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Abstract

I have designed and implemented a system for the multilevel verification of
synchronous MOS VLSI circuits. The system, called Silica Pithecus, accepts the
schematic of an MOS circuit and a specification of the circuit’s intended digital
behavior. Silica Pithecus determines if the circuit meets its specification. If the
circuit fails to meet its specification Silica Pithecus returns to the designer the reason
for the failure. Unlike earlier verifiers which modelled primitives (e.g., transistors)
as unidirectional digital devices, Silica Pithecus models primitives more realistically.

- Transistors are modelled as bidirectional devices of varying resistances, and nodes
are modelled as capacitors. Silica Pithecus operates hierarchically, interactively,
and incrementally.

Major contributions of this research include a formal understanding of the rela-
tionship between different behavioral descriptions (e.g., signal, boolean, and arith-
metic descriptions) of the same device, and a formalization of the relationship be-
tween the structure, behavior, and context of a device. Given these formal struc-
tures, my methods find sufficient conditions on the inputs of circuits which guar-
antee the correct operation of the circuit in the desired descriptive domain. These
methods are algorithmic and complete. They also handle complex phenomena such
as races and charge sharing. Informal notions such as races and hazards are shown
to be derivable from the correctness conditions used by my methods.

Thesis Supervisor: Dr. Gerald Jay Sussman
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

This research is both about verification of synchronous MOS digital circuits, and
about a particular program, called Silica Pithecus, which is an implementation of
some of the ideas in this thesis. Verification of digital circuits is a new, not yet
well understood field. Its development is critical to building larger provably correct
circuits. The field is new enough that what verification is, what it means to verify
a digital circuit, and how to verify a digital circuit are all largely unanswered (and
sometimes unasked) questions. The goal of this research is to answer these ques-
tions. Among the issues that must be addressed are: describing digital systems,
choosing appropriate electrical models, understanding how verification affects the
design process, relating simulation and verification, understanding the role of ab-
- straction, and relating structure, context, and function.

This dissertation concerns multslevel verification and signal behavior generation.
Circuit behavior can be described at different levels of abstraction ranging from the
analog level to the functional level (Figure 1.1). Multilevel verification proves that
two different levels of behavioral description describe the same behavior. The higher
(1.e., more abstract) level description of a design’s behavior is called its abstract
behavior, the lower level description of a design’s behavior is called its concrete
behavior. The proof has two parts: abstracting the concrete behavior to the same
domain as the abstract behavior, and then proving the abstracted behavior and the
abstract behavioral description are equivalent.

The signal descriptive level and the digital descriptive level are the two descrip-
tive levels we will primarily investigate. A signal is a time-varying voltage. The
primitives operators of the signal level are transistors. A digital value is either 1,
0, or float. The primitive digital operators are AND, OR, NOT, and join. The digital
descriptive level is time free and functional. It has no time delays or switching
elements. This allows a digital behavior to be specified as simple combinations of
primitives.!

!We will use the term “hardware digital level” to refer to a digital description which incorporates

17
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ﬁﬁT FHI :
B Li 2 ¢
2 M C = ACRB
8

Signal Level Boolean Level Functional Levei

A

Figure 1.1: An example of multiple levels of behavioral description. Each descriptive
level is an abstraction of the level to its left. There are many levels of abstraction
besides the three shown here.

Property Signal Level [ Digital Level

Data Values Signals 1, 0, float
Time Modelled? | Yes No
Types of Primitives [ Relational Functional

Table 1.1: The signal level versus the digital level.

Digital and signal behavior differ in three ways (Table 1.1). First, digital values
are incomparable to signal values. Second, circuit primitives are relational (s.e.,
bidirectional) whereas digital devices are functional (i.e., unidirectional). Third,
time is important in circuits, the relative order in which events occur affects the
final state of the circuit. Digital devices are time-free, they compute their results
instantaneously.

The second focus of this dissertation is the automatic generation of a circuit’s
signal behavior from its structure (schematic). Signal behavior is the behavior ofa
circuit when viewed as a map from input signals to output signals. A signal isa time-
varying voltage — intuitively, it what we observe on an oscilloscope when we probe
a circuit. Generating the signal behavior of large circuits from their structure is
one of the contributions of this research. The key is focusing the generation method
on only those parts of a circuit’s full behavior that account for the circuit’s digital
behavior.

Verifying circuits is difficult for many reasons (Table 1.2). First, circuits are
huge. Chips of up to half a million transistors are becoming common. Brute force or
linear techniques simply fail. Second, the signal behavior of a circuit must be derived

time and switching devices.
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e Circuits are huge, up to half a million transistors.

* We must derive a circuit’s behavior from its structure.
* We must employ accurate circuit models.

e A verifier must be fast.

Ad hoc systems are not enough to prove correctness.

Table 1.2: Five reasons why verification is a hard problem.

Exploiting the hierarchy and structure of schematics.

Using intentional analysis.

Employing circuit models accurate enough to model the most common bugs.

Having a formal statement of circuit correctness.

Table 1.3: Four techniques for attacking the complexity of verification.

from the circuit’s structure (schematic). Unfortunately, determining a circuit’s full
behavior is very hard and expensive. It is difficult to do either analytically or
empirically. Third, accurate circuit models must be employed. Circuit models which
are too simple will fail to catch bugs. On the other hand, circuit models which are
too complex may make verification impossible. Fourth, an verifier must be efficient
and fast to be usable. A designer needs quick response from his design system.
Fifth, we want to prove our circuits are correct; merely finding and reporting bugs
does not a verifier make.

I have designed and implemented a system, called Silica Pithecus, for the multi-
level verification of circuits. It accepts the schematic of a circuit and a specification
of the circuit’s intended digital behavior and determines whether the circuit meets
it specification. Silica Pithecus uses four techniques to solve the above problems
(Table 1.3): it exploits the hierarchy of a design, it uses intentional analysss, it
employs circuit models accurate enough to catch the most common bugs, and it has
a formal statement of circuit correctness. These are discussed below, in turn.

The hierarchy that is used to create a complex circuit is exploited during anal-
ysis. Verification operates from the leaf nodes of a design to the root of the design.
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All subcircuits of a circuit are verified before the circuit itself is verified. Two ben-
efits accrue from this strategy. First, a circuit is verified only once — the first time
it is used — and assuming it’s always used for the same purpose, it need never be
verified again. Second, verification can be performed incrementally as a design is
created. The amount of work in verifying the composition of two previously verified
subcircuits is proportional to the amount of new information created by the compo-
sition. The amount of work is largely unrelated to the complexity of the subcircuits
themselves. In terms of a usable, interactive system, finding errors quickly and
incrementally is extremely important. Detecting bugs as they occur, rather than
waiting until a design is complete, causes reevaluation of designs at an early stage.
It is not inconceivable that a design flaw in a small segment of a design invalidates
the rest of the design. Detecting the flaw only after the design is completed is
wasteful.

This approach keeps the design process interactive and incremental. Silica Pithe-
cus is interactive because it can verify on demand any portion of the circuit, and
it is incremental because it can analyze and verify parts of the circuit as they are
entered. A designer is able to analyze and verify designs as they are created, rather
than wait until the entire design (chip) is finished.

Intentional analysis is proving only the important properties of a circuit hold.
The entire behavior of a circuit need not be known to verify that the circuit meets
its digital specification. For example, it usually doesn’t matter whether a signal’s
voltage at some time is 4.5 or 4.6 volts, All that is important is that it is above

_some threshold. Similarly, all that might matter about a signal could be its value
at steady state. In this case it is unnecessary to calculate its intermediate values.
By focusing on the relevant parts of a circuit’s behavior and ignoring the irrelevant
parts, predicting a circuit’s behavior becomes a tenable proposition.

Silica Pithecus’s component models are accurate enough to model (the sources
of) threshold bugs, ratio bugs, charge sharing bugs, hazards, and races. These
are the most common circuit bugs and the most complete set of bugs modelled by
any one system (cf. Table 1.6). Silica Pithecus’s models do not include capacitive
coupling or unclocked feedback, so bugs arising from those phenomenon are not
caught.

A formal statement of circuit correctness prevents Silica Pithecus from being
ad hoc. The basis of the statement lies with the abstraction function used to map
signals into digital values. The correctness statement guides much of the imple-
mentation, dictates the relationship between the actual and intended behaviors of a
circuit, and formalizes the relationship between the structure, function, and context
of a circuit. ‘

My theory of verification is designed for verifying synchronous MOS VLSI digital
circuits. We are therefore not concerned with asynchronous circuits or process
technologies other than MOS. N either are we concerned with non-digital designs,
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but it is harder to characterize what these are. For example, why is a bootstrap
driver or a sense amplifier not a digital circuit? This dissertation defines as non-
digital any circuit which relies on a race condition that can not be resolved using
gate-delays. A bootstrap driver relies on a race between the driven node and the
load node, it is non-digital. Similarly, a sense amplifier relies on a race that is not
the result of gate delays.

Randy Bryant [Bryant86] imported the terms false negative and false positive
into the vernacular of hardware verification. A false positive occurs when a verifier
declares an incorrect circuit to be correct. Silica Pithecus is guaranteed never to
give false positive. A false negative occurs when a verifier declares a correct circuit
to be incorrect. Due to Silica Pithecus’s conservative nature, it will give many
of these. False negatives mainly arise when a circuit is more complex than Silica
Pithecus’s proof procedures and constraint processors can handle. Very often the
form its false negative is “I can’t prove this circuit is correct” rather than “This
circuit is incorrect.”

This chapter has seven sections. The first section gives an overview of Silica
Pithecus and gives an example scenario. The second section discusses hierarchical
verification. The third section gives some results of running Silica Pithecus on
different circuits. The types of circuits which Silica Pithecus can verify are presented
in the fourth section. Section five compares this research to other methods for
verifying circuits. The sixth section highlights the contributions of this research.
The last section gives an annotated chapter listing of this dissertation.

| 1.1 Scenario

A schematic of Silica Pithecus appears in Figure 1.2. Silica Pithecus has three
inputs and two outputs.? Two of the inputs, the schematic of the circuit to be
verified and the circuit’s intended digital behavior, were discussed above. The third
input, logical constraints, are boolean expressions on the (digital abstractions of the)
inputs of the circuit being verified. These boolean expressions are guaranteed to
always be true.® For example, logical constraints might dictate that the two clocks
¢1 and ¢, are mutually exclusive. Other examples are dictating that a certain input
is always asserted, or that either of two inputs will always be asserted.*

2This is an idealized representation of Silica Pithecus’s input/output behavior. Silica Pithecus runs
in a interactive system where circuits and programs coexist in the same database. Silica Pithecus
has a couple of implicit inputs which are not represented in this diagram.

3All logical constraints are verified to be true when a circuit is used as part of a larger circuit.
Silica Pithecus does not believe everything the designer says.

4There are two types of logical constraints, steady state logical constraints, and temporal logical
constraints. Steady state logical constraints make assertions about the boolean interpretation of
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1 -
" Specitication Logical Specification
of circuit of digital
nstrain ,
structure Cons s behavior ,
Silica Pithecus
v v
Constraints Either CORRECT or INCORRECT, Here's why

Figure 1.2: Silica Pithecus as it appears to the user.

One of the outputs of Silica Pithecus is a declaration of whether the circuit
meets its digital specification, t.e., is correct. If the circuit is not correct, then the
reason it is not correct is given to the designer. Example reasons include reporting
- ratio bugs, threshold bugs, or glitches.

The other output is a set of constraints on the input signals. When satisfied, they
guarantee that the circuit will exhibit its specified behavior. A given structure can
exhibit many different behaviors; the constraints “project” out the desired subset of
a structure’s possible total behavior.® Structure alone does not determine function,
structure and context together determine function. Examples of constraints include
dictating that some input signal must not glitch or that some input signal must not
suffer a threshold drop.

Constraints are a very powerful idea. They allow very large circuits to be ver-
ified. When a subcircuit’s constraints are met, it means that the subcircuit will
exhibit its specified digital behavior. Therefore, to generate the digital behavior
of a circuit all of whose subcircuits have been verified, one need only prove all the
subcircuit’s constraints are met, and then compose the subcircuit’s digital behav-

the values of signals when the circuit reaches steady state. Temporal logical constraints make
assertions about the boolean interpretations of the values of signals for all time.

5The qualitative analysis community has a name for this observation, they call it the No-function-
in-structure principle [de Kleer]. This principle states that an object’s behavior is always predi-
cated on the object’s context.
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Latch
‘l_ 8/2
In
— S j' 2/4 Out
2/2

Figure 1.3: A Inverting Latch.

iors. This method of generating digital behavior is very fast because the signal level
behavior of the circuit need never be generated. We will return to this topic when
we discuss hierarchical verification. '

Example

Consider an Inverting Latch (Figure 1.3). This device stores one bit on its S node.
The output of the Inverting Latch is the negation of the value on its S node.
The digital specification of the Latched Inverter is

(af ((INVERTING-LATCH 8) latch in)
(stream-cons
; this is the output
(if latch (not in) (not s))
; this is the next state
(INVERTING-LATCH (if latch in s)))).

This program says that an Inverting Latch has one bit of state, s, and two
inputs, latch and in. The inverter “returns” two values, the output and the next
state of the device. The output and next state both depend on the state of latch.®

When Silica Pithecus is handed the schematic and digital specification of the
Inverting Latch, it declares that the circuit is correct and generates four constraints
(Table 1.4). The first constraint requires that whenever Latch, is true, signal flow
must be from In to S. If signal flow is not from In to S, say, because In is a
precharged bus and S has more capacitance than In, then the circuit will not have
its intended digital behavior. The second constraint requires that if Latch, falls

6This is not a complete description of the program. A complete description appears in Chapter 7.



24 CHAPTER 1. INTRODUCTION

1. Latch, = overpowers([In],, (S]s)
2. falls(Latchy) = falls-first(Latch,,In,)
3. control(Latch,)
4. no-drop(Latch,)
Table 1.4: Constraints on the latched inverter cell. Latch, refers to the signal at

node Latch. Latchy refers refers to the boolean interpretation of the signal at node
Latch. The other notations are described in later chapters.

during a computation’ then it can only do so before In, changes state. That is,
In, must either be stable on computations when Latch, falls, or, if In, is unstable
when Latch, falls, then In, must change after Latch, falls. The third constraint
requires that once Latch, is asserted, it must remain asserted. The fourth constraint
requires that Latch, not suffer a threshold drop. Latch, is prevented from suffering
a threshold drop so that S, does not suffer two of them. If any of these constraints
are violated, the circuit will not exhibit its intended digital behavior. '

When a verified subcircuit is used as part of a larger circuit the subcircuit’s
constraints are checked. I anticipate that most errors in a design will be caught
. by the detection of violated constraints. Designers constantly work within semi-
conscious digital abstractions of the analog properties of their designs. It is when
they unknowingly break these semi-conscious digital abstractions that errors arise.
The constraints that Silica Pithecus generates embody these semi-conscious digital
abstractions, therefore breaking the now concrete abstractions cause the constraints
to be violated, and an error to be returned to the designer.

1.2 Hierarchical Verification

Silica Pithecus spends most of its energy generating and abstracting a circuit’s
signal behavior. Hierarchical verification is a method -of avoiding much of this
work. Consider a circuit composed of previously verified subcircuits (Figure 1.4).
When the digital behavior of the whole can be derived from the digital behavior of
the parts the signal behavior of the whole device need not be generated.

This is precisely what hierarchical verification does. Hierarchical verification first
Processes the constraints of each subcircuit. If no constraint is violated, then the

A computation starts when some clock changes state. A computation ends when the circuit reaches
state. This idea is further elaborated in Chapter 3.
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c2

D2

c4

D4

D3

Figure 1.4: Hierarchical Verification. D is the whole design. Each part d; is assumed
to be verified. The ¢,’s represent the constraints on each d;’s inputs. Assuming that
none of the constraints are violated, the digital behavior of the whole design can be
derived by composing the parts’ digital behaviors. A constraint that can be neither
proven nor disproven is propagated as a constraint of the top level circuit D, C
stands for the propagated constraints.

digital behavior of the whole is derived from the digital behavior of the subcircuits.

There are three possible outcomes of processing constraints: a constraint can
be accepted, rejected, or propagated. A constraint is accepted when it is shown to
hold. A constraint is rejected when is is proven not to hold. Rejected constraints
are returned to the designer as errors. When there is not enough information to
show that a constraint either holds or doesn’t hold, the constraint is propagated
up the structural hierarchy to be reprocessed when the circuit itself is used as a
subcircuit. For example, because the input constraints C1 of component D1 in
Figure 1.4 neither hold nor fail to hold, they are propagated as constraints on the
inputs of D. Processing constraints is fast and efficient. There are five types of
constraints. They are enumerated and discussed in Chapter 11.

As a concrete example of hierarchical verification, consider a Shift Cell built out
of two Latched Inverter Cells (Figure 1.5). The specification of this device employs
the specification of the Inverting Latch.

(df (SHIFT-CELL si s2)
(let ((Left (INVERTING-LATCH s1))
(Right (INVERTING-LATCH s2)))
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L1 L2
] |
Latch Latch
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Figure 1.5: Composing Two Latched Inverter Cells to Make a Shift Cell

(lambda (in 11 12)
(Right (Left in 11) 12))))

This digital specification says that a Shift-Cell takes two inputs and that its behavior
is equivalent to two inverting latches, one feeding the other.
There is one logical constraint for the shift cell: tmutex(L1,, L2,). It declares
that L1, and L2, are mutually exclusive. '
When given the above information, Silica Pithecus declares the Shift Cell to be
correct and generates the following six constraints:

* L1y = overpowers([In],,, [(S Left)](s1.s9)
e control(Ll,)

e control(L2,)

¢ no-drop(L1,)

* no-drop(L2,)

e falls(Ll,) = falls-first(L1,, In,)

These constraints result from propagating the unresolved constraints of the two
Inverting Latches to the Shift Cell. Of the eight constraints (four for each Inverting
Latch), only two were satisfied:

* L2, = overpowers([C]|,,[(S Right)](smgm)) and

* falls(L2;) — falls-first(L2,, C,).
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Carry through Carry through Carry through Restored output
71 xtors 71 xtors 71 xtors 71 xtors
12.2 seconds 0 seconds 0 seconds 3.8 seconds
284 xtors 9.4 seconds
25.4 seconds total

Figure 1.6: Verifying a 4 bit Manchester Adder.

Note that as part of propagation, the names of nodes are changed from being local to
the Inverting Latches to being local to the Shift Cell. For example, no-drop(Latch,)
(for the left cell) becomes no-drop(L1,). When a node has no corresponding name
for it at the higher structural level a name based on the “pathname” of the node is
generated for it. For example, the S node of Right is changed to (S Right) and the
S node of Left is changed to (S Left).

1.3 Results

The time required to verify circuits is extremely encouraging.® Silica Pithecus has
~ verified circuits of 9,000 transistors in 80 seconds. One particularly enlightening ex-
periment is the one originally performed by Randy Bryant for MOSSYM [Bryant85]
and repeated using Silica Pithecus.

In this experiment the ALU from [Mead/Conway] is programmed as an adder,
which specializes it to be a precharged manchester adder [ref manchester adder].
This adder is a subtle device which uses many MOS features, and it is therefore an
extremely good test case for an MOS verifier.

Silica Pithecus verifies a 16 bit adder (over 1100 transistors) built from this
cell in 51 seconds. The breakdown of times for this is very instructive. Consider
the verification of a four bit adder, which takes 25.4 seconds (Figure 1.6). The
first adder cell takes 12.2 seconds to verify. To verify a four bit adder takes an
additional 13.2 seconds. Of this additional time, 3.8 seconds is spent verifying a
slightly different version of the adder cell where the carry-out line is restored, and
9.4 seconds processing the constraints of the four cells. By not reverifying the same
part, and not generating signal behavior, hierarchical verification avoids extra work.

8The timings here are preliminary. Silica Pithecus is not completely implemented. The timings
are all within a factor of two, probably a lot less. By no means is Silica Pithecus tuned. A tuned
version might run much faster.
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1.4 Other Work

Other work in ensuring circuits operate correctly is in four broad areas, bottom-up
and top-down methodologies, simulation, electrical rules checking, and verification.

1.4.1 Verification Versus Methodology

Bottom-up and top-down methodologies are used to build circuits free of certain
bugs.

Bottom-up methodologies have two components: restrictions on the types of
circuits that can be built, and restrictions how circuits can be composed to make
larger circuits. These restrictions eliminate both certain classes of bugs and circuit
classes of circuits. For example, threshold bugs are one type of bug that can be
prevented by requiring that all signals coming from pass logic be restored. The
cost of preventing this particular bug, however, is very high. Requiring all signals
to be restored excludes many types of circuits from being designed and costs extra
silicon.

Top-down methodologies start with a high-level, and therefore presumably cor-
rect, specification of a circuit. The specification is incrementally refined into a
concrete circuit. A fixed set of transformations are used during the refinement
stage. Each transformation is guaranteed to preserve the correctness of the original
specification and not to introduce any circuit bugs.

Both top-down and bottom-up methodologies throw out the baby with the bath
- water: they make inefficient use of chip area and create slow designs.® Furthermore,
methodologies can’t eliminate all classes of bugs — if they did, a designer would be
overly restricted. For these reasons, we reject forcing designers to use a particular
methodology.

1.4.2 Simulation

Today’s designers debug their designs using simulation. Regardless of the level of
simulation, simulation has many problems (Table 1.5), the foremost of which is
simulation cannot guarantee the absence of bugs. As designs become more and
more complex, simulation becomes less and less reliable. Exhaustive simulation
must be performed to prove circuits are correct. But exhaustive simulation for
large circuits is either exponentially expensive (when a boolean or digital domain is
used) or impossible (when an infinite domain such as signals is used). Verification,
which proves that a circuit works as intended for all inputs and state transitions,
is completely reliable. Another problem is that simulation decontextualizes bugs.

There is no theoretical reason for the resulting inefficiencies. Nonetheless, current technologies
are wasteful of resources. Future research may alleviate this problem.
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Simulation Verification
Is not complete Is complete
Decontextualizes bugs Pinpoints bugs

Is non-compositional | Operates hierarchically
Weak circuit models | Accurate circuit models

Table 1.5: The Failure of Simulation. Simulation has many problems which verifi-
cation does not have.

The output of a simulator is 1’s and 0’s. When a 0 appears where a 1 was expected
(or vice versa, or when an unexpected X appears), there is no clue about the
source of the bug (i.e., whether it comes from a logic bug, ratio bug, etc.). The
designer must laboriously track down the source of the bug. This is true even
when exhaustive simulation is performed. A verifier automatically pinpoints the
parts of an implementation which do not match their specification; this precisely
locates bugs. A third problem is that simulation is non-compositional. Even when
all of a circuit’s subcircuits are verified via simulation, the circuit itself must be
fully simulated. N on-composibility is the key reason simulation cannot be used to
verify large circuits. Finally, because simulators must constantly reevaluate the
same subnetworks over and over again, simulators must used impoverished circuit
models. Accurate circuit models would be too expensive to use for large scale
simulation. Because verification only looks at each possible network once, it can
- use a more elaborate circuit model.

Symbolic Simulation

Recently symbolic simulation has been proposed for the verification of digital MOS
circuits. Symbolic simulation uses variables and constants during simulation [Bry-
ant85]. When a circuit is symbolically simulated the result is an algebraic expres-
sion. This algebraic expression is then verified to be the expression expected. Due
to symbolic simulation’s algebraic structure, it is capable of simultaneously simu-
lating a circuit for many different inputs. This feature makes exhaustive simulation
easier for some circuits.

The major problems with symbolic simulation are lack of coverage, inability to
catch races and hazards, decontextualization of bugs, and lack of composability.
These problems arise because symbolic simulation is tied to a simulation paradigm
thereby inheriting the problems of simulation.

Lack of coverage means that symbolic simulation does not prove that for all
inputs and states a circuit gives the correct output and goes to the correct next
state. The problem is that a purely symbolic simulation would simulate transitions
and states that never occur and would yield many spurious errors. To avoid this
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problem, a designer must select simulation sequences that yield only states and
transitions that can occur during real usage of the design. For example, if a device
has two mutually exclusive inputs, then it is symbolically simulated twice: once with
one input high and the other low, and once with the inputs reversed. Therefore, to
get complete coverage, a designer must carefully craft a set of test sequences which
fully exercises the chip.

MOSSYM does not use MOSSIM’s unit delay model. Instead, it uses Naher'’s
[Naher] rank-order delay model. Therefore MOSSYM cannot verify the timing
behavior of circuits. Bryant advocates the use of ternary simulation [Bryant83]
as an extra pass to get around this problem. However, ternary simulation only
finds races, therefore this methodology cannot verify circuits which rely on races.

Like normal simulators, symbolic simulation decontextualizes bugs. The only
difference is that symbolic simulation outputs boolean expression where normal
simulation outputs ones and zeros. When discrepancies arise between the expected
and actual results of simulation, the designer designer must still determine the cause
of the discrepancy.

Symbolic simulation is not composible. It is a monolithic tool and cannot take
advantage of hierarchy. If two subcircuits are verified via symbolic simulation, this
gives no handle what happens when the two subcircuits are composed. Symbolic
simulation is at least quadratic in its running time, therefore it cannot be used for
large circuits.

Understanding why symbolic simulation is non-composable is very instructive,
The basic problem is that the simulator assumes inputs are both driven and stable.
'For many circuits this assumption is invalid. The real inputs to a circuit may
be precharged values rather than driven values, and they usually are not stable.
Symbolically simulating a circuit does not indicate what the circuit does when
connected to real signals. Therefore when a previously “verified” circuit is used as
part of a larger circuit, the larger circuit must be simulated in its entirety.

1.4.3 Electrical Rules Checkers

Electrical rules checkers ensure that circuits are not malformed according to some
structural criteria. Electrical rules checkers suffer from two major problems. First,
they are completely ad hoc because they check that very specific configurations of
circuits don’t arise. Second, they often give many annoying spurious errors.

The first commonly used electrical rules checker was Baker’s [Baker]. This
checker made sure that each node could be potentially pulled up and pulled down,
that depletion mode transistors were used in known ways, that two or more thresh-
old drops didn’t occur, that Vdd and Gnd weren’t shorted together, and that proper
ratios existed in gates. Its major problem was finding a tremendous number of spuri-
ous errors because it had absolutely no understanding of a circuit’s logical structure
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(e.g., which signals are mutually exclusive). It also had the problem of being non-
hierarchical, it would find the same bugs over and over again. The output was so
unwieldy that programs were written to filter out some of the spurious errors and
to collect the repeated errors together.

TV [Jouppi] was a timing analyzer that used some knowledge of a circuit’s
operation to avoid the problems of spurious errors. It applied a set of ad hoc rules
over a circuit to determine the direction information flowed through transistors. An
electrical rules checker built on top of TV which had no spurious errors when run
on sample circuits. One must use such a tool with caution, however. It suffers from
two related problems. The first is that TV’s methods for determining information
are purely heuristic and can fail without the designer knowing. Second, TV assumes
that ratios are correct to determine information flow, it then uses information flow
to check ratios. This approach can fail in expected, and undetected, ways.

Karplus [Karplus| also has an ad hoc approach to electrical rules checking. He
treats circuits as graphs and then uses graph algorithms to prove certain paths (sub-
circuits) don’t occur in the circuit being checked. Examples of the graph formation
rules he checks are

1. Avoid shorting power.
Avoid changing the inputs.
Avoid parallel pullups.

Avoid gates in the middle of pulldown chains.

oos wow

- Avoid charge-sharing.

6. Avoid odd inverter cycles.

Some of these rules are not well-motivated and potentially unneeded. For exam-
ple, Rule 2, avoiding changing the inputs, is not needed when the input is connected
to the output of a gate. The reason for avoiding parallel pullups is to make ratio
checks less prone to error. The reason for Rule 4, avoiding gates in the middle
of pulldown chains, is so that ad hoe programs which try to determine signal flow
won't get confused. Having ad hoc rules so that ad hoe programs will work better
seems like poor methodology. Also, enumerating the ways a circuit can be mal-
formed is not a good strategy. It is not clear whether all bad circuit formations can
be enumerated.

1.4.4 Other Types of Verification and Other Verifiers

Very little work similar to the work discussed in this dissertation has been done.
People have worked on multilevel verification, and have worked on generating be-
havior from structure, but always with a different focus than that presented here.
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The technologies and models used by previous researchers differ from mine.
Specifically, earlier work on deriving behavior from structure were either for TTL
(Wagner], or used inadequate circuit models for MOS [Gordon, Barrow82|. The
types of circuits built from TTL and from MOS are completely different, and the
models of [Gordon82] and [Barrow| can’t catch charge-sharing bugs, ratio bugs,
threshold bugs, races, or hazards. Also, Wagner’s verifier was not automated and
could only handle small circuits. Barrow’s verifier is discussed in detail below.

Gordon has since improved his model to make transistors be bidirectional and to
include time [Gordon84b]. He uses higher order logics for describing and verifying
circuits [Gordon84]. Using logic is an improvement over more functional approaches.
Logic easily captures the bidirectionality of transistors and logic is well known.
However, as used, it is no better than earlier formalisms for describing, or reasoning
about, the electrical aspects of circuits.

Research on multilevel verification has also been done [Eveking] [Gordon84c].
Previous work made explicit the notion of an abstraction function for mapping
between levels. Some even had partial abstraction functions. However, none have
the fully understood the role of constraints. One researcher [Eveking| noticed that
constraints (he called them assertions) were needed to ensure inputs were valid
(i.e., mapped into the higher level descriptive domain). He, however, did not make
the observation that constraints were also needed to ensure outputs were valid.
This observation is one of the contributions of this dissertation and is the basis for
automatically generating constraints.

Other attempts at verifying MOS circuits will now be discusses, followed by an
" outline of other work in verifying diverse properties of digital systems.

Verify

Besides Silica Pithecus, the only other implemented verifier for MOS circuits is
Verify [Barrow]. Verify differs from Silica Pithecus in two very important ways
(Table 1.6). First, it has no explicit notion of abstraction or multiple levels of
description, it is a monoverifier. Second, its circuit model is extremely weak. It
cannot model charge-sharing bugs, ratio bugs, threshold bugs, races, or hazards.

Verify’s focuses on verifying digital designs. It models circuit components and
networks of components as time-free digital devices. (That is, Verify assumes the
result that Silica Pithecus is trying to prove, namely, that circuits can be described
as time-free digital devices.) Given two different digital descriptions of the same
design, it can determine whether the two descriptions are the same. One of the
descriptions is derived directly from the structure of the design, the other is the
specification. Because the circuit’s behavior and its specification are described at
the same level (i.e., the digital level) an abstraction function is unneeded.

(Silica Pithecus could use the capabilities of Verify. When Silica Pithecus verifies
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Researcher, Program ’ Domain , Transistor Wire Bugs '
Model Model Modelled
Barrow Verify Tristate Unidirectional 1 Bit Logic
(Functional)
Gordon Tristate Relational 1 Bit Logic
Timing

Bryant MOSSIM | Many Valued | Bidirectional Capacitors | Charge Sharing |

MOSSYM Signals Switch Timing
Logic
Terman RSIM Interval Varying Capacitors | Charge Sharing,
Signals Resistors Ratio bugs,
Timing

Logic
= e
Weise Silica Signals Varying Capacitors | Charge Sharing,

Pithecus Resistors + Ratio bugs,
Threshold - Timing,
Device Threshold
Logic

Table 1.6: Verifiers and Simulators for MOS Circuits. This table shows the different
characteristics of MOS verifiers and simulators. The top row highlights Verify. This
verifier’s strength is in verifying digital systems rather than verifying circuits. The
second row highlights two popular simulators. These simulators have reasonable
_.circuit models, but don’t perform verification. The last row shows Silica Pithecus,
which has the best of both worlds. It can formally prove a circuit is correct, and
its models are better than the simulators’ models.

large circuits, their structural and functional specifications must match. This makes
comparing the abstracted and specified behaviors simple: Silica Pithecus shows
that the subcircuits correspond to subfunction in the digital specification and that
the wires in the circuit correspond to dataflow in the digital specification. The
comparison of arbitrary digital expressions occurs only for leaf cells. Silica Pithecus
and Verify are complementary programs, the former verifies circuits and the latter
verifies digital designs.)

Functional Verifiers

Functional verifiers are multilevel verifiers where the concrete domain is the digital
level and the abstract domain is at some higher level such as the arithmetic level.
Functional verifiers are complex because the abstract domain are very rich. Proving
that two expressions denote the same value can require difficult theorem proving.
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An interesting functional verifier was created by [Hunt]. He began with the
Boyer/Moore theorem prover [Boyer]. Wherever the theorem prover was inade-
quate it was extended by Moore. The primitives of Hunt’s circuits were idealized
boolean (strictly bistate) gates. He designed a microprocessor and verified that it
met its specification. Because he employed the Boyer/Moore theorem prover his
proofs were able to use induction. Therefore he could prove that parameterized
descriptions of his circuits were correct, something no other verification system has
done. For example, he was able to prove that his specification for an n-bit adder
Wwas correct regardless of its particular size. Other verifiers (e.g., Silica Pithecus and
Verify) allow parameterized descriptions, but the descriptions must be concretely
instantiated before verification can be performed.

Protocol Verifiers

Protocol verifiers show that some communication and arbitration scheme properly
controls some system. For example, protocol verifiers prove that a system will
always service or acknowledge a given request. Protocol verifiers are also used to
verify asynchronous systems. Protocol verifiers assume that primitives respond to
changes in their inputs with some finite delay. The trick is to prove that regardless
of the delays, which can’t be accurately predicted, the system will still work.

Temporal logics are often used to specify the desired properties of asynchronous
systems and communication protocols [Mishra/Clarke] [Moszkowski| [Fujita]. They
formalize notions such as “before,” “after,” and “following.”

- There is some confusion in the community between verifying asynchronous sys-
tems and verifying asynchronous circuits. The problem is that an asynchronous
circuit is an instance of an asynchronous system. Therefore researchers sometimes
claim they are verifying circuits when their methods have little to do with circuits
(other than circuits are used to implement asynchronous systems). Their claim
is partially true, however, the claim is beside the point. One could implement an
asynchronous system using People, instead of circuits, and their methods would still

apply.

Verification of Sequential Systems

This category of verifiers proves that a system exhibits the correct behavior over
many cycles. Examples include verifying that a bit serial adder really adds two
numbers, or verifying that microcode correctly implements its intended macrobe-
havior.

Some indirect work has been done, in an ad hoc fashion on this topic. Both
Verify and MOSSYM have been used to verify a the correct behavior of a design
over many cycles. Verify was extended to verify, with human intervention, the
microcode of a small computer. MOSSYM has verified bit serial adders.
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Figure 1.7: Silica Pithecus’s place in the verifier community.

The only direct work that has been done on this is in the field of microgode
verification.

Silica Pithecus’s place in the verifier community is shown in Figure 1.7.

1.5 Contributions of this Research

The main contribution of this research is a formal abstraction mechanism for veri-
fying the signals of a circuit correctly implement the digital abstractions envisioned
by the designer. This includes, for example, proving signals can be viewed as ones
and zeros, that nodes are capable of storing bits, and that control signals don’t
glitch. A major difficulty is deciding which signals are intended by the designer to
be state bits, control signals, or data signals. These concepts are related to the role
of a signal and are unrelated to electrical considerations.

The second contribution is an efficient method for the automatic generation
of a circuit’s signal behavior from its structure (schematic). This is one of the
contributions of this dissertation. The key is focusing the generation method on
only those parts of a circuit’s full behavior that account for the circuit’s digital
behavior. No previous system with reasonable circuit models has predicted the
behavior of large MOS circuits solely from their structure.

Other contributions and ideas are listed below.
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A formal model of multilevel verification.

I precisely define what it means to prove a circuit is correct. Other researchers
in multilevel verification have had a similar statement of correctness, but they all
missed the role of contezt in their definitions of correctness.

A method for formally deriving constraints.

Besides specializing behavior, the purpose of constraints is ensure that the behav-
ior of a given design is abstractable to the next higher level of description. This
observation yields a method for automatically generating many of the constraints
on a design.

A formal statement of the relationship between structure, function, and
context.

Hierarchical verification depends on the explicit dependence between structure,
function, and context.

A method for symbolically predicting the behavior of a circuit solely
from its initial state and inputs for any valid state and inputs.

As mentioned several times in this chapter, Silica Pithecus must both derive a
circuit’s signal behavior from the circuit’s schematic and also abstract the signal
. behavior to the digital domain. A major contribution of this thesis a method for
efficiently deriving a circuit’s signal behavior from its schematic.

Intentional analysis.

Intentional analysis automatically falls out of the statement of circuit correctness.
It allows a verifier to concentrate solely on the behavior of a design that contributes
to the design’s behavior at the higher levels of abstraction.

A Constraint System.

The constraint system serves a dual role. The constraints themselves serve as part
of the proof that a given circuit will exhibit its intended digital behavior. Their
other role is the mechanism by which very large circuits are verified.

Accurate models.

Verification would be meaningless if there were large classes of bugs which could not
be modelled. This research uses component models capable of modeling common
circuit bugs.
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An existence proof that the theory works.

Silica Pithecus is proof that a verifier with an accurate circuit model can be made
to run, and run quickly, for large circuits.

1.6 Organization of the Thesis

This dissertation has four major chunks: the circuit model (Chapter 2), the theory
of multilevel verification (Chapters 3 through 5), the structure of Silica Pithecus
(Chapters 6 through 9), and the theory and practice of hierarchical verification
(Chapters 10 and 11). An annotated chapter listing appears below.
- Chapter 1, Introduction

This chapter delineates issues, presents an example, introduces terminology,
summarizes results, and presents an annotated chapter listing.
Chapter 2, Component, Signal, and Network Models

Chapter 2 presents Silica Pithecus’s component, signal, and network model.
The signal model describes the primitive elements manipulated by circuits. The
component model describes the primitive devices for manipulating signals. The
network model describes what the meaning of interconnected components is. An
analogy can be made between circuits and programming languages, where signals
correspond to primitive data types, components correspond to primitive operations,
and programs.
Chapter 3, Multilevel Verification

There are many different levels of description (e.g., signal, digital, functional) of
a circuit’s behavior. Multilevel verification is defined as proving that two different
levels of description describe the same behavior. The lower level of behavioral
description of a circuit’s behavior is the circuit’s concrete behavior, the higher
level description is its abstract behavior. Chapter 3 presents the formal basis of
multilevel verification. It presents examples of both of verifying a circuit’s signal
behavior against its digital behavior, and of verifying a circuit’s digital behavior
against its functional behavior.
Chapter 4, Time and State

Chapter 4 discusses how state and time are incorporated into the formal model
of the previous chapter. The major result of Chapter 4 is method for symbolically
predicting the final state of a circuit solely from its initial state and inputs. The
prediction does not perform a simulation of any kind.
Chapter 5, Non-electrically Isolated Inputs

Chapter 5 extends the theory of Chapters 3 and 4 to include circuits with non-
electrically isolated inputs.
Chapter 6, Silica Pithecus
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An overview of Silica Pithecus is presented in Chapter 6. The major parts of
Silica Pithecus are discussed in the next four chapters. Parts of Silica Pithecus
which do not deserve their own chapters appear in Chapter 6. This includes the
representation of circuits and Silica Pithecus’s comparison methods.

Chapter 7, The Specification of Digital Systems

The issues in specifying both digital behavior and digital systems is discussed.
A language for the specification of digital systems is presented. This language has
an interpreter so specifications can be debugged by executing them.

Chapter 8, Generating Net Behavior

Net behavior is a structural representation of a circuit that emphasizes the
different nets that a node might be a member of during settling. Chapter 8 presents
an algorithm for generating net behavior.

Chapter 9, From Net Behavior to Digital Behavior

Rather than generate signal behavior from net behavior and then abstract signal
behavior to the digital level, it is more efficient to generate digital behavior directly.
Chapter 9 discusses how the network model is invoked to interpret nets and how
the interpretation is abstracted to the digital domain.

Chapter 10, Hierarchical Verification

The theory and practice of hierarchical verification and hierarchical multilevel
verification is presented in Chapter 10.

Chapter 11, Processing Constraints.

Silica Pithecus uses five types of constraints. Each of these constraints and
how they are processed is presented in Chapter 11. The preliminary processing

"of constraints is identical, but each type of constraint has it own special theorem
provers.
Chapter 12, Future Research

Chapter 12 discusses problems I never got around to solving. This includes
using the information needed for verification to create an accurate timing estima-
tor, handling unclocked feedback, dealing with capacitive coupling, and multiple
abstraction functions.



Chapter 2

Component and Signal Models

We now turn our attention to the signal, component, and network models used by
Silica Pithecus. This modularization corresponds to describing the semantics of a
programming language in terms of its primitive data types, primitive operations on
these types, and what the meaning of a combination of primitive operations (called
a program) is.

The component model used by Silica Pithecus is as accurate as the component
model used by any large scale simulator.l Silica Pithecus’s component model is
superior to MOSSIM’s model, and, not counting modeling how long a circuit takes
to settle, is superior to RSIM’s model. To a first approximation, if MOSSIM or
RSIM can simulate a circuit, then Silica Pithecus can verify it.?

Silica Pithecus could employ a simpler model than it does, such as MOSSIM’s
switch level model. This would save some analysis time. However, the time savings
would not be worth the less accurate verification that would result. For example,
Silica Pithecus would not be able to detect threshold or ratio bugs if it adopted
MOSSIM’s model.

This chapter has five sections. The first section describes Silica Pithecus’s com-
ponent model. A new way of describing circuit a circuit’s dynamic structure, called
net behavior, is presented in the second section. The third section describes Silica
Pithecus’s network model, that is, what interconnected components mean. Silica
Pithecus’s signal model is described in the fourth section. A discussion of the bugs
which can and cannot be modelled are presented in the fifth section.

1A large scale simulator is a simulator that handles circuits in excess of 10,000 transistors.

2This statement is only partially true, as Silica Pithecus won’t verify circuits that use unclocked
feedback and it may not be able to prove some correct circuits are correct, but for most designs
it is true.
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2.1 The Component Model

Silica Pithecus uses a component and network model similar to RSIM’s model [Ter-
man)| except for RSIM’s features which are concerned solely with timing. For exam-
ple, there is only one effective resistance for any given transistor, rather than three.
We will first describe transistors, then nodes.

Transistors

Conducting transistors are modelled as resistors in series with a threshold drop
device. The resistance of a transistor® depends on the gate voltage of the transistor
and the channel length and width of the transistor. A threshold drop device appears
in circuit diagrams as a square with an X in it.

The resistance depends on three factors:

1. Length and Width: The resistance of a transistor is proportional to its
channel length divided by its channel width.

2. Type: The type of a transistor determines the resistance of a unit square of
the active region.

3. Gate Voltage: The resistance is doubled if the gate voltage has suffered a
threshold drop.

Silica Pithecus’s model for an enhancement mode transistor divides a transistor
into four operating regions (Figure 2.1). The X'd square represents a threshold
drop device. This device acts as a regulator preventing more than a certain amount
of charge (electrons) from being pushed through it. For example, in the third case
of the figure only enough charge can be pushed through it to raise the voltage
on the node to its right to 3.5 volts. When the gate voltage is between 1.5 volts
and 3.5 volts the resistance of the transistor is unknown (denoted X). A depletion
transistor is modelled as a resistor of resistance I, /W with no concomitant threshold
drop device.

This is a simple transistor model. There are many real phenomena it ignores or
simplifies. Nonetheless, the model is accurate enough for our needs.

There is nothing sacred about our choice of voltages. We have chosen the upper
rail as 5 volts and the lower rail as 0 volts for convenience. These voltages could have
been left symbolic (we will sometimes write them as Vdd and Gnd, respectively),
however, this wouldn’t have change the results or theories of this dissertation.

3More accurately: “the resistance of the resistor the transistor is modelled as.”
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Figure 2.1: Silica Pithecus’s Transistor Model. Enhancement transistors are mod-
elled as resistors in series with a voltage controlled switch. The resistance of the
transistor depends on the gate voltage. When the gate voltage is low enough
then the transistor is modelled as an open switch. When the gate voltage is “full
strength” the resistance of a transistor is I, /W where L is the channel lengthand W
is the channel width. The resistance is doubled when the gate voltage has suffered
a threshold drop. The X'd Square represents a threshold drop device. This device
acts as a regulator preventing more than a certain amount of charge (electrons)
from being pushed through it. For example, in the third case above only enough
charge can be pushed through it to raise the voltage on the node to its right to 3.5
volts. When the gate voltage is between 1.5 volts and 3.5 volts the resistance of the
transistor is unknown (denoted X). Depletion transistors are modelled as resistors
of resistance L/W with no concomitant threshold drop device.
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Figure 2.2: A Latched Inverter Cell. This cell differs from an Inverting Latch by
the placement of the latch gate.

Nodes

Silica Pithecus models nodes as capacitors to Ground. Capacitance is measured in
dimensionless units. (When timing is a concern, capacitance needs proper units.)
Nodes whose capacitance is not declared have a capacitance of 1.

2.2 Net Behavior

During settling a node is a member of many different nets. The different nets are
called the node’s possible nets. Depending on the pattern of conducting transistors
and the topology of the circuit, the sizes of a node’s possible nets can range from
containing a single node (the node itself), to containing every node in the circuit.
A node’s possible nets and the conditions under which they are active is called the
node’s net behavior. Net behavior is a function that maps time into nets. Given
some time ¢, the net behavior of node N returns the net that N is a member of at
t. A circuit’s net behavior is the sum of its node’s net behaviors.

For example, consider a Latched Inverter Cell (Figure 2.2).* The S node of this
device has three possible nets, which are shown in Figure 2.3. The net on the left,
the single node S, arises when Latch, is not asserted. The middle net occurs when
Latch, is asserted and In, is not asserted. The net on the left arises when both
Latch, and In, are asserted.

We will use a textual notation for nets: if a net contains nodes A, B, and C,
then it is textually written (A, B, C]. For example, the abbreviations of the nets of
Figure 2.3 are [S], [S, Vdd, Out], and [S, Vdd, Out, Gnd], respectively.

i

*A Latched Inverter Cell differs from an Inverting Latch (Figure 1.3) by the placement of the latch
gate.
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Figure 2.3: Possible Nets of the S Node of the Latched Inverter Cell.

Current doesn’t flow between nets. This has two intertwined benefits. First,
net behavior is a wedge by which we can modularize a circuit’s behavior to make
analysis possible. Second, all the possible sources of change to a node’s voltage
are contained in the node’s possible nets. Therefore a node’s voltage over time can
be predicted by analyzing the node’s net behavior. (This analysis is presented in
Chapter 4.) ’

2.2.1 Representing Net Behavior

A node N’s net behavior is represented by a net behavior ezpression written as
McCarthy conditional [Lisp 1.5. The conditional consists of a series of clauses.
Each clause consists of one predicate and one net. The predicate is a boolean
expression. If a predicate is true then N is a member of the predicate’s associated
net. N,,, denotes N’s net behavior.

For example, consider again the S node of the Latched Inverter Cell (Figure 2.2).
The representation of its net behavior is

Snee = A t. Latchy(t) A In,(t) — [S Vdd Out Gnd],
Latch,(t) A NOT(In,(t)) — [S Vdd Out|,
NOT(Latchy(t)) — [S]

This formula is called a net behavior equation. The left hand side of a net behavior
equation is the name of a node subscripted by net and the right hand side is a net
behavior expression.

The net behavior of a circuit is a listing of the behavior equations of its nodes.
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sourcen.e = A t . gate,(t)— [source drain],
NOT(gate,(t)) — [source]
drain,.: = A t. gate,(t)— [source drain],
NOT(gate,(t)) — [drain]
gate,,, = At. [gate]

Table 2.1: Net Behavior Equations of the nMOS Transistor

For example, the net behavior of an n-channel transistor has three equations, one
for each node (Table 2.1).

' Efficiently finding the possible nets in a circuit requires understanding the logical
structure of a design, i.e., which signals are mutually exclusive and how some signals
depend on other signals. Without this knowledge a circuit can appear to have an
exponential number of nets with respect the number of transistors in the circuit,
rather than the linear or quadratic number of nets intended by the designer. For
example, a barrel shifter’s control signals are mutually exclusive. Therefore, it has
only a linear number of nets. But unless this knowledge is used, the barrel shifter
will appear to have an exponential number of nets. Chapter 8 discusses the methods
of employing the logical structure of a design during circuit analysis.

We now introduce a some terminology that is used throughout this dissertation.
Off-chip inputs (e.g., Vdd, Gnd, clocks) are assumed to be driven and are called
“driven nodes. Nets containing at least one driven node are called driven nets. All
other nodes and nets are called undriven. What others have called a storage node
we treat as a degenerate case of an undriven net containing only one node. A net
contracts when some transistor in it shuts off thereby partitioning the net into two
smaller nets. A net ezpands when one of its boundary transistor turns on thereby
connecting it with some other net.

2.3 The Signal Model

Silica Pithecus models signals as functions which map time into a voltage and a
strength. That is,

Signal : time — voltage x strength.

Intuitively, a signal is what we see on our oscilloscope when we probe one of the
nodes of the circuit and watch the circuit in operation. Signals have two compo-
nents, voltage and strength. The voltage of a signal is well understood and will not
be explained. Signal strength is explained below.
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Figure 2.4: Signal Strength

2.3.1 Signal Strength

Signals emanate from nets of nodes (hereafter just called nets). The strength of
a signal at some point in time is the the sum of the capacitances of the nodes in
the net from which the signal emanates at that point in time. Driven nodes are
considered to have infinite capacitance. )

For example, consider the simple circuit of Figure 2.4. Assume that there is
probe at node Y. We are going to measure the strength of Y,, the signal at Y, for
different states of the circuit. When all the transistors are off, the strength of Y, is
n. If B is then asserted, the strength of Y, goes to n +m. Asserting A at this point
causes Y,’s strength to be co because the “capacitance” of VDD is co. A signal
whose strength is oo is a called a driven signal.

The strength waveform of a signal® at a node encodes the charge sharing pat-
tern of the node. An increase in X,’s strength indicates X is increasing the number
of nodes with which it shares charge. A decrease in strength indicates that X is
decreasing the number of nodes with which it is sharing charge. Knowing that a
signals strength only decreases or only increases during a computation is very valu-
able. For example, when a signal’s strength only decreases during a computation
then the nodes in the signal’s final net retain their initial charge. Chapter 4, which
shows how a circuit’s final state is predicted, discusses the strength of signals in

SA strength waveform is analogous to a voltage waveform. It is a plot of strength versus time.
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Figure 2.5: Notation for Time. We assume that a circuit is at steady state when its
inputs change. By convention, ¢; is the time at which the first input changes and ¢,
is the time when the circuit settles again.

detail.

2.3.2 Notation for Talking about Time

We assume that a circuit starts out at steady state, that its inputs change, and
that the circuit then settles to a new steady state. We call the change of an input
a computation request and that a circuit is caused to compute by a computation
request. The time when the inputs first change is called the initial time and is
denoted ¢;. The final time, denoted, ty, occurs when the circuit achieves steady
state. These times are illustrated graphically in Figure 2.5.

As a consequent of this notation X,(t;) denotes the value of X, before a compu-
tation request is issued. X,(t;) denotes the value of X, when the circuit settles. A
signal is stable during a computation request R (i.e., from the time R starts to the
time the circuit settles) if and only if the signal provably never changes during this
time.

Npee(t:) is called N’s initial net. Nnee(ts) is called the N’s final or chosen net.
Following standard nomenclature, the predicates which select a node’s initial and
final nets are called the node’s precondition and postcondition, respectively.
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Figure 2.6: Creating Equivalent Voltage Dividers.

2.4 The Network Model

Given a net of transistors and a node of interest, the network model says how the net
is interpreted to yield a voltage and a strength at the node. Thevenin equivalents
. are used to interpret net containing driven (i.e., off-chip) nodes. A charge sharing
model is used for nets not containing driven nodes.

The final voltage of a node N in a net containing driven nodes is determined
by creating the Thevenin equivalent of the net regarding N as the net’s output.
The calculation is similar to the calculation presented by [Terman|, except that
intervals are not used in the calculation. The subnet “above” the node (s.e., the
subnet leading to Vdd) and the subnet “below” the node (s.e., the subnet leading
to Gnd) which form the voltage divider for the node are each reduced to yield
characteristic voltages. It may be the case that there is no subnet “below” the
node, in which case the node is pulled-up.

An example of creating an equivalent voltage divider appears in Figure 2.6. In
this example a net with two transistors above the output node and two transistors
below the output node are replaced by one equivalent transistor above the output
node and one equivalent transistor below the output node.

Final voltages cannot be determined for nets not containing driven nodes because
the verifier can’t know the charge on the nodes in the net. Instead, Silica Pithecus
locates a dominant node whose capacitance is sufficiently greater (more than 10
times) than the sum of the capacitances of all the other nodes in the net. If such a
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node exists, then all the nodes in the net will assume the voltage of the dominant
node.

If such a node does not exist, then Silica Pithecus will signal a charge-sharing
error. (Of course, Silica Pithecus is careful only to generate such errors for nets
which must yield a valid voltage.)

2.5 Bugs Modelled and Not Modelled

We first discuss bugs that can be caught, then bugs that can’t be caught.

2.5.1 Bugs Modelled
The bugs that can be modelled are listed below.

Charge Sharing A charge charging bug occurs when two or more nets share
charge but neither has sufficient charge to “overpower” the other thereby re-
sulting in invalid voltage levels. Circuit techniques such as precharged buses
can be verified only by a system that properly models nodes. A verification
system which modelled all nodes as having the same capacitance could not
verify a circuit which used precharged nodes.

Ratio Bugs A gate in an nMOS circuijt is a voltage divider. A gate is capable
of driving its output to the upper rail, but incapable driving its output to
the ground level. (Because that would imply that the pulldown has zero
resistance.) The resistances of the two “halves” of the voltage divider must
be carefully balanced to ensure that the output is close enough to ground
to ensure a reliable zero level, but not so close that that the current flow
through the gate is excessive. Ratio bugs can be modelled because transistors
are modelled as resistors whose resistance is dependent upon the geometric
characteristics of the transistors. '

Threshold Bugs Transistors are not ideal switches. Transistors can only pass a
certain voltage that is some fixed amount below the voltage on their gates.
As signals pass through pass transistors they suffer threshold drops which is
exhibited as a truncation of a signal’s voltage. There are two different types of
bugs caused by threshold drops. The first is ratio problems with gates because
the resistance of a transistor depends upon its gate voltage (Figure 2.7). The
second is threshold drops adding up when a signal suffering a threshold drop
gates a transistor T causing the signal gated by T to suffer two threshold
drops. Signals which suffer two threshold drops have lost enough voltage to
become invalid signals. Threshold drops are modelled by including an explicit



2.5. BUGS MODELLED AND NOT MODELLED 49

v v
ow Ow
n—[ 2 n—[ 2

A Misimally Sized laverser A Noaminissally Sized Inverser

Figure 2.7: Two Differently Sized Inverters. The minimum-sized inverter does not
work for all inputs that the nonminimum inverter works for. It will only work if
its input has not suffered a threshold drop. The nonminimum inverter works for a
greater range of inputs at the cost of using more area and being slower than the
minimum sized inverter.

threshold drop device in the transistor models. Other systems, e. g., RSIM,
have not modelled threshold drops.

Races A race occurs between two signals when the final state of circuit isa function
of which signal changes first. Often the proper operation of a circuit requires
that when a race happens, one of the two signals always changes first. Races
can be modelled because the signal model explicitly includes time. Some
systems, such as MOSSYM, do not model time, and therefore can’t detect
races.

Hazards Hazards can be considered as degenerate cases of races where a signal is
racing with itself. A hazard occurs when a circuit can detect the number of
transitions a signal has during settling. For example, if a signal begins and
ends at zero, but the circuit it’s in has a different final state depending on
whether the signal has zero or two transitions, then a hazard occurs when the
signal goes through two transitions.

2.5.2 Bugs Not Modelled

Bugs which can’t be modelled by Silica Pithecus are those arising from unanticipated
capacitive coupling and spikes on off-chip inputs.

Ignoring Capacitive Coupling

Capacitive coupling is ignored so that number and size of a node’s possible nets
is minimized. If capacitive coupling were modeled, then nets would span the chip
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Figure 2.8: MOS transistor symbol with explicit Cy and Cy,.

and the circuit would have to be analyzed monolithically.® This analysis would be
infeasible for even moderately sized circuits. In this section I show the sources of
capacitive coupling, discuss the drawbacks in ignoring it.

The two main sources of capacitive coupling are the gate to source capacitance
of MOS transistors, and the coupling of physically close wires. The dominant source
is the capacitance of transistors, by far.

A MOS n-channel transistor is modelled in detail as having a capacitor between
. its gate and source (Figure 2.8) and between its gate and drain. This capacitance
can be increased by the inclusion of an explicit capacitor. This capacitor forms a
coupling between the gate and source nodes of the transistor through which current
can flow.

There are two undesirable effects of ignoring coupling capacitance: not being
able to model anticipated capacitive coupling, and not being able to catch bugs
arising from unanticipated capacitive coupling. The first undesirable effect, not
being able to model circuits which depend on capacitive coupling can be overcome
by making such circuits primitives of the design system. They can then be treated
specially, as other primitives (e.g., transistors) are. For example, bootstrap drivers
could be treated this way. No other large scale analysis system (e.g., TV [TV,
Jouppi], MOSSIM [Bryant81], RSIM [Terman], Crystal {Ousterhout|) has handled
capacitive coupling in a general way. For example, [Terman| does a prescan of
the circuit which recognizes bootstrap drivers and replaces them with primitive

SThere is no way within my framework for heuristically examining only those parts of the circuit
where capacitive coupling effects are significant. There are two reasons for this. First, I am trying
to be formal so that I can make clear statements about what it means to verify a circuit. The
inclusion of heuristics interferes with this goal. Second, there is no clean mechanism for a designer
to indicate parts of the circuit which bear closer inspection by the verifier.
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elements. Other than ad hoc checks, there does not seem to anything that can
be done about the inability to catch bugs arising from unanticipated capacitive
coupling.

No Loads on Off-chip Inputs

Charge retention analysis does not model wavering off-chip inputs; there are no
edges in a net transition graph corresponding to off-chip inputs which suddenly un-
dergo large loads. Therefore off-chip inputs must be considered immune to on-chip
transitions. For example, Gnd and VDD are considered constant; even if a heavy
load is placed on them this load cannot be detected anywhere in the circuit. The
same is true for the other off-chip inputs. I do not know if this is a significant prob-
lem for MOS circuits (¢.e., if circuits have failed because designers didn’t anticipate
loads causing off-chip inputs to waver), but I know of no system which addresses
this problem.

2.6 Summary

This chapter presented the the component model, signal model, and network model
of Silica Pithecus. These models are known collectively as a circuit model. The
bugs which can and can’t be modelled within this model were discussed.

This chapter introduced the notion of net behavior. The idea of focusing analysis
on nodes and the nets they are members of during settling is novel. Previous
researchers have looked at the nets a circuit is partitioned into during settling
without investigating what the partitioning looks like from a node’s point of view.
The power of this idea in the next chapter appears in the next chapter.
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Chapter 3

Multilevel Verification

Circuit behavior can be described at different levels of abstraction ranging from the
analog level to the functional level. Multilevel verification proves that two different
levels of behavioral description describe the same behavior. The more abstract level
description of a design’s behavior is called its abstract behavior, the less abstract
level description of a design’s behavior is called its concrete behavior.

Multilevel verification has two parts: abstraction and validation. Abstraction
lifts the concrete behavior level to the abstract behavior level. The resulting de-
scription is called the abstracted behavior. Validation is the comparison of the
abstracted and abstract behaviors. An implementation meets its specification if the
comparison succeeds, otherwise the implementation is declared sncorreect.

This two step scheme, abstraction followed by validation, makes the dependence
of verification on the abstraction function explicit. The abstraction function serves
two purposes: approximation and structure definition. Which purpose is served
depends on the descriptive level of the concrete behavior. At the lower levels, such
as the signal level, abstraction replaces “physical reality” with gross approximations
(t.e., digital values). At this level, the accuracy of verification is bounded by the
accuracy of the abstraction function. For higher descriptive levels, such as the
digital level, abstraction replaces data structures with the values they denote. For
example, when abstracting from the boolean level to the arithmetic level, a vector
of booleans is abstracted to a number.

Not all elements of the concrete domain map into elements of the abstract do-
main. The abstraction function is responsible for returning an error value on ele-
ments which do not map. For example, the abstraction of a signal that can not be
abstracted to either 0 or 1 must be an error value. One role of constraints is to
specify that a design’s inputs and outputs are always abstractable. For example,
at the signal level, the constraints such as no-drop, falls-first, overpowers,
and control all exist solely to ensure that input and output signals abstract to
non-error values.

53
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The difficulty of validation depends on the descriptive level. Digital validation
consists of proving two digital expressions are equivalent. Except for complex com-
binational circuits such as ripple carry adders, the formulas are small and easily
compared. Functional validation, which must compare formulas in domains richer
than boolean algebra (e.g., arithmetic), is hard to do.

A design is digitally verified when its signal behavior has been verified against
its intended digital behavior. Likewise, a design is functionally verified when its
digital behavior has been verified against its intended functional behavior. We
are primarily concerned with digital verification. The methods to be proposed for
digital verification have been implemented, but no such claim is made for proposed
methods of functional verification.

A major advantage of multilevel verification is that the description of the in-
tended behavior itself can be verified. Abstract behavior at one level is concrete
behavior at the next abstraction level up and can itself be verified. Thisisa powerful
mechanism for verifying the behavior of a design over many levels of description.

This chapter has four sections. In the first section some of the levels of behav-
ioral description are discussed. A brief discussion of the different descriptive levels
of time is included in the first section. The second section describes multilevel ver-
ification. It delineates issues and presents my theory of multilevel verification. The
third section focuses on digital verification and functional verification. The chapter
concludes with a summary.

A given circuit can be described in a variety of ways. For example, a circuit can
be described at the signal, digital, gate, or functional level. Each level hides details
- of the lower level.! A pictorial example appears in Figure 1.1. The higher levels of
description are more concise than the lower levels.

We are concerned with the signal, digital, and, to some degree, functional de-
scriptions of circuits. The signal level describes a circuit’s function in terms its
input and output signals. The digital level is similar to the boolean level, but with
the inclusion of the operand float and the function join. The functional level is
defined by the user.

The signal level views a circuit as a map from input signals to output signals.
The ssignals at state nodes are both input signals and output signals. A signal is what
appears on your oscilloscope when you stick the probe on a node. It is crucial that
signals, rather than voltages at some point in time, are employed as the primitive
values operated on by circuits. Signals encompass time, therefore any method for
abstracting signals into digital values must consider time.? If just voltage at some
point in time were used, then a separate mechanism would be required to handle
time. A separate mechanism would make the formalization of verification much

1The different descriptive levels do not form a linear hierarchy. For example, a digital design that
uses tristate buses cannot be abstracted to the gate level

3Even if an abstraction function ignores time, it must do so explicitly.
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harder. The following chapters discuss in detail the derivation of a circuit’s signal
behavior from its structure.

The digital level has three primitive values: 0, 1, (called boolean values) and
float. It has the standard boolean functions for operating on boolean values and
the operator join. Join is an n-ary function which returns float if all its arguments
are float, returns 1 if all the non-float values are 1, returns O if all the non-float
values are 0, and otherwise signals an error. Join and float are used to model
circuits containing tristate devices.3

The functional descriptive level is very abstract. Its primitive types and op-
erations are defined by the user. For example, the primitives may be numbers,
pointers, or sets. The corresponding operations might be addition, dereferencing,
or union. This level is characterized by being very close to the application the de-
signer is creating a circuit for. Specifying the behavior of a circuit at this level is
very concise and simple.

3.1 A Formal Model of Verification

We first introduce notation. Design is the object whose behavior is to be verified.
Its behavior in some domain D is written Bp(Design). Design’s inputs are are
written 1p = 1y,,. .+»yin, where ip € D", Its outputs are the result of applying
its behavior to its inputs: dp = Bp(Design)(ip) = O1ps+-++0m, Where 6p € DM,
The two domains of a given multilevel verification are called con and abs. Multi-
level verification relates B.on(Design) and Base(Design). We will often leave the
domain descriptor off the inputs and outputs and just write 3 and . When domain
descriptors are elided the con domain is assumed.

SPEC, the specification of Design, is what it to be proved about Design.* P
are the set of promises about how the design will be used, they restrict the class of
allowable inputs to Design. P corresponds to what we have been calling constraints.
Design is verified with respect to its specification SPEC and constraints P when
the verification condition

V;epn{( /&p(i)) = SPEC(?, BD(Deszgn)(i))}

is shown to hold.

3The hardware digital level is the abstraction level espoused in Introduction to VLSI Systems
[Mead/Conway]. This book provides a methodology of design (i.c., approved ways of connecting
parts together) which preserves the digital abstraction. For example, a designer who learned only
from their book would not create a bootstrap driver (Figure 12.1) or a three transistor ram (Figure
8.2).

‘SPEC hasa very specific form when multilevel verification is performed, as will be seen below.
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¢ Design is a circuit with one input ¢ and one out

put o ranging over time-varying
signals S. Bg(Design): S — S

B Design "

Vies {stable(s) = stable(o)}

¢ Design is a nand gate.
i1

> o
11—

i2

vfx."z&{true.]clu}{iz = (0 = not(il))}

® Design is an adder whose inputs i and output o range over the natural num-
bers N. In this example P is empty.

i1 ‘
AR o
] -

Vivien{o =iy + 15}

Figure 3.1: Example Verification Conditions. Thes

e are all examples of monolevel
verification.
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Examples of verification conditions are shown in Figure 3.1. The first example
checks properties about signals in to and out of a circuit. It specifies that if the
input signal is stable then so is the output signal. The next example is the statement
that if you hold one of the inputs to a nand gate high then the gate looks like an
inverter to the other input. The third example is the statement that some device
is an adder.

All of these are examples of what we call monolevel verification. In monolevel
verification only one level of behavioral description is handled. Monolevel verifica-
tion attempts to prove specific properties of the behavior of a device.

Multilevel Verification

In multilevel verification there are two different levels of description for Design,
B.on(Design) and By, (Design), which must be related. The relationship between
the two domains is given the by abstraction function ABS. It maps elements of con
into elements of abs. There are some elements of con for which ABS is undefined.
We make ABS a total function on con by adjoining a special “error element” 1, to
ABS’s range as a target for ABS when it would otherwise be undefined. Specifically,
ABS : con = abs + {L}. ABS is defined for some input + when ABS(i) € abs.
Any element of con for which ABS returns 1 is said to be tnvalid.

When discussing specific domains, ABS may be subscripted with its types.
For example, when the context isn’t clear, the abstraction function from signals
S to tristate values T will be written ABSs_r. Finally, we also have ABS (3) =
ABS (), -+, ABS(i,)

Given B.on(Design) and ABS, By, (Design) is projected from Beon(Design) by
the following formula:

Viccon {ABS(Bon(Design)(i)) = By, (Design)(ABS(1))}
wherever ABS(?) and ABS(B.on(Design)(3)) are both defined.

This relationship can be expressed as a commutative diagram (Figure 3.2). The
key point is that By, (Design) does not exist independently of ABS. For example,
if ABS returns L everywhere, then By, (Design) is nowhere defined.

We can now define multilevel verification. Given B.,n(Design) and of De-
sign’s intended abstract behavior J Biss(Design), we wish to show IB,,, (Design) =
B, (Design):

Definition: Multilevel Verification is Verification where the specification is of the

form
ABS(B.on(Design)(icon)) = I Bass(Design)(ABS(icon)).

where IBq,(Design) is the intended abs level behavior of Design and where both
sides of the equation are defined.



58 CHAPTER 3. MULTILEVEL VERIFICATION

. Baps (Design) A
|abs —» 0 abs
ABS ABS
A A
lcon > OCOH
B,,(Design)

Figure 3.2: The relationship between Beon(Design) and Bgy,(Design). Given
ABS and Beon(Design), Bas(Design) is projected from Beon(Design) accord-
ing to this diagram. The commutativity need only hold when ABS(i.) and
ABS(B,,,,,.(Design)(ico,,)) are defined.

Putting everything together yields

Viceom { /ﬁ, P(i) = ABS(B.on(Design)(i)) = IBy,(Design)(ABS(3))}

as the verification condition for multilevel verification.

The Role of P, and Automatically Generating Constraints

An important part of the above proposition are the promises P, also called con-
straints. P restricts the class of allowable inputs to a design. The constraints have
three roles:

1. To ensure valid inputs (i.e., that ABS(3on) is defined). These are called input
constraints and are assumed to be met.

2. To ensure valid outputs (i.e., that ABS (Babs(Design)(icon)) is defined). These
are called output constraints and can be automatically generated.

3. To specialize behavior. These are called logical constraints and must be pro-
vided by the designer.



3.1. A FORMAL MODEL OF VERIFICATION 59

Input constraints are assumed to be met by the environment in which a design
operates. Inputs are assumed to be valid because they either come from the outside
world, in which case we must assume they are valid, or they are outputs from other
verified designs, which guarantees they are valid. For example, consider a circuit.
Only inputs from off-chip must be assumed to be valid, all other inputs are valid
because they are outputs of verified subcircuits.

The constraints which ensure outputs are valid can be automatically generated.
Given a representation of ABS(Bab,(Design)(ico,,)) that makes error conditions ex-
plicit, constraints are generated which ensure the conditions causing the error condi-
tions never arise. For example, in the signal domain, this how threshold constraints
are generated. When an input signal suffering a threshold drop causes an invalid
output signal the signal will be constrained from suffering a threshold drop. The
constraint guarantees the output will not be invalid (at least from this particular
cause). An explicit example is presented below.

The constraints which specialize the behavior of a design must be provided by
the designer. They cannot be assumed or automatically generated. For example,
the logical constraints a designer must provide to Silica Pithecus to declare certain
inputs are mutually exclusive. The constraints specializing behavior must be em-
ployed when deriving a design’s behavior from its structure. Otherwise, behaviors
which don’t arise will be predicted.

The Big Picture

 Three major ideas lurk in the verification condition for multilevel verification. They
are:

¢ The relationship between different behavioral descriptions.
o The relationship between structure, function, and context.
¢ Intentional analysis.

The first item, the relationship between two different behavioral descriptions
has been discussed in detail.

The introduction of this dissertation made the claim that structure alone does
not determine function, but that structure and context do. Referring to the ver-
ification condition of multilevel verification, we can now state more precisely the
relationship be structure, function, and context: P is the context that the structure
Design must have to exhibit behavior I Bas(Design).

Intentional analysis says that what must be derived from a design’s structure is
not its behavior, but the abstraction of that behavior. That is, the important item
is not B,,n(Design), but ABS(B.on(Design) (%con))- As a result, the full behavior of
Design need not be generated. For example, the focus of Silica Pithecus’s behavior
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generation is not to generate signal behavior, but to generate constraints which
ensure that whatever the signal behavior is, it will be abstractable. Much of the
signal behavior is left symbolic (t.e., in terms of the names of signals rather than
the signal values themselves).

We now look at functional and digital verification in detail. Functional verifica-
tion will be presented first to get the reader accustomed to the ideas and notations.

3.2 Functional Verification

The application of the design (e.g., numbers, sets, pointers) determines the type of
abstraction and functional validation. A given design may support many domains
at once. There are two major problems associated with functional verification:
validation and accurate specification. In the following we will concentrate on just
the arithmetic domain (integers and addition) to illustrate functional verification.

Validation, the comparison of abstracted functional behavior and intended funec-
tional behavior, is difficult to do. A significant amount of knowledge of the func-
tional domain must be employed.’ Embedding in a verifier the knowledge needed
is hard because it is hard to a priors determine which knowledge will be useful;
embedding everything is virtually impossible.

The second problem with functional verification is accurately specifying be-
haviors. A specification must be well defined before validation can be done. For
example, consider the digital specification of a 16 bit adder for adding unsigned
_integers, called A and B. Each integer is represented as vectors of bits (the stan-
dard representation). There are several choices possible for handling overflow. The
overflow bit can be ignored, it can be appended to the sum to yield a 17 bit result,
or it can be returned separately to signal an error condition.

Even though each of the three methods of handling the overflow bits still results
in an adder, only one, the second, can be specified as 4 + B (for A,B < 218),
The others, which are far more common, must be specified differently, for example,
(A + B) mod 2 for the first method. (There’s even residual vagueness in the spec-
ifications given. The function + is polymorphic, its behavior depends on the types
of its operands. A more accurate specification is A+, B and (A +n; B) mod 218,)

Example: An Adder Cell

Consider a full adder (Figure 3.3). It has three inputs A, B, and Carryin, and
two outputs called Carryout and Sum. The Adder Cell is composed of gates,
therefore its concrete behavior is expressed in the boolean domain. We with to
show the adder cell adds numbers, therefore its abstract behavior is expressed in

SAlso, these domains are very complex and formulas in them may be undecidable.
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Figure 3.3: A Full Adder

the arithmetic domain. The two domains are called B+, for boolean values (true
and false) plus vectors of booleans, and W, for the whole numbers:

Deon = {true, false, [by,..., bn)}
Dgyy = W(Whole Numbers).

Our abstraction function is

ABS(true) =1
ABS(false) =0
- ABS([‘bo, aba) = Yoci<n 2iABS(bt')

The Adder Cell’s concrete behavior is
Bp.(Adder Cell) = Aabec. [sum(a, b, c), carry(a, b, c).

The Adder Cell only accepts Booleans, it does not accept vectors. This fact is
expressed by the input promise

Boolean(iy, 13, 13).
The Adder Cell’s behavior in the arithmetic domain is intended to be
IBw(AdderCelly =Aabc.a+b +c.
The Adder Cell’s specification is therefore
ABS((Aabc. [sum(a, b, c), carry(a, b, c)]) (31,12, 13))
=(Aabc.a+b+ c)(ABS(i,), ABS (i), ABS (is))
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and the verification condition for verifying the Adder Cell is
V-;eac {Boolcan(i;, iz, 33) =>

ABS((Aabc. [sum(a, b, c), carry(a, b, ¢)]) (41,13, 3))
=(Aabc. a+b+ c)(ABS(ir), ABS(iz), ABS(i5))}

Using beta-reduction, the above equation can be simplified to

Viep.{Boolean(iy, 15,15) =
ABS(sum(iy,i2,13)) + 2ABS(carry(i1,i2,i3))
= ABS(1)) + ABS(i3) + ABS(i3)}

This equation can be shown to hold by exhaustively enumerating all combina-
tions of the inputs, thereby verifying the design of the adder cell.

An example of hierarchical verification in the arithmetic domain appears in
Chapter 10. That example verifies a multi-bit adder built from Adder Cells.

3.3 Digital Verification

Digital verification verifies that the signal behavior of a circuit correctly implements
the intended digital behavior of the circuit. S , the signal domain, and T, the
tristate domain, are the two levels of behavioral description of digital verification.
As mentioned previously, signals are characterized as mapping time into a voltage
and a strength, S : time — (voltage x strength). The tristate domain is {false,
true, float}. We have ABSs.y : S — T. In this section we assume some
magic function which yields Bg (Design) for any Design. Later chapters discuss
how Bs(Design) is generated.

This section uses as examples only combinational circuits (¢.e., combinations of
gates) with electrically isolated inputs. This simplifies the abstraction function and
allows us to concentrate on the process and major ideas of digital verification. Later
chapters handle circuits with both state and non-electrically isolated inputs. Signal
strength is also ignored here as it is irrelevant for the verification of combinational
circuits.

The abstraction function we will use in the example is

ABS = A 5. VTB(voltage(s(t,)))
VIB=Av.v>35— true,
v < 1.5 — false,
L.
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Figure 3.4: A Minimum Sized Inverter. To ensure that the output of this device
is valid we must guarantee the input does not suffer a threshold drop. This device
has one input signal and one output signal.

ABS accepts a signal S and turns its final voltage into a boolean value using the
rule that voltages above 3.5 volts give true, voltages less than 1.5 volts give false,
and other voltages give 1.

Silica Pithecus is given the schematic Design, a specification of Design’s in-
tended tristate behavior I Br(Design), and the logical constraints on it Design. We
wish to show IBr(Design) = Br(Design). The verification condiction for digital
verification is :

Vies{ /}Dp(i) = ABS(Bs(Design)(3)) = IBr(Design)(ABS(3))}

where P = Input Constraints U Output Constraints U Logical Constraints.

The input constraints, which guarantee that inputs are valid, are assumed. The
output constraints, which guarantee outputs are valid, are automatically gener-
ated. Only one type of constraint, the threshold constraint, is needed for verifying
combinational circuits with isolated inputs. The logical constraints are given.

Example: A Minimally Sized Inverter

Consider a minimally sized inverter (Figure 3.4). We wish to prove that this device
computes the boolean NOT function. The inverter takes one input signal and yields
one output signal.

The procedure which generates Bs(Design) from Design uses the knowledge
that ABS only looks at the final value of a signal. The procedure yields

Bs(Inverter) =
Ain.
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At.
t= t! —
(voltage(in(t)) =5 — 1,
3.5 < voltage(in(t)) < 5 — 1.66,
1.5 < voltage(in(t)) < 3.5 — X,
0 < voltage(in(t)) < 1.5 — 5),
X

as the signal behavior of the inverter, This is read as follows. The Inverter takes a
signal :n and returns a signal, call it out. For any time not equal to ts, out returns
X, meaning an unknown voltage. When time is ty, out returns a voltage based
upon the circuit model (¢f. Chapter 2) and the input voltage. No more detail than
this is necessary to verify the inverter.

Inverter’s intended boolean behavior is

IBr(Inverter) = X a . NOT(a).

Finally, we have the constraint that Input is valid. The constraint guarantees that
Input’s final voltage is either above 3.5 volts or below 1.5 volts. The constraint is
written as

VV (voltage(in(t,;)))

where V'V stands for Valid Voltage.
All these formulas are wrapped together to create the verification condition for
. Inverter:

V,-es{VV(voltage(i(t,))) =

ABS((Ain.
At.
t = f —

(voltage(in(t)) =5 — 1,
3.5 < voltage(in(t)) < 5 — 1.66,
1.5 < voltage(in(t)) < 3.5 — X,
0 < voltage(in(t)) < 1.5 — 5),

X

(#))

=(la. NOT(a))(ABS(:))}
This equation can be simplified by using beta-substitution and distribution of func-
tions across the arms of the conditional. The result is

Vies{VV (voltage(i(t;))) =
voltage(i(t;)) =5 — false,
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3.5 < voltage(i(t;)) <5 — L,
1.5 < voltage(i(t;)) < 3.5 — 1,
0 < voltage(i(t;)) < 1.5 — true
= NOT(ABS(z)) }

The input constraint is used to eliminate the third clause.® It guarantees that
the predicate of the third clause will always be false. Throwing out the third clause
yields

Vies{VV (voltage(i(t;))) =
voltage(i(t;)) =5 — false,

3.5 < voltage(i(t;)) < 4.5 — 1,
0 < voltage(i(t/)) < 1.5 — true
=NOT(ABS(z))}.

The second clause shows an error condition which arises when the final value of
the input signal is between 3.5 and 5 volts. This condition is indicative of a threshold
drop. The error condition is prevented by generating the constraint that tnput
cannot suffer a threshold drop. The constraint is written no-drop(voltage(i(t,))).
This constraint subsumes V'V (voltage(i(t))). Posting this constraint yields

Vies{no-drop(voltage(i(t;))) =
voltage(i(t7)) =5 — false,

0 < voltage(i(t/)) < 1.5 — true
= NOT(ABS(z)) }

Because voltage(i(¢;)) = 5 implies ABS (¥) and it is the only clause to do so,
we replace the former with the latter. Similarly 0 < voltage(i(t;)) < 1.5 implies
NOT(ABS(t)) and it, too, is so replaced. These substitutions yield

Vies{no-drop(voltage(i(t,))) =
ABS(i) — false,

NOT(ABS(i)) — true

= NOT(ABS(7)) }

Finally, the upper conditional is recognized as an idiom for NOT and rewritten to

V;es{no-drop(voltage(i(t,))) =>
NOT(ABS(3))
= NOT(ABS(z)) }

which is true.

%In the implementation the constraint is used to prevent the third clause from even being generated.
It easier to explain how to get rid of something than to explain why it’s not created in the first
place.
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3.4 Summary

There are many levels of description for the behavior of circuits. Multilevel verifi-
cation is the successful comparison of the same behavior at two different levels of
description. The abstraction function was the key to relating the two behavioral
descriptions.

The verification condition for multilevel verification made explicit many informal
notions presented in the introduction of this dissertation. These include the relation-
ship between different behavioral descriptions, the relationship between structure,
function, and context, intentional analysis, the role of constraints, and a method
for automatically generating constraints.

An idealized scenario of how Silica Pithecus verifies a combinational circuit
was presented. This scenario stressed the abstraction of signals and the automatic
generation of constraints.



Chapter 4

State and Time

Circuits with state are more complex than combinational circuits. Unlike combina-
tional circuits whose outputs can be predicted solely from the final values of their
input signals, the outputs of circuits with state depends on their input signals’ en-
tire waveforms. This chapter motivates and explains the abstraction function used
by Silica Pithecus which enables Silica Pithecus to verify circuits with state. This
chapter also develop the input constraints that ensure that all output signals are
abstractable.

There are two properties we desire of the abstraction function. First, we want
the abstraction function to be deterministie. That is, it should guarantee that the
same inputs (after abstraction) yield the same outputs (again, after abstraction).

Second, we want to be able to symbolically predict, for all valid states and in-
puts of a circuit, the final state of the circuit. The abstraction function found will
therefore require that nodes storing state are not corrupted.! State and corruption
are technical terms. State is stored charge that affects the outputs of a circuit.
Corruption is not so easily defined, although it does correspond to the usual in-
tuitive idea. (Corruption is defined below.) There are pathological circuits that
are designed to corrupt state. Such circuits cannot be verified by Silica Pithecus.
Fortunately, such circuits are rare.

Just as the abstraction function given in the previous chapter required threshold
constraints to ensure outputs were valid, the abstraction function we are looking
for will require timing constraints to ensure outputs are valid. There are two types
of timing constraints, stable-after constraints and falls-first constraints. A
stable-after constraint requires a given signal to be stable after some other signal
is asserted. A falls-first constraint requires a given signal to fall before some
other signal changes. These are the only constraints needed to ensure stored charge

!The general, and correct, statement is that nets which store state are not corrupted. A node is
the degenerate case of a net with only one node. We will soon talk in terms of both nets and
nodes storing charge.

67
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Figure 4.1: A NAND Gate. When the upper transistor “stores® a 0 the charged
stored on the lower transistor can be safely corrupted (i.e., C2, can glitch).

is not corrupted. A control signal is a signal that must remain asserted once it is
asserted. That is, control(N ») is shorthand for stable-after(N,, N,).

Silica Pithecus treats state bits as both inputs and outputs of a circuit. The
abstraction procedure is applied not only to the output signals of a circuit, but also
to its state signals as well.? The signals of nodes which do not store state, do not
gate transistors, and which are not outputs of circuits are not abstracted. Such
nodes, called connection nodes, serve only as vias for information flow. Because
connection nodes are never abstracted, the charge on them can be, and often is,
freely corrupted.

This chapter has nine sections. The first section discusses locating a circuit’s
state nodes. The second section defines corruption. The third section develops the
idea of deterministic abstraction functions and shows why the abstraction function
of the previous chapter is nondeterministic. The fourth section gives the abstraction
function used by Silica Pithecus. The fifth section presents the representation which
makes invalid signals apparent. It also shows how constraints ensuring signals are
valid are issued. The following sections expand on the fifth section in different
ways. The sixth section discusses some implementation issues. The seventh section
presents a fairly complicated example. The eight section generalizes the methods
to handle circuits containing transistors with different (positive) thresholds. The
chapter ends with a summary.

4.1 Finding State in a Circuit

A node storing charge is a state node if its stored charge can affect a circuit’s output
behavior. State nodes appear in memory cells, shift registers, and latches.

2A state signal is the signal at a node storing state.
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Figure 4.2: A 4-way Selector. The charge stored on the internal nodes is often
corrupted during settling. The internal nodes are called connection nodes.

It is difficult to accurately assess which stored charge represents state. Data
dependencies allow what would otherwise appear to be state to be freely corrupted.
For example, consider an nMOS NAND gate with latched inputs whose upper tran-
sistor is “storing” a 0 (Figure 4.1). In this case the stored charge on the lower gate
can be corrupted (by C2, glitching) without affecting the outputs of the NAND
gate. Silica Pithecus does not consider such data dependencies when locating state.
If there is any point in time at which a node stores state, then Silica Pithecus con-
siders the node to store state at all times. This approach is overly conservative, but
no problems have yet been encountered using it.

State nodes are statically discovered by performing a recursive tree scan of the
net behavior equations of a circuit. The scan starts from the output nodes of the
circuit. For each node N in the scan, N’s possible nets are examined. If a net is
not driven then all its dominant nodes are state nodes. The dominant nodes of a
net are those whose capacitance overpowers® the capacitance of the other nodes in
the net. If a net contains an input node then the input node is the only dominant
node of the net. Except for nets containing inputs nodes, a net can contain an
arbitrary number of dominant nodes. The scan js repeated for each new dominant
node found and for each node mentioned in the predicates of N. The scan ends
when no new state nodes are found.

Nodes which don’t store state and whose signals don’t appear in the predi-
cates of net behavior expressions (i.e., don’t gate transistors) are connection nodes.
Connection nodes can be freely corrupted. For example, consider a 4-way selector
(Figure 4.2). Assume that the four inputs are driven and that both Ay(t;) and
By (t;) are not asserted. If, during a computation, A, and B, waver before returning
to being unasserted, then the internal nodes will be corrupted. This corruption has
no effect on the output of the selector.

3Silica Pithecus defines overpowers as ten times greater.
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4.2 Corruption

Let net be some final net.* We want to be able to predict the voltage of any node
in net solely from the initial state of the nodes in net. If net contains driven nodes
then the prediction can be based solely the driven nodes. If net contains no driven
nodes, then the final voltages can be precisely predicted from initial voltages if and
only if, during settling, no nodes in net shared charge with nodes not in net. When
a final net contains nodes which have shared charge with nodes not in the final net,
we say that the net has been absolutely corrupted. A later section discusses avoiding
corruption.

Example: Latched Inverter Cell

For example, consider again the Latched Inverter Cell (Figure 2.2). Its S node
has three possible nets, S], [S, Out, Vdd], and [S, Out, Vdd, Gnd], all of which
can be final.® When S,(t;) is either S, Out, Vdd] or [S, Out, Vdd, Gnd] Thevenin
equivalents are used to calculate the voltage at S. When Snet(ts) = [S], then absolute
corruption may have occurred. Consider the computation sequences of Figure 4.3.
In the upper figure S,,,,(t 1) (= [S]) is not corrupted because S has not shared charge
with any other nodes. (Although it began connected to other nodes, it did not share
. charge with them. Remember, it is assumed that circuits start out at steady state.)
In the lower figure [S] has been corrupted because it momentarily shares charges
with Gnd and VDD. Another path (not shown) which corrupts [S] is S, Vdd, Out]
— [S, Vdd, Out, Gnd] — [S]. In this case S shares charge with Gnd before being
isolated.

Absolute corruption is too strict a notion. Instead, a less strict form, simply
called corruption, is more useful. A final net is corrupted if its dominant nodes have
shared charge with nodes not in the net. Corruption differs from absolute corruption
in that the charge sharing of non-dominant nodes is not considered. The voltages of
nodes in a net whose non-dominant nodes have uncertain charge can be calculated
with sufficient accuracy for verification.

Dominant nodes cannot be allowed to share charge with any extra nodes, re-
gardless of their capacitance. They might lose enough charge a little at a time such
that an accurate prediction of voltages on final nets is impossible.

4Review the section on signals in Chapter 2 for the definition of final net.

5Not all of a net’s possible nets can be final. Steady state logical constraints dictate that although
certain nets can occur during settling, these nets can’t occur at steady state.
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Figure 4.3: Computation Paths. These are two possible computation paths of the
Latched Inverter Cell’s S node. In the upper path S begins connected to Vdd and
Out. Then the input to the inverter goes low and then Latch falls isolating S. In
the lower path S begins isolated. Then Latch goes high (while In is asserted) then
falls, leaving S isolated. The labels of the edges indicate which signal causes the
transition and the signal’s direction of change.




72 CHAPTER 4. STATE AND TIME

Lateh

tn . Qut o 3
Experiment 1 ; Exueniment 2
Trial 1 Trial2 ' Trial3 Trial 4
] 1 1
n 3 volts I l~ I-—.-—. ———
Qvolts 9 9 - ..
Svolt ! —
Latch volts ] \ ) 1 . ‘ ;
0 volts 9 9 | D -
! i 1
s S voits
e )
[ 0!
O volts -\—O
co

Strength(S)

|
{
i
1
I
Figure 4.4: Non-deterministic Abstraction. This figure depicts two different exper-

iments (trials 1 and 2 trials 3 and 4). Each experiment shows equivalent inputs
giving different outputs. “N. on-deterministic behavior” refers to this phenomenon.

4.3 Deterministic and N ondeterministic Abstrac-
tion Functions

From a theoretical viewpoint, the major problem of the abstraction function of the
previous chapter, A s, VTB(voltage(s(t/))), is that it projects a non-deterministic
Br. A behavior is non-deterministic when the same inputs can give different out-
puts. Two idealized experiments with the Inverting Latch (Figure 2.2) will make
this clear. Consider Figure 4.4, which shows four different sets of inputs applied to
the Latched Inverter Cell, and shows the S, which results from the inputs. Both
experiments show the boolean behavior of this device giving different outputs for
the same inputs. In the first experiment ABS(In,) and ABS(Latch,) are both 0,
but ABS(S,) is either 1 or 0. In the second Pair of experiments, ABS(In,) is 1 and
ABS(Latch,) is 0, but again ABS(S,) is either 1 or 0.

There are two ways to project a deterministic By. The first is to have the
abstraction function differentiate between inputs which cause different outputs, i.e.,
guarantee the inputs will be different when the outputs are different. The second,
and more natural method, is to declare certain output signals to be invalid. Silica
Pithecus takes this approach. Its abstraction function will declare S, in trials 1 and
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4 to be invalid. As a result, when verifying the circuit, Silica Pithecus constrains
Latch, from glitching and constrains In, from changing before Latch, falls. These
constraints prevent the invalid signals from occurring.

Circuit designers will recognize the first pair of runs as exhibiting what is known
as a “hazard” and the second pair of runs as exhibiting a “race.” Hazards occur
when control signals go through too many transitions during settling. The standard
example (exhibited in the figure) of a hazard is a control signal which begins at 0 and
ends at 0, but goes through two transitions (up and down).® Because the transitions
of a control signal affect a circuit as much as the value of a control signal, the extra
transitions cause the circuit to end up in the wrong state.

Races occur in MOS technologies when the signal isolating an undriven net and
the signal changing the value of the net both change during the same computation.
The order in which the signals change affects the final state of the net. If the net
is first isolated, its final value will be different than if it is changed before being
isolated. For example, Latch, of the Latched Inverter Cell must fall before In,
changes in order to isolate [S] before it is changed by In,. When In, and Latch, can
change on the same computation there is a race condition.

Hazards and races cause corruption. If hazards are outlawed, and races carefully
ordered” then corruption will not occur and a deterministic Br results. The ordering
of races is presented below. The signals which Silica Pithecus declares to be invalid
are precisely those which represent (potentially) corrupted state. ‘

4.4 The Abstraction Function

The abstraction function has the desirable properties that it projects a deterministic
Br and it places timing constraints on inputs to ensure outputs are valid.

4.4.1 Valid Signals

The rules for valid signals are presented below. If all output signals (state signals
are considered output signals) are valid then no state nodes are corrupted. A signal
is valid when

o Its strength does not decrease after its voltage changes.®

I often think control signals are called such not because they control things, but because they
themselves must be controlled.

"Dictating which of two signals in a race must change first orders the race. Timing constraints
order races.

8This is not the least restrictive rule for ensuring freedom from corruption. There are a range
of rules, from simple to complex, that can be used for avoiding corruption. Simpler rules are
easier to check than complex rules, but they give more false negatives than complex conditions
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* Its final voltage is less than 1.5 volts or more than 3.5 volts.

The two rules are called the strength rule and voltage rule, respectively.

Sources of corruption can divided into two classes: Momentary Ezpansion Cor-
ruption, and Driven Corruption. Momentary Expansion Corruption occurs when a
net expands and then contracts. Except when the net contains driven nodes both
before expanding and after contracting, the expansion and contraction shows up as
an increase in strength followed by a decrease in strength. An example of this type
of corruption is shown in the lower half of Figure 4.3. We conservatively assume
that the voltage of signal always changes when its strength increases.® The Strength
Rule prevents momentary expansion corruption.

The stable-after constraint is used to prevent momentary expansion corrup-
tion. It prevents a net from shrinking after it has expanded. The form of the
constraint is stable-after(X,,Y,), which means that after X, is asserted, Y, must
remain stable.!? It also implies that Y, must be stable as X, is asserted (i.e., as X,
rises, in nMOS). control(x,) is shorthand for stable-after(x,,x,).

Driven Corruption occurs when the initial strength of a signal is co and the
voltage of the signal changes before the strength of the signal becomes finite. For
example, considering the Latched Inverter’s S node again, the sequence [S, Vdd,
Out, Gnd|, S, Vdd, Out), [S], is an example of Driven Corruption. Driven Corrup-
tion is prevented by the Strength Rule which dictates that once a signal’s voltage
~changes the signal’s strength cannot decrease.

The falls-first constraint is used to prevent Driven Corruption. It ensures
that strength falls before voltage changes. falls-first(X,,Y,) means that if X,
must fall before Y, changes.

The two constraints, falls-first and stable-after, are collectively called
timing constraints. The two constraints collectively outlaw hazards and order races.
Races are ordered such that undriven nets are isolated before they are changed. We
call the ordering of races prescribed by the Strength Rule the natural ordering.

do. This rule was chosen as the simplest rule which verifies most.circuits. Interested readers can
invent more complex rules on their own. Silica Pithecus is as accurate as possible with doing a
data-dependent analysis.

®Heuristic data dependent analysis could be performed to allow Silica Pithecus to be less conser-
vative. This is discussed in more detail in Chapter 6.

1°Bouncing can be allowed by treating the assertion of X, as taking some finite amount of time
rather than the assertion being instantaneous. If we take “after X, is asserted” to mean “after X,
is finished being asserted® and require Y, to be stable while X, is being asserted, then bouncing
can be fit into the model.
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4.5 Issuing Constraints

The representation of signal behavior makes error conditions (s.e., invalid signals)
explicit so that constraints guaranteeing valid signals can be automatically gener-
ated. The representation is based on computation paths and net transstion graphs.
Constraints are generated directly from each state node’s net transition graph.

Unlike threshold constraints which always apply, timing constraints condition-
ally apply. That is, only under certain conditions must X, fall before Y, or must
X, be stable after Y, is asserted. Associated with each timing constraint is a pred-
icate on the state of the circuit which controls the application of the constraint.
Only when the predicate is true must the constraint hold. For example, in the
scenario of the first chapter had the constraint Latch, = overpowers([In|, ,[S],).
The predicate is “Latch,” and the constraint itself is “overpowers([In|, ,[S],).”

The elements of the predicates are boolean signals, rather than boolean values,
and are meaningless unless unless their time component is quantified. We conser-
vatively state that a predicate is true if there is any moment time when it is true.
That is, for some predicate P, P = 3¢[P(2))-

This section has two parts. It first discusses computation paths and net transi-
tion graphs. It then gives the algorithms for generating timing constraints.

4.5.1 Computation Paths and Net Transition Graphs

Computation paths and net transition graphs are formal tools used by steady state
. behavior validation. A computation path is the list of nets, in order, that a node
is a member of during a computation. Figure 4.3 shows two different computation
paths for the S node of the Latched Inverter Cell (Figure 2.2). In the upper example
S begins connected to Vdd. Then Latch, falls isolating S. In the lower example S
begins isolated. Then Latch, goes high (while Input, is high) and then low, isolating
S again. The labels of the edges indicate which signal causes the transition and its
direction of change. For transistors that turn on, the label also includes a predicate
describing the net that merges with the net undergoing the change. For example,
the first edge of the lower path indicates not only that Latch, is asserted, but that
it does so when In, is asserted. Had In, not been asserted, the resulting net would
not have included Gnd.

The possible computation paths of a given node are formalized as paths through
a net transition graph. A node undergoes a net transstion when the net it is a
member of changes due to some transistor changing state. For example, referring
again to Figure 4.3, the change from net [S] to net [Gnd Vdd Out S| is a net
transition. The vertices of a net transition graph for node N correspond to the
possible nets of V, and the edges correspond to net transitions of N.!! The vertices

1To avoid ambiguity a net consists of nodes and conducting transistors whereas a graph consists of
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Figure 4.5: The Net Transition Graph of the S node of Latched Inverter Cell.

are labelled with the predicate selecting the net corresponding to the vertex. The
edges are labeled as they are labelled in computation paths. A computation path
is a traversal through a net transition graph. :

Each vertex in a net transition graph is annotated with the strength of the signal
it corresponds to. A transition in the net transition graph from a vertex to a less
strong vertex is called a downward transition, to a higher strength vertex is called an
" upward transition, and to an equal strength vertex a sideways transition. Finally,
two vertices A and B are neighbors if there is some path of sideways transitions
connecting them.

For example, consider again the Latch Inverter Cell (Figure 2.2). The net be-
havior equation of its S node is

Snet = A t . Latchy(t) A Iny(t) — (S Vdd Out Gnd],
Latchy(t) A NOT(In,(t)) — [S Vdd Out|,
NOT(Latchy(t)) — [S]

The net transition graph (Figure 4.5) for the S node of this cell has three vertices
corresponding to S’s three possible nets. Because each possible net can be trans-
formed by a single transistor state change into one of the other possible nets, there
are six edges in the graph. There are two downward edges for when Latch falls, and
two corresponding upward edges, for when Latch rises. The are two sideways edges
corresponding to In’s two states.

vertices and edges (also called arcs).



4.5. ISSUING CONSTRAINTS 7

(X] (Xv] (X]
Latch ~ Lateh Latch
! J
— X, Latch? Y = X Latchi L X

e R e e L7

[XY] (XY2] Y 2]
L1 L2 L1 L2 L1 L2
- ] I e T o B S oy ERNY
X1 [XY] (Xv] X1
L1 L1 L1 L1
L L L L
hxl L1f vt:-bxll-zﬁ--’-“"v[ll :'x' L2, :]xl
—_— — —_—
T T T T

. L2 L2 L2 L2 '
Figure 4.6: Examples of the three ways a net can expand then contract. In the first

diagram an upward transition is followed by a downward transition where both
transitions are caused by the same transistor. In the second diagram an upward
transition is followed by a downward transition where the two transitions are due
to different transistors. In the third diagram an upward transition is followed by
two sideways transitions, then a downward transition is made.

4.5.2 Ensuring Strength Never Decreases After Increasing

stable-after constraints ensure a signal’s strength never decreases after increas-
ing. When a signal’s strength decreases after increasing the signal has undergone
Momentary Expansion Corruption.1? Momentary expansion corruption is avoided
by forbidding downward net transitions to follow upward net transitions.

The ways a signal’s strength increases and then decreases can be divided into
three classes (Figure 4.6). The first occurs when a control signal (defined below) is
asserted then unasserted (this is called a hazard). The second cause of momentary
expansion corruption occurs when an upward transition is followed by a downward
transition where the upward and downward transitions are caused by different sig-

12We are punning between corruption of nets and corruption of signals. We say N, is corrupted if
and only if N is a dominant node of a corrupted net.



78 CHAPTER 4. STATE AND TIME

nals. The third cause of momentary expansion corruption occurs when an upward
transition is followed by some number of sideways transitions then followed by a
downward transition.

All sources of momentary expansion corruption are avoided by the following
requirement.

Rule 1: All signals causing downward transitions from a vertex V
cannot change after any signal causing an upward transition into V or
into a neighbor of V is asserted.

stable-after constraints, which ensure this rule is always met, are generated
by the following algorithm. The algorithm is explained using the notation “P|4”
which means “The predicate P simplified under the assumption that A is asserted.”
For example, assuming that b is asserted by making it true, (and a b ¢) |b reduces
to (and a c), and b|b reduces to true.

Algorithm Generate stable-after Constraints:
Inputs: The net transition graph G of node N.
Outputs: The stable-after constraints which ensure N, does not undergo Mo-

mentary Expansion Corruption.
Method:

For each vertex V in G do
Let P be the predicate choosing V.
For each downward outgoing edge D from V do
Let SD, be the signal causing D.
For each upward edge U into V or into a neighbor of V do
Let SU, be the signal causing U.
Issue the timing constraint
“P|SU, = stable-after(SU,, sD,).”

For example, consider again the Latched Inverter Cell (Figure 2.2), and the net
transition graph of its S node (Figure 4.5). The above algorithm generates the
following two stable-after constraints on Latch:

¢ Iny — stable-after(Latch,, Latch,)
* -In, — stable-after(Latch,, Latch,).

These two constraints are collapsed into stable-after(Latch,, Latch,), which is
then simplified to control(Latch,). A control signal is a signal that, once asserted,
must remain asserted.
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Figure 4.7: Voltage Changes. Under pessimistic enough conditions, asserting C1
can pull X low.

4.5.3 Ensuring Strength Never Decreases After the Voltage
Changes

As mentioned above, Driven Corruption occurs when the initial strength of a signal
is co and the voltage of the signal changes before the strength of the signal becomes
finite. For example, considering the Latched Inverter (Figure 2.2) again, S, under-
goes Driven Corruption when the computation path [S, Vdd, Out, Gnd] — [S, Vdd,
Out] — [S] oceurs. In this computation Path S, starts out at 0 but goes to 1 before
being isolated. '

Driven Corruption is avoided by requiring a signal’s strength to decrease before
the signal’s voltage changes. Unfortunately, a completely strict enforcement of this
- will make it impossible to verify many reasonable circuits. A strict interpretation
of this rule will disallow driven nets to expand before contracting. For example,
consider a gate routed to two latches (Figure 4.7). Assume that C1,(¢;) is unasserted
and C2,(t;) is asserted. Also assume that C1, and C2, can change during the same
phase. If C2, becomes unasserted before C1, is asserted, no problems arise. If C1,
goes high first, however, then X, may suffer a large voltage change depending on
the capacitance of Y and the driving force of the gate.

Circuits such as this are common. We therefore ignore the effects of purely
capacitive nodes and declare that voltage changes do not occur between comparable
driven nets. Two nets are comparable if and only if they be transposed into each
other by adding and subtracting undriven nodes from their periphery (Figure 4.8
shows an example). We now state the rule that is used to prevent Driven Corruption.

Rule 2: Signals causing downward net transitions from a driven
vertex V' must change before signals which cause sideways transitions
to incomparable nets change.

The following algorithm enforces Rule 2 by issuing falls-first constraints.
Algorithm Generate falls-first Constraints:
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Figure 4.8: Comparable and Incomparable Nets. Two driven nets are comparable
if they can be transposed into each other by adding and subtracting undriven nodes
at their periphery. The two nets in the first half of the figure are comparable. The
two nets in the bottom half are incomparable.

Inputs: The net transition graph G of node N.
Outputs: The falls-first constraints which prevent Driven Corruption of N,.
Method:

For each vertex V in G do
Let P be the predicate choosing V.
If V corresponds to a driven net then
For each downward outgoing edge D from V do
Let SD, be the signal causing D.
For each sideways edge U of out of V into an incomparable vertex
Let SU, be the signal causing U.
Issue the constraint “P A =SD,(t;) = falls-tirst(SD,,SU,).” B

For example, consider again the Latched Inverter Cell’s S node and its net
transition graph (Figure 4.5). The above algorithm generates the following two
falls-first constraints.

e In, A Latch, A-Latchy(¢;) = falls-first(Latch,, In,)
e —Iny A Latch, A=Latchy(t;) = falls-first(Latch,, In,)

These two constraints are merged to yield

Latch, A-Latch,(t;) = falls-tirst(Latch,, In,).
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The predicate is abbreviated falls(Latchy) to yield the final form of the constraint:
falls(Latch,) = falls-first(Latch,, In,). This constraint prevents the voltage
on S from changing before S is isolated.

Figure 4.9 restates the restrictions and merges the two algorithms together.

4.6 Implementation Issues

There are two notes on the implementation that bear mentioning. First, Silica
Pithecus does not perform a timing analysis. It therefore cannot determine the
relative ordering of changes in signals. Second, the designer envisioned data depen-
dencies between control signals are usually much coarser than the data dependencies
embedded in constraints. This observation is exploited by trying to prove timing
constraints hold under coarser data dependencies than under which they are pred-
icated. This results in faster, simpler proofs.

Silica Pithecus does not perform a timing analysis; it cannot prove that some
signal changes before some other signal. Therefore Silica Pithecus cannot verify
circuits relying on races. Silica Pithecus proves that Y, falls before X, changes
(i.e., satisfies falls-first constraints) by showing that X, is stable when Y, can
fall. Likewise, Silica Pithecus proves that X, doesn’t change after Y, rises (s.e.,
satisfies stable-after constraints) by showing that X, is stable when Y, can rise.
The lack of a timing system leads to false negatives. These false negatives can
be avoided by incorporating a timing system into Silica Pithecus. However, since
“circuits which rely on races are rare, this is not a major drawback.

The dependencies intended by the designer are simpler than the data dependen-
cies in timing constraints. A designer often intends a restriction on a signal to hold
under all conditions, but the timing constraints only restrict the signal under a few
specialized conditions. For example, where timing constraints require a signal to be
a control signal only at certain times, a designer often intends the signal to always
be a control signal. A second example is a signal which constraint generation re-
quires to be a control signal during computation C, but which the designer intends
to be stable during C.

Silica Pithecus exploits the simpler data dependencies of real designs by attempt-
ing to satisfy timing constraints using simpler (more restrictive) data dependencies
than they are predicated under. This is advantageous because it is easier to sat-
isfy timing constraints using simpler data dependencies. For example, when Silica
Pithecus has to prove that Y, is a control signal on P, it first tries to show that Y,
either is stable on P or that Y, is always a control signal. Only if these attempts
fail does it try to prove Y, is a control signal on P.

When proving some restriction is true on P Silica Pithecus will sometimes try
to prove the restriction holds even when P is false. For example, often the only
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Rule 1: All signals causing downward transitions from a vertex V cannot change
after any signal which causes an upward transition into V or into a neighbor
of V is asserted.

Rule 2: Signals causing downward net transitions from a driven vertex V must
change before signals which cause sideways transitions to incomparable nets
change.

Algorithm GENERATE TIMING CONSTRAINTS:
Inputs: The net transition graph G of node N.

Outputs: The constraints which ensure a signals strength does the right thing.
Method:

For each vertex V in G do
Let P be the predicate choosing V.
For each downward outgoing edge D from V do
Let SD, be the signal causing D,
[Generate stable-after constraints.
For each upward edge U into V or into a neighbor of V do
Let SU, be the signal causing U.
Issue the constraint
“P|SU, = stable-after(SU,, SD,).”
[Generate falls-first constraints.|
If V corresponds to a driven net then
For each sideways edge U of out of V into an incomparable vertex
Let SU, be the signal causing U.
Issue the constraint
“P A -SDy(ty) = falls-tirst(SD,,SU,).” W

Figure 4.9: The Restrictions on Net Transitions and Their Implementation.
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Figure 4.10: An OR Gate Implemented in CMOS Domino Logic. Node Internal is
precharged on ¢;. Enable goes high on ¢;. A, and B, must be stable when Enable
goes high.

relevant term of P is that some clock is asserted. If the clock is a.éserted, then the
restriction will hold regardless of whether P itself is true.

4.7 A Complex Example

As a more complex example consider an OR gate designed with CMOS Domino
Logic [Krambeck| (Figure 4.10). It is used as follows, On one phase Precharge, is
~ held high and enable, is held low. During this time A, and B, are free to settle.
On the next phase Precharge, is low while Enable, is high. During this time A,
and B, are stable. The relationship between signals informally stated above are
automatically discovered, and stated as timing constraints.

Consider now the net transition graph of the Internal node of this device (Figure
4.11).'® This graph has five vertices and twelve transitions. The timing constraints
generated for this graph appear in Table 4.1. The numbers in this figure correspond
to the numbered vertices in the OR gate’s net transition graph.

The timing constraints are summarized and compared against the designer’s
restrictions in Table 4.2. The only restrictions that match completely are the ones
requiring Precharge, to be a control signal. The other timing constraints depend on
more factors than the designers restrictions. The designer intends A, and B, to be
stable when Precharge, is low, they only change when Precharge, is asserted. The
timing constraints only require A, and B, to be control signals when Precharge,

13The graph in the figure is not the real graph, which has 11 vertices and approximately 40 arcs.
The graph shown was generated from the real graph by merging vertices whose associated nets
had the same nodes. This causes multiply connected nodes to be represented by only one vertex
rather than three.
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Figure 4.11: The Net Transition Graph of Internal Node of the CMOS Domino

Logic Or Gate. This is an abbreviated form of the real net transition graph. In this
graph vertices with same set of nodes are merged.
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1. NOT(A,) A NOT(B;) — control(Precharge,)
2. A,vB, > control(Precharge,)

3. A,vB, - control(Enable,)
Enable, — control(A,) and control(B,)
Ay — stable-after(Enable,, A,)
By — stable-after(Enable,, B,)
Enable, — stable-after(A,,Enable,)
Enable, — stable-after(B,, Enable,)

4. NOT(As) A NOT(Precharge,) — control(B,)
NOT(B,) A NOT(Precharge,) — control(A,)

Table 4.1: Timing Constraints for the Domino Logic OR Gate.

is low, rather than to be stable. Also, where the designer intends Enable, to be a
control signal, the timing constraints only force it to be a control signal when A, or
Bb is high.

4.8 Generalizing to Multiple Types of Transistors

This section generalizes the ideas to include circuits containing multiple types of
transistors. The theory readily extends to transistors which conduct when their
gates are “off” (at O volts) such as p-channel transistors, (Silica Pithecus only
handles nMOS circuits with only one type of positive threshold transistor.)

The theory does not readily handle circuits containing transistors with different
positive thresholds. In Particular, it doesn’t correctly handle multiply connected
nodes where the redundant transistors have different thresholds. Nodes X and Y
are multiply connected when there is more than one path of conducting transistors
between them. The transistors which make the multiple paths possible are called
redundant.

For example, consider a cMOS transmission gate (Figure 4.12). This device is
used as a threshold drop free switch [Weste]. When A, is asserted both transistors
are conducting. If X is at Vdd, Y will eventually be pushed to Vdd across the p-
channel transistor. If X is at Gnd, Y will eventually be pulled down to Gnd across
the n-channel transistor. If both transistors are conducting (which occurs when
A, changes value) there are two connections between X and Y. If either transistor
stops conducting, X and Y will still be connected because the other transistor is
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Generated Constraints Designer Restrictions
control(Precharge,). Same
Enable, — control(A,) —Precharge, — stable(A,

As A By A-Precharge, — control(A,)
stable-after(Enable,,A,)
stable-after(A,,Enable,)

Enable, — control(B,) —Precharge, — stable(B,)
Ay A By A-Precharge, — control(B,)
stable-after(Enable,,B,)
stable-after(Enable,,B,)

Ay VB, —» control(AEEble.) control(Enable,)

Table 4.2: Comparing the Designer Restrictions and the Generated Restrictions.

il

X [T Y

LT
Al i

- Figure 4.12: ¢tMOS Transmission Gate. This is an example of a circuit which gives
rise to multiply connected nodes. This circuit occurs frequently in practice.

still on. Therefore, there are three configurations of the transistor states yielding a
net containing X and Y.

As an example of circuit where multiply connected nodes cause problems, con-
sider the circuit of Figure 4.13. In this figure there are two types of positive threshold
transistors. The transistor gated by B is of one type and the other transistors are of
the other type. The transistor gated by B has a threshold (called Thresh-B) which
is lower than threshold of the transistor gated by A (called Thresh-A). Assume that
all transistors are initially off and that N is at ground. If the circuit undergoes the
transitions A high, B high, B low, my method will calculate the wrong voltage for
N, namely VDD — Thresh-A. The correct voltage is VDD — Thresh-B. This bug
arises because the original rules did not account for different threshold drops.

The correction is to treat some sideways transitions as if they were upwards
transitions. This is done by assigning to vertices secondary numbers based on the
types of transistors in them. These secondary numbers can be used to order vertices
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Figure 4.13: A Circuit Containing Two Types of Positive Threshold Transistors.
All the transistors are n-channel. The threshold of the transistor gated by A is
thresh-A and the threshold of the transistor gated by B is thresh-B. Thresh-B
is smaller than thresh-A.

Just as strength is used to order vertices. Transistors with smaller thresholds would
have higher secondary numbers associated with them. With this subnumbering
scheme the original rules of computation paths can still be used. Vertices would
first be ordered by strength and secondarily by types of transistors.

4.9 Summary

Signals are abstracted into digital values by first making sure they are valid, and
then turning their final values into digital values. A signal N, is valid when N,(t,)
is not corrupted.

An explicit representation for signal behavior, called net transitions graphs was
developed. This representation makes invalid signals explicit. It also yielded a fast
and effective method for automatically generating constraints which guarantee all
output signals will be valid.

The method was extended to handle all MOS processes. The extension only
required a more precise ordering of the possible nets of a circuit.
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Chapter 5

Non-isolated Inputs

This chapter confronts non-electrically isolated inputs. The Inverting Latch of
Chapter 1 is an example of a circuit with a non-electrically isolated input. When
Latch is asserted, the input node In is connected to node S. This connection af-
fects the input signal applied to In. There are two ramifications of non-electrically
isolated inputs. The first is ensuring information flows from an input node into a
circuit, rather than vice versa. The second is augmenting the generation of timing
constraints to accommodate nets which contain input nodes.

Another type of constraint, called a flow constraint, is needed to ensure that
input nodes act as inputs. An input node N of circuit C acts as an input only when
the signal S applied to N is not materially changed by C. S is materially changed
_by connection to a C when the abstraction of S when it is connected to C and the
" abstraction of S when it is not connected to C differ. When S is materially changed
by C then N is acting as an output node. Input signals are usually materially
changed by momentary connections to driven nodes and by charge sharing bugs.

This chapter has two sections. The first section discusses flow constraints. The
second discusses issuing timing constraints for nets which contain input nodes.

5.1 Flow Constraints

Flow constraints dictate that signals must flow into input nodes and out of output
nodes. A node acts as input of circuit C only when signals flow into C circuit
through it. Likewise, a node acts as an output of circuit C only when signals flow
out of C' through it. The generation of flow constraints requires access to a circuit’s
intended digital behavior. The intended digital behavior defines which nodes are
inputs and which are outputs.

For example, consider again the Inverting Latch of Chapter 1. Assume that the
capacitance of its S node is 100pf. Further assume that its Input node is connected
to a precharged bus whose capacitance is only 50pf. When the Latch goes high,

89
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signal flow will be from S to Bus, thereby changing Bus. This change is contrary
to the designer’s intentions of Bus changing S. In this scenario, Input is acting as
an output node, not as an input node.

Signal flow is constrained by the overpowers constraint. There are two ways a
signal value X can overpower a signal value Y: when X’s strength is sufficiently
greater than Y’s strength,! or when X and Y have the same logical value. The first
condition can be checked statically without recourse to the “run-time” behavior of
a circuit. A signal X overpowers a signal Y when V¢ [overpowers (X, (t), Y,(t))].

Flow constraints can be formally motivated by changing the abstraction func-
tion. The new abstraction function rejects input signals which were materially
changed by the circuit to which they were input. We will not develop the formal as-
pects of motivating flow constraints. The interested reader is encouraged to conduct
this investigation on her own.

The following notation is used in this chapter. Let Net = [Ny, ..., N,] be a net.
Nety, represents the signal value computed by Net at node N;.

5.1.1. Input Nodes

Node N acts as an input node to circuit C when the signal applied to N by the
“outside world” overpowers the signal applied to NV by C. Let T be the transistor
gating the V and O be the node on the other side of the transistor from N. A node
acts as input node when, for any time ¢, the net on N’s side of the transistor (called
NNET) overpowers the net on O’s side of the transistor (called ONET). Therefore, a
~.flow constraint for input node N has the form P = overpowers(NNETy,ONET,)
where P is the predicate which causes NNET to be on one side of T and ONET
to be one the other side of T. When flow constraints are generated NNET always
has the form [N]. When flow constraints are propagated (cf. Chapter 11) NNET
becomes a net.

For example, consider the Inverting Latch again. Its In’s net behavior equation
is

Innee = A t. Latchy(t) — [In S],
NOT(Latch,(t)) — [In].

For In to be an input node [In],, must overpower [S]s whenever Latch, is true.
Because of this, the constraint

Latch, = overpowers([In|,,, [S];)

is generated. (This is the third constraint of the four constraints generated for the
Inverting Latch.) In general, an input node having N clauses in its net behavior

1Silica Pithecus defines “sufficiently greater® as an order of magnitude greater,
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expression will generate N — 1 flow constraints. The following algorithm generates
flow constraints for input nodes.

Algorithm Generate Flow Constraints for an Input Node I:
Inputs: I's net behavior NB.

Outputs: The flow constraints ensuring I acts as an input node.

Method:

For each clause C of NB do
Let Net be the consequent of C and P be the predicate of C.
Let T be the transistor gating 1.
Let O be the node on the other side of T from I.
Let ONET be the net on O’s side of T.
Issue the flow constraint “P = overpowers([I];, ONeto)”. l

5.1.2 Output Nodes

Node N acts as an output node of circuit C only when information flows out of
C through N. This is the inverse of an input node. Using the same notation
as for flow constraints on input nodes, flow constraints on output nodes look like
P = overpowers(ONET,, NNETy). '

Output constraints are not explicit. When an output node connects with an
input node, satisfying the flow constraints of the input node automatically satisfies
the flow constraints of the output node. When two or more output nodes connect,
Silica Pithecus checks for conflicts: when two different devices can simultaneously
drive the same node to different values an error is signalled.

5.1.3 Buses

Besides input and output nodes, circuits also use bus nodes. A bus node sometimes
acts as an input node, and sometimes acts as an output node. The methods above
do not work for bus nodes because they are not purely either input or output nodes.
The solution is to examine the intended digital behavior to determine when a bus
"node is to act as an input and when it is to act an output. Flow constraints are
then generated to make buses act appropriately.

3.2 Timing Constraints

When a net NET contains an input node special care must be taken to ensure the
input node doesn’t corrupt NET. If the input node changes value before being shed
from NET then NET may be corrupted. Extra timing constraints (specifically,
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falls-first constraints) must be generated to avoid this form of corruption. The
following algorithm is used to generate these constraints.

Algorithm Generate More falls-first Constraints:

Inputs: The net transition graph G of node N.

Outputs: The falls-first constraints which prevent Input Node Corruption of
N,.

Method:

For each vertex V in G do
Let P be the predicate choosing V.
If V contains an input node I then
For each downward outgoing edge D from V to W do
Let 8D, be the signal causing D.
If W does not contain I then
Issue the constraint “P A -SD,(t,) = falls-first(SD,,I,).” B



Chapter 6

Silica Pithecus

Silica Pithecus is the implementation of my theory of multilevel verification of MOS
circuits. This chapter discusses the structure of Silica Pithecus and presents parts
of Silica Pithecus undeserving their own chapter. '

The major operations performed by Silica Pithecus depend on whether it is
performing flat verification or hierarchical verification. The primary operations of
Silica Pithecus when performing flat verification are constructing a representation
of signal behavior that makes invalid signals apparent, and issuing constraints which
ensure those invalid signals never arise. The primary operation of Silica Pithecus
when performing hierarchical verification is processing constraints to show they

hold.
’ Common to both forms are the inputs to Silica Pithecus, namely the specifica-
tion of digital behavior and the specification of circuit structure. Digital behavior is
specified as a program written in a programming language supplied by Silica Pithe-
cus. This language has an interpreter, specifications can be debugged by executing
them. Chapter 7 discusses in detail the specification of digital systems and the moti-
vation for Silica Pithecus’s method of specifying digital behavior. The specification
of circuit structure is not presented in this dissertation, but the representation of
circuit structure is.

This chapter has three sections. The first section discusses the structure of Silica
Pithecus. The representation of circuits is presented in the second section. The last
section describes how Silica Pithecus compares digital formulas.

6.1 The structure of Silica Pithecus

The structure of Silica Pithecus depends upon the type of verification it is perform-
ing. We first discuss Silica Pithecus’s operation during flat verification, then its
operation during hierarchical verification.
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Figure 6.1: Outline of Silica Pithecus When Performing Flat Verification.
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When performing flat verification Silica Pithecus has five phases (Figure 6.1).
They are:

Generation of net behavior. Net behavior, introduced in Chapter 2, is a rep-
resentation of a circuit’s dynamic structure. Net behavior makes explicit the
timing constraints needed to ensure state is not corrupted. A hierarchical
method is used to generate net behavior. Chapter 8 presents the details of
generating net behavior.

Issuance of timing and flow constraints. The algorithms for generating tim-
ing and flow constraints were presented in Chapters 4 and 5.

Generating and abstracting signal behavior. Silica Pithecus generates signal
behavior from net beha.viorT Signal behavior is then abstracted to the digital
level. During this phase threshold constraints are generated.

Although generating signal behavior from net behavior is conceptually sepa-
rate from abstracting digital behavior from signal behavior, the two are dis-
cussed together. This is an artifact of intentional analysis; signal behavior
itself is not important. The abstraction of signal behavior is. Therefore,
much of signal behavior generation is bypassed,! which forces us to treat the
two operations, generation and abstraction, together. Chapter 9 presents this
part of Silica Pithecus.

Checking the generated constraints. The generated constraints are processed.
Rejected constraints are returned to the designer as errors. Propagated con-
straints are attached to the circuit being verified. (At any given level of
structural hierarchy a constraint is either satisfied, violated, or propagated to
the next higher structural level.)

Comparing arbitrary digital expressions. The comparison of digital expres-
sions is a time-consuming operation. The general problem is N P-Complete.
Silica Pithecus does not try to solve this problem elegantly. Instead, it relies
on hierarchy to manage the problem. Silica Pithecus’s comparison methods
are presented in the third section of this chapter.

The general theory of hierarchical verification is presented in Chapter 10. Chap-
ter 10 shows the advantages of hierarchical verification, states the requirements on
a verification system that make it work, and gives some concrete examples in the
arithmetic domain.

When performing hierarchical verification Silica Pithecus has four phases (Fig-
ure 6.2):

!Which is good, since generating actual signal behavior is very hard!
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PARTS
Name Type Renaming Information
STORAGE-GATE Transistor Drain = A, Source = Gnd, Gate = Storage
READ-GATE Transistor Drain = Bus, Source = A, Gate = Read
WRITE-GATE Transistor Drain = Bus, Source = Storage, Gate = Write
CONNECTIONS
Bus (Drain READ-GATE) (Source WRITE-GATE)
A (Source READ-GATE) (Drain STORAGE-GATE)

Storage  (Gate STORAGE-GATE) (Drain WRITE-GATE)
Unnamed (Source STORAGE-GATE) Gnd

Table 6.1: Representation of the Three Transistor Ram

Mapping components’ constraints. The major part of hierarchical verification
is the mapping of the five different types of constraints. Each type of constraint
has its own special handler. Chapter 11 discusses constraint mapping and
constraint checking.

Checking the mapped constraints. This the same as for flat verification.

Generating digital behavior. The digital behavior of the whole is the composi-
tion of the components’ digital behaviors.

_Structural comparison. The structural hierarchy of the derived digital behavior
is compared against the funcational hierarchy of the intended behavior. The
comparison is described below.

6.2 The Hierarchical Representation of Circuits

Circuits are specified hierarchically where the primitive devices are those provided
by the technology being verified (e.g9., DFETSs and EFETs in nMOS). My represen-
tation for circuit mirrors and exploits this hierarchy. This representation is nearly
identical to DPL’s [DPL).

The primitive circuit element is the transistor. It has three terminals called
Drain, Source, and Gate. Consider the Three Transistor Ram (Figure 8.2), which
is composed solely of transistors. The representation of this circuit consists of a
listing of its parts and the connections between them (Table 6.1). Circuit names
(e.g., Transistor or Three Transistor RAM) are written in italics, and instance names
(e.g., STORAGE-GATE) are hyphenated and capitalized.

The structural representation of a circuit has two sections. The Connections
section lists and names the connections between the components. The Parts sec-
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tion lists the components, their names, and renaming information. The renaming
information dictates how names of components map to names of the parent circuit.
Renaming information is used heavily. Note that the component’s names (e.g., tran-
sistor) are listed, not the components themselves. This is a “pointer” scheme by
which only one prototype of a circuit exists regardless of how many larger circuits it
is part of. There are two advantages to this scheme. The first is a saving in storage
for circuits used many times. The second, and more important, is having to analyze
a circuit once instead of the number of times it occurs in larger circuits.

6.3 Comparison

The type of comparison performed depends on whether flat or hierarchical verifica-
tion is performed. Flat verification requires comparing arbitrary digital expressions
for equality. Arbitrary comparison is computationally intensive. Hierarchical ver-
ification requires comparing structurally similar digital expressions. This type of
comparison is computationally inexpensive.

Silica Pithecus uses a very simple theorem prover to show two digital expressions

are equivalent. The only complication is the presence of float’s which occur in
conditional expressions.? When faced with conditional expressions C1 and C2 Silica
Pithecus shows that they are equivalent assuming that the first predicate of Clis
true and assuming that the first predicate is false. This generates two simpler
subproblems. The second subproblem may involve conditional clauses, in which
case the strategy is reapplied.
- When hierarchical verification is performed the structural hierarchy of the sche-
matic and the functional hierarchy of the intended behavior must match. Silica
Pithecus determines if the input/output relationships of the functions in the digital
specification and the wires in the structure correspond (i.e., the procedures and
components are similarly “wired”).

For example, consider a sum of products device (Figure 6.3). Let the intended
behavior of this device be

(db (Sum-of-products x y z)
(G xy) (+ (*x2) (*32))))

This device is correct only if devices PLUS1 and PLUS2 were verified to have
digital behavior ‘+”, devices TIMES1, TIMES2, and TIMES3 were verified to have
behavior *, and the are wire according to the dataflow prescribed by the intended
behavior of the entire device.

2Don’t care values would cause similar problems.









Chapter 7
Specifying Digital Systems

As defined in Chapter 3, the digital descriptive level consists of Booleans, float,
boolean functions, and join. All complex digital systems are created from these
primitives. This chapter addresses how we specify the combination of these primi-
tives to build complex devices.

Digital systems are hard to describe because there is no single notation that
works well for small (e.g., an adder cell), medium (e.g., a 16 bit adder), large (e.g.,
a controller), and very large (e.g., a whole chip) designs. Each level has its own
particular problems and nuances. Notations that work well for small designs are
often too cumbersome for large designs and vice versa. The notation used by Silica
Pithecus errs on the side of easily describing large designs at the expense of not
‘concisely describing small designs.

This chapter has five sections. The first section discusses the issues of describing
digital behavior common to all designs regardless of size. The second section pro-
poses using programs for specifying digital behavior! and covers the advantages and
disadvantages of doing so. The third section gives a rationalization and overview of
the applicative programming language used by Silica Pithecus for describing digital
systems. The fourth section is a reference manual of this language. The last section
Presents a large example which shows the specification of a reduced instruction set
computer.

To a large degree, there is nothing new in this chapter. Many of the ideas
presented here are germane to the applicative programming community. Many
of our arguments for using applicative programming languages in the description
of digital systems appear in Johnson [Johnson] (though in a much less accessible
form). Other researchers, [Sheeran, J ohnson|, use the same method of specification
as we are about to propose; the only difference is usually syntax. Nonetheless,
for completeness, and for the edification of readers unfamiliar with the applicative

1There is another camp which uses logic for specifications. Interested readers are referred to
[Gordon84b), [Mishra/Clarke], and [Mosskowski).

101



102 CHAPTER 7. SPECIFYING DIGITAL SYSTEMS

approach, we now present a thorough discussion of the subject.

7.1 Issues in Specifying Digital Behavior

The major issues in specifying digital behavior are coverage, extent, and reliability.

Coverage refers to specifying the behavior of a circuit for all its inputs and
states. A specification that does not completely cover all inputs and states is called
incomplete or partial. As will be discussed in more detail below, it is hard for
specifications to exactly cover the intended digital behavior of a circuit: programs
tend to over specify behavior, and logic tends to under specify behavior.

Extent refers to the interval of time (measured in events, such as clock ticks,
not real time) used in the specification. For example, one may wish to specify that
once asserted signal X, remains high until signal Y, goes low; this specification has
greater extent than one time unit.

Reliability measures the amount of faith one has that a specification is correct.

As a basis for later comparison consider the listing method of specification: be-
havior, s.e., next state and outputs, is specified by listing for each input and state
of interest what the intended behavior is. (This method is, of course, infeasible due
to the exponential number of entries required for even a modest circuit.) Assuming
the listing was done correctly the coverage would be exact, there would be no spu-
rious or lacking entries. It would have no extent. Its reliability could be checked by
writing a simulator for the listing and running the listing as if it were a program.

7.2 Specifying Digital Behavior with Programs

Instead of listing all the entries one can write a program in a suitable language
to compute the intended behavior. I define a “suitable language” as being small
with well defined semantics. This section gives the advantages and disadvantages
of specifying digital behavior with programs.

7.2.1 Advantages of Using Programs
Programs Can be Debugged and Verified

Because a program can be executed and debugged, it can be very reliable. In com-
parison to text editors and spreadsheets, the programs describing the digitial be-
havior of even million transistor chips are rather small and extremely heavy testing
of the program can occur. It is also possible to verify programs. Indeed, proving the
functional correctness of digital designs is essentially the same problem as proving
programs correct.
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Programs Allow Hierarchical Specifications

An important property of programs is that they can be composed to make larger pro-
grams. When functional programming languages are used functional composition
alone suffices for composing programs. Programs therefore allow for hierarchical
and modular specifications. The specification’s hierarchy can be exploited to great
effect during verification if it matches the structural hierarchy of the design being
verified (this is discussed in Chapter 6).

7.2.2 Disadvantages of Using Programs
Programs are Poor at Specifying Asynchronous Systems

Programs can be used to describe asynchronous systems. For example, CSP [ref-
erence] and ADA tasks [Reference| can be used to models asynchrnous systems.
Nonetheless, programs fail for specifying the intended behaviors of systems. The
problem is that what we often wish to prove some property of the behavior holds.
That after some time, the system will acknowledge a request, or that some ar-
biter properly arbitates. Such properties are best specified by temporal logics
[Mishra/Clarke] rather than by programs.

Programs Have Coverage Problems When Inputs are Not Restricted

Programs are prone to have coverage problems, they often specify behavior that
-should be left unspecified (¢.e., a value is specified where there should be a don’t
care). This “bug” is very hard to catch unless it is specifically tested for: normal
tests of program will probably never exercise the code that is “buggy.” Indeed, the
program may have all the functionality and work correctly for all correct inputs.
But the circuit to be verified may assign different values to the don’t cares. When
verified against the program it would not pass because it did not do what the
program did.

A concrete example will make this clear. Consider a memory circuit for storing
four bits. There is one bus, four read lines, and four write lines. The designer
may intend for only one bit to be writeable at a time and design the circuit that
way. That is, the circuit will write invalid values if more than one write line is
asserted. A program to specify the memory could be written and “debugged” with
only one write line asserted at a time without the designer noticing the program
allows simultaneous writes to more than one bit. Even though the circuit may be
correct and the specification “debugged,” the circuit cannot be verified against the
Program since the circuit does not allow more than one bit to be written whereas
the program does.

The real bug is that the verifier does not know the constraints on the input
signals. If they are known, a verifier would not attempt to verify behaviors arising
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from disallowed input configurations (e.g., more than one write line asserted at a
time). Silica Pithecus, which uses programs as specifications, requires constraints on
inputs to be explicitly declared. These constraints are used during the comparison
of the abstracted and specified behaviors.

7.3 Rationale for Silica Pithecus’s Specification
Language
The specification language should have several attributes: .
e It should be a programming language with an interpreter.
~ o It should support modular specifications.
o It should have simple and precise semantics.
e It should be able to express parallelism.

This section discusses these goals and summarizes the language resulting from
satisfying them.

7.3.1 The Goals of the Language
It should be a programming language with an interpreter.

One should be able to debug the specifications by running them. If the specifications
are not correct then the design will not be.

It should support modular specifications.

Modularity is the mechanism used to contain complexity. Complex systems are
built by composing together less complex systems. A specification language must
support modularity by allowing specifications to be composed to make complex
specifications. For example, a specification for a control unit and a specification for
an ALU should be composable using functional composition. If either specification
must be changed in order for them to be composed, then the language does not
support modular specifications. Under this restriction, languages such as Pascal
could not be used as a specification language because of potential clashes between
names of variables.

This goal constrains the evaluation mechanism for the language. Consider again
composing a controller and an ALU together. If they simultaneously transmit
data to each other then they cannot be emulated by standard applicative order:
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that would require evaluating one before the other preventing simultaneous com-
munication. Some form of lazy evaluation must be used to model simultaneous
communication.?

It should have simple and precise semantics.

Simple and precise semantics is required by the need to know what a program in
the language means. If that is not easily known then comparing programs (1.e., the
abstracted and specified digital behaviors of a circuit) is meaningless.

It should be able to express parallelism.

The ability to express parallelism is mandatory because a digital circuit may be
computing many things simultaneously.

7.3.2. Overview of the Resulting Language

The language that resulted from these goals is a functional language whose data
types include booleans, flogts (whose sole member is float), vectors (ordered col-
lections of objects), streams (infinite lists of objects), and both simple and higher
order procedures. Certain binding forms automatically delay the evaluation of their
arguments.

All of the goals are met by virtue of the language being functional and having
first class function objects. A functional language does not specify the order of
evaluation of its terms. It therefore supports expressing parallism. Functional
langauges generally have simple and precise semantics, this one has so few data
types it’s simpler than most,.

The only problem with this approach is specifying the behavior of circuits con-
taining state: side effected variables cannot be used to model changing state. There
are two solutions to this problem. The first treats circuits as functions from inputs
and states to outputs and new states. This solution is undesirable because of the no-
tational overhead of explicitly recapturing and transmitting state in every function
which specifys or uses an object with state. The second treats circuits containing
state as functions taking the initial state of the circuit and returning a function
that takes a stream of the circuit’s inputs over time and returns a stream of the
circuit’s outputs over time. Using this convention, purely combinational circuits are
specified as functions mapping streams of input to streams of output. We will use
the second solution.

3Although there are primitives in the language for creating lasy constructs (t.e., lambda), the
more perspicuous descriptions of digital systems result when lasyness is explicitly provided by the
language.
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By using streams, functional composition can be employed to compose specifica-
tions of objects containing state. For example, assume that A, B, and C are single
bit shift registers already initialized with state, and that they take two arguments,
Input and Shift. Both arguments are streams of 1’s and 0’s. When a component
of Shift is 1 the corresponding components of Input is shifted in and the current
state shifted out; otherwise the shifter maintains its current state. A three bit shift
register (f.e., it takes three shift instructions for the input to reach the output) can
be specified as

(lambda (input shift) (A (B (C input shift) shift) shift)).

7.4 The Digital Specification Language

This section is a detailed description of the language used by Silica Pithecus. It
is heavily modelled after Scheme [Abelson]. It differs in that it lacks certain data
types and features (no catch/throw or quoting mechanism), and it adds destructur-
ing binding and new function defining forms. It uses lexical scoping and a mixture
of lazy and applicative evaluation. We do not present a complete description of the
language. Only a listing of the data types, the functions operating on those types,
and the special functions® of the language are presented. Readers not interested. in
the details can safely skim this section and the next section.

7.4.1 Data Types

There are five data types: Booleans, Floats, Vectors, Streams, and Procedures.

Booleans

There are only two boolean values True and False. They are denoted 1 and 0,
respectively. The standard boolean functions and, or, and not are primitively
provided. And and or take an unlimited number of arguments.

Floats

There is only one floating value, float. It is bound to the identifier float. The
only function in the language which accepts float is join. Join takes an arbitrary
number of arguments. Each argument must be either float, true, or false. If all the
arguments are float the result is float; if all the non float values are true (false) the
result is true (false). Float is used to model tri-state busses.

3Modulo syntax, my specification method for circuits with states is very similiar to the treatment
of objects with states in Section 3.4.4 of [Abelson].

4This term corresponds to what others have called special forms.
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Vectors

Vectors are a data aggregating mechanism. They act like Lisp’s conses. The prim-
itive vector, which has no elements, but is bound to the identifier *empty*. A
vector of length NV is created using the procedure vector-cons which accepts an
object of any type and a vector of length N — 1, and returns a vector of length
N. If z is (vector-cons a b) then (first z) is a and (rest z) is b. The function
nth-vector accepts a vector and an integer. It returns the nth element of the vector
where the counting is zero-based. The function new-vector accepts a vector, an
integer, and an object. It creates a new vector whose elements match the original
except for the nth one, which is the object.® The function vector takes an arbi-
trary number of arguments and returns a vector containing the arguments. That is
(vector a b ¢ d) is the same as (vector-cons a (vector-cons b (vector-cons
¢ (vector-cons d *empty*)))). Vector can be abbreviated v.

#<n>v<m> denotes a function call that returns a vector whose contents, when
interpreted as binary representation of a number, is m. <n>, which is optional and
defaults to 8, is the length of the vector the function creates. For example, typing
#3v4 is the same as typing (vector 0 0 1).°

The function = when applied to vectors returns TRUE if the vectors have the
same length and if the corresponding elements of the vectors have the same boolean
values.

Streams

~ A stream is a mechanism for representing “infinite vectors.” A stream is constructed
with stream-cons which accepts two arguments. If z is (stream-cons a b) then
(now z) is a and (future z) is b. Stream-cons is like vector-cons, however, the
second argument, rather than being evaluated, is delayed. When future is called
to retrieve the second argument it is forced to yield a value. By this mechanism
delayed expressions can make use of variables which are defined after stream-cons
is called. Stream-cons can be abbreviated sc.

The function stream-map is used to map a function across a stream. For
example, let x be a stream of boolean values. (stream-map (lambda (y) (not
¥)) Xx) returns a stream whose values are the logical negations of x’s values.

Procedures

Procedures are first class objects created by lambda. For example,

(lambda (x y z)

$The implementation need not copy the whole vector as long as it acts like it does.

®By my conventions the first bit in a vector is the low order bit.
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(and x (or y 2z)))

denotes the function that accepts three arguments and returns the logical-and of
its first argument with the logical-or the other two arguments.

Notes on Types

There are no functions for determining the type of an object.

7.4.2 Special Functions

A special function is a function not all of whose arguments are evaluated before
invoking the function. Two special functions, cons-stream and lambda, have
already been introduced. There are four types of special functions: special functions
for controlling the evaluation process, special functions for creating procedures,
special functions for binding variables, and special functions for naming “top-level”
objects. The four types are exemplified by the special forms cond, lambda, let,
and define, respectively.

Evaluation of Control Special Functions

There are three special functions for controlling evaluation: cond, if, and select.
The syntax of if is (if <predicate> <consequent> <else>). First if evaluates its
predicate. If the predicate returns True then if evaluates its consequent. Otherwise
" if evaluates its else clause.

Cond is a generalization of if, Its syntax is (cond (<p1> <cl1>) (<p2>
<€2>) ... (<pn> <cn>)). It evaluates the P’s in turn. When one returns True,
cond evaluates its associated consequent. If any predicate returns a non-boolean
value or no predicate returns True an error is signaled.

The syntax of select is

(select <selector>
(<c1> <exp1>)
(<c2> <exp2>)

(<en> <expn>))
This is the same as writing

(cond ((= <selector> <c1>) <exp1>)
((= <selector> <c2>) <exp2>)

((= <selector> <cn>) <expn>)).
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Procedure Creating Special Functions
The only special function for creating procedures is lambda. Its syntax is
(lambda (<argi>, ..., <argn>) <exp>)

This create a procedure of n arguments whose body is <exp>. All variables are
lexically scoped.

Variable Binding Special Functions

There are two special functions for binding forms: let and rlet. The syntax of let
is

(let ((<name1> <expi1>)
(<name2> <exp2>)

(<namen> <expn>))
<bedy>) .

Let evaluates all the exps and then binds them to the names and then evaluates
<body>. Names are either a sequence of characters, as in X, Y, and this-is-a-
variable-name, or a list of character sequences enclosed in parenthesis such as (A
this-is-name C). In the latter case, the associated expression must return a vector
the same length as the list. Each name in the list is bound to the corresponding
element of the vector. This is called destructuring binding. Destructuring binding is
~ used to work around the restriction that procedures only return one value. Examples
are provided below.

Rlet stands for Recursive Let. It is like let except that the expressions of the
rlet can refer to the variables being bound by the rlet and the evaluation of the ex-
pressions are delayed until they are used. This allows simultaneous communication
between components of a specification.”

For example, assume that Datapath and Controller are procedures repre-
senting their namesakes. Assume further that each takes two inputs, one from
the outside world and one from the other device, and that they each produce two
outputs. They would be connected together as follows:

(rlet (((controller-to-datapath-wire controller-output)
(controller controllers-input datapath-to-controller-wire))
((datapath-to-controller-wire datapath-output)
(datapath datapath-input controller-to-datapath-wire))
(vector controller-output datapath-output)))

7Unfortunately, this mechanism interacts poorly with destructuring binding. Pathological circuits
can be specified whose specifying programs won’t run due to definitional loops. To get around
this problem, the language must really be completely call-by-need.
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The output of this expression is a vector containing the outputs of the controller and
datapath which are destined for the outside world. This example uses destructuring
binding to get at the two outputs of each subdevice (which each return a vector of
their two output). A more concrete and fleshed out example is presented below.

Special Functions for Naming Objects

Define is used for naming objects at “top-level.” The syntax is (define <name>
<exp>). For example, (define x 3) associates X with the value 3. Similarly
(define foo (lambda (x y) (+ x x y ¥))) associates the procedure created by
lambda with the name foo.

There are many syntactic sugarings for naming functions. These syntactic sug-
arings are motivated by the desire to make functions which operate on streams easy
to write.

Df (for Define Function) creates a procedure and associates the procedure with
a variable. The syntax is

(df (<name> <var-list>) <body>).
This is the same as

(define <name>
(lambda (<var-list>)
<body>)).

Db (for Define Behavior) is used for specifying the behavior of circuits without
state. It lets one write a function apparently over scalars (i.e., non streams) but
which operates over streams. For example, whereas the function defined by

(df (xor a b)
(and (or a b) (not (and a b))))

takes scalars,

(db (Xor a b)
(and (or a b) (not (and a b))))

defines a function taking and returning streams. Assuming only one argument (db
(<name> <arg>) <body>) is the same as

(define <name>
(lambda (<arg>)
(stream-map (lambda (<arg>) <body>) <arg>)))
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The equivalences for functions having more than one argument are extrapolated
from this one. I use the typographic convention of capitalizing names of functions
which map streams to streams (or which map vectors of streams to vectors of
streams).

The behavior of circuits with state is specified using a syntactic variant of df,
Like db, it transforms functions taking scalars into functions taking streams. For
example, consider a shift register which has one bit of state. It continuously reads
a value and outputs the previous value read. It is specified

(df ((SHIFTER state) input)
(stream-cons state (shifter input))).

This binds shifter to a function taking an initial value and returning a function
that maps a stream into a stream. Using plain df this would be specified as

(df (SHIFTER state)
(lambda (input)
(stream-cons
state
((shifter (now input)) (future input))))).

This is a simple example. For a more detailed circuit, such as a register with
many inputs, the overhead of continually writing, for example, (now inputl) and
(future input2), is very large. I use the typographic convention of writing names of
functions which take state information and then return a function mapping streams
- to streams (or vectors of streams to vectors of streams) in uppercase.

Assuming one argument,

(df ((<name> <state>) <input>)
<body>)

is the same as

(define <name>
(lambda (<state>)
(lambda (<input>)
(map-function-stream
(lambda (<input>) <body>)
input))))

where map-function-stream is

(df (map-function-stream function-making-a-stream input-strean)
(let ((stream
(function-making-a-stream (now input-stream))))
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(stream-cons
(now stream)
(map-function-stream
((future stream) (future input-stream))))))

7.5 Examples

I will specify the digital behavior of a Fanatically Reduced Instruction Set Computer
(FRISC).® A picture of the machine and its architecture appears in Figure 7.1. The
computer has the same interface and instructions as Gordon’s example computer
[Gordon83],® but is implemented as a RISC machine (t.e., every instruction executes
in one cycle) rather than as a microcoded machine. I also specify its behavior
in much more detail. For example, Gordon treats the ALU and memory of his
computer as primitive, whereas I fully specify the them. The difference in detail
is due to his concern for verifying the functional behavior of the computer (i.e.,
prove its microcode is correct), whereas I wish to verify the digital behavior of the
computer.

To the user the machine has a 13 bit Program Counter (PC), a 16 bit accumu-
lator, a 2!% word memory where a word is 16 bits wide, and 8 instructions. The
instructions are

HALT: Stop executing the program.
JMP address: Set PC to address.

JZRO address: If the contents of the accumulator is zero then the PC is set to
address.

ADD address: Increment Accumulator by the contents of address.
SUB address: Decrement Accumulator by the contents of address.
LD address: Load Accumulator with the contents of address.

ST address: Store Accumulator into address.

NOP: Do nothing.

®This title is due to Jeff Siskind [Siskind].

SBarrow also uses Gordon’s example computer in Verify [Barrow|. Everything I say about Gordon’s
example computer apply to Barrow’s example computer.



7.5. EXAMPLES

113

FRISC@_‘JIGG%::e@@@eoee

Load ACC
‘Knob A
Run

Button -

POPRRRPRRIFIRRAIRR®
_Accumnulator

COCOCOPOPOPPPPPPO
_Switches '

Knob(2) Button

Switches(18) | iy Phi2
Controller -
Kl
. y 4
@ @ g G
¥
— ﬁq 18
INC },4f PC ,‘%IR" =0? . ACC +
4
4 4 4 4
(13) (ﬂi [10) (16)] (16)| |(16) (18)
Memory " —
1]

y
idie ACC PC

Figure 7.1: A Fanatically Reduced Instruction Set Computer. This computer has

8 instructions each of which takes one cycle to execute. Its word size is 16 bits and
its address space is 13 bits.
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The computer’s front panel contains a bank of 16 toggle switches, lights dis-
playing the contents of the PC and the Accumulator, an idle light displaying the
computer’s state, a four position knob, and a button. If the machine is running
pushing the button causes it to stop running. The knob determines what happens
when the button is pushed when the machine is idle as follows:

0 The PC is loaded from the toggle switches.
1 The Accumulator is loaded from the toggle switches.
2 The memory location specified by the switches is loaded from the accumulator.

3 The program starts running from the location in PC.

I will specify the computer in four steps. Each step illustrates a different aspect
(and idiom) of specifying digital designs. The first step specifies cells. It emphasizes
that a device’s inputs and outputs are streams, not single boolean values. The
second step groups cells together. It highlights the creation of vectors and the
operations on vectors. The utility of using recursive functions to create arbitrarily
sized devices is also discussed. The third step specifes the controller and datapath.
It shows how large complex devices containing many disparate parts are wired
together. Finally, the entire computer is specified. This is specification is amazingly
small (as the reader can verify by peeking ahead to the end of this section).

"7.5.1 Small Cells

I will show the specification of a combinational circuit (an adder cell) and a circuit
containing state (a register cell).

The Adder Cell

A full adder takes three inputs and produces two outputs (Figure 7.2). The speci-
fication of this circuit uses a helper function called xor.

(df (xor a b)
(and (or a b) (not (and a b))))

(db (Adder-cell a b ¢)

(vector (xor a (xor b ¢))
(or (and a b) (and a ¢) (and b ¢))))

Because db was used to define the adder, its inputs and outputs are streams.
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Figure 7.2: A Full Adder. This is a pictorial representation of the digital behavioral
specification of an adder. This is not the MOS implementation.

Writed) Feedback@Refrash(%)
L |
i

Input N Output
state? state2 |

Figure 7.3: A Register Cell. On 1 it is fed with data which is either fed back from
its output or fed from an external source. On ¢, the data is passed to the output
gate.

The Register Cell

The register cell operates in two Phases. On the first phase it is loaded with data,
This data can either be fed back from its output or be external. On the second
phase the data is passed from the “input port” to the “output port.” Figure 7.3
shows the nMOS implementation of this cell. Below is the digital specification of
the cell.

(df ((REGISTER-CELL statel state2) feedback refresh write input)
(stream-cons
i: this is the output.
(if refresh statel (not state2))
i this the next behavior of the device.
(REGISTER-CELL (cond (write input)
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(feedback (not state2)))
(cond (refresh (not statet))
(1 state2)))))

FRISC’s PC has four input sources: feedback from itself, data from the memory,
data from the instruction register (this implements jumps), and data from the
incrementer. The register cell for the PC is specified as

(df ((PC-REGISTER-CELL statel state2)
feedback? refresh from-ir? ir-input
from-memory? memory-input from-inc? inc-input)
(stream-cons
(if refresh statel (not state2))
(PC-REGISTER-CELL (cond (from-ir? ir-input)
(from-memory? memory-input)
(from-inc? inc-input)
(feedback? (not state2)))
(cond (refresh (not statei))
(1 state2)))))

:7 5.2 Medium Circuits: Building Vectors of Cells

For the medium scale examples an adder which adds two similar length vectors
together, and an arbitrary length register array will be specified. These circuits are
specified as vectors of the appropriate cells. Because recursive functions are used
in the specification, creating arbitrarily sized devices is automatic.

An N bit adder

In this example vectors will be used to represent unsigned integers. Given two equal
length vectors (numbers) it produces their “sum.” The zeroth element of a vector
is the low order bit. The input vectors contain streams of booleans and the output
of the adder is a vector containing streams of booleans.

(af (+ x y)
(Adder-internal x y stream-of-0s))

(df (Adder-internal x y carryin)
(cond ((and (empty-vector? x) (empty-vector? y))



7.5. EXAMPLES 117

*empty*)
((or (empty-vector? x) (empty-vector? y)
(error "ran out of one vector"))
:i the following let destructures the adder-cell’'s output
(1 (let (((sum carryout)
(Adder-cell (first x) (first y) carryin)))
(vector-cons
sum
(adder-internal (rest x) (rest y) carryout)))))))

An N Bit Register

Like the adder, this specification works for arbitrary length inputs. The function
CREATE-N-BIT-REGISTER is called with two vectors V1 and V2 each of
length N. It then creates a register N bits long whose state is initialized to the
contents of V1 and V2. The inputs to the register array are streams (for the control
lines) and vectors of streams (for the word to be stored). Its output is a vector of
streams.

(df (CREATE-N-BIT-REGISTER vl v2)
(let ((N-bit-register (CREATE-VECTOR-OF-REGISTER-CELLS vl v2)))
(lambda (feedback refresh write Input)
(Operate-on-n-bit-registor
N-bit-register feedback refresh write input))))

(as (CREATE-VECTOR-OF-REGISTER-CELLS vi v2)
(it (empty-vector? vi)
*empty»
(vector-cons
(REGISTER-CELL (first v1) (tirst v2))
(CREATE-VECTOR-OF-REGISTER-CELLS (rest vi) (rest v2)))))

(at (Operate-on-n-bit-register Reg feedback refresh write Input)
(cond ((and (empty-vector? Reg) (empty-vector? Input))
*emptys*)
((or (empty-vector? Reg) (empty-vector? Input))
(error "ran out of a vector."))
(1 (vector-cons
((2irst Reg) feedback refresh write (first Input))
(Oporato-on-n-bit-ragistor
(rest Reg) feedback refresh write (rest Input))))))
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7.5.3 Large Circuits: the Controller and Datapath
The Controller

The controller has five inputs. Two of them, the knob, which determines what
happens when the button is pushed, and the button, come from the front panel
of the computer. Two, the opcode of the instruction being executed, and a signal
asserting whether the contents of the accumulator is zero, come from the datapath.
The last input is ¢; which is supplied by a ¢; generator living in the computer.

The controller has two outputs, a wire going to the idle light and a group of
control signals going to the datapath. I will first give the constants used by the
controller and then specify the controller.

ii these are the control signals

(define pc<-switches (v0001 000000 010))
(define acc<-switches (v 001000000 000 1))
(define memory<-acc-no-fetch (v001001010001 0))
(define fetch (v001010100001 0))

(define nop (v 001000000001 0))

(define pe<-ir (v1 0000000000 1 0))

(define pc<-pc+1 (v 010000000001 0))

(define acc<-acc+mem (v01000000 1 0000))
(define acc<-acc-mem (v01 0000000 1000))
‘(detine acc<-memory (v01000000001 0 0))
(define memory<-acc-fetch (v010001 0 100010)
(define all-signals-low (v0 0000 0O O 00000))

i: these are the opcodes

(define halt #3v0)
(define jmp #3v1)
(define jzro #3v2)
(define add #3v3)
(define sub #3v4)
(define 1d #3v5)
(define st #3ve)
(define nop #3v7)

i: these are the states
(define idle #2v0)

(define fetch #2vi1)
(define execute #2v2)
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The computer can either be idling, fetching an instruction, or executing an
instruction. Even when the computer is idling the controller is busy sampling the
button on every cycle. If the computer is idle and the knob is in position 3 the
computer will start running its program. If the computer is running then pressing
the button will stop it.1° The select operation is used to decode the state of the
controller and the opcodes it receives from the data path.

(df ((CONTROLLER state) knob button =07 opcode phiil)

(if phit
(select state
(idle
(if button
(select knob
(#2v0 (sc (v pc<-switches 1) (CONTROLLER idle)))
(#2v1 (sc (v acc<-switches 1) (CONTROLLER idle)))
(#2v2 (sc (v memory<-acc-no-fetch 1) (CONTROLLER idle)))
(#2v3 (sc (v fetch 0) (CONTROLLER execute))))
(sc (v nop 1) (CONTROLLER idle))))
(fetch
(if button

(sc (v nop 1) (CONTROLLER idle))) ;halt
(sc (v fetch 0) (CONTROLLER execute))) ;Tun
(execute
(select opcode
(halt (sc (v nop 1) (CONTROLLER idle)))
(jmp (sc (v pe<-ir 0) (CONTROLLER fetch)))
(jzro (it =07
(sc (v pe<-ir 0) (CONTROLLER fetch))
(sc (v pc<-pc+1 0) (CONTROLLER fetch))))
(add (sc (v acc<-acc+mem 0) (CONTROLLER fetch)))
(sub (sc (v acc<-acc-mem 0) (CONTROLLER fetch)))
(1d (sc (v acc<-memory 0) (CONTROLLER fetch)))
(st (sc (v memory<-acc-fetch 0) (CONTROLLER fetch))
(nop (sc (v nop 0) (CONTROLLER fetch)))))))
(sc (v all-signals-low (= state idle)) (CONTROLLER state))))

19The button must be constructed to only give a single pulse on the first cycle it is held down.
Otherwise the computer will thrash between the run and idle states.
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The Datapath

The datapath contains 3 registers (PC, ACC, and IR), three arithmetic units (an
adder, subtractor, and incrementer), a boolean tester (which returns True if the
output of ACC is 0), and a 8K word memory of 16 bit wide words. The functions
specifying the registers are similar to the function specifying the register array
presented earlier in this section. The specification of the subtractor, incrementer,
and boolean tester are similar to the specification of the adder. Only the memory
unit is different, but its specification will not be presented here.

There are four outputs from the datapath. Two of them, the opcode of the
instruction to be executed, and the zero test of the accumulator, are destined for
the controller. The other two, the contents of the Program Counter and the Accu-
mulator, are sent to the lights on the front panel.

(df (DATAPATH ir pc acc mem)
(let ((Instruction-reg (CREATE-INSTRUCTION-REGISTER ir))
(Program-counter (CREATE-PC-REGISTER pe))
(Accumlator (CREATE-ACCUMULATOR-REGISTER acc))
(Memory (CREATE-MEMORY menm))
(1ambda (control-lines Phil phi2 switches)
(let (((pe<-ir pe<-pe+t Pc<-pc pc<-sy
ir<-mem
mem.mar<-ir mar<-pc
mem.data<-acc
acc+ acc- acc<-mem acc<-acc acc<-sw)
control-lines))
(rlet ((pc-output (Program-counter
pPc<-pc phi2
pe<-ir (low-13 ir-output)
pc<-pe+1 (inc pec-output)
pc<-sw (low-13 switches)))
(ir-output (Instruction-reg
Phi2 ir<-mea memory-output))
(acc-output (Accumulator
acc<-acc phi2
acc+ (+ acc-output memory-output)
acc- (- acc-output memory-output)
acc<-mea memory-output
acc<-sw switches))
(memory-output (Memory
phil phi2
men.mar<-ir (low-13 ir-output)
men.mar<-pc output-pc
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mem.data<-acc acc-output)))
(vector acc-output
Pc-output
(Vector=0? acc-output)
(top-3 ir-output)))))))

7.5.4 Specifying the Complete Computer

The complete computer can now be specified by hooking together the datapath and
the controller. The output of the computer is the contents of the accumulator, the
contents of the program counter, and the signal to the idle light.

(df (COMPUTER state ir pc acc)
(let ((The-controller (CONTROLLER state))
(The-datapath (DATAPATH ir pc acc)))
(lambda (switches knob button phil phi2)
(rlet (((control-lines idle-light)

(The-controller knob button acc=Q opcode phil))
((acc-output pc-output acc=0 opcode)
(The-datapath control-lines Phil phi2 switches)))

(vector acc-output pc-output idle-1light)))))

7.6 Summary

In this chapter we discussed the specification of digital systems. The broader issues
of specifying digital systems was first discussed then an actual descriptive system
was proposed. We proposed using an applicative langauge for specifying digital
systems because it satisfied our desiderata for a design language. We showed how
an applicative language is a natural way for describing complex devices which are
composed of simpler devices. It is a “natural way” becuase the dataflow in functional
composition directly mirrors the connections between physical devices. That is,
devices specified by procedures are “wired up” by the simply composing functions.
This is only possible in a functional language which supports infinite objects and
delayed evaluation.
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Chapter 8

Generating Net Behavior

Net behavior, introduced in Chapter 2, was employed in Chapters 4 and 5 to gener-
ate timing constraints. In this chapter we discuss some of the philosophical under-
pinnings of net behavior and show how it is generated. The philosophical under-
pinnings relate net behavior to simulation and compilation. The generation of net
behavior stresses concrete algorithms and the use of logical constants in eliminating
non-existent nets.

8.1 Net behavior, simulation, and compilation.

Simulators do a lot of work. Most of the work is repetitive reanalysis of the same
nets over and over again. The problem is that a simulator must determine the new
net partitioning that results from any change in transistor state. When the same
transitions occur repeatedly (e.g., every time ¢, goes high), the simulator must
repeatedly determine the “new” partitioning. This “new” partitioning is usually
the same as some previous partitioning. Even when a high-level control strategy
is used, like Mossim’s Unit Delay, in which many transistors change state between
partitioning, work is continually being replicated.

An analogy can be made between a circuit simulator and a language interpreter.
A language has a semantics which is implemented by an interpreter, a circuit has
a semantics which is implemented by a simulator. Just as an APL interpreter
interprets APL programs, a simulator interprets circuits. Circuit simulators and
language interpreters suffer the same problem: every time a language construct is
interpreted, or transistors change state, a constant amount of the same overhead is
repeatedly incurred deciding what must be done,

Compilers are used to solve the problem of repeated overhead by incorporating
the decision of what to do next within the program text. Sometimes this necessitates
changing the program text (called a source level transformation), at other times
it necessitates representing the program at a level closer to the interpreter (such

123
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as translating source code into machine code the interpreter is written in). By
incorporating the decision of what to do next into the program itself, the decision
need only be made once at compile time.

Net behavior only enumerates a node’s possible nets once. Net behavior can be
considered as a compiled form of a MOS circuit. The determination of the circuit
partitioning for any given state of the transistors in the circuit is done once at
analysis (compile) time. A major advantage of this approach is that it is possible to
analyze each possible net of a circuit fully. Steady-state voltages can be determined
for each possible net (assuming reasonable assumptions about the initial values of
nodes are made). The goal of research in simulators is to find new ways of avoiding
the analysis of a net and still accurately predict the steady-state voltages of the
net’s nodes. For example, this was the major motivation behind Mossim and its
switch level, order of magnitude, circuit model. Mossim repeatedly rediscovers the
same nets and can’t spend the time to fully analyze each newly activated net. When
nets are only analyzed once, better models can be used.

8.2 Generating Net Behavior

A simple method is used to generate a circuit’s behavior equations. The primitives

(i.e., transistors) have fixed net behavior equations. A nonprimitive circuit’s net

behavior equations are generated by composing the net behavior equations of the

circuit’s parts. This is standard practice in the field of behavioral analysis [Bobrow].
_There are several advantages to this approach.

e It exploits structural hierarchy. A circuit is only analyzed once regardless of
the number of times it is used.

o It is an incremental method. The work is spread over time as parts are
connected instead of being done monolithically. As a result of, Silica Pithecus
responses quickly.

¢ It localizes the use of knowledge of a circuit’s logical structure. Logically
disallowed nets are pruned quickly, avoiding exponential blowup. Other, non-
hierarchical methods, such as path tracing, are hard to manage because of the
nonlocalized (and therefore inefficient) use of logical constraints.

Net behavior equations are only created for state nodes and nodes gating tran-
sistors. They are not created for connection nodes. For example, consider the
standard nMOS NAND gate (Figure 8.1). The initial voltage of node X in Fig-
ure 8.1 cannot affect the value of the output node. (Although it does affect the
timing of the transitions of the output node.) Connection nodes are only partially
analyzed by Silica Pithecus.
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Output

X

A
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Figure8.1: AnnMOS NAND Gate. The state of internal node X does not contribute
to final state of of the output the gate. X therefore does not store state and is not
fully analyzed.

Silica Pithecus uses a different control strategy for generating net behavior than
the one described here. The one described here is clean and easy to explain. For
pragmatic reasons, the control strategy employed by Silica Pithecus is more com-
plex. Interested readers can look at the code.

Behavior generation for a circuit C is done in three steps. The input to behavior
generation is the behavior equations of C’s parts. The output is the behavior
equations for C. The three steps are:

1. Renaming the behaviors of the subcircuits of C which use names local to those
subcircuits to use names of the circuit C.

2. Merging nets where subnodes connect,. Merging is done for all nodes.

3. Ezpanding nets to span the circuit C. Expansion is the most expensive part
of net behavior generation. It not performed for connection nodes.

This section has three parts corresponding to the three steps above. Asa running
example I will show how the behavior equations of the Three Transistor Ram (Figure
8.2) are generated. This device stores one bit on its Storage node. It is composed
of three transistors, Read-Gate, Write-Gate, and Storage-Gate, and six nodes, Bus,
Read, Write, Storage, A, and Gnd. The Bus node, after being connected to many
other cells, will have a larger capacitance than the Storage or A nodes; Read and
Write are mutually exclusive. The net behavior of this device appears in Figure 8.2.
The RAM cell has a temporal logical constraint of tmutex(Read,,Write,). This
constraint is employed during steps 2 and 3.
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Figure 8.2: Schematic of 3 Transistor Dynamic Ram. Bus, A, Storage, Write, and
Read are nodes. Read-Gate, Write-Gate, and Storage-Gate the RAM’s parts. Read,
and Write, are not simultaneously asserted.

8.2.1 Renaming Behaviors

The net behaviors of a node’s subnodes? must be renamed to the structural level
of the circuit whose net behavior is being generated. A net behavior equation is
renamed by changing names local to the circuit’s subcircuits to names used by the
circuit. The following algorithm is used to effect this:

Algorithm RENAME:

Inputs: A subcircuit C, its net behavior equations E, and its renaming table R.
Outputs: New behavior equations based on E where names have been changed to
refer to names used by C’s parent.

Method: Replace each name N in E with its associated name in R. I

For example, in the Three Transistor Ram, the Source, Drain, and Gate nodes of
its three transistors must be renamed to its Bus, Write, Storage, Read, A, and Gnd
nodes. The relationship between the names local to the Three Transistor RAM’s
parts and its own local names is shown in Figure 8.3.

Consider again the behavior equations of the nMOS n-channel transistor (Ta-
ble 2.1). They use names local to the transistor. Renaming the behavior of the
Read-gate, for example, yields equations identical to those for the nMOS transistor
except for the names used:

Busw: =) t. Read(t) = [Bus A,

1A node X’s subnodes are the nodes of devices one level down the structural hierarchy which
connect to make X.
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‘Figure 8.3: Renaming the transistors of the Three Transistor RAM.

NOT(Read,(t)) = [Bus]
Anet = A t. Ready(t) = [Bus A],

NOT(Read,(t)) = [A]
Readn: = A t. [Read]

The two other transistors are similarly renamed.

8.2.2 Merging Nets

When subnodes connect their possible nets must be merged together. The function
Merge is used to merge nets. Let N and M be nets with edges Negge and M,,,,
and nodes Np,q4, and M,,4,, respectively. Then (Merge N M) = O where Oedges =
Nedges U M,49¢, and Opoge, = Nrodes U Mipoue,. Merge can be extended to expect an
arbitrary number of arguments.

Behavior expressions are merged together using the following algorithm:
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Algorithm MERGE NET EXPRESSIONS:

Inputs: A node and the net behavior expressions of its subnodes. There is one
expression per subnode.

Outputs: An approximation to the net behavior expression of the node.
Method: Apply the function Merge to the node’s subnodes’ net expressions. Then
rewrite the resulting expression into standard form. An expression is in standard
form when 1) the top level expression is a conditional, 2) all its predicates consist
of node names and boolean operators, and 3) all its consequents are nets. Once
in standard form, the temporal logical constraints of the circuit are used to prune
logically disallowed clauses. A clause is logically disallowed when its predicate is
always false. l

For example, two subnodes connect to make the Bus node of the Three Transistor
Ram. Two net behavior equations (one for each subnode) exist for the Bus node:

Bus,,, = A t . Read,(t) = [Bus A,
NOT(read,(t)) = [Bus].

and

Busn,: = A t . writey(t) = [Bus Storage],
NOT(writey(t)) = [Bus].

Merge is applied to the expressions to yield an approximation of the behavior
equation for the bus node:

bus,, = Merge(A t. Read,(t) = [Bus Al,
' NOT(Read,(t)) = [Bus].,
At. Writey(t) = [Bus Storage],
NOT(Write,(t)) = [Bus].)

This equation is rewritten into standard form by forming the cross product of
the clauses of the conditionals:

Busn: = A t . Ready(t) A Write,(t) = Merge([Bus A], [Bus Storage]),
Read,(t) A NOT(Write,(t)) = Merge([Bus A}, [Bus]),
NOT(Reads(t)) A Write,(t) = Merge([Bus], [Bus Storage]),
NOT(Reads(t)) A NOT(write,(t)) = Merge([Bus], [Bus])

After executing the Merge’s we get
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Busn: = A t . Read,(t) A Write,(t) = [Bus A Storage],
Read,(t) A NOT(Write(t)) = [Bus Al,
NOT(Read,(t)) A Write;(t) = [Bus Storage],
NOT(Read,(t)) A NOT(Writey(t)) = [Bus]

A simplifier now removes logically disallowed clauses. Because Read, and Write,

are never simultaneously asserted, the first clause is logically disallowed and is
removed. Note that a clause can be logically disallowed not only because of mutually
exclusive signals, but also for any fixed relationship between signals. For example,
if it were the case that either Read, or Write, were always asserted, then the last
clause would be logically disallowed.
- Besides eliminating logically disallowed clauses, the simplifier also simplifies
predicates to shrink them. For example, because Read, and Write, are mutually
exclusive, Read, implies N OT(Write,) and vice versa. The result of this simplification
is

Busn: = A t. Ready(t) = [Bus Al,
Writey(t) => [Bus Storage],
NOT(Read,(t)) A NOT(Write,(t)) = [Bus].

Figure 8.1 shows the result of applying Algorithm MERGE NET EXPRESSIONS
-to all the nodes of the Three Transistor RAM.

8.2.3 Expanding Nets

Merging only solves half the problem of generating equations. Nets which span
across many devices (e.g., from the ground node to the Bus node of the Three
Transistor RAM) must be found. The generation of behavior equations is com-
pleted by iteratively applying a simple expansion transformation to each node. The
expansion transformation expands the “boundaries” of the possible nets of the node
to include adjacent nets.

The expansion transformation replaces a chosen node Y in a net N by the ex-
pression for Yo, This extends N to include the possible'nets of Y. The replacement
can result in the original net N being replaced by multiple nets. The replacement
is very similar to the merging of nodes discussed above.

Algorithm EXPAND NET BEHAVIOR EQUATIONS:
Inputs: The approximate net behavior equations for a circuit C that were created
by Algorithm Merge.

Outputs: The complete net behavior expressions for C’s nodes.

Method:
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Busp,e = A t. Read,(t) = [Bus A],
Writey(t) = [Bus Storage],
NOT(Ready(t)) A NOT(write) = [Bus]

Storage,,, = A t . Write)(t) = [Bus Storage],
NOT(Writey(t)) = [Storage]

Anee = A t. Ready(t) A storage,(t)=> [Gnd A Bus],
Read,(t) A NOT(storage,(t)) = [A Bus],
NOT(ready(t)) A storage,(t) = [Gnd A,
NOT(read,(t)) A NOT(storage,(t)) = [A]

Readn: = At. [read]

Writenee = A t. [write]

Table 8.1: Equations describing the net behavior of Three Transistor RAM after
merging. These are not the final equations. Not all possible nets have been gener-
ated.

For the net behavior expression EX of each equation do
Repeat

Choose some net N of EX
Choose some node Y in the N that has not been chosen before.
Replace N by (Merge N Y,,,,).
Rewrite EX back to standard form.
Eliminate disallowed clauses.

Until closure is reached (i.e., nets stop expanding). ll

For example, consider Bus,,, of Table 8.1. Choosing to expand node A in this
expression results in:

Busn = A t. Ready(t) A storage,(t) = [Bus A Gnd|,
Read,(t) A NOT(Storage,(t)) = [Bus A),
Writey(t) = [Bus Storage],
NOT(Ready(t)) A NOT(Writey(t)) = [Bus]

Applying the transformation again for any other nodes in the possible nets of
Bus results in no change, so this is the final, and correct, behavior expression for
the Bus node. Repeating the expansion for the other nodes yields the final set of
behavior expressions for the Three Transistor RAM Table 8.2. Because the A node
is a connection node its behavior equation is not computed.
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Busp,: = At. Ready(t) A Storage,(t) = [Bus A Gnd],
Read,(t) A NOT(Storage,(t)) = [Bus A],
Writey(t) = [Bus Storage],
NOT(Read,(t)) A NOT(Write,(t)) = [Bus]

Storage,,, = A t . Write,(t) = [Bus Storage],
NOT(Writey(t)) = [Storage]

Readn.: = At. [Read]

Writene = A t. [Write]

Table 8.2: Equations describing the behavior of Three Transistor RAM. The A
node is not represented because, as a connection node, its behavior expression is
not computed.

(As described net expansion is a very costly operation because the same nets
will be merged many times. Silica Pithecus carefully keeps track of which mergings
need to be done to minimize the number of mergings.)






Chapter 9
Net Behavior to Digital Behavior

As explained in Chapter 6, Silica Pithecus abstracts a circuit’s digital behavior
directly from the circuit’s net behavior. The translation from net behavior to sig-
nal behavior and then signal behavior to digital behavior only occurs subliminally.
Nonetheless, we will act as if the translation did occur: doing so simplifies the
exposition.

In the examples the outputs of a circuit’s signal behavior applied to the circuit’s
inputs were abstracted. In this chapter (a representation of) the signal behavior
itself is abstracted. Applying this abstraction to some inputs i yields the same
result as abstracting the outputs of the original signal behavior applied to 3. That
is, whereas before we were computing A i . ABS (Bs(Design)(3)), we now compute
~ABS(Bg(Design))(i). In the second expression ABS(Bgs(Design)) is applied to 3.
We have made ABS polymorphic; here ABS is operating on functions, rather than on
signals. Signal behavior itself is abstracted by constant folding the (representation of
the) signal abstraction function, ABSg. 7, over the (representation of the) circuit’s
signal behavior. This chapter shows how ABS(Bs(Design)) is derived from Design’s
net behavior.

The formal notation for describing the abstracted signal behavior of a circuit
with N inputs (which are signals) and M outputs (which are digital values) is

A 3.0 where oy = f1(3,9), ...,0m = fn(3,0).

The formal notation is rarely used. Instead, the equational part will be given; the

lambda bound signals and return values will be left implicit. An example appears

in Table 9.1, which shows the abstracted behavior of the Inverting Latch.
Conceptually, the generation of ABS(Bg(Design)) is a three step process:

1. Constraints are generated from Design’s net behavior,
2. Bg(Design) is generated,
3. Bg(Design) is abstracted to yield ABS(Bg(Design)).

133
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During the first step flow and timing constraints are generated. During the third
step threshold constraints are generated, and charge sharing bugs and ratio bugs
are found and reported. In the implementation the steps 2 and 3 are intertwined
to minimize the amount of detail of Bs(Design) which is generated.

The digital value at node X is denoted Xas. We retract the earlier statement
that the digital values are 0, 1, and float.! Instead, four digital values, called driven
1, driven 0, floating 1, and floating 0, are used. Digital values have two attributes, a
boolean attribute and a floating attribute. Each attribute has two possible values,
which gives rise to the four digital values. A digital value Xy is denoted <X,;,X,>
where X, denotes the boolean attribute of X and X/ denotes the floating attribute
of X. The four digital values are denoted <1,D>, <0,D>, <1,F>, and <0,F>.

Two functions, B and F, are used to project the different parts of digital values.
B projects the boolean part, and F projects the floating part.

The greater precision of the four value scheme is required. The three value
scheme (0, 1, and float), though adequate for describing intended digital behavior,
is inadequate as a target space for abstraction. The problem is that a signal may
either be used for its boolean attribute or for its floating attribute. The abstraction
function can’t know which attribute is desired by the designer and must return both
attributes. The comparator is responsible for matching abstracted attributes with
the designer’s intentions. A 1 intended by the designer is matched by either <1,D>
or <1,F'>. Similarly, a float intended by the designer is matched by either <0,F>
or <1,F>,

Threshold constraints dictate that certain signals cannot suffer threshold drops.
_ A signal that has suffered a threshold drop is called degraded. Threshold constraints
ensure that ratios of nMOS gates will yield logically valid voltages. They also ensure
that voltage levels are aren’t made invalid by passing through pass transistors gated
by degraded signals. The example of Chapter 3 indicated that threshold constraints
were generated after Bg(Design) was generated. This is not the case. Rather,
threshold constraints are generated as Bg(Design) is generated.

Example: Inverting Latch

As a running example, this chapter shows how ABS(Bgs(Inverting Latch)) (Ta-
ble 9.1) is derived from the Inverting Latch’s net behavior. The net behavior of the
Inverting Latch (Figure 1.3) is :

Outny = At. Sy(t) — [Vdd, Gnd, Out],
NOT(Ss(t)) — [Vdd, Out

Ine = Xt. Latchy(t) — [In, §],
NOT(Latchy(t)) — [In]

!The digital specification language still uses just the three values. But Silica Pithecus’s internal
representations use the four value scheme.
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Outu = B(Su) — <0,D>
-B(Sy;)) — <1,D>.

Iny, = ABS(III,)

S” = B(La.tchu) — ABS(III,),
-B(Latchy;) — ABS(S,).

Latchyy = ABS(Latch,)

Table 9.1: ABS(Bg(Inverting Latch)). X,s denotes the digital behavior of X.

Snet = A t. Latchy(t) — [In, S|,
NOT(Latch,(t)) — [S]
Latchny = A t . [Latch).

The contraints issued while generating the above digital behavior are:

[

. falls(Latch,) = falls-first(Latch,,In,)

[ )

. control(Latch,)

(2]

. Latchy = overpowers((In),,, [S]s)

b

. no-drop(Latch,)

(The generation of the first three constraints has been discussed (Chapters 4 and 5).
This chapter discusses generating the fourth constraint.)

Creating ABS(Bg (Design)) and generating theshold constraints is conceptually
simple. Starting from net behavior, each transistor in a net is replaced by its full
model. If there are NV transistors in a net this generates 3V detailed nets. A detailed
net is a net where each transistor has been replaced by the resistor and threshold
drop device which model one of the transistor’s operating regions (Figure 9.1 shows
a detailed net). Each detailed net is then analysed to produce a combination of
threshold contraints, abstracted voltage levels, and reports of actual design errors.
Although 3V detailed nets are theoretically required, only about 2V detailed nets
actually need to be enumerated.

This chapter has two sections. The first section shows the analysis of detailed
nets. The second section presents the enumeration method for detailed nets which
minimizes the number of detailed nets generated.
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4R
1 volt
Out
1R
2voits

Figure 9.1: A Detailed Net

9.1 Analyzing Detailed Nets

During analysis each net spawns many detailed nets. The detailed nets are analysed
to predict and abstract the voltage at a given node in the detailed net. When valid
voltages occur they are abstracted to either 0 or 1. When an invalid voltage occurs
either a threshold constraint is generated, a charge sharing bug is reported, or a
threshold bug is reported.? '

A signal value is the value of a signal at some particular time. A signal value
has two attributes, strength and voltage. Once all constraints have been issued and
~design errors caught, all signals are abstractable. Therefore no errors are reported
when abstracting a signal and all that is left for the abstraction function to do is
turn a signal’s final value into a digital value. The following function does this.

Algorithm STD (Signal Value to Digital Value):
Inputs: A signal value SV

Outputs: A digital Value.

Method:

If SV is driven let strength be “D” else let it be “F.”
IfV > 3.5 then return < 1,strength>
else if V' < 1.5 then return <0,strength>.

We now discuss determining and abstracting the voltage at a given node in a
detailed net. When the final voltage of a signal S can’t be determined (because

This is overly conservative. If the designer depends only on the signal being undriven and not on
the signal’s boolean value, then no error should be generated. Silica Pithecus could be changed to
return a value denoting an invalid voltage. Then only when the designer depended on the value
would an error be generated.
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the voltage comes from stored charge rather than from gates), it is known, because
of constraints and assumptions of valid inputs, that the final voltage will be valid.
Abstracting such a signal yields the symbolic result ABS(S).

There are three cases to consider depending on the nodes in the detailed net
Net:

Net contains driven nodes. The driven nodes determine the final values of all
the undriven nodes in the net. With one exception, nets may contain only
one driven node. The exception is that a net may contain both Vdd and Gnd.
When a net contains both Vdd and Gnd, the network is transformed into
an equivalent voltage divider using Thevenin equivalents. (Examples appear
below.)

Net contains no driven or input nodes. There are two cases to consider based
on whether there is some node N whose capacitance overpowers the rest of the
net. When N exists, the result of abstraction is the symbolic result ABS(N,).

When N does not exist, data dependent methods must be used to determine
if charge sharing will result in valid logic levels. These methods show that
enough nodes have the same logical value such that the net settles to this
logical value. Silica Pithecus employs a simple heuristic to determine whether
enough nodes will have the same logical value. It first determines the phase
at which the net is activated (e.9., 1 or ¢;).% It then determines the values
of the nodes at the end of the previous phase. If enough of the nodes have
the same value then that value is used. When not enough are the same, an
error is generated.

Net contains an input node I. Flow constraints guarantee that I is the domi-
nant node. The voltage of a node other than I in net cannot be determined,
but the abstraction of a signal anywhere in net is guaranteed to be the same
as ABS(I,). (Note that the term “input node” refers to nodes declared to be
the inputs of circuits. “Input node” does not refer to driven nodes, as it does
in other systems. There is no guarantee that an input node will be connected
to a driven node.)

9.2 Enumerating Detailed Nets
A conducting transistor has three regions: full conductance (gate voltage of 5 volts),

partial conductance (gate voltage above 3.5 volts), and unknown conductance (gate
voltage between 1.5 and 3.5 volts). Theoretically, to predict the full behavior of

30On the next revision of this document I will explain where ¢; and $; came from.
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a given net, the net must be instantiated with all ranges of its transistors’ behav-
iors. Therefore predicting the behavior of a net theoretically requires generating 3V
detailed nets where NV is the number of transistors in the net.

However, by carefully enumerating the nets and by being conservative,* only
2N detailed nets need be generated. There are two key observations. First, there
is no need to create detailed nets where a transistor is in the unknown conductance
region. By implicitly constraining all signals which gate transistors to have valid
voltages it is ensured that transistors never operate in this region. These implicit
constraints are checked as part of verification. This strategy reduces the theoretical
number of required detailed nets to 2.

Second, by judiciously choosing the order in which nets are enumerated, it is
possible to set the operating region of transistor to just one of the two remaining
regions it could be in. The region is set the first time the transistor is encountered.
When a detailed net yields a valid voltage where transistor T is partially conducting,
then the net will yield a valid voltage when T is fully conducting. Therefore there
is no need to generate the detailed net where T is fully conducting. It is only
necessary to generate that net when the detailed net yields invalid voltages when T
is partially conducting. In this case, a threshold constraint is issued to prevent T
from partially conducting and thenceforth T is always fully conducting. Therefore
detailed nets where T is partially conducting need never be generated. These two
strategies together, plus the rule that the possible nets of a node are analysed from
smallest to largest, allow the analysis routine to generate only a linear number of
detailed nets.

(I must mention validifying use of foo, and must mention steadystate logical
constraints here.|

Example: Inverting Latch

As an example we will generate ABS(Bs(I nverting Latch)) from Inverting Latch’s
net behavior (Figure 9.2). We will analyze the behavior of each of its nodes in the
order Latch, In, S, and Out. The result appears in Table 9.1.

The first node to be analyzed is Latch. It has only one possible net, itself. There-
fore, the abstraction of Latch’s signal behavior is the symbolic result ABS(Latch,).

The second node to be analyzed is In. It has two possible nets. But because it
is an input node, generated constraints guaranteed that In is the dominant node of
all of its possible nets. Therefore the abstraction of its signal behavior is ABS(In,).

The third node to be analysed is S. It has two possible nets. They must be
analysed in detail. The smaller net is analysed first. This net is selected when
voltage(Latch,(t;)) < 1.5 volts. Because the net has just one node S, the abstrac-

*Conservatively means, as always, at the risk of introducing a few more sources of false negatives
into the verifier.
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Latch = X\ J_Latch
L s
In., = Mouatchy - In
L l
In
Not(Latch(t)) --> —r
- 1
S = M, Latchyty - In s
- €L '
)
Not(Latchy(t)) --> ]
Out
Outw = Af. SJt) ) .__|
T
Not§() - Out
— r

Figure 9.2: Inverting Latch’s Net Behavior
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tion of the net’s signal at node S is-ABS(S,). The first of the two clauses of S’s
abstracted behavior expression is now generated. It is

voltage(Latch, (t;)) < 1.5 = ABS(S,).
The predicate is equivalent to, and replaced by, —~B(Latchy;) to yield
—B(Latchy;) = ABS(S,).

S’s other possible net is then analysed. The first detailed net generated uses a
partially conducting Latch-Gate: '

n 2R 2volts

—AN\

Analyzing this detailed network yields a maximum voltage of 2 volts at S due
to threshold drops. This is an invalid voltage, so a threshold constraint is slapped
on Latch,. (This is the fourth, and final, constraint placed on the Inverting Latch.)
In all future detailed nets this constraint will guarantee Latch-Gate is always fully
conducting. The detailed net where Latch-Gate is fully conducting is tried next:

In 1R 3.5 volts S

—A N\

This net has no threshold problems. We employ the flow constraint that requires
[In];, overpowers [S]g to infer that the abstraction of the signal at S is ABS(In,).
Therefore, the second clause of S’s abstracted behavior expression is

voltage(Latch,(t;)) = 5 = ABS(In,)

which is equivalent to is
B(Latchys) = ABS(In,).

We therefore have

Sb] = B(Latch”) - ABS(S,),
—B(Latchy;) — ABS(In,).

The last node to be analysed is Out. It has two possible nets. The detailed net
for the smaller net is
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4R
S volts
Qut

Analysis yields 5 volts at Out. One clause of Out’s abstracted signal behavior is

therefore
B(Sb/) = <1,D>.

The first detailed net for Out’s other possible net is

4R

1 volt

Out
1R
2volts

Analysis yields 1 volt at Out. Out’s other abstracted clause is
B(Su) = <0,D>.

There is no need to generate the other detailed net as it will yield a valid voltage
when the pulldown is partially conducting.
We therefore have

Out;, = B(Su) - <0,D>
ﬂB(Su) — <1,D>.

9.3 Summary

This chapter showed how ABS(B; (Design)) was generated from Design’s net be-
havior. Silica Pithecus’s method for determining the final voltages of nodes in
detailed nets was given. When invalid voltages are detected Silica Pithecus issues
an appropiate threshold constraint, charge sharing bug report, or invalid ratio bug
report. Silica Pithecus generates detailed nets from a node’s possible nets. Al-
though exponentially many detailed nets can be generated for each possible net,
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Chapter 10

Hierarchical Verification

I claim that despite the ubiquity of the word “hierarchical” in many systems and
theses, researchers have missed the major idea of hierarchical verification. A ver-
ifier is a theorem prover, and hierarchical verification is a mechanism for focusing
the theorem prover. An effect of focusing the theorem prover is vastly increased
efficiency. Researchers have emphasized the efficiency gains without understanding
the global picture.

This chapter has 5 sections. The first section presents hierarchical verification as
a method for focusing for proofs. The second second discusses Barrow’s hierarchical
verifier Verify. The third section presents the interactions between hierarchical ver-
ification and multilevel verification. Hierarchical digital verification is presented in
the fourth section. Problems with hierarchical functional verification are discussed
in the fifth section.

10.1 Focusing Proofs

I claim that verification is formally proving that certain predicates about a circuit
hold. A verifier is a theorem prover which proves the predicates are true (or proves
they are false). The predicates can be about physical characteristics of the circuijt
(e.g., design rules), about electrical properties (e.g., all outputs have valid voltages),
or functional properties (e.g., the circuit is a 32 bit adder). In each of these cases,
when a design is represented solely in terms of the interconnections of its primitives
without any imposed structure, a theorem prover must wade through a massive
amount of information to derive a proof. The theorem prover will require a long
time to derive the proof, if it can find one at all.

Large, complex designs are created by recursively composing simpler designs
to create more complex designs. The structure that results can be, and has been,
exploited to organize a correctness proof. A hierarchical verifier is a method of
verification that establishes lemmas (subpredicates) about the design, then proves

143
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P(Design)
P(D1) P(...) P(Dn)
RN / T\ RN
P(D11) P(..) P(D1n) P(Dn1) P(..) P(Dnm)

/ I\ | /\ / 1\ / I\

Figure 10.1: Focusing a Proof. When described hierarchically, a design can be
represented as tree. The leaves of the tree represent the primitive elements of the
design and the nodes represent composition. Shared structure occurs when a node
is a child of more than one other node. In hierarchical verification, lemmas are
established at nodes of the tree. These lemmas are used to establish the proof
either the proof itself or other lemmas higher in the tree.

the desired predicate from the lemmas, The lemmas are organized around the
structural components of a design. For some types of verifiers, such as design rule
checkers, the lemmas can be automatically found (e.g., the inside of this cell is OK).
For other verifiers, such as Verify or Silica Pithecus which are behavioral verifiers,
the lemmas must be provided by the designer.

Hierarchical verification is shown pictorially in Figure 10.1. A hierarchical de-
sign can be represented as a tree where the leaf nodes represent primitives (e.g.,
rectangles, transistors, switches, adders) and the nodes represent compositions (e.g.,
abutment, functional composition) of components. Structure can be shared, a node
can be a child of many other nodes. Whereas a non-hierarchical verifier (hereafter
called a flat verifier) would reason directly from the primitives and the meaning of
compositions, a hierarchical verifier proves lemmas about nodes in the tree. These
lemmas are used to prove lemmas further up in the tree. Finally, the lemmas are
used to verify the design itself.

For example, when asked to verify an ALU, a hierarchical verifier would first
verify that the low level cells, such as adder cells and comparator cells are correct,
then it would prove that arrays of those cells are correct (using the knowledge
that the cells are correct), then it would prove the ALU itself is correct (using the
knowledge that the arrays of cells are correct).

There are three major advantages of hierarchical verification. First, the inter-
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mediate lemmas may allow a proof to be found where a flat verifier fails to find
a proof. Second, a component’s lemmas need only be established once, regardless
of the number of times the component is used. Third, establishing lemmas causes
errors to be pinpointed quickly and accurately.

In regular designs a given component may be used many times. When shared
structure is used to implement the different instantiations of the component, lem-
mas need only be established once for it (at the node in the tree which creates the
component). A flat verifier is forced to implicitly reestablish the lemmas for each
occurrence of of the component. This advantage, only establishing lemmas once, is
cited by other researchers as the primary contribution of hierarchical verification.
The gain of establishing lemmas only once for a component depends on the regular-
ity of the design. For extremely regular designs with components replicated many
times there is a large gain, for less regular designs there is less gain.

Establishing lemmas for components is equivalent to verifying those components.
Verifying components before verifying the whole design finds errors incrementally,
which is extremely important. Detecting bugs as they occur causes reevaluation of
designs at an early stage. Often a design flaw in a small segment of a design inval-
idates the rest of the design. Detecting the flaw only after the design is completed
is wasteful.

10.2 Behavioral Verifiers: Verify

" To make these ideas concrete without introducing the complexity of dealing with a
design’s context, we will discuss how Verify [Barrow], a hierarchical verifier, works.
Verify is a monolevel verifier that operates in the digital and arithmetics domains.

Verify has two inputs, a structural description of a digital design, and a func-
tional description (i.e., a program) of the intended behavior of the design. Verify
derives the behavior exhibited by the structural description by functionally com-
posing the behaviors of the structure’s parts. It then compares the derived and
intended behaviors for equivalence. If the behaviors are equivalent, the structural
description is declared to be a valid implementation of the intended behavior, The
lemmas that Verify proves at each node is that the behavior of each component
exhibits its specified behavior.

Verify derives its power from its method for deriving a structure’s behavior. It
composes the intended behaviors (the lemmas) of a structure’s parts rather than the
derived behavior of the parts. The resulting behavioral description is far easier to
manipulate and reason about than the behavioral description that would have been
otherwise generated. For example, once an n-bit adder is verified as an adder, its
behavior is the arithmetic sum of its inputs, rather than a complex boolean formula
of n-bit boolean vectors.
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10.3 Hierarchical Multilevel Verifiers: The Prob-
lem of Context

(When discussing hierarchical multilevel verifiers, there is a potential confusion to
be avoided. There are two hierarchies, the descriptive hierarchy which refers to
different levels of behavioral description, and the structural hierarchy which refers
to how a design is put together. When just the word “hierarchy” is used the intended
hierarchy should be clear from context.)

Monolevel verifiers assume a design’s behavior to be solely a function of the
interconnection of the design’s parts, and not a function of the context of the de-
sign. This assumption cannot be made for multilevel verifiers. Employing partial
abstraction functions and specialized behaviors requires considering a design’s con-
text when determining its behavior: because a designer only cares about a subset
of the possible behaviors of a design, the context that gives rise to that subset is
important.

Nonetheless, just as hierarchical monolevel verifiers use the intended behavior
of components when Proving a circuit exhibits a given behavior, we would like to
the same when performing multilevel verification. Doing so is much more efficient
than abstracting the combination of the circuit’s signal behaviors. How hierarchjcal
multilevel verifiers operate will be described both graphically and algebraically.

The relationship between multilevel verification and hierarchical multilevel ver-
ification is shown graphically in Figure 10.2. In this figure the design’s concrete
~ behavior is on the left and its intended abstract behavior is on the right. The struc-
tural representation is on the top and the behavioral representation on the bottom.
The task is to verify the top left corner (the structurally represented design where
the concrete behaviors of the components are known) against the lower right hand
corner (the intended abstract behavior of the whole design). There are two ways
to perform this task, corresponding to paths A — B — C (flat verification) and
A — D — C (hierarchical verification). Flat verification first derives the concrete
behavior of the whole from its parts, then abstracts this behavior and compares it
to the intended abstract behavior. Hierarchical verification first verifies the com-
ponents, then composes the components’ intended abstract behaviors to derive the
abstracted behavior of the whole design. This derived description is then compared
against the intended abstract behavior of the entire design.

This can be stated algebraically using the function compose, which forms the
composition of its operands.! Flat verification shows that

ABS(compose,,,.(B,,,.(Dl), v~y Beon(D4)) (1))

1This treatment is not formal, for a formal treatment of the compose operator see [Gordon81]. (He
calls this operator *|.”)
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Figure 10.2: The relationship between multilevel verification and hierarchical mul-
tilevel verification. In multilevel verification (path A — B — C) the concrete
behaviors of the components are composed, the resulting behavior abstracted, then
the abstracted behavior is validated against the intended behavior. In hierarchical
multilevel verification (path A — D — C) the structure’s parts are verified, the
the parts’ intended abstract behaviors are composed, and the resulting behavior
validated against the intended abstract behavior of the whole.
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B[3 (Design) (ABS (i) ) .

Hierarchical verification shows that
composeq,(Brs(Dy),...,B;p (Da)) = B;g(Design).

Hierarchical verification is valid only if it yields the same result as flat verification
(i.e., that paths A = B — Cand A — D — C of Figure 10.2 yield the same result).
That is, only if

ABS(COmPOSCcon(Bcon(Dl)’ AR} Bctm(D’l)) (i))

composey,(B1g(D,),...,B;p (Da))(ABS(3)).

We claim that they are equivalent when the satisfaction of Design’s constraints
imply the satisfaction of Design’s components’ constraints.

We do not formally prove this claim, to do so would require putting compose
on much firmer ground. Instead, we sketch a proof of a simplified version of the
statement. This sketch uses the function UNABS. UNABS takes an element of
the abstract domain and returns an element of the concrete domain. The element
chosen doesn’t matter as long as VX € abs[ABS(UNABS(X)) = X]. In the sketch
UNABS(ABS(X)) will be substituted for X. In general, this is not a valid substi-
tution. We guarantee, however, that any unabstracted value is later abstracted so
that no information is lost.

In the sketch Design has N components, D; through D,. We begin with the
abstraction of the compositions of the concrete behavior of the components:

ABS(composem(Bm(Dl), «+ s Beon(Dn) (1))
The outputs of each component are abstracted then unabstracted:
ABS(compoae,,,.(A 3. UNABS(ABS(B«,.(D;)(,‘]))),

X3 . UNABS(ABS(B.un(D.) (3))))
(3).

Each occurrence of ABS(B,,(D;)( 3)) is replaced by D;’s intended abstract behavior.
This replacement is only valid when the constraints on D; are satisfied. For this
reason, the satisfaction of the constraints on Design together with the physical
construction of Design must imply the satisfaction of the constraints on each D;.
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output input

D1 D2

ABS A
Becon(D1) +————— Bcon(D2) «—

r

ABS
<—X%JNABS(ABS(Bcon(D1 )i1)) «\@NABS(ABS(Bcon(02)(i2)))4— ?

ABS :
- \‘|‘UNABS(Bib(D1)(ABS(H)))1-)llUNABS(Bib(DZ)(ABS(i2))) «— 1

ABS UNA ABS UNABS
. UNABS Bib(D1) < Bib(D2) «——ABS 4
-— Bib(D1) < BibD2) «——ABS__ 4
Figure 10.3: Deriving  compose,,, (Brs(Dy), By (D;))ABS(3)  from

ABS(composecon(Bs(D;), Bs(Ds))(i))

ABS(compose,,n(X 5 . UNABS(B;p(D,) (ABS(3))),

o) X 3. UNABS(B,5(D.)(ABS(3)))

All implicit occurrences of ABS(UNABS(z)) are now eliminated. This step has two
major results. First, all occurrences of UNABS vanish. Also, the only remaining
occurrences of ABS are those on the inputs to the design itself, and not on any in-
ternal lines. These occurrences can be collected and moved onto ;. Second, because
no more ABS’s remain on any internal lines, abstract behavior is being composed
rather than concrete behavior. These eliminations of UNABS and transferences of
ABS yield

composeass(Brs(Ds), .. ., Bra(D,n)) (ABS(3)),

Q.E.D. This proof sketch is shown graphically for a two component design in Fig-
ure 10.3.
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Figure 10.4: A Shift Cell. This circuit is made of two Inverting Latches.

10.4 An Example of Hierarchical Digital Verifi-
cation

As an example of hierarchical digital verification® we will show how a Shift Cell
(Figure 1.5) built out of two Inverting Latches is verified. (An overview of the
verification of this circuit was shown in Chapter 1.)

The intended digital behavior of the Shift Cell is

(df (SHIFT-CELL st 82)
(let ((Left (INVERTING-LATCH s1))
(Right (INVERTING-LATCH 82)))
(lambda (in 11 12)
(Right (Left in 11) 12))))

This digital specification says that the behavior of a Shift Cell is equivalent to two
inverting latches, one feeding the other.

There is one logical constraint for the shift cell: tmutex(L1,, L2,). It declares
that L1, and L2, are mutually exclusive. That is, at no time are both L1, and
L2, asserted. This constraint will be used to satisfy some of the Shift Cell’s parts’
constraints.

The verification condition is shown “graphically” in Figure 10.5. In this figure
Pyoung are the constraints derived during verification and INVERTING LATCH
represents the intended digital behavior of the Inverting Latch. The verification
condition is shown graphically rather than algebraically to stress that, in Silica Pi-
thecus, the comparison of abstracted behaviors and intended abstract behavior of

2Reminder: digital verification is multilevel verification where signal behavior is the concrete be-
havior and digital behavior is the abstract behavior.
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Figure 10.5: The Verification Condition for the Shift Cell. Proung are the constraints
derived during verification. IN VERTING LATCH represents the intended digital

behavior of the Inverting Latch.

a circuit is done structurally (¢f. Chapter 6). The verification condition is proved
in four steps.

Step 1: Generate the constraints which allow Bg(Inverting Latch) to be replaced
by Brs(Inverting Latch). These are generated by mapping the constraints of each
occurrence of the Inverting Latch. Mapping of constraints is similar to the mapping
of net behaviors (Section 8.2.1). Table 10.1 shows the generated constraints. (These
constraints should be compared with the constraints of the Inverting Latch shown
in Figure 1.4.)

Step 2: Process the constraints. Each constraint is either accepted, rejected, or
propagated. Chapter 11 discusses processing constraints.

Accepted Constraints: Three of the above nine constraints are satisfied:

* L2, A-81; = overpowers([Gnd, Cles [82],)
* L2, A 81, = overpowers([Gnd, Vdd, Cley [S2]s,)
e falls(L2,) = falls-first(L2,, C,).
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Mapped Constraints for Left Mapped Constraints for Right
control(L1,) control(L2,)
no-drop(L1,) no-drop(L2,)
L1, = overpowers(In|;,, [S1]4,) L2y A=81; = overpowers((Gnd, C], (S2]54)
L2y AS1, = overpowers([Gnd, Vdd, Cle, [S2]s,)
falls(L1,) = falls-first(L1,,In,) falls(L2;) = falls-first(L2,,C,)

Table 10.1: Mapped Constraints of the Shift Cell

The first two are satisfied because Gnd and Vdd have infinite strength whereas
S2 has finite strength. The third constraint is satisfied because the logical con-
straint tmutex(L1,, L2,) with the constraints control(L1,) and control(L2,)
ensure that L2, falls before C, can change.

Rejected Constraints: None of the constraints are rejected, f.e., shown to not
hold.

Propagated Constraints: The remaining six constraints are propagated to be-
come the Py, n4 of the proof:

* L1, = overpowers([In],,, [S1],,)

e control(L1,)

e control(L2,)

e no-drop(L1,)

¢ no-drop(L2,)

* falls(Ll;) = falls-first(L1,, In,)

When the Shift Cell is used these constraints are processed. Constraints are
passed up the structural hierarchy until they are satisfied or rejected.

Step 3: Replace each occurrence of Bs(Inverting Latch) by INVERTING LATCH
and slide ABS from the output to the inputs.

Step 4: Compare the two structures. They are the same, so the it is concluded
that for all boolean inputs i, ABS(Bs(Shift Cell)(3)) = B;p(Shift Cell)(ABS(3)),
Q.E.D.
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Figure 10.6: 3-Bit Adder

10.5 Problems with Hierarchical Functional Ver-
ification '

There are many extra problems® in performing hierarchical functional verification
caused by the richer abstract domains (e.g., sets, numbers, addresses, or a collec-
tion of these types) of functional verification. One of the additional difﬁcultigs is
compound data. Compound data prevents a component’s concrete behavior from
being replaced by its intended behavior,

- 10.5.1 Compound Data

We derived the abstract behavior of a design by composing its components’ intended
abstract behaviors. This was possible because every output of each component had
its own abstract behavior. For circuits with ganged outputs (such as vectors of bits)
a straightforward substitution of intended abstract behavior for concrete behavior
fails.

For example, consider a 3-bit adder which returns a 4-bit result (Figure 10.6).
This adder is built out of the adder cell verified in Chapter 3 (Figure 3.3). We
proved that the boolean and arithmetic behaviors of the adder cell were related by
the equation

Vzea. {Boolean(il, 12, 13) =

ABS(sum(i1, i3,45)) + 2ABS(carry(iy, s, is))
= ABS(i1) + ABS(i;) + ABS(ss)}.

3A problem not discussed here is the inadequacy of behaviors as lemmas. Often what is important
about a device is the mathematical structure underlying its behavior. When this mathematical
structure is not made explicit a verifier will either fail or take a very long time. The interested
reader is referred to [Barrow] for a discussion of this problem.
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(This equation will be used as a lemma in the verification of the 3-bit adder.) The

difficulty is that neither sum nor carry can be replaced by some function solely of

the abstracted inputs to the adder, Either must be replaced in terms of the other.
The intended functional behaviort of the 3-bit adder is

B;p(3-bit Adder) =Aab.a+b.

We first generate its concrete behavior from its components’ concrete behaviors.®
The concrete behavior is then abstracted. When comparing the abstracted and in-
tended abstract behaviors the verification condition of the adder cell will be invoked
as a lemma as necessary.

The concrete behavior of the 3-bit adder, derived by composing the concrete
behavior of its parts, is

Bp.(Adder Cell) =
A [AO’ Al) A?) AS] [BO’ Bl’ BZ’ BS] .
[Sum(Ao, Bo, false),
Sum(Ay, By, Carry(Ao, Bo, false))
Sum(A,, B,, Carry(A,, B,, Carry(Ao, By, talse)))
Carry(Asz, B;,Carry(A,, By, Carry(Ao, By, false)))].

(This example uses automatic destructuring of formal parameters. This function’s
inputs are two length four vectors. Destructuring names each bit in the input
vectors.)

The abstraction of the adder’s concrete behavior is

- 2°ABS(Carry(iy, 7, Carry(sy, 51, Carry(to, jo, false))))+
22 ABS(Sum(s, ja, Carry(sy, 1, Carry(io, Jo, false))))+
2! ABS(Sum(sy, 5, Carry(io, 5o, false)))+
2°ABS(Sum(so, jo, false)).

This must be validated against the sum of the abstraction of the inputs, namely
(2°ABS(3,) + 2ABS(i;) + ABS(3)) + (22ABS(3) + 2ABS(5) + ABS(5)).
Therefore, the verification condition to be proved is

V,-h_"'.-.es.{Boolean(i) =>

23ABS(Carry(ts, 52, Carry(i1, 5i, Carry(so, jo, false))))+
2*ABS(Sum(ss, ja, Carry(sy, 11, Carry(so, jo, false))))+

4This specification is imprecise: what does *+* mean? Fortunately, the adder’s output vector is
one bit longer than the adder’s input vectors so that the normal meaning of + is retained. Had
the input and output vector been the same length, then “+* could not have been used. One must
be careful to not fall into the trap of using standard operators in non-standard ways.

51 find it hard to say whether flat verification or hierarchical verification is being performed. It
starts out as flat verification, but, by using lemmas, starts to look like hierarchical verification.
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2'ABS(Sumf(iy, 5, Carry(io, Jo, false)))+
2°ABS(Sum(sy, 5o, false))

2'ABS(iz) + 2ABS(i1) + ABS(io) + 2°ABS(5) + 2ABS(jy) + ABS(jo).

There are three alternatives. The first is to expand out the calls to Sum and
Carry and use exhaustive methods to prove the equivalence. Although this strategy
would work for the 3-bit adder, it fails as adders get larger. The second alternative
is to replace the abstraction of the concrete behaviors of with the intended behavior
of the outputs. But as mentioned earlier, this alternatives fails because the outputs
are interrelated and are not eliminated by this approach. The third alternative is
to be “intelligent” about which of Sum and Carry to eliminate.

We will rewrite the verification condition of the adder cell as

ABS(sum(iy, s, 1;)) =

ABS(i1) + ABS(i2) + ABS(is) — 2ABS(carry(iy, is, iy)).

This equation is used to eliminate the Sums from the verification condition of the
-bit adder to yield

8ABS(Carry(1, 1, Carry(sy, j1, Carry(o, o, false))))+

4ABS(i;) + 4ABS(5) + 4ABS(carry(sy, 51, carry(so, o, false)))—

8ABS(carry(ia, 5, carry(sy, 51, carry(so, jo, false))))+

" 2ABS(1;) + 2ABS(5;) + 2ABS(carry(so, s, talse))—

4ABS(carry(sy, 51, carry(sy, Jo, false)))+

ABS(1o) + ABS(5) + ABS(false) - 2ABS(carry(iq, jo0, false)).

4ABS(i2) + 2ABS(i1) + ABS(io) + 4ABS(%) + 2ABS(s1) + ABS(jy).

This is equivalent to
4ABS(i3) + 4ABS(z)
2ABS(11) + 2ABS(5)
ABS(%o) + ABS(5) + 0

4ABS(i;) + 2ABS(1,) + ABS(io) + 4ABS(5) + 2ABS(5) + ABS(j),
which is true. The 3-bit adder is therefore correct.
(This example shows that verifying a simple arithmetic unit requires some
thought. With the right approach, (i.e., eliminating Sum) the proof is simple,
without it the proof is considerably more difficult. Because of the thought required,

not all verifiers do this proof algebraically. For example, Verify [Barrow] does this
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proof structurally.® This example is indicative of validation at the functional level:
often nontrivial theorem proving must be done.)

S Verify uses knowledge of the representation of numbers as vectors of booleans to effect the proof:
it is hardwired to recognise pr:

edetermined structures as correct implementation of adders.



Chapter 11

Constraints

Silica Pithecus’s constraint system is the key to Silica Pithecus’s hierarchical opera-
tion, and therefore the key to Silica Pithecus’s speed. Constraints direct a circuit’s
analysis. They change the nature of analysis from “what does the circuit do?” to
“does the circuit do the correct specific thing?” (Such as “do signals flow in right
direction here?” or “does signal A fall before signal B?”) Such questions are fo-
cused and efficient to answer, whereas “what does this circuit do?” is unfocused
and inefficient to answer.

Each type of constraint has it own special theorem prover, called a handler,

for proving instances of the constraint are satisfied. The handlers for logical and

-threshold constraints are algorithmic and will always get the right answer when
they terminate. The handler for flow constraints is heuristic. It runs fast and

works for nearly all circuits. The handler for timing constraints (stable-after and

falls-first constraints) is heuristic and fails for circuits which rely on races. The

heuristic handlers only generate false negatives when the fail, they never generate

false positives.

Constraints are mapped from the level of the component they are on to the level
of the design being verified. Constraint mapping mirrors net behavior mapping
which was presented in section 8.2.1: nodes and signals are renamed to use names
local to the design. Constraint mapping will not be explicitly presented. Examples
of constraint mapping appeared in section 10.4.

Each constraint is either accepted, rejected, or propagated. A constraint is ac-
cepted once it is satisfied (shown to hold). A constraint is rejected when it is shown
not to hold. Rejected constraints are returned to the designer. A constraint is
propagated when it is neither accepted nor rejected. Propagated constraints are
attached to the circuit being verified. The propagated constraints will be processed
when the circuit is used as a component in a larger circuit.

This chapter discusses each type of constraint in turn.

157
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11.1 Logical Constraints

The two types of logical constraints are steady state logical constraints and tempo-
ral logical constraints. Steady state logical constraints predicate boolean relations
between the final values of signals.! Temporal logical constraints predicate boolean
relations between the values of signals at all points in time.

A steady state logical constraint is either a signal name, or a boolean combina-
tion (using -, A, and V) of steady state logical constraints.? When just a signal
name it used as a steady state logical constraint it asserts that the signal’s final
value is true. Steady state logical constraints correspond to propositional logic.
Some complex predicates are named. For example, mutex(x, y) is shorthand for
(~zA-y) V(~zAY) V (z A -y).

- The most commonly used temporal logical constraint is tmutex. tmutexasserts
that at no time is more than one of its arguments asserted. A special purpose
method is used to satisfy temporal logical constraints. We require that all signals
in a tmutex constraint be control signals. Then we show the signals are mutex when
all the clocks are low and when each clock is high.

Silica Pithecus does not propagate logical constraints, therefore a design must
directly satisfy all its components’ logical constraints.® It can do this either struc-
turally or logically. A constraint is structurally satisfied when it is satisfied because
of the behavior of the components in the design. A constraint is logically satisfied
when it is satisfied because of one the design’s logical constraints. For example,
consider a component C with two inputs z and y and with a steady state logical

-constraint of zV y. Figure 11.1 shows this component used in two different designs.
Design D1 structurally satisfies zVy (which maps to a V) because b = -a). Design
D2 logically satisfies z v y (which maps to ¢ v d) because c V d is implied by D2’s
logical constraint e.

Silica Pithecus does not propagate logical constraints because it wants to main-
tain user level consistency. For reasons previously discussed, Silica Pithecus does
not generate logical constraints, the user must supply them. Logical constraint
propagation is similar logical constraint generation: constraints which the designer
did not explicitly create get automatically created and attached to designs. It
would be confusing to the user to have Silica Pithecus automatically create some
constraints but not others. Therefore, Silica Pithecus doesn’t propagate logical con-
straints. (On another note, not propagating logical constraints speeds verification

1To be precise, we should say the predicate boolean relations between the boolean interpretation of
final values of signals. In this chapter we won’t be careful about making the distinction between
signal values and their boolean interpretations.

2There is no way to name new predicates. For example, there is no (defpredicate (at-most-one
x y) (not (and x y))).

3A design directly satisfies a constraint when the constraint doesn’t need to be propagated.
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Figure 11.1: Designs must directly satisfy their components’ logical constraints.
Component C’s steady state logical constraint, z V y, must be satisfied by any
design C is in. Design D1 structurally satisfies zv y (which maps to a v b) because
b = —a. Design D2 logically satisfies z v y (which maps to ¢ v d) because ¢ Vv d is
implied by D2’s steady state logical constraint e.

and simplifies the implementation.)
Silica Pithecus uses a simple predicate calculus theorem prover to satisfy logical
constraints. The kernel of the theorem prover was taken directly from the Lisp 1.5
' manual [Lisp 1.5]. The theorem prover, invoked by the procedure prove, has two
inputs: the predicate to be proved, and an environment of assertions. prove returns
true if the predicate can be proved from the assertions, otherwise it returns false.
The following algorithm processes steady state logical constraints.

Algorithm Process Steady State Logical Constraints:

Inputs: Design D, its components’ mapped steady state logical constraints CLC,
and its own steady state logical constraints LC.

Outputs: A list of the unsatisfied CLC.

Method: Label each wire (node) W; between components of D with the boolean
formula representing the value on W:. For each CLC}, replace each wire (node)
name with the wire’s label to yield a new constraint CLC;. If prove(CLC}, LC)
returns false add CLC; to the list of unsatisfied steady state logical constraints.

For example, consider again the designs of Figure 11.1. These designs have their
wires labelled according to the boolean functions output by components driving
the wire. C’s mapped steady state logical constraint, a Vv b, is satisfied by D1
because prove(a V —a, {}) returns true. Similarly, C’s mapped steady state logical
constraint, ¢ V d, is satisfied by D2 because prove(cV d, {c}) returns true.
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Figure 11.2: Processing Threshold Constraints

11.2 Threshold Constraints

A threshold constraint on a signal is satisfied by showing that every final net com-

puting the signal yields either a voltage of 5 volts or a voltage 1.5 volts. For example,

consider the output of an inverter A4 driving the input of a minimally sized inverter

B (Figure 11.2). Because B is minimally sized, there is a threshold constraint on its

input. B’s mapped constraint is no-drop(Internal). The net behavior of Internal
-is the mapped net behavior of A’s Out node. This net behavior is:

Outpe = A t . Iny(t) — [Vdd Out Gnd),
NOT(Iny(t)) — [Vdd Out).

The first net yields 1 volt, the second yields 5 volts. Therefore the threshold con-
straint is satisfied.

(A note on the implementation: Silica Pithecus doesn’t check threshold con-
straints by examining net behaviors during constraint processing. Instead, checking
whether a node puts out an undegraded signal is done at abstraction time and the
result remembered. This saves repeated checking that would occur for a gate with
large fanout.)

11.3 Flow Constraints

Mapping flow constraints is complex and expensive, but processing the mapped
constraints is simple. Each is discussed in turn.
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Figure 11.3: A Shift Cell

We will use the Shift Cell of Chapters 1 and 10 (Figure 11.3) as an example
of mapping and processing flow constraints. This device has two components, Left
and Right, which are Inverting Latches. It also has a temporal logical constraint of
tmutex(L1, L2). The Inverting Latch has a flow constraint of

Latchy = overpowers([In],,,[S];).

(A note on the implementation: constraint mapping and processing are inter-
leaved. This prevents extraneous work and extraneous net expansion. Interested
readers are invited to look at the code.)

11.3.1 Mapping Flow Constraints
Flow constraints are mapped in two steps:
1. Rename the nodes used in the constraints.
2. Expand nets named in the constraints.

The first part, renaming, corresponds to what we have been calling mapping for the
other constraints: names local to the component are replaced with names used by
the design. The second part, expansion, is complex: it finds all nets which go into
and out of an input node. When a constraint is expanded, it may turn into multiple
constraints. (For example, consider the mapped flow constraints in Table 10.1.)

Renaming Flow Constraints

A flow constraint is renamed exactly as a net behavior expression is renamed
(¢f. Section 8.2.1). We will show how the flow constraints of the Shift Cell’s two
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components is renamed. The Inverting Latch’s flow constraint is
Latchy => overpowers([In),,, [S]s).
This is renamed to
L1y = overpowers([In], , (S Left)] s7,sn))
for the Left Inverting Latch, and renamed to
L1, => overpowers([C|,, [(S Right)]spigng)

for the Right Inverting Latch. The notation (<node-name> <instance-name>)
is used to name components’ internal nodes (¢f. Section 6.2).

Expanding Flow Constraints

The basic idea is to find the nets computing signals going into an input node,
and the nets that those signals must drive. Once each set of nets are found, their
cross—product is found and becomes the mapped constraints.

For example, consider the Left’s output signal. There are two nets which com-
pute this signal, [Vdd, Out, C], and [Vdd, Gnd, Out, C]. These nets occur on
~(S Left), and (S Left) » respectively. There is only one net to be overpowered,
[(S Right)]. The cross product of the “drivers® with the “drivees” yields the two

- constraints

* L2, A —(S Left), = overpowers([Vdd, Cle,[(S Right)]spizae)
L2, A (S Left), = overpowers([Gnd, Vdd, Cles[(S Right)](s pisng)-

We now discuss the details of expanding flow constraints (i.e., how to locate
the “driver” and and “drivee” nets). Expanding flow constraints is similar to the
second and third steps (net merging and net expansion) of net behavior generation
(Chapter 8). Constraint expansion differs in that after merging, certain nodes are
dropped from nets before expansion to avoid having the expansion include the nets
the must be overpowered (or must do the overpowering).

Consider the constraint P = overpowers(Netln,ie, Net2xo43). The following
rules find the “drivers.”

1. Perform Net Renaming and Merging for node Nodel to yield X.
2. Delete all nodes from Net2 from all nets of X,

3. Perform Net Expansion on X.



11.3. FLOW CONSTRAINTS 163

Analogous rules are used to find the “drivees.” The cross product of the two net
behavior expression is then generated. For every possible combination of a clause
P1 — Netl from the “drivers” and a clause P2 — Net2 from the “drivees,” the
constraint P A P1A P2 — overpowers(Netl, N et2) is generated. If PA P1A P2 is
logically disallowed then the constraint is ignored.

Using these rules, the following flows constraints of the Shift Cell are the result
of mapping the flow constraints of the Shift Cell’s components:

L1, = overpowers([In], (S Left)](s1esn)

L2s A (S Left), = overpowers([Vdd, Cle, [(S Right)] s pisns)
L2, A (S Left), = overpowers([Gnd, Vdd, Clc, (S Right)](s pigs)

11.3.2 Processing Flow Constraints

The result of constraint mapping is a set of flow constraints. Each has the form
overpowers(Netl, Net2). Not considering input/output nodes, an overpowers con-
straint is accepted when the combined strength of the nodes Netl is ten times
greater than the combined strength of the nodes in Net2. Otherwise the constraint
is rejected and a charge sharing error returned to the designer.

When either net of a flow constraint contains an 1/0 node (i.e., a node that is
either an input or an output of the circuit being verified) then the constraint may be
propagated rather than accepted or rejected. Specifically, a flow constraint cannot
-be accepted if the net to be overpowered contains an I/O node, and it cannot be
rejected if the overpowering net contains an I/0 node.

11.3.3 Another Example: A Faulty Circuit

As an example of a constraint that cannot be satisfied because of a buggy circuit con-
sider connecting the Latched Inverter to the Inverting Latch, shown in Figure 11.4.
The constraint to be mapped is the same as in the previous example:

Latchy = overpowers([In],,, [S];).

The net behavior of the C node is

Cret = At L1,(t) A Iny(t) — [Gnd Vdd C (S left)],
le(t) A Inb(t) — [Vdd C (S left)],
= L1y(t) — [C].

Therefore the constraint maps to the following three constraints:
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L1 L2
| |
Latch Latch
872 8/2
| s C s | Out
ln_ml 2/4 Qut — In — ]l 2/4 Qut
2/2 2/2
Left Right

Figure 11.4: A Faulty Circuit. The error in this circuit is caught by a rejected flow
constraint.

e L2, AL1,A In, = overpowers([Gnd Vdd C (S left)], [(S Right)](smw)).
e L2, AL, A =In, = overpowers([Vdd C (S left)),, [(S Right)](sm,,“)).
* L2, A =L1, = overpowers([C|,, [(S Right)](sm’,“)).

When the last clause is true (i.c., L1, is false and L2; is true), then [C|,
must overpower [(S Right)](sp:,ny)- Unfortunately, both C and (S Right) have the
-same capacitance, so this constraint is not satisfied. Silica Pithecus reports this as

a charge sharing bug.
Note that had there been a logical constraint of, for example, either (L1A L2)V
(L1 A-L2) or -(-~L1A L2), then the erring condition would not have arisen, and

no error message would have been generated.



Chapter 12

Future Research

This research engenders two kinds of future research: extending the theory and
implementation, and looking at old problems in new ways.

12.1 Combinatorial Blowup

The major (pragmatic) deficiency is the brute force nature of the theory. There are
many common circuits for which the number of possible nets is large. For example,
the output node of a 32-input nor gate has 2% possible different nets. The outputs
of large PLA’s have even more possible nets. To overcome this problem special
code must be written for gates with large numbers of inputs. This code would only
generate the minimal number of nets needed to catch ratio and threshold problems.

Combinatorial blowup also strikes when discharging logical constraints. When
the inputs to some device comes from a large PLA, discharging the logical con-
straints can be very expensive. A smarter theorem prover must be employed which
has heuristics for quickly proving constraints hold.

I believe that there are only a few general areas where combinatorial problems
bite and that special case code can be written to solve 95% of the problems.

12.2 Feedback

Feedback was completely ignored. Silica Pithecus can detect static feedback. How-
ever, it does not detect transient feedback. I do not believe that making it detect
transient feedback is hard, it just hasn’t been done.

165
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Figure 12.1: Two Three-Transistor RAMS

12.3 Circuit Timing

A timing estimator/verifier built on top of Silica Pithecus would be more accu-
rate and easier to use than other static verifiers such as Crystal [Crystal] or TV
[TV]. Because the logical structure and signal flow of a circuit is accurately known,
there is more information to exploit to avoid approximations and potentially failing
heuristics.

For example, a timing system embedded in Silica Pithecus would not need special
scans or treewalks of the circuit to determining the “direction” of transistors. Other
timing systems either scan the circuit or use hints from the designer to determine
the direction of transistors. Crystal uses hints from the designer. Unfortunately,
these hints are not checked. The hints to Crystal are similar in intent to Silica Pi-
thecus’s logical constraints. Silica Pithecus checks the designer’s logical constraints,
however, and Crystal doesn’t check the designer’s hints. If the designer gives Crystal
the wrong hints he will get back the wrong answers. Also, TV’s determination of
transistor directions is not guaranteed to be correct. If the determination is incorrect
wrong timing results will be obtained.

What confuses other timing verifiers is not knowing the possible nets of a cir-
cuit. Because Silica Pithecus keeps track of possible nets with a vengeance, timing
analysis and critical path analysis can be very precise.

12.4 Capacitance Coupling

Ignoring capacitive coupling causes an important class of bugs to be ignored and
prevents an important class of circuits from being verified.

For example, consider the two three-transistor RAMS in Figure 12.1. The cell
on the left will work, but the one on the right will not work. It fails due to capacitive
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Bootstrap Node

1 I
Input Node FP { Ql

| Driven Node (large capacitance)
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b

Coupling Capacitor T

<

Figure 12.2: Bootstrap Driver. This device has much faster response and drive than
expected because of capacitive coupling driving critical nodes high.

coupling: it is impossible to store a high value on the storage node. Silica Pithecus
does not detect this bug.

As an example of a circuit we would like to be able to verify, consider a bootstrap
driver (Figure 12.2), which is used in time-critical applications. Assume that the
bootstrap node, driven node, and input node are initially at ground. The driven
node’s capacitance is much greater than the bootstrap node’s capacitance. The
bootstrap driver operates as follows:

1. When the input node rises to Vdd the bootstrap node rises with it. The
driven node does not begin to rise until after the bootstrap node exceeds the
threshold for Q1. The driven node does not rise as quickly as the bootstrap
node because of its greater capacitance.

2. Atsome point after Q1 turns on, the isolation transistor turns off, isolating the
bootstrap node. The isolation transistor turns off when the bootstrap node
rises to within a threshold voltage of the input node. The isolation transistor
will remain off even if the bootstrap node continues to rise. At this time there
is a voltage differential across the coupling capacitor.

3. After this point, as the driven node continues to rise the capacitor maintains
the voltage differential produced above thereby driving the bootstrap node
even higher.

4. Because the isolation transistor remains off, the bootstrap node can be driven
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fairly high. In some configurations it can reach eight volts.!

5. As the bootstrap node goes up the voltage on the gate of the pullup goes up
well beyond five volts thereby allowing the driven node to reach Vdd.

As a result of this process the driven node rises much faster and higher than
if the input node were connected directly to the driven node. A system ignoring
capacitive coupling calculates an incorrect final voltage (two threshold drops below
Vdd) for the driven node, as well as an incorrect estimate of the time it takes to
stabilize.

The bootstrap driver is not a digital circuit according the definition given in
Chapter 1. According to that definition, a circuit is not digital when the rate of
change of voltage affects the final state of a circuit, The correct operation of the
bootstrap driver requires the bootstrap node to rise much faster than the driven
node. If the driven node rises faster, then there is no “bootstrap” action.

I don’t know how to extend the theory to include bootstrap drivers and similar
circuits. This research should be done.

12.5 Multiple Abstraction Functions

We concentrated on avoiding stored charge and ensuring voltage levels were ade-
quate. An abstraction was formulated which ensured these two properties. It might
be the case that more analog-like circuits, such as bootstrap devices and sense am-
plifiers, could be verified by positing the proper abstraction functions. Ideally,
representations of circuit behavior could be developed which make invalid signals
apparent.

When a system contains multiple abstraction functions the user would have to
declare which abstraction functions go with which nodes. There might be heuristics
which allow a system to guess correctly 95% of the time and to otherwise ask the
user.

!“Hot Clock nMOS® which uses 7 volt clocks and 5 volt Vdd has achieved bootstrap voltages of
11 volts [Seits].
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