale of the representation.

Figure 4.9: The features found at the fourth, or finest, scale of the
representation.
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Figure 4.10: The reconstructed edges of the bike object (left) and an overlay
of the reconstructed object and the original object (right). The original con-
tours are solid while the reconstructed ones are dashed.

ends at the top pedal, and both wheel axles in Figure 4.6 are decomposed into pairs of
corners at the finest scale (Figure 4.9).

The contour reconstruction is performed using piecewise linear and circular approx-
imations of the contour segments connecting the feature knot points. These contour
segment approximations are computed during the derivation of the representation, but
are not currently used as part of the actual object representation. Asada and Brady
show that this reconstruction process leads to a close approximation of the original
object. Figure 4.10 shows the superimposition of the dashed approximate contours on
top of the original bounding contours. This example demonstrates the information

preserving quality of the representation.

This representation thus provides a rich vocabulary to describe the shape of an ob-
ject which allows SAPPHIRE to achieve constraint and consistency in the recognition
process. The descriptive nature of the representation allows feature matches to con-
strain derived interpretations—i.e. feature matches are not ambiguous. In addition,
the hierarchical nature of the representation leads to reliably extracted features that

may be matched consistently.
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Figure 4.11: The decomposition of an object at an indicative corner pair.
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Figure 4.12: The decomposition of an object at an indicative crank pair.

4.2 Sub-part Extractor and Library Manager

Once the representation is generated, the next step in processing model objects is to
decompose them into their component sub-parts. This process, applied only to model
objects and not to viewed scenes, is implemented based on the ideas developed in Section
3.4. The SAPPHIRE system performs this task automatically by attempting to identify
points along the contour where sub-part variations may occur. In extracting the sub-
parts the system ensures that the resulting sub-parts are not too small. The size measure
used is the number of coarse features. Since the sub-parts are used to index into the
library, we would like to use sub-parts that contain more than one feature—individual
features are often located in many places on many objects and thus do not constrain the
selection of candidate models. We would like the sub-parts to contain more than two
features, though, in order to allow recognition of these components in the presence of
occlusion. As a result, distinctive sub-parts are defined to have at least three coarse
features in order to support stable sub-part matches. The following rules are used to

generate the sub-parts.
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Figure 4.13: The decomposition of an object due to close spatial proximity of
successive features.

1. Contour connectivity.

Each connected contour of the model constitutes a sub-part. If none of these
resultant sub-parts are distinctive (as defined above) then all contours together

are considered one component.

. Corner concavities.

Each contour is analyzed for indicative pairs of concave corners at the coarsest
scale. An indicative corner pair consists of two concave corners lying on the
same boundary in close spatial proximity to each other, but which are separated
from each other by at least one feature in each direction along the contour. The
sum of the angles should be approximately 540° (2 x 270°) and the difference in
their orientations should be approximately 90°. This definition describes points
of intersection that occur often in many objects. Figure 4.11 shows one example
of this type of sub-part decomposition that can be used to separate the head
of a hammer from its handle. The corner pair becomes part of neither sub-
part and instead becomes a connecting component. The connection can then
be verified separately since it will exhibit variations when the two sub-parts are

rotated relative to each other in the scene.

. Crank concavities.

Each contour is also analyzed for indicative pairs'of cranks at the coarsest scale.
An indicative crank pair consists of two cranks lying on the same boundary in
close spatial proximity to each other, but which are separated from each other
by at least one feature in each direction along the contour. In addition, the
corresponding concave corners of the cranks should meet the criteria for indicative
corner concavities above. This type of sub-part decomposition signifies the type

of part intersection that is shown in Figure 4.12. In this example, components
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corresponding to the handle and shaft of a screw-driver become the sub-parts.

The connecting pair of cranks becomes a separate connecting component.

4. Close spatial proximity.
The last method for extracting sub-parts consists of locating segments of the shape
containing strings of sequential features that are in close proximity to each other
relative to their distances from the remaining features of the model. The average
feature-to-feature distance for the model is computed and then each contour is
analyzed for a minimum length string (currently 6) of sequential features where
the distance between each pair of successive features is less than some fraction of
the average distance (currently 0.67). An example of this type of sub-part is the

set of teeth of a saw, as shown in Figure 4.13.

It is worth noting that the parameters that control the sub-part extraction process
can be easily modified in order to fine tune the process. The parameters used for the
system allow enough variability in order to extract most distinctive sub-parts. The iden-
tification of additional sub-parts does not in general hinder the recognition capabilities
of the system.

The sub-part extraction process consists of one application of rule #1 above, fol-
lowed by recursive applications of rules #2 through #4 until no more sub-parts can be
generated. In this manner all intermediate sub-parts are further decomposed into their
smallest components and the intermediate sub-parts do not become part of the final
representation. The output representation consists of a graph of sub-parts in which the
nodes are the feature representation of the sub-parts and the arcs specify how the sub-
parts are connected. The connection information consists of the connecting primitives,
if any, and the relative transformation of the sub-parts. The sub-part transformation
is composed of the translation, rotation, and scaling factors that the sub-parts may
have relative to each other. Currently, global parameters are used to define transfor-
mation tolerance levels for all sub-part relations, but local ones can easily be defined.
These parameters specify the amount of variability to allow between instances of the
sub-parts. Variability may be required due to noise or allowances for actual variation

in the sub-parts.

The sub-parts generated for the bike model shown in Figure 4.4 are shown in Figures
4.14 and 4.15. The connection primitives connecting the front and back of the bike as

well as the ones separating the top pedal from the frame are shown with both of their
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Figure 4.14: First of two figures showing the sub-parts generated for the bike

model.
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Figure 4.15: Second of two figures showing the sub-parts generated for the
bike model.
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Figure 4.16: Organization of the model library. The library is indexed through
the sub-part level.

respective sub-parts even though they are actually considered as separate components.
The bottom pedal was not extracted since the corners defining it were not significant
enough. Overall, the sub-part decomposition achieves an appealing and intuitive sub-

division of the object.

Once the model sub-parts are generated, the model is added to the library using the
sub-parts as indexing keys. The system attempts to match each of the new sub-parts to
existing sub-parts as well as to each other. Any sub-parts that are found to match are
consolidated by sharing a single instance of it. As noted earlier (Section 3.5) the shape
of shared sub-parts is not averaged in any way due to a lack of enough information
to perform such abstraction correctly. Instead, tight parameters are used to compare
the library sub-parts to each other in order to ensure that the sub-parts have adequate
similarities. By using tighter parameters for updating the library than for recognizing
components in the scene, we guarantee that the sub-parts are not generalized too much
for recognition tasks that might require discrimination between two components that
have been consolidated. The algorithm used to match sub-parts is actually the same

one used in the recognition engine, as described in the following section (4.3).

An example of the library organization is shown in Figure 4.16. The pointers between
the objects and their sub-parts are bidirectional in order to allow indexing through the
sub-part level. Once a sub-part is recognized the system may find the objects that

contain that sub-part and then go down the hierarchy to predict other sub-parts needed
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to confirm an interpretation. The recognition of the individual components uses the
scale hierarchy in order to take advantage of the coarse to fine nature of the description.

The two hierarchies are again organized along two separate dimensions.

4.3 Recognition Engine

The goal of the recognition engine is to take full advantage of the rich description of the
representation in order to achieve correct and efficient interpretation of scenes based on
the knowledge contained in a large model library. The recognition engine takes as input
the model library and the feature level description of a scene and outputs all consis-
tent scene interpretations—configurations of object identity and transformation. The
SAPPHIRE recognition engine combines facets of the hypothesis-prediction-verification
scheme with the constrained search technique. Hypotheses and predictions are made at
the level of sub-parts, while the actual recognition as well as the verification steps are
accomplished using the scale hierarchy of the sub-part features. This combination of

scene-driven and model-driven modules is supported in Section 3.6.1.

The description of the recognition engine is shown in Figure 4.17. Each of the main
modules are described below. The Hough transform (Section 4.3.1) is used to generate
an ordered set of likely sub-parts based on the features in the scene and the library.
The system then attempts to recognize these sub-parts in the scene (Section 4.3.2).
Once one or more sub-parts are identified and localized, the system is able to predict
configurations of other sub-parts in order to constrain the list of possible model objects

and to verify the configurations of identified objects (Section 4.3.6).

4.3.1 Hypothesis Step

The hypothesis step forms a crucial module of the recognition engine since it generates
the seeds from which the final interpretations are derived. It acts as a preprocessor
that directs the recognition process and is therefore not intended to perform the actual
recognition. It is the only module of the system, though, that gets a chance to survey
the complete knowledge base in the library since after this module, the recognition
focuses only on the hypothesized components.

The Hough transform is used in this module since it can achieve the following goals

of the hypothesis module (defined in Section 3.6.1): conservative behavior, good fore-



72 Chapter 4 The SAPPHIRE Recognition System

Library Scene features

Hough transform

Hypothesized sub-parts

l—Recogm'ze
l if found

Identify candidate | Identified & localized
/. model objects sub-parts

| L

List of possible __ | Predict configuration
objects of related sub-parts

|

Possible configurations
of all object’s sub-parts

\ update Verify configurations

(constrained recognition)

l if verified

Identified & localized objects

Figure 4.17: Control structure of the recognition engine.
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sight, and efficiency. The method used to implement the Hough transform in order to

accomplish these goals is described below.

In the SAPPHIRE system, the Hough transform is used to only predict the identity
of probable sub-parts. It is intended to be a coarse filter since most of the benefits of
the system are derived from the recognition algorithm. SAPPHIRE is therefore not
dependent on the Hough making very accurate hypotheses. The Hough transform is
not used to predict the transformation of probable interpretations as is done in many
applications of the Hough. The transformation is not hypothesized since it consists of
too many parameters to be predicted accurately: scaling and mirror image in addition
to rotation and translation. Most schemes which do hypothesize the transformation
assume known scaling factors and do not consider mirror images. These assumptions

greatly simplify the hypothesizing of rotation and translation values.

The Hough transform is performed by counting votes for each model sub-part in the
library based on compatible features found in the scene. Each scene feature is checked
against each feature of each sub-part. If the model and scene features are found to be
compatible, then the model sub-part receives a vote. Only the coarsest type I features
(corners, ends, and cranks) for both scene and sub-parts are used. The compatibility
criteria used are feature type and angle. This measure of compatibility is the same one
used for the recognition algorithm when performing the actual matching. The votes are
normalized by dividing the vote total by the total number of coarse type I features on
each sub-part. An important effect of the Hough is to remove invalid model components
from consideration—if no compatible scene features are found for many features of a
model sub-part, there is no need to attempt to recognize that sub-part in the scene.

Such sub-parts are not hypothesized since they receive a low vote score.

The sub-parts with high normalized vote scores are further processed by some heuris-
tics in order to better identify the candidates to be recognized. The sub-parts selected
must have received votes for enough model features to meet the matching threshold
requirements of the recognition algorithm. This measure can be improved by employ-
ing symmetry analysis to account for similar features on the same sub-part and reach

better normalization of votes.

Since we have high confidence that the sub-parts with the higher vote scores will
be recognized, we would like to favor those high scoring sub-parts that are contained
in very few objects. Recognition of these sub-parts will thus substantially reduce the

number of candidate model objects to be considered. Therefore, for sub-parts receiving
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high vote scores, their degree of shareability is used to reorder them.

Larger sub-parts (in terms of the number of features) are also favored over smaller
ones in order to pre-arbitrate between matching conflicts. Such a potential conflict
may occur if two sub-parts may be recognizable in a scene using some of the same
scene features. In that circumstance we must decide which of the two sub-parts should
match those features since scene features generally belong to only one object. The larger
sub-part is preferred since it conveys more information and it is more likely that the
scene feature configuration matching the smaller sub-part was accidental rather than
the one matching the larger sub-part. This decision is made at the hypothesis step
since we would also like the recognizer to match as many scene features as possible
early in the recognition process in order to remove them from consideration if they
contribute to an object match. The arbitration could be performed later if we do not
remove from consideration any scene features that contributed to object matches, and
run a post-processing step to arbitrate among any conflicting object configurations.
Such conflicting object configurations, which share some of the same scene features,
are found to occur infrequently, and when they do, the larger object tends to be the
correct interpretation. Therefore, SAPPHIRE is implemented with the efficiency benefit
of removing scene features matched in model object configurations, and with ranking

larger sub-parts higher than smaller ones for components that received close vote scores.

This preprocessing method is sufficient to generate a rough ranking of candidate
sub-parts, which is the required task of the hypothesis step. It also guarantees that
correct hypotheses are not pruned from its list of sub-parts by only hypothesizing the
sub-part identity (and not its transformation) and by conservative vote gathering. Since
it does not perform much computation, the Hough transform is efficient—proportional
to B+, where 8 is the number of scene features and # is the total number of features for
all the objects in the library. This number is small compared to the exponential size of
the search spaces encountered for the recognition step. Since the number of sub-parts

generated is small, the time of the sorting processing applied to them is negligible.

Some other interesting heuristics can also be used to aid in hypotheses generation and
should be explored. One idea is to histogram the sub-part rotation when features match
and to prioritize sub-parts that receive many compatible feature votes as well as clusters
of similar rotations. The rotation parameter of the transformation is computable since
features are described by their orientation. Translation and scaling factors cannot be

computed easily from single feature matches. The rotation values can then be used
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to constrain the recognition of the selected sub-parts. Complications arise, though, in
robust recognition cases. Mirror image instances of objects in the scene complicate the
rotation voting scheme since feature matches will not contribute to the same rotation
any more. Another drawback is that the rotation vote is also susceptible to noise.
Noise sensitivity becomes an even more problematic issue if we attempt to hypothesize
more parameters, such as translation and scaling factors. As the number of parameters
grows, noise tends to smear out the histogram since the parameters are dependent
on each other. As a result, it becomes difficult to differentiate between probable and
improbable hypotheses.

Another hypothesis heuristic is to cluster several high scoring sub-parts into a single
hypothesis. If we can find several sub-parts that receive a high vote total and that
belong to the same model object, the likelihood of them all matching is high. We can
then modify the recognition engine to recognize several sub-parts in the scene, rather

than just one, before making predictions as to the configuration of related sub-parts.

4.3.2 Recognition Algorithm

Given the ordered list of sub-parts, the system will attempt to recognize each of them
in the scene. This task consists of matching scene to model! features (or vice versa) in
such a manner that the object identity, rotation, translation, scaling factor (the viewed
scene can contain smaller or larger instances of the models}), and object reversal (mirror
image) flag can be determined. The recognition should be performed hierarchically in
a coarse to fine manner taking advantage of the scale hierarchy of the representation.
Furthermore, the rich descriptions of the primitives as well as their spatial layout should
be exploited in deriving the interpretations.

One possible recognition algorithm is graph matching. A model component can be
represented as a graph consisting of its features at the nodes and the spatial relationships
of the features along the arcs. We can then attempt to match sub-graphs of the model
graph to sub-graphs of a suitable graph representation of the scene. A drawback of this
approach is the problem of inexact matching [Binford 82|. Due to occlusion, noise, and
variations in the object the graphs to be matched will contain many differences. Some
mode] features will be missing in the scene and the scene will introduce additional

features not present in the model graph, both due to occlusion. Since the graph is

1The models taken by the recognition algorithm as input are the individual sub-parts.
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generally syntactic, it is an awkward mechanism for dealing with these variations. The
scene graph would need many additional arcs to specify sub-part relations in order to
compensate for model sub-parts being occluded. Spurious components in the scene
graph would also have to be tolerated by increasing the connectivity of the model
graph. As a result, the problem becomes needlessly complicated. And the sub-graph

isomorphism problem is complex to begin with; the general problem is NP-complete.

Another problem with graph matching is that it requires the model and scene graphs
to be equivalently expressed, as in [Connell 85]. Thus, in order to recognize complete
model objects, model graphs of their component sub-parts must be matched against
appropriate scene graphs. This requirement prevents graphs from being used for the
recognition task since the scene would need to be segmented into its component sub-
parts prior to matching. We would like to avoid this segmentation problem since it is
often difficult as well as inefficient to segment the scene correctly and any segmentation
errors (even small ones) can lead to recognition errors. The system would become
too dependent on this segmentation process which sometimes cannot be performed
completely due to occlusion and noise. The recognition would fail, for example, if the

concavities used to decompose the sub-parts were occluded in the scene.

A more natural way to structure the recognition algorithm is based on the con-
strained search scheme used by Grimson and Lozano-Pérez to match edge segments
and surface patches [Grimson 84] [Grimson 85]. The SAPPHIRE system adapts this
recognition algorithm to be used with the CPS based representation. The CPS repre-
sentation improves the combinatorics since it enforces a one-to-one matching that is not

used by Grimson and Lozano-Pérez (see Section 3.2.1).

The recognition problem is structured as a search through an interpretation tree
consisting of all possible matching configurations of scene to model component features.
The first level of the tree has nodes corresponding to the assignment of the first model
feature to each scene feature. The second level expands the first level nodes by enumer-
ating all possibilities for the assignment of the second model feature to scene features
given the assignment in the parent node.? In order to allow for occlusion, model fea-
tures may also be assigned to the null-features, a matching that indicates a configuration

where that feature cannot be identified. This scheme increases the branching factor of

2The interpretation tree can also be structured by assigning model features to a scene feature at each
level (as done by Grimson and Lozano-Pérez), but since the scene will usually have more features than

the model, the model-guided approach is preferred in order to reduce the size of the tree.
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the interpretation tree by one. The expansion of the tree continues until all model

primitives have been assigned.

4.3.3 Geometric Consistency

In order to prune inconsistent configurations, and avoid generating whole sub-trees,
geometric constraints are applied to the configurations. The system compares relation-
ships between pairs of scene features with the relationships between the assigned pair
of model features. If the scene and model values do not match for any pair of fea-
tures, that configuration can be pruned and none of its descending nodes need to be
explored. The advantage of using pairwise constraints is that they are coordinate-frame
independent and thus measurements in model coordinates can be directly compared
to measurements taken from the scene. The constraints used here are also simple and
therefore do not require any complex constraint management system. The constraints

used by SAPPHIRE consist of the following three measures between pairs of features:

e Orientation difference — the angle formed by the orientation vectors of the

two features.
e Distance — The distance from one feature to the other.

e Direction — The angle of the vector drawn from one feature to the other. The

angle is formed by that vector and the feature orientation vector.

In the 2D domain these parameters completely constrain the attitude of one feature
relative to another since three parameters are needed to specify the three degrees of
freedom (two translational and one rotational). The parameters can be transformed
into other forms, but with the same constraint abilities—such as the orientation differ-
ence and the two components of the vector from one feature to the other. In the 3D
domain, the constraints yield four parameters: orientation difference, distance, and an-
gle of direction vector (which requires two parameters to specify in 3D). Therefore, the
constraints do not completely constrain the attitude of features relative to each other
in 3D, which requires five parameters. Grimson shows that these constraints (in both
2D and 3D), though, are complete in the sense that no additional geometric constraints
are possible [Grimson 86].

The constraints between all model features can be computed off-line and used for

all recognition runs. Therefore, SAPPHIRE only computes the relationships among
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scene features that are being matched for comparison to the model constraints. The
recognition process starts off by attempting to match the coarsest level features of the
given sub-parts to the scene features. At the end of this processing, the system will be
left with at least one matching configuration if the sub-part is actually in the scene.
Subsequent levels of processing match the next three levels of the scale hierarchy in order
to discriminate between the remaining configurations as well as localize them better by
matching the finer features. All the final configurations are returned as interpretations
of the sub-part in the scene.

The final interpretations must match a minimum percentage of the model compo-
nent’s features in order to be declared a valid match. The threshold value typically
used is 50% of the sub-part’s type I features. This value can be modified depending on
the type of recognition desired. The system can even be designed to set the threshold
itself by analyzing the similarity of the sub-parts of the library. If the sub-parts are
very similar to each other, the threshold value can be.increased in order to differentiate
between them; as the similarity of the library sub-parts decreases, the threshold can be
decreased.

The feature match is performed on a binary basis, as described in Section 3.6.4. Tol-
erance values are defined for the different constraints in order to account for variations
such as sensor noise and distortion, scaling effects, discretization errors, or occlusion.
Therefore, if model features M1 and M2 are matched to scene features S1 and S2, re-
spectively, the system would ensure that in order for the matches to be consistent, the
following inequalities hold (w = orientation difference tolerance, x = distance tolerance,

and ¢ = direction tolerance):

o | Orientation-difference(S1,52) - Orientation-difference(M1,M2) | < w
o | Distance(S1,52) - Distance(M1,M2) | < x

e | Direction(S1,52) - Direction(M1,M2) | < ¢

Due to the nature of the recognition process, all the correct matches® are guaranteed
(within the bounds of the allowed noise and spatial variations) to be included in the
final set. This behavior is due to the consideration of the whole search space in the

interpretation tree and the pruning of all invalid configurations, leaving behind only the

3 Correct matches are defined as the best configurations in terms of the percent of type I model

primitives matched in the scene.
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valid ones. This behavior is desired since the low level features usually do not contain
enough shape information to make educated hypotheses. As a result, we like to have this
low level completeness guarantee. The hypotheses are relegated to the more descriptive
sub-part level where the hypotheses can be supported by much more information.

In performing the matching process, two heuristics are used to improve its efficiency:
lookahead pruning and identification of congruent configurations. Lookahead pruning
is used to remove configurations from further considerations if it can be determined
early on that they will not yield valid interpretations. The final configurations must
have a minimum percentage of the sub-part’s features, as specified above. Therefore,
we can compute ahead of time the maximum number of null-feature matches that a
configuration may have. Any time that this maximum is exceeded we can stop expand-
ing that branch of the interpretation tree. Using this heuristic, many of the invalid
configurations are pruned early rather than filtered at the end.

The identification of congruent configurations arises from the use of breadth-first
search in expanding the interpretation tree. A common result after a few levels of
processing is that many of the consistent configurations are actually derived from the
same interpretation. For example, two configurations could have all the same primitive
assignments except one which assigns a model features to the null-feature. Since these
configurations actually correspond to the same interpretations, we would only like to
keep one of them. The way congruent configurations are identified by the system is by
computing the sub-part/scene transformation for each configuration. As shown below
in Section 4.3.5, this computation is efficient by virtue of the relatively small number
of features in a sub-part and by restricting the number of consistent configurations. By
comparing these transformations, the congruent configurations are identified and only
the better ones, in terms of the number of type I features matched, are kept. Tight
tolerances are used to compare the transformations so that only configurations that are

very similar to each other become candidates for pruning.

4.3.4 Feature Compatibility

Since the features are described by different types, the system does not actually explore
the assignment of all scene features to model features. Only features that are judged to
be compatible are matched. The system thus achieves two forms of constraint: feature
compatibility and geometric consistency. Compatibility is defined by a set of rules

that compare the scale, type, and angle of the features. One rule incorporates the
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Feature 1 | Feature 2 | Tolerance (degrees)
End End 50
Crank Crank 40
Corner Corner 30
Bump Bump 40
Smooth Join | Smooth Join 40
Inflection Inflection 40
End Corner 45
Corner Crank 20
Corner Smooth Join 20
Crank Inflection 20
Smooth Join | Inflection 20

Table 4.1: Feature matching rules. Only features of the given types and with
angles differences falling within the given tolerance values are judged to be
compatible.

scale hierarchy of the representation. The recognition already exhibits a hierarchical
nature by only matching features of the same relative coarseness levels. In order to
handle possible ambiguity in the assignment of scale to the feature, some cross-scale
matching is incorporated. After the processing of each level of the scale hierarchy, the
system attempts to match any remaining unmatched model features in all consistent
configurations to scene features in the immediately coarser and finer levels. Unmatched
scene features are similarly processed. As a result, features that are on the borderline
between two scales, and may be classified in one scale in the model and in the other
scale in the scene, may still be matched. But since these features are more ambiguous
than features for which the scale is better determined, they are not used to drive the
recognition.

The remaining compatibility rules compare the class and angle properties of features.
Since exact matches are not likely, the rules define the allowed variability in the feature
types and feature angles. The rules allow variations in the primitive specification to
be gracefully tolerated. The compatible primitive types are shown in Table 4.1. The
associated tolerance value indicates the difference in the angles of the model and scene

features that is deemed acceptable for compatibility.
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The tolerance values are higher for primitives of the same type since they have the
same appearance and more fluctuation in their angles can be tolerated. Features of
different types look somewhat different locally, so their edges should be more aligned to
compensate for the difference in appearance. Angles of corners are computed relatively
accurately, resulting in a lower tolerance for corner-corner matches than for other intra-
class matches. The tolerance values for end matching are higher than for other features
in order to allow for scaling variability. The angle of a two-corner end tends to vary
somewhat as it is viewed more coarsely. It can appear to be a sharp end at coarse scales
and as a result the angle at the end point will be somewhat different than the angle of the
finely-viewed flat two-corner end. These effects can also manifest themselves for scaled
instances of the same object and so the tolerance values for end-end and end-corner
matches are increased. Due to this problem, the tolerance value (given in the table) for
matches consisting of one compound feature and one simple feature is multiplied by an
additional factor of 1.25. In addition to these rules, bumps are allowed to match ends
and corners if both primitives in the matched pair are convex or concave. Actual angles
are not used for these matches since the edges of the bump do not correspond to the
edges of the matched end or corner.

Other parameters can also be used for the compatible matching rules. One such
parameter is the displacement value of compound primitives. Matching displacements,
though, requires the ability to parameterize them by the scaling factor involved in
transforming the model to its instance in the scene. The problem is that in order to
decide if the displacements are compatible, the scaling factor is needed, but the final
scaling factor is derived from the configuration of all the matched primitives. The scaling
factor is therefore not available when features are still being tested for compatibility.
As a result, displacement values can be checked only at the completion of the matching
phase, when they can be scaled appropriately and the displacements can be checked for

consistency.

4.3.5 Computing Model/Scene Transformations

For each interpretation, a transformation is defined that transforms the model sub-
part from model coordinates to scene coordinates. The transformation vector consists
of mirror image flag (to indicate if the object in the scene is the mirror image of the
model), rotation, scaling factor, and translation. Since these variables depend on each

other, they are defined to apply in the order given. Thus the model is first flipped, if
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necessary, then rotated to the orientation in the scene, rescaled, and finally, translated
to its position in the scene. The mirror image flag and scaling factor are derived from
the application of the geometric constraints. The orientation difference and distance
constraints do not change for mirror images, but the sign of the angle of the direction
vector reverses. Thus, if the direction constraint for a configuration fails, the system
can check if the mirror image is consistent. Similarly, the scaling factor is derived from
the application of the distance constraint. Instead of comparing the pairwise feature
distances in the scene directly to the model, a scaling factor is used to parameterize those
distance measurements. In order to be consistent, all the inter-feature scene distances
in a configuration must be consistent with a scaling factor times the distances between
the assigned model features.

The rotation and translation components are computed by comparing absolute mea-
surements of the model and scene features. The rotation is computed by the average
difference in the orientations of assigned model/scene features. After the model is
transformed by the mirror image flag, rotation, and scaling factor, the translation is
computed by averaging the translating vectors required to relocate each model feature

to the location of its matched feature in the scene.

4.3.6 Prediction and Verification

Once a sub-part has been identified and localized in the scene, that knowledge can be
used to simplify the recognition of related sub-parts. By using the library, all the objects
that contain the identified sub-part can be selected as possible candidate model objects
to explore. The system can then predict the identity and transformation of related
sub-parts that will reduce the list of model object candidates. As these predictions
are verified, the list of candidates is consolidated. The system continues predicting
and verifying instances of the model components in an effort to recognize all parts of
each remaining candidate object. If enough components of a model object have been
recognized, the resultant component configuration is returned as a scene interpretation.
The minimum number of components needed to match is specified as a percentage of
the distinguishable components of the models. Distinguishable sub-parts are defined
as having at least three coarse features, as defined in Section 4.2. The percentage of
sub-parts needed to be recognized is usually set at more than half of the distinguishable
sub-parts (at least 51%). With high minimum percentages, we achieve a tight inspection

type of recognition behavior. With lower minimum percentages, we achieve a higher
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degree of inexact matching.

Various heuristics can be used to select the sub-parts to be predicted and verified.
Since the hypothesized sub-parts are selected to have a low degree of shareability in
the library, the number of candidate objects will usually be low. The straightforward
way to process them is just to attempt to recognize each of their components separately
and then select the best overall component configuration if any of them satisfy the
minimum number of identified components criterion. The best model object is judged
to be the one that matched the most sub-parts. Other parameters can certainly be
used in evaluating the best model match, such as the number of features matched or
the measure of the match of model contour segments to scene segments. The selection of
sub-parts to predict can also be determined by finding common sub-parts with common
component relationships among the candidate objects. These sub-parts can then be
predicted first since, if they are verified, they will reduce the size of the candidates list,

converging on the best model match.

In predicting sub-part configurations, the relative sub-part relationships specified
in the model library are used to compute the predicted transformation. Tolerance
parameters are then added around these transformation values in order to define a range
of rotations, scaling factors, and translations to use for verification. The mirror image
flag for the recognition of all the sub-parts of the object is determined by the mirror
image flag of the recognized hypothesized sub-part. The same recognition algorithm,
described in Section 4.3.2, is used for verification as is used in performing the original
sub-part recognition. For verification, though, the transformation is greatly constrained
so only configuration nodes whose transformations fall within the specified ranges are
expanded. The verification step is therefore much faster than an un-informed recognition
of the sub-part. If a predicted component is verified, its exact transformation is also
determined as a direct result of the constrained recognition processing. In addition to
verification of the transformation, the connection of the sub-parts is also checked. The
location of the connection should not be substantially modified, i.e. only rotation about
the connection is allowed. An attempt is also made to match the model connection
primitives in the scene in order to further justify a component configuration. The
relative rotation of the two sub-parts is used to modify the angles of the connection

corners or cranks.

As predicted sub-parts are verified, a component configuration of the model object

is developed. A lookahead pruning heuristic, similar to one used in the recognition
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algorithm, is used to remove candidate models from consideration. If enough sub-parts
have failed to be recognized so that the minimum number of identified components
criterion cannot be met, that model object is pruned.

The current verification scheme is based solely on feature matching. Once an in-
terpretation is generated, additional types of verification may be used to check if the
resultant configuration is actually valid. Since we are performing inexact matches and
are allowing for noise, we cannot discount the possibility that interpretations may be
wrong. Some other forms of verification that may be incorporated into the system

include:

o Check the consistency of the location of the actual model contour segments rather
than just the features. The contour approximations derived in the CPS processing
can be used to ensure that enough of the model contour is accounted for in the

scene.

o If the system knows the color of the background, it can verify that no such back-

ground points exist where the model object is interpreted to be.



Chapter 5

Examples of Recognition

Performance

The SAPPHIRE system was extensively tested using a library of model objects found on
traffic signs. This domain was selected since the objects are two-dimensional in nature
and they cover a broad range of complexity. Some objects are relatively simple while
others contain many detailed features; some objects are very different from each other
while others contain many similarities. The tests were carried out to show the following

aspects of the recognition system:

1. Automatic construction of a model library based on the models’ sub-parts.

2. Recognition of objects in scenes of varying complexity. The scenes may have any

of the following properties:

o Occlusion of objects caused by overlapping objects.
¢ Variation of noise in the scene introduced by sensor distortion.

e Variations in feature specifications introduced by using non-exact instances

of the model objects in the scene.
e Variations in sub-part relationships such as rotation, translation, or scaling.
e Variations of global parameters such as scaling of the whole object or revers-

ing it in the scene (recognizing the object’s mirror image).

3. Efficient recognition in terms of the number of objects in the library and the
possible number of configurations that may be explored for any individual object

match.

85
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The first two aspects of the recognition system are examined in this chapter. An

extensive analysis of the recognition efficiency of the system then follows in Section 6.1.

5.1 Generation of Library

Thirteen model objects were presented to the system for the purpose of constructing
the library. These models are shown in Figures 5.1 through 5.3. These figures show
the edges extracted from the images of the models. Some noisy edges are present in
these images, but, as will be shown in Section 5.2, they do not reduce the recognition
abilities of the system. The size (in pixels) of the images shown in these figures as well
as in the recognition examples range from about 250x250 to 350x350. The resolution
of all images shown in this chapter is about 100 pixels per inch. Due to the nature of
the representation, the system cannot recognize objects much smaller than the letters
shown for the parking word object (Figure 5.3). Since the CPS processor smoothes
the contours, small features are not identifiable at the coarse level. As a result, these
features are not used to drive the recognition, but to refine interpreted configurations.
This behavior is desirable since the larger coarse features should drive the recognition.
With increased resolution, though, the system will be able to use the smaller features
as coarse primitives and therefore recognize smaller and smaller objects.

The thirteen model objects were processed by the representation processor, sub-part
extractor, and library manager to yield 47 sub-parts. The sub-part decomposition of
each model object is shown in Appendix A. Several of the sub-parts were found to be
common among several objects even though they are of various sizes. These include
the arrow head of the right turn only, no left turn, straight arrow, and U-turn signs, the
outer triangles of the bend in road and junction ahead signs, the letter E in the words
REDUCE and SPEED, and the letter N in the words PARKING and NOW. The only
common sub-part that was not identified was the second E in SPEED which, due the
tight library updating tolerance values, was not found to be similar enough to the other
E. In examining these two letters closely (in their reconstructed form in Figure A.14) it
can be seen that some of the features do have different parameters.

An examination of the sub-parts reveals the compactness of the representation as
well as its information preserving properties—the sub-parts are shown with their coarse
features and the contour approximations that are derived from the knot points of the

representation. The representation is thus capable of describing a wide array of complex
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Figure 5.1: First of three figures showing the model objects in the sample
library. These objects consist of: a bike, a car, and a disallow symbol. Output
of the edge finder is shown.
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Figure 5.2: Second of three figures showing the model objects in the sample
library. These objects consist of: right turn only, no left turn, straight arrow, and
U-turn. They all share an arrow sub-part. Output of the edge finder is shown.
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Figure 5.3: Third of three figures showing the model objects in the sample
library. These objects consist of: bend in road, junction ahead, and four word
objects (each word is a model). Output of the edge finder is shown.
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objects.

5.2 Some Recognition Examples

Ten different scenes were tested with the traffic sign library. For each one, the component
configurations of the identified objects, selected by the system from the complete library,
are shown. These figures show the features whose match led to the interpretation of the
sub-parts shown in solid lines. The dashed sub-parts are the ones that did not receive
enough supporting evidence to be identified, but their location is predicted by averaging
the transformation vectors of the identified sub-parts. This average transformation is
also used to define a transformation for the whole object. The transformed object is then
superimposed on top of the original scene. In the superimposed figures, the contours
of model object are shown as dashed lines while the edges of the objects in the scenes
are shown as solid lines. The superimposition of the model on the scene is usually not
completely overlapped since, in most of the examples, the viewed objects are variations

of the models.

The recognition of a no left turn sign, which is different than the one in the library,
is shown in Figures 1.1 through 1.5 of the Introduction. This example shows the power
of using parameterized sub-parts. The spatial layout of the two arrow heads and arrow
base is different in the model and scene. But by allowing some translation and scaling
variability between the sub-parts, SAPPHIRE is able to identify all three sub-parts in

the scene.

Figure 5.4 shows a sample scene of a no bikes sign. The bike in that image is not the
same bike as the one in the library. As a result, several of its sub-parts are displaced
from their positions in the model object. Figure 5.5 shows that SAPPHIRE was still able
to recognize three of the four distinguished sub-parts (ones with at least three coarse
features) as well as one of the smaller sub-parts. The component configuration shows
that even though some of the identified sub-parts are displaced from their position in
the model, they are still identified. When the whole model object is superimposed on
the scene, Figure 5.6, a good match is achieved. The contours of the two bikes do not
overlap exactly due to the differences in the bikes’ specifications. The disallow symbol
was also identified in the scene as shown in Figures 5.7 and 5.8. By identifying these

two symbols on the viewed traffic sign, the system can reason that bikes are not allowed
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Figure 5.4: The grey level test image of a no bikes sign.
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Figure 5.5: The component configuration of the bike model object found in

the no bikes sign.
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Figure 5.6: Superimposition of the bike model object on the no bikes sign.
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Figure 5.7: The component configuration of the disallow model object found
in the no bikes sign.
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Figure 5.8: Superimposition of the disallow model object on the no bikes sign.
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Figure 5.9: The grey level test image of a no cars sign.

on this road.! This example shows that the system works well for complex objects by
exploiting the structure and scale hierarchies. By using this approach, the system was
able to capture enough of the shape knowledge of bicycles in order to match different

instances of that general shape.

Another example of inexact recognition is the no cars sign. The car in this image,
Figure 5.9 is a different instantiation of the car object in the library. The representation.
though, is again able to capture the abstract shape of the car in order to match the two
instances. The recognition of the car is shown in Figures 5.10 and 5.11. All features
except the left wheel were matched. The interior contours of the windshield. headlights.
and the grille were not matched since they did not have enough identifiable features on
them. This behavior is due to their small size which also results in these sub-parts being
non-significant for the recognition process. The disallow symbol was recognized in the
scene by virtue of the corners of the symbol being visible. even though most of the slash

is occluded. The recognition of the disallow symbol is shown in Figures 5.12 and 5.13.

The recognition of the bend in the scene in Figure 5.14 shows the system’s tolerance
for sensor noise and distortion. Despite the the variations in the two object instances.
SAPPHIRE was able to recognize the bend model object in the scene. as shown in

Figures 5.16 and 5.17. As can be seen in the superimposition figure, the triangles are

!Now, all we have to do is teach robots how to ride bicycles.
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Figure 5.10: The component configuration of the car model object found in
the no cars sign.

Figure 5.11: Superimposition of the car model object on the no cars sign.
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Figure 5.12: The component configuration of the disallow model object found
in the no cars sign.

Figure 5.13: Superimposition of the disallow model object on the no cars sign.
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Figure 5.14: The grey level test image of a bend in road sign that is similar to
a rotated mirror image of one of the model objects.

Figure 5.15: The output of the edge finder processing the bend in road sign.
Note the noisy contours between the two triangles that result in the orien-
tation of the two triangles pointing in the same direction.
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Figure 5.16: The component configuration of the bend in road model object
found in the bend in road sign.

Figure 5.17: Superimposition of the bend in road model object on the bend in
road sign.
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Figure 5.18: The grey level test image of a parking sign.

no longer equilateral, which they were in the physical objects.? Despite the distortion,
the system was able to recognize a rotated mirror image instance of the model object in
the scene, even though after superimposition the two instances were distorted in different
dimensions. Due to noise, the edge finder assigned the same (parallel) orientations to
the two triangles. The noise can be seen as additional contour lines between the two
triangles in the edge finder output of the scene, Figure 5.15. Since concentric contours
alternate pointing in and out, the two triangles point in the same direction. As a result
of this noise and distortion, the upper corner of the outer model triangle matched the
inner triangle corner of the scene. The inner model triangle was therefore not found and
is not predicted accurately due to the scaling and translation of the identified sub-parts.

Despite these problems, though, SAPPHIRE still generated a good interpretation.

While the system was not specifically designed for recognizing words, it can certainly
be used for that domain since letters are automatically generated as sub-parts of words.
Due to the nature of the recognition, SAPPHIRE actually uses the context of letters
in order to recognize words. This behavior is achieved since once some letters are
identified, only words containing those letters in the identified positions are considered
for verification. One example is the parking sign in Figure 5.18. In this test, both
the parking word object, Figures 5.19 and 5.20, and the straight arrow, Figures 5.21

and 5.22, were identified. The large P letter was not matched due to the large scale

2The TV camera stretched the vertical dimension relative to the horizontal dimension.
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Figure 5.19: The component configuration of the parking word model object
found in the parking sign.
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Figure 5.20: Superimposition of the parking word model object on the parking
sign.
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Figure 5.21: The component configuration of the straight arrow model object
found in the parking sign.

| || ARKING

F'igure 5.22: Superimposition of the straight arrow model object on the parking
sign.
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difference. Even though the system can allow for such large five-fold relative sub-part
scaling variations®, the model P is not matched to the scene P since the size of the small
model letter prevents the system from deriving the same features as for the same large
letter. Clearly, the features for the model P in Figure A.12 cannot match the ones for
the character in the scene since the representation for the model letter only consists of
two ends, appropriately parameterized, at the bottom and top of the letter. With higher
resolution, such as in the scene, the letter is described much more accurately—it does
not have an end in the middle of the top of the letter. The reason for this phenomenon
is that, as stated earlier, the size of the letters in the parking model object is at the
boundary of the resolution of the system.

These examples demonstrate some of the important facets of SAPPHIRE’s recog-
nition performance: identification and localization of the correct objects from a model
library, stability in the presence of variations of global and sub-part parameters, toler-
ance for sensor noise, and wide range of objects that can be recognized. The remaining
five examples using the traffic library are shown in Appendix B. These examples consist
of signs for the following: passing allowed, raslroad crossing, no U-turn, junction ahead,
and reduce speed now. They demonstrate similar performance and provide more data for
analyzing the system’s capabilities. An example with a different set of objects is shown
in Appendix C. This example shows recognition in the presence of much occlusion, a

situation that was not common in the traffic sign examples.

3The system is usually run with a relative sub-part scaling factor of 1.5.



Chapter 6

Evaluation of SAPPHIRE System

Performance

By analyzing the tests run on the SAPPHIRE system, as described in Chapter 5 and the
appendices, we can evaluate the advantages and limitations of this particular system as
well as of the overall scale/structure hierarchy approach. This analysis is performed in
the context of the efficiency and performance goals set out for the system, as outlined
in Section 1.1, and the tradeoffs that arise in the implementation of this approach, as

described in Section 3.6.

6.1 Efficiency Analysis

The efficiency specifications for the system consisted of two goals: efficient derivation of
scene interpretations and efficient indexing of candidate models from an object library.
Due to the hierarchical nature of the recognition process, it is difficult to separate these
two tasks, but various measures will show how they both lead to effective overall recog-
nition. We are mainly concerned with the efficiency of the recognition process rather
than the efficiency of the library construction phase. The latter can be done off-line and
does not impact the recognition execution times. It is actually advantageous to perform
as much computation as possible off-line in order to minimize the computations to be
done during recognition [Goad 86]. The SAPPHIRE library construction phase con-
sists of decomposing the objects into sub-parts, computing the sub-part relationships,
computing inter-sub-part feature relationships, and comparing all the sub-parts to each

other for addition to the library. Construction of the traffic sign library (not including
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the representation processor times) took about five minutes on a Symbolics 3640.

The measures for success given for recognition efficiency consist of:
1. Reduction in the size of the search space with use of a structure hierarchy,
2. Small ratio of configurations explored to total number of possible configurations,

3. Reduction in the ratio of configurations explored to total number of possible con-

figurations with increased number of objects in the library, and

4. Sub-linear increase in the number of configurations explored with increased num-

ber of objects in the library.

In order to measure these characteristics, efficiency statistics were accumulated for
the ten sample scenes in the traffic sign domain. These measures are shown in Table
6.1. The table shows the number of configurations explored as well as the number of
total possible configurations for each test run. Two test runs are shown for each scene:
one with the whole library and one with a library composed of only the objects similar
to those in the scene. The number of total possible configurations consists of the sum
of the sizes of the search trees matching all scene features to all features of each model
sub-part. The table also provides processing times divided among representation time,
hypothesis time, and recognition time. The representation times shown consist of only
the feature extraction times. Most of this time is spent performing the convolutions
for the Curvature Primal Sketch. This time is directly proportional to the length of
the contours in the image. It can easily be speeded up by performing the convolutions
in parallel using convolution boards or highly parallel machines. The representation
time does not include the edge detection time which takes about five minutes on the
Symbolics computer. Since it is also performing many convolutions it can be similarly
speeded up. The hypothesis times shown are generally short. The recognition time is
directly proportional to the number of configurations explored since the verification of
consistent sub-part relationships is very quick.

One measure that can be derived from these statistics is the fraction of the search
space that is explored. The average percentage of explored configurations is 0.58% for
the whole library runs and 2.4% for the partial libraries. We therefore see that as more

objects are added to the library, a smaller fraction of the total search space is explored.

In order to verify the combinatoric advantage of using sub-parts two tests were

performed on model objects with and without sub-parts. The results of these recognition
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Scene time (seconds) . configurations | total possible
represent. hough | recognition explored configurations
No bikes
whole library 275 _ 8 | 56 ¢ 1875 | 627,038
2 objects 1 35 1164 94,160
No cars
whole library 114 _ 3 16 793 164,894 |
2 objects 0 2 96 17,206
Passing allowed
whole library 125 8 | 22 4 786 | 164,894
1 object 0 13 247 17,206
Razlroad crossing
whole library 137 __6 .58 1 22§_ N 4@94_
1 object 0 9 296 44,246
No U-turn
whole library 331 _ 5 44 1a3r 388,058 |
5 objects 0 23 689 32,960
No left turn ‘
whole library 339 _ 5 42 1797 | 288,770 ]
5 objects 1 19 690 19.856
Junction
whole library 75 4 22 87 | 68,678 |
2 objects 0 6 211 4226
Bend
whole library 80 3 21 868 | 68,678
2 objects 0 8 342 4226
Parking
whole library 166 15 117 - T 877,430 |
2 objects 1 38 856 77,720
Reduce speed now
whole library 378 16 195 4135 __4,194.030 |
3 objects 2 150 2929 2.166.360

Table 6.1: Efficiency statistics from ten samples scenes run with the traffic
sign library.
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o | Mo | Comffumtions | Toalpomil
No bskes | Bike: 8 sub-parts 711 86,126
Bike: 1 whole object 8170 65,968,012,086

No cars Car: 4 sub-parts 96 17,206
Car: 1 whole object 456 408,214

Table 6.2: Comparison of recognition of objects with and without sub-parts.

tests are shown in Table 6.2. For the recognition of the bike object in the no bikes allowed
scene, the size of the search space increased by a factor of 770,000 when the object was
treated as a single part instead of as eight sub-parts! Fortunately, the recognition
time does not increase by the same factor—the number of configurations explored only
increases by a factor of 11. For the recognition of the car object in the no cars allowed
scene, the search space increases by a factor of 24 and the number of configurations
explored increases by a factor of 5 when the object is not decomposed into its sub-parts.
Since the bike object is decomposed into more sub-parts and the features are distributed
more evenly among these sub-parts, it displays a greater reduction in the size of the
search space with use of sub-part decomposition. The results of the recognition with and
without sub-parts were very similar. Figures 6.1 and 6.2 show the recognition of the bike
in the no bikes allowed scene when the bike is represented as a single whole object. As
can be seen by comparing these figures with Figure 5.5 and 5.6 for the recognition of the
bike when decomposed into eight sub-parts, the recognition results are very similar. The
efficiency benefits of sub-part decomposition, though, are significant. In addition, the
variations between the bike sub-parts are explicitly accounted for in the decomposition

example while they are treated as noise in the single part object recognition.

The small fraction of the search space that is explored in these recognition examples
shows that a descriptive representation, a scale hierarchy, and a set of simple geometric
constraints can combine to effectively reduce the amount of the search space that is
explored. This reduction becomes more apparent for the very large search spaces. For

example, only 0.00001% of the search space was explored for the recognition of the
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Figure 6.1: The configuration of the identified bike object in the no bikes allowed
scene when the model is represented as a single whole object.
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Figure 6.2: The superimposition of the identified bike object on the no bikes
allowed scene when the model is represented as single whole object.
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single part bike object in the no bikes allowed scene.

In order to check the relationship of recognition time to number of objects in the
library, several test runs were made with different size libraries. Each of the ten traffic
sign scenes was run with library sizes of: 1, 4, 5, 8, 9, 11, 13, 17, 19, 21, 23, 26, 30,
34, 38, 42, and 47 sub-parts. These libraries were composed of different arrangements
of the model objects. The library size is measured in sub-parts instead of objects since
the sub-parts tend to have a more standard size. The results of these tests are shown in
Figure 6.3. This graph shows the number of configurations explored versus the number
of sub-parts in the library for each of the different scenes. By following each symbol,
we can see that the curve tends to flatten out with increased number of sub-parts, thus
indicating a sub-linear growth in the recognition time. The solid curve on the graph
plots the average number of configurations explored for all runs. The curve exhibits a
definite sub-linear behavior.

In order to further show this sub-linear behavior, lines are fit to different portions of
the configurations explored versus library size curves. For each scene we fit the best line,
using a least-squares approximation, to the curve segment signifying the ten smallest
library sizes (1 — 21 sub-parts) and the curve segment signifying the ten largest library
sizes ( 17 — 47 sub-parts). The slopes of these lines are shown in Table 6.3. This data
shows that the slope decreases with more sub-parts in nine out of the ten scenes. The
data shows some fluctuation since it is dependent on the identity of the objects in the
library. If no library objects are in the scene, the system can quickly determine that
no matches exist if the library objects are different than the ones in the scene. It can
also process the objects much longer if they are similar to the viewed objects, but not
similar enough to be declared matches. On average, though, the slope of lines decreases
by more than a factor of 2 for the larger libraries. The average slope for the ten smallest

libraries was 59.1, while the average slope for the ten largest libraries was 24.8.

6.2 Performance Analysis

The examples in Chapter 5 and the appendices show that the SAPPHIRE system was
able to meet its performance goals—the system was able to reach accurate interpreta-
tions for a variety of scenes. The performance goals that we set out to reach consisted
of: correct identification and localization, tolerance for occlusion and noise, stability

in the presence of variations of global and sub-part parameters, and a large domain of
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o - No bikes
0 - No cars
» - Passing allowed
O - Railroad crossing
© = No U-turn
® - No left turn
o - Junction
» - Bend
® - Parking
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Figure 6.3: The number of configurations explored versus library size for ten
traffic sign scenes. The average number of configurations explored for all
scenes is plotted by the solid curve.
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No No |Passing | Railroad| No No left | Junction] Bend | Parking| Reduce

bikes | cars lallowed | crossing |U-turn | turn apeed now
1to21
sub-parts 68.2 | 17.0] 33.3 54.8 28.3 419 16.7 | 22.3 | 158.8 152.9
17 to 47
sub-parts 16.1 {14.8| 10.3 48.7 27.1 30.9 160 | 203 11.9 54.8

Table 6.3: Slopes of lines fit to data of configurations ezplored versus sub-parts in
ltbrary for ten traffic sign scenes.

applicability. These performance criteria have been demonstrated by the examples and

are summarized below.

In the test run on the system, SAPPHIRE was able to correctly identify the objects
in the scenes by selecting the best objects from the model library. The localization
of these objects could not always be determined exactly since the objects in the scene
and the models were not exact duplicates. The system therefore generated the best
localization based on the location and orientation of the features. The interpretations
could be better localized by using the contour boundaries as additional verification

tokens.

SAPPHIRE was able to recognize objects in the presence of noise and occlusion.
The bend in road scene demonstrated correct recognition despite noise, which resulted
in misleading edges, and distortion, which modified the shape of the object. Some
noisy edges were present in many of the models and scenes, but did not hinder the
recognition. Many of the scenes also exhibited some forms of occlusion (especially the
cardboard object scene in Appendix C), but effective recognition was possible with only
parts of the objects visible. The system benefited from the descriptive representation

of local features and the scale hierarchy in performing this type of recognition.

The system was able to correctly identify objects even though they were parame-
terized differently than the models. Mirror image identification and global scaling were
performed in several of the examples (passing allowed, bend in road, and cardboard
object scenes). Fluctuations in the spatial layout of the object’s sub-parts were also

incorporated into the recognition process (no bikes and no left turn scenes).

SAPPHIRE is able to recognize a broad range of objects. The complexity of the
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objects tested ranged from a straight arrow to a (side view of a) bicycle. By employing
the structure hierarchy, the system enlarged its domain of applicability by allowing vari-
ations in sub-part relationships. In addition, the system can function without outside
intervention since it constructs the model library automatically and does not require
much user input about the viewed scenes, such as scaling factors or presence of mirror

images.

6.3 Resolving the Tradeoffs

Several tradeoffs that arise in the development of this type of hierarchical recognition
system are discussed in Section 3.6. These tradeoffs consist of: model-driven recognition
versus scene-driven recognition, feature complexity versus matching complexity, sub-
part size versus number of sub-parts, and binary matches versus qualitative matches.
This section describes how the SAPPHIRE system resolves these tradeoffs.

As described in the Section 4.3, SAPPHIRE’s recognition engine incorporate both
model-driven and scene-driven approaches. Hypotheses based on data in the scene are
made at a high level where enough information is available to be reasonably certain
about the correctness of the hypotheses. The system can be certain of these predictions
since it does not attempt all at once to hypothesize many parameters of the scene inter-
pretation. The hypothesis step provides a focus for the recognition process which then
proceeds with a model-driven approach in order to derive the remaining parameters.
The use of the structure and scale hierarchies proves beneficial in deciding where and
how much to hypothesize. The identity of viewed sub-parts can be hypothesized based
on their coarse features. The fine features are then be used to verify those hypotheses.
In this manner, we avoid hypothesizing either the identity of the whole object or its
transformation from model to scene coordinates, but use the abstract features of one
sub-part (or few of them) to build up the hypotheses slowly.

Several criteria are outlined in Section 3.6.2 for analyzing the tradeoff between fea-
ture complexity, matching complexity, and recognition robustness. SAPPHIRE’s rep-

resentation scheme satisfies these criteria as follows:

¢ Large domain.
The CPS-based representation is capable of representing objects with both straight
and curved edges as well as objects with concavities. The features are general

enough to represent many non-trivial contour shapes.
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e Stable and sensitive.
The scale hierarchy nature of the representation provides for stability at the coarse

levels and sensitivity at the fine levels.

¢ Local support.
The primitives require only local analysis of the contour for their derivation. The

specification of the knot points is not susceptible to global variations.

e Information preserving.
The representation allows for direct reconstruction of the original object. Even
though the representation is compact, it does not abstract too much shape

information—the original shape cues are still available.

e Multiple feature types.
The representation incorporates parameterized types that may be easily matched
to each other. The system thus achieves a combinatoric advantage by this com-

patibility constraint.

In order to resolve the sub-part size tradeoff, SAPPHIRE attempts to decompose
the object into semantically meaningful sub-parts while ensuring that the decomposition
contains at least one distinctive sub-part. A distinctive sub-part contains at least three
features in order to be accurately identifiable. Only two structure hierarchy levels are
used since intermediate levels are not directly useful for recognition. Thus the model
object is directly broken up into its smallest component sub-parts. In order to separate
the sub-parts at points where scaling, rotation, or translation may occur, SAPPHIRE
finds distinctive points of concavity. These points correspond to pairs of concave corners
or cranks. In order to further decompose objects, SAPPHIRE employs a spatial locality
criterion to identify sub-parts that contain features located close to each other relative
to features in the rest of the object. This sub-part extraction process is usually able to
decompose an object into several components in order to reap the efficiency benefits of
the structure hierarchy and allow for sub-part parameterization.

SAPPHIRE uses parameterized binary matches instead of qualitative matches for
measuring feature similarities. This scheme is chosen since it is easier to define the
amount of allowed variability in feature characteristics than to define the quality mea-
sures for similarity. It also much easier to combine binary matches into an interpretation

than to combine qualitative measures. As a result, the effect of modifications to the
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binary matching scheme are easier to anticipate since their effects are much more direct.
As outlined in Section 3.6.4, a system is easier to tune with binary measures since the
meaning of a feature comparison is much clearer if it is defined as either matching or
not matching than if many intermediate measure are used as well. SAPPHIRE there-
fore uses tolerance variables to define allowed matching disparities. These parameters
have generally been derived from experimentation with the system even though their
values do have intuitive justification, as shown in Chapter 4. If the tolerance level of
the parameters is too low, the system starts to miss interpretations of the scene since
small variations, which invariably occur, are not tolerated. If the tolerance levels of
the parameters is too high, the system starts to generate spurious interpretations since
too much variation is allowed in feature specification. By varying the parameters, we
achieve a continuum of behavior bounded by these two extremes. The values chosen for
the recognition parameters tend to approximate the middle of that range. An interest-
ing avenue of future research is the analysis of both the derivation and effects of these

parameters in more analytical terms.

6.4 Summary of Benefits

The SAPPHIRE system has been shown to achieve robust library-driven recognition by
using scale and structure hierarchies of representational features based on the Curva-
ture Primal Sketch and a constrained search recognition engine. SAPPHIRE is able to
automatically construct a model library that it then uses to efficiently recognize mul-
tiple objects in the scene. The recognition results consist of both identification and
localization of model objects that are not necessarily exact replicas of the ones in the
scene. The system incorporates inexact matching by allowing for mirror images, vari-
ations in scaling, and sub-part rotation and translation. Recognizable objects cover a
broad range of complexity, and can be recognized in the presence of noise, discretization
errors, and distortion introduced by the sensor (a TV camera).

The use of scale and structure hierarchies have contributed to these robust recogni-
tion capabilities. The hierarchies allow the system to converge on the correct interpreta-
tion and therefore reduce the combinatorics without sacrificing accuracy. By explicitly
allowing for sub-part variations instead of treating the whole object as a primitive, a
wider class of objects can be recognized. If the object is represented as a single part,

any variations are treated as noise and as a result only small perturbations in scaling or
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other sub-part transformations can be tolerated. The hierarchies also lead to efficient
recognition by reducing the size of the search space as well as the fraction of the search
space that is explored.

The scale and structure hierarchies form the basis for the model library organization.
In one dimension the objects are decomposed into their component sub-parts that may
be shared among several objects. In another dimension, a coarse to fine description
is defined for these components. The resultant library is indexed at the coarse sub-
part level. A hypothesis module, based on the Hough transform, generates the identity
of probable sub-parts by comparing scene features to model sub-part features in the
library. The recognition engine then attempts to recognize these sub-parts in the scene
by using the coarse to fine object representation and employing geometric constraints
and feature compatibility to prune invalid matches and to derive the best configurations.
These best interpretations are then expanded to include related components by using the
structure hierarchy to predict and verify the identity and location of sub-parts contained
by parent models. The use of this library structure leads to efficient recognition that

grows sub-linearly with increased number of sub-parts in the library.

6.5 Limitations

The domain of applicability for the SAPPHIRE system covers a broad range of two-
dimensional objects. The system works well for complex objects since they can derive the
most benefits from the scale/structure hierarchy approach. In order to take advantage of
these hierarchies, objects should have enough features so that they can be decomposed
into meaningful sub-parts, and contain enough detailed features to benefit from a coarse
to fine description. Therefore, the benefits of SAPPHIRE’s recognition abilities are
better displayed by the recognition of the complex bicycle object (Figures 5.4 through
5.8) than for the recognition of the simpler no U-turn sign (Figures B.11 through B.17).
The constraint power of the system is reduced by the recognition of small objects that
contain only a few features. The system also does not perform any rotational symmetry
analysis and as a result could have trouble localizing objects that are almost symmetric.
Therefore, small symmetric objects pose the most difficulty for the system.

Another limitation is the failure to recognize objects in certain particular scene align-
ments. If a large fraction of each of an object’s sub-parts is occluded in the scene, the

system may fail to identify these components. Enough features may be visible, though,
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so that the object should still be identifiable. SAPPHIRE will miss this interpreta-
tion since it currently requires sub-part recognition to lead to whole object recognition.
While these cases are remote, the capability to recognize such occluded objects may
be added by incorporating some global processing of features as a final pass where the

structure hierarchy is not used.

An example where symmetry and occlusion resulted in the system localizing the
object incorrectly is shown in Figures C.7 through C.9. In that example, the mirror
image of the object (corresponding to the object rotated 180°) was identified. This inter-
pretation was given since a slightly better match was concluded for this configuration.
The triangle sub-part was occluded such that it could not be identified to resolve the
symmetry ambiguity. One vertex of the triangle, though, is visible so that if the sys-
tem performed some global processing to resolve symmetric configurations, the correct

localization could have been found.

Several of the recognition examples exhibited inexact localization of identified ob-
jects. While in some cases the inexact localization is due to variations in object pa-
rameters, in others (Figure C.9) it is due to not identifying enough features to recover
all values of the transformation accurately. This problem is caused by the sole use of
the point features in the derivation of the transformation. SAPPHIRE currently does
not use the contour segments to verify interpretations. Since the CPS representation
provides us with approximation to the contour segments, they can be used to improve

the derivation of the transformation values as described in Section 4.3.6.

Chapter 5 also points out another limitation of the system—the minimum resolution
required to identify features. Since the Curvature Primal Sketch smoothes the contour
with Gaussian filters, it smoothes over very small features. As a result, small objects or
ones with very detailed features are difficult to identify. This is not a serious problem,
though, since we want to use the abstract features of the shape to drive the recognition.
In order to better identify detailed features we can add more levels to the scale hierarchy
such that the finest levels use very small Gaussian filters to smooth the contour. If we
then want to use the fine features to drive the recognition process we can index into the
object library at these fine levels rather than the coarsest level currently used. This pro-
cessing can be incorporated as a post-recognition step so that only remaining features,
not used in the normal coarse feature driven interpretations, are used to recognize small

objects.
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6.6 Future Research

The development of the SAPPHIRE system has revealed several interesting topics for
future research. Many of these topics have been motivated in the discussion of the
scale/structure hierarchy approach and the implemented system. These areas are sum-

marized below.

e Three-dimensional recognition.
In order for this system to be practical for general recognition, it should be ex-
tended to recognition of 3D objects. One way to accomplish this task is to extend
the representation from a description of significant curvature changes to a descrip-
tion of significant surface changes. In order to apply the SAPPHIRE approach to

this representation, the following requirements would need to be satisfied:

— The representational primitives must be derived reliably from the scene using

local support.
— The representational primitives must be defined by a scale hierarchy.

— Geometric properties, such as location, orientation, and size, must be defined

for the object features.
— The representational primitives must allow for extraction of sub-parts.

— Rules defining primitive compatibility must be defined based on the feature

characteristics.

A possible representation that can satisfy these criteria is the Surface Primal
Sketch [Brady 85] [Ponce 85]. This representation describes significant surface
changes such as: steps (discontinuities in surface height), roofs (discontinuities in
surface orientation), smooth-joins (discontinuities in curvature), shoulders (com-
pound primitives consisting of two roofs), and thin bars (a step up followed by a
step down). Ponce and Brady show methods for extracting these primitives from
dense depth maps, such as laser range maps, using a scale-space filtering approach
similar to the CPS processing. Since the 3D primitives are space curves, they are
defined by more properties than their 2D counterparts and these properties vary
from point to point. As a result, they are difficult to extract and match reliably.
The number of feature types is also large, making it difficult to decide which fea-
tures to extract. The solution to these problems constitutes a challenging research

area, but will lead to an effective recognition system.
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e Contour segment approximations as additional features.

Since the CPS processor can generate approximations to segments of the bounding
contour of the object, we can use these approximations as additional features.
Linear and circular contour segment approximations can be described by their
equations and then matched to each other. The benefit of using these additional

features is in achieving better localization of derived interpretations.

Improved hypothesis generation.

The hypothesis generation module plays an important role in increasing the effi-
ciency of the system and in quickly focusing on the correct interpretations. Meth-
ods of improving the power of this module will then have immediate positive
impact on the performance of the system. Possible improvements include the in-
corporation of several hypotheses into a single very likely hypothesis or an increase

in the number of parameters that are hypothesized.

Improved sub-part extraction.

The sub-part extraction process can be improved by using more information than
Just shape to separate components. Color and texture differences, for example,
can provide additional cues for sub-part decomposition. The representation of

part functionality can also aid in this task.

Symmetry analysis.

The identification of rotational symmetries in the model object can aid the recog-
nition process by optimizing the search for feature matches. The system can
derive the features that may be used to differentiate between nearly symmetric
configurations and also reduce the search by realizing that several configurations

may be combined into one due to their symmetry.

Increased resolution.

The system can benefit by increasing its resolution in order to recognize smaller,
more detailed objects. The addition of finer levels to the scale hierarchy will allow
these fine features to be labelled correctly. These features can then be used in the

configuration refining process, but not to drive the recognition.

Global feature processing.
In order to avoid missing interpretations when individual sub-parts cannot be

identified, the system should employ some form of global feature processing to
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derive interpretations based on small amounts of information from the component
sub-parts. The system could use individual features to distinguish between similar
component configurations if the sub-parts that would distinguish between them

cannot be identified.

e Characterization of system parameters’ effects.
An interesting avenue of research consists of defining the roles of the parame-
ters that control the recognition process. Several parameters are used to define
sub-part extraction, hypothesis generation, feature compatibility, geometric con-
sistency, and configuration verification. In order to better understand the effects
and significance of these parameters, we can carefully study how the recognition
behavior varies with parameter modification and how the parameters affect each
other. An analytical analysis of the parameters can derive equations for them and

allow us to tune them more accurately for different modes of recognition.

¢ Application of parallelism.
Several aspects of the SAPPHIRE system can be implemented in a parallel manner
if a highly parallel machine is available. Since the convolutions performed by the
edge finder and the CPS processor are local in nature, they can be distributed
among many parallel processors. The exploration of the search tree can also be
performed in parallel by distributing the search for all the sub-parts among groups
of processors. Therefore, in addition to improving the efficiency, we can explore

more of the search space and relax some of the hypothesis constraints.

e Incorporation with other systems.
As mentioned above the incorporation of additional cues such as color and texture
can aid in the sub-part extraction phase of the system. These additional cues can
also help in the recognition phase by contributing additional features that may
determine object context. The color of the object, for example, may automatically
index a small class of objects. Additional information, such as functionality, can
also control the setting of some of the system parameters. By understanding
functionality, the system can set sub-part relationship variations that are specific

to particular objects.

As we can see, much interesting work remains to be done in order to achieve a

general vision system. The SAPPHIRE system, though, demonstrates the benefits
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of incorporating scale and structure hierarchies into a robust recognition system that
contains a large model object library. These benefits include an appealing recognition
behavior of focusing on the best scene interpretations and an efficient derivation of these

interpretations in terms of the number of objects in the library.



Appendix A

Sub-parts of Traffic Sign Models

This appendix shows the sub-part decomposition of the thirteen model objects in the
traffic sign library described in Chapter 5 and analyzed in Chapter 6. For each model
object, the identity, position, and coarse features of each sub-part are shown. Each sub-
part is labelled with the following documentation: <object-name>: <sub-part name>.
Common sub-parts will have the same sub-part name. Most objects generate some noisy
sub-parts. Most of these are discarded since they do not have enough coarse features.
The few remaining noisy sub-parts are included as part of the model representation,
but do no affect the recognition since they usually do not contain enough features to
be considered distinctive relative to the actual object. The word objects are generally
decomposed into sub-parts consisting of individual letters. Some letters like O and D are
broken up into two sub-parts since they have two closed contours. This decomposition
also does not greatly affect the recognition since both parts of the letter would need
to be identified for a valid match (currently more than half of the sub-parts must be
matched). The system is designed to be flexible and is not dependent on any specific

sub-part decomposition.
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Figuﬁe A.1: The first four sub-parts of the btke model object (eight sub-parts
total).
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Figuﬁa A.2: The last four sub-parts of the bitke model object (eight sub-parts
total).
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Figure A.3: The four sub-parts of the car model object.
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Figure A.4: The two sub-parts of the right turn only model object.
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Figure A.5: The two sub-parts of the straight arrow model object
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Figure A.6: The three sub-parts of the no left turn model object.
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Figml‘;e A.8: The last two sub-parts of the U-turn model object (five sub-parts
total).
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Figure A.9: The three sub-parts of the bend in road model object.
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Figure A.10: The five sub-parts of the junction ahead model object.
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Figure A.11: The single sub-part of the disallow model object.
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Figure A.12: The eight sub-parts of the parking word model object.
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Figure A.13: The seven sub-parts of the reduce word model object.
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Figure A.14: The five sub-parts of the speed word model object.
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Appendix B

More Examples of Traffic Sign

Recognition

This appendix contains the remaining five recognition examples of the SAPPHIRE
system using the traffic sign library, shown in Chapter 5 and Appendix A. These tests,
in conjunction with the ones in Chapters 1 and 5, are analyzed in Chapter 6. Associated

with each example are figures showing:

e The grey level image of the scene.
e The edges found in the scene.

e All component configurations of library objects identified in the scene. Matched

sub-parts are shown by solid lines along with the features that were matched.

e Superimposition of the transformed model objects on the scene. The transfor-
mation is derived by averaging the transformation vectors of all the matched
sub-parts. The contours of the model objects are shown with dashed lines, while

the scene edges are shown with solid lines.
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Figure B.1: The grey level test image of a passing allowed sign.

Figure B.2: The edges found in the passing allowed sign.

The recognition of a passing allowed sign is shown in Figures B.1 through B.6. Both
cars in the scene are identified even though the features of the viewed cars vary from
the features of the model car. Due to this variation, only one wheel of the left car is

identified and as a result the transformation of that car is slightly tilted.
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Figure B.3: The component configuration of the first car model object found
in the passing allowed sign.

Figure B.4: Superimposition of the first car model object on the passing allowed
sign.
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Figure B.5: The component configuration of the second car model object found
in the passing allowed sign.

Figure B.6: Superimposition of the second car model object on the passing al-
lowed sign.
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Figure B.7: The grey level test image of a railroad crossing sign.

Figure B.8: The edges found in the railroad crossing sign.

The ratlroad crossing scene in Figure B.7 is processed as another example. The recog-
nition results are shown in Figures B.9 and B.10. This test demonstrates the recognition
of yet another tvpe of car, showing the system’s ability to extract the important shape

features.
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.....
-------

Figure B.9: The component configuration of the car model object found in the
ratlroad crossing sign.

Figure B.10: Superimposition of the car model object on the railroad crossing
sign.
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Figure B.11: The grey level test image of a no U-turn sign.

The recognition of a no L'-turn sign, Figure B.11, shows the system’s ability to iden-
tify the correct object when four objects in the library share the viewed arrow head
sub-part. The system’s interpretation is shown in Figures B.14 through B.17. SAP-
PHIRE is able to correctly identify the U-turn object even though its tail is occluded.
The correct behavior is achieved by identifying the square sub-parts on the sign. The
disallow object is not localized correctly since the system could not match the upper end
points of the symbol correctly. As can be seen in Figure B.13, which shows the coarse
features found in the scene. the end points to be matched to the upper end points of
the disallow object are specified differently due to occlusion. SAPPHIRE was able to

find a scaled version of the disallow symbol by matching a corner inside the U
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Figure B.12: The edges found in the no U-turn sign.

Figure B.13: The coarse features found in the no U-turn sign.
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Figure B.14: The component configuration of the U-turn model object found
in the no U-turn sign.

Figure B.15: Superimposition of the U-turn model object on the no U-turn sign.
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Figure B.16: The componenf configuration of the disallow model object found
in the no U-turn sign.

Figure B.17: Superimposition of the disallow model object on the no U-turn sign.
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Figure B.18: The grey level test image of a junction ahead sign.

Figure B.19: The edges found in the junction ahead sign.

The recognition of a junction ahead sign. shown in Figure B.18 presents another
inexact matching problem. As shown in Figures B.20 and B.21, SAPPHIRE was able
to match features to conclude a match. The end of the right branch of the junction was

not matched due to noise in the edge specification. as demonstrated in Figure B.19.
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Figure B.20: The component configuration of the junction ahead model object
found in the junction ahead sign.

Figure B.21: Superimposition of the junction ahead model object on the junction
ahead sign.
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Figure B.22: The grey level test image of a reduce speed now sign.

it
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Figure B.23: The edges found in the reduce speed now sign.

The reduce speed now scene, Figure B.22. shows another example of recognizing

words. In order to avoid needless search. the system is run in a restricted mode of not

allowing mirror images or scale variations from the model since words do not usually

SAPPHIRE is able to recognize all the word objects in the

show these variations.

scene. as shown in Figures B.24 though B.29. even though letters with circular segments

present recognition difficulty since they do not have enough distinctive features. For

these letters, the use of actual segments as additional features would seem beneficial.
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Figure B.24: The component configuration of the reduce word model object
found in the reduce speed now sign.

.....

Figure B.25: Superimposition of the reduce word model object on the reduce
speed now sign.
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Figure B.26: The component configuration of the speed word model object
found in the reduce speed now sign.
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Figure B.27: Superimposition of the speed word model object on the reduce
speed now sign.
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Figure B.28: The component configuration of the now word model object found

in the reduce speed now sign.
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Figure B.29: Superimposition of the now word model object on the reduce speed

now sign.



Appendix C
Another Example Set

The SAPPHIRE system was tested with another set of parts in order to show the
system’s robustness as well as its limitations. This example was run with the set of
three cardboard shapes shown in Figures C.1 and C.2. These shapes were used due
to the similarity in their teeth structure—many good matches may occur between the

sets of teeth. By occluding some of these features, the recognition task is made very
difficult.

A library was created with the three objects. These models generated eight sub-
parts. The sub-part decomposition of the three objects is shown in Figures C.3 through
C.6. The teeth structures were designated sub-parts by virtue of the close spatial
proximity of their features. One sub-part was shared by the mask and maskmod objects,
while the symmetric teeth structures of the chip object were found to be instances of
the same sub-part. One instance is the mirror image of the other. The teeth structures
also point out the smallest features that the system can identify. This resolution issue
is raised in Chapter 5. In examining the sub-part consisting of the set of variable sized
teeth (MASK 1), we can notice that the descriptiveness of the coarse features shown
gradually degrades as the size of the teeth decreases. As the tooth size shrinks, they are
identified as two-corner ends, sharp ends, and then not identified at all (at the smallest

one). As a result, the smaller teeth will not be used in driving the recognition.

A sample scene is shown in Figure C.7. All three objects are present in this scene,
but with substantial areas of the objects overlapped. Since this example is testing the
ability to recognize objects in the presence of occlusion, the threshold for the number
of sub-part features to match was decreased to 35% (from 50%). The two objects that
SAPPHIRE recognized are shown in Figures C.8 through C.11. The chip object was
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Uy

Figure C.1: The chip model object. Bounding contours are shown.

not localized accurately since, due to the occlusion, the positions of some of the features
are displaced. In addition, since the triangle could not be identified, the system could
not resolve the symmetry ambiguity. The mask object was localized better, but also not
perfectly since not all the features were identified due to the occlusion. The use of the
actual contour segments can be used to refine the localization of these interpretations.
The third object, the maskmod model, was not identified since not enough of its coarse
features were identified. Since the small teeth are not very distinguishable by the system
they are not used to drive the recognition. If the recognition parameters are relaxed, a

rough interpretation of that object can be obtained.
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Figure C.2: The mask (top) and maskmod (bottom) model objects. Bounding
contours are shown.
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CHIP; NMASK 2

Figure C.3: Sub-part decomposition of the chip model object.
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Fﬂﬁls.'_nﬂ.&!s_L HASK: HASK 1

Figure C.4: Sub-part decomposition of the mask model object.
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Figure C.5: Two of the three sub-parts of the maskmod model object.




/N Figure C.6: The third sub-part of the mestmed model object.
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Figure C.7: A sample scene of a pile of objects. The output of the edge finder
is shown.
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Figure C.8:
the scene.

The component configuration of the chip model object found in
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Figure C.9: Superimposition of the chip model object on the scene.
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Figure C.10: The component configuration of the mask model object found in
the scene.
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Figure C.11: Superimposition of the mask model object on the scene.
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