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Abstract

This work addresses two related questions. The first question is what joint time-
frequency energy representations are most appropriate for auditory signals, in par-
ticular, for speech signals in sonorant regions. The quadratic transforms of the
signal are examined, a large class that includes, for example, the spectrograms and
the Wigner distribution. Quasi-stationarity is not assumed, since this would neglect
dynamic regions. A set of desired properties is proposed for the representation: (1)
shift-invariance, (2) positivity, (3) superposition, (4) locality, and (5) smoothness,
Several relations among these properties are proved: shift-invariance and positivity
imply the transform is a superposition of spectrograms; positivity and superposition
are equivalent conditions when the transform is real; positivity limits the simulta-
neous time and frequency resolution (locality) possible for the transform, defining
an uncertainty relation for joint time-frequency energy representations: and local-
ity and smoothness tradeoff by the 2-D generalization of the classical uncertainty
relation. The transform that best meets these criteria is derived, which consists
of two-dimensionally smoothed Wigner distributions with (possibly oriented) 2-D
gaussian kernels. These transforms are then related to time-frequency filtering, a
method for estimating the time-varying ‘transfer function® of the vocal tract, which
is somewhat analogous to cepstral filtering generalized to the time-varying case.
Natural speech examples are provided.

The second question addressed is how to obtain a rich, symbolic description of the
phonetically relevant features in these time-frequency energy surfaces, the so-called
schematic spectrogram. Time-frequency ridges, the 2-D analog of spectral peaks,
are one feature that is proposed. If non-oriented kernels are used for the energy
representation, then the ridge tops can be identified with zero-crossings in the inner
product of the gradient vector and the direction of greatest downward curvature.
If oriented kernels are used, the method can be generalized to give better orien-
tation selectivity (e.g., at intersecting ridges) at the cost of poorer time-frequency
locality. Many speech examples are given showing the performance for some Lra-
ditionally difficult cases: semi-vowels and glides, nasalized vowels, consonant-vowel
transitions, female speech, and imperfect transmission channels,
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Chapter 1.

Introduction

In order to perceive speech and other sounds, the incoming sound wave must be
transformed into a variety of representations, each bringing forth different aspects
of the signal, its source, and meaning. Understanding how we perceive and how
machines can be made to perceive auditory signals means, in part, discovering
appropriate representations for the signals and how to compute them. For many
kinds of sounds, little is known in this respect. What auditory features, for example,

will distinguish a knock at the door from a footstep?

For speech signals, more is thought to be known, A phonetician will tell you, for
example, that the /ae/ in bad can be distinguished from the /i/ in bead by the
location of characteristic peaks in their respective spectra. He could even train you
to identify a wide variety of phonetic elements by looking at their spectrograms.
Formalizing this knowledge, however, so that a computer can do this well (in a

general setting) has proved hard.

An analogy may explain why. I could train you to distinguish a Mercedes from some

other car easily; | would just deseribe the hood ernament. t To train a machine

t I thank Mark Liberman for this example.
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to do this task would be much harder. Not only would [ have to deseribe the hood
ornament, but [ would also have to provide all the wisual abilities that I take for
granted with a human — finding edges and boundaries, recognizing closed forms,
ete. I believe the failure to correctly provide the corresponding auditory ahilities
— finding spectral “peaks” and temporal discontinuites, recognizing continuous
forms, ete. — is an important reason why the speech recognition problem has been

so difficult.

This problem is in some ways even harder than visual analysis. In vision, it is clear
that the two-dimensional image is a natural starting point. In audition, a similar 2D
representation is important, with time along one axis and frequency along the other.
But how should this idea be made precise (the well-known uncertainty principle of
fourier analysis is one of the thorny issues involved)? Should we use the conventional
spectrogram, the Wigner distribution, a pseudo-auditory spectrogram, or something

entirely new, and how should this decision be made?

In vision, the notion of edges, lines, and so forth obviously are important features
of an image. In audition, it is harder to decide what are the appropriate primitive
elements. Can some symbolic description summarize the relevant features of a

sound’s time-frequency representation analegous to how a line drawing summarizes

an image?

These questions about the early steps in auditory processing are the topic of this
thesis. The emphasis will be on speech signals primarily because the intermediate
goals to which the initial computations must aim are better understood. [ believe,
nevertheless, that many of the auditery processing issues discussed here are also

relevant for other kinds of sounds.
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The topic as stated is still too broad. Speech and other signals are made up of many
different kinds of components. For instance, speech has fairly smoothly changing
vocalic regions that are guite different from the more discontinuous structure of
consonantal regions. It is unlikely that the same initial representations will he

appropriate for every kind of signal. The emphasis here will be on signals like those

found in the more continuous, senorant regions of speech.

In the sonorant regions, we find an apparent feature is local spectral ENErgy comn-
centrations that vary in center frequency with time. These peaks are due, in part,
to the “resonances” of the voeal tract - the so-called formants, The formant loca-
tions (labelled F1,F2,... in order of increasing frequency) specify the general vowel
quality, r-coloring and roundness, while the formant transitions between consonants
and vowels play an important role in consonant identification [see e.g. Chiba & Ka-
jiyama 1841; Fant 1960; Liberman, et al 1954; Ladefoged 1975). A. Liberman, in
fact, claims that “...the second formant transition. ..is probably the single most im-
portant carrier of linguistic information in the speech signal [Liberman, et al 1967).

Thus, restricting the discussion to these regions is by no means uninteresting,

The initial speech processing envisioned here has been divided into two steps. The
first step, which produces a joint time-frequency representation of the signal energy,
is explored in Chapter 2 and Chapter 3. The second step, which produces a symbolic
representation that captures the acoustically relevant features present in the joint

time-frequency energy representation, is explored in Chapter 4 (see Figure 1.1).

One of the most difficult problems in deriving the form of such representations is
deciding which properties or axioms to assume at the outset. If strong assumptions

are made about the received signal, then rigorously defined optimal detection can
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- Speech
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v

Time-Frequency

Energy Representation

I

Schematic Spectrogram

= spectral peaks

(b)

» time dizcontinuities

» spectral balance information

INITIAL SPEECH PROCESSING

. 4
Acoustic Representation

» excitation - pitch
» voral tract - formants [f’]

= transmission channel

Figure 1.1. The initial speech processing is seen as divided into two steps. (a) The
first step represents the signal energy as joint functions of time and frequency. (b}
The second step builds a symbolic representation of the significant features present
in the joint time-frequency energy representations. At this step, which we call the
schematic spectrogram, there is no undue commitment te the acousiic origin
of the features represented; it is a deseription of the signal, not its sources. (c)
In subsequent processing, these initial descriptions can be used to decompose the

signal inte its acoustic sources.
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result. For example, if we assume that the received signal consists solely of a
known signal in additive Gaussian noise, then we could build a matched filter that
performs optimal Bayesian detection [e.g., see Van Trees 1968). The disadvantage
of such strong assumptions is that they are seldom universally valid for natural

perceptual signals,

On the other hand, weaker assumptions made about the received signal can be com-
bined with assumptions about the design of the representation, things like linearity,
continuity, locality, and stability, that can result in a solution lcf. Marr & Nishi-
hara|. These design criteria are chosen not on the basis of a specific signal model,
but instead as reasonable choices that should be appropriate for a wide range of
natural signals. The disadvantage of this approach is that the justification of the

design decisions is more intuitive and abstraet.

In the best of circumstances, the two approaches would result in the same or sitnilar
solutions to a problem. Thus the auditory processing would perform optimally (in
different senses) when both appropriate weak and strong assumptions are made

about the received signal.

Chapter 2 derives those joint time-frequency energy representations that satisly
a small set of desirable properties; these properties are intentionally kept quite
general. Chapter 3 re-examines this problem in a2 more gpecific setting. Given a
(time-varying) model of speech production, what time-frequency representation of
the signal best depicts the ‘transfer function’ of the vocal tract while suppressing

the excitation. These two approaches, in fact, yield similar solutions.

In the initial part of Chapter 4, a general, heuristic argument is used to produce a

phonetically relevant, symbolie representation of the signal. In a later part, these
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solutions are briefly related to a signal detection model.

In Chapter 5, we look at a wide range of examples using these proposed methods,
We examine some traditionally difficult speech cases — glides and semi-vowels,
nasalized vowels, consonant-vowel transitions, female speech, and imperfect trans-

mission channels.

N.B.: For the figures in this thesis, time is in seconds, frequency in
Hertz, and energy in decibels, unless otherwise indicated.



Chapter 2.

The Time-Frequency
Energy Representation

This chapter explores the design of joint time-frequency energy representations for
speech signals. A set of desirable properties for such representations to satiafy is
proposed, and the relationships among these properties is discussed. This includes
& general treatment of the ‘uncertainty’ relations that arise. The signal transforms

that best satisfy these properties are then derived and examined.

2.1. The stationary case

We begin with an analysis of the special case of stationary signals. There is a large
literature for this case; Rabiner & Schafer |1978] and Flanagan [1972] provide good
reviews. The discussion of it here is very condensed and confined to topicas that are

relevant to the sequel.

A stationary signal is used here to roughly mean a signal whose frequency content
does not vary with time. More precisely, we consider only determinstic signals that
are periodic and random signals that are correlation-stationary. For both kinds

of signals, the power spectrum, the fourier transform of the autocorrelation fune-
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tion, captures naturally the energy present at each frequency. t Time is removed
from this representation; the power apectrum is 2 one-dimensional representation

of energy as a function of frequency.

For speech signals there are, of course, no completely stationary signals. We can,
however, deliberately utter vowels so that they are steady-state for as long as we
like. Figure 2.1 shows the spectrum of a long duration, voiced /i/. We find in the

spectrum many of the characteristic features of a steady-state vowel.

Let us examine the spectrum in Figure 2.1. Note the y-axis is logarithmic to com-
press the wide dynamic range of the speech. At a fine scale in this spectrum, there
are peaks spaced about every hundred Hertz; these are the harmonics of the pitch.
The somewhat larger scale peaks, of a few hundred Hz bandwidth, are the formant
peaks. The peak at about 300 Hz is F1 and the peak at about 2300 Hz is F2, which
is characteristic of an i/ vowel for an adult male. 5till larger scale shaping of the
spectrum, so called spectral balance, is due to the formant locations, the nature of

the voicing and the transmission channel.

The spectral structure of a vowel, therefore, is due acoustically to several factors:
(1) the vocal excitation — e.g., voiced; (2) the vocal tract transfer function, char-
acteriged by its resonant frequencies — the formants, and (3) the transmission
characteristica — e.g., room acoustics, Determining these factors from the apeech
(i.e., finding the formant frequencies, the pitch, etc.) is an important intermediate
step in speech analysis, since they decompose the signal into components of nearly
independent origin, and are (thus) starting points for the phonetician’s description

of speech signal.

t For a deterministic signal x(t), its autocorrelation fanction & [ =(t+r)=*(t) dt, and for a stationary
random process y(t), its autocorrelation function is &[w(t 4+ )y (t])].
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Figure 2.1. Short-time log spectrum of a steady-state /i/. The finest scale struc-
ture corresponds to the harmonics of the pitch, spaced about every 100 Hz. At an

intermediate scale are the formant peaks; e.g., F1 at 300 Hz and F2 at 2300 Hz, At
the largest scale is the overall spectral balance.
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Figure 2.2. Spectrum in Figure 2.1 smoothed to suppress the excitation. (a)

Log spectrum convolved with gaussian (cepstral smoothing). (b) Power spectrum
convolved with gaussian (and then transformed to a log scale).
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A key point in separating these factors in the speech signal is that they operate

at somewhat different scales in its spectrum; the fine scale structure is due mostly
to the excitation, while the intermediate seale structure is due to the vocal tract
transfer function. A common technique for selecting a scale of interest is to smooth
the spectrum by linear convelution, or equivalently, to window the fourier transform
of the spectrum. The fourier transform of the log spectrum is called the cepstrum, its
dimension quefrencies, and the smoothing performed cepstral smoothing or liftering.
{Oppenheim 1968; Oppenheim & Shafer 1975). Figure 2.2a shows the spectrum in
Figure 2.1 after it has been cepstrally smoothed at a scale to emphasize the formants,
and suppress the excitation. We shall see in Chapter 3 that this operation, in fact,
effectively separates excitation from transfer function in certain idealized, stationary

Canes.,

It is smoothing the power spectrum, not its logarithm, that most easily generalizes
to the non-stationary case later. We will therefore select our scales of interest by
smoothing the power spectrum instead, or equivalently, by windowing its fourier
transform, the autocorrelation funetion. Figure 2.2b shows the spectrum in Figure

2.1 after it has been thus smoothed. t

What should the form of the convolution kernel in this smoothing operation be?
A desirable smoothing kernel would have good locality (or resolution) for a given
amount of smoothing. In other words, it would have small duration for the given
duration of its transform. These two durations are related by the uncertainty prin-
ciple: given a function h(x) with fourier transform H(s), if the variance of |h(z)|* is
(Az)* and the variance of |H(s)|? is (As)?, then Az As > L [Bracewell 1978]. Marr

& Hildreth [1980] proposed a gaussian smoothing kernel (in a vision task) because

t Empirically, power and log emoothing often produce similar resalta.
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it is the unique shape that meets the uncertainty principle with equality.

2.2. The guasi-stationary case

The previous section examined the analysis of stationary speech signals. No real
speech signal, of course, is purely stationary, If the frequency content of a signal
varies slowly with time, however, there is a simple extension of the previous results.
The idea is to examine the signal over a short duration window. Given a signal z(t)

and a window g(t), the short-time power spectrum at time ¢t is

- 2
Sa(t,w) = fg{r].t{t+f]¢"_"”dr . (2.2.1)

i =]
Considered as a two-dimensional function of time and frequency, this signal repre-
sentation is called a spectrogram. Many different window shapes have been used;
they typically are symmetric, unimodal, and smooth, e.g., & gaussian or a rajsed

single period of a cosine.

Signals for which a window can be found whose duration is leng enough to allow
adequate frequency resolution, but short enough to allow adequate time resolution
are called quasi-stationary. The example of the previous section was, in fact, a
quasi-stationary vowel. Virtually all speech analysis methods in the past depend

on the quasi-stationary assumption.

2.3. Non-stationarity

There do exist signals for which no window duration is adequate. A very simple
such signal is the linear chirp, e{’}“"'?, whose instantaneous frequency increases lin-
early with time. The quasi-stationary assumption breaks down for sufficently large

modulation slope m of the signal. Let us examine this claim.
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By the uncertainty principle, the product of the time duration At and the frequency
duration (bandwidih) Aw of a window is bounded below by 1/2. The window
duration and bandwidth, in turn, determine the time and frequency resolution,
respectively, in the short-time spectra. 1 In other words, if the window duration
is too small, then the frequency resolution will be poor and if the window duration
is too long, the time resolution will be poor, Further, for a non-stationary signal,
poor time resolution can also mean poor frequency resolution since the frequency

content will have changed over the duration of the window, blurring the spectrum.

To illustrate these points, consider the short-time spectrum of a linear chirp, e'#™
using a gaussian window, e * /3", We can measure the the relative bandwidth of
the spectrum for different window sizes (o's) in terms of the standard deviation of
the spectrum (=.42 the half-power bandwidth), which is m, where
the units are seconds and radians. Note that when m # 0, this grows without bound
as the window size becauses very small or very large. It has a minimum value of

+/'m, which occurs when the standard deviation of the gaussian is 1/y/m.

We see from this that the minimum possible bandwidth of the short-time spectrum
of a chirp (using a gaussian window) grows with increasing modulation slope. Fig-
ure 2.3 shows the short-time spectra of chirps of various modulation slopes using
windows that give the minimum bandwidth, For a slope of 50 Hz/msec, the chirp
peak has been broadened by several hundred Hz in the spectrum. The point here
is that, in theory, the usual quasi-stationary spectral analysis methods will give
poor resolution for sufficiently non-stationary signals. A few examples from natural

speech will show that such conditions arise in practice.

t This is made precise by Theorem D in Section 2.6
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Figure 2.3. Short-time spectra of linear chirps of several modulation slopes using

gaussian windows that give the minimum bandwidth. At the largest slope, the chirp
peak is significantly broadened.
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Figure 2.4 shows cepstrally smoothed, short-time spectra of various /w /s, uttered
firat slowly and then increasingly rapidly. The spectrogram window used was a
gausaian of 4 msec standard deviation, which has an effective duration of about a
pitch period, the minimum duration that gives a reasonably stable spectral esti-
mate. The cepstral window is also chosen as brief as possible, while still removing
the harmonic peaks. Notice that the peak in the spectrum at about 1500 Hz, corre-
sponding to F2, grows in bandwidth with the increasing slope of F2 as seen in the
corresponding spectrograms in Figure 2.5. In case (c), where the F2 slope is about
40 Hz/msec, F2 is so broadened that its peak (i.e., the local maximum) is lost in
the short-time spectrum. Such an F2 slope is not uncommeon for a Jw/oIn fif s, F2
can have large negative slopes, and in /r/ contexts, F1 can have very steep slopes;
see Figure 2.6. At consonant-vowel transistions, where the formant trajectories are
considered very important for stop consonant identification |Liberman, et al 1954],

the formant motion can also be very rapid; again see Figure 2.6,

It is worth noting that natural sounds other than the human voice can produce
non-stationary signals that are “chirped.” For instance, bird song and bat cries
contain many rapid FM chirps |Greenewalt 1968; Marler 1979; Neuweiler 1977]. If
a sound source is in relative motion to the listener then Doppler effects can cause
large frequency shifts in the received signal across time [e.g., Dudgeon 1084), ¢
Glissandi of various musical instuments provide still more examples of signals that

contain rapidly time-varving spectral content.

It is also suggestive that neurophysiologists have found that a large population of

the anditory cells in the mammalian cochear nueleus do not respond optimally to

Some bats (the so-called CF bats] emit continuous tones, evidently depending on Doppler ahifts for
echolocation.
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Figure 2.4. Cepstrally smoothed, short-time spectra of /w /s, uttered first very
slowly, then increasingly rapidly. In (c), F2 is so broadened by the analysis that jts
peak (i.e., the local maximum) disappears. Cf. Figure 2.5.
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i .1 b2

(a) (b) (c)

Figure 2.5. Wide-band spectrograms of the /w/'s used in Figure 2.4. Note that

F2 remains clearly visible with increasing slope in the two-dimensional display.

continuous tones, but instead to sweep tones, with different populations responding
to different preferred modulation slopes ranging over £15 Hz/meee |[Mgller 1978;
Britt & Starr 1976). Further, psychophysical adaptation studies have shown similar
directional selectivity in the human auditory system [Kay & Matthews 1972; Regan
& Tansley 1979|.

The above comments are meant to call into question the validity of the quasi-
stationary assumption for speech and other auditory signals. We have seen that
speech is not always quasi-stationary, even in the sonorant regions. Assuming so,

means that important features will be missed, having been blurred by the anal-
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Figure 2.8. Spectrograms of rapid formant motion in various contexts. (a) fju/.
(b) fara/. (c} /bi/ in the context /tubi/. (d) /du/ in the context /tidw/.
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ysis. It is interesting to note that while the individual short-time spectra of the
non-stationary signals described above give a poor deacription of the signals, their
apectrograms are nevertheless quite legible. This is because when we look at a
spectrogram, we are not confined to examining them one-dimensionally along single
frequency slices, but instead we see a two-dimensional time and frequency surface.
In other words, time is not used as a parameter that varies over a family of spectra,

but as one of the intrinsic dimensions of the representation.

I believe, in fact, that thinking of the initial speech processing as consisting of a
family of independent one-dimensional spectral analyses parameterized by time is
inappropiate. The problem should be thought of as a joint time-frequency analysis,
with the relationships and trade-offs between the two dimensions directly addressed,

which brings us to the next section.

2.4. Joint time-frequency representations

Various ways have been used to express signal energy as a joint function of time

and frequency. Certainly the most popular is the spectrogram,

e K

S (t,w) = fg{f}l:[;!+r]e_‘!'”' dr| , (2.4.1)

e}

which is just the shori-time spectra described above displayed two-dimensionally.
The fact that the simultaneous time and [requency resclution in the spectrogram is
bounded by the uncertainty relation has led others to seck representations that do

not have this limitation.

This is usually formulated in terms of the marginals (or projections) of the signal
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representation Fy(t,w) [Cohen 1966). Let

mi(t) = %f Fy(t,w) duw, (2.4.2a)
mafw) = f Fe(t,w) dt. (2.4.28)

Perfect time and frequency resolution in this formulation requires that

m(t) =|z()F  and  m(w) = X (w)[* (2.4.3)

An example of a joint time-frequency representation that satisfies these Tequire-

ments is the Wigner distribution,

Wit w) = f e Wia(t 4 r/2)2 (¢ - 7/2) dr, (2.4.4)

-
which is currently quite popular in the signal processing literature |Classen & Meck-
lenbrauker 1980a.c).

The Wigner distribution of an impulse, z(t) = §( — to) is Wilt,w) = 6(t — t), i.e.,
the signal energy is taken to lie on the vertical line ¢ = tp in the time-frequency
plane. Similarly, for a complex exponential, y(t) = ™!, the signal energy lies on
the horizontal line at w = wy (Wy(t,w) = 2mé(w — wp)), and for a linear chirp,
z(t) = e ¥t+3mE) the energy lies on the slanted line w = mt + wp [(We(t,w) =

2rd(w — wp — mt)) (see Figure 2.7a).

In contrast, the spectrogram of these signals consist of broadened lines (see Figure
2.Tb). There is, in fact, a simple relation between the spectrogram and the Wigner
distribution of & signal =(t):

Syt w) = %W,[!,u} v Wt w), (2.4.5)
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(a) (b)
Figure 2.7. Wigner distribution and spectrogram of some mono-component sig-
nals. (a) The Wigner distribution resolves these signals as perfectly narrow lines in
the time-frequency plane. {b) The spectrogram is a smoothed version of the Wigner
distribution (e.g., if the spectrogram window is a gaussian, then the smoothing ker-

nel is a 2-1) gaussian). The lines are broadened in this representation.
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where s+ denotes two-dimensional convolution and W, is the Wigner distribution of

the window [Classen & Mecklenbriuker 1980¢]. If g(#) is a gaussian, ;..21_!;;—:“,-'3.?*'
then its Wigner distribution is also simple; it is just a two-dimensional gaussian,
Wy(t,w) = A-eF/7"e=""" Thus, the two-dimensional convolution of the Wigner
distributions in Figure 2.7a by a two-dimensional gaussian will give the spectrograms
in Figure 2.7h.

If the duration of the gaussian spectrogram window is decreased, then the 2-D
gaussian that, in essense, convolves the Wigner distribution to give the apectrogram
becomes narrower in time, but wider in frequency, and vice versa. Tt should be clear

from this example that the spectrogram does not meet the marginal requirement.

On the other hand, the Wigner distribution itself has some undesirable proper-
ties. In particular, multi-component signals give rise to cross terms that cannot
be attributed much physical significance. For example, the Wigner distribution of
z(t) = coswot is Walt,w) = F[8(w — wy) + 8{w + wa) + &(w)2cos 2uwyt| (see Figure
2.8a). The last term, which lies on a horizontal line at the frequency origin (varying
sinusoidily in amplitude), seems spurious. The spectrogram of cos wot, however, is
just two broadened lines at w = #uy, which seems better behaved with respect to
superposition, since coswyt = }(e™* 4 ¢~%*) (see Figure 2.8b). The cross term is,
in effect, smoothed out by the convolution that transforms the Wigner distribution

into the spectrogram.

These examples illustrate that there are various (possibly conflicting) properties
that we might desire of a time-frequency representation, e.g., good time and fre-
quency resolution, and superposition for multi-component signals. We shall, in fact,

approach the problem of choosing our time-frequency energy representation by first
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Figure 2.8. Wigner distribution and spectrogram for coswpt. (a) The Wigner
distribution of this signal has the ‘spurious’ cross term &(w)2eos 2wqt at the origin.
(b) The spectrogram does not show this term; it has been, in effect, smoothed ot
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specifying a set of desirable properties that the transform should satisfy, and then

deriving its form.

2.5. Design criteria for joint time-frequency representations

We will restrict the discussion to the quadratic transforms of the signal, which have

the farm
o

Filt,w) = f fh{r-,,r;;t,u]z{n]:*{rg]drld-r:, (2.5.1)

~o0 —oa
where h(r,m2;¢,w) is an arbitrary function. This condition is imposed because it
results in a particularly manageable class, and because the representation of energy
as a quadratic function of the signal seems reasonable by analogy to other definitions
of energy. The class is quite large and includes many of the joint time-frequency
representations that have been previously proposed, such as the spectrograms, the
Wigner distribution, and the Rihaczek distribution [ef. Claasen & Mecklenbriuker
1980c).

From this class of representations, we seek ones that satisfy the following criteria:

(C1) Shift invariance: A shift in time or frequency of the signal should result in
a corresponding shift in time or frequency in the transform. Let y(t) = z(t — 1) and
#(t) = €"'z(t). Then we require Fy(t,w) = Fy(t — r,w) and Fu(t,w) = Fa(t,w — ).
This property is desirable if we want to interpret the two dimensions of the transform

as time and frequency.

Transforms satisfying this condition can be put in the forms

Falt,w) = %;ﬁ{t, w) 0% W (t,w) (2.5.2)
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and

Fa(t,w) = F U @(r, 1) Az(r, )], (2.5.3)

where “&+™ denotes two-dimensional convolution, Wy is the Wigner distribution

e
Wo(t,w) = f e e(t + 1 /2)2*(t — r/2) dr, (2.5.4)

e
#(t,w) is an arbitrary kernel function, ¥ is the 2-D fourier transform in the form
Fle(t,w)] = 51; T T gﬂ'”“"‘""‘]q[t_m] dt dw, $(r,vr) = Fl¢(t,w]|, and A; is the

— 00—
time-frequency autocorrelation function f

Aglr,v) = FIW,(t,w)] = f e Vix(t + r/2)2* (t — r/2) dt (2.5.5)

—c
for z(t) [Claasen & Mecklenbrauker 1880c|. Note that for a spectrogram, ¢(t,w) is

the Wigner distribution of the spectrogram window, by Eq. 2.4.5 and Eq. 2.5.2.

(C2) Positivity: The signal energy at a given point in time and frequency should
be real and positive: Fi(t,w) > 0 for all x, ¢, and w. This seems appropriate
for interpreting the transform as an energy distribution. Some authors have argued
against the positivity requirement |e.g. Claasen & Mecklenbriuker 1980c]. We shall

examine the consequences of lifting this condition in the next section.

(C3) Superposition: This idea is that the time-frequency representation of a
multi-component signal should be a simple superposition of ita components. The
stralght-forward linear formulation of this, l.e., Fraey(t.w) = Fall,w) + eFylt,w),
however, i8 inconsistent with the guadratic nature of the transform, and the shift-

invariance property CL1. This apparent shortcoming is also true, for example,

Some authors call this the ambiguity fonction |e.g., Classen & Mecklenbrinker 1980a]; others resarve
this term for (A (r, v]|? [e.g., Van Trees 1968],
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of the spectrogram (Eq. 2.4.1). Nevertheless, we usually think of the conven-
tional spectrogram as being well-behaved under superposition. This is because
non-overlapping components do superimpose, i.e., Sziylt,w) = Se(t,w) + 5,(t,w)
when Sz(t,w)Sy(t, w) = 0. There are no cross terms in this case. On the other hand,
the Wigner distribution does not have this property, suffering from cross terms to

which there cannot be attributed much physical significance.
We shall require this property for our time-frequency representation, namely
Feiylt,w) = F3(t,w) + Fy(t,w) when Fit,w)Fy(t,w) = 0. (2.5.6a)

More generally, we would like Fy. (2, w) = Fy(t,w)+Fy(t, w) when Fe(t, w)Fy(t,w) =

0. Stated more precisely, we require for any € > 0, there exists & § > 0 such that

Fesylt,w) — [Fe(t,w) + Fy(t,w)]| < ¢ when |Fa(t,w) Fy(t,w)| < & (2.5.6b)

(C4) Locality: Signal energy that is localized in time-frequency should remain
localized in time-frequency in the transform. The advantage of the Wigner distri-
bution is that it is perfectly localized according to various criteria, such as preserving
the marginal distributions (Eq. 2.4.3) and the finite support properties lsee Claasen
& Mecklenbriuker 1980a]. t The Wigner distribution, however, does not satisfy
the positivity (C2) or superposition (C3) properties, as indicated earlier. In fact,
positivity (and thus, as we shall see, superposition) is inconsistent with the time and
frequency marginal conditions [Claasen & Mecklenbrauker 1980c|. Fortunately, for
our purposes, we do not require perfect locality, so we can relax the above conditions

somewhat.

The finite support property states that if a signal has finite extent in time or frequency then its
representation will have the same extent in the corresponding variable.



From Eq. 2.5.2, the transform kernel ¢(tf,w) can be viewed as the point spread
function on the perfectly localized Wigner distribution. We can therefore measure

the locality of the transform in time and frequency in terms of the variances

o _J S Pt w)? dt dw

T TR )P dedw (2.5.7a)

and

a? _JJwt8(t,w)|? dt dw

“ T Tt W) dedu (2.5.75)

where we assume that the center of mass of M-I:!.u.r”: iz at the origin, *

In general, these two measures are not enough; an additional locality measure is

important, the covariance

[ twle(t,w)? dt dw
= T T et w) R dtdw

(2.5.T¢)

Together, o, o, and oy, determine the covariance matrix and the associated con-

centration ellipse in the (t,w) plane,
o} oy e
(t w) o o2 w =1. (2.5.8)

When oy, = 0, the major and minor axes of the concentration ellipse coincide with

the time and frequency axes (Figure 2.9a). More generally, the concentration ellipse

The generality of this approach depends an the Wigner distribution wriquely satisfying ‘perfect’
locality. Cohen has shown that a guadratle transform that satisfes the shift-invariance properiy
(C1) will meet the time snd frequency marginal conditions [Eq. 2.4.3) if @®(r,0) = 1 for all # and
ﬁ'{ﬂ, J.-'j = 1 far all i». Thea= m-ﬂ.rghal conditiomns Hucnliall]r guarantes that an impuh-n and a r.ump]cx
exponential are not “blurred” by the time-frequency representation, but are not strong enough to
also guarantee that a linear chirp is not ‘blorred’ [see Figure 2.7a). Thiz additional condition is
met uniquely by the Wigner distribution. In other words, we interpret perfect locality to mean that
the signal transform does not spread the signal energy in any direction in time-frequency (not just
the horizomtal and vertical directions]. We postpone & more thorough discussion of this point uwntil
Section 2.8, when the necessary mathematical machinery will be introduced,

This assumption is not very restrictive on the form of the transform, since we can always shift (¢, w)
in time and frequency to satisfy it. This shift, in turn, shifts the transform in time and [requency.
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Figure 2.9. Concentration ellipses for transform kernels. (a) Non-directional kernel
(o4 = 0): the co-ordinate axes can be re-scaled to make the concentration ellj pse a
circle. Thus viewed, the corresponding transform spreads the signal energy equally
in all time-frequency directions. (b) Directional kernel (o, # 0J): the co-ordinate
axes cannot be re-scaled to make the concentration ellipse a circle. The correspond-

ing transform always has betier resolution in same time-frequency directions than
others.

may be oriented obliquely relative to the co-ordinate axes (Figure 2.9b). We shall
call transforms that satisfy the condition Tt = 0 on their kernel non-directionally
localized. This name is appropriate since we can rescale the co-ordinate axes to
make the concentration ellipse a circle under this condition. Thus viewed, the
transform spreads energy uniformly in all directions in time-frequency. On the other
hand, if oy, # 0, then this does not hold, and the transform will be directionally
localized, always having better resolution in some time-frequency directions than

others regardless of the scaling of the axes.

The analysis of the non-directional transforms is more straight-forward. We there-

fore restrict our attention to this case until Section 2.8, when we ghall examine the
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more general case. We will see there that the principal results are essentially the

same as non-directional case, suitably generalized. The analysis, however, is more

complex, and is thus best left until later.

To summarize, given a non-directional transform (ow. = 0), oy and o, measure its
degree of locality in time and frequency., The smaller oy and o, are, the better the

time and frequency resolution.

(C3) Smoothness: Similar to the stationary case, different aspects of the spesch
signal can arise at different scales in time-frequency. For example, voiced excitation
can give rise to fine scale structure on the order of the pitch period in the time
dimension and the fundamental frequency in the frequency dimension. The formant
structure, on the other hand, arises at a somewhat larger scale, Thus, one of
the design parameters for our transform is the seale in time-frequency we wish to
examine. Said differently, we want the transform to be smooth in time-frequency

to a given degree,

This notion of scale can be be formalized by measuring the distribution of the spatial
frequencies present in F;(t,w), i.e., the distribution of energy about the origin of its
2-D fourier transform. Since F|Fg(t,w)] = ®(r,v)Az(r,v) (Eq. 2.5.3), the relative
amount of spread is determined by the choice of (r, ), which windows the time-
frequency autocorrelation function. We can measure this spread in terms of the
variances

e [ [ 7| ®(r,v)[* dr du
T ()| dr de

2 [ [P 1@8(r, )| dr dv
T ®(r, )| drde !

E

(2.5.0a)

b5 (2.5.96)

and



§2.5. Design eriteria for joint time-frequency representations a7

I Jre|®(r,v)? dr de
e fjllii"{r,#”:drdv !

(2.5.9¢)

where we assume that the center of mass of |®(r,1)[* is at the origin. + These

determine the covariance matrix and the associated concentration ellipse in the

(r,1) plane,
e (s ) () a0

When E,, = 0, we call the transform non-directionally smooth. In this case, it is
possible to rescale the co-ordinate axes to make the concentration ellipse a circle,
and thus viewed the transform smoothes the signal in time-frequency uniformly in
all direction in time-frequency. On the other hand, if ,, # 0, then this does not
held, and the transform will be directionally smooth, always smoothing more in
some time-frequency directions than others regardless of the scaling of the axes.
Just like the locality condition, we will restrict attention now to the non-directional

transforms. We consider the more general case in Section 2.8,

To summarize, given a non-directional transform (£,,-q), &r and £, measure its
scale in time and frequency. The smaller £, and £, are, the larger the selected

scales,

Observe at this point the parallels between the stationary and non-stationary anal-
yses. If we think of the Wigner distribution as the non-stationary analog to the raw
power spectrum, then the time-frequency autocorrelation function (the Wigner dis-
tribution's 2-D fourier transform) is the 2-D analog to the autocorrelation function
(the power spectrum’s fourier transform). Further, windowing the time-frequency
autocorrelation function smoothes the Wigner distribution, just as windowing the

t This assumption will be true if the transform is Teal
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autocorrelation smoothes the raw spectrum. In both cases, the design decisions
for the resulting transform require selecting a convolution kernel that satisfies both
locality and smoothness requirments. In fact, we shall see in the next chapter that

the analogy is even closer.

2.6. Relations among the design criteria

The various design criteria for our time-frequency energy representation are notl
independent. We shall state the important relationships among them in this section.
Throughout this section we assume that the input signal =(t) is finite energy, (i.e.,
zefy) and that F;(t,w) is a quadratic transform of the signal. This means that
Fy(t,w) = {Tz,z) where {z,y) = j-g x(a)y*(a) da and Ty is a (bounded) linear

—i
operator on La.

s Shift-invariance & Positivity: Together these imply that the transform can

be expressed as a superposition of spectrograms. 1
Theorem A. Let Fy(t,w) be positive and shift-invariant. Then it has the form

Falt,w) = f Salt, w; ga) der, (2.6.1)

where S;(t,w;g) is the spectrogram having g as its window.

Proof: The positivity of F;(t,w) means that T}, is a positive operator and therefore

has a square root A, Le.,

Fr = {A'Az, z) = (Az, Az) = || Az|?, (A.1)

Bouachache, et al [1979] incorrectly state that a positive and shift-invariant quadratic transform is
necessarily a spectrogram. Claasen & Mecklenbriuker [1984] point out this error, mentioning that
linear combinations of gpectrograms must be incloded.
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where ||z(a)||* = [ |z(a)]® da [see Rudin 1973]. Representing the linear operator A

in terms of its impulse response Ay [z(a)| = [ h(r, a;t,w)z(r) dr and substituting
into Eq. A.1 gives

(4.2)

Fe(t,w) = f[ hle,rit,w)z(r)dr| d

=

By time and frequency shift-invariance,

= =]

Faft+a,w+p) = f U hia,7;t,w)z(r + a)e~¥(r+2) dr

Setting ¢t = w = 0 gives

Fela,p) = f [ (e, 7;0,0)z(r + a)e~*+3) dr| doy

e

or, with g, (r) = h{a,r;0,0),

u fa(7)z(r + u]e_""‘[’*‘] dr

From Eq. 2.4.1, we see the outer integrand is the spectrogram Se(t,w; ga), giving
Eq. 2.8.1. J[/

]

* Positivity & Superposition: The next theorem shows that positivity implies

superposition. In fact, it implies a strong form of superposition, as in Eq. 2.5.6b.

Theorem B. If F;(t,w) is positive, then

|Friy(t,w) = [Fe(t,w) + Fy(t,w)][* < 4Fa(t, w) Fy(t, w). (2.6.2)
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Proof: From the elementary fact about inner producta

e+ q|® = llpll* + 2 Re (p.q) + ||all*

it follows that

e+ all® = [Ipl® + lall*)]” = 41Re (. g}
< 4|{p, q}|*.

Since {p,q) < ||pll llall,
< 4/|pl*lall*-

Substituting p = Ar and g = Ay above and using Eq. A.1 gives Eq. 2.6.2. ///

If the transform is real, the converse of this theorem is also true; i.e., superposition

implies either Fy or —F; is positive.

Theorem C. Let Fy(t,w) be real and satisfy superposition (Eq. 2.5.6a). Then

either Fy(t,w) or —F;(l,w) iz positive.

Proof: Step 1. First we show under the hypotheses of the theorem (T'z,z) =0 =

Tz =10,

Superposition says
(Tz,z){Ty,y} =0 = (T(z+v), 2 + v} = (Txz} + (Ty,v). (c.1)
Since the form {T'z, x) is always real, (T'z,y) = (Ty,z}", so
(T(z+ ),z +y} = (Tz,z) + 2 Re(Tx,y) + (Ty, u)-
Thus, from Eq. C.1,

{Tz,z){Ty,y} = 0 = Re(Tx,y} =0. (C.2)
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Substituting iz into Eq. C.2 shows that Im(T'z,y) = 0 also, so that

(Tz,z){Ty,y) =0 = (Tz,y) = 0. (c.3)

Suppose that {T'z,x} = 0. Then by Eq. C.3, (T'z,y) = 0 for all y. If we let y = Tz,
then {Tz, Tz} = 0 and thus Tx = 0, as desired.

Step 2. We now show that (I'z,z) =0 = Tz = 0 implies +T is positive. Suppose
{Tz,z} > 0and (Ty,y) < 0. Let # = kz + y where k is real. Then

{Tz,z2) = EE{TI:, z) + 2k Re({Tz,y) + (Ty,y).

This is a quadratic in k, and since (T'z, 2} (Ty,y) < 0, it has two distinct real zeroes.
However, since Tz #£ 0, T'z = kT'z + Ty has only one zero in k. Therefore, there
exists a value of k such that (T'z,z) = 0 but Tz # 0, contradicting the hypothesis,
and implying +T is positive. ///

This last theorem shows that we can replace the positivity condition (C2) with the
sole requirement that the transform be always real, and have an equivalent set of
properties. In other words, the transform will necessarily be positive if superposition
holds, and if positivity is abandoned, cross terms will necessarily prove a problem

for multi-component signals such as speech.

* Positivity & Locality: The positivity condition places a limit on the time-
frequency locality of the transform. When the transform is positive, it is some-
times convenient to measure locality in terms of the variances of ¢(t,w) instead of
|@(e, w)|*. We define

g _J [¢(t,w) dt dw
T T T ot w) dtdw

(2.6.3a)

and
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o2 _J [w*(t,w) dt dw
B Telt,w)dtdw

where we assume that the center of mass of ¢(t,w) is at the origin. ¥ When the

(2.6.3b)

transform is positive, we claim that these variances are non-negative. To show this,
firet suppose the transform is a spectrogram. Then ¢(¢, w) is the Wigner distribution

of the spectogram window g(t), and using Eq. 2.4.3, it is easy to see that
oh = varlg(0)! and og = var|G(o)F, (2.6.4)

which are clearly non-negative [ef. DeBruin]. More generally, if the transform is

positive, it follows directly from Theorem A that
b= [camrla(iida and of= [cavrlGale)fda (209

where .
..r |!F-ur [E} |= dt
—a

/ _T |9 (£) * dt da’

These are again non-negative quantities.

Ca (2.6.6).

Eq. 2.6.5 shows that o3 is the (weighted) average window variance in the represen-
tation of Fz(t,w) as a superposition of spectrograms. Since a spectrogram’s values
at a given time depend only on signal values under its window, we see that a positive

transform at a time ¢ effectively depends only on signal values within a few ar of £,

%

This assumption is necessary for the term “variance' to apply. It i not necessary, however, for the
uncertainty relations presented below to be true [ef. DeBruin|,

This is & stronger notion of time locality than in the previous section. Thers, time locality essentially
measured how the transform spread an impulse. The Wigner distribution is perfectly localized in
this sense, because it repressnts the energy of an impulse at time & entirely on the vertical line
£ = t5 in the time-frequency plane. This does not mean that the Wigner distribation’s valwes at
time &, depend only on the signal value at #;. Quite the opposite is trus, they depend on the entire
gignal. (In fact, the signal can be recovered from the Wigner distribution’s values at any fixed time
ty (up to a multiplicative constant) [see Claasen & Mecklenbrinker 1980a).) However, when the
transform is positive these bwo notions of locality coincide,
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The next theorem states an important uncertainty relation for positive transforms.

It bounds the simultaneous time and frequency resolution that can be obtained by

such a transform.

Theorem D. Let Fi(t,w) be positive and shift-invariant. Then eypog = %.

Proof: From Eq. 2.6.5,

opol = f:.,a: dafcnﬂi dex

where o2 = 1.1-::1.1'|1;|-.;.I:t]-|st and I = var |Ga(w)|*. By the Schwarz Inequality,

oron > ([cqﬂnﬂﬂdct)z.

The classical uncertainty relation applied to go(t) gives o,Z5 = %—, 80

1 !

ot 2 (3 [ corata) =1

2 4
since [ ¢, da = 1 from Eq. 2.6.6. Taking square roots yields the desired result. Irr
# Locality & Smoothness: Just as in the stationary case, locality and smooth-
ness are conflicting properties. Greater smoothness means poorer locality and vice

versa, other things being equal. This follows formally from a two-dimensional gen-
eralization of the classical uncertainty relation.

Theorem E. If Fy(t,w) is shift-invariant, then ¢,I, > } and ¢,E, > }, with

equality in both these relations iff

(8, w) o e~ /308w 255 (2.6.7)
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Proof: First, we show that &L, = &, Let Alt,7) = £ [ ¢(f,w)e™ dw. Then
B(r,v) = Flo(t,w)] = [ At,r)e” " dt. Applying the classical uncertainty relation

to At,7) w.rt. ¢ gives

. . b o ;
i—.( [ neope | I@[r.u}l’dﬂ) < (_f Ry u‘li'{nv}ll’du)

(E.1)
Integrating E.1 over r and using the Schwarz Inequality
§
3 [ (f IA(t,7)|* dt f ]*I*{ﬁ::ﬂ’du) dr
-0
o f oo i
< f (rf 2| A, 7)|* dt f ’|¢{r,u]|‘du) dr
= = a] —ix
oo 7
< ((f f t*|A(t,7) |’d:dff f ®(r,v) ?dudf) : (E.2)
By Parseval’s thereom,
f A7) dr = 5= f B(t, w)|*duw (E.3a)
and
=] 1 o
f |A(t,7)|* dt = i f |®(r, 1) |* du. (E.35)
-0 =0
Substituting Eq. E.3 into Eq. E.2 yields
oo oD im = I ] = = ] %
% f f [®(r, )P dirdr < (f f ¢“|¢{t,w}|=dtdwf f u“|m[r,u}|=dp{1f) .
= =00 Cad DD —&xp =0
(E.4)

Since [ [ |#(t, w)|? dtdw = [ [|®(r,v)|* dr di, we have } < oyE,. By similar rea-

soning, z o A
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Direct computation of the variances shows that if ¢(t, w) is a 2-D gaussian (Eq. 2.6.7),

then these inequalities are satisfied with equality. Showing the converse is some-
what more involved. If these inequalities are satisfied with equality, then from the
classical uncertainty relation and the proof above, it follows that $(r, ) is Gaussian

in each of its variables. In other words,

&(r,v) = g[8l )]

= g lelr)e™+d(r)] (E.5)

for all r and v, where @ > 0 and ¢ > 0. Thus, a(v)r? + b{v) = e(r)o? + d(r).
Setting v = 0 and 7 = 0 shows that b(v) = ¢(0)e* + d(0) and d(r) = a(0)r? + b(0),

respectively, so
a(w)r? + e(0)e? + d(0) = e(r)e? + a(0)r* + b(0). (E.6)

Twice differentiating this w.r.t. r and v gives a"(1) = ¢"(r) for all r and »; thus
they are constant. Taylor expanding a() and e(r), substituting into Eq. E.6, and

equating terms shows that

B(r,v) = e~ 8{0)r  re(0)p?+ La"(0)r w1 {0)] (E.T)

By the symmetry of the two domains, ¢(t,w) must have the same form. Together,

these imply that

.:'l.{t, ) = E—|mt‘+,ﬁ.r’+mi’fr’ +81)

= ¢~ loat +hart o[t 4bs] (E.8)

for all t and r. Taking the logarithm of Eq. E.8, clearing of fractions, and equating
terms shows that v = 3 = 0. Thus, a"(0) = 0 in Eq. E.7, which implies Eq. 2.6.7,
as desired. ///
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2.7. Satisfying the design criteria — the Gaussian transform

From the last theorem, we see that a two-dimensional gaussian transform kernel
gives the best time-frequency locality for a given smoothness. The resulting repre-
sentation will be called the Gaussian transform of the signal. + By specifying o3
(= 20f) and o} (= 202) for this kernel we are, in effect, selecting a particular time
and frequency scale for the transform. We may choose any values we wish provided
orog > § (positivity), and the resulting transform will best satisfy all our design
properties. The result is clearly a generalization of the solution in the stationary
case, where a gaussian convolution kernel of different sizes selected different spectral

scales,

When oron = }, this transform is equivalent to a spectrogram using & gaussian
window. For larger values of opop, this transform is equivalent to convolving such

a spectrogram with a 2-D gaussian.

As a note on its implementation, this last fact was used to compute the figures
below. A more direct method would be to compute the Wigner distribution and
then perform the 2-D convolution specified in Eq. 2.5.2. This is not very efficient in a
digital implementation, however, since the Wigner distribution has to be computed

at high sampling rates to avoid aliasing. *

By performing a convolution on a spectrogram, far fewer time and frequency samples

need to be computed, since the spectrogram is already a smoothed version of the

‘I' We have chosen this name for obvious reasons. This risks, however, confusion with the Capas-
Weterstrass fransformation [see. Hille 1948, In fact, the Gaussian transform of the signal =(t) is the
two-dimensional Gauss-Welerstrass transformation of the ngl:lﬂ' distribution BV, [l] [EH De Bt‘uj_i:n.
1967].

* In general, the Wigner distribution must be sampled in time at twice the Nyguist rate of the signal
[Claasen & Mocklenbrinker 1980h].
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Wigner distribution. Further, since the gaussian kernel is uncorrelated in time

and frequency, the 2-D convolution is separable, and can be performed as separate
1-D convolutions in the time and frequency directions, resulting in a relatively

inexpensive computation.

2.8. Directional time-frequency transforms

So far, we have assumed that the time-frequency energy representation was nen-
directional in the sense that the covariances oy, and E;, of the transform kernel
were both zero. We shall now examine the consequences of lifting this condition.

We begin with an example. Consider the two transforms specified by the kernels
di(t,w) = g [ = tw+u)

and

$a(t,w) = e (),

These transforms have identical oy and o, but differ in the sign of &y,. Figure
2.10 shows their concentration ellipses, and Figure 2.11 gives the transform of the
chirp ¢'5! for these two cases. Notice that the second transform broadens the chirp
much more than the first, which should be evident from the concentration ellipses.
The opposite would be true for the chirp e 3%, These transforms are directionally
sensitive, and using ¢ and o, as the sole measures of time-frequency resclution is

obviously inadequate in such cases.

Why consider transforms with such behavior? One answer is to provide a general
treatment of fime-frequency locality., Another answer is that it is evidently possi-
ble io obtain better time-frequency resolution for some signals if the transform is

directionally “tuned’ to them than otherwise. This would mean that, in general,
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& {a} F'y {b]

(requency

k4

time b

Figure 2.10. Concentration ellipses for transform kernels with complementary
arientation selectivity. (a) Concentration ellipse for ¢y (t,w) = e~ (*'~ ) rp)

Concentration ellipse for dg(t,w) = e~1F+ totu)

F {a]

[requency

L

Line

time

Figure 2.11. Directional transforms for a linear chirp . (a) Transform has
kernel in Figure 2.10a. (b) Transform has kernel in Figure 2.10b. The seoncd
transform broadens this chirp much more than the first, which should be evident

from their concentration ellipses,
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we would need a family of transforms each tuned to a preferred time-frequency

orientation.

The theory of directional transforms is greatly simplified by a rotation of co-
ordinates. Let

Rilto) = ( 2oty e (2) (2.8.1)

be the operator that rotates a point # radians in the time-frequency plane. Givena
time-frequency representation Fy(f,w) of a signal z(t), we can consider the rotated
representation formed by the composition FrRg(t,w). Is this the time-frequency

representation of an actual signal? The answer is yes; if
=43
:F‘{{J - 1 E.‘q*l.nl ] I[w}ci[.utlln'_‘_ﬁl}dw [13_2]
2my/eos @ E ’

then Wy, = Wy Ey [see Van Trees 1971]. So if F; has the kernel ¢(t,w) and if G,
has the kernel ¢(t,w) Ry, then Gz, = F;Ry. In other words, Eq. 2.8.2 rotates the
signal by # radians in time-frequency, thus the transform with the rotated kernel
applied to this signal will give the desired effect.

Relative to these new co-ordinates we can generalize some of the measures of the

previous sections. For example, consider
1 (=
malt) = — f Fo Ry(t,w), dw. (2.8.3)

This is the marginal of the rotated transform along w. It follows that the time and
frequency marginals (Eq. 2.4.2) of F(t,w) satisfy 7y = 7y_p and 73 = 27 Ti=n /2"

If mglt) = |zg(t)|®, then we will say that the transform preserves the marginal

relative to the direction # in time-frequency. Interestingly, the Wigner distribution
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uniguely meets this requirement for all 8. The proof is a simple generalization of

Cohen's result. He showed that a shift-invariant quadratic transform perserves the
time marginal, i.e., m(t) = |=(t)]?, iff @(r,0) = 1 for all r. Using F|¢pRy| = B Hy,
which is easily verified, it follows that wy(t) = |za(f)|* iff ®Ry(r,0) = 1 for all r. This
implies that &(r, ) = 1, which corresponds to the Wigner distribution by Eq. 2.5.3,
This is the reason for considering the Wigner distribution ‘perfectly localized’ and

$(t,w) the ‘point spread function’ in time-frequency.

The amount of spread in time-frequency direction # can be measured by the variance

T T eler; (t,w) dt dw

- . (284
I T 1Ryt w)? dt dw
In the notation of the previous sections, ot = Gy=0, 0w = Fguyjz, and
2
7 _ : 0 O cos
oy = (cosl  sinf) (ﬂm ﬂ:) (n’nﬂ) ; (2.8.5)

Let oF be the maximum value and ¢ be the minimum value of. which corresponds

to the eigenvalues of the covariance matrix in Eq. 2.8.5. Further, let #* be the max-

cos it

imum direction, which corresponds to the eigenvector (.sfn g

) of the eigenvalue
uf- In other words, oy and oy are the maximum and minimum dimensions of the
concentration ellipse of ¢(t,w), and #° is angle of the major axis of concentration
ellipse relative to the time axis. These three quantities conveniently specify the

time-frequency locality of the transform.

In an analogous manner, we can measure the smoothness of the transform in time-

frequency direction § by

[ [ P1er (r,v)|* dr dv
D= : (2.8.8)
I T 8B (r, )| dr de

— o — 0
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In the notation of the previous sections, &, = Eg.q, B, = Ean-.r;:: and

. : E cos

T __ T T

Ej=(cosl sinf) (Eﬂ, 52 ) (s{nﬁ') : (2.8.7)
Let £ be the maximum value and E# be the minimum value of £, and let #** be the
maximum direction. These three quantities conveniently specify the time-frequency

smoothness of the transform.

We are now in a position to generalize Theorem E.

Theorem F. If Fy(t,w) is shift-invariant, then o153 > § and o35, > L, with

equality in both these relations iff

ﬂ”h_*l[ih w) oc e~ (t/2e) g=(wfaes)?, (2.8.8)

Proof: Applying Theorem E to the transform with kernel ¢R;.', we have ! <
035y = o3, Similarly, with the kernel ¢Rge-, § < yE3 < o353, The righthand
inequalities are satisfied with equality iff 8* = §**. It follows from Theorem E that
Eq. 2.8.8 is a necessary and sufficient condition that all these inequalites are satisfied
with equality. ///

Generalizing Theorem D requires that we use the directional variance of (¢, w) not

|é(t, w)?, i.e.,
R (8, w) di dw

(2.8.9)

17
I T erttwdidw

We define a? and ﬂ’}l as the maximum and minimum values of this variance, and

8" as the maximum direction.
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Theorem G. Let Fy(t,w) be positive and shift-invariant. Then oroyrr > i-

Proof- Apply Theorem D to the signal =_g-(t) and the transform with kernel ﬁlef .
Y

Corollary. If F.(t,w) is positive and shift-invariant, then

o ”‘;Ibl.
The T | 2

From Theorem F, we see that a two-dimensional gaussian transform kernel gives the
best time-frequency locality for a given smoothness, In this general case, however,
the gaussian kernel may be correlated in time and frequency, i.e. ils concentration
ellipse may be oriented obliquely in the time-frequency plane. By specifying o}
(= 2a?), o3 (= 203), and §* for this kernel we are, in effect, selecting a particular
time-frequency scale for the transform. By Theorem G, we may choose any values
we wish provided ojoy; = ;-, and the resulting transform will best satisfy all our

design properties,

When oyor; = }, this transform is equivalent to a spectrogram with a rotated
gaussian window gg-(t) [cf. Riley 1983, Dungeon 1984]. For larger values of ooy,

this transform is equivalent to convolving such a spectrogram with & 2-I) gaussian.

2.9. A speech example

In this section we examine a particular utierance, comparing the various signal
representations discussed above. The utterance is /wioi/ taken from *We owe Eve
a dollar”, as produced by an adult male. This utterance has some rapid F2 motion,

which makes it useful as an example of non-stationary behavior in speech.
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Figure 2.12. Log magnitude spectrograms of the utterance /wioi/. [a) Wide-

band (gaussian window standard deviation of 1 msec). (b) Narrowband (standard

deviation of 15 msec). (c) Intermediate band (standard deviation of 4 msec).
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Figure 2.12a,b show the traditional wideband and narrowband spectrograms for this

utterance. These are spectrograms computed with gaussian windows of standard
deviation 1 msec and 15 msecs, respectively. The wideband spectrogram shows
vertical striations spaced at the piteh period. The narrowband spectrogram shows
horizental striations spaced at the fundamental frequency. They are both due to the
voiced excitation. Figure 2.12¢ shows a spectrogram whose window duration is 4
msec, which is intermediate between the previous two. This window size is matched
to the excitation in the following sense. The 2-D gaussian kernel (Eq. 2.6.7) that
corresponds to this spectrogram has standard deviations of 2 msec by 20 Hz. These
are in the same ratio as 10 msec and 100 Hz, the pitch period and the fundmental
frequency, respectively. This choice gives rise to rows and columns of sharp peaks
and valleys spaced at the pitch period and the fundamental frequency. We will see

in the next chapter why the excitation produces this particular structure.

Figure 2.13 shows the Wigner distribution for this utterance. Compared to Figure
212 it looks almost as if the vertical acale has changed, but it has not. This repre-
sentation is dominated by cross-terms that give ‘echoes’ of the formants in initially
suprising places, But remember that the sum of two complex exponetials at differ-
ent frequencies gave rise to a cross-term half-way between them that had greater
amplitude than the original terms (Figure 2.8). Evidently, the Wigner distribution

itself gives a confusing picture of multi-component signals such as speech.

Figure 2.14 shows the time-frequency autocorrelation function, the 2-D fourier
transform of the Wigner distribution, for this utterance in the neighborhood of
the origin. Notice the repeated pattern in rows and columns spaced at the pitch
period and the fundmental frequency. In Chapter 3 we will see that this pattern

can be exploited in understanding how to suppress the excitation.
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Figure 2.13. Log magnitude of Wigner distribution. (This is implemented as a
pseudo-Wigner distribution using a gaussian window of standard deviation 40 msec
[see Claasen & Mecklenbriauker 1980b].)
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Figure 2.14. Log magnitude of time-frequency autocorrelation function in the
vicinity of the origin.
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transform with kernel scales chosen to suppress the excita-

Figure 2.15. Gaussian

tion, oy = 10 msec and o, = 100 Hz. (a) 2-D plot. [b) 3-D plot.
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Figure 2.15 shows the Gaussian transform of this signal using a kernel of a scale

chosen to suppress the excitation. The pitch striations are removed, leaving smoaoth
time-frequency ridges that correspond to the formants. The ridges are quite sharp,
although it is somewhat difficult to appreciate this in the half-toned picture, Figure
2.15a. The 3-D plot in Figure 2.15b gives a different perspective on this surface.
It shows F1 and parts of F2 quite nicely, although most everything above 2 kHz is

considerably distorted in this presentation.

Finally, Figure 2.16 shows directional transforms of this utterance using oriented
Gaussian kernels matched to different aspects of the signal. In Figure 2.18a, the
kernel orientation is matched to the rising F2. In Figure 2.16b, the kernel orientation
is matched to the falling F2. These choices bring out the selected formant peak with
high resolution.

In this chapter, we have found that a particular time-frequency energy represen-
tation, the Gaussian transform, best satifies a set of properties deemed desirable,
There are several free parameters for this representation (o¢, 0w, and 8*), which de-
termine the scale and directional selectivity of the transform. Deciding what scales
are of interest requires a more specific model of the signal. In the next chapter, we

adopt such a model.
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Figure 2.18. Directional transforms using oriented Gaussian kernels matched to
different aspects of the signal. (a) Kernel orientation matched to rising F2. (b}

Kernel orientation matched to falling F2.



Chapter 3.

Time-frequency filtering

In this chapter, we continue the discussion of joint time-frequency energy represen-
tations for speech signals. Here we shall make stronger assumptions about the form
of the signals. We will introduce a particular model of the time-varying vocal tract,
and define its ‘transfer function’, H(t,w). We will show that time-frequency filtering
can be used to estimate |H(t,w)|?, a technique that is essentially a two-dimensional
generalization of straight-forward, stationary methods. Further, we will see that
|H(t,w)|® is closely related to the time-frequency representations of the previous
chapter.

3.1. The stationary case

First, let us re-examine the stationary case. If we adopt a more detailed model
of the generation of a stationary speech signal, we can say much more about the
cepstral methods discussed in the previous chapter. The linear model [Fant 1960;
Flanagan 1972| of vowel preduction begins by decomposing the speech signal into
a vocal source component (e.g. periodic vocal fold vibration) and a vocal tract
component, which are treated as independent. The vocal tract is modelled as a

linear and quasi-time-invariant filter with excess pressure and volume velocity (of
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assumed one-dimensional wave motion) being analogous to voltage and current in

circuit theory. The distribution of the poles of the filter’s system function constitutes

the formant deseription of the vocal tract,

In other words, H{iw), the transfer function of the stationary vocal tract, can be

approximated by [Flanagan 1972 1

N
H(iw) =Y [zaHa(iw) + zpH-nliw)], (3.1.1)

n=1
where H,(s) consists of a simple pole at s, = oy + fwn,

1

Haliw) = iw — (on + tig)’

(3.1.2)

and z, is the residue at the nth pole,

- I 2es}
™ B e [(ak — aa)? + (w — ) + 2 (o — )]

(3.1.3)

Zp

We associate a formant with each pole, or more precisely, with each pair of poles,
since they occur in conjugate pairs, i.e., s_n = &5, given the impulse response of
the vocal tract is real. The impulse response of the stationary vocal tract, in fact,

N
h(t) = 3 [zaha(t) + 2nhalt)], (3.1.4)
n=1
where
halt) = e™fu(t). (3.1.5)

In this linear time-invariant model, it follows that the spectrum of the excitation
and the vocal tract transfer function combine by multiplication in the power spec-

trum and addition in the log spectrum. This fact leads to a simple procedure for

# This is the parallel formulation. The serial formulation, H{iw) = k], Haliw) H_aliw) & also olten
uged. The former is the partial fraction expanzion of the latter,
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separating the excitation and the vocal tract transfer function in certain (idealized)

CASEas,

Suppose the the excitation is an impulse train, which is a very simple model of
constant pitch, voiced excitation, In this case, the spectrum of the excitation is also
an impulse train, and thus, the speech spectrum is a uniformly sampled version of
the vocal tract transfer function. If the sampling were unaliased (L.e., the pitch is
low enough relative to the highest transfer function guefrencies) the original transfer
functlon can be exactly recovered by ideal low-pass filtering the spectrum, by the
sampling theorem [Bracewell 1978]. But this is just cepstral smoothing using, in this
very idealized case, a rectangular cepstral window |Oppenheim 1969 Oppenheim
& Shafer 1975].

Let us examine this result more closely. The formulation here will be in terms of the
power spectrum and its transform, the autocorrelation function, instead of the more
usual log spectrum and its transform, the cepstrum, since the former generalizes
more easily to the time-varying case. Since the term ‘cepstral filtering' is, strictly
speaking, reserved for filtering operations on the log magnitude spectrum, we shall
refer to analogous operations on the power spectrum as autocorrelation filtering.

The results in the stationary case are similar in either formulation. +

If x(t) represents the excitation, h(t) the impulse response of the vocal tract, and

y(t) the output speech signal, then in terms of power spectra and transfer function,

' Cepstral and auntocorrelation filtering can both be used to separate signal components that arise
at different scales in the frequency domain. Cepstral filtering is most appropriate when the signal
components combine by convolution in the time domain, autocorrelation Bltering when they combine
by addition. Both approaches can be used for speech, since we can use either a serial or parallel
formulation of the voeal tract model
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¥ (w)|* = |H(iw)|* |X{w)]®, or in terms of autocorrelation functions,
= n}

Aylr) = f Az(t) Anfr — t) d. (3.1.6)

=}

Let the excitation be an impulse train, I(t;T) = 3_, 6(t — kT). Then

Ap(r) = ZT’ S 8 —kT). (3.1.7)

k=—ua

Thus from Eq. 3.1.6, we have
Ay(r) = E%EA;[:’—ET}, (3.1.8)
k
Provided the duration of Ay(r) is small enough that the terms in Eq. 3.1.8 do

not overlap, A1) and thus |H{iw) |i can be recovered by windowing Ay(r) with a

rectangular window centered on the origin and of duration T (see Figure 3.1).

Let us examine the form of Ax(r). Assume for now that the vocal tract transfer

function consists of only a single pole, i.e., its impulse response has the form of

Eq. 3.1.5. Then

£

A [r) = f u"trﬂ}u[r + !}:'”u[ﬁ] i

- =
= ¢"" | ety + t)u(t) dt

=0
o

— ca.. f j eiun! :ﬂ

e —r,0)
1 [7] it
= —g""lg . 3.1.9
= (3.0.9
where J, = —2ay is the [half-power) bandwidth of the pole. Thus, provided this
bandwidth is large enough, the overlap in the terms in Eq. 3.1.8 will be negligible,

and windowing Ay(r) will very nearly recover Ay(r) and hence |H(iw)|*. ¢

t The phase of the transfer fanction can be found, if desired, from its magnitude, since this model i=
minimum phase [see Oppenheim & Shafer 1975).
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Figure 3.1. Recovering the transfer function by autocorrelation filtering. [a)
Spectrum of the excitation modelled as an impulse train (10 msec period). (b)
Square magnitude of the transfer function, which in this simple example is a single
pole of 300 hz bandwidth. (c) Power spectrum, the product of (a)" and {b)"
Cepstral filtering uses the log spectrum instead. The approach here generalizes
more easily to the time-varying case. (continued...)
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Figure 3.1 (continued). Recovering the transfer function by autocorrelation
filtering. {d) Magnitude of the autocorrelation function, the (inverse) fourier trans-
form of ‘(c)’. Dashed lines show the rectangular window. (e} Fourier transform
of the windowed autocorrelation function, which very nearly recovers the transfer
function ‘(b)" in this idealized case (the effect of the slight overlap of the terms in

“(d)" is negligible).

The analysis of the multiple pole case follows from superposition. Provided the

poles are not closely spaced relative to their bandwidths, 1

N
H(iw)* = Y lzal?® || Haliw)* + | H-niw) ] (3.1.11)

=1

1 The analysis in terms of log epectra and cepatra does not require this provise, since conwalutions in
the time domain transform [exactly) to sums in the cepstral domain, This is an advantage of the
cepstral approacl,
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from Eq. 3.1.1 and Eq. 3.1.2, hence

N
An(r) = Z l-‘,:fﬁlit*"‘l'lcua WnT, (3.1.12)

=1
from Eq. 3.1.9. From this equation and Eq. 3.1.8, we see that windowing the

autocorrelation function of the output speech signal can still be used to recover the

transfer function when the bandwidths are large enough that aliasing is negligible.

A few changes to this model make it more realistic. First, the spectrum of constant
voiced excitation is somewhat better modelled as an impulse train that drops off
at 12DB per octave [Flanagan 1972]. This trend can be removed by spectral pre-

emphasis.

Second, the sampling is usually significantly aliased, which is a more serious prob-
lem. In this case, we can recover only a low-pass version of the transfer function. A
rectangular window is & poor choice in this case, since its transform rings for a con-
siderable duration in the frequency domain. The gaussian is a good choice, because
it has minimal bandwidth for a given window duration, as indicated in the previous
chapter. (see Figure 3.2). Typically, the standard deviation of the gaussian window
is selected about equal to the pitch peried.

3.2. Non-stationary vocal tract

Let us now consider the case where the vocal tract configuration is not necessarily
static. The goal is to recover the “time-varying transfer function” of the vocal tract

from the signal and remove the excitation, as we did in the stationary case.

Unfortunately, there is no widely accepted, satisfactory definition of the transfer

function for a time-varying linear filter, although there have been many proposals
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Figure 3.2. Estimating ‘aliased’ transfer function. (a} Spectrum of excitation
modelled as an impulse train (10 msec period). (b) Square magnitude of the transfer
function, a single pole of 150 Hz bandwidth. This has higher ‘quefrencies’ than
the previous example; ‘{a)’ undersamples it in this case. [c) Power specirum, the

product of ‘{a)’ and '(b)’. (continued...)
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Figure 3.2 (continued). Estimating ‘aliased’ transfer function. (d) Magnitude
of the autocerrelation function, the (inverse) fourier transform of (c)’, Dotted line
show the gaussian window. (e) Fourier transform of the windowed autocorrelation
function, which recovers a low-pass version of the transfer function ‘b)°

[e.g., see Lui 1971; Loynes 1968; Page 1052; Saleh & Subotic 1985; Zadeh 1950|.
We shall avoid this difficulty by constraining the form of the transfer function; we

shall allow non-stationarity, but only in certain well-behaved ways.

The vocal tract, of course, is not an arbitrary time-varying filter: it is constrained
by the physical properties of the articulators. Josha[1982,1984] has investigated the

physica of the non-stationary vocal tract analytically, and found that under certain
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reasonable physical assumptions it is possible to generalize the notion of a formant
to the time-varying case. Essentially, he replaces the assumption of a static vocal
tract configuration by the assumption that the deformations are slow encugh to
satisfy the condiiion of adiabatic approximation, which he indicates appears to be

generally valid from cine X-ray measurements.

We can thus define the impulse response, hit,a), for a time-varying “resonance” of

the vocal tract to an impulse, §(t — a), at time a as:
hit,a) = eJu Wttty e gy (3.2.1)

where we assume the formant bandwidth f; is fixed, and the formant center fre-
quency is wy at ¢ = 0. Note that Eq. 3.2.1 reduces to the usual definition of the
impulse response of a formant if the time-varying modulation frequency, ~(t], is

BETO.

In Josha’s model, the bandwidth varies somewhat with rate of change of vocal tract
area, which we shall treat as negligible. Regarding these bandwidth variations, Fant
[1980] believes they “...are of academic rather practical significance. O greater
importance is probably the mere fact that a rapid transition of a formant creates a

special perceptual ‘chirp’ effect.”

It will be convenient to examine a more general class of impulse responses than in

Eq. 3.2.1. Consider the impulse response
hit,a) = holt — a)e' S ¥ (3.2.2)

where hp(t) is the impulse response of a linear time-invariant (LTI} system and
4{0) = 0. Eq. 3.2.1 has this form with ho(t) = e{"2Fet&0lty(t). We call this a

frequency-modulated filter. We shall study this kind of filter in the next several
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sections, since it is possible to generalize the notion of a transfer function for it

and it is possible to estimate this transfer function by generalizing the *cepstral”
methods described above. Of course, an FM filter models only a single pole; we
shall take up the multiple pole model of the complete vocal tract transfer function

in & later section.

How then can we represent the time-varying transfer function of an FM filter? An

intuitively appealing candidate is
Ht,w) = Holiw — ~(t))], (3.2.3)

where Hg(iw) is the transfer function of the corresponding stationary filter with
impulse response ho(t) (Eq. 3.2.2). In terms of how we might want to visualize
the transfer function of an FM filter, this seems attractive; it is just the stationary
transfer function shifted at each time by the local modulation frequency ~(t). For
a time-varying formant pole, H(t,w) would have the form of a stationary pole in
each frequency cross-section with center frequency wy + +(t) and fixed bandwidth
fo.

For our purposes, the most important properties that the definition of the time-
varying transfer function of a formant should satisfy are practical ones — it should
provide phonetically relevant information about the signal, and it should be com-
putable from the signal. The representation in Eq. 3.2.3 satisfies these properties
since it is a simple generalization of the stationary case, which is already understood,

and it can be estimated from the signal by methods we will describe shortly.

The transfer function of an LTI filter, however, also has some nice theoretical prop-
erties that would be desirable when generalized to the time-varying case. In partic-
ular, the transfer function Ho(iw) of an LTT filter, y(x) = Ty[z(t)]: (1) specifies the
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eigenvalues for the filter’s eigenfunctions, lL.e.,

Tyle™*] = Holiw)e™"; (3.2.4)

and (2) is the ratio of the spectrum of the output over the spectum of the input,

i.e.,
. Yiw)
Hyliw) = X(@)’ (3.2.5)
The first property does generalize to the FM case. Consider the functions
oult) = & Jolo+anldr (3.2.6)

These are the eigenfunctions for an FM filter T', with impulse response defined by
Eq. 3.2.2. This follows from

Tlou(®)] = [ h(t,a)pu(a) da
—imr
T L a
= f h,]{;_ﬂ]tf_ﬁ alr)dr i [Slwralridr g
iy
= E':J: ir) dr f hﬂ[f-—ﬂ}:ﬂmdﬂ.
= ,,‘f.;‘"{’}-ff Holiw)e™

= Hﬁ{’-‘-"}’Pu (). {3.2.'5'}

Further, we see from Eq. 3.2.7 that Hp(iw) specifies the eigenvalues for the eigen-
functions @, (t). The value of Hyg(iw), however, depends on the choice of the time

origin. More generally,

Tlpulf)] = H{0,w)pult) (3.2.8)
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is time shift-invariant, where H(t,w) is defined by Eq. 3.2.3. +

By comparison, some authors have used

o
Hit,w) = f h(t, a)e =2} dq (3.2.9)

-
as their definition of the time-varying transfer function [e.g., Zadeh 1950]. The
filter's response to a complex exponential ™! is H (t,w)e™!. However, ¢! is not, in
general, an eigenfunction of a time-varying system, consequently b3 (#,w) has limited

use.

Saleh & Subotic [1985] have explored generalizing the second property (Eg. 3.2.5)
to the time-varying case. They suggest using

_ Fy(t,w)

H(t,w) = F=_“|:t,u]

(3.2.10)

as the definition of the time-varying transfer function where Fy(t, w) and Fy(t,w) are
jeint time-frequency representations of the input and output signals, respectively.
The difficulty with their approach is that the ratio in Eq. 3.2.10, in general, will
have different values for different inputs z(t) for a given filter, unlike the LTI case
(Eq. 3.2.5). This second property evidently does not generalize well to the time-

VATYINE case,
3.3. Time-frequency filtering

The remainder of this chapter is used to show that time-frequency filtering can
be used to estimate the transfer function of FM filters and, more generally, of the

Le., suppose ¥ = ¢ — r. Let H(f,w) and Ayfiw) be the time-varying transfer function and the
corresponding LTI transfer function, respectively, in the new time co-ordinate. Then, A(f,w) =
H(f+ r,w) and Hyliw) = Hylilw — 4{r))] = H{r,w) = {0, w).
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time-varying vocal tract. Time-frequency fltering consists of multiplying the time-
frequency autocorrelation function A;(r,v) (Eq. 2.5.5) of the signal z(t) with a 2-D

window @(r,v). The 2-I) inverse fourier transform of this windowed function,
FH®(r,v)Az(r, )], (3.3.1)

becomes the filtered time-frequency representation. The shape of the window, of
course, determines what energy is kept and what is removed in the filtered repre-

sentation [ef. Flandrin 1984].

This technique is in many ways the time-varying generalization of the “cepstral”
methods presented in Section 3.1. The time-frequency autocorrelation takes the
place of the autocorrelation function, 2 2-D window the place of a 1-D windew, and

a 2-D inverse fourier transform of a 1-D fourier transform in this generalization.

The representation in Eq. 3.3.1 alse specifies a general member of the quadratic
transforms presented in the previous chapter, indicating that the two chapters are
related. In this chapter, our goal is to show that a member of this class can give a
good estimate of the time-varying “transfer function”™ of the vocal tract. Happily, it
turns out that the form of t.lmn—f:eqﬁency window @(r, /) that gives a good estimate
is a 2-D gaussian, which is the same as Eq. 2.6.7. In other words, we end up with
the same kind of time-frequency representation as in the previous chapter, which

was based there on weaker, but more general goals,

The results of this chapter, then, reinforce and reinterpret those of the previous
chapter. Further, the analysis here suggests which scales to choose, decisions that
were free parameters of Chapter 2. In particular, for voiced speech, oy is matched

to the pitch period, and o, is matched to the fundamental frequency.
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We have just given the basic result of this chapter. It remains to demonstrate its

validity, i.e., that this kind of filtering will give a good estimate of the time-varying
vocal tract “transfer function". This requires several steps in which we gradually
generalize the form of the filter that models the vocal tract. In Section 3.4, we
re-examine the stationary case, this time in terms of the time-frequency autocorre-
lation function. In Section 3.5, we consider FM filters that have a linearly varying
modulation frequency. In Section 3.6, we use a locality argument to generalize these
results for quasi-stationary filters and for FM filters that have a smoothly varying
modulation frequency, respectively. In Section 3.7, we use a superposition argument

to treat the multiple pole case.

3.4. The stationary case — re-examined

So let ua assume for now we want to estimate the transfer function of a filter that is

time-invariant. We will show how the time-frequency autocorrelation funetion ean

be used to produce this estimate,

This will really just be recapitulation of the stationary argument presented in Sec-
tion 3.1. In fact, Ay(r,0) = A(r), so we see the correspondence is very close,
But with the time-frequency autocorrelation function we will be in a position to

generalize these results to the time-varying case, so it is worth the effort.

Letting x(t) represent the filter input, &(t) the filter’s impulse response, and y(t)

the output, we have
Aylr,v) = f Azt ) Ap(r — t,0) dL. (3.4.1)
—

In other words, the time-frequency autocorrelation function Ay(r, ) consista of the

convolution of Az(r,r) and A,(r,+) along the r dimension. This is analogous to
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Eq. 3.1.6.

Let the filter input be an impulse train I(#;T) = 3 _, &(t — nT"). Then

Aflr,v) = f c_mlzﬁ{t —aT +1/2) EE[I — mT — r/2) di.
Substituting ' =: — %[m +n)T and v’ =7 + (m —n)T,
— Ez { f z—i#tij{!! + f'll":.}]ﬁ[_t' _ rrllllz} dt'} E—'I:’i[m+l}ln-'_

The quantity in braces is the time-frequency autocorrelation function of an impulse

&(t"), which is As(r',r) = &(r') [see Classen & Mecklenbriuker 1980a]. Thus,

Ar(r,v) = E E S(r +(m— n}j"],-ihmwli"w_
Letting k=n-m, "

— E Eﬁ{f _ kT]Ei-;-THE—{ﬂTP
n ok

— Z Ei%ﬁﬁf_'l" _ IFT} {z E—'I:'I'I.TI-'} )
k

The quantity in braces is the fourier transform of an impulse train I'(t; T), which is

itself an impulse train 3 1(v; 3F) [see Bracewell 1078]. Therefore,

2xn

Aflr,v) = %’r 5 S Ts(r — kD)l - 1)
k n
2w n 2wn
- ng:: Eﬂ (=1)"*8(r — kT)6 (v — —=)- (3.4.2)

Fq. 3.4.2 shows that the time-frequency autocorrelation function of an impulse
train is a rectangular grid of impulses spaced T apart along = and 2x /T apart along

i (see Figure 3.3). 1 Eq. 3.4.2 is the two-dimensional analog of Eq. 3.1.7.

Siebert [1956] has derived the time-frequency autocorrelation function for a train of pulses of
arbitrary shape, a result that is important in the theory of radar. The above result follows formally
from this if the pulses are given unit area and approach sere widsh in the lmit.
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Figure 3.4. Magnitude of the time-frequency autocorrelation function of the out-
put of an LTI filter excited by an impulse train. In this simple example the filter
consists of a single pole of 300 hz bandwidth.
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From Eq. 3.4.1, we have

Aylr,v) = E—f‘{zi[—l}"kﬂh{f — kT, 2;’* (v — T’“}, (3.4.3)
k L

the two-dimensional analog of Eq. 3.1.8. Ay(r, ) consista of a rectangular grid of
shifted r slices of Ay(r,1) (see Figure 3.4).

Provided the terms in Eq. 3.4.3 do not overlap, Ax(r,0) can be recovered from
Ay(r,)é(r) by windowing it with a rectangular window that is centered on the
origin and that has length T, width 2x /T, and height T'/2x (see Figure 3.5). From

Ag(r,0)6(r) we can, in turn, recover |H (iw)|*, since

[a 1]
7= [ Ay (r, 0)6(v)] %f fﬂh[f, §(1)e) dr du

= f Wi (t,w) dt

= |H{iw)|*. (3.4.4)

On the other hand, if the terms in Eq. 3.4.3 do overlap somewhat, then a low-pass

version of |H(iw)|* can still be recovered, since

7 Bl Ay )] 7 [000) A 000)|

- %q&{tlw}tt \H (i), (3.4.5)

where ®(r,v) is the time-frequency window, and &(r,w) is its two-dimensional in-
verse fourier transform. In this case, using a rectangular window on the time-
frequency autocorrelation function is a poor choice since its transform rings for a
considerable duration away from the origin. A gaussian window minimizes this

problern.
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Figure 3.56. Rectangular window (very nearly) recovers ‘unaliased’ transfer fune-
tion. (a) Windowed time-frequency autocorrelation function in Figure 3.4. (b)
Square magnitude of transfer function, the 2-D inverse fourier transform of ‘(a)’,
In the ‘aliased’ case, i.e., if the terms in Figure 3.4 were to overlap significantly, a

gaussian window would be more appropriate.
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Let us examine the form of 4, (r, ) assuming for now that the filter consists of only

a single pole, i.e., its impulse response has the form of Eq. 3.1.5. Then

Ay (rv) = j By (1 4 rf2)etS Ty (2 — 1 2)e V! dt
—00

=+
= gln? f etonty(t — |r| f2)e ™ dt

—e0
‘{ﬂ.-. =1 [2]| ] g

- P . (3.4.8)

This last equation is the two dimensicnal analog of Eq. 3.1.9.

Thus, provided the pole bandwidth is large enough, windowing A, (r, &) can recover

most of Ay(r, ), and, hence, a low-pass version of |H (iw)|?.

3.5. Linearly varying modulation frequency

We now consider the case where we want to estimate the transfer function of an FM
filter that has a linearly varying modulation frequency, i.e., «(t) = mt in Eq. 3.2.2.
This means

hit, a) = ho(t — a)e it =o7), (3.5.1)

The previous section was the special case m = 0.

Let us find how passing a signal through such a filter modifies its time-frequency
autocorrelation function. As usual, we let z(t) represent the input to the filter and

y(t) the output. Thus,

2.+

y(t) = f z(a)h{t, a) da

=00
i}

— giimt f z(a)e ™ hy(t — a) da. (3.5.2)

e
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Letting #(t) = z(t)e™"i™" and §(t) = y(£)e~i™", we have from Eq. 3.5.2 and

Eq. 3.4.1,

Aj(r,v) = f Ax(t, v) Agy (r — £, v) dt. (3.5.3)

—
In other words, the time-frequency autocorrelation function of §(t) consists of the
convelution of the time-frequency autocorrelation of #(¢) and Ap(t) along the r

dimension.

We are more directly interested in A, and A,, than A3 and A;. But this last
transformation in simple, since the time-frequency autocorrelation function has the

following nice property: if #(t) = z(t)e "™ then [Van Trees 1971]
Az(r,v) = Ag(r, v + mr). (3.5.4)

In other words, multiplying a signal by a linear chirp shears its time-frequency

autocorrelation function along the v dimension (see Figure 3.6).

Combining Eq. 3.5.3 and Eq. 3.5.4, we see that
Agy(r,v) = f Azt v+ m(t — ) Ay, (r — £, — mr) de. (3.5.5)

In words, the time-frequency autocorrelation function of a signal passed through the
filter in Eq. 3.5.1 can be found by first shearing its input time-frequency autocor-
relation function, convolving that with the time-frequency autocorrelation funetion
of hq(t), and then shearing the output time-frequency autocorrelation function in

the opposite direction, all with respect to the v dimension (see Figure 3.7).

When the filter input is an impulse train I(¢; T), the filter output is

Aylr,v) = %ZE[—I]“*JMH—W ?—ka]ﬁ[u—m{r-ﬁ:T}—H—n] (3.5.6)
13 n



§3.5. Linearly varying modulation frequency 80

Tigure 3.8, Multiplving a signal =(f) by ¢~*™ shears its time-frequency autocor-

relation function: Ag(r, v + mr).

In other words, Ay(r, 1) consists of a rectangular grid of shifted r slices of Ay, (1, v)

that have been sheared in the v direction by slope m (see Figure 3.8).

If these terms do not overlap, then we can window Ay(r, 1) about the origin and
recover the single term A, (v,0)8 (1 — mr). We can then take its inverse 2-D fourier

transform to obtain |H (¢, w)|*:

FL[Ap, [, 0)8(r — mr)] = Jf f A, (7,008 (1 — mr) et dr dus
e e

= |Ho(i(w — mt)) [,
and from FEq. 3.2.3,
= |H(t,w)[* (3.5.7)

(see Figure 3.9).

On the other hand, if the terms in Eq. 3.5.7 do overlap somewhat, then a low-pasa
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z(t)

T-F Autocorrelate

=3

Ag(r,v) = [:".”'::{E+f;"ijz‘ft—rl.-’2]l dt

1'\.|x|

Shear

Az(r ) = Ag(r, v + mr)

Convolve
Er =]
A,—,I{r, v) = f Azlt, l-l"_lﬁ.hu{f -t ;..-] dt
-Shear

Ag(r,v) = A(r,v — mr)

Figure 3.7. Obtaining the time-frequency autocorrelation function, Ay(t,w), of a
signal z(t) passed through the filter in Eq. 3.5.1.
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Figure 3.8. Magnitude of time-frequency autecorrelation function of the output
of an FM filter with linearly varying modulation slope (10 Hz/msec) excited by
an impulse train (10 msec period). In this example, the corresponding LTI filter
consists of a single pole of 300 hz bandwidth.

version of |H (t,w)|* can still be recovered, since

F-1 |®(r, ) Ay(r,0)] = F1 [ﬁ-[r, v) E%A;,u (r,0)8(r — m:r]]
1 .
= Z(t, w) o+ |Holi(w — mt))|*
= Zé(t,w) o [H(tw) (3.5.5)
where &(r, ) is the time-frequency window, and ¢(t,w) is its inverse fourier trans-

form. A 2-D) gaussian window is used, and its dimensions are matched to the period

T and the fundamental frequency 2w /T, respectively (see Figure 3.10).
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Figure 3.9. Rectangular window (very nearly) recovers ‘unaliased’ transfer fune-
tion. (a) Windowed time-frequency autocorrelation function in Figure 3.5. (b)
Square magnitude of transfer function, the 2-D inverse fourier transform of “(a)’. In
the ‘aliased’ case, i.e., if the terms in Figure 3.8 were to overlap, a gaussian window

would be more appropriate.
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So far, we have shown that the time-frequency fltering can be used to estimate the

transfer function of two kinds of linear filters — time-invariant and FM filters with
linearly varying modulation frequency. We now show that more general cases will

follow from the time locality of this operation.

3.6. The gquasi-stationary case

We next consider the gquasi-stationary case in which the vocal tract changes slowly
over time. The traditional way to deal with this situation is to extend the stationary
arguments (Section 3.1) by substituting the short-time spectrum for the spectrum
of the entire signal. There are thus two windows involved in this analysis; the

spectrogram window, ws(t), and the autocorrelation function window, w4(r).

The ‘two-dimensional” approach that we have outlined above extends directly with-
out the need of an additional window. In fact, the estimate of | H (¢, w)|* is a positive

representation of the signal energy

so from Eq. 2.6.5 we know that |H (g, w)|* effectively depends only on signal values
within a few oy of #g. ¥ Provided the quasi-stationary signal does not change much

over this interval, the stationary results of Section 3.4 generalize immediately.

These two approaches for quasi-stationary signals, the former using a 1-D windaow,
wg(t), on the signal and a 1-D window, w4(r) on the autocorrelation function, and
the latter using a single 2-D window, ®(r,) on the time-frequency autocorrela-
tion function, are related. In fact, ¢(r,w) = Ay, (r,)ws(r). The latter approach
specifies the time and frequency scale of interest independently with each of the

dimensions of the window @(r, ), This is somewhat cleaner than the former, which

f Provided opog = E.
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selects the time and frequency scales with its two windows, wg(t) and wa(r), but

not independently.
3.7. Smoothly varying modulation frequency

Suppose the modulation frequency ~(t) in Eq. 3.2.2 varies smoothly as a function
of time. In other words, it is approximately linear locally, with 4"(t) small. For
example, a formant with a trajectory that does not have sharp bends In it can be
modelled this way. By comparison, quasi-stationarity requires the trajectory have
shallow slope, i.e., 4'(t) is small.

The locality argument used in the preceding section to show that the estimate of
|H(t,w)[* extends to the quasi-stationary case applies equally to the case here, If
the modulation slope, +/(r), does not change much over an interval of a few oy, then
the results of Section 3.5 on filters with a linearly varying modulation frequency
generalize immediately to the smoothly varying case. This is because |H(t,w))®
depends only loecally on the signal.

3.8. The vocal tract transfer function

Thus far, we have defined the notion of a frequency modulated filter and its time-
varying transfer function, and we have shown how to estimate this transfer function
from the cutput signal, provided the modulation slope varies sufficiently slowly. We
did this because we modelled each formant pole as an FM filter. The vocal tract is

modelled as a weighted sum of formant poles, i.e., its impulse response is

N
ht,a) = 3 [za(a)halt, a) + 25 (a)h_n(t,a)], (3.8.1)

ne=]

where hy(t,a) is the impulse response of each pole, Eq. 3.2.1 (cf. Eq. 3.1.4).
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How can we define the transfer function of such a filter? Extending the stationary

case (Eq. 3.1.1) would suggest

N
H(t,w) =% [2n(t) Ha(t,w) + 25 (t) Hon(t,w)]. (3.8.2)
=]

There are two advantages of this definition. First, it is a simple generalizaton of the
stationary case; it allows us to think of transfer function of the time-varying vocal
tract at a given time ¢ as equivalent to the transfer function of a stationary vocal
tract for the current articulatory configuration. Second, we shall show that it can
be estimated from the speech signal, by the methods we have already presented,
in fact. These two conditions, which we can call abstractly phonetic relevance and
computability, are probably the most important for any representation to satisfy
in the analysis of speech. Unfortunately, there is no simple relation between the
system's eigenvalues or the time-frequency representations of the input and output
signals and this definition of time-varying “transfer function’. These latter notions

just do not generalize well to this time-varying case.

Twao facts show that the transfer function in Eq. 3.8.2 can be estimated by the time-
frequency filtering technique we have described above. The first specifies the effect of
variable gain at the filter output on the transfer function estimate, which is given by
Eq. 3.9.4 in the next section. The second specifies the effect of adding the output
of two filters together on the transfer function estimate. Suppose that h{l,v) =
Ri(t,7) + ha(t,7) and that |Hy(t,w)||Ha(t,w)| = 0. Then [H{t,w)|* = |H(t,w)]* +
\Hz(t,w)|*. In other words, superposition holds provided the transfer functions do
not overlap. This last condition means that we must consider only regions where
the formants are not too close to each other, as we did in the stationary argument

in Section 3.1. [ef. Eq. 3.1.11]. f This relation holds not only for the transfer

Of course, formants often come close together, but we ignore such time-frequency regions for sim-
plicity in this argument. A more thorough treatment would try to deal with these regions also.
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functions involved, but also for the estimates of the transfer funections given by the

time-frequency filtering, since they are positive representations of the signal.

Using these two facts, we have

77 [8(r, ) Ay (r,v)

~ X mehu) e ()P IEa(t )
nEf{—N,.,=1,1,. 5}

1
= Fot,w) e« [H(t, w)[* (3.6.4)
for the filter in Eq. 3.8.1, as desired.

3.9. The transmission channel

It is convenient at this point to consider the effect of the tranemission channel
characteristics on the estimate of the transfer function [H(t,w)[*. The results will
prove useful in the next section. We examine two cases — the transmission channel
as an LTI system with impulse response r(t), and the transmission channel having

variable gain z(t).

There are two facts about the Wigner distribution that we need [Claasen & Meck-
lenbriuker 1980a]. If p(t) = r(t) + y(t), then

Wol(t,w) = f Wi (r,w)Wy(t - r,w) dr, (3.9.1)
and if g(t) = =(t)y(t), then
1 o
Wt w) = 3= f Welt, a)W, (t,w — o) da. (3.9.2)

In other words, in the first case the Wigner distributions are convolved in time, and

in the second case they are convolved in frequency.
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If the spectral shaping of the first transmission channel is gradual, i.e., r(t) is of
short duration, then from Eq. 3.9.1, Wp(t, w) = |R(sw)[*Wy(t,w). If the gain varia-
tions of the second transmission channel are slow, then from Eq. 3.9.2, W,(f, w] =
=(t)[*Wy(t, w). It follows from these equations and Eq. 3.5.8 that

F@(r,v)Ap(r,v)] = %#Uu w) | R(iw)[*[H (2, (3.9.3)
and

771 [B(r, 1) Aqlr )] & Zb(t,) o2 [2(6) P 2,) (3.9.4)

Thus, these simple kinds of transmission channels have simple effects of the transfer
function estimate. The broadband LTI channel essentially shapes the estimate’s

frequency slices and the slowly varying gain channel shapes its time slices,

3.10. The excitation

Up to now, we have assumed the filter excitation has been an impulse train. We

consider more general (and realistic) forms of excitation in this section.

We can create a general periodic excitation from an impulse train by passing it
through a LTI filter whose impulse response r(t) has the excitation's pulse shape.
The output can then be passed through the time-varying filter A(f,a). Provided
the spectral shaping by r(t) is gradual, i.e., r(t) is of short duration, then these two
filtering operations will commute. The assumption is that the time-varying filter
can be considered quasi-stationary over the duration of r(t). This is a reasonable
assumption for the gradual spectral rolloffs produced in speech excitation. Since
these two operations commute under these circumstances, the effect of the filter #(f)

on the transfer function estimate is given by Eq. 3.9.3.

Similarly, slowly varying changes in the amplitude z(f) of the excitation will resull
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in corresponding changes in the amplitude of the filter output, with the effect on
the transfer function estimate given by Eq. 3.9.4. The pitch period need not be
constant, either. Using the locality arguments again, we only require that the pitch

period changes slowly.

Finally, consider the case where the filter is noise-excited. Martin & Flandrin
1985| discuss using time-frequency filtering as a general approach for analyzing
non-stationary random signals. Our model here involves not only non-stationarity,
but also noise that is not additive, and a careful theoretical analysis of this case has
not been attempted yet. We must be content, for now, with the following comment.
We have seen in the previous chapter that these methods can be used to select time
and frequency scales that remove the fine structure introduced by the excitation.

This, of course, remaing true for this case.



Chapter 4.

The Schematic Spectrogram

4.1. Rationale

In the previous chapters we have seen how to obtain a well-behaved representation of
the the speech energy, with a choice of the time and frequency scales of interest. For
the next step we are faced with a methodological decision. If we are willing to make
strong assumptions about the signal early on, then we can use those constraints
in some detection scheme. For example, one can assume the speech apectrum is
composed of a number of poles, and use analysis-by-synthesis or linear predictive

coding methods to fit these poles to the spectrum in a formant analysis.

In this approach, a synthetic multiple pole spectrum is fit to each short-time spec-
trum. Typically, the pole frequencies can be varied, but for tractability the num-
ber of poles and their bandwidths are held fixed. Stevens & House [1955] and
Olive [1971|, for example, computed mean-square difference between log-magnitude

short-time speech spectra and a Munction of the form:

N
1 N
. ,.I;I (fw — sn) (i — 80*) | ko 8= et dwn, (4.1.1)

The poles of the synthetic spectrum that is found te have the least RMS error
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are taken to be the formants. The permissible range for each of the poles is often
restricted fo the typical ranges for the corresponding formants in this method.
Different versions of this method are identified by the search strategy used to find
the best match. Some have used exhaustive search [Stevens & House 1955; Bell,
et al 1961; Matthews, et al 1961], so-called analysis-by-synthesis. Olive[1971) used
hill-climbing techniques. Linear-predictive coding can be viewed as fitting & fixed
number of poles to short-time spectra, using a slightly different spectral distance
measure than RMS distance [Atal 1971; Markel & Gray 1976). The great advantage

of LPC is that it provides a simple closed-form solution to the search for an optimum
fit.

One problem with this approach, as stated, is that it depends on the quasi-stationary
assumption. The short-time spectral contribution of a formant in rapid motion is
poorly modelled as a pole with a bandwidth appropriate for a stationary formant.
Even when the bandwidths are variable, as in the LPC technique, the diffuse spee-
tral contribution of the moving formant can cause incorrect formant matches. In
principle, these methods can be generalized to the time-varying case, Liporace

11975], in fact, has done so for the LPC technique.

This approach, however, suffers from a more general problem. The model used to
generate the synthetic spectra has little notion of the source or transmission channel
characteristic, or of nasalization. These effects can eontribute significantly to the
speech spectrum, “competing™ for poles that were meant to be fit to the formants,
and thus often resulting in pole distributions that have poor correspondence to the
formant distribution. The degree of the fit to a particular point in the spectrum
depends on the entire pole distribution; i.e., on the number of poles used and where

cach pole is positioned in the spectrum. Thus, errors in one part of the spectrum
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are propagated to other parts in the very first stage in the analysis

For example, Figure 4.1 shows pole locations found by LPC analysis using the
autocorrelation method. The order of the analysis was chosen, as is customary,
to allow for two complex poles per 1000 Hz plus 4 poles for matching the averall
spectral balance (e.g., 12 pole analysis for 4KHz fltered speech). A hamming
window was used of 25 msec duration, also a typical choice. In Figure 4.1a, we see
that this analysis can perform poorly in reglons of rapid formant motion. In Figure
4,1b,c, it appears that the addition of a nasal resonance in the neighborhood of
F1 resulted in spurious, unstable behavior in the neighborhood of F3. Decreasing
the duration of the window sometimes gives better performance in non-stationary

situations, but increases the overall instability of the solution.

The problem, in general, with making such strong assumptions early on in the
analysis is that they are seldom universally true. The excitation, the nasal tract,
and the transmission channel (e.g. room acoustics and noise) all conspire to make

formant analysis more difficult than just fitting poles to a spectrum.

The approach we take here is more conserative, influenced by a similar methodology
applied to vision by Marr[1982]. He suggested (1) the principle of least commitment:
make no decisions that may have to be taken back, later in the analysis, and (2)
the principle of explicit naming: produce as rich and useful a symbolic description
of the input signal as possible, but without any early commitment to its physical
origin. This description can be then further organized and analyzed with the goal

of finding ita physical correlates.

Applying these guidelines to speech suggests taking the energy representations as

in Figure 2.15, and producing rich, symbaolic descriptions of the significant features
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Figure 4.1. Examples of problems with ‘pole-fitting’ approach. (a) Poles locations
for utterance /wioi/ of Section 2.9. Note the poer performance in the regions of

rapid F2 motion. (b) Spectrogram of /e/ in the context Jen/. {c) Poles locations
for this nasalized vowel. Note the spurious behavior in the neighborhood of F3.
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there. There are several features (at various scales) that suggest themselves: time
discontinuites (up and down edges) uwseful for finding onsets, offsets and bursts;
time-frequency ridges, easily seen in Figure 2.15, useful for finding the formants
and perhaps channel resonances; and some form of gross spectral balance mea-
sure, also useful for formant and channel analysis. We call this composite symbolic

representation the schematic spectrogram.

4.2. Spectral Peaks

To create this representation, we must come up with computations that identify
these features. This is not as easy as it may seem, since the features clearly visible
in Figure 2.15 may nevertheéless require some non-trivial computations to detect
reliably. We focus on how to find the time-frequency ridges, due primarily to the

formants, in the next sections.

An obvious way to try to find these ridges is to identify peaks in vertical slices of the
time-frequency energy surfaces. This approach has been tried by several authors,
with the main difference between the various instances being how the smoothing
was accomplished. Flanagan [1956] used a filter bank whose output was low-pass
filtered, SchaferdsRabiner used cepstral smoothing |Oppenheim 1969; Oppenheim
& Shafer 1975), while McCandless [1974] used LPC-based smoothing [Atal 1971;
Markel & Gray 1976).

To examine this technique, we will use the smoothed time-frequency surfaces of
Chapters 2 and 3. Since these surfaces are smooth, the spectral peaks can be
found by looking for maxima, i.e., (negative) zero-crossings in 4-F(t,w). Figure
4.2 show these points for the time-frequency energy surface in Figure 2.15. While

the horizontal ridge due to F1 is well captured, the steeply rising F2 is very poorly
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Figure 4.2. Peaks in spectral cross-sections of the time-frequency energy surface
in Figure 2.15, The energy ridge due to F2 is poorly captured by this peak compu-

tation,

captured. This may seem suprising at first, but the reason is simple.

Eq. 3.5.8 models the situation with F2. The formant pole P(w — mt) with time-
frequency slope m is smoothed by the 2-D gaussian ¢(f,w) to give F(t,w). This
will produce a time-frequency ridge in F(#,w) that has a roughly constant width,
independent of slope m, when measured perpendicular to the formant trajectory in
the time-frequency plane. However, the width of the ridge in a vertical slice increases
with increasing slope; evidently in Figure 2.15, F2 was sufficiently broadened that its
spectral peak was completely lost to other effects in the signal, i.e., other formants,

noise, the source and transmission channel characteristic (cf. Figure 2.4).



=

This effect is not an idiosyncrasy of our particular choice of time-frequency energy
representation. It is true, for example, of any representation computed with signal
windows [e.g., any pesitive representation, by Thm. A}, since if the formant moves
enough in frequency over the duration of the window, its spectral representation

will be significantly broadened.

One could rethink the design choices for the time-frequency energy representation,
trying for better spectral resolution at the expense of our chosen criteria. How-
ever, the problem is not there, as a re-examination of Figure 2.15 will show. The
F2 ridge is clearly visible in this representation, it looks no more broadened than
the stationary F1. This is because we see both dimensions of time and frequency
simultaneously, and as the formant ridge broadens in frequency with increasing
slope it narrows in time. Its prominence depends on its width perpendicular to its

trajectory, which does not change much with slope.

Why then did we confine our peak detection methods to vertical slices? It was the
usual quasi-stationary prejudice of thinking of speech analysis in terms of a family
of one-dimensional spectral analyses parameterized by time. Just like the energy
representation problem, this problem is inherently two-dimensional and should be

treated as such.
4.3, Time-frequency ridges — non-directional kernel

The approach we will use for detecting time-frequency ridges will depend on whether
we use an directional or a non-directional kernel for the underlying energy repre-
zentation. If we use a non-directional kernel, the problem is simpler, so we shall
address this first. In this case, we begin with a single time-frequency representation

at a given time and frequency scale, as in Figure 2.15, and the problem reduces to
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finding the ridges in this smooth, two-dimenional surface.

How can we find ridges in a smooth, two-dimensional surface? This becomes a
problem in differential geometry. As such, let us look at the gradient and eurvature
vectors of the surface in the neighborhood of a ridge. Figure 4.3 shows them for the
time-frequency surface in Figure 2.15 in the neighborhood of the initial steep F2.
In particular, the solid vectors are used to depict the direction of the gradient, VF,
i.e., the local direction of steepest ascent. The dotted vectors depict the direction
of greatest downward curvature, gde F, i.e., the local direction in which the surface

curves the most downward from the tangent plane.

A precise definition of gde F is in order. We will use the second derivative as the
measure of curvature — this is sometimes called unnormalized curvature. This is
used instead of normalized curvature (which has the form %% /(1 + (%£)?] in one
dimension) for two reasons. First, it is simpler. Second, unnormalized curvature
scales linearly with a change in the amplitude scaling, normalized curvature does
not. If we use the former, our ridge computation proves invariant under changes in

the amplitude scaling.

Given this, we define gdc F' as the direction vector of the minimum second direc-

tional derivative at a given point. More formally, let

alp ar?
H(t,f) = ( e ﬁf’) (4.3.1)
miEy AT

denote the Hessian matrix for F(t, f). Let £ denote the eigenvector of H corre-

sponding to the lesser eigenvector k. Then gdc F = £/]¢].

Let us now return to Figure 4.3. As one might expect, the gradient points toward the

top the the ridge on each side of it, but must swing through it as one passes over the
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Figure 4.3. Gradient and curvature vectors in the vicinity of the rising F2 in Figure
2.15, The solid vectors depict the gradient direction, and the dotted vectors depict
the direction of greatest downward curvature. (The vector lengths are normalized
te unity.)

top. The direction of greatest downward curvature, however, pointa perpendicular
to the ridge in its entire neighborhood, since a surface will curve downward more
sharply as one moves toward and away from the top of a ridge then if one moves
along it. Note that the two kinds of vectors will become perpendicular precisely on

the top of the ridge.
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We define the ridge top as the locus of points that satisfy
VF -gde F=0 and k<0, (4.3.2)

where & is the minimum second directional derivative. The inner product of these
vectors is zero precisely when they are perpendicular, and & < 0 insures that the

point is a ridge top and not a trough bottom.

We now show this definition is equivalent to moving along lines of curvature on
F(t, f) corresponding to the greatest downward curvature and noting passage through
a peak on that surface. This gives an intuitively simple interpretation of a ridge

top, and shows that gde F' essentially provides the local ridge direction.

Let g : R — R? be a parameterized, differentiable curve with g'(s) = gde F(g(s)). In
other words, g traces out a curve in the time-frequency plane that is always tangent
to the direction of maximum downward curvature. When F o g goes through a
peak, £F|g(s)] = 0. By the chain rule, this occurs precisely where VE - g'(s) =
VF gdeF = 0. If £ < 0, the curve goes through a maximum. + But this is just
our ridge top definition, Eq. 4.3.2, as desired.

The inner product in Eq. 4.3.2 is easy to compute for each point on these time-
frequency surfaces (one only needs the first and second derivatives of the sur-
face, which are simple to compute for such a smooth surface). Since this quan-
tity may vanish in between sample points in a digital implementation, we detect

zero-crossings between adjacent sample points.

Figure 4.4 shows the zero crossings in this quantity for the time-frequency energy

surface in Figure 2.15. Note that the steep formant peaks are now as well traced

t This assumes |g"(s]| is negigible; (F o g)"(s] = g'(s) - Hg'(s) + VF . g"(4), where & equals the first
term.
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Figure 4.4. Two-dimensional ridge computation applied to the time-frequency
energy surface in Figure 2.15. The contours are those points where the gradient
direction and direction of greatest downward curvature are perpendicular. This
computation captures the steep time-frequency ridges, due to rapid formant motion,

as well as the more horizontal ones.

as the stationary ones by this ridge top computation. The only thresholding per-
formed here is the removal of points below the signal-to-noise ratio of the analysis.
Thus, fairly low amplitude structure can appear in addition to the significant time-

frequency ridges. We will examine in Section 4.6 how we to deal with such clutter.

A few pertinent details have not yet been mentioned. First, to perform this eompu-
tation, an aspect ratio has to be chosen between time and frequency, since it is not

invariant under different relative scalings of time and frequency. The choice is nat-
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ural; we use the scaling inherited from the energy representation: let f = {crilllrgu}wr

Thus, we perform our computations in the new co-ordinates, (t, F).

Second, very high spatial frequencies have been removed from the ENETgy Tepresen-
tation already. Very low spatial frequencies also appear in the vertical direction,
due to amplitude variations and formant motion. We find better results when these
are also removed by filtering; we thus use a smoothed and fattened energy surface

for the ridge computation.

4.4. Time-frequency ridges — directional kernel

A second approach to the problem of identifying time-frequency energy ridges uses
directional kernels. Let F(t, f;8) be a family of time-frequency representations of
the class defined by the kernel in Eq. 2.8.8, where § gives the preferred direction of
the transform (i.e., the kernel orientation), and the other free parameters, oy and
@y, are fixed. We would expect in the vicinity of a time-frequency ridge and for fixed
t and f, F(t, f;8) would be maximum when # equalled the local ridge direction #;;
in other words, when the transform’s orientation is tuned to the local direction of
the energy ridge. We would also expect that F[t(s), f(s), 8] would be maximum
at the ridge top, where (t(s), f(s)) is a curve that crosses the ridge perpendicular
to its trajectory. The first case corresponds to a maximum under rotation of the
kernel; the second case corresponds to a maximum under translation of the kernel

along the minor axis of its concentration ellipse (see Figure 4.5).

The locus of points where these two maxima coincide defines a curve in the time-
frequency plane, which we can take as our ridge top definition. That is, we seek the
points that satisfy both

d

— E = 4.1
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Figure 4.5. Two conditions for ridge detection: (a) local maximum under kernel

rotation, and [b) local maximum under kernel translation along minor axis.

and

2 F(t,:6) = VF - (sin 0, ~cos 0)

ar aF
= ﬁsmﬁ - ﬁemﬂ
=0, (4.4.10)

This computation can be implemented by calculating %{, %{r, and %{- on a sul-

ficiently fine grid of samples of (t, f,#), and then finding the simultaneous zero-
crossings in the lefthand sides of Eq. 4.4.1a and Eq. 4.4.1b. (The signs of the

zero-crossings have to be examined to insure that we have maxima and not min-
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ima.)

We yet have to specily the scale parameters o and o, Alternatively, we can
specify o3 and r = o1/02. We can interpret o3 as the size parameter and r as an
eccentricity parameter, since the greater the value of r, the greater the eccentricity

of the concentration ellipse for the kernel (when holding oy constant).

The choice of r depends on a tradeoff. Clearly, as r increases, time-frequency locality
is sacrificed. In particular, bends in the time-frequency trajectory of an energy ridge
are poorly resolved with larger values of r.

On the other hand, larger values of r have an advantage in separating intersecting
energy ridges, since the larger values of r give better selectivity to a particular

orientation, We can quantify this selectivity as follows.

Consider the response of the transform at a frequency fj to a complex exponential
of frequency fo. The value is independent of f; and equals the value of Fy(0,0;4,r)
when z(t) = 1 (ie, fo = 0). We can therefore define a tuning curve rig,r) =
F3(0,0;8,r) that indicates the selectivity of the transform kernel to diferent values

of the orientation and eccentricity parameters.

It is straight-forward to show that

1
I'I:ﬂ, ‘F} (5 4 mﬁ. {4.4.-‘1}

In Figure 4.6 this tuning curve is plotted as a funetion of # for several values of r.

Even greater orientation selectivity can be obtained if we modify this ridge top
computation. The idea is simple; instead of maximizing the energy, F(t, f18), for

various § in Eq. 4.4.1a, we can maximize a more directionally selective measure, such
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Figure 4.8. Tuning curves showing directional selectivity of gaussian transform

as amount of curvature, In particular, we minimize the second directional deriva-
tive perpendicular to the kernel orientation. But this is equivalent to maximizing
the energy of the transform that uses the modified kernel ¢(t, f) = — F=d(t, f);
in other words we use a modified Gaussian kernel in the computation specified by
Eqs. 4.4.1ab. This new kernel has a central ‘excitatory’ region with “inhibitory’

flanks that give greater orientation selectivity See Figure 4.7.
The tuning curve for this modified kernel has the form

T'(0,r) o cos®8 1°(8,r). (4.4.5)
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Figure 4.7. Transform kernel é{t, fl= —f;,'ir{:, f), where $(t, ) iz a 2-D gaussian.
This new kernel has a central ‘excitatory’ region with ‘inhibitory' fanks that give

greater orientation selectivity.

In Figure 4.8 this tuning curve is plotted as a funetion of # for several values of r,

These indeed show greater selectivity than the corresponding plots in Figure 4.6.

It turns out that this computation is a generalization of the method in Section 4.3,
In particular, if r = 1, then the two computations are identical; i.e., those points at
which the maximum dewnward curvature is perpendicular to the gradient direction
are identical to those points where the minimum second derivative is parallel to a

direction of zero slope.

We therefore see that this section is a generalization of previous section. When
r = 1, optimal localization in time-frequency results. As r is increased, some of this
locality is sacrificed for improved orientation selectivity. Thus, a non-directional

kernel will give better results when there Is only one ridge in the region, while an
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Figure 4.8. Tuning curves showing directional selectivity of transform kernels of
the form in Figure 4.6.

directional kernel can give better results when two ridges crosa,

Let us examine these results on our example utterance from Section 2.9. For voiced
speech, we choose oy to match the pitch period, and we let v = 1. Then the
pitch will be suppressed in each of the F(t,w;#8), using the results of Chapter 3.
In Figure 4.9, we show the ridge top analysis on our utterance using the kernel of
Figure 4.7 with r = 2 and r = 3. The case r = 1 was shown in Figure 4.4. We see
that a less directional kernel (a smaller value of r) gives better performance in the

neighborhood of isclated formants, while a more directional kernel (& larger value of
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r) gives better performance in regions where twe formants ‘cross’ (see Kuhn [1975]

for a discussion on the ‘crossing’ of formants in natural speech.).

4.5. Signal detection and ridge identification

The preceding sections have been based on heuristic arguments. Can ridge identi-
ficaton be formulated as a problem in optimal signal detection? We examine this
question in this section. Let us begin by making some particularly simple assump-
tions for ease of argument. We assume that the received 2-I) signal representation
F(t,w) consists of a 2-D deterministic function S(t,w; (t)), which depends on the
unknown continuous function ~(t), plus additive white 2-D Gaussian noise. The
problem is to estimate +(t), which models the path of an energy concentration in
time-frequency. We further simplify the problem by assuming that S(t,w), which

models the energy ridge, has the form

St wiqlt)) = Gt,w) s o/ 1+ [p'(t)|28(w — (). (4.5.1)

In other words, it is a 2-D smoothed (i.e., broadened) curve (the square root factor

normalizes the impulse for a unit step in arc length).

In a straight-forward 2-D generalization of the derivation of a matched filter [see

Van Trees 1968|, the maximum log likelilood estimate of +4(t) iz proportional to
Aly(f)] = 2 f f F(t, ) S(t, wi2(1)) dt doo — f f S(t,wi1(0)F dedw.  (4.5.2)
Substituting Eq. 4.5.1 into Eq. 4.5.2 and changing the order of integration gives

Ab) =2 [ Ve wOpRe ) & - [ 18w dedo, (453

where I = Fe+@. The first term is essentially a 2-D matched filter in which

the convolution F#% G is matched to the signal shape. The second term takes
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Figure 4.9. Ridge top analysis of /wioi/ using the directional kernel of Figure 4.7,
(a) r = 2. (b} r = 3. The more directional kernels give better performance where

ridges intersect, but worse peformance at sharp bends.
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into account the energy of the deterministic signal. The path ~(t) that maximizes

Eq. 4.5.3 is the maximum likelihood estimate.

Solving Eq. 4.5.3 for the best path is difficult. In particular, the second term is hard
to evaluate (although it is proportional to the arc length of ~(t) when it is sufficiently
smooth). However, an analysis-by-synthesis procedure could, in principle, be used
to compute it numerically. Since we have assumed ~(t) is continuous, this becomes
& global optimization over ¢ and w. This is rather like one pole analysis-by-synthesis

with a continuity condition impesed on the pole trajectory.

There is a fundamental problem with this approach, similar to the problem with
pole-fitting approach discussed in Section 4.1. Because of the non-locality of the
optimization, errors at one point can propagate throughout the solution path at this
very first stage of the analysis. If the signal were well modelled by Eq. 4.5.3 and the
noise well modelled by additive, white Gaussian noise, then this would nevertheless
be the best we could do. Realistically, this is not the case. In particular, the “noise”
could include a second ridge; one that we shouldn't treat as noise, but as something
to detect also. The detection scheme, as formulated, is too global. Instead, we need

to make it more local in the time-frequency plane.

Consider a small element As of arc length of the curve ~(t), which we can rotate
and translate in the £ —w plane. If we hold its position constant, then for sufficiently
small As, Eq. 4.5.3 will be maximized for that element if it is oriented perpendicular
to the direction of greatest downward curvature. If the element's orientation is held
constant, Eq. 4.5.3 will be maximized for that element if one translates it in the
direction of the gradient. Together these imply that elements aligned on the ridge

tops defined by Eq. 4.3.2 will locally maximize Eq. 4.5.3, in the sense that further
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maximization requires moving along the ridge. These considerations show that

the ridge operator of Section 4.3 provides a kind of loeal solution to the detection

problem formulated here.

4.6. Continuity and grouping

We have seen that the ridge detection methods of the previous sections produce
piecewise continuous contours. This follows formally from the Implicit Function
Theorem; in particular, the zeroes of a continuously differentiable function f: R* —
R must form continuous contours in B*, This continuity is a desirable property
of the description since it reflects a constraint on the underlying acoustic events
that is nearly always valid — loosely, that their spectral content varies |piecewise)
continuously as a function of time. For example, formant motion is so constrained,

We explore several ramifications of continuity in this section.

First, continuity helps to solve a practical problem in deseriptions of this kind. The
ridge description, as it stands, can be cluttered with low amplitude peaks unrelated
to significant phonetic events, If we try to discard this unwanted structure by setting
a threshold, we would have to keep it fairly low, otherwise we could throw out the
baby with the bath water, breaking important contours into fragments. Continuity
lets us use thresholding with hysteresis, which is often used in such cases |[cf. Canny
1983]. The idea is to set two thresholds. Points below the lower threshold are first
discarded. Points that are above the higher threshold are retained, as are anv pointa
between the two thresholds, provided they lie on a contour that crosses the higher
threshold. The result is that insignificant points are discarded without fragmenting
more important contours. The technigque can be quite effective; Figure 4.10 showsa

an example,



§4.6. Continuity and grouping 111

Rl

asee

(b)

T illll| T 1.r‘|' T |i T |||||-i-|-|--|--
L] L I S RO " e B E R E T

Figure 4.10. Hysteresis thresholding applied to utterance /wioi/ of Section 2.6.
(a) Two-dimensional ridge tops. Amplitude of the ridge top is depicted by the
width of the contour. (b) Hysteresis thresholding of ‘(2)°. This removes isolated,
lew amplitude points without fragmenting the more significant contours.



§4.6. Continuity and grouping 112

One may argue that any kind of thresholding is a mistake, since unrecoverable errors

can be made. Instead, one should simply carry along the relative amplitudes and
strengths of the various points in the descriptions, and subsequent processing can
take these weights into account. This is, in principle, safer, but pratically it is much
harder to think about processing a cluttered, weighted description than one that
has been first cleaned up. So that the problem does not become too unwieldy at

this stage, it is best for now to proceed with a cleaned up description.

Continuity plays an important rele in another problem — labelling. Our goal is
to eventually be able to label the points in the description with their acoustic
correlates, e.g., formant identification. This problem would be greatly simplified
if a whole contour could receive a single label. For example, suppose points along
the two contours in Figure 4.11 are competing for labelling as F2. If the points are
sampled every 5 msec, then the points in a 50 msee stretch ean be labelled in g10
different ways. If each of the contours, however, is known to have a single acoustic

correlate, then there are only two possible labelings.

This is a simple point, but it is almost universally overlooked. The usual approach
has been to label individual points in a spectrum, and then either ignore continuity
altogether, or use it to narrow the range of candidate labellings after the fact. The
latter approach leads to a combinatorial explosion of possible labellings. Algorithms
such as dynamic programming can be used to make this approach more manageable,
but then the effect of even a single error can be catastrophic. A more direct approach
is to first identify stretches of contour that will receive a unique label, with each

deemed to have a single acoustic correlate,

How can we identify such *atomic” contours? Ideally, our initial analysis would only
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Figure 4.11. Two contours competing for labelling as F2, (a) One of 217 possible
labellings of 50 msec stretch when a new label can be assigned every 5 msec. (b)
One of iwo labellings when whole contours receive a single label,

return such contours. Acoustic events would never he merged into a single contour,
but would always be resolved as separate. I do not believe such a “perfect” analysis
is possible. It is evidently pessible to fool our auditory system on this account.
Consider the spectrum of an /i/ in Figure 4.12a. By low pass filtering, the spectrum
can be tilted to appear as in Figure 4.12b. This will be perceived as an /u/; the F1
of the /i/ is taken as both F1 and F2. Conversely, an Ju/ can be high-pass filtered
to sound like an i/, with F1+F2 being taken as F1.

Listeners seldom make these kind of mistakes with more natural utterances altered
by this kind of filtering. This is because they hear them in context, with continuity
being an important contextual cue. For example, consider Figure 4.13, which shows
the spectrogram of /wi/. The /i/ in Figure 4.12 was taken from this utterance. If

the entire /wi/ is low-pass filtered in the manner of Figure 4.12, it is perceived as
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Figure 4.12. Turning an /i/ into an fu/. (a) Short-time spectrum of an /i/.
(b) Low-pass filiered /i/. This will be perceived as an fu/. In other words, F1 is
perceived as F1+F2.

fwif, and not as /wu/. Similarly, a high-pass filtered /yu/ will not sound like it

ends in [i/.

There are two points to be learned from these examples. The first is that it is prob-
ably not possible to always separate distinct acoustic correlates of nearby energy
concentrations locally, Le., they can be merged if heard in isolation. The second

point is that more global conatrainta, such as continuity, can resolve these mergers.
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Figure 4.13. Spectrogram of /wi/. When this utterance is low-pass filtered as
in Figure 4.12, it is still perceived as /wi/. Continuity of the formants allows the

correct perception.

The ridge description will represent sufficiently close formants with a sin gle ridge, as
in Figure 4.14. When the formants merge, one of the contours terminates, and the
other continues on. When the formants split, a new contour appears, while the old
contour continues on. Evidently, some contours can change their label along their
length. For example, the contour in Figure 4.14 that beging as F14F2 becomes

splits into F1 and F2. Obviously, we can not label whole contours with a zsingle
label always.

We, can, however, label portions of contours between splits and mergers with a

single label. Said differently, if we identify the locations of splits and mergers,
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Figure 4.14. Merged formants. (a) Wideband spectrogram of ufterance “why
am”. (b) Ridge tops. When F1 and F2 approximate, their ridges merge.

we can break the contours into a set of “atomic™ contours, in the sense that each
contour will receive a single labelling. Since mergers are sparsely distributed in

time-frequency, we will still have a small, manageable set of contours.
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The idea, then, is to augment our representation to include the locations of aplita,
mergers, and crossings of contours. Identifying these junctions will serve twe pur-
poses, First, contour segments away from them can receive single labels along their
length. Second, the junction itself can embody continuity constraints, since the
junctions must be consistently labelled. For example, if two contours enter a junc-
tion and one leaves it , we may label the exiting contour with the union of the labels

of the entering contours.

This is somewhat reminiscent of the junction labelling problem in the blocks warld.
Perhaps an efficient algorithm to propagate these constraints can be found for for-
mant labelling as Waltz [1975] found for the blocks world. The problem here is
greatly complicated by the fact that there can be many kinds of errors, e.g., a for-
mant can be “missing”. Further, other factors such as spectral balance must be
taken into account. We will not attempt any labelling here. Instead, we provide a

description of the signal that is a reasonable step toward that goal.

Provided the ridge description is not too cluttered, which is the rule once low
amplitude contours have been removed, the identification of contour junctions is
relatively easy. In fact, using the proximity of contour endpoints to other contours
is a simple method. Two nearby endpoints define a two point junction. Three
nearby endpoints or a single endpoint near the body of another contour define a
three point junction and so on. Figure 4.15a shows junctions identified by such
proximity rules. Contours that both enter and leave a junction are broken there,
while two point junctions can be bridged provided that simple *good continuation”
rules are satisfied. The result is a set of contours that are likely to have unique
labels of their acoustic correlates along their length. Figure 4.15b shows points

where contours are broken based on these junctions.
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Figure 4.15. Contour junctions located. (a] Ridge tops of /wioi/ with junctions
identified by simple proximity rules. {b) Dots show points where contours are broken

based on these junctions,
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4.7. A perspective

We have shown that the above analysis in some circumstances can produce a more
reasonable schematization of the speech signal than, for example, LPC analysis. We
will give many more examples of this analysis in the next chapter, Does this mean
that the ridge analysis is uniformly better than LPC analysis in speech applications?
The answer is no. The simplicity and speed of the LPC algorithms make them
atfractive for many applications. Further, such pole-fitting models do work well
in many cases., Since they embody additional constraints compared to the raw
ridge analysis, they will usually not make the ‘mistake’ of merging nearby formants
together. Further, insignificant peaks usually do not affect the pole placements.
This means that in clean, unnasalized, quasi-stationary male speach LPC analysis
can be quite good. In such cases, the ridge analysis may nevertheless merge nearby
formants together and may include additional ridges, making that analysis appear
inferior to the LPC analysis.

This probably means that the ridge analysis will offer no improvement in simple
speech engineering applications to the widespread LPC methods. Frankly, the power
and importance of the ideas presented here comes only when one asks the question:
What metheds will be appropriate for speech analysis in general, natural settings?
Under such circumstances, the transmission channel will often be imperfect and
varying (e.g., walking down a hallway with open doors), there can be environmental
sounds and nasalization present, and there can be significant non-stationarity. In
these cases, the very constraints (i.e., all-pole, quasi-stationary model with a fixed
number of poles) that make the LPC technique work so well for “clean’® speech can
cause it to fail in these new circumstances, producing bizarre pole positionings. On
the other hand, the ridge analysis, a more conservative technique that makes no such
assumptions, will still produce a reasonable schematization of the time-frequency
surface. A simple demonstration of these ideas is given in Section 5.6 below. The
key idea is that strong commitments to the origin of the signal are not made at the
level of the schematic spectrogram. It is only after the ridge tops, and undoubtedly
other features such as time-frequency edges, temporal discontinuities, and spectral
balance information have been made explicit will articulatory constraints and such
be brought te bear in this more general, least comittment approach.



Chapter 5.
A Catalog of Examples

In this chapter we will apply the methods of the previous chapters to a variety of
examples. This will help us evaluate the strong points as well as the shortcomings
of the ideas presented. The ultimate test can come only when these ideas are
applied in a recognition scheme. This, however, has not been realized because of
the many different components that need to be added, as indicated earlier. At this
point, evaluation must be based on any intuitive appeal of the ideas, and on the
performance on various examples, Given that the goal is to essentially *schematize’
the information seen in (the sonorant regions of) a spectrogram, an obvious test
is to see how reasonable the computed description looks when compared to the
spectrogram. Given that previous approaches perform poorly in specific contexta

(gee Figure 4.1), clear improvements will be apparent.

This situation is similar to edge detection in image analysis, The typical way to
evaluate an edge finder is to look at its output compared to the image and ask how
good it looks. Perhaps a better test would be to ask how useful an edge finder
output is, say, when applied to some scheme for finding surface discontinuities or
sterec depth. But such a test requires confidence in the validity of the subsequent

processing, since a bad application of a good idea can perform more poorly than a
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good application of a bad idea.

In Section 5.1, we will look at some general example sentences. In the following
sections, we examine several traditional problem categories in speech analysis: in
Section 5.2, we look at semivowels and glides; Section 5.3 nasalized vowels; in
Section 5.4, consonant-vowel transitions; in Section 5.5 female speech. In Section
5.6, we look at some examples of the effects of different transmission channels on

the analysis.
5.1 Some general examples

The first four figures of this chapter show the sentences, “May we all learn a yellow
lion roar.”, “Are we winning yet?™, “We were away a year ago.”, and *Why am
I eager? spoken by adult males. These sentences were chosen because of their
high proportion of sonorant regions and their variety of formant motion. We show
wideband spectrograms and the ‘ridge’ analysis of the previous chapter for each
of these utterances. First notice the generally good agreement between the time-
frequency ridges seen in the spectrograms and those computed by the ridge analysis;
the latter deseription is a reasonable partial ‘sketch’ of the former. This is true even
in the steeper formant regions, such as the various /w/’s and /178 in these examples

and at the velar pinch in Figure 5.4 at .75 seconds.

It is important to emphasize that these are not formant tracks, but ridge locations
in the time-frequency surface. For example, when two formants come close encugh
to merge, as in the /wi/ in Figure 5.1 (between .2 and .3 seconds and about 2100
Hz) or a portion of the /r/ in Figure 5.4 (between .85 and .9 seconds and 2000 Hz),
only & single ridge is found. (The analysis notes by solid dots the locations that

contours should be broken because of possible mergers (cf. Figure 4.15), which can



Ch. 5. A Catalog of Examples 122

ald in subsequent labelling of the contours.)

There are also ridges present that are not due to the oral formants. For example, the
ridge in Figure 5.4 between .15 sec and .55 sec and at about 200 Hz is attributed to
nasalization from the /m/. Viewed as a formant tracker this is a failure, but viewed
a3 a ridge detector, this is a success. The nasal resonance is strongly present in the
signal in this region and is correctly identified by the analysis. It is properly left
to subsequent processing to sort out which ridges are due to formanta and which
are due to other sources. This ia quite different from the LPC analysis, where the
presence of nasalization often causes sporadic and bizarre placement of the pole
locations (Figure 4.1). In that case, subsequent processing would have difficulty

sorting out the situation.

Finally, there are various missing formants. This particularly true for F3 when F2
is quite low as in the /w/in Figure 5.1. In these circumstances, F3 is driven down
by the tail of F2, and is not really visible in the spectrograms either. We know
where F3 is by context, but its time-frequency ridge has essentially been driven into

the noise.
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5.2. Semi-vowels and glides

In this section we show examples of /w/%s, /i, /r/"s and /I/"5. The /w/%s and
/i/'s are syllable initial in the context of /wi/ and fju/ in Figure 5.5 and Figure
5.6, respectively. A range of speech rates from slow to rapid is shown that gives a
range of F2 formant slopes from gradual to steep. Note the ridge analysis is fairly

insensitive to this parameter,

The /1/'s in Figure 5.7 are syllable initial, with one example for each of the cardinal
vowels, /if, fae/, /a/, and fu/. The /r/'s in Figure 5.8 are in the context V/r/V,
where V ranges over /fi/, fae/, /a/, and fu/. These too show some rapid formant

motion that is well captured.

5.3. Wasalized vowels

Figure 5.9 shows syllable initial nasalized vewels in the context V/n/. The vowels
range over /i/, fae/, fa/, and /u/. The main feature of this analysis is that addi-
tional ridges are introduced due to the nasal ‘formants’. As mentioned earlier, this
contrasts with the pele-fitting methods, which produce erratic results in nasalized

vowels I:Fig'ure 4.1 } .
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5.4. Consonant-vowel transitions

In this section we show examples of consonant-vowel transitions. Figure 5.10
through Figure 5.12 show syllable initial consontant-vewel transitions. The con-
sonants range over the voiced stops /b/, /d/, and /g/ and the vowels range over
Jid, faef, faf, and fu/. The analysis is shown only after the consonantal burst since
the ridge analysis i inappropriate and peculiar in the burst region. The bursts wera
located by hand in these examples. Figure 5,13 shows more rapid formant motion

with the examples /bi/ in the context /tubi/ and /dw/in the context /tidw/.

The ridge analysis brings out formant motions consistent with the locus theory of
consonant perception. This theory states that one of the cues to the perception
of consonants is the trajectories of the formants at the transitions iLiberma,n, et
al 1954|. For example, in many vowel contexts for adult males, F2 will have a
trajectory out the consonant that has a locus near about 1200 Hz for labials (e.g.,
/b)), about 1800 Hz for alveolars (e.g., /d/), and above 2000 Hz for velars (e.g.,
/g/). This cue is used in spectrogram reading, but has been hard to exploit in
automatic speech analysis, because of unreliable formant detection at the often

highly non-stationary consonant-vowel transitions.

The analysis here is better behaved, capturing rapid formant ridges as well as
shallow ones at the transitions. As noted earlier, however, when the formants
approximate a single ridge is produced. The F3 ridge is also sometimes lost near
the transition for this speaker; in these cases, F3 appears somewhat diffuse and
hard to locate in the spectrograms alao. These issues, as well as how to locate the

burst, will present difficulties for automatic consonant detection.
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5.5. Female speech

Higher pitched speech, such as female and children’s speech, present the problem
that the harmonics of the (voiced) excitation are fairly wid ely spaced, viz. a few hun-
dred Hertz or more. This means that in a quasi-stationary analysis, the spectrum is
less frequently sampled than for lower pitched speech, resulting in poorer estimates
of the vocal tract transfer function (ef. Figure 3.2). Viewed two-dimensionally, the
situation is more symmetric. For example, as the frequency of an impulse train
is increased, the frequency spacing of the impulses in its time-frequency autocor-
relation function (Figure 3.3) will increase, but their time spacing will decrease.
Thus one will have poorer frequency ‘sampling’ of a time-varying transfer function

excited by this impulse train, but better time ‘sampling’.

The analysis presented in Chapter 3 exploits this fact by matching the time-frequency
window to the piteh. Higher pitched speech requires a window at a larger frequency
scale but at a lower time scale than lower pitched speech. The remaining analysis
proceeds as before. Figure 5.14 gives an example with rapid F2 motion. Figure
5.14a shows a wideband spectrogram of the nonsense utterance Juiuiui/ from an
adult female, Figure 5.14b shows the ridge analysis using a time-frequency window

matched to a 200 Hz pitch.

Note that the F1 ridge and the steep F2 ridge are well resolved. Where F2 and F3
approximate, however, only a single ridge is found. Such mergers in the analysis
are more common in higher pitched speech due to the greater frequency smoothing
required. However, since less time smoothing is required than for lower pitched

speech, transient effects should, in principle, be better resolved.
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5.6 Transmission channel effects

Finally, we consider the effects of imperfect transmission channels on the analysis.
In particular, we will consider the effects of passing the apeech signal through some
simple LTI filters. While the examples we give are ldealized, natural environments
can give rise to many kinds of transmission channel characteristics. In general,
human listeners can tolerate a wide variety of alterations to a speech signal and
have it remain intelligible [see Licklider & Miller 1951 for a good review|. That is
not to say one is unaware of the modification; e.g., &8 pronounced room resonance

adds a *hollow’ quality to the speech, but it does not destroy its intelligibility.

Figure 5.15 shows the frequency response of the transmission channels we consider.
Figure 5.15a consists of a single pole at 1500 He of 750 Hz bandwidth, Figure
5.15b consists of a single pole at 1500 Hz of 150 Hz bandwidth, and Figure 5.15¢
consists of a pole-gero pair — both are at 1500 Hz, the pole has 1000 Hz bandwidth
while the zero has 150 Hz bandwidth. Thus, the first channel consists of a fairly
broadband, but non-uniform channel; the second channel emphasizes the signal
energy in the neighborhood of 1500 Hz; and the third channel removes signal energy
in the neighborhood of 1500,

We show the effects of these transmission channels on the analysis of the utterance
[wici/ from Section 2.9. Figure 5.16a shows the wideband spectrogram of this ut-
terance passed through the first channel, and Figure 5.18b shows the corresponding
ridge analysis. The effect of this broadband channel is minor when compared to
the original analysis in Figure 4.10. Figure 5.17a shows the wideband spectrogram
of the utterance passed through the second channel, and Figure 5.17bh shows the

corresponding ridge analysis. The effect of this narrowband channel is to add an
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additional ridge at 1500 Hz. Finally, Figure 5.18a shows the wideband spectrogram

of the utterance passed through the third channel, and Figure 5.18b shows the cor-
responding ridge analysis. The effect of this narrowband ‘notch’ is to put an energy
trough in the time-frequency surface, with the F2 ridge being partially cancelled
in the vicinity of this notch. Compare this analysis with the LPC analysis of this
filtered utterance shown in Figure 5.18¢ (using the same analysis parameters as in
Figure 4.1). We see there that the notch filter plays havoc with the LPC analysis,
since the zero lies outside the scope of its all-pole model. This is analogous to the

effects of nasalization on LPC analysis,
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