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TYPICAL is a package for describing and making automatic inferences about
a broad class of SCHEME predicate functions. These functions, called types fol-
lowing popular usage, delineate classes of primitive SCHEME objects, composite
data structures, and abstract descriptions. TYPICAL types are generated by an
extensible combinator language from either existing types or primitive terminals.
These generated types are located in a lattice of predicate subsumption which cap-
tures neccessary entailment between types; if satisfaction of one type neccessarily
entails satisfaction of another, the first type is below the second in the lattice. The
inferences made by TYPICAL are relations in this lattice of subsumption; when a
type is defined, TYPICAL computes the position of the new definition within the
lattice and establishes it there. This information is then accessible to both later
inferences and other programs (reasoning systems, code analyzers, etc) which may
need the information for their own purposes. TYPICAL was developed as a rep-
resentation language for the discovery program Cyrano; particular examples are
given of TYPICAL’s application in the Cyrano program.
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Chapter 1

TYPICAL
Introduction

TYPICAL is a package which makes automatic inferences about a broad class of SCHEME
predicate functions. These functions, called types following popular usage, delineate po-
tentially overlapping classes of primitive SCHEME objects and composite data structures.
TYPICAL types are generated by an extensible combinator language from either existing
types or particular sorts of SCHEME objects. Generated types are located in a lattice of
predicate subsumption which represents neccessary entailment between types; if one type
is below another in the lattice, satisfaction of the first type neccessarily entails satisfaction
of the second. The inferences made by TYPICAL are relations in this lattice of subsump-
tion; when a type is defined, TYPICAL computes the position of the new definition within
the lattice and establishes it there. This information is then accessible to both later in-
ferences and other programs (reasoning systems, code analyzers, etc) which may need the
information for their own purposes.

TYPICAL was developed as representational support for Cyrano, an automated dis-
covery program which proposes and analyzes concepts and conjectures in elementary math-
ematics and several other domains. The principle behind Cyrano’s design is a view of
discovery as a process of extending a conceptual vocabulary; a discovery program is given
a conceptual vocabulary and, based on its observed empirical properties, produces an ex-
tended or modified vocabulary which is then the basis for further empirical analysis and
extension. For a discovery process to be effective, newly developed concepts must be repre-
sented in a structurally similar form to initial starting concepts. To satisfy this constraint,
Cyrano’s initial and evolved conceptual vocabularies are described uniformly in TYPICAL;
new concepts and definitions are constructed by TYPICAL combinators and placed in the
lattice of types. Cyrano’s inferences about the neccessary properties of its definitions (the
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type combinations it generates) are all handled by TYPICAL; likely or heuristic inferences
are handled by Cyrano.

While developed as representational support for Cyrano, TYPICAL soon found a place
in the program’s control structure; the power of an organized lattice of predicates became
useful for specifying tests and conditions in the program. This trend was further en-
couraged by an interest in making Cyrano able to reflect on its own control structure;
having the representation and control structure share syntax and structure was a way of
supporting this. In particular, the trigger conditions of heuristics and the experimental
confirmation of empirical regularities are both described in the lattice. Chapters 5 and 6
present examples of TYPICAL’s application in the Cyrano program.

1.1 Technical Contributions

This thesis makes several technical contributions in TYPICAL’s own design and implemen-
tation:

e The combinator language allowing the definition of new types and new combinators
which fit within the existing framework of the lattice.

e Subsumption principles for a mixed vocabulary of combinators including definitions
like power sets, functional ‘role’ constraints, and simple recursive definitions.

e An implementation of uncertainty which allows types to be partially specified; predi-
cates in the lattice may return either ‘true,’ ‘false,” or ‘i don’t know’.

e [Efficient and sound algorithms for placing conjunctions, disjunctions, and other pred-
icate combinations in the lattice.

In addition, Chapters 5 and 6 present the use of TYPICAL in the discovery program Cyrano.
These illustrate TYPICAL’s application to more traditional ‘Al-style’ problems:

e Chapter 5 presents the indexer used by Cyrano as a taxonomic classifier and heuristic
rule engine. Indexing is the backbone of Cyrano’s control structure and uses the
lattice to represent types of events and situations to which Cyrano responds.

e Chapter 6 presents the use of TYPICAL in setting up the ‘experiments’ by which
Cyrano confirms or disconfirms empirical properties of its definitions. This uses the
indexing facility to notice counterexamples or examples to proposed regularities.

1.2 Related Work

TYPICAL first emerged as a solution to an Al representation problem; it’s initial impetus
and inspiration came from the tradition of AI languages beginning with FRL [Gol76],
moving to KRL [BW77] and UNITS [Ste79], and culminating (some might say) in languages
like KL-ONE [BS85] and RLL-1 [Gre80]. Work on Cyrano began in the representation
language language ARLO [Haa86], an approach suggested by Lenat’s use of RLL-1 in the

Section 1.2 Related Work Haase
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discovery program Eurisko[Len83]. Unfortunately, for reasons outlined in the conclusions
to [Haa86] and explored in more detail in [Haa87], the ad-hoc extensibility of ARLO (and
of frame-based RLL’s in general) failed to integrate well with a ‘first principles’ discovery
program.

As a language for specifying data types (as opposed to a general Al representation
language), TYPICAL bears surface similarity to the typing systems of languages like Algol-
60 [Nau6l], Pascal [Wir71], and CLU [LAB*79]. It bears a deeper similarity to the type
inference facilities provided by languages like ML [Car83] [Mil83]; however ML’s typing
of procedures (using Milner’s theory of type polymorphism [Mil78]) is not provided by
TYPICAL since no provision for type variables and relational types is incorporated into the
language. Beyond this, there is a rich literature on typing systems and type inference, but
the aim of TYPICAL was — in most respects — orthogonal to the aims of such efforts.

Closer to TYPICAL is the mathematical representation language ONTIC [McA87|
which provides a language for describing a range of mathematical concepts to sophisti-
cated proof checker. TYPICAL, however, was designed as a limited inference component
for an empirical discovery system and its design requirements were somewhat different.

1.3 Structure of the Thesis

I begin this thesis (Chapter 2) by giving simple examples of TYPICAL in use and the infer-
ences it makes; these are brief snippets which foreshadow the more extensive capabilities
deployed in later chapters. This brief exposition is not written for detailed reading; it
surveys what TYPICAL does and can be safely skimmed.

After sketching what TYPICAL does, the implementation of TYPICAL is described in
detail in Chapter 3: data structures, combinators, the representation of uncertainty, and
various efficiency measures are presented.

The details of individual combinators — how they do their inferences — are covered
in Chapter 4. All of TYPICAL’s primitive combinators are described in this chapter. A
formal analysis of these combinators and their inferences is presented in Appendix A-1.

Chapter 5 describes the ‘indexer,” a rule engine built around TYPICAL’s lattice of
types. The indexer combines a taxonomic identifier with the attachment of procedures
to types in the lattice. Indexing an object locates it in the lattice of defined types and
executes the procedures — classification daemons — attached to the types it satisfies.

Chapter 6 describes how the Cyrano program uses TYPICAL to confirm or discon-
firm empirical properties. All empirical properties recognizable by Cyrano are translated
into types which specify experimental sets of examples and counterexamples. Classifica-
tion daemons attached to these respective sets catch convincing amounts of evidence or
counterevidence to support or discount the program’s empirical suspicions.

The appendices begin with a formal analysis of TYPICAL’s combinators (Appendix
A-1) followed by a brief manual for the use of TYPICAL (Appendix A-2). Finally, Appendix
A-3 discusses ways to get copies of TYPICAL for use or experimentation.

Haase Structure of the Thesis Section 1.3
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Chapter 2

TYPICAL
Use

TYPICAL is a set of SCHEME procedures and data structures. A TYPICAL type is a
data structure — a ‘type description’ — describing a SCHEME predicate and the relation
of that predicate to other described predicates. Type descriptions are first class objects;
they may be bound to variables, passed as arguments, or subject to typing themselves.
New types are defined by a variety of combinator procedures; TYPICAL combinators are
SCHEME procedures which take either existing type descriptions or particular SCHEME
objects and produce type descriptions as results.

New TYPICAL types are positioned in a lattice of predicate subsumption; if a type T is
below a type P in the lattice of subsumption (T is subsumed by P), it means that satisfac-
tion of T entails satisfaction of P; interpreted as predicates, if T is below P, T'(z) — P(z).
Informally, you can think of subsumption as being a subset relation between sets of ob-
jects. The top of the lattice is everything that is (or might be) in the world; all of the
types beneath it are subsets of that set. There are a few problems with this: you don’t
really have a handle on the set of all possible things in the universe, you can’t reel mem-
bers off one after another, and it violates the foundation axiom of set theory (you can’t
define a set by a condition on the universe) which leaves open a variety of ‘set of all sets’
paradoxes. But it is sometimes useful to think about subsumption of types as containment
of sets, particularly near the bottom of the lattice where sets are finite and subsumption
and containment really are the same.

With regard to the formal mathematical conception of a lattice, there are some dif-
ferences and various holes. In particular, TYPICAL’s lattice implementation has no distin-
guished BOTTOM element (“.L”). In fact, the bottom fringe of the lattice is cut off in an
odd way. As the lattice is descended, subsumption relations connect each type to its spe-
cializations; but at the end of the chain of subsumptions — just above where some element
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Lisp Objects

Numbers Vectors
Structures

Complex Numbers Cdnses Empty Lists

Figure 2-1.  The implementation environment of TYPICAL is represented in the lattice
by primitive types of descriptions: numbers, lists, symbols, strings, etc.

would touch bottom — the subsumption relation becomes an instantiation or satisfaction
relation ‘connecting’ to the concrete universe of SCHEME objects. The type which would
represent the singleton set containing a particular unique object becomes simply the object
itself with a satisfaction pointer to the types it satisfies. One might say that ‘bottom’ is
then the unrepresented (and empty) specialization of these individual instances.

Taking the terminology of Al representation langauges, we call the types above a given
type its generalizations; the types below a given type are its specializations. In practice,
the stored generalizations and specializations of types constitute a minimal generator of
the type lattice; P never stores both G and H as generalizations or specializations if G
and H are directly related in the lattice themselves. In the case of generalizations, it stores
the most specialized; in the case of specializations it stores the most general.

Every type also has — for use by TYPICAL and its applications — a set of arbitrary
properties which can be accessed by user functions. These are used for both keeping track
of extra-lattice properties and for storing other relations between concepts — like creation
relations — which application programs may wish to maintain and refer to.

2.1 Example: SCHEME’s Data Types

This section describes how TYPICAL represents its ‘implementation environment’. Figure
2-1 shows the lattice of primitive SCHEME data types as represented for TYPICAL. Each
of these is defined by building a primitive type description around a provided scheme
predicate.

New primitive types are constructed by the SIMPLE-TYPE procedure. This procedure
takes two arguments: a LISP predicate and a generalization (which is an existing type
in the lattice). The resulting type description has the LISP predicate as its determining
function and a single generalization which is the generalization given as an argument. For

Section 2.1 Example: SCHEME’s Data Types Haase
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instance, here we define a few simple SCHEME data types as TYPICAL types:

;;; Define the class of LISP objects

(define lisp-objects (simple-type lisp-object? lattice-top))

;3; Numbers are a sort of LISP object,

(define numbers (simple-type number? lisp-objects))

:;; While complex-numbers are a sort of number.

(define complex-numbers (simple-type complex? numbers))

;3; Defining lists, conses, the empty list, vectors, structures, and strings.

(define lists (simple-type list? lisp-objects))

(define conses (simple-type pair? lists))

(define empty-lists (simple-type null? lists))

(define vectors (simple-type vector? lisp-objects))

(define structures (simple-type structure? lisp-objects)

(define strings (simple-type string? lisp-objects))

The class 1is a class whose predicate accepts anything; all LISP data
types (and thus all types of encoded descriptions) are specializations of this. For reasons
of epistemic consistency, LISP-OBJECTS is not quite the same as the top of the lattice;
there is a proviso for a class of ‘protected descriptions’ which are not classed as LISP
objects but rather as ‘things in the world.” This distinction is supposedly captured by the
predicate LISP-0BJECT?. While not used yet, this distinction may eventually be neccessary
for some particular sticky representation problems; no arguments are made, however, for
its sufficiency. "

The TYPICAL predicate SUBSUMED-BY? determines subsumption relations in the lattice;
SUBSUMED-BY? takes two types as arguments and returns true if the first type is beneath
the second in the lattice:

(subsumed-by? conses lists) —> #!TRUE

(subsumed-by? lists conses) —> #!FALSE

(subsumed-by? strings lists) —> #!FALSE
Subsumption relations between types are immutable; the contract of the lattice demands
that any type definition (addition to the lattice) neither create nor destroy existing sub-
sumption relations between types in the lattice.

TYPICAL does not completely represent type complementation or disjointness for com-
plexity reasons (see Section A-1.3, Page 79); however, TYPICAL does represent a limited
sort of disjointness which nonetheless has great utility for detecting conflicts and contra-

1

In interaction with TYPICAL, types actually print out something like this:
#[144:#[112:#[20:Integers] X #[20:Integers]]<and>#[131:LESS-THAN-PAIRS]]
which is how the type of numerically ordered integer pairs might appear. For purposes of ex-
planation, types in this and following chapters will be shown as specially printed tokens (like
or [Ordered Integer Pairs |) whose names correspond to the identifiers bound to
the type.

Haase Example: SCHEME’s Data Types Section 2.1
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Lisp Objects

Numbers Vectors ists

Structures

Complex Numbers Cdnses Empty Lists

Real Numbers
Rational Numbers
Integers
Natural Numbers

Figure 2-2. The lattice of primitive types can be extended to include SCHEME'’s
taxonomy of abstract numbers.

dictions in representations. Types are declared disjoint by the procedure MAKE-DISJOINT!
which takes a list of types and declares them all mutually disjoint:

;3; Lists and strings and numbers should all be mutually disjoint.

(make-disjoint! lists vectors strings numbers)

;33 And empty lists and conses are disjoint specializations of [Lists ]

(make-disjoint! conses empty-lists)

TYPICAL can make certain inferences about disjointness based on the propogation
of disjointness down the lattice; if two types are disjoint, all of their specializations are
disjoint. In particular, if we use the predicate DISJOINT? to ask about the relation of
complex numbers and lists (we defined integers above) and complex numbers and numbers:

(disjoint? complex-numbers lists) —> #!TRUE

(disjoint? complex-numbers integers) =—> #!FALSE
Declarations of disjointness allows some procedures to catch particular errors; for instance,
an attempt to intersect two disjoint types signals an error.

Since types are data structures in SCHEME, we can define the meta-type
beneath This type, which serves as the root of the sublattice of meta-types,
is a simple-type with the determining predicate TYPE-DESCRIPTION?; since types are im-
plemented as structures, the generalization given is the primitive type
which we defined above:

(define types (simple type type-description? structures))

The lattice constructed so far by these definitions has been relatively flat; we can add
some depth by extending the representation of numbers to the entire tower of SCHEME

Section 2.1 Example: SCHEME’s Data Types Haase
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numbers:2

These are the number data types of SCHEME, which it shares
;33 with Common LISP and many other programming languages.
(define real-numbers (simple-type real? complex-numbers))
(define rationals (simple-type rational? real-numbers))
(define integers (simple-type integers rationals))

;;; SCHEME makes an additional distinction between EXACT and
;33 INEXACT numbers; TYPICAL represents these as well:
(define exact-numbers (simple-type exact? numbers))
(define inexact-numbers (simple-type inexact? numbers))
(make-disjoint! exact-numbers inexact-numbers)

coee
13

The resulting (extended) type lattice is depicted in Figure 2-2.

The tower constructed here can, as above, be examined by the predicate SUBSUMED-BY?
or its alias <<7:

(SUBSUMED-BY? RATIONALS COMPLEX-NUMBERS) == #!TRUE

(SUBSUMED-BY? COMPLEX-NUMBERS RATIONALS) ——> #!FALSE

(<<? TYPES VECTORS) —> #!TRUE

(<<? TYPES LISTS) = #!FALSE

It is also possible to access the lattice connections of a type directly; the explicit
generalizations and specializations can be accessed by SCHEME procedures which return
lists of types. The SCHEME procedures GENERALIZATIONS and SPECIALIZATIONS each take
a type description as an argument and return a list of the immediate generalizations or
specializations of the type. For instance:

(GENERALIZATIONS INTEGERS) —> ([Rationals )

(SPECIALIZATIONS VECTORS) —> ([Types )
(SPECIALIZATIONS NUMBERS)

= ([Complex Numbers | [Exact Numbers ] [[nexact Numbers ]

We can define new types in terms of existing types by using more combinators more
complicated than SIMPLE-TYPE. In particular, the <AND> and <OR> combinators intersect or
union an arbitrary number of other types. For example, we define the type of exact reals
or the type of reals that are either exact or inexact:

(define exact-reals (<AND> exact-numbers real-numbers))
(define exact-or-inexact-reals
(<OR> exact-reals (<AND> inexact-numbers real-numbers)))

If exact and inexact numbers were complements, we would like the definition of
[Exact or Inexact Integers | to become the same as but TYPICAL does not com-
pletely represent complementation, so these definitions would remain distinct. In any

2The types in this tower do not specify implementation types, but instead implement the ab-
stract numerical data types of [RC86] SCHEME; rather than distinguishing representations
as implemented, they make finer and finer distinctions among abstract numbers.

Haase Example: SCHEME’s Data Types Section 2.1



10 Chapter 2 TYPICAL

case, since we are only representing the disjointness of exact and inexact integers, the

separation in this particular case remains valid: there might be another type — say
[Exact on Friday Afternoons | — which actually lay between exact and inexact numbers and

thus a type [Reals Exact On Friday Afternoons | between [Exact Reals | and [Inexact Reals |
Inferences about type combinations are emedded in the subsumption lattice; any type
subsumes another if the representation of subsumption relations says so. In particular,
the information is stored in the generalizations, so that asking for the generalizations or
specializations of combined types will simply recall the combination:
(GENERALIZATIONS EXACT-INTEGERS) —> ([Exact Numbers

(SPECIALIZATIONS EXACT-OR-INEXACT-INTEGERS)
— ([Exact Integers | [Inexact Integers |)

In many cases though, especially when types being combined are themselves combi-
nations of types, more sophisticated inferences must be made. In TYPICAL, the handling
of such inferences is incorporated into the type combinators which make new definitions.
When a combinator constructs a definition, the combinator procedure determines the valid
subsumption inferences from the definition; these subsumptions are then expressed in the
lattice. Handling inference at definition time places a constraint on adding new types to
the lattice: new subsumption relations must never be defined between ezisting types in the
lattice, but only between a newly defined type and ezxisting types.

We cannot, after having defined below turn around and place
below In addition to simplifying the implementation, it allows a the-
oretical simplification: the lattice of types can now be viewed as a complete subgraph of
some hypothetical complete lattice which contains all possible definitions. This would not
be possible if the arbitrary addition of subsumption relations were allowed at any point.

The making of type inferences is sometimes a tricky matter; often the inferences are
counter-intuitive and involve significant ‘lattice combing’ to find unexpected generaliza-
tions and specializations. The general problem is computationally intractable; TYPICAL
takes the middle course of making a useful subset of the possible inferences. The next
section introduces some of the problems of combinator inference by describing TYPICAL’s
‘test suite.” This test suite is a set of definitions and test cases which determine whether
or not TYPICAL’s type inference procedures are working.

2.2 Example: The Test Suite

TYPICAL defines a test suite of definitions and predicates on those definitions which deter-
mine whether or not TYPICAL inference procedures are working appropriately. In partic-
ular, they test the inference procedures for intersections, unions, ‘image constraints,” and
tuple definitions.

The test suite initially describes a set of seven types by using the PRIMITIVE-SET-OF
combinator; this combinator takes a list of objects and a generalization and constructs a

Section 2.2 Example: The Test Suite Haase
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/Sﬂ\

Set2 Set4

Set3 Set5

SetA SetB

Figure 2-3.  The initial lattice for the test suite consists of two inheritance ‘towers’
underneath a linking set.

type predicate under the given generalization which is satisfied only by the given objects.
So the initial set of the test suite are defined thus:

(define setl (primitive-set-of (1 23 45 67 8 9)
lisp-objects))

(define set2 (primitive-set-of '(1 3 5 7 9) setl))

(define set3 (primitive-set-of ‘(1 3 5 7) set2))

(define setA (primitive-set-of '(1 3) set3))

(define setd (primitive-set-of (1 2 3 45 6 7 8) setl))

(define setb (primitive-set-of '(1 2 3 5 7) setd))

(define setB (primitive-set-of '(1 2 3) setb))

This network appears in Figure 2-3; to test the lattice inference algorithms we will
construct a ‘sandwich’ of intersections and unions about [Set3 ] and [Sets ]| Then when we
create a ‘filling’ intersection and union of and this will have to be between
the unions and intersections defined above and below. The following SCHEME procedure
tests intersections:

(define (test-intersections)
(let ((high-type (<AND> set2 setd)))
(let ((low-type (<AND> setA setB)))
(let ((sandwich (<AND> set3 set5)))
(if (not (and (subsumed-by? low-type sandwich)
(subsumed-by? sandwich high-type)
(subsumed-by? low-type high-type)))
(ERROR "Intersection test failed."))))))

In running the above example, TYPICAL must make the following inferences:

e Since any element in the intersection of and must be in both and

Haase Example: The Test Suite Section 2.2
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e And any element in must be in
e And any element in must be in

e And any element in both [Set2 | and [Set4 ] must be in the intersection of and
|

e Then any element in the intersection of [Set3 | and [Sets ] must be in the intersection of
[Set2 |and [Seta | This implication is the same as saying that the predicates determined
by the intersection of [Set3 | and [Set5 ] is subsumbed by the intersection of and

Therefore, the sandwich must be subsumed by the high type; alternatively, the same
reasoning follows for the low type being subsumed by the sandwich. We do the same
sort of test to determine if the union combinator is making the appropriate inferences.
We union with [Set4 ] and [Seta ] with to make the high and low types of the
sandwich and union [Set3 ] with [Set5 | to make the filling:

(define (test-unions)
(let ((high-type (type-union set2 setd)))
(let ((low-type (type-union setA setB)))
(let ((sandwich (type-union set3 set5)))
(if (not (and (subsumed-by? low-type sandwich)
(subsumed-by? sandwich high-type)
(subsumed-by? low-type high-type)))
(ERROR "Union test failed."))))))

The procedures for making inferences about intersections and unions are described in
Section 4.1.2; they are too involved for this introduction. In the next section, however, we
describe the simpler inferences of TYPICAL’s image-constraint combinator.

2.3 Image Constraints

Image constraint types use a function and a specialization of the function’s range to
define a specialization of the function’s domain. For instance, the type of lists starting with
integers is the specialization of lists for which the mapping CAR satisfies the type
The inference we must make about image constraints is that if the actual constraint of one
image constraint is beneath another in the lattice, the corresponding image constraints are
beneath one and other. For instance, we wish to infer that the type for lists starting with
integers is a specialization of the type for lists starting with numbers.

Image constraint types are generated by a combinator procedure which takes a map-
ping and a type as parameters. The resulting type is satisfied by objects for which the
result of applying the given mapping satisfies the given type. Note that while many map-
pings used for defining image constraints are extractors or simple functions (like CAR or

Section 2.3 Image Constraints Haase
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VECTOR-TWELFTH), mappings may in fact be arbitrarily complicated procedures, consing new
structure when presented with objects to map into some other space.3

Inferences about the placement of image constraints in the lattice rummage through
image constraints defined on the same mapping, looking for those types whose image
constraints are directly related to the image constraint of the type being generated. For
example, the type of lists starting with integers should be below the type of lists starting
with complex numbers. When there are no such types, the domain of the mapping is used
as a single generalization. To support this, each mapping has an explicitly declared domain
and range; these are defined with the DECLARE-MAPPING! procedure:

;;; CAR is a mapping from CONSES into arbitrary objects.
(declare-mapping! car conses lisp-objects)

Once defined, they can be used for calls to the IMAGE-CONSTRAINT combinator procedure:

;;; Define the type for lists whose CAR is an integer.
(define lists-starting-with-integers (image-constraint car integers))

TYPICAL’s test suite determines that the image constraint inference procedures are
working correctly by constructing — as for intersections and unions — a sandwich which
tests the procedure in both directions:

(define (test-image-constraints)

(let ((listsl (image-constraint car setl)))
(let ((1ists3 (image-constraint car set3)))
(let ((lists2 (image-constraint car set2)))
(if (not (and (subsumed-by? lists2 listsl)
(subsumed-by? lists3 lists2)))
(ERROR “Image constraint test failed."))))))

2.4 Composing Combinators

Combinators like conjunction, disjunction, power-set or image constraint are primitive;
they directly construct types and are the units about which subsumption inferences are
made. We can compose calls to these primitive combinators to build composite types.
Composing image constraints with intersections and unions specifies particular subtypes
of various structured objects. We might define the type of integer pairs thus:
(<AND> (image-constraint car integers)
(image-constraint
cdr (<AND> (image-constraint car integers)
(image-constraint cdr empty-lists))))

3For instance, in the CYRANO program, some mappings carry objects of a type T into the
equivalence partitions (which are represented by types) determined by some relation over T
Computing this mapping may require the construction of a new partition (type) as the result
of the mapping.

Haase Composing Combinators Section 2.4
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This defines the type of lists whose CAR is of type and whose CDR is of a type
which demands that its CAR be an integer and sts CDR an empty list (an object satisfying
Exmpty Lists ).

Since combinators are procedures, new composite combinators can be defined by defin-
ing procedures which call other combinators internally. The above definition of pairs of
integers nests procedure calls; we could write a recursive procedure MAKE-CROSS-PRODUCT
which could serve as new combinator for defining arbitrary lists of type constrained ele-
ments:

(define (make-cross-product element-constraints)

(if (null? element-constraints) empty-lists
(<AND> (image-constraint car (car element-constraints))
(image-constraint
cdr (make-cross-product (cdr element-constraints))))))
allowing expressions like:
(define integer-pairs
(make-cross-product (list integers integers)))
(define points (make-cross-product (list reals reals)))
(define notes
(make-cross-product
(list (primitive-set-of '(A B C D E F G) lattice-top)
(primitive-set-of '(1 2 3 4 6 6 7 8) lattice-top))))
(define triads (make-cross-product (list notes notes notes)))

Composite combinators can be used to defined new combinators. The <AND> combina-
tor used above is a composite combinator which uses the primitive combinator procedure
TYPE- INTERSECTION. TYPE- INTERSECTION takes two types and returns their intersection; <AND>
takes a list of types and calls TYPE-INTERSECTION recursively down the list. We could define
<AND> as:

(define (<AND> type . with-types)

(if (null? with-types) type
(type-intersection type (apply <AND> with-types))))

TYPICAL is used by Cyrano to define new concepts; a key notion in Cyrano is the
abstraction function which maps some space of objects (sometimes types) into a space
of types. These functions are essentially combinators; much of Cyrano’s progress is
in the definition and selection of new abstraction functions which define new domains
of operation. Thus, the composable nature of TYPICAL’s combinators is an important
component of Cyrano’s design.

Section 2.4 Composing Combinators Haase
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Implementation

TYPICAL is implemented in SCHEME [RC86|, a streamlined dialect of LISP which em-
phasizes economy of mechanism and simplicity of metaphor. SCHEME is lexically scoped
and encourages widespread use of procedures as first class data objects; it is used as the
computational teaching tool in MIT’s introductory computer science course, ‘The Struc-
ture and Interpretation of Computer Programs’ [AS85]. TYPICAL is written largely in the
[RC86] standard SCHEME and was developed in ‘C-Scheme’ 4 on Hewlett Packard ‘Bobcat’
computers; C-Scheme (and TYPICAL) also run on a range of other Unix and VMS based
machines. TYPICAL can also run (with some work) under other SCHEME implementa-
tions and under Common LISP by virtue of a SCHEME compatability package. Copies of
TYPICAL are available from the network and mail addresses given in Appendix A-3.

Scheme was chosen for reasons of elegance and portability. SCHEME more naturally
expresses higher order functions and the use of functions as objects than other LISP di-
alects. On a more pragmatic note, the lack of advanced user interface facilities and other
‘hair’ in the development environment kept the headier temptations of programming from
the author; in most work in Artificial Intelligence, I fear, user interface specification hap-
pens far too soon. Scheme, with its avoidance of half-baked interface metaphors, forces
programmers to get the content and ‘working metaphors’ right and then develop the user
interface. In fact, the development of TYPICAL has suggested just such a user interace,
where the interface is specialized by extensions to TYPICAL’s lattice.

In the following sections, we introduce the implementation of TYPICAL. This chapter
describes the structures used to implement types and the general combinator mechanism

4C-Scheme is a version of MIT-Scheme implemented in C for Unix and VMS machines. Infor-
mation about C-Scheme availability is given in Appendix A-3.
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ABSTRACTION IMPLEMENTATION

/Scheme Procedure
Predicate y (Integer) Type Index
Generalizations * (Minimal) Generalizations
Specializations (Minimal) Specializations
Subsumption Cache
Property List
Figure 3-1. The concrete implementation of type descriptions stores some informa-

tion redundantly, while factoring some easily computed information out of individual
descriptions. The italicized slots on the right hand side are additions to the implemen-
tation outside of the predicate/lattice abstraction on the left.

used to generate them. (The details of particular combinators are described in Chap-
ter 4 and Appendix A-1.) Finally, the implementation of undetermined values is briefly
introduced and discussed.

3.1 Type Descriptions

TYPICAL uses a data structure called a type description to describe predicate procedures

implemented in SCHEME; the data structure is annotated with information about the

predicate. The abstract and concrete implementation of type descriptions is depicted in

Figure 3-1. Abstractly, a type description has 3 properties:

1. A characteristic predicate for the type. This is a test which determines whether or
not a given instance satisfies the type. Strictly speaking, this does not have to be a
predicate, since it can return a special undetermined ‘i don’t now’ token as well as
true or false.

2. A set of generalizations. These are the types for which satisfaction is entailed by the
satisfaction of this type.

3. A set of specializations. These are the types for which satisfaction entails satisfaction
of this type.

As implemented, the representation is more complicated; largely for efficency reasons,
some information is stored redundantly, while some redundant (and easily computed)

Section 3.1 Type Descriptions Haase
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information is factored out of individual descriptions. The actual structure implementing
type descriptions is a SCHEME vector with 6 elements:

1. The characteristic predicate for the type. This is generally (except in rare cases,
such as primitive types) a closed procedure whose closed variables bind the types or
terminals from which the type was generated.

2. A unique integer index for the type. Each type has a unique integer ID, ascending
from zero with each new type definition. This index is useful for canonically ordering
lists of types or for mapping types into a linear sequence such as the elements of a bit
vector. It is also useful, interactively, for getting a handle on a type you have seen
printed.

3. The immediate generalizations of the type. This does not contain all the generaliza-
tions of the type, but merely the most specific subset of the type’s generalizations.
The generalizations of types, as actually stored, constitute a minimal generator of the
type’s generalizations; the recursive closure of this tree would produce the complete
set of generalizations.

4. The immediate specializations of the type. As for generalizations, this is not a com-
plete set, but rather a minimal set from which the complete set may be generated.
Rather than storing all of the specializations of the type, only the most general subset
of the specializations is stored.

5. A bit-vector which caches subsumption relations in the lattice. The index of a type is
used to offset into this bit-vector; if the corresponding bit is on, the type is subsumed
by the type which corresponds to the index. In keeping this cache on each type,
TYPICAL’s implementation trades off time for space; it provides for constant time
subsumption queries by using an O(n?) bit table for caching subsumption information.

6. A table of incidental properties of the type. This is used by some TYPICAL combina-
tors in making inferences about subsumption relations. It is also avaiable to systems
(like Cyrano) which use TYPICAL as a representation language: types can be anno-
tated with program specific information such as known examples, sources of definition,
etc.

If our abstraction for types supports only the predicate SUBSUMED-BY?, type descriptions
are immutable objects. The contract of the lattice demands that the definition of new types
have no effect on subsumption relations between existing types. If the interface is extended
to include accessors for the stored generalizations and specializations, such immutablity
vanishes as immediate generalizations are added and subtracted to reflect the presence of
new types and the minimization of the represented lattice.

3.2 Combinators

New types are defined by an extensible combinator language which combines either existing
types or primitive terminals to construct new types. The existing types combined in this

Haase Combinators Section 3.2
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way are all the result of previous combinator invocations. The primitive terminals so
combined are LISP objects of various sorts; most commonly they are explicit lists or
opaque procedures. In the previous chapter we saw three sorts of primitive terminals
being used: test functions, mapping functions, and fixed lists of elements.

The use of procedures to define new types gives the power of procedure application to
the definition of new constraints, classes, and concepts. Calls to combinators can be nested,
passed as arguments, or combined by higher-order functions. By maintaining the power
of the procedure call model, TYPICAL inherits or assumes the semantics of SCHEME,
allowing other packages to integrate with TYPICAL’s facilities.

A given combinator invocation produces both an implemented predicate and a position
for that predicate in the subsumption lattice. This position is determined by a list of
generalizations and a list of specializations. These three results are produced by applying
procedures given in the combinators definition. For instance, we define the combinator
PRIMITIVE-SET-0F:

;33 The PRIMITIVE-SET-OF combinator takes a list of elements and
;:; a generalization and returns a type underneath the given generalization
;;; which is only satisfied by members of the given list.
(define primitive-set-of
;; Parameters: (elements generalization)
(type-generator
;3 The predicate calls MEMBER on the specified elements.
(lambda (elements generalization) (lambda (x) (member x elements)))
;; The generalizations of a primitive set are the single one given.
(lambda (elements generalization) (list generalization))
;; We don’t define any specializations. A more sophisticated
;; version of this function might look for other primitive sets
;7 whose elements were subsets of this one.

(lambda (elements generalization) ())))

The TYPICAL procedure TYPE-GENERATOR is a higher-order function used to define combi-
nators from the individual methods which generate or infer a new type’s properties. In the
example above, the predicate for a PRIMITIVE-SET-OF type is a closed lambda-expression
which calls the SCHEME function MEMBER on a potential instance and the list passed in the
original combinator invocation. The generalization of a newly created PRIMITIVE-SET-OF
type is simply the existing type given in the initial specification. Finally, the newly created
type has no known specializations.

When a combinator is actually invoked, it’s inference procedures compute the gener-
alizations and specializations of the type to be constructed; if the resulting generalizations
and specializations are identical, the type is tautologically equivalent to this common spe-
cialization and generalization. In this case, the combinator call returns this equivalent
type. If the specializations and generalizations are distinguished (as is usually the case),

Section 3.2 Combinators Haase



TYPICAL TYPICAL Implementation 19

the predicate generator procedure is called to construct a SCHEME predicate. This pro-
cedure is then sotred in a newly constructed type description.

At this point, the type description is installed in the lattice between the generalizations
and specializations computed before. This is the only time when new links are added to
the lattice.5 Once the type description has been installed in the lattice, it is returned as a
result of the combinator.

Combinators memoize their results; if a combinator is called repeatedly with identical
arguments, it will only generate a new type once, recording and returning the first-time
result on all subsequent calls with the same arguments. This assures identity of definitions
as well as the avoidance of wasted effort in redefining existing types.

3.3 Representing Uncertainty

In the previous sections we referred to the procedures generated by combinators and at-
tached to types as ‘predicates.” Types in TYPICAL actually describe three-valued functions
which may return an undetermined ‘i don’t know’ as well as boolean true or false. When a
predicate returns ‘i don’t know’ for an object we say that the type is undetermined for the
object. Thus, for a given object and type in a lattice, the type may be satisfied, unsatisfied,
or undetermined.

The representation of uncertainty does not deeply effect the structure of the lattice;
subsumption in the lattice still indicates predicate entailment. Undetermined(z,T) makes
no claim about z and the generalizations of T, just as Unsatisfied(z,T) makes no claim
about the satisfaction of any of T’s generalizations. On the other hand, the representation
of uncertainty does effect the generation of predicates; each predicate cannot simply use
SCHEME’s boolean combining forms, since by SCHEME’s semantics the non-nil “i don’t
know” token is logically true. The way TYPICAL combines three-valued predicates is
addressed in the next chapter, where TYPICAL’s basic combinators are presented and
explained.

5There are certain carefully controlled violations of this principle. One particular case, de-
scribed in Section 4.5 (Page 33), is in the definition of recursive types which have as inferred
generalizations and specializations other types which refer to the recursive type itself.

Haase Representing Uncertainty Section 3.3
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Combinators

This chapter presents the basic combinators provided by TYPICAL. These are defined by
TYPE-GENERATOR definitions much like those we saw in the previous chapter. I will detail the
methods used to generate predicates and make inferences about relations in the lattice. The
semantics and justification of these methods will be informal. Appendix A-1 introduces a
more formal semantics for TYPICAL’s basic combinators and demonstrates the soundness
of the inference methods used by them.

Types defined by TYPICAL fall into two broad categories: analytic and synthetic.
Analytic types are types defined in terms of other types; synthetic types are types defined
‘empirically’ in terms of LISP predicates or enumerated sets. New type descriptions are
generated in a combinator language which create either composite definitions (analytic
types) or primitive definitions (synthetic types).

Types are described by type descriptions which are themselves LISP objects subject
to type classification; Figure 4-1 is a fragment of the lattice of meta-types beneath the type
As indicated, types naturally fall into two roughly epistemic categories: analytic
and synthetic. Analytic types are defined in terms of other types; synthetic types are
defined in terms of enumerated sets or opaque LISP predicates.

Analytic types are further classified as either direct or indirect depending on how the
apply the types by which they are defined. Direct types apply the types they combine
directly to the objects they test: an intersection is satisfied if an object is in both of the
types it combines, a union is satisfied if it satisfies either of them, and a complement is
satisfied if it doesn’t satisfy the type it complements. Indirect types, on the other hand,
transform their subjects into another space before using the types they are defined in
terms of. For instance, image constraint types carry their objects through a particular
mapping before applying their test constraint.
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Types

Direct Types Indirect Types Tests Collections
Unions Image Constraints
Power Sets
Intersections
Complements

Figure 4-1.  The taxonomy of types is expressed in the lattice of types.

Synthetic types also fall into two disjoint categories: tests and collections. Tests
are types determined by opaque LISP predicates and generally describe the “natural”
environment of the implementation. Collections are sets of objects, fixed or mutable,
which are in practice enumerable.® TYPICAL provides a generic function for returning the
elements of a collection; the applicability of this function defines the distinction between
tests and collections.

Orthogonal to the distinction between analytic and synthetic types is a distinction
— arising from the representation of mutable or incompletely specified types — between
complete and partial types in the lattice. For practical reasons, type satisfaction is not
simply a binary distinction; it may be possible for type satisfaction to be undetermined
for a given object. This is especially true of empirical properties recognized by Cyrano;
satisfaction or non-satisfaction of an empirically determined type may have to wait upon
evidence or counterevidence from the progress of the program. A complete type represents
a two-valued predicate returning ‘true’ or ‘false’. A partial type represents a three-valued
predicate which may also return the ignorance marker ‘i don’t know’.

Partial types are useful (in the program Cyrano, for instance) for representing types
which are actually or pragmatically undetermined for certain objects. A class of empirical
observations, for instance, is actually undetermined; a new phenomenon could be added to
the class at any point. Even if we tagged all phenomena with ‘time tags,” we would simply

60n a finite machine, all the types in the lattice are in theory finitely enumerable, but syn-
thetic collections have the distinction of being practically enumerable; there is a provided
procedure for accessing the elements.

Haase
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divide the class into a complete class of past events and a partial (and currently empty!)
class of future events.

Furthermore, some types, while formally complete, may be pragmatically undeter-
mined. Evidence for or against some completely specified empirical property (e.g. that
some relation is an equivalence relation) must be accumulated; while this accumulation
occurs, the property is undetermined for the object (e.g. the particular relation), despite
a precise criterion for confirmation or at least disconfirmation of the property. It was this
pragmatic indeterminancy which originally motivated the representation of uncertainty in
TYPICAL.

Synthetic types are inherently partial or complete; analytic types inherit their partial
or complete status from the types they are defined in terms of. For test types, completeness
is determined by the predicate for the test; if the predicate can return an ignorance token,
then the corresponding type is partial. Collection types are more complicated because of
the presence of mutable collections. A fixed collection is complete, but a mutable collection
is complete only if objects are only added on construction. In TYPICAL, a complete but
mutable collection is called a generated collection; generated collections have associated
generators which are the only way new members can be added to the collection. Mutable
collections which are not generated collections are inherently partial because they are
undetermined for all current non-members.

4.1 Direct Types

TYPICAL defines three sorts of direct types: unions, intersections, and complements. Union
types are disjunctions of other types; an object satisfies a union type if it satisfies any of
the types unioned. Intersection types are conjunctions of other types; an object satisfies an
intersection type if it satisfies all of the types intersected. Complement types are satisified
if the type the complement is not satisfied.

The primitive combinators TYPE-INTERSECTION and TYPE-UNION are use to do binary
intersection and union of other type definitions. The composite combinators <AND> and
<0R> do n-ary intersections and unions by repeatedly invoking TYPE-INTERSECTION and
TYPE-UNION. Below we describe only the workings of binary intersection and union; n-ary
combinations are simply implemented by repeated applications of the binary combinations.

4.1.1 Predicate Functions of Direct Types

Generating new predicate functions for direct types is not particularly complicated; the
only subtlety is introduced by the presence of ignorance tokens. Normally, generated
predicates would simply logically combine or invert the satisfaction results of the types they
were generated from. For instance, the complement of a type P would have a predicate
which checks if its argument satisfies P, failing if it does and succeeding otherwise. The

Haase Direct Types Section 4.1.1
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A T F ? A T F ? -
T T F ? T T T T T F
F F F F F T F ? F T
? ? F ? ? T ? ? ? ?
Figure 4-2.  The semantics of unions, intersections, and complements can be described

by three-valued truth tables. T represents a type satisfied, F a type unsatisfied, and ?
a type undetermined.

difficulty appears if the satisfiability of P is undetermined. In the case of complementation,
indeterminancy must noted and passed on; unfortunately, in SCHEME (or LISP), if the
logical sense of the ignorance token were simply inverted, ignorance (represented by a
returned ignorance token) would become falsity, indicating certain denial. Since ignorance
tokens exist, logical combination becomes three-valued rather than two-valued.

Figure 4-2 shows a three-valued truth table for union, complementation, and inter-
section. A union is satisfied if either of its component types are satisfied; it is unsatisfied
if both of its component types are unsatisfied; otherwise, it is undetermined. An inter-
section is satisfied if both of its component types are satisfied; it is unsatisfied if either of
its component types are unsatisfied; otherwise, it is undetermined. Finally, a complement
is satisfied if its component type is unsatisfied; it is unsatisfied if its component type is
satisfied; and it is undetermined if its component type is undetermined.

4.1.2 Subsumption Inferences of Intersections and Unions

Computing the generalizations and specializations of direct types is not as straightforward
as generating predicate procedures. Section A-1.3 (Page 79) shows that, in general, com-
puting subsumption is — even with only AND and OR - computationally intractable. To
keep the time required for inferences manageable, TYPICAL uses polynomial-time algo-
rithms which, while sound, are not complete; TYPICAL finds only a subset of the valid
subsumption relations for a newly created type. This section informally describes those
algorithms.

The obvious generalizations and specializations of an intersection or union are the
types they union or intersect. An intersection is below the nodes it intersects; a union is
above the nodes it merges. By the transitivity of subsumption, a type so placed will also
lie under or above all the generalizations or specializations of these nodes.

TYPICAL goes a step further to infer relations to a class of types called accidental
merges which lie above or below a new intersection or union. For any pair of nodes
merged (in either lattice direction: union or intersection) in the lattice, there may be other
merges (intersections or unions) above or below them which should be connected to the

Section 4.1.2 Direct Types Haase
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Z

Figure 4-3.  Accidental merges in the lattice form a class of subsumption inferences
which can be made in polynomial time. If ‘down’ is the direction of intersection, Y
should be directly below X and directly above Z. When Y is defined, these generaliza-
tions must be found in the lattice around the new definition.

newly created merge. Figure 4-3 illustrates the problem in computing subsumption. By
convention, up will be in the direction of generalization; hence X is AAB,Y is C A D,
and Z is E A F. The problem is that by these definitions, X should be beneath Y and Y
should be beneath Z; the problem for a subsumption algorithm will be to find — given
two nodes like C and D being merged into Y — the merges X and Z. Logically, given:

(E— C)A(C — A)
(F — D)A (D — B)
represented in a lattice of implication (subsumption), we wish to derive the implications
(subsumptions):
(EAF)— (CAD)
(CAD) — (AAB)
Combinations like (E A F) or (A A B) are indirectly related to (C A D) and are

called ‘accidental merges’. Accidental merges may look familiar; the test-suite example
of Section 2.2 (Page 10) tested TYPICAL’s algorithms for finding V-Merges and M-Merges.

Given a lattice direction, accidental merges are of two sorts: M-merges and V-merges.
In Figure 4-3, the merge X is an M-merge and the merge Z is a V-merge. For intersections,
M-merges are above the intersection and V-merges are below it. For unions, directions are
inverted, and M-merges are below the union while the V-merges are below it. Since the
processes for intersections and unions are mirror images, we will describe only intersection,

Haase Direct Types Section 4.1.2
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To find M-merges above and(a,b):
Make a set of marked nodes M;
Make a set of m-merges J;
For every superior s of a or b,
process the node s;
To process a node n:
add n to a set of marked nodes M;
for each inferior merge i of n:
if every superior of i is in M (i.e. is marked),
add i to J and mark the node i;

Figure 4-4. The algorithm for finding M-merges of two nodes marks all the gener-
alizations of two nodes and looks beneath them for nodes which merge marked nodes.

noting that unions may be handled by simply replacing ‘up’ with ‘down’ in the algorithm.
For the interested reader, Appendix A-1 presents descriptions and soundness proofs for
both intersections and unions.

To find V-merges we search the lattice below one of the types being combined for
types which are beneath the other type being combined. In the example of Figure 4-3, to
find V-merges beneath X, we descend the lattice beneath A looking for nodes which are
beneath B.

Finding M-merges is more complicated. We can look at finding M-merges as a problem
of finding V-merges from ‘the other side’. An M-merge is a V-merge of two ‘superiors’
(these are the generalizations in the case of intersection, the specializations in the case
of union) of the nodes being combined. A simple algorithm would try to find the V-
merges of all possible pairs of the two nodes’ superiors. Since the space of these pairs is
probably quite large, we would like to interleave the various searches for V-merges. We
use a marker propogation algorithm which marks all of the superiors of the nodes being
merged and then looks down from them for potential M-merges. Given the marking of
superiors, an M-merge is any node which merges marked nodes or other M-merges. The
algorithm (given in Figure 4-4) ascends the lattice, marking each superior and checking
for M-merges directly beneath it (these are merge nodes which have all of their superiors
marked). Each discovered M-merge is marked, and #ts inferiors are checked for M-merges.
(This step captures nested M-merges which merge other M-merges.) This will find all
M-merges because there must always be a ‘final’ marked superior which will make a node
an M-merge; when this final superior is marked, the M-merge beneath it will also be
discovered.

Section 4.1.3 Direct Types Haase
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4.1.3  Subsumption Inferences for Complements

TYPICAL makes no use of complementation or disjointness information in making sub-
sumption inferences between intersections or unions in the lattice. In determining the
subsumption relations of a newly defined complement, however, TYPICAL does seek to
infer its relation to other known complements.

The basic scheme of these inferences are quite simple; the generalizations of a comple-
ment type =T are the defined complements of the specializations of T. It’s specializations
are the defined complements of the generalizations of T. To find these types, we search
below T for types with defined complements; any such complements are generalizations of
the complement type —T. In the same way, we find the specializations of =T by looking
for defined complements of the generalizations of T'.

As will be shown in Section A-1.1.1.5 (Page 71), this algorithm is — by itself — com-
plete; if the rest of the lattice is complete, this algorithm will make all the valid inferences
about the complement’s relation to other types. Unfortunately, the other combinators in
TYPICAL are provably incomplete, so this result is not decisive.

4.2 Indirect Types

TYPICAL implements two sorts of indirect types: power sets and smage constraints. Power
sets are meta-types: the power set of the type Integers is the type satisfied by all spe-
cializations of Integers. Image constraints are types which constrain some actual or
virtual component of an object: the CAR of a list, the first element of a vector, or the
canonicalization of a type description.

4.2.1 Power Sets

The predicate function for a power set is simply a closed call to the TYPICAL procedure
SUBSUMED-BY?. Since new subsumption relations are never created between existing types
in the lattice, power set types are always complete in the sense defined by Section 4; they
return a true or false which holds for all time.

Computing the generalizations and specializations of a power set is also straightfor-
ward: ascend and descend the lattice from the defining type, collecting known power sets
along the way. Since relations between existing types in the lattice are fixed, no new rela-
tions between powersets will be introduced; and when a new power set is created, it will
take into account all the existing power sets. A mapping between a type space and the
corresponding power-set space is shown in Figure 4-5. The power set of the integer type is
placed between the power set of the number type and the power set of the natural-number
type, since natural numbers are below integers in the lattice and general numbers are above
them. The power sets of reals and complex numbers, as yet undefined, are not part of the
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Exact Integers

The structure around a type is indirectly reflected in the structure around

its power set. The bold lines in the figure indicate subsumption in the lattice, while the
finer lines indicate satisfaction of types by metatypes.

picture. When they are defined, they will be appropriately integrated into the power-set
space beneath PowerSet([Numbers ).

Section 4.2.2
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4.2.2 Image Constraints

The other sort of indirect type, the image constraints, allows definitions of types which
predicate on components of structured objects. These parts may be actual parts: slots
in a record structure or bindings on a property list. They may also be virtual parts: the
results of inheritance or some other non-trivial computation. We will indicate the image

constraint defined by C on a mapping f by i» C | this image constraint type is satisfied

by some z if and only if f(z) satisfies C.

The predicate function for an image constraint calls the mapping f as a function and
then checks if the result satisfies P. An image constraint is a partial type (as in Section 4
above) if its predicate is partial.

Computing the generalizations and specializations of an image constraint is much the
same as for a power set. The algorithm simply ascends and descends the lattice from the
constraint on the image, looking for specializations or generalizations which constrain the
same image. If no specializations are found, there are none; if no generalizations are found,
the domain of the mapping is used as the constraint’s generalization.

The mappings used by an image constraint must be declared as mappings, and their
ranges and domains made explicit. Sometimes these mappings are actual components of
an implemented structure; at other times they are virtual components accessible after a
significant computation. For instance, when relations are represented as types of pairs, the
inverse of a relation could be described by the image constraint of the relation (as a type
of pair) on a ‘twist’ function which switches the left and right halves of the pair.

4.3 Composite Combinators

TYPICAL also provides a number of composite combinators which combine image con-
straints with intersections. Two are worthy of particular notice, RECORD and CROSS-PRODUCT.
The RECORD combinator is for defining composite constraints on structured data. Its argu-
ments are an alternating list of mappings and types; the type it returns is the conjunction
of the image constraints generated for each mapping and type. For instance, suppose we
define the type and the mappings AGE, NATIVE-TOUNGE, and SEX. We could then use
RECORD to define the type of ‘young’ natively english-speaking men:
(define young-english-speaking-men
(record age less-than-30-years
sex (primitive-set-of '(MALE) sexes)
native-tounge (primitive-set-of '(ENGLISH) languages)))

RECORD is particular useful for describing subtypes of record-like data structures. One
natural ‘programming language’ extension of TYPICAL would be a record defining form
which autmatically declared some of its accessors as appropriately typed mappings.

Haase Composite Combinators Section 4.3
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Another important composite combinator is CROSS-PRODUCT. A simple implementa-
tion of this was illustrated in Section 2.4. The CROSS-PRODUCT combinator takes an arbi-
trary number of arguments, each of which constrains the corresponding element of a list.
CROSS-PRODUCT is useful for typing unstructured combinations of instances of various types;
for instance, pairs of coordinates, triplets of people, or quartets of musicians:

(define points (cross-product integers integers))

(define possible-menage-a-trois

(cross-product people people people))

(define singing-quartets

(cross-product bass tenor alto soprano))

4.3.1 Unwinding Composite Combinators

When intersections and image constraints are merged, the actual constraints on an indi-
vidual mapping are often lost in the far reaches of the lattice. The TYPICAL function
DETERMINE- IMAGE-CONSTRAINTS recovers this constraint information from the lattice. Given
a mapping and a type, it climbs the lattice from the given type, checking all of its general-
izations to see if any are used to constrain the mapping of interest. Finally, it returns all
of the actual constraints encountered on the way up. For instance, if we defined the type
[Computer Dates |7 as follows:

(define male-female-pairs (cross-product men women))
(define unmarried-pairs (cross-product unmarried unmarried))
(define computer-dates

(type-intersection male-female-pairs unmarried-pairs))

and called DETERMINE-IMAGE-CONSTRAINTS to determine the constraints on the CAR of the
composite type [Computer Dates | we would get:

(determine-image-constraints car computer-dates)
== ([male | lunmarried
DETERMINE-IMAGE-CONSTRAINTS climbs the lattice from [Computer Dates | to find the indi-
vidual constraints on CAR generated by the cross product combinations [Unmarried Pairs |
and [Male/Female Pairs | We could then produce a single type combining all of these con-
straints by just passing the result to the <AND> combinator. The TYPICAL procedure
MAPPING-CONSTRAINT does just that:

(define (mapping-constraint mapping type)
(apply <AND> (determine-image-constraints mapping type)))

so we can call MAPPING-CONSTRAINT as above:

(mapping-constraint car computer-dates)

— llmale | A lunmarried | |

7Confining the model to heterosexual arrangements.
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4.4 Synthetic Types

Considering types as forming a grammar, the analytic combinators are the productions of
the grammar; they take expressions and combine them to make new composite expressions.
Sometimes the expressions so combined are themselves composite, but at some point they
must bottom out in the terminals of the grammar. TYPICAL’s synthetic types are those
terminals and the synthetic combinators are the way of defining new terminals.

Synthetic types fall into two classes: tests and collections. In practice both are ul-
timately implemented as predicate tests, but collections have the property of practical
enumerability. This means that there is a function which, given a collection type, will
return a list of objects currently in the collection; an object will satisfy the type (providing
the type is not modified) if and only if it is in the list of objects returned by this procedure.

The lattice implementation provides a generic function for enumerating instances of a
collection type; the applicability of this function determines the difference between collec-
tions and tests. The implementation also provides a generic function for adding elements
to a set; the applicability of this function determines another division among collections,
between fixed collections and mutable collections.

The generalizations and specializations of synthetic types are always provided by the
user or program calling the combinator; the lattice implementation does no inference on
the definitions of synthetic types. Particular programs generating new synthetic types
may invoke considerable calculation to compute the generalizations passed into the lattice
implementation, but this is then always used without processing by TYPICAL.

Whether or not a synthetic type is complete or partial cannot be generally determined
by TYPICAL. Immutable collections, for instance, are always complete. Simple predicate
tests or arbitrarily modifiable collections, on the other hand, carry no such guarantees. The
distinction between partial and complete synthetic types is determined (except in the cases
mentioned above) by a synthetic collection of ‘revealed complete types’. By convention,
types are added to this collection only when newly created; hence it is a generated type
itself, and complete rather than partial.

4.4.1 Tests

Test types are types whose determining predicate is explicitly and opaquely specified in
their definition. Such black box types are used as both experimental ‘place-holders’ in
program development (say, before the mechanism of a new combinator has been com-
pletely determined) and as primitives of the implementation from which more complicated
composite type combinations are constructed.

One sort of test type combinator — the SIMPLE-TYPE combinator — was presented
in Chapter 2. Taking a procedure and a type, it defines a subtype of the type with the
procedure as its characteristic predicate.
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The other sort of test type is the divided type, for which satisfaction is determined
by two predicate functions: an in-test and an out-test. If an object passes the in-test, the
divided type is satisfied; if it passes the out-test but not the in-test, the divided type is
unsatisfied; if it passes neither, the divided type is undetermined for the object.

4.4.2 Collections

Basic TYPICAL defines four sorts of collections: fixed collections, generated collections,
empirical collections, and divided collections.

Fixed collections are simply a fixed set of objects; since they are immutable, fixed
collections are neccessarily complete. Nothing clever is done about placing fixed collections
in the lattice; every fixed collection is beneath a type specified when the type is created.
While it might be possible to place these finite sets in the lattice in some intelligent manner
(e.g. automatically placing the set {1,2,3} beneath {1,2,3,4} or the set {1} beneath the

type [Integers )), this is not currently done.

A generated collection is a mutable type which is nonetheless complete; only newly
generated objects are added to the type. Generated collections are implemented by simple
types. The predicate for a generated collection keeps a list of objects satisfying the type;
any other objects are summarily rejected. Generated collections are always complete; any
objects satisfying it are either recorded or currently unconstructed. It is normally an error
to add an object to a generated collection; the procedure COLLECTION-GENERATOR takes a
generated collection and a generator procedure and returns a new generator procedure
which will add results from the given procedure to the collection. Thus, if we created a
collection [Interesting Ideas | beneath the type

(define interesting-ideas (generated-collection ideas))

and had a procedure REAL-GENIUS for generating interesting ideas, the expression:
(DEFINE GENIUS (COLLECTION-GENERATOR INTERESTING-IDEAS REAL-GENIUS))

would define a procedure GENIUS just like REAL-GENIUS except that its outputs are added to
the collection [Interesting Ideas | Adding to a generated collection by a mechanism other
than a procedure generated by COLLECTION-GENERATOR signals an error.

Empirical collections are defined beneath particular types and determine satisfac-
tion based on a finite set of members which may be enlarged arbitrarily. If an object is not
in the list of members of the type, its status is undetermined; since it might be added to
the set/type later, satisfaction of empirical collections is always positive, and its predicate
never returns the false value. Empirical collections are used in Cyrano for the definition
of classes of ‘phenomenon’ (e.g. procedure call instances, action/result combinations, etc)
for which no ‘non-examples’ are strictly known.

Divided collections are implemented on top of TYPICAL’s divided test types. Di-
vided collections are defined by a modifiable in-set and out-set, which are used by the in
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and out functions of a divided test type. Objects in the in-set satisfy the type; objects in
the out-set fail to satisfy the type; and objects in neither are undetermined for the type.
Divided collections are used by Cyrano to describe the empirical properties of
the various domains it explores. The empirical analyses and experiments carried out by
Cyrano modify divided collections which describe particular empirical properties.

4.4.2.1 Collection Functions

The functions provided by TYPICAL for dealing with collections are COLLECTION-ELEMENTS
and COLLECTION-MODIFY!. The current members of a collection type can be accessed by
calling the procedure COLLECTION-ELEMENTS on the type. For some collection types, the
value returned by this procedure may be modified by the procedure COLLECTION-MODIFY!.
COLLECTION-MODIFY! takes three arguments: an object, a modifiable collection type, and a
boolean flag. If the flag is true, the object is added to the collection; if it is NIL the object
is removed (or declared out of) the type.

These two procedures operate by referencing two properties — the ELEMENTS-FUNCTION
and MODIFY-FUNCTION properties — of the type.8 These properties reference procedures
which may be called to enumerate or modify the collection type. The presence of these
properties determines whether a type is a collection or a collection is mutable. If a type
does not have an ELEMENTS-FUNCTION property, it is not a collection (by definition); if a col-
lection does not have a MODIFY-FUNCTION property, it is immutable (by definition). These
properties are defined by the procedures which generate collections; such procedures call
the primitive combinators and add properties to that result. Thus, all the collection combi-
nators are really composite combinators; they call primitive combinators within themselves
to do type construction and then modify these constructed types by adding appropriate
ELEMENTS-FUNCTION or MODIFY-FUNCTION properties.

4.5 Recursive Types: Inductive Definitions

In all the cases above, the properties of a type — its characteristic predicate, general-
izations, and specializations — could be determined without having the generated type
present. However, some definitions are naturally recursive. For instance, a list of integers
can be defined recursively as either the empty list or a CONS whose CAR is an integer and
whose CDR is a list of integers. Such a type might look like this:

[Integer Lists | = [Empty Lists |v (%I ntegers | | A cbk [Tnteger Lists |

Unfortunately, one cannot do this in the framework of TYPICAL’s combinators since
to define the type one must already have a pointer to it to create the component image
constraints. TYPICAL implements a special case of recursive types by breaking the contract

8These properties are stored in the table of incidental properties on each type definition.
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of TYPICAL in a controlled manner. One element of TYPICAL’s contract is the guarantee
that once two types have been defined, no later definitions will change the subsumption
relation between them. TYPICAL’s recursive types — called inductive definitions — con-
structs a ‘simple type’ from a recursive SCHEME predicate and then connects this type
to other types in the lattice after the SIMPLE-TYPE combinator has returned.

By installing relations in the lattice after the type has been generated, inductive
definitions violate the contract of the lattice to not place subsumption inferences between
existing types. However, if we treate the INDUCTIVE-DEFINITION combinator as a primitive
combinator in terms of the lattice’s contract, the modularity boundaries demanded by the
contract remain secure.

An inductive definition combines an anchor type, a test type, and a list of links. Each
link is a declared mapping acceptable to the IMAGE-CONSTRAINT combinator. An object
satisfies an inductive definition if it either satisfies the anchor or it satisfies the test type
and each link of the object satisfies the inductive definition.

Defining the predicate for an inductive definition is relatively straightforward; it might
look something like this:

(define (inductive-definition x)

(if (in? x anchor) #T
(if (in? x test)
(every (lambda (link) (inductive-definition (link x)))
links)
#F)))
where anchor and test are types and links is the list of link mappings.

In determining the location of an inductive definition in the lattice, TYPICAL makes
three sorts of inferences: inferences about the space the definition divides (this is the gener-
alization(s) of the type), inferences about the relation of the type to its ‘finite unwindings,’
and inferences about its relation to other inductive definitions.

The first inference determines the direct generalizations of the inductive definition; an
inductive definition is given the generalization

anchor V (test A Domain(l;) A - -+ A Domain(l;))

which specifies the space from which the inductive definition is taken. Anything satisfying
the inductive definition must be either the type of the anchor or amenable to recursive
consideration through through the ‘link functions’ ly,1,,...,1;.

The second set of inferences is more complicated. An inductive definition has a poten-
tially infinite set of specializations; we can choose to ‘unwind’ a given inductive definition
to any extent and each finite unwinding is subsumed by the inductive definition. We can-
not generate all these specializations but we would like to place any existing or newly
constructed finite unwindings beneath the inductive definition in the lattice. As with the
other types, we would like the inferences about recursive types to be lazy; only when a
new finite winding is created do we make a subsumption inference.
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To see how this is done in TYPICAL, consider the point at which a finite unwinding
of an inductive definition T is created: a type is defined which is the intersection of the
recursive type’s test type with a set of image constraints (one for each link) into other finite
unwindings of the type. If we assume inductively that all finite unwindings are already
underneath the recursive type, the newly defined unwinding is beneath both the test type
and the set of image constraints:

KR A Y

Since it is underneath all of these, it is underneath their intersection:

test AL AL T A A

If we declare this intersection a specialization of T, all newly constructed finite unwindings
of T will be beneath T'.

Our inductive assumption was that all finite unwindings of T were actually beneath
T already. To ensure this, we have to search for already-defined unwindings when T is
created. If we only defined unwindings of T after T’s definition, this would not be a
problem; the single unwinding of T"’s anchor could be established as a definition. However,
we don’t have this assurance, so we have to search.

The search is fairly simple; we know that a type is a finite unwinding if it is beneath
the test type and has constraints for each of the links which are finite unwindings. To find
these, we search the lattice beneath the test type for types satisfying this description. These
discovered types are then placed beneath the recursive type; once these are placed and the
intersection above define, any subsequently defined unwinding will find the recursive type
as a generalization.

A final set of inferences made by the inductive definition combinator connects new
inductive definitions to other defined inductive definitions. An inductive definition is a
specialization of another if it either has tests or anchors which are specializations of the
other type’s test or anchors, or if its list of links contains the links for the other type. The
current implementation of this simply searches all the other defined inductive definitions
to find types which satisfy these criterion.
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Chapter 5

Application:
Control in
Cyrano

TYPICAL was designed to represent the concepts and definitions manipulated and gen-
erated by the discovery program Cyrano. As TYPICAL was implemented and used, it
became obvious that the many of the control distinctions made by Cyrano could be ef-
fectively represented by TYPICAL types. This chapter describes TYPICAL’s application to
control in the Cyrano program.

Control is mediated in Cyrano through the indexing of objects. Indexing finds the
types which an object satisfies and then executes daemons attached to those types. The
order in which these daemons are executed is determined by subsumption in the lattice;
if a type s is below a type g in the lattice, the daemons for s are always executed before
the daemons for g. Figure 5-1 shows the execution paths which might be taken through a
lattice of types for the object ‘3’.

Indexing is similar to the mechanism of realization in the representation language
KL-ONE [BS85] and its descendants. In realization, a description is located in a lattice of
concept definitions; indexing extends this with a procedural execution component based
on the object’s location in the lattice.

Daemons and indexing submit to a variety of metaphors. We can consider the daemons
as production rules, where the condition part of the rule is represented by a type in the
lattice and the action component is the procedural implementation of the daemon. These
production rules are ordered by the specificity of their conditions; subsumption in the
lattice determines the order of ‘rule’ application.

Alternatively, if we imagine the daemons as ‘statements’ about objects, we can consider
those statements as scoped over a set determined by the daemon’s type. In this case, if
the daemons are all consistent statements, order of daemon execution shouldn’t matter.
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Figure 5-1. When indexing an object, we run the daemons up the lattice in such
a way that no type has it’s daemons run before any of its specializations. This is a
potential sublattice of types satisfied by the number ‘3’; the dashed and dotted lines
show two paths indexing might take through the lattice.

Another way to think about indexing is as a sort of perception; when an object is
indexed, it is recognized and this recognition triggers some set of simple processes. The
use of indexing as a control structure in Cyrano is driven by a view of most mental activity
as just this sort of perception. Problem solving and knowledge accquisition, in this view,
begin with perception and from perception the choice of action, inference, or construction is
simple and immediate. We see a problem as an z-problem and immediately three methods
for dealing with z-problems spring to mind. In most cases, any of the methods will work;
in some, an attempt will reveal that the problem is actually an z;-problem for which a
single — always effective — method is known. This perspective is in part philosophical,
part psychological, and part computational.

This chapter describes the implementation of indexing used in Cyrano. It begins by
describing how indexing is used in Cyrano and then details its actual implementation.
Since indexing is part of Cyrano’s inner loop, the efficency of its implementation is im-
portant; the final sections of the chapter describes several optimizations used in Cyrano’s
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implementation.

5.1 Concept Generation in Cyrano

The definition of new concepts by Cyrano is driven and guided by the discovery of the
properties or regularities of existing concepts. Certain regularities suggest certain defini-
tions; for instance, if an operation (an implemented mapping between types of objects) is
known to be a function (i.e. there is a unique f(z) for each z), we can use the function to

define a relation >’f\:
adb s a= f(b)
about which we might try and determine various properties. In Cyrano the process of
defining such new concepts is implemented by daemons attached to types of concepts. For
instance, we could define the procedure OPERATION->RELATION:
(define (operation->relation operation)
(simple-type (lambda (pair)
(equal? (car pair) (operation (cadr pair))))
(cross-product (range operation) (domain operation))))
This produces a subtype of pairs which corresponds to the relation which the operation
determines. We could then define a daemon which calls this procedure on all operations
known to be functional:®
(add-daemon! operation->relation functional-operations)
The ADD-DAEMON! procedure adds a daemon procedure to a particular type. Whenever an
instance of that type is indexed, the procedure is called. When an operation is discovered
to be functional, indexing the operation will fire the OPERATION->RELATION daemon.
However, the procedure OPERATION->RELATION only defines a new type; it doesn’t do
anything special with it. We could assume that other processes look at all new types
and process them in some fashion. Alternatively, we could also simply reinvoke the in-
dexer on the new definition. To specify this, we can define a higher order procedure
CONCEPT-GENERATOR:
(define (concept-generator generator-function)
(lambda (x) (index (generator-function x))))
which indexes the result of the generator function. Our call to ADD-DAEMON! now looks like
this:
(add-daemon! (concept-generator operation->relation)
functional-operations)

9In the actual implementation of Cyrano, ‘operations’ are simply relations whose instances
are only determined by empirical generation; such a relation never fails to hold since there
are no guarantees about what might eventually be generated. When such an operation or
relation is found to be empirically functional, a new relation is defined which can be deter-
mined false, based on the recognized determinism of the operation.
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We can use the indexing of new concepts to drive further concept definition; for
instance, if we see a new relation, we can create a set of ‘clusters’ about that relation so
that for any object subject to the relation we can define a type for objects related to it.

(define (left-cluster-function relation)
(lambda (around-x)
(simple-type

;3 This is the predicate for the cluster:
(lambda (y) (in? (list around-x y) relation))
;; This is the type it specializes; the right hand side (CADR)
;; constraints on the type.
(mapping-constraint car (mapping-constraint cdr relation)))))

This creates a new concept generator which produces types from objects. This generator
uses the MAPPING-CONSTRAINT procedure (Section 4.3.1; Page 30) to determine the space
over which the relation is defined. We can use this function as a concept generator: the
concepts it produces are procedures which happen to be new concept generators.

(add-daemon! (concept-generator left-cluster-function)
relations)

The generated clustering function is indexed when it is created and this indexing may
lead to further definitions or other activities. For instance, we could define a daemon which
would take indexed procedures like clustering functions and install them as daemons on
the appropriate types:

(add-daemon! (lambda (x) (add-daemon! x (function-domain x)))

(<AND> (image-constraint function-domain lisp-objects)
(image-constraint function-range lisp-objects)))

The clustering function maps from a space of objects into a space of types. This daemon
takes any such function and establishes it as a daemon.

5.1.1  Controlling Concept Generation: Foci and Potential Foci

The concept generation mechanism described above is explosive, since defining a new con-
cept of one sort may lead to the definition of a new concept of another sort which may lead
to the definition of a new concept of the first sort, and so forth. For instance, an operation
might lead to a relation via OPERATION->RELATION which might lead to a new operation via
LEFT-CLUSTER-FUNCTION which might lead to a new relation via OPERATION->RELATION and so
forth. Cyrano attempts to control this potential explosion by defining two special classes
of definitions: foci and potential foci.

Foci are objects which are known to be interesting: by empirical experimentation,
user assertion, or particular connection with other foci. Potential foci are objects which
have been created and might be interesting. New concept definitions spring only from
foci; potential foci become foci only when they exhibit interesting regularities. Figure 5-2
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Figure 5-2. Cyrano’s control structure divides objects into two classes: foci and
potential foci. New concept definitions spring only from foci and potential foci become
foci only when they exhibit interesting regularities.

illustrates this process. Foci and potential foci are empirical types; unless an object is
declared as a foci or potential foci, its status is undetermined.
;;; Potential foci are an empirical subtype of lisp objects.
(define potential-foci (empirical-type lisp-objects))
;;; Foci are an empirical subtype of potential foci.
(define foci (empirical-type potential-foci))
We redefine CONCEPT-GENERATOR to add its results to [Potential Foci }
(define (concept-generator generator-function)
(lambda (x)
(let ((new-concept (generator-function x)))
(put-in-collection! new-concept potential-foci)
(index new-concept))))
and define an operator on types which returns the foci subtype for a given type:
(define (foci-type base-type) (<AND> foci base-type))
And then our ADD-DAEMON! forms would look like:

(add-daemon! (concept-generator operation->relation)
(foci-type functional-operations))

Haase Concept Generation in Cyrano Section 5.1.1
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Of course, it might well be that most functional operations are interesting for their very
deterministic nature. In this case (where functional operations are special sort of foci), the

daemon would just be added to [Functional Operations | since <AND> applied to and
[Functional Operations ] just returns [Functional Operations |

But if this were the case, we still might want to restrict the use of the generator
OPERATION->RELATION. For instance, if some operations were extremely expensive, con-
verting them into a relation type in the lattice would bring about their constant invo-
cation in checking random pairs for satisfaction of the relation. We might like to keep
OPERATION->RELATION from being applied to expensive operations. The mechanism used in
Cyrano for special cases like this one is called snhibstion.

5.1.2  Inhibiting Daemon Execution

When an object is indexed, the lattice is ascended and daemons along the path executed.
Cyrano’s indexer provides a facility for snhibiting these daemons for particular objects;
when an object is indexed, it’s inhibited daemons are never executed. The procedure
INHIBIT-DAEMON! inhibits a daemon for a particular object; for instance, we could inhibit
relation construction for the operation SAVE-WORLD-STATE:

;;; Don’t try converting world-state-saving into an operation.

(inhbit-daemon! (concept-generator operation->relation)

save-world-state)

This allows individual instances to inhibit particular daemons. This is useful, but we
can do better by defining daemons which inhibit other daemons. For instance:

(define (inhibitor for-daemon)
(lambda (x) (inhibit-daemon! for-daemon x)))

allows us to inhibit OPERATION->RELATION for all instances of the type [Expensive Operations }

;33 Never try converting expensive operations into relations.
(add-daemon! (inhibitor operation->relation)
(foci-type (<AND> functional-operations
expensive-operations)))

The effectiveness of this inhibitor depends on the ordering of daemon execution by the
indexer. It relies on the execution of daemons for in order of specificity; since the type
with the inhibitor is below the type with the concept generator, the inhibitor will be
executed before the concept generator is reached.

One variation on inhibition allows the inhibition of classes of daemons (assuming a
taxonomy of daemon types); rather than simply inhibiting a particular daemon for an
object, we inhibit classes of daemons for the object. This was tried in an earlier version
of Cyrano, but abandoned as it became clear that it was never being used and that the
more specific case of inhibiting a single daemon was all that was neccessary.
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5.2 Implementing INDEX

To introduce the implementation of indexing, we begin by assuming a procedure MAPTYPES
which we will eventually define. MAPTYPES takes a procedure and an object and calls the
procedure on each type the object satisfies, in subsumption order. Thus if a type s is below
a type g, the procedure is called on s before g.
A version of indexing without inhibition might look like this:
(define (index x)
(define (run-daemon daemon) (daemon x))
(define (run-daemons type)
(for-each run-daemon (daemons-for-type type)))
(maptypes run-daemons x)
x)
where the procedure DAEMONS-FOR-TYPE extracts a list of procedures from the incidental
properties of the type. Given this, ADD-DAEMON! can be defined thus:
(define (add-daemon! daemon type)
((modifier daemons-for-type) type
(cons daemon (daemons-for-type type))))
which calls the MODIFIER of DAEMONS-FOR-TYPE to add a new daemon procedure.

We can maintain an inhibitions store by a procedure GET-INHIBITIONS-STORE; called
on a single parameter, GET-INHIBITIONS-STORE returns a cons cell whose CDR is a list of
inhibited daemons for z. INHIBIT-DAEMON! will look like this:

(define (inhibit-daemon! daemon for-object)

(let ((inhibitions-store (get-inhibitions-store for-object)))
(set-cdr! inhibitions-store
(cons daemon (cdr inhibitions-store)))))

and we will update INDEX to check this store:
(define (index x)
(let ((inhibitions (get-inhibitions-store x)))
(define (run-daemon daemon)
(if (not (member daemon (cdr inhibitions)))
(daemon x)))
(define (run-daemons type)
(for-each run-daemon (daemons-for-type type)))
(maptypes run-daemons x)
x))
This version of INDEX passes over inhibited daemons and also allows executing daemons to
modify the inhibitions store in a visible way. This version of INDEX can be spiced up with
facilities for tracing daemon execution, keeping timing statistics for daemons, etc.
Much of the work of INDEX is obviously done by the procedure MAPTYPES; the imple-
mentation of MAPTYPES is examined in the next section.

Haase Implementing INDEX Section 5.2.1
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(define (maptypes procedure object)
(let ((visited-nodes ()))
(define (maptypes-under type)
(cond ((member type visited-nodes)
;; Don’t visit nodes you’ve already checked.
#F)
((in? object type)
;; If the node may have satisfied children,
;; Mark the node as not to be revisited
(set! visited-nodes (cons type visited-nodes))
;; Visit its children,
(for-each maptypes-under (specializations type))
;; And THEN call the procedure on it.
(procedure type))
(ELSE #F)))
(maptypes-under lattice-top)))

Figure 5-3.  This implementation of MAPTYPES does a depth first descent of the lattice,
calling procedure each time it finishes with the children of a node and keeping a track
of visited nodes so that it doesn’t call procedure (or expand children) twice on the same
node.

5.2.1 Implementing MAPTYPES

The MAPTYPES procedure takes a procedure and an object and applies the procedure to all of
the types the object satisfies. A rough-cut implementation of MAPTYPES is shown in Figure
5-3. It does a depth first descent of the lattice, calling procedure on each type it encounters
which is satisfied by object. It prunes the specializations of those types which don’t satisfy
the object. If a type is satisfied, its generalizations are satisfied; by contraposition, none of
the specializations of an unsatisfied type can be satisfied. This procedure also keeps track
of the nodes it has visited on a list; thus it will never call procedure on any node twice.

The order in which procedure is called is the topological sort of the sublattice of types
satisfied by the object. We know that when we call procedure on a type, we have already
called procedure on all the types below it. Thus, we will never call procedure on a type
unless we have already called procedure on all the types below it.

Two pragramatic problems emerge with this simple implementation. First, the list of
visited nodes may get quite long, adding a linear factor to the time a given application
will take. Furthermore, the calling stack is likely to get quite deep. By writing MAPTYPES
iteratively, we can avoid the second problem and by keeping a set of visit marks (in a
bit-string) we can finesse the O(n) lookup on visited nodes (we assume a constant time bit
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(define (maptypes procedure object)
(let ((vieit-marks (make-empty-bit-string)))
;; We use a bit string, indexed by type identifiers, to keep visit marks
(define (topological-map stack)
;; Each element of the stack is either a type or a list of a single type.
;; Types are nodes to be tested and (potentially) expanded; the list of
;; a single type indicates a type which has already been expanded.
(if (null? stack) () ; If the stack is empty, we are done.
(cond ((list? (car stack))
;; If we have returned to a node we expanded,
;; call procedure, set the visit mark, and iterate.
(procedure (car (car stack)))
(set-bit! visit-marks (type-id (car stack)))
(topological-map (cdr stack)))
((in? object (car stack))
;; Otherwise, if the node/type is satisfied, push it on the
;; stack as "already-expanded’ and expand it.
(push-specializations
(specializations (car stack))
(cons (list (car stack)) (cdr stack))))
;; Otherwise, keep going down the stack.
(ELSE (topological-map (cdr stack))))))
(define (push-specializations specializations stack)
;3 This adds a list of specializations to the search stack.
(if (null? specializations)
(topological-map stack) ; If there is nothing more to push, continue.
(if (check-bit visit-marks (type-id (car specializations)))
;; If the specialization has been visited already, don’t bother
;; visiting it again. ‘
(push-specializations (cdr specializations) stack)
;; If the specialization is new, add it to the stack and keep pushing.
(push-specializations (cdr specializations)
(cons (car specializations) stack)))))
(topological-map (list lattice-top))))

Figure 5-4.  This iterative version of the MAPTYPES procedure keeps track of where it
has been with visit marks.

string reference operation). Figure 5-4 shows this implementation. Though a bit involved,
it can execute tail-recursively consing only the internal stack argument stack.

Another problem with both the iterative and recursive implementations emerges if we
consider the cost of the call to IN?. MAPTYPES calls IN? O(n) times (where n is the size of
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the lattice); at each point IN? calls a type predicate to determine satisfaction for object.
If the type predicate is an analytic combination of other analytic types, the worst-case
cost (in calls to primitive type predicates) for a call to IN? is also O(n), giving and O(n?)
bound for a given indexing operation. Indexing is a common operation for Cyrano and
the next section describes how this O(n2) time bound is practically improved by using a
cache for type satisfaction.

5.2.2  Optimizing MAPTYPES: Satisfaction Caches

Cyrano calls the indexer on every new concept and example; it is part of the program’s
inner loop. We would like to improve on the O(n?) time bound for indexing and we can
do so by using a satisfaction cache. We introduce a procedure WITH-SATISFACTION-CACHE
which takes an object parameter and a zero-argument procedure and calls the procedure in
an environment where satisfaction information about the object is cached. Figure 5-5 (Pag
46) eimplements a version of the satisfaction cache. It works by dynamically redefining
the TYPICAL procedure SATISFIES? to use a pair of bit strings as a cache for satisfaction
information.

If the MAPTYPES procedure of Figure 5-3 were renamed MAPTYPES-1, we could define a
more efficent version:

(define (maptypes procedure object)

(with-satisfaction-cache object (maptypes-1 procedure object)))
which will involve only O(n) basic predicate calls.

In the actual implementation in Cyrano, the details differ, but the general idea of
fluidly rebinding the satisfaction function makes indexing significantly cheaper. One useful
extension in the actual implementation is to maintain type caches for objects between calls
to MAPTYPES. This speeds up repeated indexings by a significant factor, since most ‘basic’
predications only need to happen once. It does however, engender a host of problems with
cache invalidation. The partial solution currently used in Cyrano is to reset the stored
cache explicitly when cached satisfaction information is known to be invalid.

5.3 Summary

In this chapter I described how indezing is used in the control structure of the Cyrano
program. Indexing takes an object and locates it in the lattice of types; this location is
then used to find daemon procedures to call on the object. These daemon procedures are
attached to individual types and if an object satisfies a type, its corresponding daemons
are called. Daemons are executed in order of specificity; if a type s is below a type g, the
daemons for s are called before the daemons for g.

Daemon execution applies a procedure to a topological sort of the sublattice of types
satisfying an object. This operation is made more efficient by the use of a satisfaction
cache to store satisfaciton information in the lattice.
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(define (with-satisfaction-cache for-object procedure)
;; We use two bit strings, referenced by type indices, to cache
;; satisfaction information.
(let (;; Determines if the cache accurately reflects satisfaction of a type.
(cached?-vector (make-empty-bit-string))
;; Determines if a type is actually satisfied.
(satisfies?-vector (make-empty-bit-string))
;; The default IN? procedure.
(outer-satisfies? satisfies?))
(define (inner-satisfies? object type)
(cond ;; If the call to SATISFIES? is not for-object, pass it on:
((not (eq? object for-object))
(outer-satisfies? object type))
;; If the satisfaction information is cached, return the cached value:
((check-bit cached?-vector (type-id type))
(check-bit satisfies?-vector (type-id type)))
;; Otherwise go ahead and compute satisfaction:
(ELSE (let ((satisfied? (outer-satisfies? object type)))
(cond ((and (defined? satisfied?) satisfied?)
;; If the type is really satisfied (defined and true),
;; set the appropriate bit in both the cache vector and
;; the satisfaction vector.
(set-bit! cached?-vector (type-id type))
(set-bit! satisfies?-vector (type-id type)))
((defined? satisfied?)
;; If the type is really unsatisfied (defined and false),
;; set the appropriate bit in the cache vector but leave
;; the satisfaction vector clear.
(set-bit! cached?-vector (type-id type))))
;; Finally, return the result of the satisfaction query.
satisfied?))))
(fluid-let ((satisfies? inner-satisfies?)) (procedure))))

Figure5-5.  The procedure WITH-SATISFACTION-CACHE fluidly binds TYPICAL’s SATISFIES?
procedure to a procedure which keeps track of satisfaction information for an object in
a pair of bit strings.
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Chapter 6

Application:
Hypotheses
in Cyrano

As a language for constructing definitions, TYPICAL can be viewed as a deductive inference
engine for Cyrano; it draws the neccessary consequences of a given definition and makes
these consequences visible to the program as structure within the lattice. TYPICAL was
at first designed for largely this role: a language for representing and making inferences
about concepts defined by a vocabulary of combinators.

In the last chapter, I described how TYPICAL is used in the control structure of the
Cyrano program, implementing a heuristic rule engine where applicability conditions are
specified by types in the lattice. TYPICAL’s lattice inferences provided a superstructure
for indicating that certain rules had priority over others.

In this chapter I describe how TYPICAL is used to support Cyrano’s inductive infer-
ences. Just as the deductive capacities of TYPICAL support the heuristic inference mecha-
nism described in the preceding chapter, the confirmation or disconfirmation of empirical
hypotheses is also constructed on the representational substrate of TYPICAL’s definition
and inference capabilities. In particular, TYPICAL types are used to represent examples
and counterexamples of emprical regularities.

Confirmation of empirical properties by TYPICAL uses the indexing mechanism pre-
sented in the previous chapter. The confirmation process defines two disjoint types in
TYPICAL’s lattice: a type for counterexamples and a type for examples. Index daemons
attached to these types then mediate the confirmation process by reacting to the index-
ing of counterexamples or examples. When a counterexample is indexed, the property
is disconfirmed. When a sufficent number of examples is indexed, the property is tenta-
tively confirmed. The definition of these classes and (in part) the generation of possible
candidates for them is the focus of this chapter.
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6.1 Sample and Evidence Types

When Cyrano indexes a particular type definition, it naturally falls into various ‘meta
types’ in TYPICAL’s lattice. Attached to these types are daemons which propose em-
pirical properties the definition might satisfy; these hypotheses initiate the creation of
‘experiments’ which seek to confirm or disconfirm the proposed empirical property. Of
course, such confirmations — like the hypotheses which lead to them — are neccessarily
heuristic; the confirmation mechanism remains ever on the lookout for counterexamples to
empirically confirmed (‘so far’) properties.

Empirical properties are ‘accidental’; they are things which are true about types not
in virtue of their definition, but in virtue of the world of objects they distinguish. Since
Cyrano’s knowledge of the world is largely expressed in terms of subsumption of definitions
in the lattice, empirical regularities are expressed as accidental subsumption relations in the
lattice. Every regularity is eventually expressed by the suprising subsumption of one type
beneath another; each recognized empirical property represents the suprising containment
of one class of objects within another.

The accidental subsumption which corresponds to a potential regularity is determined
by an empirical class for the particular sort of regularity. Empirical classes are implemented
in TYPICAL by divided collections (Section 4.4.2, Page 32). Each empirical class specifies
two attached functions: a sample space generator and an evidence space generator. To
confirm a regularity for a particular instance, these functions are called on the instance,
returning (respectively) a sample type and an evidence type. The regularity is satisfied
if the sample type is subsumed — either neccesarily or empirically — under the evidence
type.

Confirming a property is a matter of demonstrating either the statistical plausibility
or strict impossibility of this accidental subsumption. Statistical plausibility is indicated
by a ‘convincing number’ of instances of the sample type which also satisfy the evidence
type; strict impossibility is indicated by an instance of the sample type which is not an
instance of the evidence type.

The simplest empirical classes have sample space generators which are the identity
relation:

RSample(x) =z
and evidence functions which are some constant pre-existing type:

REgyidence = Cr.
Such classes express regularities like ‘All X’s are red,” ‘r is an identity relation,” or ‘f
is monotonically increasing’; they are statements that membership in the class implies
membership in some larger class.
More complicated test spaces combine or transform the concept being analyzed. For
instance, relations in Cyrano are represented as types of pairs (e.g. EQUAL is represented
as the type of all pairs of equal lists). The empirical class of symmetric relations has a
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Figure 6-1. Empirical classes describe empirical regularities by potential accidental
subsumption/subset relations in the lattice.

test function which generates the inverse of a relation and a confirmation space which is
the relation itself. We can define an inverse of a relation R by using the mapping

twister((z,y)) = (y,z)

in an image constraint to define This is the inverse of R which we can then use
to determine if R is symmetric:

SummetricSample (R) =
Symmetricgyidence(R) = R
If Symmetricgampie(R) is beneath Symmetricgyidence(R), then R is symmetric.

The process of confirmation defines two new types from the sample evidence spaces:
a type for examples and a type for counterexamples. Logically, for a regularity K, the set
of counterexamples to z satisfying K is

K.S’ample (z) A "KEgyidence (:D)
and the set of positive examples for z satisfying K is the intersection

Ksample (.’I}) A KEvidence(x)

Haase Sample and Evidence Types Section 6.1
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Figure 6-1 illustrates the specification of these types in terms of overlapping regions. In-
stances in the class of counterexamples instantly disconfirm the regularity in question.
Instances in the class of examples have no such immediate effect. A positive conclusion
must wait for some convincing corpus of examples, and even then such a conclusion is at
most tentative. Even if every preceding sentence of a paragraph ended with a period, that
makes no guarantees about this one!

Counterexamples and examples are noticed by Cyrano through index daemons at-
tached to the classes of examples and counterexamples. When a potential member of the
sample space is generated, it is indexed in the lattice. If the potential member is really
in the sample space, the object will fall into either the class of examples or the class of
counterexamples, triggering the daemons attached to each of these classes. If the coun-
terexample daemon is triggered, it disconfirms the regularity and removes both itself the
example collecting daemon. If the example daemon is triggered, it checks if there is already
a sufficent quota of examples and — if there is — tentatively confirms the regularity. Upon
confirming a regularity, the examples daemon removes itself from activity, but leaves the
counterexample daemon untouched. In this way, eagerly made mis-confirmations can be
caught when later counterexamples show up. The exact manner in which such after-the-
fact fixes should work remains an open problem.

6.2 Implementing Confirmation

Confirmation combines TYPICAL’s definition facilities and the indexing facilities imple-
mented in Chapter 5. In the following section, we will present a version of Cyrano’s
confirmation implemenation. We assume the indexing implementation of the last chapter
and an additional procedure, GENERATE-EXAMPLES, which sets up machinery for generating
and indexing examples of a type.

Confirmation involves the definition of types for examples and counterexamples, and
the attachement of appropriate daemons to these types. The definition of these types
derives from the sample space/type and evidence space/type functions of some empirical
regularity; defining these functions and the empirical classes they define constiutes the first
part of the implementation of confirmation.

Empirical classes are created by the EMPIRICAL-CLASS procedure. This procedure calls
the DIVIDED-COLLECTION combinator, described in Section 4.4.2 (Page 32). EMPIRICAL-CLASS
will take three arguments: a type, a sample-space generator, and an evidence-space gener-
ator. procedure. The first argument specifies the generalization of the generated empirical
class; the sample-space and evidence-space generators take an object and return the sample
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(define (hypothesis subject property)
(let ((sample ((sample-space-generator property) subject))
(evidence ((confirmation-space-generator property) subject)))
(cond ((subsumed-by? sample evidence)
(message $NL "!!! By definition, " subject " is in " property)
(message $NL "!!! Instances of " sample " are always in " evidence)
(assert! subject property))
((disjoint? sample evidence)
(message $NL “!!! By definition, " subject " cannot be in " property)
(message $NL *!!! Instances of " sample " are never in " evidence)
(assert! subject (complement property)))
(ELSE (setup-counterexamples-daemon subject property sample evidence)
(setup-examples-daemon subject property sample evidence)
(generate-examples sample)))))

Figure 6-2.  The HYPOTHESIS procedure generates sample and evidence spaces and sets
up an experiment if neccessary.

and evidence types for the regularity:
(define (empirical-class beneath
sample-space-generator evidence-space-generator)
(let ((property (divided-collection beneath)))
((modifier sample-space-generator)
property sample-space-generator)
((modifier evidence-space-generator)
property evidence-space-generator)
property))
EMPIRICAL-CLASS generates a dividied collection and annotates it with sample and evidence
space generators. These annotations are added by using the higher-order ‘modifier’ proce-
dure which returns a procedure for modifying a property.

Confirmation is initiated by the HYPOTHESIS procedure which generates sample and
evidence spaces for a property and — if neccessary — sets up the experimental apparatus
to try and confirm the property. A possible implementation of HYPOTHESIS is shown in
Figure 6-2. This takes two arguments: an object an an empirical property. Fetching the
sample and evidence space generators from the property, it applies these to the subject to
generate the appropriate sample and evidence spaces.

Before beginning an actual experiment, it checks that the regularity is not ‘trivially’
confirmed; if the defined types are already beneath one and other or known to be disjoint,
no data is needed to confirm or disconfirm the empirical property. This subsumption
and disjointness information used here is generated by TYPICAL in the process of type
combination and inference initiated by the construction of sample and evidence types. In
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(define (setup-counterexamples-daemon subject property sample evidence)
(let* ((counterexamples (<AND> sample (complement evidence))))
;; This is the actual counterexample daemon.
(define (notice-counterexample x)
:; If you find a counterexample, announce it:

(message $NL “!!! Found a counterexample excluding *
subject " from " property)
(message $NL "!!! Declaring " property " unsatisfied for " subject)

;; Remove the apparatus for noticing counterexamples.
(remove-daemon! counterexamples notice-counterexample)
;3 And assert its membership in the appropriate empirical class.
(put-in-collection! subject (complement property))
:; And (re)index the newly declared object.
(index subject))

;; Add the counterexample daemon.

(add-daemon! notice-counterexample counterexamples)))

Figure 6-3. The procedure SETUP-COUNTEREXAMPLES-DAEMON defines an internal proce-
dure which notices counterexamples to a proposed empirical property.

providing subsumption and disjointness information, TYPICAL is serving as an tnference
engine for ‘proving’ properties from the definition of sample and evidence spaces.

If TYPICAL’s inferences do not immediately confirm of disconfirm the property, HYPOTHESIS
sets up the daemons which notice examples or counterexamples and then begins a process
of actually generating potential samples to be noticed.

Figure 6-3 shows a possible implementation of SETUP-COUNTEREXAMPLES-DAEMON. It de-
fines a counterexample space by intersecting the sample space with the complement of the
evidence space. It then defines an internal procedure NOTICE-COUNTEREXAMPLE to use as a
daemon. This procedure:

1. Announces the presence of a counterexample to the user.

2.  Removes itself from the counterexamples type, so that it will not needlessly fire again.

3. Adds the potential instance of the empirical regularity to the complement of the
regularity’s empirical class.

4. Re-indexes the once-potential instance to allow new daemons to fire based on its new
classification.

The NOTICE-COUNTEREXAMPLE procedure is made a daemon on the type of counterexam-
ples by the ADD-DAEMON! procedure of the indexing implementation.

Figure 6-4 shows a possible implementation of SETUP-EXAMPLES-DAEMON. It defines the

space of examples by intersecting the sample and evidence spaces it is given. It then
defines an internal procedure NOTICE-EXAMPLE to use as a daemon on this example space.
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(define (setup-examples-daemon subject property sample evidence)
(let ((examples (<AND> sample evidence))
(examples-seen ()))
;; The THRESHOLD is the number of examples required for confirmation.
(define (notice-example x)
(if (not (member x examples-seen))
(set! examples-seen (cons x examples-seen)))
(if (defined? (has-type? subject property))
(remove-daemon! examples notice-example)
(i (> (length examples-seen) examples-threshold)
:; If there are “enough’ examples, announce your discovery

(begin
(message $NL *!!! Found " (length examples-seen) "examples"
" of » property " for " subject)
(message $NL "!!! Declaring " property

" tentatively satisfied for " subject)
;; Assert it into the appropriate empirical class,
(put-in-collection! subject property)
;; and (re)index it based on this new knowledge.
(index subject)))))
(add-daemon! notice-example examples)

notice-example))

Figure 6-4.  The procedure SETUP-EXAMPLES-DAEMON defines an internal procedure which
notices examples supporting a proposed empirical property.

NOTICE-EXAMPLE keeps a single piece of state between invocations: a list of examples it has
seen. If it is called on an example which has already been seen, it does nothing; if the
example is new, it adds it to the list of known examples and checks the length of this list.
If the length is past some ad-hoc threshold, it tentatively asserts the relation satisfied by:

1. Announcing that the threshold has been passed and that the regularity is being ten-
tatively asserted.

2. Adding the potential instance of the empirical regularity to the regularity’s empirical
class.

3. Re-indexing the potential instance to allow new daemons to fire based on its new
classification.

An interesting wrinkle in the definition of NOTICE-EXAMPLE is that it is self-disabling;
if the regularity it is attempting to illustrate has already been determined (positively or
negatively) when it is called, it removes itself as a daemon from the type of examples. Note
that we do not remove the counterexamples daemon if the regularity is assumed satisfied;
we still want to be able to be proven wrong.
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As with the counterexamples daemon, the procedure ADD-DAEMON! adds the procedure
NOTICE-EXAMPLE to the type of examples.

6.3 Confirming Cliches

Cyrano us the confirmation mechanism described above to recognize a variety of com-
plex regularities in the domains presented to it; these regularities are organized into broad
classes called cliches after Chapman’s usage [Cha83] [Cha86]. Cliches are highly exploitable,
domain independent, formally specified properties of representations; not a theory of rep-
resentation themselves, they are properties of domains and the representations of domains.
Central to the theory of cliches is the thesis that most understanding is structured around
a small set (less than 1000) of powerful ideas which are used from domain to domain.
Examples of cliches are notions of continuity, ordering, partitions, equivalence classes,
or symmetry. The important properties of cliches are: their formal specification (given
a representation and represented examples, it is easy to tell if a cliche is present); their
sparseness (it is estimated that there are less than a thousand general purpose cliches); and
their domain independence (a single cliche, like continuity, will find a place in mathemat-
ics (of course), physical reasoning, action planning, etc). Cliches are similar to Minsky’s
notions of ‘concept germs’ as presented in [Min86]. Methodologically, the general notion of
cliches and cliche theory arose from a generalization of program cliches presented in [RS76].

Cyrano structures its experimental activities around identifying these domain inde-
pendent cliches. This section presents the implementation of a handful of these regularities
using confirmation mechanism described above. The regularities describe properties of re-
lations, functions, and mappings represented by types in TYPICAL’s lattice.

In particular, these objects are defined as particular types of pairs in the lattice; a
relation, mapping, or function is a special type of pair, specifying a subset of all possible
pairs. To begin, we define the class of pairs and operations on them; all such objects are
beneath the type of pairs in general, and have right and left elements:

;33 This is the supertype of all types of pairs.

(define pairs (cross-product lattice-top lattice-top))

;;; We define synonyms LEFT and RIGHT for CAR

;;; and CADR. Since these are already declared as mappings

;33 by TYPICAL, it is unneccessary to declare them anew.

(define left car)

(define right cadr)

Given the class of pairs, we define the class of pairings; all relations, functions, or mappings
will be beneath this class which is the power set of pairs:

(define pairings (power-set pairs))

For any specialization of we might wish to individually extract the left and
right constraints which the type places on its elements. To do this we use the procedure
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MAPPING-CONSTRAINT (Section 4.3.1; Page 30) to define:
;33 This returns the constraints on the left side of a pairing.
(define (left-constraints type) (mapping-constraint car type))
;33 This returns the constraints on the right side of a pairing.
(define (right-constraints type)
(mapping-constraint car (mapping-constraint cdr type)))

Given this framework for describing pairings, we can look for many regularities in
these pairings. One regularity is whether a given relation is deterministic: whether a
given right hand side is always associated with a given left hand side or vice versa. Other
regularities are algebraic; is a relation “~” reflexive

T=ye—T~Y,
anti-reflexive
z=y > (z~y),
symmetric
T~Yys—y~z,
or anti-symmetric

z ~y+— (y~ z).

6.4 Recognizing Determinism

When we speak of a pairing being deterministic, we mean that over all instances of the
pairing, pairs with identical right or left sides have identical left or right sides. This is
loosely related to the notion of determinism underlying causality; a deterministic causal
law is one which claims that all X events are followed by Y events.

We define two sorts of determinism for a pairing: left deterministic pairings and right
deterministic pairings. For a pairing P of elements (z,y), P is left deterministic if and
only if f(z) = y is a function; P is right deterministic if and only if f(y) = z is a function.
Closer to the language of pairs, if for any two elements of P, if left-hand identity implies
right-hand identity, P is left deterministic; if right-hand identity implies left-hand identity,
P is right deterministic.

To recognize these sorts of determinism in a pairing, we need to define sample and
evidence spaces where containment of the sample space in the evidence space occurs only
when the pairing is deterministic. Since determinism is a property of particular pairings
relative to all other pairings, this requires a way to compare all the elements of a given
pairing. We can do this by establishing a pairing of the pairings; this is a type satisfied
by pairs whose first and second elements are both instances of the pairing we are testing.
If [R7] is a pairing we are examining, the space we will be experimenting in is the cross
product type ([R]X [R)). The complete extension of this type is all the permutations of R
(viewed as a set of pairs) with itself.
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But this is not exactly the sample space we want; it is too large. Determinism says
nothing about what happens when their is no identity of left or right sides. Right deter-
minism makes a claim about pairs of pairs whose left-hand sides are equal; left determinism
makes a claim about pairs of pairs whose right hand sides are equal. To begin defining
test and confirmation classes (and functions), we need to define the class of left and right
identical pairs, which we do by escaping to LISP to define the predicates RIGHT-EQUAL? and
LEFT-EQUAL?: 10

:3; First a predicate which makes sure that something is really a pair of pairs.
(define (pair-pair? x)

(define (a-pair? y) (and (list? y) (= (length y) 2)))

(and (a-pair? x) (a-pair? (first x)) (a-pair? (second x))))
;;; Returns true for pairs of pairs whose right hand elements are the same:
(define (right-equal? x)

(and (pair-pair? x)

(equal? (right (first x)) (right (second x)))))
;;; Returns true for pairs of pairs whose left hand elements are the same:
(define (left-equal? x)
(and (pair-pair? x)
(equal? (left (first x)) (left (second x)))))
;;; And now we define the corresponding types for these predicates:

(define right-equals (simple-type right-equal? (list pair-pairs)))

(define left-equals (simple-type left-equal? (list pair-pairs)))

Given these characterizations of the test space, the confirmation space is simply the other
side of the equality: those pair pairings which are right equal or left equal when the test
space is left equal or right equal. So we can define the empirical class [Right Deterministic |

as:

(define right-deterministic
(empirical-class pairings
(lambda (r) (<AND> (cross-product r r) right-equals))
(lambda (r) (<AND> (cross-product r r) left-equals))))
A pairing R is right deterministic if pairs of Rs which are right identical are also left identical.
The definition of left-deterministic pairings is symmetric to that of right-deterministic
pairings:
(define left-deterministic
(empirical-class pairings
(lambda (r) (<AND> (cross-product r r) left-equals))
(lambda (r) (<AND> (cross-product r r) right-equals))))

10Described predicates are, by convention, not allowed to signal type errors; if their argument
or some component of it is not of the correct type, they simply return #F (false). TYPICAL’s
analytic combinators ensure this in the functions they generate, but simple types, are handed
an opaque predicate for which they cannot guarantee this property. The user must ensure
that the predicates handed to SIMPLE-TYPE (like RIGHT-EQUAL?) explicitly type their arguments.
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Given the definitions for right and left deterministic pairings, we can define daemons
which will set up ‘experiments’ for any pairings which are defined. As in Chapter 5, we
prefer to define a daemon generator:

(define (hypothesize property) (lambda (x) (hypothesis x property))
and proceed to use this in adding daemons:

(add-daemon! pairings (hypothesize right-deterministic))
(add-daemon! pairings (hypothesize left-deterministic))

These daemons will fire on any pairings and set up both the experimental apparatus
(sample space, evidence space, and sample generatoring machinery) and the confirmation
and disconfirmation daemons for ‘observing’ the results of the experiment.

We can use membership in empirical classes — resulting from experiments like those
above — to analytically determine membership in other classes. For instance, we can use
the definitions of determinism above to define analytic intersections describing four classes
of mappings (represented as pairs):

(define one-to-one

(<AND> right-deterministic left-deterministic))
(define many-to-many

(<AND> (complement left-deterministic)

(complement right-deterministic)))

(define one-to-many

(<AND> right-deterministic (complement left-deterministic)))
(define many-to-one

(<AND> left-deterministic (complement right-deterministic)))

Whenever a new relation is indexed, experiments exploring its deterministic properties
will be established. When these properties are experimentally confirmed or disconfirmed,
indexing will place the relation in one of the classes defined above (one-to-one, many-to-
one, etc); based on this indexing, new daemons may fire to suggest new experiments or
construct new relations or other definitions.

Beyond determinism properties, which apply to any pairing, some properties apply
only to relations among a particular type; such relations are pairings whose two sides come
from the same source. The properties possibly peculiar to them are algebraic properties:
reflexivity, symmetry etc.

6.5 Relational Cliches

Certain pairings qualify as relations over particular types. A pairing is a relation if its
right and left members may coincide; i.e. if their right and left constraints subsume each
other. We can define the meta-type of relations by constructing a mapping function which
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gets the right and left constraints of a type:
;;; This returns a list of the left and right constraints on a type.
(define (pair-constraints pair-type)
(list (left-constraints pair-type) (right-constraints pair-type)))
:;; And we declare this as a mapping from pairings to pairs of types:
(declare-mapping! pair-constraints

pairings (cross-product types types))
and use the TYPICAL types [Subsumes Relation | and [Subsumed By Relation | which are sat-
isfied by pairs of types which subsume and/or are subsumed by each other. Given these
types and the mapping PAIR-CONSTRAINTS, we can define the type Relations are
pairings which relate items from the same space:

(define relations
(<OR> (image-constraint pair-constraints subsumes-relation)
(image-constraint pair-constraints subsumed-by-relation)))

Relations are the connectives of a domain vocabulary; the algebraic properties of a
given relation point the way to new representational definitions. Symmetry, transitivity
and other regular properties provide the structure around which closures, compositions,
and equivalence classes may be provided. In this section, we describe how Cyrano uses
the confirmation mechanism implemented in TYPICAL to recognize relations as reflexive,
anti-reflexive, symmetric, or anti-symmetric.

6.5.1 Recognizing Reflexive Relations

We begin with the definition of above and first define the class of reflexive
relations. A relation r is reflexive if for all z, r(z,z) is true. The constraint being used
here is the identity constraint between the left and right hand sides of a r. A first theory of
confirming reflexive relations might be to see if the reflexive relation contains the identity
relation z = z. If it does — if every equal pair satisfies £ ~ y — then the relation is
reflexive. Such a definition would look like:
(define reflexive-relations
(empirical-class relations ; Defined beneath RELATIONS
(lambda (r) equal-pairs) ; The sample space generator
(lambda (r) r))) ; The evidence space generator
The difficulty with this definition is that the reason a given pairing might fail to be in
r might be that it doesn’t make sense to be related by r. If r implemented the predicate
loves(z,y) between people, the pair (rock;,rocks) would fail the predicate, but that should
not affect the reflexivity of loves. To remedy this, we define a function RELATION-SPACE
which returns the isolated left and right hand constraints of a relation, combined into a
single pair constraint:
(define (relation-space r)
(cross-product (left-constraints r) (right-constraints r)))
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And then define reflexivity as:
(define reflexive-relations

;; Defined beneath the meta-type RELATIONS:

(empirical-class relations
;; The new sample space: relevant equal pairs
(lambda (r) (<AND> equal-pairs (relation-space r)))
;; The evidence space is still the relation being tested.
(lambda (r) r)))

Any relation might be reflexive; there are no special heuristics for suspecting that a par-
ticular relation might be reflexive or not. Thus, we simply attach to the type
the daemon which sets up experiments for reflexivity:

(add-daemon! relations
(lambda (rel) (hypothesis rel reflexive-relations)))

A relation may also be anti-reflezive; e.g. r(z,z) may never be true. To detect this,
we simply make the evidence space be the complement of r, rather than r:
(define anti-reflexive-relations
;; Defined beneath the meta-type RELATIONS:
(empirical-class relations
(lambda (r) (<AND> equal-pairs (relation-space r)))
(lambda (r) (complement r))))

A relation which is reflexive may not be anti-reflexive; this piece of information
gives us a heuristic about when to look for a relation being anti-reflexive. If a rela-
tion fails to be reflexive, see if it is anti-reflexive. We can encode this by attaching to
[Not(Reflexive Relations) | the experimentation daemon which sets up the experiment for a
relation being anti-reflexive:

(add-daemon! (complement reflexive-relations)
(lambda (rel)
(hypothesis rel anti-reflexive-relations)))

Recognizing reflexivity provided an early suprise in the development of Cyrano. An
early version of Cyrano was given a definition of list-equality which used — opaquely
— the SCHEME predicate EQUAL?; the confirmation mechanism examined examples
and non-examples of this predicate to determine — eventually — that list-equality was
reflexive. Later, after considerable development of TYPICAL (and the specification of the
INDUCTIVE-DEFINITION combinator (Section 4.5, Page 33)), list-equality was reintroduced
as a inductive definition about which TYPICAL — at definition time — made various
inferences. When Cyrano finally ran again in the extended TYPICAL, the ‘confirmation
by proof’ checkers in HYPOTHESIS fired (as they had never before) on the definition of list
equality. Frantically, I searched for the bug before I realized that TYPICAL had actually
made the appropriate inferences allowing Cyrano to see — from the definition of list
equality — that it was neccessarily reflexive. (It contained identity as a base case.)
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6.5.2 Recognizing Symmetric Relations

Another property of relations is their symmetry; whether it is always the case that either
r(z,y) — r(y,z) or r(z,y) — —r(y,z). In the former case, it means that the relation is
symmetric and consistently reversible; in the latter case, it means it is an anti-symmetric
relation which may establish an ordering of the elements it relates. Both of these relations
are symmetries; one is a symmetry of r, the other of —r.

Symmetry can be considered an invariance of a relation under permutation; it is this
interpretation which will guide our definition of the empirical classes for symmetric and
anti-symmetric relations. In particular, we introduce a mapping function TWISTER (which
you may remember from a brief example in the introduction of empirical classes) taking a
pair (z,y) and permuting it into the mirror image pair (y,z). The invariance asserted by
the symmetry of a relation R is that pairs satisifying R still satisfy R under permutation.
The sample space is then the permuted version of R; the evidence space is R itself. We
can thus define the empirical class of symmetric relations:

(define symmetric-relations

;; Defined beneath the meta-type RELATIONS:
(empirical-class relations
;; The relation type REL, permuted.
(lambda (rel) (image-constraint twister REL))
;; The relation type REL, itself.
(lambda (rel) rel)))
The definition of anti-symmetric relations is analogous to the definition of anti-reflexive
relations; we complement the evidence space:
(define anti-symmetric-relations
;; Defined beneath the meta-type RELATIONS:
(empirical-class relations
;; The relation type REL, permuted.
(lambda (rel) (image-constraint twister REL))
;; The relation type not(REL).
(lambda (rel) (complement rel))))
Since z = z is symmetric, reflexivity is a requirement of symmetry.11 To avoid performing
foredoomed symmetry experiments, we can place the daemon suggesting symmetry on the
empirical class of reflexive relations:
(add-daemon! reflexive-relations
(lambda (rel) (hypothesis rel symmetric-relations)))

However, the question of where to put the daemon for anti-symmetric experiments
reveals a whole in our definition of anti-symmetric relations: reflexive relations or anti-
reflexive relations cannot be anti-symmetric. We must redefine the sample space for anti-

11This is not strictly true, but most symmetric and non-reflexive relations are not particularly
interesting.
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symmetric relations to exclude [EQUAL Pairs |, implementing the z # y constraint in the
definition of anti-symmetric relations:12

(define anti-symmetric-relations

(empirical-class relations ; Defined under RELATIONS
;; The relation type REL, permuted, with £ = z removed.
(lambda (rel) (<AND> (complement EQUAL-PAIRS)
(image-constraint twister REL)))
;; The relation type not(REL).
(lambda (rel) (complement rel))))
We can add the daemon for checking anti-symmetry to
(add-daemon! relations
(lambda (rel) (hypothesis rel anti-symmetric-relations)))
Though it might be heuristically advisable to attach it to a more specific class, for instance
the union of reflexive and anti-reflexive relations.

Finally, because of our broad definition of relations (any set of pairs extracted from
some space), our implementation of confirmation may be ‘over eager’ in proposing exper-
iments on definitions which have no real inherent semantics (for instance, the type of all
pairs of integers, of lists, etc); in the actual implementation of Cyrano, only a small class
of objects declared ‘promising’ actually trigger the confirmation process. Cyrano’s actual
analysis — based on daemons attached to particular subtypes of these ‘promising’ objects
— is more constrained than the promiscuous daemons defined in the examples here.

6.6 A Note on Pragmatics

In the sections above, I have described how TYPICAL is used in Cyrano to confirm empir-
ical properties by defining classes of examples and counterexamples. This entire process
assumes that there is some source in the world which will provide and index instances of
these types so as to drive confirmation or disconfirmation. In some learning systems, this
might be a teacher, so we might be able to dispell the requirement of a source of examples
by replacing it with ‘ask the teacher.’

But a discovery program should be able to do its own experiments. In drawing a
parallel to scientific experimentation, it is one thing to say “if X is true when Y is true, we
can say Z.” On the other hand, the work of science, the everyday labor of the scientist or
technician is to construct situations in which X will be true and Y will be observable. A
discovery program must also be a problem solver able to generate the potential examples
and counterexamples of spaces it has characterized.

The manner in which the Cyrano program does this is too involved and too tentative
for detailed presentation here. However, the current scheme can be sketched in brief. Every

12For purposes of generality, the same modification could be made to the definition of symmet-
ric relations, but we do not do so here. In fact, the space of non-reflexive, symmetric rela-
tions doesn’t seem to have very many interesting examples.
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type has a set of example generators which may be called to provide instances of the type;
in turn, these example generators may ask other types for examples, forming a network of
example generators.

When a type is asked for an instance, it attempts to call one of its generator methods
on the instance; these methods may ask other types for instances which are then combined
to construct the requested instance. This generation process may fail; if the chosen method
fails to produce a valid instance of a type, one of a small cache of generated instances is
selected instead.

In the current implementation, method selection is done at random. It is easy to
imagine a more selective criterion which would dynamically order methods based on their
effectiveness.

The network of generation methods is determined by the example generators attached
to each individual type. This list of generators is established by indexing daemons attached
to metatypes in the lattice. When it is noted that examples are needed of a particular
type, the type is declared as an instance source and indexed; instance sources are an
empirical collection (Section 4.4.2 (Page 32)) defined in TYPICAL’s lattice. When the type
is indexed, indexing daemons run which add new instance generators to the type. For
instance, the check for reflexivity consists of generating pairs of items and seeing if the
satisfy a relation. We could defined a daemon for adding such a generator in the following
manner:

(define (add-eq-pair-combiner to-type)

(let ((combiner-function (lambda (x) (list x x)))
(combiner-type
(<AND> (left-constraints type) (right-constraints type))))
(add-generator! (make-combiner combiner-function combiner-type)
type)))
(add-daemon! add-eq-pair-combiner
(<AND> (power-set eq-pairs) instance-sources))

The procedure MAKE-COMBINER constructs an example generator (a procedure of no argu-
ments which returns instances of a type) from a combining procedure and a list of types
whose instances it should combines. The daemon defined above adds a generator for EQ-
PAIRS to all subtypes of EQ-PAIRS.

In the declaration of generators in this way, inhibition (Section 5.1.2 (Page 42)) of
daemons becomes important. Generator daemons have varying degrees of power: a weak
generation method for some subtype of pairs would simply try random pairs; a more
sophisticated approach might use a known implementation of the pairing (for instance, if
it represents a LISP procedure) or other constraints. Inhibition is used to have stronger
methods inhibit weaker methods; since indexing uses (by default) a ‘run them all’ strategy,
conflicts and priorities must be hand coded as inhibitor daemons in TYPICAL’s lattice.

Section A-0.6 A Note on Pragmatics Haase



Chapter A-1

TYPICAL
Analysis

In this chapter we analyze the algorithms used by the TYPICAL combinators presented
in Chapter 4. In particular, we discuss the soundness, completeness, and complexity of
algorithms used for type construction and lattice placement. TYPICAL was designed as a
module for constructing new type definitions and answering queries about the relations be-
tween these constructed definitions. As a module, it must be both reliable and predictable
in the fulfillment of its contract; for this reason it is important to have some notion of
its correctness (particularly, its soundness and completeness) and its complexity (partic-
ularly its decidability and tractablity). This chapter addresses those issues. We begin by
providing a semantics for TYPICAL and show where the implemented algorithms fulfill or
fail to fulfill these semantics. We then consider the complexity of these algorithms and
demonstrate the intractability of completely satisfying the semantic model.

We ignore TYPICAL’s synthetic types because their implementation and semantics
are generally not dependent on TYPICAL’s implementation. In general, a new synthetic
type is an opaque predicate defined beneath an existing type by a user or program. The
algorithms and mechanisms of TYPICAL only come into play when this type is analytically
combined with other types. Thus we restrict our analysis to such analytic combinations.
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A-1.1 TYPICAL Semantics

In describing the semantics of TYPICAL we introduce a model containing a universe U of
distinguishable points, a set of types T, a set of functions F from U to U, a partial order
< between types, and a relation & between elements of the universe and types. The first
of these relations represents subsumption and the second represents satisfaction of types
by objects in the universe. Satisfaction and subsumption are connected in the obvious
way: the semantics of the subsumption relation are those of satisfaction implication. In
particular, for any types t; and ¢,

t, <ty —— Ve eU:{zxst) — zXta}

For purposes of describing power sets and meta-types, we further introduce a subset Ur
of U denoting types and an accompanying dentotation mapping D : Ur = T.

By the nature of implication, we can show several things about the subsumption
relation (<) in this model. Since implication is transitive, so is subsumption:

Vi, to,ts € T 1ty <ty Aty <tz «— (11 < t3)
By the reflexivity of implication, subsumption is also reflexive:
VteT:t<t

Given this model, we can describe the semantics of TYPICAL’s analytic combinators.
When we prove the soundness of TYPICAL’s inferences we will use these definitions. The se-
mantics of TYPICAL’s direct type combinators (intersection, union, and complementation)
are:

Ve U,ty,ta €T xzand(tl,tg) «—VeeUt,t; €Tzl Az Xl
Ve e U,ty1,ts €T : z5or(ty,t2) «— Vz e U t1,t2 €T 1zt Vot
Ve e Ut € T : z 5 complement(t) — Vz € U,t € T : ~(z 5t)
The direct combinators in TYPICAL define a boolean algebra and — as we shall see — it
is from this algebra that the implementation’s fundamental incompleteness arises.

The indirect type combinators of TYPICAL get their semantics from the functions they
are defined in terms of. The semantics of image constraints, for mappings from the space
of functions F', are:

VeeUteT,feF:zo(tat) — flz) ot

The semantics for power-sets are similar, except that the denotation function D is
used to map type descriptions into subsumption space:

Vt e T,z € U : z £ PowerSet(t) « (z € Ur A D(z) < 1)

Another possible model for TYPICAL’s semantics is an interpretation of types as sub-
sets of a universe U and subsumption as set containment. Early exploration of this model
ran into problems due to the representation of power sets and self-containing sets; after it
was abandoned (and the semantics above taken up), David McAllester pointed out that
this problem could be avoided by introducing a function from types to sets (similar to the
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denotation function D above) to serve as a model relation between a set of types and a
set of possible models. In practical use, I have found the semantics of satisfaction implica-
tion — as opposed to set containment — intuitively preferable in actually analyzing new
combinator definitions.

A-1.1.1 Soundness of Direct Type Combinators

We begin by analyzing the direct types of Section 4.1: intersections and unions. As men-
tioned there, the algorithms used by TYPICAL are not complete; a tradeoff between com-
pleteness and tractability was made in desigining TYPICAL since complete subsumption
of intersecctions and unions would be NP-hard. Given that we cannot have complete-
ness, we can still examine the soundness of the direct type combinators. The proofs in
this section are straightforward and unsuprising; they show that TYPICAL’s polynomial
time algorithms are sound (but not complete) in generating neccessary implications in the
boolean algebra determined by the intersection, union, and complement combinators.

Recalling the algorithms of Section 4.1, inferences for both intersections and unions
are made by searching sub-lattices for V-merges or M-merges. The specializations of an
intersection and the generalizations of union are found by searching for types which are
both below or above (respectively) the intersection or union being created. The general-
izations of an intersection and the specializations of a union are found by searching for
types which intersect nodes below or union nodes above the type being created. Below we
show that these mechanisms — as used by TYPICAL — find types that are appropriate
generalizations or specializations of the type being created.

A-1.1.1.1  Specializations of Intersections

The algorithm (described in Section 4.1.2, Page 24) for finding specializations of an inter-
section type is a search algorithm and we will show that the types found in the search are
in fact valid specializations given the semantics of subsumption presented in Section A-1.1.

To find the specializations of an intersection, we search for the V-merges below it in
the lattice. This search descends the lattice beneath one of the types being intersected,
looking for types which are beneath the other type being intersected. Suppose we are
intersecting two nodes ¢t and ¢’ and descend the lattice from t. At some point, we reach
the node v. By the semantics of subsumption we know that ¢ subsumes v or (in terms of
satisfaction relations):

VueU:usv— uxt

At each v encountered, we accept v as a specialization only if it is also under #'; again by
subsumption, we know that:
VueU:usv—ust
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To find M-merges above and(a,b):
Make a set of marked nodes M;
Make a set of m-merges J;
For every superior s of a or b,
process the node s;
To process a node n:
add n to a set of marked nodes M;
for each inferior merge i of n:
if i is an intersection of two nodes in M
(i.e. they are both marked),
add i to J and mark the node i;

Figure A-1-1. The algorithm for finding M-merges of two nodes marks all the gener-
alizations of two nodes and looks beneath them for nodes which merge marked nodes.
(This is a copy of Figure 4-4.)

if the satisfaction of both is implied, the satisfaction of their conjunction is implied. We
conjoin the right hand sides of the implications to get:

VueU:uzv— (ustAuxt)
into which (by the if and only if of and(t, t')’s semantics) we can substitute:
Vu e U:urgv — urand(t,t)
or by the definition of subsumption:
v < and(t,t').

A-1.1.1.2 Generalizations of Intersections

Now we turn to the generalizations for intersections, found by the marking algorithm
described in Section 4.1.2 (Page 26). This algorithm is described in Figure A-1-1.

To find the generalizations of an intersection, we begin with the two types being
intersected and search for M-merges and direct generalizations above them. The algorithm
used is the marking algorithm described in Figure 4-4. To prove the soundness of this
algorithm, we use induction on the set of marked types and show that any member of this
set is a valid generalization of the new type being defined. We define the set G as those
valid generalizations of a type and(z,y); G is defined by by taking the definition of type
subsumption in terms of satisfaction and applying it to an intersection type and(t,t') and
a potential generalization g¢:

G={g:VueU:uxrand(tt') — uzg}

We will show that any node marked by our algorithm is in fact a proper member of G.
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With the algorithm given in Figure A-1-1, a node is marked as a generalization of
and(t,t') if it is ¢, ¢/, the generalization of a marked node, or an intersection of two marked
specializations. We will show that in each of these cases, the nodes marked are in G.

We first show that ¢t and ¢’ are in G. By the definition of intersection,

VzeU,t1,t2 €T : annd(tl,tg) —rzrti ANz xls
we take the left to right implication, substitute in ¢t and t’, and break the conjunction to
get:
Vu € U : uzand(t,t’) — ust
VYu € U : uzand(t,t') — ust’
placing t and ¢/ in G.

To place the generalizations of marked nodes in G, we show for any ¢ € G and any

typer € T, if g < 7 then 7 € G. We get this by taking the definition of subsumption:

g1+ YueU:uxg—urr
to get, for any t above g, the implication:
YVueU:uxg—uxr

which when taken along with the definition that g € G:

Vu e U :urand(t,t) — uxg
can be chained to show (by the definition of G) that 7 € G:

VueU:urand(tt') — uzsr
This justifies marking all of the generalizations 7 of ¢ and t'. Finally, we consider the
marking of joins beneath these generalizations.

If a join and(r,7') is marked it means that both 7 and 7’ are marked. Therefore, we
know that they are both in G:

Vu € U :uzand(t,t') — urr
Vu € U:uzand(tt') — urr
Further, if both are satisfied, the conjunctive statement is true:
Vu e U:uzand(t,t’) — (vzrAuxr’)
where the consequent is the same as satisfaction of the type intersection and(r,7’):
Vu € U : u zand(t,t') — u zand(r,7’)
placing and(r,7’) firmly in G as a valid generalization of and(z,y). Thus, all types marked
by the algorithm are in fact generalizations of the intersection and(t,t').

Finding the generalizations and specializations of a union are the exact mirror of the
process for an intersection. We look down for M-merges and up for V-merges.

A-1.1.1.3 Generalizations of Unions

To find the generalizations of a union, we search for the V-merges above it in the lattice.
This process is simply the dual of the search for specializations of an intersection, but its
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soundness proof is included for completeness. This search ascends the lattice above one
of the types being intersected, looking for types which are above the other type being
intersected. Suppose we are generating the union of two nodes ¢t and ¢’ and ascend the
lattice from t. At some point, we reach the node v. By the semantics of subsumption we
know that t is subsumed by v or (in terms of satisfaction relations):

VueeU:uxt— uxzv

At each v, we accept v as a generalization only if it is also above t/; again by subsumption,
we know that the following satisfaction relation holds:

VueU:ust' — uszv

if the satisfaction of either x or y implies satisfaction of v, the disjunction satisfies v. We
disjoin the left hand sides of the implications:

VueU:(uztVust) —usv
and substitute (by the definition of type union):
VueU:uzor(t,t!) — uzv
or by the definition of subsumption:
or(t,t') < v.

A-1.1.1.4 Specializations of a Union

To find the specializations of a union, we begin with the two types being unioned and
search for M-merges and direct specializations below them. This process is simply the
dual of the search for generalizations of an intersection, but its soundness proof is included
for completeness. The algorithm used is a straightforward adaption of the marking algo-
rithm given in Figure A-1-1, but with ‘above’ replaced by ‘below,’ ‘intersection’ replaced
by ‘union’ and so forth. To prove the soundness of this algorithm, we again use structural
induction on the set of marked types and show that any member of this set is a valid
specialization of the new type being defined. We define the set S as those valid special-
izations of a union or(z,y); S is defined by taking the definition of type subsumption in
terms of satisfaction and applying it to an arbitrary union type or(t,t’) and some potential
specialization s:
S={s:YwueU:uxs — uzor(z,y)}

We will show that any node marked by our algorithm is in fact a proper member of S.

With our modification of the algorithm of Figure A-1-1, a node is marked as a spe-
cialization of or(t,t’) if it is ¢, ¢/, the specialization of a marked node or a union of two
marked specializations. We will show that in each of these cases, the nodes marked are in
S.

We first show that ¢ and #' are in S. By the definition of union we know that, for
or(t,t'):

VzeU:zxor(t,t) «— (zztvzst)
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which we can break into independent implications
VueU:ust— uzor(tt)
VueU:uzt — usor(t,t')
placing t and ¢/ in S.
To show that specializations of marked nodes have a place in S, we show for any
s € S and any type 7 € T, if 7 < s then 7 € S. We get this by taking the definition of

subsumption:
T<s——YueclU:uzsr — urs

and use the fact that s is marked (s € S):
VueU:ugs — uror(t,t')

and chain the implications to show that r satisfies the definition of membership in S:
VueU:usr — ugor(t,t')

This justifies marking all of the specializations 7 of ¢ and ¢'. Finally, we consider the
marking of or-merges above these specializations.

If a join or(r,7’) is marked it means that both r and 7' are marked. Therefore, we
know that they are both in S:

VueU:ust — uzor(t,t’)
VueU:uzsr — uzor(t,t’)
which is the same as the single implication from their disjunction:
VueU:(usrVurr) — uzor(t,t')
where the antecedent is the same as satisfaction of the union type or(r, 7'):
VueU:uxpor(r,r') — uxor(t,t’)

placing or(r,7’) firmly in S as a valid specialization of or(t,t’'). Thus all types marked by
TYPICAL’s algorithm are in fact valid specializations of or(t,t').

A-1.1.1.5 Generalizations and Specializations of Complements

The types above and below a complement are computed by searching the lattice above
and below the type being complemented for types which have defined complements. These
complements are respectively below and above the complement being defined. To show
soundness we consider the subsumption relation between two types t and t’ with comple-
ments complement(t) and complement(t'). If we know that ¢ is below ¢’ in the lattice
(t < t'), we know by the definition of subsumption that:

YVueU:ust— uxt
by inverting the implication:

YueU: —n(uz:t’) — a(uzt)
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we see that if ¢ is ever unsatisfied, ¢ must be unsatisfied. We also know from the definition
of the complementation combinator that failure of satisfaction implies satisfaction of the
complement and vice versa; thus satisfaction of complement(t’) will imply satisfaction of
complement(t), showing that

complement(t') < complement(t').
In the same way, we can show the completeness of such inferences, for if
complement(t') < complement(t'),
we know by the definition of complementation, that
VueU:-(ugt) — ~(uxt)
or that
VueU:ust— uxst
which is the same as saying that ¢ < ¢/. This completeness is only a partial result; the

inferences it makes are complete only if the rest of the lattice is complete, and as we will
see below, this is not the case.

A-1.1.1.6 Incompleteness Results

Above we showed the soundess of the algorithms used by TYPICAL to make inferences
about intersections, unions, and complements. In the case of intersections and unions
we did not show completeness, for the algorithms used by TYPICAL are not complete;
there exist valid satisfaction inferences which are not identified as subsumptions by the
algorithm. The problem of subsumption with intersections and unions is intractable and
it would thus be unlikely that the algorithms above are complete. In fact, there exist
counterexamples of valid inferences which the algorithms do not make; the nature of such
counterexamples — the holes in the algorithm — are described in this section.

One incompleteness lies in the implementation of complements. It is clear that the
union of a type and its complement should be equivalent to the top of the lattice

tV complement(t) =T

but TYPICAL does not make this inference nor any other inferences that depend on the
knowledge that two types are complements or even disjoint. From the point of view of the
subsumption inference algorithms, the complement of a type is simply a primitive type
which is related to other complements in a particular way.
Another incompleteness lies in the interaction of intersection and union types in the
lattice. The expressions
(AVB)A(BVC)
(Bv(AAC))
are logically equivalent. However, the algorithms used by TYPICAL only discover subsump-
tion of the second beneath the first and not vice-versa (which is also a valid inference).
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T2

T1

Figure A-1-2. TYPICAL’s inference algorithms are not complete; the node T1 is logi-
cally identical to T2 and should thus be both above and below T2 in the lattice.

Figure A-1-2 shows a lattice fragment corresponding to these expressions. If we construct
the type corresponding to the first expression, it is the intersection of two unions; the
first union has A and B as specializations and the second has B and C as generalizations.
The resulting intersection is placed (by V-merge search) above B. When we construct the
second expression, it is beneath the first by subsumption through B, but there is not any
connection placing B below it. While sound, the inference algorithms used by TYPICAL
are not complete. This is where the boolean algebra implemented by TYPICAL’s direct
combinators (and mentioned at the beginning of the chapter) falls flat; however, as we will
show towards the end of the chapter, a complete implementation would be computationally
intractable.

A-1.1.2 Soundness of Indirect Type Combinators

The direct type combinators generate types for which satisfaction is determined by the
simple application of the types they combine; thus, they are related — by satisfaction
implication — directly to those types. Types generated by the indirect combinators, on
the other hand, translate the object being tested into another ‘space’ before applying the
types they combine; thus, they are related by subsumption to types defined in this other
space. For instance, image constraints find subsumption relations in a type space dividing
the range of the mapping used by the image constraint; power sets find subsumption
relations among the meta-types which divide the space of known types.

In TYPICAL, Both power sets and image constraints operate by annotating their inputs
with the outputs they produce. For instance, if an indirect combinator [ is applied to a
type z to produce a type I(z), the type z is annotated with {(z). In generating an /(z),
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the lattice above and below z is searched for other generated types {(y) by checking each
y above or below z. These will be placed above and below the newly created type I(z).

A-1.1.2.1 Analysis of Power Sets

For example, in generating a power set of a type ¢, the superiors and inferiors of ¢ are
searched for already defined powersets. We will prove the soundness of this algorithm
by show that the power set mapping preserves the subsumption relation between power
sets and the types they are defined for. We begin by specializing the relation between
subsumption and satisfaction to powersets in particular:

PowerSet(r) < PowerSet(r')
iff
Vu € U : ux PowerSet(r) — u £ PowerSet(r’)

and note that satisfaction of a powerset is equivalent to subsumption after mapping through
the denotation function D:

Vi€ T,u € U': us PowerSet(t) «— D(u) < t

given that « is in U’ (the domain of D); we can practically ensure this by placing created
power sets under the meta type corresponding to U’. Transforming the subsump-
tion statement, we get:

PowerSet(r) < PowerSet(r')
iff
Vue U :D(u) <7 — D(u) <7’
since we know that for any ¢t € T, there exists an z € U’ such that D(z) = ¢, we can
change the right hand side into a claim about T
PowerSet(r) < PowerSet(r')
iff
VteT:t<r—t=<7'
or, by the definition of subsumption (>):
PowerSet(r) < PowerSet(r')
iff

r=<7'

A-1.1.2.2 Analysis of Image Constraints

In the case of image constraints, the approach is more or less the same; the distinction
is that image constraints entail a class of annotations, one for each mapping. For in-

. . . . CAR
stance, if we consider the type of lists whose first elements are integers (|—— Integers |,
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its generalizations will be those CAR constraints whose image lies above [Integers [ and its
specializations will be those CAR constraints whose image lies below We begin
with the equivalence of subsumption and satisfaction implication:

Lin <Lt — (VzeU: f(z) sty — f(z) =t2)

and since we know that every f maps into U, we can use the implication:
(VeeU:zxt), — zxt)) — (VzeU: f(z) ot — f(z) ota)

where the right hand side above is equivalent to subsumption between #; and t;; we chain
this with the right-to-left implication above to get:

t1'<t2—'—"‘f_’tl < L’t2

to get the soundness of the image constraint algorithm.

However, the algorithm for image constraints is not complete because the mapping
function f may introduce structure among image constraints which does not occur among
the constraining types. For an extreme case, consider the case where f is a constant
function f(z) = C. In this case, any image constraints using f are equivalent and thus

subsume each other; for any ¢; and t,, R t | =< L t2 |and L, t2 1< R t1 | Since our

algorithm does not take any information about f into account, inferences based on such
‘introduced structure’ (like f(z) = C) cannot be made. However, we can show that any
inferences beyond those made by TYPICAL requires knowledge about the properties of f,
something which TYPICAL, at least, makes no attempt to represent.

Suppose that we had an algorithm which could make a correct subsumption inference

about a type that placed it under a type L, Q |, where P £ Q); such an algorithm
would be more powerful than the algorithm used by TYPICAL. This subsumption inference,
given the definition of image constraints, means that for any u in U:

flu)2P — f(u) =Q
Since P A @, there is some u’ such that v’z P and v’ /£ Q. If f is defined so that for
some (or many or all) u, f(u) = v/, the subsumption implication

f(u)zP — f(u)2Q
will fail for some (or many or all) u implyuing the negation of our assumption. Thus,
the algorithm — to be correct — must have the information that f is not defined in such
a manner. Intuitively, any additional structure among image constraints — beyond that
inferred by TYPICAL from the lattice around the constraining types — must be based on
structure tniroduced by the mapping f.

TYPICAL makes two special case inferences based on particular properties of the map-

ping function f; these use an explicitly declared domain and range of f to catch two special

cases. The first case is where the constraining type Q of L, Q |lies outside the range of f,

and the type R Q |is empty; the second case is where the constraining type P is exactly
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the range of f and hence the type L plis simply the domain of f. In fact, all image
constraints around f are under the domain of f. TYPICAL ‘implements’ the first special
inference by disallowing the definition of such types; the second inference is handled by
placing any image constraint based on a mapping f under the domain of f.

A-1.1.2.3 Relative Completeness

In the above proofs, we showed that the algorithms for finding subsumption between
intersections, unions, and complements were sound but not complete; discovery by the
algorithm was sufficient but not neccessary for an actual subsumption relation to hold.
In the case of power sets and complements, we found a complete equivalence between
subsumption relations in one part of the lattice and another. And in the case of image
constraints, the algorithm was found to be as complete as possible in the absence of detailed
knowledge about the image mapping. Given that the rest of the lattice is complete and
that image mappings add no special structure, these algorithms — for complements and
indirect types — are complete. Even though the complete implementation of TYPICAL
is not complete, it is still possible for us to speak of the ‘relative completeness’ of these
individual sub-modules.

The fundamental incompleteness of TYPICAL (outside of the ‘empirical’ incomplete-
ness introduced by arbitrary mapping functions) comes from the incompleteness of sub-
sumption inferences between intersections, unions, and complements. While there exist
provably complete algorithms for such inferences (for instance, translation into boolean
satisfaction), TYPICAL’s design has made a compromise between completeness and com-
plexity which bars such approaches. The resulting complexity — and the intractability of
a complete solution — are described in the remainder of this chapter.

A-1.2 TYPICAL Complexity

The contract of TYPICAL characterizes two isolable functions: the definition of new types
and queries about the relations between types.l3 Often, these may be interleaved, but
as transactions with TYPICAL qua module, they may be isolated. A decision was made
early in TYPICAL’s design to make queries very fast at the expense of time and space in
the construction of new types. With the lattice cache described in Section 3.1 (Page 17),
queries to the lattice about existing types are computa.bie in constant time.14 The task

13This is not quite true. Another important function of TYPICAL is the satisfaction query:
asking whether a given object satisfies a given type. However, the complexity of this query is
not isolable to a particular type defintion, but rather depends on the complexity of TYPICAL’s
primitive definitions and their procedural combination.

14 Assuming the standard caveats about a finite memory machine with constant time address
decoding. In all of the following discussion, we will assume that referencing bit vectors and
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of analysis then turns to the complexity of the combinators used to define new types, in
particular their computation of generalization and specialization relations in the lattice.

In analyzing the complexity of TYPICAL’s combinators, it is useful to define two
particular sorts of sublattices of the lattice: the sublattice G* (z) above a type z and the
sublattice S*(z) below a type z. We will also occasionally refer to the intersection and
union of these sublattices; when we do so these will denote the lattice generated by the
union of both edges and nodes in the sublattices. Most of the algorithms presented in
the previous sections operate on these sublattices, searching in them for types which —
directly or under some trivial transformation — are generalizations or specializations of a
type being defined.

Each of TYPICAL’s algorithms analyzed here enumerate such sublattices; to describe
their time complexity we will use the notation E(z) to describe the time neccessary to
enumerate the sublattice z. In Section A-1.2.3, we will describe the worst and expected
case properties of E(G*(z)) and E(S*(z)).

An important point is that in the following sections, we analyze the time taken to find
generalizations and specializations in the lattice; this is quite indepenent of the time taken
to install these links in the lattice, or — particularly — to update the lattice subsumption
cache. With only the standard address space assumptions, the time is O(E(S*(t)n))
where a subsumption link is being established between ¢ and ¢’ and the subsumption cache
for ' must be logically OR’d (taking O(n) time) with the subsumption caches for each
specialization of t. However, the constraint that type construction only create new relations
with the type being constructed allows us to dispense with the O(n) for each OR; instead
we need only set one bit corresponding to the new type. This gives us an actual update
time of O(E(S*(t))) (a bound which will become familiar).

Practically, however, most new types are created at the lower fringes of the lattice
where S*(t) will be relatively small; this was the reason that the subsumption cache
was chosen to represent generalization rather than specialization, which would require
enumerating G*(t). In general, TYPICAL’s algorithms end up enumerating some G* lattice,
so that the cost of finding subsumptions overshadows the cost of installing them.

A-1.2.1 Complexity of Direct Type Combinators

The inferences of the intersection and union combinators work by looking for V-Merges and
M-Merges above or below the types being defined. Since there is no interaction between
these two processes, the time taken by the combinator is the sum of the time taken to find
M-Merges and the time taken to find V-Merges. In the case of intersections, M-merges are
looked for in the direction of generalization, while V-merges are looked for in the direction

table lookup on types is computable in constant time. This also assumes that we have an
upper bound on the size of the table or bit vector; since each describes properties per-node
and there are a fixed number of nodes when a type is created, this assumption actually holds.

Haase TYPICAL Complexity Section A-1.2.1



78 Chapter A-1 TYPICAL

of specialization. For unions, the opposite holds (since the processes are duals of each
other), but the complexity remains the same. In this section we will assume that we are
analyzing a type intersection, with the understanding that the same analysis hold for type
unions.

The specializations for an intersection of two types are found by looking at the spe-
cializations of one for types which are also beneath the other. These types are called
V-merges because two connected paths descend from the types being intersected to form
a ‘V’ below the intersection being created. Since determining subsumption is a constant
time operation, the time taken to find V-merges is proportional to the time taken to enu-
merate the sublattice. If the root of the sublattice being searched is z, this is E(S*(z)).
The actual time taken may be less than this quantity, since once a V-merge is found on
one path through the lattice, the nodes below it will all be beneath (by transitivity) the
new intersection and need not be searched. However, with no heuristics for selecting which
node of an intersection sntersection(z,y) to use as a root for the search, the actual upper
bound for finding V-merges will be maz(E(S*(z)), E(S*(y)))-

The algorithm of finding the M-merges of an intersection — its accidental general-
izations — is more complicated than that for V-merges. The search for M-merges —
described in Section 4.1.2 (Page 26) — proceeds by climbing the lattice and then ‘look-
ing down’ for M-merges. This can be seen as looking for types for which the type being
defined would be a V-merge. The algorithm described in Section 4.1.2 and displayed in
Figures 4-4 and A-1-1 is a marking algorithm which — given a pre-determined bound on
the number of nodes — takes constant time at each node. As with the V-merge algorithm,
the time taken to search for M-merges is proportional to the number of edges traversed in
the marking algorithm. But unlike the search for V-merges, this size is not proportional
to the size of any particular sublattice, since each node in the subgraph G* (=) U G*(y)
might be expanded into an entire sublattice. The time taken for an M-merge search is thus
proportional to the time required to enumerate:

U 5*(q)
9EG* (z)UG* ()
The size of this set has a lower bound of G*(z) U G*(y) and, as we will describe later, an
upper bound of the number of edges in the lattice.

The algorithm for determining the subsumption relations of a complement searches the
generalizations and specializations of the type being complemented for other types which
already have complements defined. Since determining whether a type has a complement
defined for it is a constant time operation, the time for determining these subsumption
relations is simply the time required for enumerating the specializations and generalizations
of the type being complemented. This is simply O(E(G*(t)) + E(S*(t))).

A-1.2.2  Complexity of Indirect Type Combinators

As for complements, the complexity of indirect combinators depends on the size of sub-
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lattices above and below the type which the indirect type is being defined from. The
algorithms for indirect types comb this lattice for types annotated with pointers to related
indirect types.

If we assume that we can fetch annotations in constant time, the time required for
finding specializations of a power set of ¢ is proportional to E(S*(t)) and the time for
finding generalizations of a power set is E(G*(t)). These are both upper bounds, as with
search for V-merges of direct types, once we find an appropriate constraint on one path
through the sublattice, the types beyond it will be included by transitivity, so the search
along that path may be terminated.

Finding the generalizations and specializations of image constraints is precisely the
same, assuming constant time to fetch the annotation corresponding to a particular map-
ping and type. The time required for finding specializations is E(S*(t)) and for finding
generalizations is E(G*(t)). Just as for power set, these are upper bounds; discovery of
matching constraints along a path prunes the rest of the path from the search space.

Given this analysis of indirect types, we can consider what bounds are actually placed
on compuations given worst case and average case search times for S* and G*.

A-1.2.3  Properties of E(G*(z)) and E(S*(z)).

Each of the above complexity bounds was expressed in terms of the time required to search
sublattices G* and S*. In this section we examine the nature of these terms. If we could
be guaranteed that the fanout of each type in a sublattice ! was less than some constant,
we could guarantee an upper bound on E(l) proportional to the number of nodes in /.
Unfortunately, we have no such guarantee; thus, we may only guarantee that the time
E(l) is proportional to the number of edges in !, which has an upper bound of the square
of the number of nodes. However, for any given E(G*(z)) or E(S*(z)), this bound will
only be reached if the sublattice is the entire lattice and the lattice itself is completely
connected (which never happens).

A more interesting question is what average case properties do E(G*(z)) and E(S*(z))
have? Note that now we know that E can just as easily stand for the number of edges in
the lattice as the enumeration time. Looking at TYPICAL running Cyrano (in April 1987
with 490 types and 3,989 edges in the lattice), we note that the average sublattice consists
of 9.7 nodes and 44.4 edges. This is considerably better than the 4902 = 240,100 given
as a worst case above. Of course, the important element here is the linear behaviour of
the combinators on the sublattice. In the next section we describe how the tractability of
these algorithms was maintained at the cost of completeness in their performance.

A-1.3 Tractability Tradeoffs

In designing TYPICAL, tradeoffs were made between completenes and tractability in mak-
ing subsumption inferences. Nearly all subsumption problems are intractable in their
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complete solution and the development of TYPICAL has been dotted with ‘completeness
compromises’ as more and more of its inferences were shown to be intractable in their most
general case. This section shows how most of the inferences involved in subsumption are
NP-hard (thus probably intractable), and describes some of the ‘holding’ positions along
the way.

TYPICAL’s algorithms enumerate the generalizations and specializations of a newly
created type; in the analysis below, we examine a slightly different question: given two
types s and g, does s subsume g? If there were a complete algorithm for enumerating
generalizations and specializations, it would be able to answer the subsumption question by
just checking the list of generated generalizations or specializations; thus the enumeration
problem is at least as hard as the subsumption question. If we had an algorithm for the
subsumption question, however, we could apply it to all combinations of the newly created
type with existing types; thus, the enumeration problem is at most O(n) harder than
the subsumption question. Below, we show that the subsumption question is NP-hard
by showing that it is co-NP-complete. For this proof we use the known co-NP-complete
problem TAUT (determining if a given boolean expression is a tautology) and show that
subsumption is reducible to TAUT in polynomial time and that (vice versa) the TAUT
question is reducible to the type subsumption question.

A-1.3.1 Intractability with AND, OR, and NOT combinators

This section shows the intractability of the subsumption question given the AND, OR, and
NOT combinators. Section A-1.3.3 shows a more general result (due to David McAllester)
that demonstrates intractability with simply AND and OR combinators. In both cases, we
use reduction to and from the TAUT problem, beginning in the easy direction: showing
that the subsumption question is no harder than TAUT and thus is at least in co-NP.

To show that subsumption is in the class co-NP, we will show how to translate a
subsumption problem between types s and g into determining if a boolean expression is a
tautology, which is known to be in co-NP. The conversion proceeds by translating the types
s and g into two boolean expressions S and G. In S and G, each type union is represented
as a disjunction, each type intersection as a conjunction, and each complementation as
a negation. The primitive terminal types in the definitions of s and g become variables
in § and G. The subsumption relations between primitive types are represented by a
conjunction L of implications between the corresponding variables (e.g. if a primitive
terminal z is beneath a primitive terminal y, the implication (X — Y) is one term in L)
This translation can be done in time proportional to the size of the lattice; then, to see if
s is beneath g in the lattice we check that ((L A S) — G) is a tautology. If so, s must be
below g.

This shows that subsumption is in co-NP: solvable in polynomial time given a polyno-
mial time solution to TAUT; to prove the opposite direction we show that solving subsump-
tion in polynomial time will allow us to determine if a boolean expression is a tautology. To
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find if an expression E is a tautology, we create a primitive type for each variable in E and
use the complement, intersection, and union combinators to define a type corresponding to
E. We then see if this type is identical to (both ‘above’ and ‘below’) the top of the lattice.
Given that type construction is polynomial, the number of types constructed for an expres-
sion E must be a polynomial function of the size of finite E. Thus the translation can be
done in polynomial time and if we can determine subsumption in polynomial time as well,
we can resolve if S is a tautology in polynomial time by composing the processes. Solving
subsumption with AND, OR, and COMPLEMENT combinators is co-NP-complete and
thus NP-hard.

A-1.3.2 Intractability with AND, OR, and disjointness

Originally, the author believed that weakening representing complementation to represent-
ing disjointness would make subsumption tractable. The argument in favor of this began
with the assumption that copmlete subsumption with just AND and OR was computable
in polynomial time; it then assumed that no new inferences were possible from knowl-
edge of disjointness and thus representing disjointness could not complicate subsumption.
Unfortunately, David McAllester managed to prove both of these assumptions false; he
found and embarassingly simple example of subsumption inferences from disjointness and
also proved that the inference of subsumption relations between type-unions and type-
intersections alone is co-NP-complete. A version of these proofs is given below.

The notion that disjointness would not play a role in subsumption inference can be

seen from a boolean logic interpretation of type subsumption. In particular, from the
knowledge that types A and C are disjoint, we can show that

(AvB)A(BVC)) — B
and(or(a,b),or(b,c)) < b
where the logical implication above is equivalent to the new subsumption relation below.

While this is not enough to prove intractability, it does prove the incompleteness of any
subsumption algorithm which ignores disjointness information.

A-1.3.3 Intractability with AND and OR

The intractability of subsumption given AN D and OR is slightly more complicated. We
first recognize that the problem is a subset of type subsumption with complementation
and is trivially in co-NP. (Since we just demonstrated that subsumption wsth complements
is no harder than TAUT.) To show that it is co-NP-complete and thus NP-hard, we will
use a modified method of translating expressions into types and show that solving this
problem would allow us to determine (as above) if a boolean expression is a tautology.
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The key idea in the proof is to replace each variable and its complement by two
separate variables and then represent the identity constraints on the variables in a separate
expression.

We begin with a function x with transforms an expression into a type in the following
manner:

¢ Each uncomplemented variable V; is converted to a primitive type v;.

¢ Each complemented variable -V is converted to a primitive type v}.

*  Each disjunction (4 v B) is converted into a union type or(x(A), x(B)).

* Each conjunction (A A B) is converted into an intersection type and(x(A), x(B)).

Suppose we want to determine if a boolean expression T is a tautology; we first generate
—T in polynomial time and then — given polynomial time type construction — construct
a type x(~T).

This x(—T) is a type defined only in terms of intersections and unions of primitive
types. We can see that satisfaction of the primitive types (every v; and v) referred to by
X(=T) determines a truth model for the variables in T'; this truth model can be viewed
as a function specifying the assignment of a variable V based on satisfaction of the simple
types v; and v. (which represent V; and -V; respectively):

f(V)is true «—YucU:uzv
f(V) isfalse «— Yu €U :uzv’

The expression T will be a tautology if and only if =T is true only for invalid models.
In order for the model to be a valid model, f must be a true function; this is only possible
if it is never the case that v and v’ are simultaneously satisfied. We can define a new type
¢ which is satisfied only when the model determined by every v and v’ is invalid. This
type could be described by:
q= v (v A V')

all v
Given polynomial time type construction, we can also construct ¢ in time polynomial in
the size of T' (since if the size is n, the number of variables must be less than n). Now, if T
is a tautology, —T is true only if the truth function is invalid. =T being true corresponds
to x(—T) being satisfied, so T being a tautology implies that:

VueU:uzx(-T) — uxg

which is the same as saying X(-T) < q. If there existed a polynomial time subsumption
algorithm for intersections and unions, we could generate ¢ and ¢ in polynomial time
and then determine if ¢ < ¢ in polynomial time, thereby finding if an expression 7T is a
tautology in polynomial time. Subsumption, even with only intersections and unions, is
co-NP-complete and thus NP-hard.

One common false proof of the tractability of AN D /OR subsumption is based on the
tractability of subsumption between conjunctive normal form expressions without comple-
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mentation. If we have two expressions in conjunctive normal form (CNF) without com-
plementation, we can compute subsumption in polynomial time. Given two expressions A
and B of the form:
(/\ (VA1A2 .. ) (VA1A3 .. ) .o )

subsumption can be checked by seeing if the variables of each internal A in A are a subset
of the variables in one internal A in B. If this is true, subsumption follows. The hole in
the proof is that the polynomial time conversion to CNF introduces complements into the
CNF version of an expression that started out without complements. David McAllester
pointed out that the conversion to CNF without complements is possible, but would take
exponential time.

A-1.4 Conclusions

In the above demonstrations we have shown that a complete algorithm for subsumption is
NP-hard; in the interests of the tractability desirable in a module, the contract of TYPICAL
does not guarantee completeness but only soundness. This is a reasonable tradeoff from the
standpoint of TYPICAL’s intended application, the inductive discovery program Cyrano.
Cyrano uses TYPICAL as an inference engine for providing obvious relations between types;
Cyrano itself is searching for accidental relations between types. The incompleteness of
TYPICAL’s algorithms means that this pruning will be incomplete; the correctness of the
final distinction between accidental and neccessary implications can be maintained by ap-
plying a complete exponential time lattice analysis on empiricially discovered subsumption
relations. Thus, for Cyrano’s purposes, the incompleteness of TYPICAL'’s inferences is not
critical. Other applications of TYPICAL (for instance, to program type analysis) may suffer,
but that must be determined for each individual case.
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Chapter A-2
A TYPICAL

Manual

This appendix provides a sketchy manual to TYPICAL; it introduces the basic procedures
and data structures, as well as the types initially defined by TYPICAL. In addition, it
documents a handful of utility functions which TYPICAL uses. Finally, it briefly documents
the TYPICAL indexer, as described in Chapter 5, specifying the top level daemons for
specifying daemons and inhibitions.

The files defining TYPICAL are described in Appendix A-3; each of the procedures
below lists its file of definition for programmers or users who wish to peruse the source

code.
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A-2.1 Type Descriptions

Type descriptions are implemented as SCHEME vectors. As described in Section 3.1, each
type description possesses a unique integer identifier. Each type description prints out as:

#[id: name)
where #d is the unique integer identifier for the type. The name appearing in a printed
representation may come from a variety of sources. By default, the style of the name is
based on the primitive combinator which constructed the type.

For instance, types constructed by the TYPE-INTERSECTION of two types have a name
consisting of the types intersected separated by the string <and> E.G. the type intersection
of #[12:Men] and #[13:Unmarrieds] would print as:

#[14:#[12:Men]l<and>#[13:Unmarrieds]]

The printed form of a particular type can be specified by the NAME-TYPE! or TYPE
procedures. Evaluating

(name-type! type name)

Gives type the name name, where name is either a string, a list which can be passed to
PRINTOUT (Section A-2.9; Page 92), or a procedure of no arguments which prints out a
description of the type. The TYPE procedure givés a name to a newly created type; it has
the form:

(type name combinator ... combinator-arguments)
which creates a new type by calling combinator on combinator-arguments to produce a
type which is then named by name, which is of the same format accepted by NAME-TYPE. It
finally returns the type created. The TYPE procedure is typically used when definiing types
at top level, e.g.

(define lists (type "Lists" simple-type list? lisp-objects))

There are several functions for checking, finding, and accessing type descriptions; the
ones described below are the simplest and most useful public ones.

(TYPE-DESCRIPTIONT? object) ~—— yes-or-no
Returns #T (true) if object is a type description.

(->TD object) — type-description

Attempts to coerces an object into a type description. If object is an integer, the type
description possessing that integer index is returned; if object is a procedure describing
a predicate, the type description corresponding to the predicate is returned.

(TD-PREDICATE type-description) — predicate
Returns the determining predicate of type-description.

(TD-ID type-description) — integer-id
Returns the unique integer identifier for a type. These are assigned to types sequen-
tially, starting with zero for the top of the lattice.
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A-2.2 User Functions

(SATISFIES? z type) — boolean

Returns #T (true) if z satisfies type; returns #F (false) if z doesn’t satisfy type; and
returns the ignorance token (which can be checked for by DUNND?) if z is undetermined

for type.

(IN? z type) — boolean
Returns #T (true) if z satisfies type and returns #F (false) otherwise. This leaves out
indeterminancy, converting it to #F (false).

(COLLECTION-ELEMENTS collection-type) — list-of-elements
Returns the elements of the collection type collection-type.

(COLLECTION-MODIFY! element collection in-out)

If tn-out is #F (false), remove element from the mutable collection collection; oth-
erwise, add element to collection. This will change the performance of SATISFIES?,
COLLECTION-ELEMENTS, and (unless in-out is #F (false)) the predicate IN?. If collection
is not mutable this signals an error.

(PUT-IN-COLLECTION! element collection)
Adds the object element to the mutable collection type collection. If collection is not
mutable this signals an error.

(TAKE-FROM-COLLECTION! element collection)
Removes the object element to the mutable collection type collection. An error is

signalled if collection is immutable or an ‘empirical collection’ (Section 4.4.2; Page
32).

A-2.3 The Lattice

Type descriptions are placed in a lattice of predicate subsumption; each type description
stores its immediate generalizations and specializations in this lattice. While the rela-
tionship between any two types in the lattice is fixed, these stored generalizations and
specializations are subject to change. In particular, if X is immediately below Z and
Y is defined so as to be between X and Z, the immediate generalizations of X and the
immediate specializations of Z will change to reflect the presence of Y.

The procedures described here are useful for examing the lattice. Those which sim-
ply check subsumption in the lattice are true functions; they will return the same thing
regardless of additions to the lattice. (This is part of the lattice’s contract.) On the other
hand, the procedures which access immediate generalizations are always subject to change
as the lattice is extended and filled out.

Haase The Lattice Section A-2.3
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(<<? type-a type-b) — below?

Returns #T (true) if type-a is below type-b in the lattice subsumption; that is, if
satisfaction of type-a entails satisfaction of type-b. The parameters type-a and type-
b are coerced by ->TD before being operated upon, allowing predicates or integer
identifiers to be used in place of actual type descriptions. The use of integer identifers
is a useful trick for interactive use, since every type’s printed representation provides
the integer identifier by which it may be referred to. The procedure TD-<<? is a version
of <<? which does not do type checking or attempt coercion and so is mildly faster.

(MINIMAL-TYPE-SET Ulst-of-types) — minimal-list-of-types

Takes a list of types and returns a reduced list of types whose generalizations contain
all of the original types. In particular, if any type in the list is a generalization of
another type, that first type is removed since it is already included in the set by
extension of generalizations.

(MAXIMAL-TYPE-SET list-of-types) — minimal-list-of-types

Takes a list of types and returns a reduced list of types whose specializations contain
all of the original types. In particular, if any type in the list is a specialization of
another type, that first type is removed since it is already included in the set by
extension of specializations.

(GENERALIZATIONS type) — list-of-types

Takes a type and returns its immediate generalizations in the lattice. Like <<?, an
attempt is made to coerce type if it is not a type description. As mentioned above,
list-of-types for a given type is likely to change with time as the lattice is extended
and filled in. The name GENZNS is an alias for GENERALIZATIONS.

(SPECIALIZATIONS type) — list-of-types

Takes a type and returns its immediate specializations in the lattice. The same co-
ercion and caveat constraints apply as for GENERALIZATIONS. The name SPECZNS is an
alias for SPECIALIZATIONS.

A-2.4  Uhhh... Indeterminancy

TYPICAL uses a special token to indicate indeterminate truth values; this token is a list
stored internally to several procedures. The only access to it should be through these
procedures.

(%UNDEFINED) — ignorance-token
Returns the token representing indeterminancy.

(DEFINED? thing) — yes-or-no
Returns #F (false) if thing is the indeterminancy token, #T (true) otherwise.
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(UNDEFINED? thing) — yes-or-no
Returns #T (true) if thing is the indeterminancy token, #F (false) otherwise.

A-2.5 Disjointness

Disjointness is stored as an incidental property of types. Like generalization and spe-
cialization links, disjointness is only stored locally; broader disjointness is inferred by the
predicate DISJOINT?. In particular, if any generalizations of two types are disjoint, the
types are disjoint.

(MAKE-DISJOINT! ... types...)
Declares that types are disjoint; i.e. that nothing satisfying one particular type in
types satisfies any other types in types.

(DISJOINT? typel type2) — disjoint?
Returns #T (true) if typel is disjoint from type2, #F (false)otherwise.

A-2.6 Mappings

Mappings are used in TYPICAL to define new types by constraining the image of a particu-
lar mapping to some existing type. In order to do this effectively, TYPICAL must know the
domain and range of its mappings. Mappings are scheme procedures with explicit domains
and ranges. Many scheme types are complicated conjunctions of other types which con-
strain the image of various mappings; there exist functions for extracting this information
from the lattice.

(DECLARE-MAPPING! procedure domain range)

Declares the SCHEME procedure procedure to be a mapping from domain to range.
Every image constraint over the mapping specified by procedure will eventually have
domain as a generalization; there may, however, be other generalizations on the way

up.
(DETERMINE-IMAGE-CONSTRAINTS mapping type) — list-of-types

Returns all the image constraints placed on mapping by type. This procedure climbs
the lattice, collecting the constraining image for all the image constraints which con-
straint mapping, returning the corresponding list of types.

(MAPPING-CONSTRAINT mapping type) — type-conjunction
Returns a single type which is the conjunction of the individual constraints placed on
a mapping by a type.
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A-2.7 Combinators

TYPICAL’s combinators are the core of its type defining abilities. Combinators may be
either called directly as procedures or by another procedure like TYPE above.

(SIMPLE-TYPE predicate generalization) — a-simple-type

Returns a specialization of generalization which is satisfied by objects for which pred-
tcate returns #T (true); unsatisfied by objects for which predicate returns #F (false);
and undetermined by objects for which predicate returns the ignorance token.

(PRIMITIVE-SET-OF list-of-members generalization) — fized-collection
Returns a specialization of generalization which is only satisfied by elements in list-
of-members.

(QUERY-TYPE name-as-string generalization) — query-type
Returns a specialization of generalization satisfied by objects which the users claims
are in the class defined by name-as-string. For example:

(define crocks (query-type "a crock" symbols))

Value: CROCKS

(in? ‘'typical crocks)

>> Question: Is TYPICAL a crock? yes

#!TRUE

(POWER-SET of-type) —+ power-set
Returns a type satisfied by subtypes of of-type.

(COMPLEMENT of-type) — complement

Returns a type satisfied by objects not satisfying type and not satisfied by objects
satisfying of-type. If of-type is undetermined for an object, the complement is also
undetermined.

(<AND> ... types ...) —— conjunction
Returns a type which is satisfied by objects satisfying every member of types.

(<OR> ... types ...) — disjunction
Returns a type which is satisfied by any object which satisfies at least one of the
elements of types.

(IMAGE-CONSTRAINT mapping type) — tmage-constraint
Returns a type which is satisfied by objects for which mapping returns an object which
satisfies type.

(RECORD mapping type ...) — conjunction-of-image-constraints
Returns a type satisfied by objects for which every mapping satisfies every correspond-
ing type.
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(CROSS-PRODUCT ... element-constraints ...) — cross-product
Returns a type which is satisfied by lists whose elements each lie in the corresponding
tmage-constraint.

(DIVIDED-TYPE in-test out-test beneath) — divided-type

Returns a specialization of beneath which is satisfied by objects for which in-test returns
#T (true); not satisfied by objects for which in-test returns #F (false) and out-test
returns #T (true); and undetermined for everything else.

(GENERATED-COLLECTION beneath) — generated-collection
Returns a specialization of beneath all of whose elements (at any particular moment)
are known.

(COLLECTION-GENERATOR collection generator) — new-procedure
Not strictly a type combinator, this procedure returns a copy of generator which adds
its results to the collection collection which should be a generated collection.

(DIVIDED-COLLECTION beneath) — mutable-collection

Returns a specialization of beneath for which definite elements and non elements are
known. Elements can be declared tn or out of the resulting type by the procedure
MODIFY-COLLECTION! or its siblings.

(EMPIRICAL-COLLECTION beneath) — mutable-collection

Returns a specialization of beneath which may be modified by the PUT-IN-COLLECTION!
procedure and enumerated by COLLECTION-ELEMENTS. Any objects not explicitly added
to this collection are undetermined by the type; SATISFIES? will never return #F (false)
for this type.

A-2.8 Indexer Functions

This section documents the procedures provided by the actual implementation of the clas-
sifier described in Chapter 5. These functions are also used in the examples of Chapter
6.

(MAPTYPES procedure object)

Applies procedure to each type satisfied by object, in subsumption order. This means
that if a type s is below a type g in TYPICAL’s lattice, procedure will be called on s
before g.

(INDEX object) — object

Executes daemons for each of the types which object satisfies. The daemons are called
in subsumption order; if a type s is below a type g in the lattice, the daemons for
s will be called before the daemons for g. Each daemon is called with the argument
object and the call to INDEX returns object.
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(ADD-DAEMON! procedure type)

Adds the daemon procedure to type. Whenever an object satisfying type is indexed
beneath one of type’s generalizations, procedure will be applied to the object (except
if it is particular inhibited for the object).

(REMOVE-DAEMON! procedure type)
Removes the daemon specified by procedure from type. This is not at all clever about
removing the consequences produced by procedure’s previous actions on instances of

type.

(INHIBIT-DAEMON! daemon object ... description ...)

Inhibits the application of daemon to object. When object is indexed and the daemon
procedure daemon encountered, it will not be called. If daemons are being traced at
this point, the remaining arguments to INHIBIT-DAEMON! (description above) will be
passed to PRINTOUT.

(DF object)
Prints a description of object based on its location in the lattice.

(EF object)
Edits object based on its location in the lattice. This editor presents properties and
offers commands based on the types the object satisfies.

A-2.9 Utility Procedures

(PRINTOUT ... print-tokens ...)

This is a routine for formatted printing provided in the support functions for TYPICAL.
Its arguments specify a list of printout tokens. Each of these is printed by the SCHEME
output routine DISPLAY (like Common Lisp’s PRINC) unless it is in a special class
of execute tokens. Execute tokens are objects which may be produced by PRINTOUT
support procedures or bound to identifiers. For instance, the SCHEME identifier $NL
is bound to an execute token which produces a newline, so that PRINTOUT would do
the following:

(printout $NL "Foo" "Bar" $NL (+ 2 3) $NL "Bletch" $NL)
FooBar

5

Bletch

(MAKE-MUTABLE ) — mutable-procedure

Returns a single argument procedure which maintains a table mapping objects into
other objects. This mapping can be modified by the MUTATOR of the procedure.
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(MUTATOR mutable-procedure) —— mutator-procedure

Given a mutable procedure, returns a procedure which — given an object and a
function — applies the function to the current mapping of the object to return a new
value for the mapping. E.G. if REFERENCE-COUNT where a mutable procedure, then the

following scenario could be imagined.

(REFERENCE-COUNT °X)

5

((MUTATOR REFERENCE-COUNT) °X 1+)
5

(REFERENCE-COUNT ’X)

6

(MODIFIER mutable-procedure) —— modifier-procedure

Given a mutable procedure, returns a procedure which — given an object and a value
— modifies mutable-procedure so that the mapping of the object will be the value. As
in the example above, we could use this on REFERENCE-COUNT as:

((MODIFIER REFERENCE-COUNT) °'X 0)

to clear the reference count for the symbol X.
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Getting
TYPICAL

You can get copies of TYPICAL to experiment with or use from a variety of locations. Of
course, no warranties or guarantees are expressed or implied by such availability.

TYPICAL is implemented in SCHEME, using an extended superset of the standard
SCHEME defined in [RC86]. Most of TYPICAL’s development was done in C-SCHEME, an
MIT SCHEME implemention in ¢ which runs under a variety of operating systems. The
easiest way to get a copy of TYPICAL is to get (or discover that you already have access
to) the MIT C-Scheme Release 5.3 or later. This can be FTP’d (in Unix TAR format) from
the Internet host “MIT-PREP” as the file “/scheme/dist.tar”. This distribution gives you
all of C-Scheme along with the subdirectory “libs/kwh” (for the author’s initials) which
contains the sources to TYPICAL. If you don’t have Internet access, you can get a tape (for
a tape hassling cost of $200.00) of CScheme from:

Scheme Distribution

c/o Professor Harold Abelson

Massachussets Institute of Technology

545 Technology Square

Cambridge, Massachussetts 02139

In addition, C-Scheme (and TYPICAL) are included in the standard release of ‘GNU
Emacs’ from the Free Software Foundation. If you have a post-December 87 release of
GNU Emacs you may already have a copy of TYPICAL; if not you can order a GNU Emacs
release (for a $150.00 tape handling charge) from:

Free Software Foundation

1000 Massachussetts Avenue

Cambridge, MA 02138
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Finally, if you don’t have or want either of these, you can FTP a copy of TYPICAL from
the Internet hosts “MIT-REAGAN” (in the directory “>KWH>Distribution>”) or “MIT-
PREP” (in the directory “/u/kwh/distribution/”). If you want to run TYPICAL in Com-
mon Lisp [Ste84], you probably want to get a copy of Jonathan Rees’s PseudoSCHEME (in

Common Lisp); you can get this from the Internet host MIT-MC in the file “MC: JAR; PSEUDO >.

A-3.1 The Files

Each of the sources above will give you a set of three or four subdirectories: a directory of
language-dependent SCHEME extensions, a directory of language-independent SCHEME
extensions, the actual code of TYPICAL (including the indexer described in Chapter 5),
and (maybe) a snapshot of Cyrano’s current development. While you are welcome to try
running Cyrano, remember that it is a snapshot of a research program in development.

A-3.1.1 Scheme (R3S) extensions

TYPICAL is implemented in a superset of the standard Scheme described in [RC86]. The
extensions used by TYPICAL are:

1. A family of operations on bit strings which support an abstraction of infinite length
bit strings (with trailing zeros) with ‘bit-setting’ and bitwise-logical operations on
them.

A syntactic definline which encourages the inline coding of various definitions.
3. A fluid binding special form FLUID-LET which provides for dynamic binding of variables.

A record structure definition macro DEFINE-STRUCTURE which defines a composite ob-
jects with accessor and modifier functions and provides the structure with a special
printing format.

5. Timing functions for returning either running time in 100ths of seconds (SYSTIME) or
time of day as a list (HOURS-MINUTES-SECONDS).

6. A collection of lookup functions for creating, using, and modifying lookup tables.
The subdirectory “plus” contains a collection of files for extending various [RC86]

standard Schemes to support this superset:

1. “plus.scm” contains the extensions for MIT’s C-Scheme.

2. “plus.t” contains the extensions for T, the Yale dialect of Scheme.

3. “plus.1” contains the extensions for Jonathan Rees’s PseudoScheme implemention of

Scheme in Common Lisp.

If you want to run TYPICAL in another Scheme implementation, you can look at these
files to implement the appropriate extensions for your dialect. The C-Scheme implementa-
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tion also requires some extensions written in C. The file “bitops.c” contains C-extensions
to C-Scheme that implement the bit string primitive operations used by TYPICAL.15

A-3.1.2 Scheme utilities

The subdirectory “utilities” contains a collection of Scheme utilities used by TYPICAL.
These utilities use the above-described extensions to the [RC86] standard. There are seven
files:

e The file mapfcns.sen defines a collection of procedures for operating on or over common
data structures, including MAPTREE, MERGE, COLLECT, UNION, etc.

e The file mutable.scm provides a facility for generating mutable procedures which can
be used as lookup tables for various properties.

e The file tuple.scm implements the ‘tuple’ data type; the tuple is a sort of ‘hash-
consed’ list. Two tuples with EQ? elements are EQ?. This file also implements a list
canonicalization routine used to ‘memoize’ procedure calls.

e The file printout.scm contains a formatted printing facility inspired by InterLisp’s
PRINTOUT. PRINTOUT is an extensible expression oriented formatting command pro-
viding much of the functionality of Common LISP’s FORMAT in a cleaner fashion.

e The file nessage.scm implements a special version of PRINTOUT which is used for de-
scribing program events to a user.

e The file switches.scm provides a facility for software swtiches which can be set or reset
by the user.

¢  The file engine.scm implements a tasking facility for TYPICAL which allows the spec-
ification of procedures which divide their work over multiple invocations.

Some of these utilities are used directly by TYPICAL while others are used only by Cyrano.

A-3.1.3 TYPICAL Sources

The subdirectory typical contains the sources for TYPICAL and a few utilities (including
the indexer described in Chapter 5) implemented with TYPICAL.

e The file kernel.scm contains the core of TYPICAL’s implementation, specifiying the
‘type description’ record structure and the procedure TYPE-GENERATOR for defining new
type combinators. (Described in Section 3.2 (Page 18).)

e The file synthetic.scm implements TYPICAL’s synthetic combinators. This also im-
plements the procedures for modifying and enumerator collection types. (Described
in Section 4.4 (Page 30).)

e Thefile direct.scmimplements TYPICAL’s direct analytic types. (Described in Section 4.1

(Page 23).)

15In C-Scheme, you can do a “make kwhscheme” in the Scheme microcode directory to get a ver-
sion of SCHEME (called “kwhscheme”) with these primitives built in.
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e The file indirect.scm implements TYPICAL’s indirect analytic types. (Described in
Section 4.2 (Page 27).)

e The file inductive.scm implements TYPICAL’s inductive definition types. (Described
in Section 3.2 (Page 18).)

e The file datatypes.scm specifies types and mappings corresponding to the primitive
scheme data types.

¢  The file metatypes.scm specifies types of types and declares — as valid mappings —
various type related functions.

e The file test-suite.scm contains the test suite for TYPICAL described in Section 2.2.
(Described in Section 2.2 (Page 10).)

e  The file metatns.scm defines a simple higher level language which does a degree of
automatic type inference (e.g. about composed or mapped functions).

e The file maptypes.scm implements the MAPTYPES procedure described in Chapter 5
(Section 5.2.1 (Page 43)).

e The file index.scm contains the indexer described in Chapter 5.

o The file df.scm implements a “DESCRIBE” command (df) which uses the lattice of
types to determine what properties to describe.

o  The file props.scn specifies describable properties of SCHEME and TYPICAL objects;
these are used by DF to determine how particular objects should be described.

o  The file ef.scm implements a data structure inspector which — like the description
command above — determines properties and operations based on the indexing of
objects in TYPICAL’s lattice.

e The file comands.sen specifies commands applicable to various SCHEME and TYPICAL
objects; these are accessible in EF as operations on objects being edited.

e The file scode.scm defines an extension fo EF in C-Scheme which allows the editing of
internal variables of S-Code procedures.

Section A-3.1.3 The Files Haase
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