Enhancing the Dexterity of a Robot Hand
Using Controlled Slip

by
David L. Brock

Submitted to the Department of Mechanical Engineering on
May 1, 1987 in partial fulfillment of the requirements for the De-
gree of Master of Science in Mechanical Engineering

Abstract. -Humans can effortlessly manipulate objects in their hands, dex-
terously sliding and twisting them within their grasp. Robots, however, have
none of these capabilities, they simply grasp ob jects rigidly in their end effec-
tors. To investigate this common form of human manipulation, an analysis of
controlled slipping of a grasped object within a robot hand was performed.
The Salisbury robot hand demonstrated many of these controlled slipping
techniques, illustrating many results of this analysis.

First, the possible slipping motions were found as a function of the lo-
cation, orientation, and types of contact between the hand and the object.
Second, for a given grasp, the contact types were determined as a function of
the grasping force and the external forces on the object. Finally, by chang-
ing the grasping force, the robot modified the constraints on the object and
affect controlled slipping motions.

Thesis Supervisor: Dr. Kenneth Salisbury
Research Scientist
Laboratory of Artificial Intelligence

i

This empty page was substituted for a
blank page in the original document.

Acknowledgments

This report describes research done at the Artificial Intelligence Laboratory of
the Massachusetts Institute of Technology. Support for the laboratory’s arti-
ficial intelligence research is provided in part by Sandia National Laboratories
under contract 23-2299, in part by the Systems Development Foundation, in
part by the Office of Naval Research University Research Initiative Program
under Office of Naval Research contract N00014-86-K-0685 and in part by
the Advanced Research Projects Agency of the Department of Defense under
Office of Naval Research contract N00014-85-K-0124.

iii

This empty page was substituted for a
blank page in the original document.

Contents

1 Introduction

1.1 Imtroduction
1.2 Overview. i e e e
1.3 Outline. e
2 Constraint
2.1 Introduction
2.2 Screws, wrenches, and twists,
221 SCIewWs . . . i i e e e e
222 Wrenches
223 Twists
2.2.4 Transforming screw definitions
23 Contacttypes
2.4 Infinitesimal motion.
2.41 Reciprocalscrews
2.42 Repellingscrews
243 Contraryscrews u e
244 Permissibletwist
25 Finitemotions
2.5.1 Value of virtual coefficient
2.6 Multiplecontacts,
2.7 Permissible Motion
3 Strategies for manipulation
3.1 Imtroduction,
3.2 Generalstrategy
3.3 Specific strategies L ...

v

331 Gravity
3.3.2 Controlled accelerations
333 Freefingers
3.3.4 Otherobjects
Grasping force
4.1 Introduction
4.2 Grasp forceanalysis.
43 Twocontacts
4.4 Threecontacts
4.5 Four or more fingered grasps

Contact wrenches

5.1 Introduction
52 Stiffness
Contact wrench/contact type relation

6.1 Introduction
6.2 Twodimensions
6.3 Threedimensions

Controlled Slipping

7.1 Introduction
7.2 Two dimensional example
721 Constraint
722 Externalwrench.
7.2.3 Graspingforce.
7.2.4 Contact wrenches
7.2.5 Contact wrench / Contact type relation
7.2.6 Constraint statemap
7.3 Three dimensional example
Implementation
8.1 Introduction
8.2 Description of Hardware
8.3 Description of software
83.1 GRASP functions

.......

.......

.......

ooooooo

.......

.......

.......

.......

.......

.......

ooooooo

.......

.......

........

.......

.......

.......

.......

9 Extensions and further research
9.1 Introduction
9.2 Determining permissible motion
9.3 Determining constraint state
94 Globalmotion
9.5 Sensoryfeedback,
9.6 Integrating manipulation techniques.
9.7 Conclusion e

A Coordinate frames
Al Introduction
A2 Handframe
A3 Fingerframes
A4 Fingertipframe
A5 Contact frames
A6 Graspframe
A7 Objectframe,

B Stress state in a fingertip

B.l Introduction
B.2 Problem definition
B.3 Analyticsolution
B.4 Finite element solution

B.41 Refinedmesh
B.5 Finite element vs. analytic
B6 Solution
B7 Conclusion

C Fingertip sensor
C.1 Introduction e
C.2 Theory o i i e e e e
C3 Designo i i e e e
C4 Designofloadcell
C4.1 Introduction
C.4.2 Fingertip sensor dimensions
C.4.3 Mechanical properties
C.4.4 General cantilever beam problem

vi

C4a5 Casel

C.i-s Clll? R TS e e
Ca7 Coseld P
C48 Cased e
04-9@*-5....&... i e e o .
C410Camet
C4.11 Maximum stress
nsmmm
D.XM

List of Figures

2.1

2.2
2.3
2.4
2.5
2.6
2.7

2.8
2.9

3.1

3.2

4.1
4.2
4.3

5.1
5.2

6.1
6.2
6.3

Transforming definitions of a screw from one coordinate frame

toanother L L L
Contact types e
Contact types (Continued)
Manipulator object interface
Wrench in cartesian coordinates
Twist defined at a contact point
Surface geometry in the neighborhood of the contact must

considered to determine permissible motions
Projection of the contact trajectory onto the object surface . .
Expand definition of reciprocal twist

The wrist can be used to orient the object in a grasp so that
gravity can be used to move theobject
A force exerted on a grasped object can move it through a
desired motion

Wrench from force through point contact
A pair of contacts can exert an arbitrary squeezing force

The grasp force focus and grasp force magnitude span the
three space of internal grasp solutions for three contacts

Fingertip touching object
Fingertip modeled as a spring system

Two general bodies in contact
Pressure distribution in the area of contact
Approximation for contact type

viii

7.1
7.2
73
7.4

7.5

7.6

7.7

7.8

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Al
A2

Two dimensional example
Coordinate systems for two dimensional example.
Graphic representation of twists in two dimensions
Set of unit twists may be represented by a collection of unit
vectors in the twist coordinate system
Twists which lie in a plane in the twist coordinate system are
replaced by ashaded disk
Twist which do not lie in a plane are replaced by sections of
asphere e
Constraint states for the rectangular block ignoring the local
surface geometry L L L oo
Constraint states for the rectangular block including local sur-
face geometry L L e
Grasped rectangular block in a gravity field
Spring assemblage replaces contacts
Contact wrenches for fingerson block
Slipping criteria L L o e
Constraint statemap i e
Fingersonasquare
Permissible motions for square grasped on adjoining sides.
Constraint state map
Three fingers graspingacan
Coordinate systems used in the three dimensional example . .
Constraint state map for three fingers holding a cylinder

Salisbury Robot Hand
Robot hand control scheme
GraspMenu e
Constraint state map produced by the computer
Robot can holdingacanofsoda
Constraint state map for robot grasping thecan
Robot hand allowing a can to spininits grasp
Robot hand spinning a can between two fingers
Robot hand manipulatingabox

ix

A.3 Phalange length and finger placement 108

A4 Fingertipframe o o oo 108
A5 Contactframe oo 109
A6 Graspframe e 110
B.1 Robot finger in contact with a flat surface 112
B.2 Two general bodiesincontact 113
B.3 Pressure distribution in the area of the contact 114
B.4 Stress gradients within a sphere due to contact with a rigid
plate o 116
B.5 Initial finite element mesh 0oL 117
B.6 Line on which nodal stress are compared 118
B.7 Inconsistency in calculated nodal stress oy, 119
B.8 Inconsistency in calculated nodal stresso,, 119
B.9 Inconsistency in calculated nodal stress o, 120
B.10 Location of consistent stress 120
B.11 Stress profile on hemispherical body 121
B.12 Region of mesh refinement oL 122
B.13 Refined mesh 123
B.14 Expanded view of the new refined region 123
B.15 Line on which nodal stresses are compared 124
B.16 Consistency in calculated nodal stresses: g, 124
B.17 Consistency in calculated nodal stress: o, 125

B.18 Larger values of stress at small radial distance from the contact125
B.19 Agreement between the finite element and analytic solutions:

Oyy + v o e e e e e e e e e e e e e e 126
B.20 Agreement between the finite element and analytic solutions:

O iz o v e 126
B.21 Agreement between the finite element and analytic solutions:

Oz v v v e e e e e e e e e e e e e e 127
B.22 Stress profile in the fingertip: o, 129
B.23 Stress profile in the fingertip: ¢,, 130
B.24 Stress profile in the fingertip: 7, 131
C.1 Schematic representation of the fingertip sensor 135
C.2 Variousexternalloads 137
C.3 Fingertip dimensions 138

x1

C.4 General cantileverbeam 149
C.5 Force applied on the top of the hemisphere along the axis of
thesensor e, 149
C.6 Leg of the loadcell under a symmetrically applied vertical load 149
C.7 Horizontal force applied to thesensor 150
C.8 Compressive members are assumed to move rigidly 150
C.9 Horizontal force applied to the bottom of the fingertip 151
C.10 Assumptions on loadcell 151
C.11 The legs of the cross under applied forces and moments 152
C.12 A leg parallel to theforce 152
C.13 A leg perpendicular to the force 153
C.14 Horizontal force tangent to the surface of the fingertip. 153

C.15 Assumptions on loadcell 154

Chapter 1

Introduction

1.1 Introduction

When we manipulate objects, our fingers are not always fixed to the surface.
Many times we allow the objects we hold to slide or rotate at our fingertips,
consciously controlling the motion of the object rather than the motion of
our fingers. This controlled slipping technique of manipulation is not just one
of the ways we can move objects, but rather a dominant form of dexterous
human manipulation. For example, try putting a lid on a jar, but start with
the lid top down on a table. Without thinking, we pick up the lid, spin it
around between our two fingers, using the edge of the jar or another finger,
and screw it on the top. Or consider the use of a pencil eraser. When we
make a mistake we stop writing, flip the pencil over, push the pencil through
our fingers, and erase. In both these examples and in many others, we allow
objects to slide and rotate at our fingertips. Through this controlled slipping
technique we can control the location and orientation of an ob ject within our
grasp.

In robotic manipulation, emphasis has been placed on producing stable
grasps. The object is then moved by controlling the motion of the manipula-
tor, assuming the object is rigidly fixed to the robot. If the object slips in the
grasp, control is lost, and there are no easy forms of recovery. In addition,
there are many operations which become difficult or impossible without some
form of controlled slip manipulation. In this thesis, I will analyze controlled
slip manipulation in a robot hand, and from this analysis predict slipping

CHAPTER 1. INTRODUCTION 2

motion of an object within a grasp. Using these predicted slipping motions,
the robot hand will affect the necessary changes in the grasp to allow the
object to slip in a controlled manner.

1.2 Overview

In order for a multifingered robot hand to perform dexterous operations
on the environment, it must be able to acquire objects into a grasp, con-
trol the motion of the object relative to the environment and control the
object within the grasp. Object acquisition is an active area of robotic re-
search. Given a particular manipulator and an object, how can the robot
grasp the object? There are numerous considerations, such as the location,
size, weight, orientation, surface properties, and specific functions of the ob--
ject, as well as, configuration, workspace, strength, and surface properties of
the manipulator. An algorithm recently developed [Nguyuan], computes the
grasp locations on an object and finger stiffnesses in the robot necessary to
produce force closure grasps. The objects are modeled as polyhedrons with
a certain mass and surface friction. Areas on the polyhedral surfaces are
then found on which the fingertips of a multifingered hand may be placed
to yield force closure grasps. The number of fingers, the surface properties
of the fingertips, the stiffness of the joints, and the workspace of the hand
are all taken into account when computing grasp locations. Some research in
object acquisition has also been done by [Lozano-Perez]. Not only were the
current constraints on the object considered, but also constraints imposed on
the object by the environment, as the object is moved through its planned
trajectory. The constraints both present and future are mapped onto the
object surface before the object is grasped. In this way, for example, a robot
gripper would not grab the end of the peg which later must be inserted into
a hole. There are, however, still many areas of object acquisition not yet
explored. Objects with special surfaces, such as handles or loops, non-rigid
objects, like paper or foam, objects that must be moved before grasping, such
as a coin on a flat table, are all common examples acquisition which are not
yet possible for a robot.

The control of object motion through the coordinated control of individ-
ual manipulators is also a current area of robot research. An algorithm has
recently been written [Chiu] which coordinates individual fingers to yield a

CHAPTER 1. INTRODUCTION 3

specific translations and rotations of a grasp relative to an arbitrary refer-
ence frame. The object is assumed to remain fixed relative to the grasp;
therefore, specific motions of the grasp yield specific motions of the object.
From practical experience, this method has worked quite well. In order to
actually control the motion of the object, however, it would be necessary to
sense the position and orientation of the object, since the object may have
been removed, slipped, or fallen from the grasp, unknown to the robot. Real
time hand-eye coordination, however, is beyond the reach of current systems
because of the computational complexity. High level coordinated control of
multifingered robot hands, is a relatively new area of research. Recent mul-
tifingered robot hand research, therefore, has been primarily concerned with
mechanical design, actuation, transmission, and sensing.

Control of an object relative to a grasp is also a new area of research.
This problem has be approached by [Tournassoud], in terms of regrasping.
The object is initially grasped, then set down, released, and then regrasped.
In this way the object can be reoriented relative to the grasped. The object,
however, is not manipulated within the grasp. Controlled slip manipulation,
however, could enhance the dexterity of a manipulator, by allowing the robot
greater freedom to move the object within the grasp.

1.3 Outline

This thesis is basically an analysis of the small finite permissible motions
an object may undergo in a particular grasp and how these motions may
be achieved. The first chapter is the introduction. In chapter 2, the types
of contacts between a fingertip and an object are enumerated. For each
set of contacts and contact types, we define a constraint state and for each
constraint state, a map of the possible object motions is produced. Deter-
mining the constraint on small finite motion, requires knowing not only is
the location and orientation of contacts, but also the surface geometry in the
neighborhood of the contact. Chapter 3 deals with strategies available to ma-
nipulate an object relative to a grasp. These include the use of gravity, body
forces, controlled accelerations, free fingers, and other ob jects to move objects
within the grasp. For a multifingered hand there are many ways to squeeze a
grasped object. For two or three fingered grasps, there is corresponding one
space or three space of possible grasp solutions. Chapter 4 presents a sim-

CHAPTER 1. INTRODUCTION 4

ple intuitive parameterization of this grasp force space. For a three fingered
hand, the three space may be represented simply by a grasp force focus and a
grasp force magnitude. In order to determine the type of contact that exists
at each fingertip, the forces and moments transmitted through the interface
must be found. In chapter 5, the set of forces and moments that exist at the
contacts will be found in terms of the contact frame, that is, a coordinate
frame set in the object and defined in terms of the contact point and outward
pointing normal. Chapter 6 outlines a simple relationship between the forces
and moments at the contact and the contact type. Two examples are given
in chapter 7 illustrating the analyses of the previous chapters, along with an
demonstration of how controlled slipping could be used to reorient an object
within a grasp. Chapter 8 describes how these analyses were simulated and
how some controlled slip manipulations were achieved on the Salisbury robot
hand. In chapter 9, extensions of the present theories are outlined, which
yield more practical and efficient techniques for controlled slip manipulation.

Chapter 2

Constraint

2.1 Introduction

The purpose of this chapter is to determine the different ways an object can
move In a grasp. First, the screw system representation will be described.
This representation allows a complete and homogeneous treatment of both
forces and moments as well as translation and angular displacements. Sec-
ond, the types of contacts which may occur between two objects will be
enumerated. For each contact type, a particular set of forces and moments
can be exerted through the interface. These forces and moments limit the
possible motions of one object relative to another. Third, the set of infinites-
imal motions possible for an object subject to a single constraint will be
determined using the concept of virtual work. Fourth, the set of infinitesi-
mal motions will be extended to include the set of small finite motions by
considering the surface geometry in the neighborhood of the contact point.
Fifth, a constraint state will be defined as an ordered list of contact types on
the object. Finally, for each constraint state, the set of permissible motions
for a grasped object will be found by intersecting the permissible motions of
the individual contacts.

2.2 Screws, wrenches, and twists

Many of the analyses in this thesis will employ a screw system representa-
tion for forces and moments, and for infinitesimal displacements. Although

CHAPTER 2. CONSTRAINT 6

standard force and displacement vectors could be used, screw systems allow
a homogeneous treatment of both forces and moments, and translational and
angular displacements.

A set of forces and moments acting upon a body can be collectively called
a wrench. A wrench may be described as a force along a unique line, the
screw axis, and a moment about that line. Similarly, a twist can represent
the infinitesimal motion of an object, an infinitesimal translation along a line
and an infinitesimal rotation about that line.

2.2.1 Screws

The outline of screw systems presented here is more adequately described in
[Hunt] and completely developed in [Ball]. Both the wrench and the twist
are specific representations of a screw. A screw is defined by a line in three’
space, a screw axis, and an associated pitch about that line. A screw may

also be described by a six element vector, s = (81, 82, 83, 34, S5, S¢], Where
81, 82,...,8¢ are the screw coordinates. The coordinates of the screw axis
are

L = Sl

M = 52

N = 53

Q = Ss—-pS,

R = Se - p5'3.
The coordinates L, M,..., R are known as the Pliicker line coordinates of

the axis, where L,M, and N are proportional to the direction cosines of the
screw axis, and P,Q, and R are proportional to the moment of the line about
the origin of the reference frame. The pitch of the screw is

_ 5184 + 5355 + S3S6

ST+S+58 22)

and the magnitude of the screw is

m =/S? + S? + 32, (2.3)

CHAPTER 2. CONSTRAINT 7

unless the pitch happens to be infinite, in which case the magnitude of the

screw 1Is
m =/S} + S? + S2. (2.4)

2.2.2 Wrenches

The wrench is one interpretation of the screw and, therefore, may be defined
in a similar way. The wrench may be identified, in terms of screw coordinates,
by a six element vector w = [w;, wy, w3, wy, ws, we), where w;,w,, and w; are
the forces along the x,y, and z axes of an reference frame, and w,,ws, and we
are the moments about the axes of the reference frame. By replacing S; with
w; in equation 2.1, the line coordinates of the wrench may be found,

L =

M = Wy

N = w3

P = Wy — pun (2.5)
Q@ = ws—pw

R = We — pWs3.

The pitch of the wrench is given by equation 2.2,

_ Wiwy + waws + wiwe 9
2 2 2 ’ (2.6)
wy + w3 + wi

and is the ratio of the torque about the screw axis to force along it. The
magnitude of the wrench from equations 2.3 or 2.4 is

m = \Jw? + w? + wi, (2.7

or if the pitch is infinite, the magnitude is

m = \/w? + w? + wi. (2.8)

2.2.3 Twists

As with the wrench, the twist can also be described in terms of a six element
vector t = [t1, 8y, t3, L4, t5, tg], Where 1,1, and t3 are the rotations about the

CHAPTER 2. CONSTRAINT 8

T, y, and z axes of a reference frame and t,,t5, and t¢ are the displacements
along the z,y, and z axes. Again, replacing S; with ¢;, the line coordinates
of the twist are

L = tl
M = t2
N = t3
Q = ts—pt,
R = t6 - pt3.

The pitch of the twist is

_ titg + tats + tatg
T EY

, (2.10).

that is, the ratio of the rotation about the twist axis to the translational
along the axis. The magnitude is defined by

m=\2+8+8 (2.11)

or in the case where the pitch is infinite, the magnitude is
m = /t3 + 2 + £2. (2.12)

2.2.4 Transforming screw definitions

Although a wrench and a twist are independent of the reference frames used
to define them, it is useful to be able to transform their representations
from one frame to another. In general, a screw s’ can be represented in
screw coordinates, s’ = [s, s}, s}, s, 5%, s5], where the elements of s’ are
defined relative to a specific reference frame. Let the elements of the screw
s’ be defined relative to a specific coordinate frame O’X'Y’Z’. Suppose this
reference frame is, in turn, defined with respect to another reference frame
OXYZ, figure 2.1. That is, let | = [I,1,,1,], m = [mg,my,m,], and n =
[nz,ny, n.], be the unit direction vectors of the z’, y', and 2’ axes and let
x = [z,y, 2] be the origin of the O’X’Y’Z’ frame all defined with respect
to the OXY Z frame. Suppose we now wish to define the screw s’ in screw

CHAPTER 2. CONSTRAINT 9

coordinates relative to the OXY Z frame. Let s be the representation of the
screw in the OXY Z frame, then

s = T¢/, (2.13)

where T is a linear transformation matrix given by

[I m; ng]
l, m, n, 0
T = . m. n, . (2.14)
Ly—1l,z m,y— Myz N,Y — Ny2 l; mz; ng
lez— 1,2 mzz—m,x ngz—n,z l, my n,
lhx—-lLy ma—myy n,z—ngy I, m, n, | |

Conversely, a screw s defined in the O XY Z frame may also be representedl
in O'X'Y'Z’,
s' =T 1, (2.15)

where T~1 equals

i L1, 1
me m, m, 0

T-1 ng Ny N,
Ly—1,z l.z - Lz lyz —ly L. I, I
MY — MyZ MyZ — M, T MyuT — Myy mgy my m,
L [ny—nyz nzz—n,xz ngz—nuy Ng Ny ny | |
(2.16)

Since the twist is a specific representation of a screw, it too can be defined
in screw coordinates relative to different reference frames. Suppose a twist
t’ is defined relative to a frame O’X'Y'Z’. Again, suppose this frame is, in
turn, defined with respect to another frame OXY Z. The representation t of
the twist t’ in the frame OXY Z is given by

t =Tt/ (2.17)
where T is given in equation 2.14 and conversely,

t' = T 1t, (2.18)

CHAPTER 2. CONSTRAINT 10

Zl

S, s

YI

X

Figure 2.1: Although the screw is the same no matter which reference frame is
used to define it, it is helpful to be able to transform the representation from one
frame to another. Suppose a screw s’ is defined in screw coordinates relative to
a reference frame O'X'Y’Z’ and O’X’Y'Z’ is, in turn, defined relative to another
frame OXY Z. Then the screw can also be represented in the OXY Z frame by a
simple linear transformation s = Tg'.

where T is given in equation 2.16. Similarly for the wrench, given in screw
coordinates relative to O'X'Y’'Z’, its representation in OXY Z is given by

w=Tw/, (2.19)

where T is given in equation 2.14. Conversely, the wrench defined in the
OXY Z frame may also be represented in the O’X'Y’Z’ by

w =T 1w, (2.20)

where T-! is given in equation 2.16.

2.3 Contact types

The interface between a robot and an object can be characterized by a par-
ticular type of contact. For a three dimensional manipulator, there are, in

CHAPTER 2. CONSTRAINT 11

general, nine different types of contacts. These contact types are illustrated
in figure 2.2, [Salisbury]. For each of these contact types, a particular set
of wrenches may be exerted through the interface. The set of all possible
wrenches that may be transmitted through a contact is known as a wrench
system. A set of unit basis wrenches can be specified which span the entire
wrench system. The nature of the contact problem, however, is inherently
non-linear, since objects can both make and break contact with one another.
Therefore, to describe the wrench system, it is necessary to define a set of
unidirectional unit basis wrenches. Any wrench in the wrench system may
then be represented by a positive linear combination of these unidirectional
basis wrenches. Figure 2.2 lists, along with each contact type, the set of
unidirectional unit basis wrenches whose positive linear combinations span
the space of all the possible wrenches which can be transmitted through the
contact.

For the analyses in this thesis, only contacts made between the fingertips
of the manipulator and an object will be considered, although the techniques
developed here encompass other types of contacts as well. By considering
only fingertip contacts, however, the number of possible contact types is
reduced to four: a soft finger contact, a point contact with friction, a point
contact without friction, and no contact. For convenience, these contact
types will be represented by the following numbers

= Soft finger contact

Point contact with friction
Point contact without friction
No contact.

=N
|

2.4 Infinitesimal motion

Virtual work is the work done by a wrench exerted against an arbitrary
twist. By examining the sign of the virtual work, we can determine the set
of infinitesimal motions which are possible for an object constrained by a
contact. First a contact is characterized by a particular contact type. Then
the contact is replaced by a set of unidirectional unit basis wrenches, listed
in the figures 2.2 and 2.3. Then for each basis wrench, the virtual work

CHAZPTER 2. CONSTRAINT

Plane contact with friction

A

Line contact with friction

<O

Soft finger contact

<>

Unit Basis Wrenches

w = (1,0,0,0,0,0]
w = [0,1,0,0,0,0]
w = [0,0,0,1,0,0]
w = [0,0,0,0, 1,0]
w = [0,0,0,0,0,1]

w = [0,0,0,1,0,0]

w =0,0,0,0,0,1]

w=1[1,0,0,0,0,0] w
w=1[0,1,0,0,0,0]
w = (0,0,0,0,0,1]
w= [1’070a07070]
w=10,0,1,0,0,0]
w = [0,0,0,1,0,0]
w =10,0,0,0,1,0]

Plane contact without friction

Figure 2.2:

[
—
o

|

[
— oo
oo

=
~oooo

22

i
—_

ceegeee
TR ERER
SEEBST
|
~o20

oo oo
ocoo
L

=

[

Eeegeg

w = (0,0,0,0,0, —1]

=(~1,0,0,0,0,0]
w= [0 "1701070’0]
w = [0,0,-1,0,0,0]

w = [0,0,0,0,0, —1]

w = [~1,0,0,0,0,0]
w = [0,-1,0,0,0,0]
w=[0,0,-1,0,0,0]
w = [0,0,0,-1,0,0]
w=[0,0,0,0,~1,0]

12

In general, there are nine different types of three dimensional con-

tacts. Fach contact type allows only certain wrenches to be transmitted through
the interface. Since the contact problem is inherently non-linear, a set of unidi-
rectional basis wrenches is defined whose positive linear combination describe the
space of wrenches which can be transmitted through the interface.

CHAPTER 2. CONSTRAINT 13

Unit Basis Wrenches

u.'[xoe.é;a.bl w = [~1,0,0,0,0,0]
w.p’ b&ﬁ"!q w-[oi"l:o’obo 0]
w = [0,0,~1,0,0,0]

Point coatact with friction.

w = [0,0,~1,0,0,0]
w-b.ﬂ,ﬂ,l 0,0} w=[0,0,0,~1,0,0

Line contact without friction
w = [0,0,~1,0,0,0]

Point contact without friction

No contact

Figure 2.3: Contact types {Continued) |

CHAPTER 2. CONSTRAINT 14

is calculated. If the virtual work done by a twist against every unit basis
wrench in the set is greater than or equal to zero, then the twist is allowed.
Conversely, twists which produce negative virtual work for even a single basis
wrench are disallowed.

A complete derivation of virtual work is presented in [Ball] and the deriva-
tions in this section are outlined in [Ohwovoriole]. A robot manipulator A
exerts a wrench of magnitude a and pitch p, along a screw A on a body B,
as shown in figure 2.4. The body then undergoes a twist of amplitude 3 and
pitch pp along a screw B. Define a coordinate system O XY Z with the x-axis
aligned with the twist axis, the z-axis the common perpendicular between
the twist and wrench axes, and the y-axis perpendicular to both the x and z
axes, as shown in figure 2.5. The wrench can then be decomposed into forces
and moments on the cartesian coordinate system

F. =acosf

F,=asing

F,=0

M, = a(p, cos § — dsin6) (2.21)
My = a(p, sinb + d cos)

M, =0,

where d is the length of the mutual perpendicular between the wrench and
the twist axes. The virtual work done by the wrench against the twist is

W = aff cos|(pa + ps) cos § — dsin). (2.22)
The virtual coefficient between screws A and B is defined to be
w = cos((ps + pg) cos 6 — dsin¥). (2.23)

The virtual coefficient is independent of both the amplitude of the twist and
the intensity of the wrench. Let (t1, t2, t3, t4, ts, te) and (w1, w2, w3, wy, ws, we)
be the screw coordinates of a unit twist and a unit wrench. The virtual
coefficient is then

W= uw t4 + w2t5 + ’wate + w4t1 + ’wstg + ‘wetl. (224)

We will use the unit twist and unit twist from now on when evaluating
the virtual coefficient. The reason for this will be apparent later when we
consider the value of the virtual coefficient.

CHAPTER 2. CONSTRAINT 15

w(a, Pa)
Manipulator
i
\\\‘
Body
t(8. ps)

Figure 2.4: The contact forces between a manipulator A and a body B can be
modeled as a wrench of w along a screw A of magnitude a and pitch p,. The
motion of the body can be described by a twist ¢ along a screw B of amplitude 8
and pitch pg.

Figure 2.5: The wrench can be decomposed onto a coordinate system OXY Z.
The z-axis is common perpendicular between the twist and the wrench axes, the
x-axis is the twist axis, and the z-axis is perpendicular to both the x and the z
axes.

CHAPTER 2. CONSTRAINT 16

2.4.1 Reciprocal screws

Two screws are said to be reciprocal screws if the virtual work between a
twist and a wrench associated with the two screws is zero. No work will be
done by a unit twist t against a unit wrench w if the virtual coefficient is
equal to zero. That is,

W= w1t4 + wots + ’LU3t6 + lU4t1 + w5t2 + wgt; = 0. (2.25)

2.4.2 Repelling screws

Two screws are said to be repelling if the virtual work between the screws of
a twist and a wrench is positive. Therefore two unit screws of a unit twist
and a unit wrench will repelling if the virtual coefficient if positive. That is,

w=wty+ ’CDQts + ’w;;te -+ w4t1 + 'I.U5t2 + wgly > 0. (226)

Work is defined to be positive if the body moves in the same direction as the
wrench.

2.4.3 Contrary screws

Two screws are contrary if the virtual work between the screws of a twist
and a wrench is negative. Again two unit screws are contrary if the virtual
coefficient if negative,

w = w1ty + wals + wate + wyty + wsts + wety, < 0. (227)

2.4.4 Permissible twist

A permissible twist is an infinitesimal motion that the constrained object is
allowed to undergo. Assume an object is constrained by a single contact, as
shown in figure 2.6. Also assume that the contact can be characterized by
a particular contact type. The constraint imposed by the contact can then
be represented by its associated set of unidirectional unit bases wrenches as
was described earlier.

For convenience, set of bases wrenches is defined in terms of a contact
frame. The contact frame is a coordinate frame whose origin is the point of

CHAPTER 2. CONSTRAINT 17

contact between the object and the manipulator. The z-axis is the surface
normal at the contact point, and the x and y axes lie in the tangent plane.
In general, the choice of the x and y axes of the contact frame is arbitrary;
however, a convention for resolving the ambiguity is given in appendix A.
This convention, though useful for the implementation, is unimportant in
the current discussion. Figure 2.6 then shows the contact frame O, X.,Y;, Z.,
defined relative to a reference frame OXY Z.

Let {Wcj} be the set of unidirectional unit bases wrenches which replace
the contact type defined in terms of the contact frame. Their representation
in the reference frame O XY Z is given by

wj = TiWcj , (2.28)

where T; is the transformation matrix given in equation 2.14 by

[l, m; ng 1
ly my n, 0
_ l, m, n,
Ti=|riy-1 1)
Y —lyz muy—myz ny—ny,z s My Ng
l.z—lx muy—m,z ngz—n,z I, my n,
lyx—ly myy—mzy ngx—ngy I, m, n, |

(2.29)
where 1 = [I;, 1,], m = [m,, my, m.], and n = [n,, n,,n,] are the direction
vectors of the x,y, and z axes and z, y, and z is the origin of the 7** contact
frame defined with respect to the reference frame O XY Z.

The set of twists which are reciprocal or repelling to a single unit basis
wrench wj is

Tj = {t : wljt4 + W2J-t5 + ’lD3jt6 + ’U)4jt1 + U.)5jt2 + 'w6jt3 Z 0} (230)

The set of twist reciprocal or repelling to all the unit basis wrenches in wj is
the intersection of all the sets T

Ting = ({11, T2, - - -} (2.31)

The set T;,s represents the set of twists which are either reciprocal or
repelling to every unidirectional unit basis wrench of a single contact. The
set Ti,s describes only infinitesimal motions which the object is allowed to
undergo while constrained by a single contact. In order to determine the
possible motions of an object finite motions must be considered.

CHAPTER 2. CONSTRAINT 18

X

Figure 2.6: The motion of an object is constrained by a single contact. The
contact can be characterized by a contact type which can then be represented by
a set of unidirectional unit basis wrenches {w;}. The set of all twists which are
reciprocal or repelling to every basis wrench, describes the infinitesimal motions
the object is allowed to undergo.

2.5 Finite motions

The set of twists Tins given in equation 2.31 describe the infinitesimal mo-
tion of an object constrained by a single contact. In order to be useful
in determining all the possible ways an actual object can move within a
grasp, the definition of permissible motion must be extended to include fi-
nite motion. Given an arbitrary unit twist t defined in screw coordinates
t = [t1, 12, ts, L4, t5, 1] relative to some reference frame, let

Ftl'

(2.32)

represent a finite motion, where mt,,mt;, and mt;, are finite rotations and
mty,mis, and mig, are finite translation along the z, y, and z axes of the ref-
erence frame. In general, the twists in the set T;ns describe finite as well as

CHAPTER 2. CONSTRAINT 19

Figure 2.7: Surface geometry in the neighborhood of the contact must be con-
sidered to determine the complete set of small finite permissible motions.

infinitesimal motion, except for one important exception. Twists reciprocal
to the wrench applied by a point contact without friction may or may not be
permissible. Whether motion is permitted depends on the surface geometry
in the neighborhood of the contact. Consider the following example of two
dimensional objects constrained by two point contacts without friction, as
shown in figure 2.7. The location and the orientation of the contacts are
identical, thus the set of infinitesimal permissible twists for each object is
the same. The finite constraint imposed on the objects, however, is different.
The first object, with concave surfaces, is completely constrained in all di-
rections. The second object, the rectangle, can only move horizontally, and
the last object, the circle, can both translate or rotate between the contacts.
The difference in constraint comes not from the contact types, but from the
curvature of the surfaces. In order to determine the complete set of permis-
sible finite motions, the surface geometry in the neighborhood of the contact
must be considered.

Therefore, we want to determine the motions which do not violate the
geometric constraints imposed by the surface of the object. To solve this
problem, assume an object undergoes a hypothetical finite motion describe

CHAPTER 2. CONSTRAINT 20

by a twist mt, in equation 2.32, then determine whether this particular
motion causes the contact point to penetrate the surface of the ob ject, thus
violating the geometric constraints. Let the surface of the object be describe
by a function fyyrece(z,y) relative to the contact frame Ociy Xei, Yoy, 2o,
First, determine the motion of the contact point relative to this contact
frame as the object undergoes the finite motion describe by mt. Second, map
the trajectory of the contact point onto the surface of the object. Finally,
compare the trajectory of the contact point with its projection onto the ob ject
surface to determine whether this particular motion violates the geometric
constraints. '

When comparing the motion of the surface of the object relative to the
contact points, it is unimportant whether we define the motion as a twist
mt that the object undergoes relative to fixed set of contact points or as a
twist —mt that the contact points undergo relative to a fixed object. For -
convenience, we will assume the object remains fixed relative to the OXY Z
frame and the contact points move with a twist —mt. The trajectory of the
contact point is given by

x¢ = Te¢xy + d, (233)
where T is a matrix
titicim hitzcim ~ tasy t1t3C1m + t28m
Tt = | tat1icim + tasm ta2tzcim latscim — 18, |, (2.34)

tatiCim — t38m t3teCim + 818 tatscim

where ¢, = (1 — cos(m)), ¢,, = cos(m), and s,, = sin(m). T multiplied by
xj yields the displacement due to a rotation, while

mt4

mte

is a displacement due to translation. Equation 2.33 describes the displace-
ment of the contact point relative to the O XY Z frame, but we want to
know the displacement of the contact point relative to the contact frame
O, X Y:; Z.,. Therefore, let Xtraj be the trajectory the contact point relative
to the contact frame. Then X¢pq j is given by

Xtraj = T};xt, (2.36)

CHAPTER 2. CONSTRAINT 21

where T+, is a rotation matrix relating points in the contact frame Ociy Xeiy Yoy, Zo,
to points in the reference frame O XY Z,

l; m; n,
Ty=|18 my ny |. (2.37)

lz m, n,

Equation 2.36 describes a locus of points relative to the contact frame.
These points represent the trajectory of the contact point would undergo if
the object were displaced by a twist mt. For a given twist, the trajectory of
the contact point is a function of only one variable, the magnitude m

Tiraj fz(m)
Xtraj = | Ytraj | = fy(m) . (2.38)
Ztraj fz(m)

By projecting the trajectory of contact onto the surface of the object, it is
possible to determine whether a particular twist t describes a permissible
finite motion. Figure 2.8 shows the motion of the contact point and its
projection onto the surface. The surface of the object is described by the
equation

Zsurface = faurface(za y) (239)
and the projection of the contact trajectory onto the surface of the object,
is given by

Tproj fz(m)
Xproj = | Yproj | = | fy(m) (2.40)
Zproj fsurtace[fz(m), fu(m)].

For a motion to be permissible, the contact trajectory must not penetrate
the surface. Simply

Ztraj 2 Zproj- (2.41)
Therefore, the set of finite motions the object may undergo is
Tpin = {t: 24rq(t) > Zproj(t)}- (2.42)

Finally, the set of all finite motions of an ob ject subject to a single constraint
is the intersection of the finite and infinitesimal permissible motions

T = Tpin[) Ting- (2.43)

CHAPTER 2. CONSTRAINT ' 22

Figure 2.8: The mjwﬁe:ofthmw“thobjnt surface
reveals whether a particular motion is passibis. A metion which causes the contact
topmuthmhum,&mﬁﬁm&ubmtm
' moveawayfromtlnluﬂmmm

CHAPTER 2. CONSTRAINT 23

2.5.1 Value of virtual coefficient

The definitions in the previous section provide mathematical constraints
which work well for abstract models. An infinitesimal variation in the di-
rection of the unit twist, however, will change its definition from reciprocal
to repelling or contrary. In reality, small changes in constraint should not
lead to drastic changes on the object. This problem occurs because a twist is
defined to be reciprocal only when the virtual coefficient is exactly zero. In
order to compensate for inaccuracies in contact measurement and to allow
more generality in object motion, it would be helpful to define a range of
values , —w, to w;,, for which a twist is defined to be reciprocal. That is, a
reciprocal unit twist satisfies

— Wy S w1t4 + w2t5 + ’lU3t6 + wyty + ’Ll)5t2 + wely S Wy. (244) .

This, however, also changes the definition of the repelling and contrary twist.
A repelling unit twist will now be defined as

w1t4 + ’UJQt5 + ‘U)3t6 + W4t1 + w5t2 + w6t1 Z Wy, (245)
and a contrary unit twist
wyty + wals + walg + w4t1 + w5t2 + wgly S —Wy. (246)

For example, consider the case of two fingers grasping a rectangle in two
dimensions, as shown in figure 2.9. If tactile sensors are used to resolve the
contact point and surface normal, there is to be expected some small error
in the reading, figure 2.9. It is obvious that the block can slide between the
fingertips in either direction if the grasp is loosened sufficiently. The strict
definition of the reciprocal twist, however, indicates only one or the other
direction is possible, depending upon error in the sensed surface normal. By
expanding the definition of the reciprocal twist, in equation 2.5, we can again
obtain the correct result, that the rectangle can move in either horizontal
direction. Now that the definition of the reciprocal twist, equation 2.23, has
been expanded, the geometric constraints will become more important when
determining possible motion.

CHAPTER 2. CONSTRAINT 24

0]
\\ Resolved contact normals Allowed object motions
‘ Y
by
0] —*';(9] X

N~

i

Figure 2.9: Small errors in the definition of the surface normal of the contact
on a two dimensional rectangle lead to large variation in the predicted physical
system. By expanding the definition of the reciprocal twist, these errors can be

accounted for as well as yield more intuitive results in determining the allowed
motions of an object within a grasp.

CHAPTER 2. CONSTRAINT 25

2.6 Multiple contacts

If there are m contacts between the manipulator and the object and n dif-
ferent types of contacts, there will be n™ possible combinations of contacts.
Each combination of contacts yield a different set of constraints on the ob-
ject. An object may be said to be in a particular constraint state defined by
the number and the types of contacts. For m contacts and n contact types
there are n™ possible constraint states. For example, if a three fingered hand
grasped an object at the fingertips there are three contacts and, since there
are only fingertip contacts, there are four contact types. With three contacts
and only four possible contact types there are 4% possible combinations, that
is 64 constraint states. For grasps made with a human hand at the finger-
tips, there are now five contacts, and therefore 4% or 2048 possible constraint
states. A constraint state can be denoted by an ordered list of m elements, .
each element denoting the contact type. Suppose the three fingered hand
has its fingers numbered one, two, and three, and assume the hand grasps an
object at the fingertips. If the first and second fingers behave as soft finger
contacts, while the third finger slips on the surface, the constraint state will
be [1,1,3]. Similarly, if a human hand grasped a cup, for example, and the
thumb, index finger, middle finger, make soft finger contacts on the object,
the ring finger slips on the surface, and the small finger is removed. the
constraint state would be represented by [1,1,1,3, 4]). More generally, the
constraint state is denoted by

C = [Cl, Coyenny Cm], (247)

where ¢; is the contact type for the :* contact.

2.7 Permissible Motion

From the previous analysis, the set of permissible motions for an object
constrained by a single contact was given by T', equation 2.43. Now assume
the object is constrained by multiple contacts and let the set of permitted
motions for each contact be given by Ti.,), where c; represents the contact
type for the :** contact.

If there are m constraints on the object, the set of permissible twists for

CHAPTER 2. CONSTRAINT : | | 26

a grasped object is the intersection of all the s
© Teaan =T T Thoh: (249)
Thegoddthuehnptnmwmﬁﬁr seaib ‘im‘mebjcctmty

Chapter 3

Strategies for manipulation

3.1 Introduction

In this chapter, we will examine different external forces that can act on
an object and how they can be used to move the object around in a grasp.
An object may be influenced by a number of other forces besides the grasp-
ing fingers of a robot. Gravity, acceleration, electro-magnetic forces, other
objects, and free fingers can all exert forces on the object. Although these
forces differ, they can all be collected into a single ezternal wrench acting on
the object. The object will then tend to undergo a twist repelling to this
external wrench. The set of twists repelling to the external wrench can be
called the preferred twists, since they describe the possible motions the ob ject
can undergo. The actual motion, however, will depend on the constraints on
the object. That is, in order for object to actually move, the set of preferred
twists must intersect the set of permissible twists, discussed in chapter 2.

We will begin by examining a general strategy for using the external
wrench to move an object in a grasp. Then we will examine different external
wrenches including gravity, controlled accelerations, and forces produced by
the robot and the environment. For each of these external wrenches, different
controlled slip manipulation strategies will be investigated.

27

CHAPTER 3. STRATEGIES FOR MANIPULATION 28

3.2 General strategy

Assume a grasped object is subject to an external wrench we. The object
will then tend to undergo a twist repelling to this external wrench. The set
of repelling twist, or preferred twists, is given by

Tp = {t|welt4 + w82t5 + weste + we4t1 + ’U)estg + weetg > O} (31)

In order for the object to actually move, however, the set of preferred twist
must intersect the set of permissible twists. That is,

T =T, Tic,,..cm)s (3.2)
where T{, . .,.] is the set of all possible motions the object may undergo while
in the [¢1,..., ¢y] constraint state. '

The set of twists described in equation 3.2 is of particular interest, since
this set will describe the way the object will actually move. If T = 0, then
the object is completely constrained and will not move at all. If T contains
a single twist t, then the object will move in a direction described by this
twist. This case is especially important in controlled slip manipulation, since
the geometry constraints and the external wrench together specify a unique
motion of an object within the grasp. However, if T contains more than a
single element, the resulting motion cannot be determined from the geometric
analysis alone. Dynamics, external forces, internal grasping forces, and local
surface friction properties must all be taken into account to determine the
exact object motion. Although this type motion is difficult to control even
for humans, it should not be ignored in robotic manipulation, since it may
be useful in predicting motion resulting from inadvertent slipping or more
complex dexterous motions. In fact, geometrically unconstrained motion was
analyzed by [Mason], in which he predicted the motion of an object sliding
in a plane while subject to a specific velocity at a single point.

The objective of controlled slip manipulation is to control the motion of
an object relative to the grasp. There are some motions which are easy to
accomplish through controlled slip manipulation. These are motions which
are both allowed by the constraints on the object and bound by the geometry
contacts. In other words, if the intersection of the permissible and preferred
twists, equation 3.2, is a small bounded set of the twists, then these motions
which can be easily implemented by a robot. Therefore, when planning

CHAPTER 3. STRATEGIES FOR MANIPULATION 29

controlled slip motions, consideration should be given to these constrained
twists as well as the twists which are particularly desirable. In any case, a
desired twist is selected tq, describing the motion the object should undergo
in the grasp of the robot. In order to facilitate this desired motion, the
external wrench on the object should be optimized so that it will move the
object through the desired twist. The optimal external wrench is one in the
virtual work of the wrench against the desired twist is a maximum. These
external wrenches are

{we|lmaz{w(we, t4)}}. (3.3)

In the following sections, we will examine different ways to exert an ex-
ternal wrench on a grasped object and how these external wrenches may be
used to control the slipping motion of an object within a grasp.

3.3 Specific strategies

3.3.1 Gravity

People use gravity to their advantage when manipulating objects. We repo-
sition objects in our hands by allowing then to drop, slide, or rotate between
our fingers. Consider, for example, when a glass of water is raised from the
table. We can allow the glass to rotate between our fingertips so that the
glass remains vertical. Relative to our hand, gravity has been used to rotate
the glass and in this way maintain the vertical orientation. Gravity can also
be used by a robot manipulator to reposition objects within a grasp. The
force imposed by gravity can be modeled as a single force at the centroid of
the object. Hand orientation can then be used to allow gravity to move the
object through a desired twist.

Suppose we wish to use gravity to move an object within a grasp. First,
we specify a desired twist, tq , that is, a twist, relative to the grasp, through
which we want the object to move. Then, by reorienting the object, the
external wrench we relative to the grasp, can be varied. The virtual work
created by the external wrench against the desired twist is a function of the
object orientation. It is then possible to determine a set of object orientations
for which the virtual work is a maximum and at these orientations gravity
will be optimally used to move the object.

CHAPTER 3. STRATEGIES FOR MANIPULATION 30

To illustrate how gravity might be used, suppose a desired twist tq is
specified in screw coordinates relative to an object frame 0,X,Y,Z,. The
object frame is a coordinate system whose origin is the centroid of the object
and whose axes are fixed within the object. Now let the object frame be
defined in terms of the hand frame frame O, XY} Z;, where the z axis of
the hand frame is parallel to gravity, figure 3.1 and the z and y axes are
defined for a specific hand. The hand coordinate system for the Salisbury
robot hand is described in appendix A. In this example, suppose the axes of
the object frame are initially aligned with the axes of the hand frame. The
wrench caused by gravity acting on the object defined relative to the object
frame is

[w;] [0)
Wa 0
_ | ws}| _ | —mg '
Y=l =10 , (3.4)
Ws 0
| We | . 0 J

where g is the gravitational acceleration and the m is the mass of the object.
However, if the object frame is rotated, the value of the external wrench
defined with respect to the object frame changes. The Salisbury robot hand
has the ability to rotate the object through arbitrary angles about the axes of
the hand frame. Therefore, assume the object frame is rotated by an angle ¢
about the z axis and then by an angle ¢ about the y axis of the hand frame.
Now the external wrench in terms of the object frame will be

[w;] [—mgcosfsing]
woy —mgsiné
we=| ¥ |_ —mg cos 6 cos ¢ . (3.5)
Wy 0
Ws 0
L we] L 0 |

Only two rotations are used in equation 3.5, since rotations about the z-axis
of the reference frame produce no change in the wrench.

For certain values of § and ¢ the value of the virtual work is a maximum.
At these orientations, the axes of the gravitational wrench and the desired
twist are the same. Given the virtual work

w = —mg(cos f sin Pt., + sin Ot., + cos b cos ¢t,), (3.6)

CHAPTER 3. STRATEGIES FOR MANIPULATION 31

Figure 3.1: The wrist can be used to orient the object in a grasp so that
gravity can be used to move the object

the values of 6 and ¢ which produce a critical values of virtual work are

tc

0 = sin‘lm
AL, (3.7)

-1 ce
= cos .
¢ cos(8) /12, +tZ, +12,

Substituting the values for § and ¢ into equation 3.6 yield either positive or
negative values for the virtual work. Values of § and ¢ for which the virtual
work is positive, produce the maximum value of virtual work.

Therefore, by using the wrist to rotate the hand about the angles given in
equation 3.7, the robot can use the gravitational force to maximum efficiency
when moving an object within the grasp. The use of gravity can be an
effective means for controlling the motion of an object within the grasp.
However, it may also be somewhat difficult, since the external force cannot
be controlled; all the control must come from the wrist and the fingertips.
The manipulator must also respond quickly to the motion of the object,
since once it begins to slide it will continue to slide. Other methods, such
as, controlled accelerations and point forces from both non-grasping fingers
and external objects, can be used as a more controlled means of producing

CHAPTER 3. STRATEGIES FOR MANIPULATION 32
an external wrench on the object.

3.3.2 Controlled accelerations

It is possible to accelerate hand to create a force on an object. For example,
we loosen our grasp and flip an object in our hands, we have used an ac-
celeration to create a force on the object to produce a desired motion. The
strategy is to create an external wrench on the object while adjusting the
grasp so that the object is in a constraint state which will allow it to slip.

Using the definitions in the previous section, we will find the direction
the hand should be accelerated to move the object through a desired twist.
Again, assume a desired motion is specified by a twist tq defined in screw
coordinates relative to the object frame. To maximize the virtual work, the
direciton of the acceleration, in terms of the object frame, should be in the
same direction as the twist. Simply,

i ag 1 F td;]
ay tdz
aqy 1 td3
a= = — . 3.8
ar I td l td4 ()
ay td5
- az J L tde o

Although, the use of controlled accelerations is one way to move an object
within the grasp, by far the most common and effective way to reorient an
object within a grasp is the use of free finger, that is, fingers not directly
involved with the grasp, and other objects.

3.3.3 Free fingers

Fingers not involved with the actual grasp can be used to move the object.
This is very common in human manipulation. We can reorient a pen , for
example, by holding it between two of our fingers and spinning it with a third.
A multifingered robot can also use free fingers to manipulate objects. While
some fingers constrain the object, the others have the freedom to reorient
it within the grasp. This may also be an argument for multifingered hands,
since the additional fingers allow greater flexibility in producing constraints

CHAPTER 3. STRATEGIES FOR MANIPULATION 33

on an object as well as allowing the free fingers to manipulate object within
the grasp.

Suppose the surface of the object can be represented by a set of points S
and for each of the ¢ free fingers there is a subset of S of accessible surface
points, S; C S.

Figure 3.2 shows an object located with respect to a reference frame
OXYZ. For each point x € S;, a specific set of forces can be exerted through
the contact. Assume the forces lie within the friction cone at the contact.
That is, the set of wrenches which can be exerted in terms of the contact
frame O, X, Y., Z,,, are

{le wc2¢ + wgg < /‘\/wcs}’ (3'9)

where p is the coefficient of friction. The set of wrenches defined relative to.
the reference frame is

{we = Tijw;}. (3.10)

The wrenches in equation 3.7 are a combination of both the accessible surface
points which the free finger can reach and the forces which it can exert
through each contact point. Suppose a twist is defined tq defined relative to
the reference frame OXY Z. The values for the virtual work of the twist tq
against the wrenches in 3.7 is

W = {wIw = We, tq, + We,ldy + We,ytd, + We, tq, + We ta, + we,tds}. (3.11)

The combination of wrenches and accessible surface points which maximizes
the virtual work can be expressed as a set of pairs

{(w,x)|(w,x) € max{W}}. (3.12)

3.3.4 Other objects

Other objects can also be used effectively to control the motion of an object
within a grasp. In the jar example, given in the introduction, we use the
edge of the jar to rotate the lid between our fingertips. A robot could also
exploit objects in the environment to reposition an object within a grasp.
The strategy and the analysis for this type of manipulation are identical to
the free finger analysis. Only the accessible surface points S; are different,

CHAPTER 3. STRATEGIES FOR MANIPULATION 34

- Figure 3.2: Afmceuertedonagxupdobsctmmxtthmghaduxred

motion

since the points on the ob;oct open to the environment may be larger than
those accessible to the fingers. ThMMkmmmmbot
cancontrol,themm‘vmmm '

grasping force.

Chapter 4

Grasping force

4.1 Introduction

There are many ways for a multifingered hand to squeeze an object. People
grasp objects to secure them in their hand or, by carefully controlling the
internal forces, allow objects to slide through their fingers. A robot can also
use the internal grasping force to create both stable and unstable grasps. By
regulating the grasping force, the robot can either hold the object securely
or by control the constraint state to allow desired slipping motion.

The variety of ways a hand can squeeze an object depends on the number
and type of contacts which exist between the hand and the object. The goal
of this chapter then is to determine the space of possible grasping forces on
an object and to develop a simple intuitive parameterization of the squeezing
force space for two and three fingered grasps.

4.2 Grasp force analysis

Assume the manipulator exerts a wrench on the object

ngl]

we = | Yo | (4.1)

35

CHAPTER 4. GRASPING FORCE 36

defined in screw coordinates relative to the contact frame 04X, Y., Z.,. Sup-
pose that the contact frame can be defined in terms of a common reference
frame OXY Z, as shown in figure 4.1. The wrench in terms of the reference
frame is

wi = Tini, (4.2)

where T is the transformation matrix discussed in chapter 2. The sum of
the wrenches from n contacts between the robot and the ob ject is

w = Zwi. (4.3)

Assume the object is not subject to any external wrench and is not acceler-
ating. The sum of the wrenches in equation 4.3 is then zero,

w = 0. (4.4)

One additional constraint will be assumed. It is assume that only forces
through a point contact contribute to the internal grasping force. The mo-
ments at the contact point will be assumed to be zero, so that the wrench,
in terms of the contact frame, is given by We, = [wg, , Wy, wy,,0,0,0]. With
these assumptions, it is now possible to determine the wrench at each con-
tact point relative to the contact frame, as a function of the internal grasping
force.

4.3 Two contacts

Assume the robot touches an object at only two points. Therefore the sum
of these wrenches, equation 4.4, is

legl + Tzwgz =0. (4.5)

There are six unknowns in equation 4.5. These are the wrenches, wy; =
[wg1,, Wy2,, Wya,, 0,0,0] and wy = [Wg1,, Wy2,, W43, 0,0,0]. However, equation
4.5 yields only five linear independent equations. Therefore, there is a one
space of solutions for which equation 4.5 is true.

The one space of solutions can be thought of as an arbitrary squeezing
force, given simply by a grasp force magnitude my,. Once the grasp force

CHAPTER 4. GRASPING FORCE 37

Figure 4.1: Assume each of the grasping fingers can exert a wrench We; defined
in terms of the contact frame through the contact point. The wrench defined
with respect to the common reference frame is wi = Tyjwe,, where T; is the
transformation matrix discussed in chapter 2. The sum of each of the wrenches
is w = 3%, w; and if the object is neither subject to external wrenches nor
accelerating, this wrench w is zero.

CHAPTER 4. GRASPING FORCE 38

magnitude is specified, the values of the wrenches wg, and wg, can be
found.
Let the grasp force magnitude m, be given by

mg = Z \/w.gli + w%.qi + wg&" (4°6)

i=1

The screw coordinates of the wrench due to internal grasping force can be
found more easily by considering the wrenches in terms of an axis, a pitch, and
a magnitude. Assume the two contact forces are described by wrenches wy
and wz, defined by wrenches axes A; and Ag, zero pitches, and magnitudes
m; and m; respectively. Since the object is neither subject to an external
wrench nor accelerating, both the wrench axes must intersect the contact
points and have opposite directions, figure 4.3. The wrench axes are given

by,
[(2?1 - -732)]
(yl - yz)
+ A1 = :FAz = (ZI . 22) ’ (4'7)

—21(% — ¥2) + y1(21 — 22)
z21(21 — z3) — z1(2, — 23)
L =21 —z2) + 21 (v — ¥2) |

where d is the distance between the contact points

d= /(21— 22)? + (31 — 42)? + (21 — 22)%. (4.8)

Notice the direction of the axes in equation 4.7 are opposite, yet the value
of one of them may be either positive or negative. This analysis does not
determine the sign in equation 4.7, since this will depend on the physical
system. For example, if two fingers grasp a block, the wrench axes would
be directed into the block, but if the fingers grasp inside a ring, the wrench
axes would be directed outward. Therefore the direction of the wrench axes
will depend on the direction of the contact normal. The direction of the axis
which yields a negative value of the dot product between the contact normal
and the wrench axis will be the correct direction.
The sum of the individual magnitudes is given in equation 4.6

mg = m; + m,. (4.9)

CHAPTER 4. GRASPING FORCE 39

The magnitudes of the wrenches, however, must be equal, since if one ex-
ceeds the other, there will be a net wrench on the body contradicting the
equilibrium assumption; thus,

mi = Mmyp. (410)
Then by equation 4.9 and 4.10
m) =mMmqg = mg/2 (411)

The wrenches w; and wa are now uniquely defined. The wrench axes are
given in equation 4.7, the magnitudes in equation 4.11, and the pitch of both
wrenches is zero.

It is useful, in the later analysis, to express the wrenches in terms of a
reference frame and the contact frame. The wrenches w; defined in terms of
screw coordinates relative to the reference frame are

- (1'1 _ 1‘2) -
(1 —v2)
W] = —Wo = T—‘Z (21 - 22) . (412)

2d | —z(yr —y2) + vi(z1 — 22)
Z](CBI - 272) - 3)1(21 t 22)
| —v1(z1 — 22) + z1(1 — ¥2) |

The screw coordinates of the wrenches in terms of the contact frame is a
linear transformation of the elements in equation 4.12,

wg, = Tilwy (4.13)
wg, = T3 ws, (4.14)

where Ti‘l is the inverse of the linear transformation matrix discussed in
chapter 2.

4.4 Three contacts

For a three fingered hand, such as the Salisbury or Okada [Okada] robots,
three fingertip contacts are possible. Assume the robot touches the ob-
ject at three points and can only exert forces through the contacts, then

CHAPTER 4. GRASPING FORCE . N

Figure 4.2: HMMM}M&MM m~memlyforcu
are exerted through mmmmu-ﬁnm;
intersecting the emm E ;h
mxdmtmd,ndﬂc)iﬁhlmwm S R ,

CHAPTER 4. GRASPING FORCE 41

the wrench at each contact defined in terms of the contact frame is wg, =
[Wg1,, Wea;, Wes;, 0,0,0] and the wrench, in screw coordinates, defined in terms
of a reference frame is

Wi = Tini. (4.15)

The sum of the wrenches, from equation 4.4, is

There are nine unknowns in equation 4.16, wy; = [Wo1, , Wga,, W3, 0,0,0],
W2 = [wg1,, W2y, We3,, 0,0,0], and wy = [Wg1,, We2,, Wy3,,0,0,0], and equa-
tion 4.16 yields only six independent equations. This still leaves three inde-
terminant variables. The three space of possible solutions can be represented
fairly simply. The wrench axes of each of the three wrenches will, in general,
intersect at a point, the grasp force focus. The grasp force focus must lie on’
the grasp plane, defined to be the plane containing the three contact points.
In general, the grasp plane will be well defined; however, if the contact points
lie along a single line, the plane collapses to a line and the grasp focus lies on
this line. If the grasp plane exists, the grasp force focus, may lie anywhere
on the plane. As long as there is no external wrench on the object and the
object is not accelerating, the wrenches will intersect at a point, with one
exception: the wrench axes may all be parallel and still be in equilibrium. In
this case, the grasp force focus parameterization can still be used if we also
consider points at infinity on the grasp plane.

There is a third variable, the grasp force magnitude mgy. The grasp force
magnitude is a scaling factor by which individual wrench values are multi-
plied. Together the grasp force focus and the grasp force magnitude span
the entire three space of internal grasp solutions. By choosing a grasp force
focus z, y, on the grasp plane and with a grasp force magnitude m,, we can
uniquely define the internal squeezing force created by a three fingered grasp.

To find the wrenches resulting from this parameterization of the grasp
force, we first find the wrenches in terms of the grasp frame. The grasp
frame is the coordinate system whose x and y axes lie on the grasp plane and
origin is fixed at the centroid of the three contact points. Let Wi represent the
wrench defined relative to the grasp frame x| = [z, y!, 0] represent a contact
point. The wrench axes Aj of each of the wrenches will be the direction

CHAPTER 4. GRASPING FORCE 42

vectors from the contact points x| to the grasp force focus Xg.

[Tg — :]
Yg — Ui
1 0
L 1
Al ildil 0 (4.17)
0
L —yi(zg — i) + zi(y, — yl) |

where |d;| = \/(a:g — z{)? + (yg — y{)2. The sign used in equation 4.17 de-
pends on geometry. If the fingers were grasping a sphere and the grasp force
focus was in the center of the sphere, the sign of A{ would be positive. Con-
versely, if the fingers were grasping a ring from the inside the sign of Aj
would be negative. In general, the sign depends on the direction of the nor--
mal to the contact. The sign should be chosen so that the wrench axis and
the contact normal are in the same direction. Let the grasp force magnitude
be the sum of the individual wrench magnitudes, m;,

mgeg =m + mq + mas. (418)

Since the wrench axes are given by A}, in equation 4.17, and the magnitudes
are given by m;, the first two elements of the wrench in screw coordinates
relative to the grasp frame are

wy, = my(z, — ;) /|d| (4.19)
wy, = mi(y, — yi)/|di]. (4.20)
(4.21)

By equation 4.4, the sum of the elements in equation 4.21 must sum to zero.
Together with equation 4.18 this yields three linearly independent equations
and three unknowns,

(xg = z1)/ld1| (zg —23)/|da| (zg~2%)/|ds]] [™1 0
(yg — g{)/ldxl (ys — Z{é)/ldﬂ (yg — ylé)/ldal my [=| 0 |.

CHAPTER 4. GRASPING FORCE 43

Solve for the magnitudes m;,

my (zg—21)/|di| (zg—5)/|dz| (zg—24)/lds] 17" [O
my | = | (yg—v1)/ldr]l (g — 2)/Id2|l (35 — ¥3)/|ds] 0 I.
1 1 1 my
(4.23)

The matrix in equations 4.22 and 4.23 will be invertible except when the
three contact points lie on a line and the grasp force focus does not. In this
case, choose a grasp force focus on the line and then the magnitude will be
proportional to the distance from the contact points to the focus,

m3

m; = mgld.-l. (4.24)

In any case equation 4.17 defines the wrench axes, equations 4.23 and 4.24
defines the wrench magnitudes, and pitch are all zero. The wrench resulting
from the internal force at each contact is now defined by a grasp force focus
T4 and y, and a grasp force magnitude m,.

The wrenches in screw coordinates relative to the grasp frame are

_ z, — ! -
Yg — y:
™mg 2y — 2!
wi=+— g i , 4.25
P ET | =2y, —) + vz - 2) (4.25)
z:"(xy —-z}) - :L‘:-(.’L‘g - z{)
| —yi(zg — 7)) + 2i(y, — ¥i)
and in terms of the contact frames
wg. = Tiw{. (4.26)

where T is the linear transformation relating the wrench in the contact frame
to the grasp frame.

4.5 Four or more fingered grasps

For four fingered hand like the MIT/Utah hand, [Jacobsen], there are twelve
unknowns and only six equations, yielding a six space of internal grasping
force solutions. For the human hand, for manipulators with six or more

CHAPTER 4. GRASPING FORCE 44

Figure 4.3: There is a three space of solutions for the internal grasping force for
a three fingered hand. The axes of the force vectors from the individual contacts
must intersect at a point, the grasp force focus Xg = [2g, ¥y, 0] in the grasp plane.
The grasp force magnitude myg scales the individual fingertip forces. Together, the
grasp force centroid and the grasp force magnitude span the three space of internal
grasp solutions.

fingers, and for grasps involve more than five contacts, the dimension of the
internal force space grows very large. The dimension of the solution space
for internal grasp force is

Dim{G} =3(N - 2) + U, (4.27)

where G is the space of internal grasp solutions, NV is the number of contacts,
and U is the number of freedoms of the grasped object.

Chapter 5

Contact wrenches

5.1 Introduction

In order to determine the different ways an object can move in a grasp, the
constraint state of the object must be known. The constraint state of the ob-
ject can be found knowing the location, orientation, and the types of contacts
that exist between the object and the manipulator. A tactile sensor might
supply contact location and orientation information, but a sensor which de-
termines the contact type does not exist. In order to find the contact type at
the fingertips of the robot, the contact wrench, that is the set of forces and
moments which exist at the contact point relative to the contact frame, must
be found, as well as, a relationship between the contact wrench to the con-
tact type. The purpose of this chapter is to determine the contact wrench.
The purpose of the next chapter will be to determine a simple relationship
between the contact wrench and the contact type. In this way we can find
the constraint state of the object as a function of the grasping force and the
external forces.

5.2 Stiffness

Assume a hemispherical compliant fingertip touches a flat plate, as shown in
figure 5.2. To begin the analysis, assume the interface between the fingertip
and the object can be modeled as a soft finger contact. That is, both forces
normal and tangent to the surface as well as moments about the surface nor-

45

CHAPTER 5. CONTACT WRENCHES 46

mal can be transmitted through the contact point. A system of translational
and rotational springs attached to the contact point will be used to model
the fingertip, as shown in figure 5.2. The stiffnesses of the it* fingertip can
be represented as a matrix relating the twist to the wrench

[kc1 0 0]
0 0 kCg 0
_ 0 0 kC3
kei=| ke, 0 0 (5.1)
0 kC5 0 0
0 0 sz

<4t

For a soft finger contact, the elements kcy and kecs are zero, that is, the
fingertips cannot generate moments about any axis which lies in the tangent
plane. However, for generality kc, and kes are included, since linear and’
planar contacts have these stiffness and these contact types may be used in
future analyses.

The stiffness given in equation 5.1 is defined in terms of the contact frame
Oc, Xe; Yo, Z,;. The fingertip stiffness defined relative to a common reference
frame OXY Z is

ki = TikciTi'l. (5.2)

where T; is a transformation matrix of the i** contact discussed chapter 2
equation 2.14. The stiffness of the entire object will be the sum of all the
individual stiffness matrices .
K= Z k;. (5.3)
=1
Assume the object is displaced by a twist t, the wrench on the object is given
by
w = Kt. (5.4)

If the object is not accelerating, the wrench given in equation 5.4 must equal
the external wrench on the object, we,

W= We. (5.5)

The twist the object undergoes can be determined as a function of the ex-
ternal wrench on the object, by taking the inverse of K in equation 5.4,

t = K 'we. (5.6)

CHAPTER 5. CONTACT WRENCHES 47

~
//I\

\

Figure 5.1: The contact between the manipulator and an object is generalized
as a hemispherical compliant solid touching a nondeformable flat plate.

The twist in equation 5.6 is defined in screw coordinates relative to the
OXY Z reference frame. The twist defined relative to the contact frame can
be found by multiplying by the inverse of the transform matrix Tj,

t; = TiK 'we, (5.7)
and the wrench at the contact, in terms of the contact frame, is
Wi = ke; TiK ™ we. (5.8)
Add to this the wrench due to the grasping force
wi = ke, TiK 'we + W (5.9)

Thus, equation 5.9 describes the wrench at the contact point defined relative
to the contact frame as a function of the stiffness of the fingertips, the forces
on the body, and the force the grasp. Using this result and the results in the
next chapter, it will be possible to determine the contact type as a function
of the forces on the object and the squeezing force. Once the contact types
are found, the constraint state of the object will be known.

CHAPTER 5. CONTACT WRENCHES 48

Figure 5.2: The fingertip is modeled as a set of translational and rotational
springs connected to the contact point. The stiffnesses are defined in terms of the
contact frame. Since a soft finger contact is assumed, there is a stiffness in the
normal and tangent directions of the contact plane, as well as, a torsional stiffness
about the contact normal.

Chapter 6

Contact wrench/contact type
relation

6.1 Introduction

The purpose of this chapter is to determine a relationship between the contact
type and the contact wrench. In general, this is a difficult problem. In fact,
determining slipping and twisting of one compliant body in contact with
another is a current research topic in finite element analysis. In this chapter,
therefore, simplifying assumptions will be made to find a simple relation
between contact type and contact wrench, so that the overall problem of
determining the constraint state can be tractable.

6.2 Two dimensions

For the two dimensional problem, the relationship between the contact wrench
and the contact type can be simple. Assuming the fingertips erert only forces
though the contact points, there are only three contact types: a point con-
tact with friction, a point contact without friction, and no contact. Assuming
coulomb friction, if the tangent force is less than the coefficient of static fric-
tion times the normal force, the contact will behave like a point contact
with friction. If the tangent force exceeds the coefficient of friction times the
normal force, the contact will slide, is modeled as a point contact without

49

CHAPTER 6. CONTACT WRENCH/CONTACT TYPE RELATION 50

friction. Given a wrench at the contact point defined by

, (6.1)

coocof §

L o

where w; force in the tangent direction, w, is the force normal to the surface.
The possible contact types are

1 = Point contact with friction
2 = Point contact without friction (6.2)
3 = No contact,

and the relationship between the contact wrench and the contact types will

be
lwi] < |pw,| = 1
lwi| > [pwe| = 2
wy >0 = 3.

For the three dimensional case, an exact relation between the contact type
and the contact wrench is difficult; however, a simple relation can be useful.

6.3 Three dimensions

Determining when and where a three dimensional compliant contact breaks
or twists in response to an applied wrench is currently at the forefront of
finite element analysis. Exact solutions are, in general, unknown. The force
distribution over the contact region between two hemi-ellipsoidal ob jects un-
der an axially applied load can, be found by use of a linearization argument,
commonly known as the Hertz contact problem [Lipson]. This simple case
does not take into account loads applied tangent to the contact surface or to
moments about the contact normal; however, we can use the Hertz solution
to generate a simple relation between contact type and contact wrench.
Hertz assumed two bodies in contact could be modeled as solid elliptic
disks, each possessing a minimum and maximum radii of R and R’. Further-
more, he assumed that these disks were in contact along their common axes

CHAPTER 6. CONTACT WRENCH/CONTACT TYPE RELATION 51

Figure 6.1: Two general solid elliptic disks in contact under an axially applied
load. Theload is assume small and the disks somewhat rigid, so that a linearization
argument may be applied to determine the pressure distribution and the contact
region.

under a uniform axially applied load F', as shown in figure 6.3. Hertz deduced
that the pressure distribution between the two bodies can be described by
a semi-ellipsoid of pressure constructed over the surface of the contact, as
shown in figure 6.3.

The pressure distribution is given by

P(z,y) = P,\/1 — 2?/a? — y2/b2. (6.3)
The total load, therefore, is equal to the volume of the semi-ellipsoid,
F =2k (6.4)
3
Solve for P,
3F (6.5)

°~ Orab’

CHAPTER 6. CONTACT WRENCH/CONTACT TYPE RELATION 52

'iin\

X

Figure 6.2: Hertz modeled the pressure distribution in the contact area between
the two solid elliptic disks as a semi-ellipsoid with a minimum and maximum

dimensions a and b.

where a and b are given by Timosheko [Lipson)

J 3FA
4(A+ B)’

[3FA
A+ B)

and

A=(1—-p})/Er+ (1 - ud)/Es,

U1, p2 = Poisson’s ratio
Ey, E; = Modulii of elasticity

A+B=t(g+g+Eh+3)

1

(6.6)

(6.7)

(6.8)

CHAPTER 6. CONTACT WRENCH/CONTACT TYPE RELATION 53

— 1. /(2 1 1 1)? 1 1)2 (1 1
B-a=h(E-%)+(E-%)+2 (- &) (& — &) cos2v)
% = The angle between the planes contacting the curvatures 1/R; and 1/R,

R, Ry, Ry, R = Mimimum and maximum radii of curvature of the ellisoid disks at
the point of contact

m,n = Constants depending on B — A/B + A

In the case of the contact between a hemispherical fingertip and a flat rigid
plate, equations 6.6 and 6.7 is

a=b= 3IFRA/4, (6.9)

and the maximum pressure is given by

P, = 0.578,3/$. (6.10)

If the flat plate is assumed to be rigid (i.e. E; > E;) then A can be

approximated by ,
A= (1-ud)/Ey. (6.11)

The material on the fingertip of the Salisbury robot hand is a polyure-
athane with an elastic modulus of approximately 40,000 psi. and a poisson’s
ratio of about 0.45. The radius of the fingertip is approximately 0.5 in,
therefore

A = 20x10°°
P, = 1247.9VFlb/in’
a = 0.0207Fin.

CHAPTER 6. CONTACT WRENCH/CONTACT TYPE RELATION 54

The pressure distribution given in equation 6.3 can now be given in polar
coordinates, since the pressure region in this case is given by the area of a
circle. That is,

Py
P(r,0) = P,———, (6.12)
a

where r is the radial distance from the center of the contact region. Again
assuming coulomb friction, the maximum moment the contact can support
before rotating is the integral over the contact area of the differential force
times the coefficient of static friction times the radial distance from the con-
tact point,

M= /A rdf. (6.13)

Substitute these values into equation 6.13

r=a f=2~r 2 2
M=y / Ve =1 2 trds, (6.14)

=0 Jo=o0 27a3
and evaluating yields
3ruaF
M= .
16

(6.15)

Substituting the value for a

3ruF /3FR(1 — u?)
= . 1
M 16 4F, (6.16)

Thus, M is proportional to the four-thirds power of the normal force, while
the constant of proportionality is a function of constant properties of the
fingertip material and the surface,

M = p, FY3, (6.17)

_ 3mp 3R(1 ~- ”%)
m = T \/ B (6.18)

If the specific values for the Salisbury robot fingertips are substituted along
with a value of 4 = 1.0 for the coefficient of static friction, the maximum
twisting moment will be

where

1.15 x 1072 F4/3, (6.19)

CHAPTER 6. CONTACT WRENCH/CONTACT TYPE RELATION 55

Now ignore the moment and assume a force is exerted tangent to the con-
tact surface. This is simply the case of coulomb friction, and the maximum

tangent force will be

In order to further simplify this analysis, assume the maximum moment
which can be exerted about the contact normal is a linear function of the

normal force,
M=y,F, (6.21)

where p,, is given in equation 6.18.
The purpose of this analysis is to determine the contact type as a function
of the contact wrench. Given the contact wrench in the screw coordinates

wy
W

w=| Y3, (6.22)

We

where w, and ws will automatically be zero, since we are only considering
fingertip contacts. The relationship between the contact wrench and the
contact type, given the linearizing assumptions discussed above, will be

Vwi +w} < |pjws| and /wd < |pmws]

Vi 4w} < |pusws| and \/wd > |pmwsl
WEF w] > |ptgw

Wa 2 0

(6.23)

44 44
N

-

where
1 Soft finger contact
2 Point contact with friction
3 Point contact without friction

4 No contact.

CHAPTER 6. CONTACT WRENCH/CONTACT TYPE RELATION 56

AN
AN N
AN
Ca
Cs
BmF \

[J,F Ft

Figure 6.3: When the force tangent to the contact exceeds p # times the normal
force, assume the contact is sliding on the surface. If the tangent force is less than
psF, and the moment about the contact normal exceeds ., times the normal
force, assume the fingertip is twisting relative to the contact surface. Finally,
if both the tangent force and moment are less than p tF and pn, F respectively,
assume the contact is rigidly fixed to the surface.

We will approximate g, = 1.83 x 1072 in and u = 1.0 for the Salisbury robot
hand grasping an aluminum can. With the relation given in equation 6.23
and the analysis of the previous chapter, it will now be possible to determine
the constraint state of a grasped object as a function of the external forces
on the object and the squeezing force of the hand.

Chapter 7

Controlled Slipping

7.1 Introduction

So far only individual modeling issues have been discussed, but we have
not yet addressed how these results can be combined and how they can
be used to enhance the dexterity of a robot hand. In this chapter, the
analyses of the preceding chapters will be integrated together and the result
will be used to predict and affect some controlled slip motions. To illustrate
these principles, two examples will be considered. The first is a simple two
dimensional example of two fingers holding a rectangle in a gravitational field.
This example outlines the analyses of the previous chapters in some detail
and allows many of the concepts to be graphically illustrated. The second
example is of a three fingered robot hand grasping a cylinder. This example
demonstrates how controlled slip manipulation might be implemented on an
actual robot system. The next chapter describes how these ideas were applied
to the multifingered Salisbury robot hand.

7.2 Two dimensional example

Two fingers grasp a rectangle on opposing surfaces, as shown in figure 7.1.
In this particular example, the fingers grasp the block at the center of its top
and bottom sides. The block has a height of 4 cm and a length of 7 cm and is
held horizontally in a gravitational field. There are a number of coordinate
systems used in this example, figure 7.2. These are: the reference frame,

37

CHAPTER 7. CONTROLLED SLIPPING 58

hand frame, object frame, and contact frames. These coordinate frames are
used throughout the analysis and are described in appendix A.

y 2

\\/)
Figure 7.1: Two fingers grasp a two dimensional rectangular block. In this

example, we are assuming the block only moves in the zy plane and that gravity
exerts a force on the block in the negative y direction.

7.2.1 Constraint
Contact types

There are three different contact types for fingertip contacts in the plane: a
point contact with friction, a point contact without friction, and no contact.
Each contact type allows only a certain set of wrenches to be transmitted
through the interface. As with the three dimensional case, these wrenches
may be described by the set of unidirectional unit basis wrenches, which
span the space of permissible wrenches. For convenience each contact types
is represented by a number as follows:

1 Point contact with friction

2 Point contact without friction

3 No contact

CHAPTER 7. CONTROLLED SLIPPING 59

Y.

t

JYC 1

r L g
b
X, X

Ps

Y Y

L. ‘

“Ah

(=]

X (23

'

c2

Figure 7.2: There are five coordinate frames shown in this example, the reference
frame, the hand frame, the object frame, and the contact frames. The block has
dimensions 4x7 cm and a mass of 0.2 kg.

Constraint states

In the example illustrated in figure 7.1, there are only two contacts. With
three possible contact types at each contact, yielding a total of 3% or nine
constraint states. As with the three dimensional case, the constraint state is
described as an ordered list with as many elements as there are contacts. Let
the contact made by the finger on the top of the rectangle be first element
in the list and the finger on the bottom be second. Thus, if the fingertip
on the top of the block were beginning to slip, but the finger on the bottom
remained fixed, the constraint state of the grasped rectangle would be [2,1].

Permissible motions

For each constraint state, there are some motions which the object may
undergo and some which it may not. As before, the set of allowed motions
can be represented by a set of twists. For consistency, the twist will still be
represented by the six element vector t = [t1, t2, t3, t4, s, tg]; however, for the
two dimensional case, the elements ¢, t;, and tg are zero, the elements t,

CHAPTER 7. CONTROLLED SLIPPING 60

and t5 are the translations in the z and y directions, and t3 is the rotation
about the normal to the plane. All the elements of the twist are defined with
respect to some reference frame O XY Z, which in this case coincides with
the object frame, figure 7.1.

In the two dimensional case, the set of permissible twists may be rep-
resented graphically. The direction of motion can be described by a vector
in three space. coordinate system. F igure 7.3 shows a coordinate system
with axes labeled t4, t5, and t5, corresponding to the translations in the x
and y directions and the rotation respectively. The direction of motion may
be represented by a unit vector radiating from the origin, thus set of twists
correspond to a collection of unit vectors, figure 7.4. If the twists all lie in a
plane the set is represented as a section of a shaded disk, otherwise sets of
twists are shown as sections of a sphere, figures 7.5 and 7.6.

ts

Figure 7.3: The direction of motion in may be represented using a simple graphic
technique. Unit twists corresponding to the direction of motion are illustrated as
a unit vector radiating from the origin of a coordinate system with axes labeled
t4 and ?5 (translations in the z and y directions), and t3 (the rotations about the
normal to the plane).

In the two dimensional case as in the three, the set of permissible motions
is the intersection of all the unit twists repelling to the unit basis wrenches

CHAPTER 7. CONTROLLED SLIPPING . 61

Figure 7.4: Set of unit twhtmcdheﬁmduitmm&omthe
origin. . .

Figure 7.5: Unit twuuwhiehhemaplulmﬁmnmduhdod disk
for clarity, otherwise thymsbwaumﬁad;m

CHAPTER 7. CONTROLLED SLIPPING 62

Figure 7.6: Unit twists correspond to subsets of the sphere.

and unit twists reciprocal to the normal basis wrenches which do not violate
the geometric constraints of the contact surface. For this example, the set
of unit twists repelling or reciprocal to all the unit basis wrenches is shown
in figure 7.7. Figure 7.8 shows the additional constraint imposed by the
geometry of the contact surface. In the diagrams, permissible motion is
represented by either single vectors, shaded disks and sections of spheres.

7.2.2 External wrench

A wrench in two dimensions may be represented by the six element vector
w = [wy, wy, w3, wy, ws, wg), where w3, wy, and ws are zero. The elements wy
and w; represent force in the z and y directions respectively and wg represents
the moment about the normal to the plane.

Gravity
The gravitational force on the object can be used to move the object within

the grasp. Assume the rectangle is in a gravitational field, with an acceler-
ation g in the negative y direction. Let the rectangle have a mass m. Then

CHAPTER 7. CONTROLLED SLIPPING | 63

F:gure 7.7: Constraint statc for the mtm bhckipotmg the local
surfaoe geometry _

CHAPTER 7. CONTROLLED SLIPPING , 64

Figure 7.8: Cm:mmk&mmmwsm
geometry .

CHAPTER 7. CONTROLLED SLIPPING 65

wrench on the object in screw coordinates defined with respect to the OXY Z
reference frame is)

0 1

0 (7.1)

0

0

and with respect to the object frame, it is

[—mgsiné]

—mg cos 8
0

(7.2)

0
0
0

Suppose we can reorient the block in the zy plane to any angle 0, figure
7.9. Through the use of gravity, we have means of changing the wrench on
the rectangle with respect to the object frame. If the block have a mass of
0.2039 kg, the external wrench (in newtons) is

[—2sin@]
—2cos ¥

0 (7.3)

0
0
0

7.2.3 Grasping force

Since there are two point contacts between the hand and the object, the
fingers can exert an arbitrary squeezing force. Defined relative to the contact

CHAPTER 7. CONTROLLED SLIPPING 66

Figure 7.9: The rectangle can be reoriented in a gravitational field to any orien-
tation 8

frames at each of the fingers, this internal force will be

(7.4)

7.2.4 Contact wrenches

Since we are only considering point contacts, in this planar example, only
translational stiffness is possible, as shown in figure 7.2.4. The stiffness nor-
mal and tangent to the contact surface are given by

kno'rmal = 5N/Cm

ktangent = 2N/Cm. (7.5)

The wrench at the :* contact defined with respect to the contact frame is

CHAPTER 7. CONTROLLED SLIPPING o 67

Figure 7.10: Mm« i
dimensionscu be seloced Wy o f oy
with a ttiﬁau o{w and .m .

' ﬁathmtoct ,

CHAPTER 7. CONTROLLED SLIPPING 68

Wi = kciTi_lK_lwe + wgji, (7.6)

where,

L. k., is 6 x 6 element stiffness matrix representing the the stiffness at the
contact point in terms of the contact frame,

[0 0 0 —ktangent 0 (U
0 0 0 0 _knormal 0
L | 0 0 0 0 0 -
9T] -0 0 0 0 0 0
0 —-o0 O 0 0 0
| 0 0 0 0 0 0

Note the values of the stiffness are negative, since we are interested in
the force on the object as a result of the displacement of the fingertips.
Replaced kc, and ke, with the numerical values

0 0 0 -2 0 0
0 0 0 0 =5 0
0 0 0 0 0 —o0
key =ke, = - 0 0 0 0 0
0 -0 0 0 0 0
0 0 0 0 0 0

- -

2. T is a transformation matrix for the :* contact defined in chapter 5.
For two dimensions, this is

[I, mz; 0 :
ly, m, 0 0

0 0 1

0 0 y I; m; 0 ’
0 0 -z ly m, 0
L L e —Ly myz—muy 0 0 0 1],

CHAPTER 7. CONTROLLED SLIPPING

and the inverse

|

ly
m.‘l}
0
0 0

|

Yy -

l
My
0

lyz

0 0 myz—myy

0
0

|

- l:z:y I:c

mg

0

|

0

0

ly

My

0

69

0
0
1

|

m; = [m,, m,]; and n; = [nz,n,); are the tangent and normal vectors;
and, z; and y; is the location of the i** contact. Therefore, in this

example,
T =
and
[[=1
0
0
0
| -1
and
T;! =
and
o r _1
0
_ 0
T21 = ~ 0
0
| | —1

I 0

0 01
000]1’
-10 0

.

0 0

1.{
~11 [-1 0 o
0 |0-1o
o] Lo o 1

I 0

00 —1
000}1’
10 0

0

0 0

1-4
-17 [-1 0 o
0 [0—10
0 0 0 1

|

CHAPTER 7. CONTROLLED SLIPPING 70

3. K is the total stiffness of the grasped object
K =3 ki,
=1

where k; is the stiffness resulting from the i* contact at the origin of
the object frame,

ki = TikciTi_l,

where T; and Ti'l are given above and

[0 0 2 -2 0 0 7
0 0 0 0 -5 0
ky = —00 0 0 0 0 -
-2 0 0 0 0 =—-oo]’
0 -00 0 0 O 0
| 0 0 -2 2 0 0 |
and
[0 0 2 -2 0 0 7
0 0 0 0 -5 0
kg = —00 0 0 0 0 -
—200 0 0 0 0 o
0 -0 0 0 O 0
| 0 0 -2 2 0 0 |
Thus)
0 0 0 -4 0 0]
0 0 0 0 -10 O
K = 0 0 0 0 0 20
40 0 0 O 0 0o |’
0 200 0 O 0 0
| 0 0 -4 0 0 0 |
and
[0 0 0 0 0 0 7
0 0 000 O
-1_]10 0 000 }4
K™= -_13 0 00O0 O
0 :113 000 O
L 0 0 000 0 |

CHAPTER 7. CONTROLLED SLIPPING

4. wq is the external wrench,

5. wyg, is the internal wrench,

[~28in]
~2cosd

cooe

@@aa:{ev

71

Substituting the values for this particular example, the contact wrenches are

-

w =

and
[

Wy =

-OOI’-F/?

cocO F/Z

.
- 80

oo

siné

0
0
0

0 |

(7.7)

 (78)

Plots ofthecontactmbuuafmdthtmﬁnm,F and the

~ onenta.tronl)mgmmﬁ;uuﬂl

CHAPTER 7. CONTROLLED SLIPPING 72

Finger 1

Tangent force

Normal force

Finger 2

Tangent force

Figure 7.11: The normal force and the tangent force at each contact, relative to

the contact frame, as a function of the squeezing force F' and the orientation of
the block 4.

CHAPTER 7. CONTROLLED SLIPPING 73

7.2.5 Contact wrench / Contact type relation

The relation between the contact wrench and the contact type for two di-
mensions is given in chapter 6,

|wi| < |pws] = 1 (point contact with friction)

|wy| > |pwy] = 2 (point contact without friction)

wp > 0 = 3 (no contact).
Instead of using the absolute values, it the above relations, it would be more
convenient to determine an analytic function. Let S; be a slipping criteria

defined by \
Si = (i’“—) . (7.9)

HWe,
Therefore the relation between the contact wrench and the contact type is-
Si21 = 1 (point contact with friction)
Si<1l = 2 (point contact without friction)
wy, 21 = 3 (no contact).

The plots for S and S, are shown in figure 7.12, for values of grasping force
ranging from 2N to 10N. S; will approach infinity in some orientations, as
the grasping force is reduced to zero. Also, as might be expected, the slipping
criteria will tend toward zero as the grasping force is increased to infinity,
independent of the orientation of the object. Whenever the rectangle is held
in a horizontal position, the slipping criteria S; and S, are both zero, since
this orientation relies on mechanical rather than frictional constraints. The
mapping of S; can therefore be used as a measure of stable grasps. The
function S; will be a minimum on each contact when the ratio of frictional
force to normal force is a minimum; that is, S; will be a minimum when
the grasp depends most on geometric rather than frictional constraint. The
maximum values of S are at 7/4 and 77/4 and the maximum values Sy are
at 37 /4 and 57 /4. Intuitively, this is because the block’s weight is supported
more by the finger on the bottom, unweighting the top finger. Since the
tangent force on both fingers is the same, the ratio S;, of the top finger, is
a maximum. The rectangle is still constrained, since the geometry of the
surface does not allow rotation. If the surfaces were convex, however, the
object might drop out. In the next section regions of constraint will be

CHAPTER 7. CONTROLLED SLIPPING 74

defined as a function of object orientation and grasping force.

7.2.6 Constraint state map

A useful plot, in terms of controlled slip analysis, is a constraint state map,
which defines the constraint state as a function of the controllable variables,
such as squeeze force, orientation, and externally applied forces. In this par-
ticular example, the constraint states are a function of the block orientation,
9, and squeeze force my, figure 7.13

Suppose the rectangle is held at a 30° angle relative to the horizontal with
a squeeze force of 4 N, represented as a point on the constraint state map, as
shown in the figure 7.13. By varying the orientation and the grasping force,
it is possible to move about the constraint state map, arbitrarily entering
and exiting different constraint regions to either avoid unstable grasps or-
to produce the desired slipping motions. For example, suppose we want to
reorient the block by sliding it between the fingers. First, determine which
constraint states, if any, allowed this motion. As can be seen in the graphs
in figure 7.8, there are four such constraint states: [22], [23], (32], and [33].
Second, from among these constraint states choose the one which produces
the maximum constraint on the object, thus minimizing inad vertent motion.
In this case, constraint state [22] is the maximally constrained state which
allows the desired motion. Third, to produce this constraint, it is necessary
to move from the present location in region [11] in the constraint state map to
any point in region [22], as shown in figure 7.13. In the region [22] the block
may slide through the fingers, but the direction of motion is determined by
the orientation of the block. More generally, the direction of motion is the
intersection of the permissible and preferred twist, which in this case yields
a single vector.

Consider another example. Suppose two fingers grasp adjacent sides of
a square, as shown in figure 7.14. Using the assumptions as in the previous
case, the graphs of permissible twists are shown in figure 7.15 and a map of
constraint state is produced in figure 7.16. Therefore to ensure a stable grasp,
it is necessary to remain in the constraint state region [11]. If the grasping
force is increased the constraint state changes from [11] to [22], which re-
sults in an unstable grasp. The subsequent slipping motion in this region
is bounded as shown in figure 7.15, but its exact direction is unpredictable.
Constraint regions [12] and [21] yield sets of permissible twists which contain

CHAPTER 7. CONTROLLED SLIPPING

.“///
17
i
o
)
ol
’:::
.0

:}o

W

f

1

A

J

i

0

w{o
)

55
%
M

¢ ‘"
1
W
)

9

&
¢
¢

W,
0
"

%9 D0 0%
<< CCISISIIT]
> O OSIRSSEK T TS
L OSISESIRE SIS
m 00. S “““t" e

o
4
o

75

Figure 7.12: This is a plot of the slipping criteria for the fingers on the block.
The plot for finger contact on the top of the block is on the top of the page and
the plot for the finger on the bottom is on the bottom of the page. When the
curve is a minimum, the ratio of the tangent and normal force at the contact is a
minimum. In other words, there is a greater dependence on structural constraint

rather than frictional constraint at minimums of the S; plots.

CHAPTER 7. CONTROLLED SLIPPING 76

only a single element; however, these sets of permissible twists do not inter-
sect the set of preferred twists when the object is moved into these constraint
regions.

Using the constraint state map, along with maps of the permissible twists,
it is possible to analyze and actuate controlled slip motion for grasped ob-
jects. In the next section, a more general three dimensional example will be
considered.

7.3 Three dimensional example

The three dimensional analysis is essentially the same as is two dimensions.
The goal is to generate a map of the different constraint states as a function
of the controllable variables, such as the external wrench, grasping force,
stiffness, etc. Consider the Salisbury three fingered robot hand grasping a
can, as shown in figure 7.17. The robot has two fingers on the top of the can
and a third on the bottom, equally spaced between the top two. The grasp
is somewhat off center from the centroid of the can.

Figure 7.18 shows the coordinate frames which will be used the analy-
sis: the hand frame 0, XY, Z;, the object frame 0,X,Y,Z,, the grasp frame
0,X,Y,Z,, and three contact frames 0:X.Y;Z;. Descriptions of these coor-
dinate frames are given in appendix A. The centroid of the can is given by
a point in the hand frame xcg = [—0.8,2.7, —3.0) cm. The can has a diam-
eter of 2.5 in (6.4 cm) and length of 5.0 in (12.2 cm), and mass 0.386kg. In
this example, the hand holds the can at a 45° angle in a gravitational field.
Therefore, the external wrench on the can, in terms of the hand frame, is

[0]
0.273
—-0.273
We = 1082 N. (7.10)
—0.218

| —0.218 |

By changing the orientation of the can or by squeezing it, we can effectively
control the constraint state. Suppose we only consider changes in the grasp-
ing force [z,,y,, my]. The constraint state map will then be a three dimension
map, where the constraint states will be a function of T4, Yg, and m,. Figure

CHAPTER 7. CONTROLLED SLIPPING 7

7.19 shows two “slices” for constant grasp force magnitude, my, = 0.7N and
mg = 2.0N. The shaded areas represent regions in which the can is fully
constrained and will not move.

Suppose the grasp force focus is given by zg = 0.0cm, y, = —1.2cm,
and my = 0.7N, corresponding to a point A within the (2,2,2] region of the
mg = 0.7N slice of the constraint state map. A reorientation of the can is
possible, in this example, by allowing it to rotate between to of the fingers.
Regions (3,2,2] and [4,2,2] allow a single rotation about the second and third
fingers. Therefore by moving the grasp force focus from the current location
in the [2,2,2] region to any point in the [3,2,2] region, the can will rotation
between the fingers as desired.

As in the two dimensional case, we can choose an arbitrary slipping mo-
tion and determined the maximally constrained state which allowed the de-
sired motion. This constraint state can then be produced by adjusting the:
controllable variables such as grasping force and orientation, as indicated
by the constraint state map. In the next chapter, we will implement this
procedure on a robot hand.

CHAPTER 7. CONTROLLED SLIPPING 78

my \ W
\\\\\\\\\ \ \
\

Figure 7.13: The map of the constraint states as a function of the grasping
force and the object orientation can be used both to find stable grasps securing
the object and unstable grasps allowing the object to slip. In this example, the
current state of the grasped rectangle is shown as point A in the figure. By moving
along the indicated path, the constraint of the object can be change from [11] to
[22]. Once in constraint state [22], the rectangle is to slide between the fingers.

CHAPTER7. CONTROLLEDSLIPPING - 19

y we know
nhuqmt

Figure 7.15: Permissible motions for squase gmeped o adjoini

CHAPTER 7. CONTROLLED SLIPPING 81

Figure 7.16: This is a map of the constraint states as a function of the grasping
force and the orientation of a square held by fingertips on adjacent sides. Notice
that simply increasing the grasp force does not guarantee a stable grasp. A stable
grasp is only possible in the shaded [1 1] region. Any other region in the constraint
state map will result in an unpredictable slipping motion.

CHAPTER 7. CONTROLLED SLIPPING 82

Figure 7.17: By controlling the grasping force, the can be held securely or
reoriented by controlled slip.

2,

Figure 7.18: There are six coordinate frames used in this example: the hand

frame, the object frame, the grasp frame, and the contact frames. The hand is
rotated 45° is a gravity field.

CHAPTER 7. CONTROLLED SLIPPING 83
]— R ——' TS o -
| \(411) ¥ == (111) 121) \s" —’
\ \ %r \s'" (141)
l \ X ','. o/
l (432) '
(333)
(334)
(333)
(433) .
(242) /
N
(413) \\i\\
\ES':. o o l (343)
N
' \!/' = (33A)I
Mg =2'0Nl— — — =R (534)""" I§ (344)
| (333) (323{ \\ '/ (262) (343$ |
' (322) (232)
1'1.33) Q \‘ 9,
’ (243) I
(423) \
(143)
| ‘ _ l
(424) \ (244)

m, = 0.7NL

= __]

Figure 7.19: The constraint state map, shown here, is a function of the grasping
force, z4, y,4, and my. Two “slices” of the three dimensional constraint state map
are shown, for my = 0.7N and m, = 2.0N. The current position on the constraint
state map is shown as a point A in the (2,2,2] region, within the mg = 0.7N slice.
By moving from the present position in the map to any point in the [3,2,2] region
the can is free to rotate between the fingertips.

Chapter 8

Implementation

8.1 Introduction

The purpose of controlled slip manipulation is to enhance the dexterity of
a multifingered robot manipulator, giving a robot hand a larger repertoire
of manipulation strategies. A number of programs were written to automat-
ically analyze the constraints on an object within a particular grasp. One
function accepts a desired motion and returns the maximally constrained
state which allows that twist. Another determines the constraint state on
the object as a function of the grasping force. All these functions were writ-
ten in LISP and were used in conjunction with the Salisbury robot hand.
The following sections describe the hardware of the robot system and the
software implementation of the slip analyses.

8.2 Description of Hardware

The Salisbury robot hand is shown in figure 8.2. The hand has three fingers
and three joints in each finger, allowing a total of nine degrees of mechanical
freedom. Each of the fingers is controlled by four steel tendons running
to torque motors in the forearm. Linear encoders on the motors and tendon
tension sensors in the fingers determine the joint position and torque allowing
the hand to operate in a position, force, or stiffness control mode.

The general control structure is shown in figure 8.2 Two modified Puma
robot controllers accomplish the lower level servo control, while higher level

84

CHAPTER 8. IMPLEMENTATION 85

Figure 8.1: The Salisbury robot hand has three fingers and three joints in each
finger, yielding a total of nine degrees of mechanical freedom. The hand has linear
encoders on the motors to determine joint position and tension sensors on the
tendons to resolve the joint torque.

fingertip and joint trajectories are directed from the VAX 11 /750. At a still
higher level, the Symbolics 3600 controls the coordinated hand functions.

8.3 Description of software

A program, GRASP, was written to analyze the constraints of an object
grasped by the three fingered robot hand. The program was designed to
be interactive, allowing the user to select specific grasp analysis functions,
control the location and orientation of the grasp, or to choose a particular
squeeze force. The functions can be selected from a menu, and the results of
the analyses are displayed on a graphics window, illustrated in figure 8.3. The
screen is divided into three regions. The large pane to the left is a graphics
screen showing the hand, finger, object, and contact locations. The smaller
screen on the top right is LISP Listener, which accepts and interprets LISP
commands. Finally, on the bottom right, a small message monitor screen
prints messages which are sent and received from the VAX. The floating

CHAPTER 8. IMPLEMENTATION 86

Symbblics 3600

==

VAX 11/750
micros
fingertip tension d
SCNSOrs sensors encoders motors

Figure 8.2: The robot hand three basic levels of control. At the lowest level
PUMA robot controllers implements the high speed servo control, at the inter-
mediate level 2 VAX 11/750 controls the joint trajectory and finger stiffness, and
Finally, at the highest level a Symbolics 3600 LISP Machine manages the coordi-
nated hand motion.

CHAPTER 8. IMPLEMENTATION 87

menu allows the user to select many graphic and actuation options. Each
of the options will be described briefly in the following sections. Functions
which employed the controlled slip analyses will be described in more detail.

8.3.1 GRASP functions
Standard Graphics Options:

CREATE GRASP SCREEN. Creates the three paneled display screen
CLEARSCREEN. Clears the graphics screen
DRAW COORDINATE SYSTEM. Draws the six coordinate systems on the

graphics screen. These are the hand frame, object frame, grasp frame,
and the three contact frames. These different coordinate systems are -
fully described in appendix A.

CHANGE GRAPHICS VARIABLES. Allows the user to change the scaling
and the graphics screen origin.

Basic Actuation functions:

GO HOME. Reinitializes the VAX and Lisp Machine trajectory lists and
goes to the home position

REINIT VAX TRAJECTORY. Reinitializes the trajectory list on the VAX

REINIT OOLAH TRAJECTORY. Reinitializes the trajectory list on the
LISP machine

BASIC MOVES. Allows the users to specify coordinated finger motion. The
options allow the user to translate or rotate the grasp frame in any
desired cartesian direction.

MOVE FINGER. Moves a selected finger by a specified displacement

Controlled slip analyses:

CHANGE GLOBAL VARIABLES. Allows any of the global variables to be
changed.

CHAPTER 8. IMPLEMENTATION 88

g (7 (* @.454 188) 3.14159627)
26.585209
{grasp-menu)
X -
!
Create grasp screen : Reinit system :
x Reinit OOLAH trajectory
Oraw coordinate system Reinit VAX trajectory
Change graphics variables Go home
BASIC MOVES
Move finger
SLIP ANALYSIS OPTIONS: ADVANCED HAND ACTUATION OPTIONS:
__L Change global variables JK% move menu
___L . Permissible-twist Move to contact points
Determine constraint state Pick grasp force center
. Map constraint space Controlled slip
> DEMONSTRATIONS
~ QUIT

MESSAGE PROCESSOR

~| : enu oose Lisp Machine Georg Friedric ernhard Riemann

Figure 8.3: The GRASP program was written as an interactive interface between
the user and the Salisbury robot hand system. The program allows the user
to select a number of functions, including: slip analysis functions, functions to
relocate and reorient the grasp, and a function which changes the grasp force on
the object.

CHAPTER 8. IMPLEMENTATION 89

PERMISSIBLE TWIST. Specify a desired twist and this function will return
the maximally constrained state of the object that allows that twist.
This is accomplished simply by looking at each contact individually
and determining which contact type will allow the specified twist. The
contact types are investigated in decreasing order of constraint. That
is, a soft finger contact, a point contact with friction, a point contact
without friction, and no contact were considered sequentially. When a
particular contact type allows the specified motion, this contact type is
stored. The contact types are then compiled into a list, thus yielding
the constraint state which allows the desired motion. This constraint
state is also maximal, since any state of greater constraint would not
allow the twist to occur at one or more of the contacts.

DETERMINE CONSTRAINT STATE. This option allows the user to spec--
ify the grasping force, [z,,y,,m,], and returns the constraint state of
the object for a specific orientation and a given grasp. The program
uses the stiffness model described in chapter 5 together with the contact
type/contact wrench relation given in chapter 6.

MAP CONSTRAINT SPACE. The user specifies the magnitude of the grasp-
ing force, my, and the program produces a map of the constraint states,
by varying the grasp force focus, [z4,y,]. The program plots the re-
gions of different constraint and prints the value of the constraint state
in each region. For example, figure 8.4 shows a slice of the constraint
state map for my; = 7.0N for the same situation described in chapter
7. Notice that the coordinate systems of the hand, the grasp frame,
and contact frames are drawn in the display, since the grasp force focus
corresponds to an actual point in space. From this point the user can
select the grasping force [z, y,, m,] by using the option PICK GRASP
FORCE CENTER.

Advanced Hand Actuation Options:

MOVE TO CONTACT POINTS. Moves the fingertips to specified contact
points on the object. This function takes into account the radius of the
fingertip when grasping an object

PICK GRASP FORCE CENTER. The user specifies a grasp force magni-
tude m,y. Then the program draws the grasp frame coordinate system

CHAPTER 8. IMPLEMENTATION 90

on the screen, along with the hand, and contact coordinate systems.
The user may then move to any point in the graphics screen and select
a grasp force focus, [z,,y,], on the grasp plane. The robot will then
displace the fingers by an amount and a direction proportional to the
specified grasp force, [z, y4,m,). Given the compliance of the fingers,
the resulting force will be proportional to the desired internal grasping
force at each of the fingers.

DEMONSTRATIONS. Three demonstration routines were written to illus-
trated how controlled slipping techniques might be used on an actual
robot hand. The three routines show respectively how gravity, free fin-
gers, or other objects may be used to reorient and reposition an object
within a grasp.

The first demonstration is the three dimensional example of chapter
7. The robot hand holds a full can of liquid, as shown in figure 8.5.
The mass, location, orientation, and surface properties of the can are
the same as those given in chapter 7. A constraint state map shown
in figure 8.6, for a constant grasp force magnitude of 0.7N. Initially,
a grasp force, [g4,y,,m,] = [0.0cm., —1.2cm.,0.7N] is selected so that
the can is in the [2,2,2], a fully constrained region of the constraint
state map. The magnitude of the grasp force remains the same, but
the focus is moved out of the [2,2,2] region into the adjacent (3,2,2]
region. The result, shown in figure 8.7, is that the can spins between
the two fingers, under the influence of gravity, into a new orientation.
The grasp force focus is then moved back into the (2,2,2] region and
the grasp is again secured; however, the can has rotated 90°.

In the second demonstration, the robot hand again holds a can in the
same position and orientation. One of the fingers is then removed from
the top of the can. The situation is essentially a two fingered grasp or
a three fingered grasp with the first finger in a type 4 contact. In any
case, the magnitude of the squeezing force between the two grasping
fingers can be controlled. In this case, the magnitude of the squeezing
force is relaxed, so that when the free finger exerts a force on the front
of the can, the constraint moves into the [2,4,2] constraint region and
spins between the two fingers. The finger continues to spin the can,
until it has been rotated 180° into a new orientation, figure 8.8. The

CHAPTER 8. IMPLEMENTATION \ 91

free finger is then replaced on the can, securing the grasp. The can has
been completely reoriented in the grasp.

Inthetm:dmhne,thehsadm;hmmdpuhaumtatable,
so that the bax slides through the fisgers. The box is then lifted from
the table and the free finger spine it 180°. The hand again grasps the
boxandam&thwﬁmmmmpmdm
over and over again, as shown in figare 8.9. o

CHAPTER 8. IMPLEMENTATION 92

414 144

Figure 8.4: Constraint state map produced by the computer plots the constraint
state as a function grasp force focus Zg Yy, for constant grasp force magnitude,

mg = 2.0N. The map show here is for the identical situation outlined in chapter
7.

CHAPTER 8. IMPLEMENTATION 93

Figure 8.5: The Salisbury robot hand holds a can, as in the example in the
previous chapter. By adjusting the squeezing force on the can, the robot can
either secure the can in the grasp or change the orientation by allowing it to slip.

CHAPTER 8. IMPLEMENTATION

423

434

94

Figure 8.6: This is a map shows the constraint state regions as a function of the
grasping force focus z, y, for constant grasp force magnitude mg = 0.7N. The
current position in the map is shown as a point in the grasp plane. The current
constraint state is [2,2,2], a fully constrained region in the map. However, by
moving to any point in the adjacent [3,2,2] region, the can will spin between the

fingers.

CHAPTER 8. IMPLEMENTATION 95

Figure 8.7: The Salisbury robot hand grasps a soda can. The magnitude of the
grasping force is 0.7 N and the grasp force focus zg = 0.0cm y, = —0.8cm. so
that the can is secure in constraint region (2,2,2]. However, by moving the grasp
force focus to z, = 0.8cm Yy = —0.8cm, the can will spin between two fingers.
The grasp force focus is then moved back into its original position and the grasp
is again secured.

CHAPTER 8. IMPLEMENTATION 96

Figure 8.8: A can is initially held securely in the robot hand. The grasp force
focus shifts from its current stable position to a point on the line intersecting the
contact points made by the first and third fingers. By removing the second finger,
a constraint state [1,4,1] is produced and by using the free finger to exert a force,
the can rotates in the grasp. In this demonstration the finger continues to spin
the can until it has rotated it 180°. Finally, the free finger is returned to its origin
position and the grasp force focus is moved to the center of the grasp.

CHAPTER 8. IMPLEMENTATION 97

Figure 8.9: Slipping motions can be linked to form a sequence of motions to
reorient a part within the hand. In this case, the hand pushes a box against the
table, forcing the box through the grasp. The hand then lifts the box, reduces
the grasping force magnitude, shifts grasp force focus between two of the fingers,
and uses the free finger to spin the box 180°. The hand again grasps the box and
forces it against the table and then repeats the entire process.

Chapter 9

Extensions and further
research

9.1 Introduction

The goal of this thesis, is to gain a basic understanding of a highly dex-
terous type of manipulation that we take for granted, namely controlled
slip manipulation. An analysis was performed on grasped objects to
determine which ways they can move in the grasp. The set of possible
motions was found as a function of the constraint state of the object,
that is, the number, location, orientation, and the type of each con-
tact. The constraint state is a function of a number of controllable
variables, such as the grasp force, orientation, and stiffness of the fin-
gers. By changing the grasp force, for example, the constraint state of
the object can be varied to allow slipping within the grasp.

This analysis is only a beginning and many important issues have yet
to be addressed. This chapter will outline some extensions to the gen-
eral problem of controlled slip manipulation. It is hoped that these
extensions will allow this type of manipulation to be more useful and
predictable, thus enhancing the dexterity of robot hands.

98

CHAPTER 9. EXTENSIONS AND FURTHER RESEARCH 99

9.2 Determining permissible motion

When a hand grasps an object, there are only so many ways that it can
move in a grasp. For some constraint state, the space of permissible
motions of the object is quite large, which makes the control of the
motion difficult. However, there are some constraint states which yield
a very limited range of permissible motions, so that the motion of the
object can be determined as a function of the geometric constraints
alone. With the current algorithm, a desired twist is specified and the
constraint state which allows this twist is determined. Although the
algorithm determines the constraint state which provides maximum
constraint while still permitting the desired motion, it does not reason
as to which motions would be more advantageous for a given grasps or
particular task. What would be more useful in terms of controlled slip
manipulation, would be to determine, perhaps, using a set of heuris-
tics, a small set of permissible motions, which may be easily achieved
through slipping motion. To accomplish this, using the current analy-
sis, would require searching a six dimensional space to determine the
extent to which the permissible twist is bounded. This may in fact not
be too difficult, but a set of rules may quickly and efficiently produce
a set of slipping motions the robot can accomplish. This approach is
being investigated and looks promising for practical implementation on
a robot hand.

9.3 Determining constraint state

In tandem with the problem of determining set of slipping motions
which can be easily implemented in a particular grasp, is the problem
of finding the desired constraint. With the present analysis, a con-
straint state map is generated as a function of controllable variables on
the object. To find a desire constraint state, the entire map is generated
or the space is searched until the values of grasp force are found which
produce the desired constraint state. Again, a set of heuristic rules may
allow the robot to quickly find a particular constraint state within a
large space, so that the slipping manipulation may be achieved quickly.

CHAPTER 9. EXTENSIONS AND FURTHER RESEARCH 100

These rules may be quite simple, since there are some constraint states
which are independent of some of the controllable variables. For exam-
ple, some grasp foci always produce a particular constraint state.

9.4 Global motion

The current analysis only determines the set of permissible twists for
small finite motions. In general, to reorient an object within a hand,
large motions need to be considered. In order to study global motions,
many other issues must be addressed. For example, the size, shape,
location, and orientation of the grasp object, the robot hand, and the
surrounding environment must be known. By modeling the robot, the
object, and the environment as polyhedral solids the global motion of
the object may be determined. This problem is not as difficult as the
general path planning problem, since the path is given as the particular
twist, only magnitude of the twist needs to be determined. Therefore
for a small set of desired twists, their magnitudes can be found and
with this information controlled slip trajectories may be planned and
implemented on a robot hand.

9.5 Sensory feedback

The discussion so far deals with slipping motion based on a model of
the robot, object, and environment. The robot has no feedback on ac-
tual object position or contact force. In order to performed controlled
slip manipulations accurately, the robot must know the position of the
object relative to the grasp, as well as, the location, orientation, and
type of contact which exists at each interface between the manipulator
and the object. The contact information may be determined using a
force and tactile sensing surfaces on the fingertips of the robot hand. A
contact resolving sensor was built for the Salisbury robot hand, which
determines the location of a contact on the surface, as well as, the
normal and tangent force at the interface. Appendix C describes this
sensor and issues involved in its design. A sensor like this is important

CHAPTER 9. EXTENSIONS AND FURTHER RESEARCH 101

in controlled slip manipulation, because it can determine the location
of the contacts and, using a model of the fingertips, determine the
contact type. However, this type of sensor may be used directly to
determine contact type. Since slipping usually coincides with high fre-
quency vibrational noise, slipping may be determined by looking at the
high frequency components of the force signal. Given a high frequency
force signal, together with the mean tangent and normal force readings,
it may be possible to determine whether the slipping was translational
or rotational. That is, given a high frequency vibration which suggests
slip, then

|wCa:/luwcy| 1l = C3
|w<:z//‘w':y| <l = (,

where C; is a point contact with friction, the object is rotating about
the contact point, and Cj; is a point contact without friction, the object
is translating at the contact.

Determining the location of the object in the grasp is somewhat more
difficult. For some class of objects and for some set of contacts, the
tactile data alone may be enough to uniquely determine the position
of the object. However, tactile sensing alone would not, for example,
resolve the location of a cylinder held vertically on its sides by the fin-
gertips of a hand. The contacts and contact forces in this situation are
independent of the vertical position of the cylinder. Some other means
than tactile sensing would be necessary to determine position. Vision
would be a possible solution, except that resolving object location at
the speeds necessary for controlling slipping motion is currently an im-
possible task. However, vision would seem to be the eventual solution,
since in order to manipulate objects intelligently, a robot would have
to know not only the position of objects within the grasp, but also the
position of objects in the environment, since they may interact with
the motion of the grasped object. A robot could both avoid external
objects and use them to exert controlled forces on the object within
the grasp.

CHAPTER 9. EXTENSIONS AND FURTHER RESEARCH 102

9.6 Integrating manipulation techniques

The purpose of a robot is to interact with the environment, to sense its
nature and to affect changes. To this end, higher lever plans are needed
to determine global actions, as well as, lower level strategies which
integrate manipulation techniques, including controlled slip. Methods
must be developed to select manipulation strategies to accomplish the
lower level goals as set by the higher level plans. For example, to invert
a cylinder within a grasp, a robot may put the object down, reposition
the hand, and regrasp the object, effectively inverting the can in the
grasp. Or, it may, using control slip, spin the cylinder between two
of its fingers, and thereby accomplishing the same feat. In spinning
the cylinder, the robot could use gravity, acceleration, other objects, or
other fingers to reposition the object. To achieve the desired goal state,
the robot may have to perform a number of slipping manipulations in
a row. This suggests some sort of lower level slip planning based on
analysis or experience.

CHAPTER 9. EXTENSIONS AND FURTHER RESEARCH 103

9.7 Conclusion

This thesis presents a basic analysis of controlled slip manipulation and
suggests some methods of implementing slip manipulation on robot
hands. Given a particular grasp, the set of small finite motions the
object can undergo within the grasp was determined. The set of per-
missible motions within a grasp was found to depend on the constraint
state, that is the location and the types of contacts that exist between
the robot and the object. The constraint state in turn depends a num-
ber of controllable variables, such as grasping force, orientation, finger
stiffness, and other variables. By controlling the constraint state and
external forces which act on the grasped object, controlled slipping
motions can be achieved. Before this type of manipulation can be
practically implemented in robot system, more efficient ways must be
found to analyze grasps and actuate motions. This thesis does, how-
ever, demonstrate that manipulating objects by allowing them to slip
and twist at the fingertips is possible for robots as well as for humans.

Bibliography

[Ball]

[Chiu]

[Hunt)

[Jacobsen]

[Lipson]

[Lozano-Perez]

[Mason)]

[Nguyuan]

[Ohwovoriole]

Ball, R.S. “A Treatise on the Theory of Screws”
Cambridge University, Press, London, 1900.

Chui, S.L.. “Generating Compliant Motion of Ob-
jects with an Articulated Hand” S.M. Thesis, Dept.
of Mechanical Engineering, Massachusetts Institute
of Technology, June 1985.

Hunt, K.H., Kinematic Geometry of Mechanisms,
Oxford University Press, 1978.

Jacobsen, S.C., et al. “Development of the Utah
Artificial Arm,” IFEE Transactions on Biomedical
Engineering, Vol. BME-29, No. 4, Apr. 1982.

Lipson, C., and Juvinal, R.C., Handbook of Stress
and Strength: Design and Material Applications ,
New York, 1963, pp. 45-57.

Lozano-Perez, T., “Automatic Planning of Manip-
ulator Transfer Movements,” MIT AI Lab, Memo
AIM 606.

Mason, M.T., and Salisbury, J.K. Robot Hands and
the Mechanics of Manipulation, MIT Press, Cam-
bridge, 1985

Nguyuan, V., “The Synthesis of Stable Force-
Closure Grasps” A.l. Memo 905, MIT Artificial In-
telligence Lab., May 1986.

Ohwovoriole, M.S. “An Extension of Screw Theory
and Its Application to the Automation of Industrial

104

BIBLIOGRAPHY

[Okada)

[Salisbury]

[Tournassoud]

105

Assemblies” Ph.D. Thesis, Dept. of Mechanical En-
gineering, Stanford University, April 1980.

Okada, T., “Computer Control of Multi-Jointed
Finger,” 6th International Joint Conference on Ar-
tificial Intelligence, Tokyo, Japan, 1979.

Salisbury, J.K., “Kinematic and Force Analysis of
Articulated Hands” Ph.D. Thesis, Dept. of Mechan-
ical Engineering, Stanford University, May 1982.

Tournassoud, P., “Regrasping” IEEFE International
Conference on Robotics and Automation, March,

1987.

Appendix A

Coordinate frames

A.1 Introduction

Objects, fingers, fingertips, and contact points can all described relative
to different coordinate frames. There are a number of coordinate frames
used in this thesis and any point in space may be described with respect
to any or all the coordinate frames. There are a total of nineteen
reference frames. These are:

0XYZ Arbitrary reference frame
OhXthZh Hand frame
Of‘ij‘ij‘-jZf‘-j Finger frames

Oy, X Y3, Zy, Fingertip frames

O, X., Y. 2, Contact frames
0,X,Y,Z, Grasp frame

0,X,Y,Z, Object frame

Descriptions of the individual reference frames are given in the following
sections.

106

APPENDIX A. COORDINATE FRAMES 107
Zy

Oh

Xh/

Y

Figure A.1: Hand frame

A.2 Hand frame

The origin of the hand frame is centered between the joints of the first
and second fingers of the Salisbury hand. The x-axis is directed out
from the origin, through the center of the first joint of the second finger,
as shown in figure A.1. The z-axis is vertical, normal to the plane of
motion of the first phalange of the first finger. The y-axis is normal to
both the x and y axes, directed away from the wrist, lying in the plane
of the motion of the first phalange of the first finger.

A.3 Finger frames

The coordinate frames for the finger phalanges are defined the same way
each finger. These coordinate frames are designated Oy, iX5iY5i 245
where ¢ represents the i** finger and j the j* phalange. The finger
frames are shown in figure A.2. The origin of the coordinate frames for
the phalanges are all at the center of the joints and the y-axes of every
frame is aligned with the central axis of the phalange. The x and z

APPENDIX A. COORDINATE FRAMES 108

Figure A.2: Finger frames

axes, however, are defined differently. For the first phalange, the z-axis
is the axis of joint rotation and the x-axis is normal to the y and z axes
in the direction of the x-axis of the hand frame. For the second and
third finger phalange frames, the x-axis is the axis of joint rotation and
the z-axis is vertical, parallel to the z-axis of the hand frame when the
Joints are in the zero position.

The length of the phalanges the fingers of the Salisbury robot hand are
all the same. Figure A.3 shows a schematic of the hand illustrating the
length of the phalanges and the placement of the fingers

A.4 Fingertip frame

The fingertip frames Oy, X,,Y;, Z;, are defined the same way for each
fingertip, see figure A.4. The origin of the fingertip frame is the center
of the spherical portion of the fingertip. The z-axis is the central axis of
the fingertip. The x-axis is parallel to the x-axis of the distal phalange
coordinate frame.

APPENDIX A. COORDINATE FRAMES 109

|
T\\ Ly =2.22cm
L3 = 3.20cm /Q<\@
o
J\ Finger 2

ll = 3.81c

R=1.10cm

Finger 3

T\/ 2.86¢cm

5.08¢cm

Figure A.3: Phalange length and finger placement

Zf.'3
Oy, z
£:3 t
Oy \ /
Ve
Yfla Xtt {,
Y,

Figure A.4: Fingertip frame

APPENDIX A. COORDINATE FRAMES 110

Figure A.5: Contact frame

A.5 Contact frames

The contact frames are defined in terms of the object the hand is grasp-
ing. The origin of the contact frame is the contact point between the
hand and the object. The z-axis is the surface normal at the contact
point. The x and y axes lie in the tangent plane of the surface. For
convenience, the x-axis is defined to be parallel to the x-axis of the
hand frame or to lie parallel to the plane described by the x and y axes
of the hand frame, figure A.5. In this way it is possible to generate an
unambiguous definition of the contact frames.

A.6 Grasp frame

The grasp frame is defined in terms of the contact points. The origin
of the grasp frame is the centroid between the contact points. The z-
axis is normal to the plane described by the three contact points. The
x-axis is defined in the same way as the contact frames. That is, the
x-axis is either parallel to the x-axis of the hand frame or parallel to

APPENDIX A. COORDINATE FRAMES 111
Zy

Figure A.6: Grasp frame

the plane described by the x and y axes, figure A.6.

A.7T Object frame

The origin of the object frame is the located at the centroid of the
object. The axes of the object frame are arbitrary, but are usually
defined along the symmetries of the object for convenience.

Appendix B

Stress state in a fingertip

B.1 Introduction

A recent entry into the field of robotics has been the development
of robot hands. These hands typically have at three or more fingers
with three or more joints in each finger. The fingertips are usually
covered with some kind of compliant material. The Salisbury robot
hand had hemispherical polyurethane fingertips, similar to that found
on rollerskate wheels. Although most work has be done investigating
grasping and manipulation of objects, little has been done in analyzing
the complex mechanical interaction between the finger and the grasped
object. As a first attempt in addressing this problem, I will examine
the stress throughout the body of the fingertip in contact with a flat
object.

B.2 Problem definition

The robot fingertip is shown schematically in figure B.1, touching a flat
surface. The problem will be to find the stress throughout the body
of the fingertip. The fingertip is assumed to a hemisphere made of
a homogeneous elastic material. The material on the real robot is a
polyurethane with an elastic modulus of approximately 40,000 psi and

112

APPENDIX B. STRESS STATE IN A FINGERTIP 113

Figure B.1: Robot finger in contact with a flat surface

a Poisson’s ratio of about 0.45. For simplicity in the analysis, however,
particularly in the finite element procedure, the poisson’s ratio will be
assumed to be zero. Since the elastic modulus is small, as it is for
most elastomers, a nonlinear analysis would seem necessary; however,
for this analysis I will assume the contact force is small 1 Ib. This force
should be small enough so that displacements within the body will not
large enough to warrant a complex nonlinear analysis.

B.3 Analytic solution

The analytic solution to the stresses throughout a body in contact will
another body has not been worked out. The analytic solution for the
stresses on the surface of a body, however, has be developed by Hertz.
He assumed the two bodies were solid elliptic disks, each possessing
radius of R and R’. Furthermore, these disks were in contact along a
common axis under an applied load F, figure B.2. Hertz deduced that
the pressure distribution between the two bodies can be described by
a semi-ellipsoid of pressure constructed over the surface of the contact,

APPENDIX B. STRESS STATE IN A FINGERTIP 114

Figure B.2: Two general bodies in contact

as shown in figure B.3

The pressure distribution is given by

P(z,y) = Po\/l —x2/a? — y2/b? (B.1)
The total load, therefore, is equal to the volume of the semi-ellipsoid,
Fe 27abP, (B.2)

Solving for P, 3F
°~ 3rab (B:3)

where a and b are given by Timosheko [Lipson]

3FA
f— 3—_
=™ Ar B (B-4)

[3FA
4(A + B)

b=n

(B.5)

APPENDIX B. STRESS STATE IN A FINGERTIP 115

/M mll%
Allllﬂ"ﬂ"" il
(8%

Figure B.3: Pressure distribution in the area of the contact
where

A=1-u)/E+(1- 13)/ Eq (B.6)
where 0.15

u1p2 Poisson’s ratio
E\E; Modulii of elasticity

A+B i (F+h+E+4)

B-A \/ ﬁlxr ——é)2+2(%—ﬁ1-)2(};—2—§12;—)cos(2¢)

¥ The angle between the planes contacting the curvatures 1 /Ry and
1/R,

APPENDIX B. STRESS STATE IN A FINGERTIP 116

Ry R{ R, R; Minimum and maximum radii of curvature of the ellip-
soid disks at the point of contact

m,n Constants depending on B — A/B + A

In the case of the contact between a hemispherical fingertip and a flat
rigid plate, equations B.4 and B.5 become

a=b= Y3IFRA/4 (B.7)

and the maximum pressure is given by

P, = 0.578] Rf = (B.8)

again the definition of A is
A=(1=p)/Ex+ (1~ p3)/E, (B.9)

If the flat plate is assumed to be rigid (i.e. E, > E,) then A can be
approximated as

A=(1-2)/E, (B.10)
For this problem,
F = 1
E, = 40,000psi
R] = 0.5in
g = 00

and therefore
A = 20x107°
P, = 1247.9¥Flb/in®
a = 0.020VFin

APPENDIX B. STRESS STATE IN A FINGERTIP 117

200. 00
(lo/in*)

LN I W21

1 i 1] 1

g.08 0.16 0.24 0.32 0.4g 0.48
Z-axis Gn)
Stress_on_loaded_axis

Figure B.4: Stress gradients within a sphere due to contact with a rigid plate

Although Hertz only solved for the stress in the are of the contact, H.R.
Thomas and V.A. Hoersch computed the stress within the body along
the loaded axis.

ooe = ouy = 2O (14) (o) oo (o) = 1) o
(B.11)
—2a(1/R, +1/R a’ |
Or = (/7rA+ [Ba) (a2+22) (B.12)

Also, because of symmetry, o,,,0yy, and ¢,, are the principle stresses,

and therefore,
Tyz = Tye = 0 (B.13)

A plot of the stress gradients due to the contact between a flat rigid
plate and a spherical fingertip on the loaded axis is shown in figure B.3

APPENDIX B. STRESS STATE IN A FIN GERTIP 118
{6/4 rYe
[+ I
% T /
} F /

f
- }

Figure B.5: Initial finite element mesh

——
*Y_._

B.4 Finite element solution

The finite element mesh that was used to analyze the stress is shown
in figure B.4. The figure shows the finite element representation of one
radian "slice” of the hemispherical fingertip. Axisymmetric elements
are used since the body is symmetric around the axis of the contact.
Eight node elements are also used, since they more accurately model
the curvature of the sphere. The contact, however, is more difficult to
model. A contact element could be used, in which more of the element
is subjected to a force as the element deflects. However, since the radius
of contact area is small, 0.019 in, compared to the elements which are
0.050 in on a side, a close approximation is a single concentrated load
located at the center of the contact area. A test of this assumption
and the other approximations will be whether the stresses calculated
by the finite element solution match those of the analytic.

To test the validity of the mesh, the stresses between identical nodes on
adjacent elements are compared. F igure B.4 shows the finite element
mesh. The vertical line drawn on the figure was the line on which

APPENDIX B. STRESS STATE IN A FINGERTIP 119

<«
-t

-
L
.
L]
——

+
: IfJ
r

pnlevilsrlnlecilu]|lols
“

i
I
L —

-
-
-

Figure B.6: Line on which nodal stress are compared

stresses were calculated. Figure B.4, B.4, and B.4 shows the stress on
the line calculated at nodes on adjacent elements. The two curves in
each figure represent the nodal stress on the two columns of elements
(i.e. elements 1 through 10 and elements 11 through 20). In every
figure, the stresses calculated at the same nodes for adjacent elements
are inconsistent for values of z less than 0.25 inches. For example,
figure B.4 shows the stress in the y direction, o,,. At z=0.075 in the
stress calculated at the same node vary from -20 psi in element 12 to
-100 psi in element 2. On the other hand, for values of z greater than
0.35 in, the variation of stress between elements is negligible, as can be
seen in figure B.4. It is also interesting to note that the stress jumps
for oy, occur between elements in adjacent columns, while for o, they
occur between elements in the same column. For Tyz, the stress jumps
between adjacent columns and adjacent rows.

It is clear from this analysis, that for an accurate prediction of stress in
the body, this mesh is too coarse. Variations in stresses calculated at
the same nodes were greater that 100%, for radial distances of less that
0.25 in from the contact region. Figure B.4 shows a three dimensional

)I'.Q.) .00

LA ST T T AT 1Y
g

-30.

tte om seé sa.
toante - gie)

(Blin®)
vell
H
’ . '
: “# \\‘//},rdfr-—,
M .
z -w.0e .
-0,
-8,
. eie et “m em s
. Bedmie (m})

Figure B.8: Inconsistency in cdcahhd nodal stress o, -

< (Mia%)

22X T R TT

(8/ia*)
1.2

HERE

:

S a2

H
1.00
a.98
.00

APPENDIX B. STRESS STATE IN A FINGERTIP

]

1e8.
128.
.00
8.0

Figure B.9: Ineomthmy in mwm Oy

Figure B.10: Location of consistent stress

121

APPENDIX B. STRESS STATE IN A FINGERTIP 122

-1g000.

=120e.0

Figure B.11: Stress profile on hemispherical body

plot of stress with the y and z coordinates plotted in the plane and
the stress o,, plotted on the vertical axis. Here it is easy to see the
inconsistencies in the stress between elements Therefore, for an accurate
calculation of the stress within the body of the fingertip, a new more
refined mesh must be constructed.

B.4.1 Refined mesh

To solve the problem of nodal stress inconsistencies, a new refined mesh
is constructed. Figure B.4.1 shows the region in which the mesh need
to be finer. In figure B.4.1, a new refined mesh is constructed in the
specified region and figure B.4.1 shows an expand view of that region.
As before, to test the validity of this new mesh, I compared the stress
along a single line, as shown in figure B.4.1. The stress calculated at the
nodal points between adjacent elements, in this mesh shown almost no
inconsistencies for values of z greater than 0.02 in, as shown in figures
B.4.1 and B.4.1. This is almost an order of magnitude improvement
over the previous case. Figure B.4.1 shows the same three dimensional

APPENDIX B. STRESS STATE IN A FINGERTIP 123

i f
f + f
|

/
/
4

NSNS

QE‘ b NP Kfﬁ

N N\ PN
N\

Figure B.12: Region of mesh refinement

stress profile. Again, the y and z coordinates are plotted in the plane,
and the oy, is plotted on the vertical axis. As before, the plot shows
stress jumps at small radial distances from the origin of contact. How-
ever, if these few values of stress are ignored, the resultant stress field
is continuous along the line. Another test for the accuracy of the finite
element calculations is to compare the results with an analytic solution.

B.5 Finite element vs. analytic

To compare the finite element solution against the analytic solution,
only the stresses on the z axis can be considered. Figure B.5, B.5, and
B.5 show the stresses oy, 0,,, and o, respectively as calculated by
the finite element solution and the analytic solution. The figures show
an excellent correlation between the analytic and the finite element
solution, particularly for values of z greater than 0.04 in. Ignoring
these stress calculations near the origin, a accurate representation of
the stress within the entire body of the fingertip can be obtained.

APPENDIX B. STRESS STATE IN A FINGERTIP 124

Figure B.13: Refined mesh

AN /_/’]
/ s
AN
N
//’ \’\ /‘P// ///
¥ 1 I 7
L] y {
R >
T . . 3 * !
R
4 />$::>
IR ss

Figure B.14: Expanded view of the new refined region

APPENDIX B. STRESS STATE IN A FINGERTIP 125

/
/
p s \/
$ ya
: b e
. '/
o 7 />
ettt P
=1t
D) oL“,_'>

Figure B.15: Line on which nodal stresses are compared

3z.00 1

24.00

16.00 &

K<< raovp 1y

-8.00

~16. 00

~24.00

! 1 - . i

0.08 a.16 0.24 0.32 0.40 6.48
2=axis

Figure B.16: Consistency in calculated nodal stresses: Tyy

126

APPENDIX B. STRESS STATE IN A FINGERTIP

N
N
b
Ty
©
L :
-+
w
nl
S
-
s 3
7] =]
. 8
¥ 3
B =
=
I
i g
-]
= >
N\ 5
Q
®
- %
/u/l, ..n. 2
=]
/ O
L
° I~
T as]
(]
—
I &
luﬂomnnlr,trl .ﬁ“] m”..w.o.
0000000““ s e - o e o o
s e 8 s s 2 5 % % § S
EEE NI R 25% 7%

VPLUAan:t NN

Figure B.18: Larger values of stress at small radial distance from the contact

APPENDIX B. STRESS STATE IN A FINGERTIP

Figure B.19

Tyy

NN Iwe gL

KK 10010y

i

-100.00

-200.00

-300.00

-400. 00

~700.00

~——Adina

d

4

4

o

<

“—— Analytie

1 A L

.16

%.24 .32 0.40
Z-axis
Adina.vs Analytic

72.00

64.00

$6.00

48.00

40.00

32.00

24.00

16.00

o

—— - CNET. S E. S W - S - S - | M -

16

5. 29'M—analytic g 4

z-axis
Adina.vs . Analytic

a3

127

: Agreement between the finite element and analytic solutions:

Figure B.20: Agreement between the finite element and analytic solutions:

O.ZZ

APPENDIX B. STRESS STATE IN A FINGERTIP 128

20.400

16.00

12.00

N 1AAp I mn

% ANALYTIC
Qg o
Q.00 I

o
T

oo
° k;ﬁomn

i i i 1 i 1

¢.0a 0.16 0.24 .32 g.40 0.as8
2-axts
Adina_vs_Analytic

Figure B.21: Agreement between the finite element and analytic solutions:

Oyz

B.6 Solution

As a result of the consistency in calculated stress between the ele-
ment and because of the agreement between the analytic and the finite
element solution, the modified mesh is assumed to be sufficient for cal-
culated stresses throughout the body of the hemispherical fingertip.
Figures B.7, B.7, and B.7 show the stress profiles through the body of
the hemisphere. From the analysis, these stresses can be taken as an
accurate representation of the true stress in the fingertip.

B.7 Conclusion

In this analysis, a finite element method was developed to accurately
predict the stresses in the body of a hemispherical fingertip in contact
with a flat object (for relatively small forces). This information can
be useful, for example, in determining the placement of subcutaneous
force and tactile sensors.

APPENDIX B. STRESS STATE IN A FINGERTIP 130

Figure B.22: Stress profile in the fingertip: o,

APPENDIX B. STRESS STATE IN A FINGERTIP 131

4
o\
N
\
N

3

()
o\:\\\\\‘ ‘

0}1 |

A
.

B

#

s
N
Dy

N
¥

=3

S
N,

“\
\‘~'
Sy

——

————
LT

"—‘&3‘

I

0.16 -200.00 //‘/0‘38
0.40 ’

‘ 0.32 Y (in

0.08 \(\ . 8.24)

— 0.16
0.08

Figure B.23: Stress profile in the fingertip: o,,

APPENDIX B. STRESS STATE IN A FINGERTIP 132

Figure B.24: Stress profile in the fingertip: Oyz

Appendix C

Fingertip sensor

C.1 Introduction

A contact resolving fingertip sensor was developed which determines
the location of a contact, as well as the direction and magnitude of
the force at the contact point. The sensor is based on silicon strain
gauges on steel flexures, which measure the forces and moments at
the center of the shell. From these force readings, it is possible to
determine the direction of the force vector acting on the shell of the
fingertip. Using the moment readings, the location of the force vector
can be determined. The intersection of the force vector with the outer
surface of the fingertip yields two points. One point corresponds to a
pulling on the surface of the fingertip. The other point corresponds
to a pushing force on the sensor. Assuming the fingertip only pushes
against surfaces, one of the points is immediately eliminated. This
leaves a single point, the contact point, through which the force is
acting. Since the sensor resolves the components of the force, it can
determine the magnitude and direction of the force at the point contact
as well.

133

APPENDIX C. FINGERTIP SENSOR 134

C.2 Theory

The theories presented in this section were developed by [Salisbury].
Suppose a force F = [fy, f,, f.] is acting through a point x¢ = [z., y., EA
on a convex surface S. The convex surface S is defined as a smooth
surface in 2, such that for every pair of points p, and pe in S, the
line mp; + (1 — m)p, for m € R intersects S in only two points p; and
p2. Also for any two points p; and p, with contact normals n; and n,
respectively, the dot products of the vector p; — p; and the normals
ny and n; have different sign. This condition allows the unambiguous
resolution of the location of the force on the surface S.

Let OXY Z be some reference frame so that every point in S can be
defined relative to OXY Z. The wrench in terms of screw coordinates.
defined relative to OXY Z due to the force F acting through the point

Xc is

[w,] [fe]
Ws fy
(12} fz
w = = . C.1
Wy _chy + ycfz ()
ws chz - chz
L We L _ycfz""xcfy J

Now we wish to describe the wrench w in terms of the wrench axis, the
pitch, and the magnitude. The direction of the wrench axis A is

w1

w3

and the point on the wrench axis nearest the reference frame is

z, 1 Wale — W3Ws
Xo=1| ¥ | = ~ wawy — wywe | , (C.3)
2o W1Ws — WaWe

where m is the magnitude of the wrench and also the magnitude of the

force
m = \Jw? + w? + wi. (C.4)

APPENDIX C. FINGERTIP SENSOR 135

Any point along the wrench axis can be described by
X =Xo + Ada. (C.5)

The intersection of the line in equation C.5 with the surface S yields one
or two points. If the intersection yields a single point then the location
of the force on the surface is immediately determined. However, if
the intersection produces two points, the location of the contact can
still be found. Suppose the two points of intersection are z; and z,
with normals n; and n;. Take the dot product of the force F with
the normals n; and n,. The point associated with the normal which
produces a negative value of the dot product is the contact point.

Therefore it is possible to determine the point of contact x. from the
wrench w. If it were possible to measure the wrench w, then the
location, direction and magnitude of a force exerted through a point
contact on a surface S can be found. This is precisely the concept
behind the contact resolving fingertip sensor.

C.3 Design

The schematic diagram of the fingertip sensor is shown in figure C.1.
The fingertip has a hemispherical top and a cylindrical skirt which bolt
onto a loadcell. The loadcell is in the form of a maltese cross and
is design to resolve all six components of the wrench, that is, forces
and moments in three cartesian directions. Small semiconductor strain
gauges are mounted on the legs of the cross. These gauges measure
strain which is proportional to the bending moment in the beam which
is, in turn, proportional to the forces and moments. The next section
describes some critical issues in the design of the loadcell.

APPENDIX C. FINGERTIP SENSOR

20 durometer
polyurethane
molded cover

Stainless steel
Hemispherical cover

Stainless steel
Cylindrical skirt

ACTUAL SIZE

17-4 PH stainless steel
6-axis loadcell with

16 5009 semiconductor
strain gauges

Right angle
polyurethane
molded strain relief

0.100in diameter cable

Polyurethane jacket

38 AWG steel braided sheild

Teflon tape

8 twisted pairs

/ y
38 AWG (7/46) 5.P.Duraflex 9 :32\
0.003in teflon walled pairs Y

Polyurethane
molded strain relief

Subminiature locking
19 conductor Hirose connector

136

Figure C.1: The fingertip sensor can determine the magnitude, the location,
and the direction of a force applied through a point contact on its surface. Small
semiconductor strain gauges mounted on small steel flexure are used to resolve the

forces and moments on the fingertip shell.

APPENDIX C. FINGERTIP SENSOR 137

C.4 Design of loadcell

C.4.1 Introduction

The loadcell for the force and tactile sensing fingertip must be able to
resolve all six components of forces and moments applied to it. In order
to properly design the loadcell, it is necessary to determine the forces
and moments under which may act on the loadcell, as well as the state
of stress in each of its members. The fingertip may be subject to an
infinite variety of forces. However, instead of examining all the possible
forces, we will consider only a small set of forces which produce extreme
values of force and moment on the loadcell. This set of forces is shown
in figure C.2. In the next sections, the forces and moments on the '
loadcell resulting from the externally applied loads will be determined,
along with the associated stress states in the flexures of the loadcell.

The analysis of stress states is only part of the design procedure. The
design must also take into account the manufacture, assembly, and
gauging procedures, in order to minimize cost and maximize efficiency.
From this analysis, the design and dimensions of the loadcell will be
determined.

C.4.2 Fingertip sensor dimensions

Figure C.3 illustrates and lists the symbolic values for the dimensions
of the fingertip and the loadcell. These values will be used through-
out the analysis when calculating stress, strain, and deformation. The
constrained values are

R = 0.406in
H = 0.813in
L; = 0.070in
L, = 0.100in
H; = 0.633in

and the values yet to be determined are

APPENDIX C. FINGERTIP SENSOR 138

— ~—
CASE CASE 4
SN

CASE 3 CASE 6

Figure C.2: Forces and moments are generated at the center of the sensor as a
function of the externally applied load. The set of external loads which produce
maximum internal forces and moments are listed above. Each of these cases will be
considered individually and the resulting forces and moments will be calculated,
as well as the stresses they create on the load bearing members.

APPENDIX C. FINGERTIP SENSOR 139

h

+ ,///l hf
S
H, T

Figure C.3: The dimensions for the loadcell and the fingertip illustrated above
will be used through the analysis on the fingertip. From the analysis, optimal
values for the dimensions listed will be found to maximize fingertip performance
and durability.

C.4.3 Mechanical properties

The loadcell is to be machined from 17-4PH stainless steel. This par-
ticular type of steel was chosen because its coefficient of thermal expan-
sion matches that of the semiconductor strain gauges. A similar value
of thermal expansion is desired since both the gauges and sensor are
heated during the bonding process and cooled, the same contraction
rates will not introduce an offset strains in the gauges.

The mechanical properties of the 17-4PH stainless steel are:

APPENDIX C. FINGERTIP SENSOR 140
E = 28.5 x 10%lb/in’
G = 10.6 x 10%lb/in®
oy = 80,000 — 100, 0001b/in®

€y = 0y/E = 3157 u strain

The mechanical properties of the silicon strain gauges are:

Maximum strain = 3000 g strain

C.4.4 General cantilever beam problem

The analysis of the cantilever beam will be used throughout the anal-
ysis of the loadcell, so the general problem is stated here along with
the standard equations of load, shear force, bending moment, and de-
formation.

A cantilever beam is shown in figure C.4. It is subject to a force F and
a moment M at its end point. The deflection of the end point is given
by é and the angle from the horizontal at the end point is denoted by

b.

Bending moment

The load, the shear force, and the bending moment along the beam are
given by

Load:
q(z) = (=FL—-M){x)_;+ F({z).1+ M{z — L) — F(z — L)_, (C.6)

Shear force:

APPENDIX C. FINGERTIP SENSOR 141

v(z) = (FL+ M){(z)y — F(z)° = M(z — L)1 + F(z — L)* (C.7)
Bending moment:

My(z) = (=FL — M)(z)° + F(z)' + M(z — L)° — F(c — L)* (C.8)

Deformation

The displacement of the end of the beam is given by

FLI* MIL?
= 3ET T 3EI (C9)
where I is the area moment of inertia given by
k3w
=%
and the angle ¢ is
FL® ML
= — 3 .10
*= 351 T EI (C10)
Stress and strain
In general, the stress due to a bending moment M, is
o= My (C.11)

I

where [is the area moment of inertia and y is the distance from the
point of zero stress to point at which the stress is measured. In the case
of the rectangular cantilever beam, the point of zero stress coincides
with the center of the beam. Therefore, the maximum stress due to
bending is located on the outer surface of the beam. That is, when
y = h/2, the stress is

6.M,

APPENDIX C. FINGERTIP SENSOR 142

C.4.5 Casel

Assumptions

Assume a force is applied to the fingertip on the top of the hemisphere,
figure C.5. The force is applied vertically along the major axis of the
sensor. By symmetry, fingertip shell will be displaced vertically, no
horizontal motion or rotation will occur. Also by symmetry, the forces
will by applied equally to each leg of the cross.

Analysis

A single leg of the cross is shown in figure C.6. By of symmetry, each
leg of the cross receives an equal force, F//4, and undergoes an equal’
displacement 6, and angle ¢ = 0. That is, given

_(F/HL | ML _

¢= 2E1 Er 0 (C.13)
where s
= W
I= 13 (C.14)
then the moment will be
M= —% (C.15)
Therefore the loading is
9(z) = —FL;/8(z)-2 + F/4(z) (C.16)
v(r) = FLi/8(z)-1 — F/4(z)° (C.17)
My(z) = —FL;/8(z)° + F/4(z)* (C.18)
(C.19)
The maximum bending moment occurs at z = 0 and M, = —FL/8.
Therefore, the maximum stress in the beam under this particular load-
ing is
3FL (C.20)

g = m—

APPENDIX C. FINGERTIP SENSOR 143

C.4.6 Case 2

Assumptions

A horizontal force is applied to the fingertip, in line with the loadcell,
as shown in figure C.7. The force is evenly distributed on either side
of the loadcell, as a result no rotation occurs. Since, by symmetry,
both sides of the loadcell will behave the same way, one half of the
loadcell will be analyzed and is depicted in figure C.8. It is assumed
the compressive displacements are negligible, therefore, both the legs
parallel to the applied force and the phalanges are assumed to be rigid.
In addition, a cantilever beam model is assumed for both the legs and
the phalanges.

Analysis

The two phalanges and the leg of the cross on each side of the load-
cell are displaced by the same amount §, figure C.8. The ends of the
phalanges and the legs do not rotate, therefore ¢ = 0 and by equation
C.10

M; = —F.L;/2 (C.21)

Substitute into equation C.9, the displacement is

5 F;L;
T 12E,I;

F, = (E‘L”3h> § (C.23)

Since the force F is evenly distributed on each side of the loadcell, the
sum of the force on the each flexure is F/2, that is

F/2=F,+ F,+F, (C.24)

(C.22)

and the force

Substitute C.22 into C.24 yields

Ewlh, Ewih; Ewdh,
I3 "Iy "I

F/2 = (C.25)

APPENDIX C. FINGERTIP SENSOR

Solve for §
FL?L;’;

6=
2E(wih L3 + 2w3h, L)
The force and the moment on the leg of the cross is

. wPhi L3 F
'T WP LE + 2wk, 17) 2

Moo wih L3 FL,
: wih L3 + 2w3h,L}) ~4

and the force and moment on the phalanges are

P o= w3k, L} F
P w3k, L} + 2wPhi L3] 2

Moo= wih,L} FL,
P wih, L} + 2wPh L3) 4

Finally, the maximum stress on the leg of the cross is

_ 3w1L2L1F
 2(wPhi L3 + 2w3h, L)

ai

and the maximum stress on the phalange is

o 3w iLF
P 2wdh, L + 2wih L3)

C.4.7 Case 3

Assumptions

144

(C.26)

(C.27)

(C.28)

(C.29)

(C.30)

(C.31)

(C.32)

(C.33)

(C.34)

A force is applied at the base of the fingertip shell in the horizontal
direction as shown in figure C.9. This particular case produces the
largest stress on the members of the loadcell. The force applied in this

APPENDIX C. FINGERTIP SENSOR 145

orientation and position will therefore be limiting force in the design
of the loadcell. It is assumed the loadcell undergoes a rotation and
deformation as illustrated in figure C.10. The phalanges parallel to the
applied force are assumed to undergo rigid rotation. The phalanges
perpendicular to the applied force are subject to a moment, but for
this analysis these phalanges are also assumed rigid. Therefore the
entire outer structure of the cross undergoes a rigid rotation ¢. As in
the previous case, the legs perpendicular to the external force undergo
a displacement, however, since the major stress components are on the
legs parallel to the external force, these displacements are assumed to
be negligible.

Analysis

A free body diagram of the cross is shown in figure C.11. The de-
formation from the force F is assumed small in comparison with that
from the moment F'H;. The two legs perpendicular to the applied force
undergo a rotational twist subject to a moment M, and the two legs
parallel to the applied force bend under a moment M; and a force F}.
By equilibrium,

FH1 =2F1L1—2M1 —2M2 (035)

A diagram of a single leg undergoing bending is shown in figure C.12.
By geometric compatibility, the displacement equals the length of the
beam times the angle, that is, assuming angles are small.

§ = Li¢ (C.36)

Substitute into the equations for displacement and angle and solve for
the moment M, yields
M, =-RIL, (C.37)
and the angle ¢
- FEwh}

(C.38)

APPENDIX C. FINGERTIP SENSOR 146

Figure C.13 shows a diagram of a beam under the torsional load, and
the equation for angular rotation as a function of moment is

—-M,L,

c2Ghyw?

for w; < hy and ¢; = 0.170 approx. Equate equations C.38 and C.39
and solve for the moment M,

_ [18Lic;Gw}

(C.39)

Now substitute equations C.37 and C.40 into C.35

2
FHy, =2F L - 2(~F,L) -2 (l%—c;ﬁq‘i) F (C.41).
1
and solve for the force F}
F = X (C.42)

H,
[4L1 + “'%L}:%f;wq

Figure C.11 shows a single leg of the cross under the applied loads. By
equilibrium the sum of the moments at the root of the leg are zero.
That is,

—F1L1+M1+M,=0 (C43)

and using equation C.37
M =2FR1, (C.44)

and is also the maximum bending moment under which the beam is
subject. Substituting equation C.42 into the above C.44 yields.

FH\ L

Mma:x: =1 YY) (045)
22+ gt
Therefore the maximum stress is
Omaz = 3FH1LI (046)

9L1chw2]

lUlhlz [L(+ W_L

APPENDIX C. FINGERTIP SENSOR 147

C.4.8 Case 4

The fingertip may also be subject to a tangent force as shown in figure
C.14. This case, however, is identical to case 3, except for the length
of the moment arm. In this case it is R + H — H; instead of H, and
the maximum stress is therefore

3F(R+ H - Hy)L,
wih? [Lz + ————;—LQL‘;’,f"’Q]

(C.47)

Omaz =

C.4.9 Case5

Assumptions

Figure C.14 shows a force applied to the fingertip, tangent to the sur-
face. It is assumed this force is on the same plane as the loadcell,
therefore stress is only induced on the sides of the flexures. In this
case, the stress due to the force and the stress from the induced mo-
ment superimpose, so that each case must be considered in order to
find the maximum stress on the members. First we will determine the
maximum stress due to the moment FR and then add the maximum
stress determined from case 2. Figure C.15 shows the loadcell rotated
as a result of an applied moment M. It is assumed all the phalanges
are rigid and that the entire outer structure of the loadcell undergoes
a rotation ¢.

Analysis

A single leg of the cross is shown in figure C.11. It is subject to a force F;
and a moment M; applied at its endpoint. By geometric compatibility
the displacement

é = oL, (C.48)

and using equation C.9, the moment can be found in terms of the force

M; = F,IL, (C.49)

APPENDIX C. FINGERTIP SENSOR 148

By symmetry, each leg of cross is under the identical loading as shown
in figure C.15. The sum of the moments must be zero, therefore,

FR=4F,L; 4+ 4F;L, (0.50)
and PR
= .01
Fi=gr (C:51)
and FR
M; = N (C.52)

A free body diagram of a single leg is shown in figure C.11, sum the
moments at the base of the cantilever

M! = —-IZ—R (C.53)

which is the maximum bending moment on the beam. Substitute into
the equation for the stress, gives,

3FR

= — .94
o=3 Fr? (C.54)

Now we must also consider the stress from the tangent force

3w,L2L1F

n= 2(wPhi L3 + 2w,h, LF) (C.55)

The sum, therefore, will be the maximum stress on the beam

3w L3L

—— S Zp F (C.56)

= |Zhw? T APz + 2w,k L)

C.4.10 Case 6

Suppose the fingertip is subject to tangent force on the outer radius of
the hemisphere. As in the previous case, we must again consider the
superposition of two stresses, since the stress due to the induce moment

APPENDIX C. FINGERTIP SENSOR

149

and the vertical force superimpose on one of the legs of the cross. From
the analysis in the first case the stress was

3FL

g = —_—
mazx 4wlh12

and from case 2, substitute R for H; yields

Omar =

3F(R+ H - Hy)L,
wih? [Lz + —:—LQL';,IIGw]

The maximum stress in this case is therefore

Omazr =

3L 3RL,

4w1 h

+
2 9L;coGw?

C.4.11 Maximum stress

] F

(C.57)

(C.58)

(C.59)

The maximum stresses under the different loading modes of all six case

are listed below
O rmazx

Umaa:

amaa:

ama:c

ama:v

Uma:c

3FL
4w,h?

SwpliL,F
2wphpLi+2uwi M L3)

3FHL;
9LICQGW2J

w;h? [L1+ —ﬁ;l-"

3F(R+H-H,)L,

9LjcGwl
‘w‘h? [L‘-'- %?—-LJ

[3u L3L
3R wy Lip Ly
_2h,w,’ + 2(w;’h1Lf,+2w;’,hpL;r) F

.

3L 3RL,;
qw A7 + 9Ljcy Gu? F

! wh? [LH‘ W—LJ
1

(C.60)

APPENDIX C. FINGERTIP SENSOR 150

’f L\\,M‘ LS w-,.'—t
T =T
o

= X

Figure C.4: Cantilever beam subject to a force F and a moment M at its end
point.

Figure C.5: Force applied on the top of the hemisphere along the axis of the
sensor

Figure C.6: Leg of the loadcell under a symmetrically applied vertical load

APPENDIX C. FINGERTIP SENSOR s

FlgureC 7 Aheﬁmwﬁeech»pﬁdbﬁom&ﬂnmh}he with
themncrloudedl .

§
O IH .
¢4 RGID
,
1 T g /e
. I J Hy
K KT
3| o } Wigd
#

Figure C.8: Thmmwm.umdhhnﬁnd
smccthfomulwmhw o dondonll it s ahepmnnd to move rigidly

APPENDIX C. FINGERTIP SENSOR 152

Figure C.9: Horizontal force applied to the lowest portion of the fingertip shell

Figure C.10: The outer phalanges are all assumed to be rigid. The major stress

components are located on the upper and lower surfaces on the legs parallel to the
externally applied force at the cantilevered end.

APPENDIX C. FINGERTIP SENSOR 153

Figure C.11: The legs parallel to the applied force are subject to both a force -
and a moment at their end points, while the legs perpendicular to the force are
only subject to a pure torsional moment.

Figure C.12: The legs parallel to the applied force undergo a rotation at the end

point of ¢ and a displacement of ¢L;, under an applied force F; and a moment
M.

APPENDIX C. FINGERTIP SENSOR o 154

Figure C.13: mumumwmmmmu'
ugleéuubjcttou-a&iml&

Figure C.14: Ammm
mtheuntphuuthw

4 10 the suribce of the Sagertip

APPENDIX C. FINGERTIP SENSOR o 188

M=FR

Figure C.18: mmmmam»umwmw

to an angle ¢ under and applisd moment A, wmﬁpmqm
th«eﬁuhﬁﬁuﬂ.#ﬁtbdtﬁm

Appendix D

Slip analysis software

D.1 Introduction

The software was not included just to add bulk to this master’s thesis.
In fact, the construction of the LISP functions along with the documen-
tation are similar to the development of the chapters in the thesis. The
high level functions are listed at the beginning of every section, while
the lower level supporting function are listed in a separate section, one
for each high level function.

D.2 GRASP

156

D “e S e S S
Q ~
‘-'- ~

CL TINE TON P

~

s Ne Se N

Ne Ne Ne Ne N we we Se S

L T P

’
~e

LTI TR . T TR TR Y VY

e Na we

-~

~e No Ne N

e e e

~e we v

LTI YO

~e N

~

-*- Mode:LISP; Base:10; Syntax: Common-lisp; Package: USER —-*-

~e

FILE: CONSTRAINT.LISP
This file contains functions which analysis the relationship between a grasped obj!
and grasping articulators. The file is divided into six major sections:
1. General functions and variables

This section contains functions and variables used by all the other
sections in the file. Many of the variables will come from the sensing
on the hand. For example *contact-points*, from the fingertip and
joint sensors. Other variables must be specified, but may in the
in the future be sensed as well. For instance, *cg* the center of
gravity of the object, and *contact-surfaces* the local surface shape
in the area of the contact.

1.1 Define general global variables
1.2 Set initial values of the general global variables

1.3 General utility functions
1.3.1 General math functions
1.3.2 General matrix manipulation functions
1.3.2.1 Major manipulation functions
a. ADD-ARRAY-LIST
b. MULTIPLY-ARRAY-LIST
¢. ROW-REDUCED-ECHELON-MATRIX
. TRANSFORM-DIRECTION-GLOBAL-FRAME
. TRANSFORM-DIRECTION-FRAME-GLOBAL
. TRANSFORM-POINTS-GLOBAL-FRAME
. TRANSFORM-POINTS~-FRAME-GLOBAL
. TRANSFORM-FRAMES-GLOBAL-FRAME
. TRANSFORM-FRAMES-FRAME-GLOBAL
. GENERATE-FRAME
k. GENERATE~FRAME-POINTS
1.3.2.2 Auxiliary functions
a. ADD-ARRAY~-LIST
b. MULTIPLY-ARRAY-LIST
c¢. ROW-REDUCED-ECHELON-MATRIX
d. TRANSFORM-DIRECTION-GLOBAL-FRAME
e. TRANSFORM-DIRECTION-FRAME-GLOBAL
f. TRANSFORM-POINTS-GLOBAL-FRAME

U TG Hh O Q

g. TRANSFORM~-POINTS-FRAME-GLOBAL
h. TRANSFORM-FRAMES-GLOBAL-FRAME
i. TRANSFORM-FRAMES-FRAME-GLOBAL
j. GENERATE-FRAME

k. GENERATE-FRAME-POINTS

l. General

1.3.3 General matrix output functions
1.3.3.1 Major matrix output functions
a., PRINT-ARRAY-LIST
1.3.3.2 Auxiliary functions
a. PRINT-ARRAY-LIST
b. General

1.4 Graphics functions
1.4.1 Define graphics variables
.4.2 Defind functions to set graphics variables
.4.3 Set graphics functions
.4.4 Graphics functions
1.4.4.1 Screen creation and initialization functions
a. MAKE-GRASP-SCREEN

e

Ne “eo ~e

.~ we w,

(‘D\-

0 .

~

O v~ O~

“e e W,

e wa N

~

A T TR TR

of

~.

~ ~e ~ ~e

e we wg

~e

b. KILL-GRASP-SCREEN

C. START-MONITOR-MSG

d. CREATE-GRASP-SCREEN

e. CLEARSCREEN
1.4.4.2 Drawing functions
DRAW~-2D-GRASP-WINDOW
. DRAW-3D-GRASP-WINDOW
SPHERE-3D-GRASP~-WINDOW
. DRAW-COORDINATE-SYSTEM
. DRAW-COORDINATES
. DRAW-3D~-LIST
1.4.5 Auxiliary graphics functions

HhOo Qoo

Sensed and global variables

This section defines and initializes sensed and global variables used in
the other sections. The only variables which are truely sensed externally ar!

contact-points a list of contact~-points in the hand space
contact-normals a list of normals at the contact points in han!
space.

The force and tactile sensing fingertip need to be working for these variable!

to be read. Until then these variables will have to be constructed. So there
are a number of functions and variables which are used to construct the varia!

contact-points and *contact-normals*. These functions and variables are
temporary and are used only for simulation. When the sensors are connected
these variables and functions will have to be removed.

Temporary variables used to construct *contact-points*

contact-points-object-space a list of contact points in the
object space

contact-normals-object-space a list of contact normals in the
object space

*cgx the center of gravity of the object

major-axis the normal indicating the direction!

major axis of an axisymmetric objec!

Constraint functions

This section contain functions which analysis the constraint created by
the contacts on the grasped object. An infinitesimal analysis involving
virtual work and a finite motion analysis involving the shape of contact
surface are both included in determine the overall constraint imposed by
the contacts

3.1 Define constraint variables

3.2 Set constraint variables
3.2.1 Functions for setting constraint variables

3.3 Constraint analysis functions
3.3.1 Major analytic functions
a. CONSTRUNT-VIRTUAL-WORK-LIST
b. DETERMINE-CONTACT-TYPES
3.3.1 Auxiliary functions

Body wrench

P T TR

Ne me we Ne

L T TR TR T

~

W ~ Q e ve N
[}
ot

~e wo

e Ne Ne N s

s e we

N v we o~

[

S T
<]

~e

e Ne S e wa N v

D P T

e e we

~

~

~

In this section the wrench on the ocbject resulting from forces excluding
contact forces from the robot is calculated. Body wrenches may result from
gravity, accelerations, electromagnetic forces, and contacts other than
fingertips. The only body wrenches calculated in the present program are
those resulting from gravity.

4.1 Define body wrench variables
4.2 Set body wrench variables
4.3 Body wrench functions
4.3.1 Major body wrench functions
a. ORIENTATION
4.3.2 Auxiliary functions
a. ORIENTATION
Contact wrenches
The wrenches in the contact space for each contact are calculated assumin!
a certain stiffness at the fingertips, a body wrench (section 3), and an off!
wrench (section 6).

5.1 Define contact wrench variables

5.2 Set contact wrench variables
5.2.1 Functions to set contact wrench variables

5.3 Contact wrench functions
5.3.1 Major contact wrench functions
a. CONSTUCT-CONTACT-WRENCH
5.3.2 Auxiliary functions
a. CONSTUCT-CONTACT~-WRENCH

Contact types
In this section the type of contact is determined given certain friction!
criteria and the wrench in the contact space. The different types of contac!

are
(1) Soft finger contact
(2) Point contact with friction
(3) Point contact without friction
(4) No contact

6.1 Define contact type variables
6.2 Set contact type variables

6.3 Contact type functions
6.3.1 Major contact type functions
a. CONTACT-TYPE
6.3.2 Auxiliary functions
a. CONTACT-TYPE

Offset wrench

The internal grasping force exerted by the contacts on an object are not
determined by external forces and may be varied arbitarily on an object.
The space of possible solutions to the grasping force problem varies with
the number of contacts:

Number of contacts Dimension of solution space

e Ne We we Se e

Ne Ne Ne Ne Se N

Do S TR 7 SRR

~e

~

~e

e N

e~

Ne Ne Ne S e N e e Ne Ne Se N Se e N

e Se wa

~

e Mo Ne Ne e W

Ne v N

0
1
3
6
3

S Wbk

* (n-2) n>=3

For a two fingered grasp, the dimension of the solution space on the
internal grasping forces is one. That is, in general, the squeeze force
between the two fingers may be varied.

For three fingers there is a three dimensional space of solutions.
Conceptually this space can be simplified. If there are three forces
exerted on an object, and at least one force is not parallel to the others,
and the object is not accelerating, then the three
forces intersect at a point in space. Furthermore, these intersection point!

lie on the plane formed by the three contacts points. The three dimensional
solution space of grasping forces is then a point (X,¥Y) lying on the graspin!

force plane, and F the grasping force magnitude.

For more than three fingers, the solution space grows by 3*(n-2), where n
is the number of contacts.
7.1 CONSTRUCT-OFFSET-WRENCH
7.2 OFFSET-WRENCH-THREE-CONTACTS
Controlled slip

This is an experimental section formed of functions which use the functio!
of the previously descibed sections. The number of controllable variables t!

execute dexterous control of an object within a grasp of a three fingered ha!

is enormous:

Controllable variables Dimension of space
Grasping force 3
Orientation 3
Stiffness 9

(more here)

8.1 Define controlled slip variables
8.2 Set controlled slip variables
8.3 Controlled slip variables

8.3.1 PERMISSIBLE TWIST

accepts: twist

assumes: orientation
grasping force center

returns:; maximally constrained state which allows the

allows the specified twist

orientation
grasping force magnitude

8.3.2 DETERMINE-CONSTRAINT-STATE accepts: grasping force center
grasp force magnitude
assumes: orientation
returns: constraint state

8.3.3 MAP-CONSTRAINT-SPACE

; accepts: force-magnitude
H assumes: orientation

; stiffness

H returns: two-dimensional map of constrain states

H as a function of (x,y) the grasping force
H center

; 9. Hand actuation functions

H This section contains functions to perform actual motions of the hand.
; 9.1 Define actuations variables

; 9.2 Define functions to set actuation functions

; 9.3 Set actuation variables

9.4 Grasp functions

9.4.1 MOVE-TO-CONTACT-POINTS assumes: *contact-frames*
returns: moves fingers to points defined !

e e we

in *contact-frames¥*

; 9.4.2 GRASP accepts: grasping force center
; grasp force magnitude
assumes: stiffness

returns: motion of the fingers

-~

~e

9.5 Grasp auxiliary functions
9.5.1 MOVE-TO~CONTACT-POINTS auxiliary functions
9.5.2 GRASP auxiliary funcitons

e Ne e e we

; 10. Menu
Standard motion options:

Screen graphics options:

CLEARSCREEN :clears "grasp-window” pane of "grasp-scr!
een"
; screen
; DRAW COORDINATE SYSTEM :draws the three dimensional coordinate s!
ystems
; for the hand, object, and contacts
; MAP CONSTRAINT SPACE :plots the constraint states on the two
H dimensional grasp surface for a specifie!
d
; grasp force magnitude
H Controlled slip options:
; RESET GLOBAL VARIABLES :shows the current values of the global
; variables and allows the user to change !
them
; DETERMINE CONSTRAINT STATE:accepts the grasping force center and th!
e
H grasping force magnitude
H assumes the stiffness and orientation
; and returns the constraint state
H PERMISSIBLE TWIST :accepts a twist
H assumes an orientation
; and returns the maximally constrained st!
ates

; which allows that twist
: Hand actuations options:

. o~

MOVE TO CONTACT POINTS :moves fingers to the points cooresspondi!

ng to

; those in *contact-frames*

; PICK GRASP FORCE CENTER :plots the contacts on the two dimensiona!

1

H grasp surface and allows the user to cho!

ose

; a particular force magnitude and use the!
joy

H stick to pick a force center and actuate!

3 the

; hand accordingly

; Advanced hand actuation options

; CONTROLLED SLIP :allows the user to enter an object motio!

n

; and the hand tries to actuate it.

; 11. Demos

H This section contains demo programs which are based on the analyses of t!

he

H the previous section.

;;***!
* %k %k

% N

1. General functions and variables

AT Y

~

;;;***!
* % %k %k %k

1.1 Define variables

1.2 Set default variable values section

1.2.1 Functions to set default variable wvalues
1.2

1.3

’

~

.2 Set default variable values
General utility functions

e wy we

; 1.3.1 General math functions
; 1.3.1.1 SQR
(defun sqr (x)
{cond ((not (numberp x)) 0)
(t (* x x))))

; 1.3.2 General matrix manipulation functions
; 1.3.2.1 ADD-ARRAY-LIST
(defun add-array-list (array-list)
(cond ((null array-list) nil)
((atom array-list) array-list)
(t (add-two-arrays (add-array-list (car array-list))
(add-array-list (cdr array-1list))))))

H 1.3.2.1.A ADD-ARRAY~LIST Auxiliary
(defun add-two-arrays (array~l array-2)
{cond ((and (not array=-1l) (not array-2)) nil)

((not array-1l) array-2)

({(not array-2) array-1)

((vectorp array-1)

(let* ((elements (array-dimension array-1 0))
(sum-array (make-array elements)))
{do ((1i 0 (+ i 1)))

({(= 1 elements) sum-array)
(setf (aref sum-array i) (+ (aref array-1 i) (aref array-2 i))))))
(t (let* ((rows (array-dimension array-1 0))
(columns (array-dimension array-2 1))
(sum-array (make-array (list rows columns))))
(do ((i 0 (+ i 1)))
((= i rows) sum-array)
(do ((3 0 (+ 3 1)))
((= j columns) nil)
(setf (aref sum-array i j) (+ (aref array-1 i j) (aref array-2 i 3j)))))!
))))

; 1.3.2.2 MULTIPLY-ARRAY~LIST
(defun multiply-array-list (array-list)
(cond ((null array-list) nil)
((atom array-list) array-list)
(t (multiply-two-arrays (multiply-array-list (car array-list))
(multiply-array-list (cdr array-list))))))

; 1.3.2.2.A MULTIPLY-ARRAY-LIST Auxiliary
(defun multiply-two-vectors (array-1 array-2)

(let* ((elements-1 (array-dimension array-1 0))
(elements-2 (array-dimension array-2 0))
(product-array (initialize-array elements-1 elements-2)))
(cond ((not (= elements-1 elements-2)) nil)
(t
(do ((J O (+ 3 1)))
((= J elements-1) product-array)
{(do ((k 0 (+ k 1)))
({(= k elements-1) nil)
(setf (aref product-array j k)
(* (aref array-1 j) (aref array-2 k)))))))))

(defun multiply-array-vector (array vector)
(let* ((rows-1 (array-dimension array 0))
(elements (array-dimension vector 0))
(product-array (initialize-vector elements)))
(do ((3 0 (+ 3 1))
((= j rows-1) product-array)
(do ((k 0 (+ k 1)))
((= k elements) nil)
(setf (aref product-array j)
(+ (aref product-array j)
(* (aref array j k) (aref vector k))))))))

(defun multiply-two-arrays (array-1 array-2)
(cond ({(and (not array-1) (not array-2)) nil)
((not array-1l) array-2)
((not array-2) array-1)
((and (not (arrayp array-1)) (not (arrayp array-2))) (* array-1 array-2))
((not (arrayp array-1)) (multiply-constant-array array-1 array-2))
((not (arrayp array-2)) (multiply-constant-array array-2 array-1))
((vectorp array-1)
(cond ((not (= (array-rank array-2) 1)) nil)
(t (multiply-two-vectors array-l array-2))))
{{not (equalp (array-dimension array-1 1)
(array-dimension array-2 0))) nil)

((vectorp array-2) (multiply-array-vector array-1 array-2))
(t (let* ((rows-1 (array-dimension array-1 0))

(rows-2 (array-dimension array-2 0))

(columns-2 (array-dimension array-2 1))

(product-array (initialize-array rows-1 columns-2)))

(do ((i 0 (+ 1 1)))
((= i columns-2) product-array)
(do ((3 0 (+ 3 1)))
((= j rows-1) nil)p

{(do ((k 0 (+ k 1)))
((= k rows=-2) nil)
(setf (aref product=-array j i)
(+ (aref product-array j i)
(* (aref array-l1 3j k) (aref array-2 k 1)))1n)))))))

(defun multiply-constant-array (constant array)
(cond ((vectorp array)
(let* ((elements (array-dimension array 0))
(product-array (make-array elements)))
(do ((1 0 (+ 1 1)))
((= i elements) product-array)
(setf (aref product-array i) (* constant (aref array i))))))
(t
(let* ((rows (array-dimension array 0))
(columns (array-dimension array 1))
(product-array (make-array (list rows columns))))
{do ((1 0 (+ i 1)))
({(= 1 rows) product-array)
(do ((3 0 (+ 3 1)))
({(= j columns) nil)
(setf (aref product-array i j) (* constant (aref array i 3)))))))))

; 1.3.2.3 ROW-REDUCED-ECHELON
(defun row-reduced-echelon (array)
(let ((rows (array-dimension array 0))
(columns (array-dimension array 1)))
(row-reduced-echelon-aux (diagonalize array) (- rows 1) 0 rows columns)))

; 1.3.2.3.A ROW-REDUCED-ECHELON Auxiliary
(defun zero-array (rows columns)
(cond ((or (< rows 0) (< columns 0)) nil)
((and (= rows 0) (= columns 0)) nil)
((= rows 0) (zero-vector columns))
((= columns 0) (zero-vector rows))
(t
(let ((array (make-array (list rows columns))))
(do ((1 0 (+ i 1)))
((= 1 rows) array)
(do ((J O (+ 3 1)))
({= j columns))
(setf (aref array i j) 0)))))))

(defun zero-vector (elements)
(cond ((<= elements 0) nil)
(t
(let ((vector (make-array elements)))
{(do ((i 0 (+ i 1)))
((= i elements) vector)
(setf (aref vector i) 0))))))

(defun row-reduced-echelon-aux (array current-row current-column rows columns)
(cond ((= current-row 0) array)
((zero-row array current-column current-row)
(row-reduced-echelon-aux array (- current-row 1) 0 rows columns))
((= current-column columns)
(row-reduced-echelon-aux array (- current-row 1) 0 rows columns))
((< (sqr (aref array current-row current-column)) 0.00001)

(row-reduced-echelon-aux array current-row (+ 1 current-column) rows columns))

(t (row-reduced-echelon-aux

(row-reduced-echelon-aux-1l array current-row current-row current-column row!

5)
(- current-row 1)
0 rows columns))))

(defun row-reduced-echelon-aux-1 (array inc-row current-row current-column rows)

(cond ((= inc-row 0) array)
(t

(- inc-row 1) current-row current-column rows))))

(defun diagonalize (array)
{let ((rows (array-dimension array 0))

(columns (array-dimension array 1)))
(diagonalize-array-aux array 0 0 rows columns)))

(defun zero-column (array current-column current-row)
(let ({(rows (array-dimension array 0))

(sum 0))
(do ((i current-row (+ i 1)))
({(= 1 rows) (< (sgr sum) 0.00001))
(setg sum (+ sum (abs (aref array i current-column)))))))

(defun zero-~row (array current-column current-row)
(let ((columns (array-dimension array 1))

(sum 0))
(do ((i current-column (+ i 1)))
0.00001))

((= i columns) (< (sgr sum)
(setq sum (+ sum (abs (aref array current-row i)))))))

(defun diagonalize-array-aux (array current-column current-row rows columns)

(cond ((= current-column (min rows columns)) array)
((zero-column array current-column current-row)

(row-reduced-echelon-aux-1
(add-x-times-rl-row~to-r2-row array current-row current-column (- inc-row 1))

(diagonalize-array-aux array {(+ 1 current-column) current-row rows columns))

(t
(diagonalize-array-aux
(initialize-column-aux

(divide~r-row-by-element-rc array current-row current-column)

current-column current-row (+ 1 current-row) rows)
{(+ 1 current-column)
(+ 1 current-row)

rows
columns))))

(defun initialize-column-aux (array initial-column initial-row current-row rows)

(cond ((= current-row rows) array)
(t
(initialize-column-aux
(add-x-times-rl-row-to-r2-row array
initial-row initial-column current-row)

initial-column
initial-row

(+ 1 current-row)
rows))))

(defun divide-r-row-by-element-rc (array r c)
(let ((columns (array-dimension array 1))
(first-element (aref array r c))
(new-array (initialize array)))
(sqr first-element) 0.00001)

(cond ((<
(divide-r-row-by-element-rc (interchange-last-row—and-row-r array r)

(t
(do ((i c (+ 1 1)))

((= i columns) new-array)
(/ (aref array r i) first-element)))))))

(setf (aref new-array r i)

(defun add-x-times-rl-row-to-r2-row (array rl cl r2)
(cond ((< (sqr (aref array rl cl)) 0.00001) array)

(t
(let ({columns (array-dimension array 1))

r c))

(new-array {(initialize array))
(constant (* -1 (aref array r2 cl))))
(do ((i cl (+1i 1)))
((= i columns) new-array)
(setf (aref new-array r2 i) (+ (* constant (aref array rl i))
(aref array r2 i))))))))

(defun interchange-last-row-and-row-r (array r)
(let ((last-row (- (array-dimension array 0) 1))
(columns (array-dimension array 1))
(new-array (initialize array)))
(do ((i 0 (+ i 1)))

((= i columns) new-array)

(setf (aref new-array r i) (aref array last-row i))

(setf (aref new-array last-row i) (aref array r i)))))

(defun transpose-contact-frame (contact-frame)
(let* ((t-contact-frame (initialize contact-frame)))
(do ((1i 0 (+ 1 1)))
({(= 1 3) t-contact-frame)
{(do ((J 0 (+ 3 1)))
(=3 3N
(setf (aref t-contact-frame i j) (aref contact-frame j i))))))

; 1.3.2.4 TRANSFORM-DIRECTION-GLOBAL~FRAME
(defun transform-direction-global-frame (frames objects)
(cond ((and (listp objects) (listp frames))
(transform-direction-global-frame-lists frames objects))
({listp objects)
(transform-direction-global-frame-list frames objects))
(t
(transform-direction-object-global-frame frames objects))))

; 1.3.2.4.A TRANSFORM-DIRECTION-GLOBAL-FRAME Auxi'!
liary
(defun transform-direction-global-frame-lists (frames objects)
(cond ((null frames) nil)
(t (cons (transform-direction-object-global-frame (car frames) (car objects))
(transform-direction-global-frame-lists (cdr frames) (cdr objects))))))

(defun transform-direction-global-frame-list (frame objects)
(cond ((null objects) nil)
(t (cons (transform-direction-object-global-frame frame (car ocbjects))
(transform-direction-global-frame-list frame (cdr objects))))))
(defun transform-direction-object-global-frame (frame object)
{(cond ((vectorp object) (transform-direction-vector-global-frame frame object))
((arrayp object) (transform-direction-array-global-frame frame object))
(t nil)))

(defun transform-direction-array-global-frame (frame array)
(let* ((rows (array-dimension array 0))
{(columns (array-dimension array 1))
(new-array (make-array (list rows columns))))
(do ((1 0 (+ i 3)))
((= 1 rows) new-array)
(do ((3 0 (+ 3 1)))

((= j columns))

(do ((k 0 (+ k 1)))

((= k 3))
(setf (aref new-array (+ i k) jJ)
(+ (* (aref array i j) (aref frame 0 k))

(* (aref array (+ i 1) j) (aref frame 1 k))
(* (aref array (+ i 2) Jj) (aref frame 2 k)))))))))

(defun transform-direction-vector-global-frame (frame vector)
(let* ((elements (array-dimension vector 0))

(new-vector (make-array elements)))
(do ((i 0 (+ 1 3)))
((= i elements) new-vector)
(do ((k 0 (+ k 1)))
((= k 3))
(setf (aref new-vector (+ i k))
(+ (* (aref vector i) (aref frame 0 k))
(* (aref vector (+ i 1)) (aref frame 1 k))
(* (aref vector (+ i 2)) (aref frame 2 k))))))))
; 1.3.2.5 TRANSFORM-DIRECTION-FRAME-GLOBAL
(defun transform-direction-frame-global (frames objects)
(cond ((and (listp objects) (listp frames))
(transform-direction-frame-global-lists frames objects))
((listp objects)

(transform-direction-frame-global-list frames objects))
(t

(transform~direction-object~frame-global frames objects))))

I3
7

1.3.2.5.A TRANSFORM-DIRECTION-FRAME-GLOBAL Auxi!
liary

(defun transform-direction-frame-global-lists (frames objects)
(cond ((null frames) nil)

(t (cons (transform-direction-object-frame-global (car frames)

(car objects))
(transform-direction-frame-global-lists (cdr frames)

(cdr objects))))))

(defun transform-direction-frame-global-list

(frame objects)
(cond ((null objects) nil)

(t (cons (transform-direction-object-frame-global frame (car objects))
(transform-direction-frame~global-list frame (cdr objects))))))

(defun transform-direction-object-frame-global (frame object)
{(cond ((vectorp obiject)
({arrayp object)
(t nil)))

(transform-direction-vector-frame-global frame object))
(transform-direction-array-frame-global frame object))

(defun transform-direction-array-frame-global (frame array)
(let* ((rows (array-dimension array 0))
(columns (array-dimension array 1))

(new-array (make-array (list rows columns))))
(do ((1 0 (+ i 3)))

((= 1 rows) new-array)
(do ((3 0 (+ 3 1)))
({(= j columns))
(do ((k 0 (+ k 1)))
((= k 3))
(setf (aref new-array (+ i k) 3J)

(+ (* (aref array i j) (aref frame k 0))
(* (aref array (+ i 1) j) (aref frame k 1))
(* (aref array (+ i 2) j) (aref frame k 2)))))))))

(defun transform-direction-~vector-frame-global (frame vector)
(let* ((elements (array-dimension vector 0))
(new-vector (make-array elements)))
(do ((1 0 (+ 1 3)))
((= 1 elements) new-vector)
(do ((k 0 (+ k 1)))
((= k 3))
(setf (aref new-vector (+ i k))
(+ (* (aref vector i) (aref frame k 0))
(* (aref vector (+ i 1)) (aref frame k 1))
(* (aref vector (+ i 2)) (aref frame k 2))))))))
; 1.3.2.6 TRANSFORM-POINTS~-GLOBAL-FRAME
(defun transform-points-global-frame (frames objects)
(cond ((and (listp objects) (listp frames))

(transform-points-global-frame-lists frames objects))
({listp objects)

(transform-points-global-frame-list frames objects))
(t

(transform-points-~object-global-frame frames objects))))
ary

(defun transform-points-global-frame-lists (frames objects)
(cond ((null frames) nil)

(t (cons (transform-points-object-global-frame (car frames)
(transform~-points~global-frame-lists (cdr frames)

1.3.2.6.A TRANSFORMP-POINTS-FRAME-GLOBAL Auxili!

(car objects))
(cdr objects))))))

(defun transform-points-global-frame-list (frame objects)
(cond ((null objects) nil)
(t (cons (transform-points-object-global-frame frame (car objects))
(transform-points-global-frame-list frame (cdr objects))))))

(defun transform-points-object~global-frame (frame object)
(cond ((vectorp object) (transform-points-vector-global-frame frame object))

{(arrayp object) (transform-points-—array-global-frame frame object))
(t nil)))

(defun transform-points-array-global-frame (frame array)
(let* ((rows (array—-dimension array 0))

(columns (array-dimension array 1))

(new-array (make-array (list rows columns))))
(do ((i 0 (+ 1 3)))

((= i rows) new-array)
(do ((3 0 (+ 3 1))
((= j columns))
(do ((k O (+ k 1)))
((= k 3))
(setf (aref new-array (+ i k) 3j)

(+ (* (- (aref array i j) (aref frame 0 3)) (aref frame 0 k))
(* (- (aref array (+ i 1) j) (aref frame 1 3)) (aref frame 1 k))
(* (- (aref array (+ i 2) j) (aref frame 2 3)) (aref frame 2 k)))))))!
))

(defun transform-points-vector-global~-frame (frame vector)
(let* ((elements (array-dimension vector 0))
(new-vector (make-array elements)))
(do ((1 0 (+ 1 3)))
((= i elements) new-vector)
(do ((k 0 (+ k 1)))
((= k 3))
(setf (aref new-vector (+ i k))
(+ (* (- (aref vector i) (aref frame 0 3))
(* (- (aref vector (+ 1 1)) (aref frame 1 3))
(* (- (aref vector (+ i 2)) (aref frame 2 3))

(aref frame 0 k))
(aref frame 1 k))
(aref frame 2 k))))))))
; 1.3.2.7 TRANSFORM~POINTS-FRAME-GLOBAL
(defun transform-points-frame-global (frames objects)
(cond ((and (listp objects) (listp frames))
(transform-points-frame-global-lists frames objects))
({(listp objects)
(transform-points-frame-global-list frames objects))
(t

{(transform-points-object-frame~global frames objects))))

r

1.3.2.7.A TRANSFORM-POINTS-FRAME-GLOBAL Auxilia!
ry

(defun transform-points-frame-global-lists (frames objects)
(cond ((null frames) nil)
(t (cons (transform-points-object-frame-global (car frames)

(car objects))
(transform-points-frame-global-lists (cdr frames)

(cdr objects))))))

(defun transform-points-frame-global-list (frame objects)
{cond ((null objects) nil)
(t (cons (transform-points-object-frame-global frame (car objects))
(transform-points~frame-global-list frame (cdr objects))))))

(defun transform-points-object-frame-global (frame object)
(cond ((vectorp object) (transform-points-vector-frame-global frame object))

((arrayp object) (transform-points-array-frame-global frame object))
(t nil)))

(defun transform-points-array-frame-global (frame array)
(let* ((rows (array-dimension array 0))
(columns {(array-dimension array 1))
(new-array (make-array (list rows columns))))
(do ((1 0 (+ 1 3)))
((= i rows) new-array)
(do ((3J 0 (+ 3 1))
((= j columns))
(do ((k 0 (+ k 1)))
((= k 3))
(setf (aref new-array (+ i k) 3J)
(+ (* (aref array i 3J) (aref frame k 0))
(* (aref array (+ i 1) Jj) (aref frame k 1))
(* (aref array (+ i 2) j) (aref frame k 2))
(aref frame k 3))))))))

(defun transform-points-vector-frame-global (frame vector)
(let* ((elements (array-dimension vector 0))
{new-vector (make-array elements)))
{do ((1 0 (+ 1 3)))
((= i elements) new-vector)
(do ((k 0 (+ k 1)))
((= k 3))
(setf (aref new-vector (+ i k))
(+ (* (aref vector i) (aref frame k 0))
(* (aref vector (+ i 1)) (aref frame k 1))
(* (aref vector (+ i 2)) (aref frame k 2))
(aref frame k 3)))))))

; 1.3.2.8 TRANSFORM~-FRAMES-GLOBAL-FRAME
(defun transform-frames-global-frame (frames object-frames)

(cond ((and (listp object-frames) (listp frames))
(transform-frames-global-frame-lists frames object-frames))
((listp object-frames)
(transform-frames-global-frame-~list frames object-frames))
(t

(transform-frame-global-frame frames object-frames))))

; 1.3.2.8.A TRANSFORM-FRAMES-GLOBAL-FRAME Auxilia!
ry

(defun transform-frames-global-frame-lists (frames object-frames)
(cond ((null frames) nil)
(t (cons (transform-frames-global-frame (car frames) (car object-frames))

(transform-frames-global-frame-lists (cdr frames) (cdr object-frames)))!
)))

(defun transform-frames-global-frame-list (frame object-frames)
(cond ((null object-frames) nil)
(t (cons (transform-frame-global-frame frame (car object-frames))
{transform-frames-global-frame-list frame (cdr object-frames))))))

(defun transform-frame-global-frame (frame object-frame)
(let* ((new-object-frame (make-array ' (3 4))))
(do ((1 0 (+ i 1)))
((=1i 3))

{(do ((3 0 (+ 3 1)))
(=3 3
(setf (aref new-object-frame j i)
(+ (* (aref object-frame 0 i) (aref frame 0 j))
(* (aref object-frame 1 i) (aref frame 1 j))
(* (aref object-~frame 2 i) (aref frame 2 3Jj))))))
(do ((i 0 (+ 1 1))

((=
(setf

i 3) new-object-frame)
(aref new-object-frame i 3)

(+ (* (- (aref object-frame 0 3) (aref frame 0 3)) (aref frame 0 1i))
(* (- (aref object-frame 1 3) (aref frame 1 3)) (aref frame 1 i))
(* (- (aref object-frame 2 3) (aref frame 2 3)) (aref frame 2 i)))))))

; 1.3.2.9 TRANSFORM-FRAMES-FRAME-GLOBAL
(defun transform-frames-frame-global (frames object-frames)
(cond ((and (listp object-frames) (listp frames))

(transform-frames-frame-global-lists frames object-frames))

((listp object-frames)

(transform-frames-frame-global-list frames object~frames))

(t

(transform-frame-frame-global frames object-frames))))

; 1.3.2.9.A TRANSFORM-FRAMES-FRAME~GLOBAL Auxilia!
ry
(defun transform-frames-frame-global-lists (frames object-frames)
{cond ((null frames) nil)
(t (cons (transform-frame-frame-global (car frames) (car object-frames))
(transform-frames-frame-global-lists (cdr frames) (cdr object-frames)))!
1))

(defun transform-frames-frame-global-list
(cond ((null object-frames) nil)
{(t (cons (transform-frame-frame-global frame (car object-frames))
(transform-frames-frame-global-list frame (cdr object-frames))))))

(frame object-frames)

(defun transform-frame-frame-global (frame object—-frame)
(let* ((new-object-frame {(make-array ’(3 4))))
(do ((1 0 (+ i 1)))
((= 41 3))
(do ((3 0 (+ 3 1)))

((=3 3N
(setf (aref new-object-frame j i)
(+ (* (aref object-frame 0 i) (aref frame j 0))
(* (aref object-frame 1 i) (aref frame j 1))
(* (aref object~frame 2 i) (aref frame j 2))))))
(do ((1 0 (+ i 1)))
((= 1 3) new-object-frame)
(setf (aref new-object-frame i 3)
(+ (* (aref object-frame 0 3) (aref frame i 0))
(* (aref object-frame 1 3) (aref frame i 1))
(* (aref object-frame 2 3) (aref frame i 2))
(aref frame i 3))))))
; 1.3.2.10 GENERATE-FRAME

(defun generate-frame (points vectors)
(cond ((null points) nil)
({(atom points) (generate-frame-aux points vectors))
(t (cons (generate-frame (car points) (car vectors))
(generate-frame (cdr points) (cdr vectors))))))

; 1.3.2.10 GENERATE~-FRAME Auxiliary
(defun generate-frame-aux (point vector)
(let* ((frame (make-array (3 4)))
(length (sgrt (+ (sqr (aref vector 0))
(sqr (aref vector 1))
(sqr (aref vector 2)))))

(nx (/ (aref vector 0) length))
(ny (/ (aref vector 1) length))
(nz (/ (aref vector 2) length))
(1x) (1ly) (1z) (mx) (my) (mz))
(cond ({= nx 0) (setqg 1x 1) (setqg ly 0) (setq 1z 0))
({(= ny 0) (setq 1lx 0) (setqg ly -1) (setq 1z 0))
{t (setq lx (sqgrt (/ (sqr (/ ny nx)) (+ 1 (sqr (/ ny nx))))))
(setq ly (/ (* -1 nx 1x) ny))
(setg 1z 0)))
(setg mx (- (* ny 1lz) (* nz 1ly)))
(setg my (- (* nz 1x) (* nx 1lz)))
(setg mz (- (* nx ly) (* ny 1x)))
(setf (aref frame 0) 1x)
(setf (aref frame 1) mx)
(setf (aref frame 2) nx)
(setf (aref frame 3) (aref point 0))
(setf (aref frame 0) 1ly)
(setf (aref frame 1) my)

(setf (aref frame ny)
(setf (aref frame 3) (aref point 1))
(setf (aref frame 0) 1z)
(setf (aref frame 1) mz)
(setf (aref frame 2) nz)

NMNNNMNRFRERPRPPRPPRPOOOCO
N
~

(setf (aref frame 3) (aref point 2))

frame))

; 1.3.2.11 GENERATE-FRAME-POINTS
(defun generate-frame-points (points-1l points-2)
(cond ((null points-1) nil)
((atom points-1l) (generate-frame-points-aux points-1 points-~2))
(t (cons (generate-frame-points (car points-1) (car points-2))
(generate-frame-points (cdr points-l) (cdr points=2))))))

; 1.3.2.11 GENERATE-FRAME-POINTS Auxiliary
(defun generate-frame-points-aux (point-1 point-2)
(let* ((length (sqrt (+ (sqr (- (aref point-2 0) (aref point-1l 0)))
(sqr (- (aref point-2 1) (aref point-1 1)))
(sqr (- (aref point-2 2) (aref point-1 2)))
(nx (/ (- (aref point-2 0) (aref point-1 0)) length))
(ny (/ (- (aref point-2 1) (aref point-1 1)) length))
{(nz (/ (- (aref point-2 2) (aref point-1 2)) length))
(normal (make-array ' (3))))
(setf (aref normal 0) nx)
(setf (aref normal 1) ny)
(setf (aref normal 2) nz)
(generate-frame-aux point-1 normal)))

)))

; 1.3.3 General-functions
; 1.3.3.1 COUNT-ATOMS
(defun count-atoms (list)
(cond ({(null list) 0)
((atom list) 1)
((+ (count-atoms (car list))
(count-atoms (cdr list))))))

H 1.3.3.2 INITIALIZE-VECTOR

(defun initialize-vector (elements)
(let ((vector (make-array elements)))
(do ((1i 0 (+ i 1)))
((= 1 elements) vector)
(setf (aref vector i) 0))))

; 1.3.3.3 INITIALIZE-ARRAY
(defun initialize-array (rows columns)
(let ((array (make-array (list rows columns))))
(do ((1i 0 (+ 1 1)))

({(= 1 rows) array)
(do ((J O (+ 3 1)))
((= j columns) nil)
(setf (aref array i 3j) 0)))))

; 1.3.3.4 INITIALIZE
(defun initialize (array)
{let* ((rows (array-dimension array 0))
(columns (array-dimension array 1))
(new-array (make-array (list rows columns))))
(do ((1i 0 (+ i 1)))
((= i rows) new-array)
(do ((3 0 (+ 3 1)))
{((= j columns))
(setf (aref new-array i j) (aref array i j))))))

H 1.3.3.5 TRANSPOSE
(defun transpose (array)
(let* ((rows (array-dimension array 0))
(columns (array-dimension array 1))
(new-array (make-array (list columns rows))))
(do ((1 0 (+ i 1)))
((= i rows) new-array)
{(do ((3 0 (+ 3 1)))
{((= 3 columns))
(setf (aref new-array j i) (aref array i j))))))

; 1.3.3.6 GET-ARRAY~COLUMN
(defun get-array-column (array column)
(let* ((rows (array-dimension array 0))
(vector (make-array rows)))
(do ((1 0 (+ 1 1)))
({(= 1 rows) vector)
(setf (aref vector i) (aref array i column)))))

; 1.3.3.7 ABS-ARRAY

(defun abs-array (array-list)
(cond ((null array-1list) nil)
((atom array-list) (abs-one-array array-list))
(t (cons (abs-array (car array-list))
(abs-array (cdr array-list))))))

(defun abs-one-array (array)
(cond ((vectorp array) (abs-one-vector array))
(t (let* ((rows (array-dimension array 0))
(columns (array-dimension array 1))
(new-array (make-array (list rows columns))))
(do ((1 0 (+ i 1)))
((= i rows) new-array)
(do ((3 0 (+ 3 1)))

((= j columns))

(setf (aref new-array i Jj) (abs (aref array i 3)))))))))

(defun abs-one-vector (vector)
(let* ((elements (array~dimension vector 0))
(new-vector (make-array elements)))
(do ((1 0 (+ i 1)))
((= 1 elements) new-vector)
(setf (aref new-vector i) (abs (aref vector i))))))
H .3.3.7.A ABS-ARRAY Auxiliary
.3.4 General matrix output functions
.3.4.1 PRINT-ARRAY

’

RN

(defun print-array (array-list)
(cond ((listp array-list) (print-array-list array-list))

(t (print-one-array array-list))))

H 1.3.4
(defun print-array-list (array-list)
(cond ((null array-list) nil)
(t (print-array (car array-list))
(print~array-list (cdr array-list))

(defun print-one-array (array)
(cond ((vectorp array) (print~vector array))
(t (print-2d-array array))))

(defun print-2d-array (2d-array)
(write-char #\newline)
(write-char #\newline)
(let ((rows (array-dimension 2d-array 0))
{columns (array-dimension 2d-array 1))
(do ((1i 0 (+ i 1)))
((= 1 rows) nil)
(do ((3 0 (+ 3 1)))
((= j columns) nil)
(prinl (aref 2d-array i j))
(write-char #\space))
(write-char #\newline))))

(defun print-vector (vector)

(write-char #\newline)

(write-char #\newline)

(let ((elements (array-dimension vector 0)))

(do ((i 0 (+ 1 1)))

({(= 1 elements) nil)
(prinl (aref vector i))
(write~-char #\space))))

.1.A PRINT-ARRAY Auxiliary

1))

)

: 1.4 Graphics functions

H 1.4.1 Define graphics variables

(defvar
(defvar
(defvar
(defvar
(defvar
(defvar

grasp-screen)
grasp-window)
view-frame)
scale-2d)
x-origin-24)
y-origin-2d)

scale-3d)
x-origin-3d)
y-origin-3d)
angle-x)
angle-z)

(defvar
(defvar
(defvar
(defvar
(defvar

; 1.4.2
; 1.4.2.
es
(defun construct-view-frame (angle-x angle-z)
(let* ((ct (cos angle-x))

(st (sin angle-x))

(cp (cos angle-z))

{(sp (sin angle-z))

(view-frame (zero-array 3 4)))

(setf (aref view-frame 0 0) cp)

(setf (aref view-frame 0 1) (* -1 ct sp))
(setf (aref view-frame 0 2) (* -1 st sp))
(setf (aref view-frame 1 0) sp)

(setf (aref view-frame 1 1) (* ct cp))
(setf (aref view-frame 1 2) (* st cp))
(setf (aref view-frame 2 () 0)

Set default variable values section
1 Define functions to set graphics variabl!

(setf (aref view-frame 2 1) (* -1 st))
(setf (aref view-frame 2 2) ct)
view-frame))

; 1.4.2.2 Set graphics variables
(setqg scale-2d 100)

(setq x-origin-2d 300)

(setq y-origin-2d 300)

(setq scale-3d 200)
(setq x-origin-3d 300)
(setq y-origin-3d 500)
(setqg angle-x 0.400)
(setg angle-z 0.400)

(setq view-frame (construct-view-frame angle-x angle-z))

; 1.4.3 Graphics functions
H 1.4.3.1 Screen definition and initialization fun!
ctions
; 1.4.3.1.1 MAKE-GRASP-SCREEN
(defun make-grasp-screen (&optional (proc-msg t))
(if (create-grasp-screen)
(progn (send grasp-screen :activate)
(send grasp-screen :expose)
(send grasp-screen :send-pane 'top-pane :select))
(progn (send grasp-screen :select)
(send grasp-screen :send-pane ’‘top-pane :select)))
(if proc-msg (start-monitor-msg)))

; 1.4.3.1.2 KILL-GRASP-SCREEN
(defun kill-grasp-screen ()
(if (variable-boundp grasp-screen)
(progn (if (variable-boundp pc) (send pc :kill))
(send (send grasp-screen :send-pane ’bottom-pane :process) :reset)
(send grasp-screen :kill)
{(variable-makunbound grasp-screen)
T)
nil))

this function resets the bottom pane lisp listener and starts a the message monitor
use (monitor-msg pc tg ’verbose) if you want verbose message processing...

Ne Ny we e

; 1.4.3.1.3 FORCE-KBD-INPUT~-STRING
(defun force-kbd-input-string (window string)
(loop for i from 0 below (string-length string)
do (send window :force-kbd-input (char-int (char string i)))))

; 1.4.3.1.4 START-MONITOR-MSG
(defun start-monitor-msg ()
(if (variable-boundp pc)

(progn ({send (send grasp-screen :send-pane ‘bottom-pane :process) :reset)
(send grasp-screen :send-pane ’‘bottom-pane ! :clear-screen)
(force-kbd-input-string (send grasp-screen :get—-pane ’bottom-pane)

" (monitor-msg pc tg)")
)
{send grasp-screen :send-pane ’'bottom-pane :line-out
#.(2L:STRING "Parallel connection doesn’t exist. Can’t start message processor")))
T)

; 1.4.3.1.5 CREATE-GRASP-SCREENt
(defun create-grasp-screen ()
(setq grasp-screen (tv:make-window
'tv:bordered~constraint-frame

! :panes
’ ((top-pane tv:window-pane
:label "MAIN LISP LISTENER"
:more-p nil)
(bottom-pane tv:window-pane
:label "MESSAGE PROCESSOR"™
:rmore-p nil)
(grasp-window tv:window
:label "GRASP WINDOW"
tactivate-p t))
’ :configurations
! ({main-config
(:layout
(main-config :row grasp-window right-side)
(right-side :column top-pane bottom-pane))
(:sizes
(right-side (top-pane :even) (bottom-pane :even))
(main-config (right-side 0.3) :then (grasp-window :even))))!
))))

; 1.4.3.2 CLEARSCREEN
(defun clearscreen ()
(send grasp-screen :send-pane 'grasp-window ’:refresh))

; 1.4.3.3 Draw functions
; 1.4.3.3.1 DRAW-2D-GRASP-WINDOW
(defun draw-2d-grasp-window (starting-point ending-point)
(let ((x-start) (y-start)
(x-end) (y-end)
(window-height))
(setq window-height (send grasp-screen :send-pane ‘grasp-window ’:height))
(setq x-start (round (+ x-origin-2d (* scale-2d (aref starting-point 0)))))
(setq y-start (round (+ window-height
(* =1 (+ y-origin-2d (* scale-2d (aref starting-point 1)))))!
))
(setq x-end (round (+ x-origin-2d (* scale-2d (aref ending-point 0)))))
(setq y-end (round (+ window-height (* -1 (+ y-origin-2d (* scale-2d (aref ending-po!
int 1)))))))
(send grasp-screen :send-pane ‘grasp-window ’:draw-line x-start y-start x-end y-end)'!

))

; 1.4.3.3.2 DRAW-3D~GRASP-WINDOW
(defun draw-3d-grasp-window (starting-point ending-point)
(let ((start (zero-vector 3))
(end (zero-vector 3))
(x-start nil)
(y-start nil)
(x-end nil)
(y-end nil)
(window-height nil))
(setq window-height (send grasp-screen :send-pane 'grasp-window ’ :height))
(setqg start (transform-points-global-frame view-frame starting-point))
(setqg end (transform-points-global-frame view-frame ending-point))
(setg x-start (round (+ x-origin-3d (* scale-3d (aref start 0)))))
(setq y-start (round (+ window-height (* -1 (+ y-origin-3d (* scale-3d (aref start 2!
1))
(setq x-end (round (+ x-origin-3d (* scale-3d (aref end 0)))))
(setq y-end (round (- window-height (+ y-origin-3d (* scale-3d (aref end 2))))))
(send grasp-screen :send-pane ’grasp-window ’:draw-line x-start y-start x-end y-end) !
))

; 1.4.3.3.3 SPHERE-3D-GRASP-WINDOW
{(defun sphere-3d-grasp-window (sphere-center radius)
(let ((center (zero-vector 3))
(x-center)
(y—-center)

)

.
’

(integer~radius)
(window-height nil))
window-height (send grasp-screen :send-pane ’‘grasp-window ’:height))

center (transform-points-global-frame view-frame sphere-center))

x-center (round (+ x-origin-3d (* scale-3d (aref center 0)))))

y-center (round (- window-height (+ y-origin-3d (* scale-3d (aref center 2))))!

(setq
(setqg
(setqg
(setq

(setqg
(send

integer-radius (round (* scale-3d radius)))

grasp-screen :send-pane ’‘grasp-window ’:draw-filled-in-circle x-center y-cente!
r integer-radius tv:alu-ior)))

1.4.3.3.4 DRAW-COORDINATES

(defun draw-coordinates (frames length)

‘

(cond ((listp frames)

(draw-coordinate-list frames length))

{(t (draw-coordinate frames length))))

1.4.3.3.4.A DRAW-COORDINATES Auxiliary
(defun draw-coordinate=~list (frames length)

(cond ((null frames) nil)

(t (draw-coordinate (car frames) length)

(draw-coordinate-list (cdr frames) length))))

(defun draw-coordinate (frame length)

(let* ((o-frame (make-array
(x~frame (make-array
(y-frame (make-array
(z-frame (make-array

r(3)
"(3)
" (3)
"(3)

:initjial-contents (list 0 0 0)))

:initial~-contents (list length 0 0)))
:initial-contents (list 0 length 0)))
:initial-contents))

(list 0 0 length)

(origin-3d (transform-points-frame-global frame o-frame))

(x (transform-points-frame-global frame x-frame))
(y (transform-points-frame-global frame y-frame))
(z (transform-points~frame-global frame z-frame)))

(draw-3d-grasp-window origin-3d x)
(draw-3d-grasp-window origin-3d y)
(draw-3d-grasp-window origin-3d z))

(draw-coordinate-labels

frame length))

(defun draw-coordinate-labels (frame length)

(let* ((x-point-1

(make~array

"(3)

:initial-contents

(* length 1.1) 0 (* length -0.05))))

(* length 0.05))))

(* length 0.05))))
(* length -0.05))))

(* length -0.035) 0 (* length 1.15))))

(list
{(x-point-2 (make-array ’ (3) :initial-contents

(list (* length 1.17) 0 (* length 0.05))))
(x-point-3 (make-array ’ (3) :initial-contents

(list (* length 1.1) 0 (* length 0.05))))
(x-point~4 (make-array ’(3) :initial-contents

(list (* length 1.17) 0 (* length -0.05))))
(y-point-1 (make-array ’ (3) :initial-contents

(list 0 (* length 1.1)
(y-point-2 (make-array ’ (3) :initial-contents

(list 0 (* length 1.135) 0)))
(yv-point-3 (make-array ’(3) :initial-contents

(list 0 (* length 1.17)
(y-point-4 (make-array ’ (3) :initial-contents

(list 0 (* length 1.135)
(z-point-1 (make-array ’ (3) :initial-contents

(list
(z-point-2 (make-array ’ (3) :initial-contents

(list (* length 0.035) 0 (* length 1.15))))
(z-point-3 (make-array ’ (3) :initial-contents

(list (* length -0.035) 0 (* length 1.1))))
(z-point-4 (make-array ’(3) :initial-contents

(list (* length 0.035) 0 (* length 1.1)))))

(setg x-point-1
(setq x-point-2
(setg x-point-3
(setq x-point-4
(setqg y-point-1

(transform-points-frame-global frame x-point-1))
(transform-points-frame-global frame x-point-2))
(transform-points-frame-global frame x-point-3))
(transform-points-frame-global frame x-point-4))
(transform-points-frame-global frame y-point-1))

(setqg y-point-2 (transform-points-frame-global frame y-point-2))
{setq y-point-3 (transform-points-frame-global frame y-point-3))
(setq y-point-4 (transform-points-frame-global frame y-point-4))
(setq z-point-1 (transform-points-frame-global frame z-point-1})
(setq z-point-2 (transform-points-frame-global frame z-point-2))
(setq z-point-3 (transform-points-frame-global frame z-point-3))
(setq z-point-4 (transform-points-frame-global frame z-point-4))
(draw-3d-grasp-window x~-point-1 x-point-2)

(draw-3d-grasp-window x-point-3 x-point-4)

(draw-3d-grasp-window y-point-1 y-point-2)

(draw-3d-grasp-window y-point-2 y-point-3)

(draw-3d-grasp-window y-point-2 y-point-4)

{(draw-3d-grasp-window z-point-1 z-point-2)

(draw-3d~grasp-window z-point-2 z-point-3)

(draw-3d-grasp-window z-point-3 z-point=4)))

; 1.4.3.3.5 DRAW-3D-LIST
(defun draw-3d-list (list-center list)
(let ((center (zero-vector 3))
(x-center)
(y-center)
(window-height)
(element)
(n-elements)
(start))
(setq window-height (send grasp-screen :send-pane ’grasp-window ’ :height))
(setq center (transform-points-global-frame view-frame list-center))
(setqg x-center (round (+ x-origin-3d (* scale-3d (aref center 0)}))))
(setq y-center (round (- window-height (+ y-origin-3d (* scale-3d (aref center 2))))!
))
(setqg n-elements (count-atoms list))
(do ((1i 0 (+ i 1)))
{(= i n-elements))
(setq start (round (- x-center (* 10 (/ n-elements 2)))))
(setq element (car list))
{(draw-character (+ (* 10 i) start) y-center element)
(setqg list (cdr list)))))

; 1.4.3.3.6 DRAW-CONTACTS-GRASP-SPACE
(defun draw-contacts-grasp-space ()
(setq view~frame (construct-view-frame 0.4 0.4))
(let~* ((contact-frames-grasp-space
(transform-frames-global~frame *grasp-frame* *contact-frames*))
(grasp-frame-grasp-space (make-array ’ (3 4) :initial-contents ’ ((1 0 0 0)

(010 0)
(0 01 0)))!

(draw-coordinates (first contact-frames-grasp-space) 0.5)
(draw-coordinates (second contact-frames-grasp-space) 0.5)
(draw-coordinates (third contact-frames-grasp-space) 0.5)
(draw-coordinates grasp-frame-grasp-space 1.0)))

; 1.4.3.3.7 DRAW-CHARACTER
(defun draw-character (x y char)
(cond ((numberp char) (send grasp-screen :send-pane ‘grasp-window
! :draw-string (+ 48 char) x y))
(t (send grasp-screen :send-pane ’grasp-window ’:draw-string char x y))))

2 *************************************k**‘k**************‘k******************‘k***********!
* %k k k%

;

H 2. Sensed and global variables

;

I ***!
* k% ok k

1

’

2.0 Temporary variables used to construct globa!

sensed variables for simulation
2.0.1 Define temporary variables

(defvar *original-contact-points-object-space*)
(defvar *original-contact-normals-object-space®*)
(defvar *original-object-framex*)

(defvar *contact-points-object-spacex)

(defvar *contact-normals-object-spacex*)

(defvar *object-frame¥*)

(defvar *hand~frame¥*)
(defvar *grasp-frame*)

.
’

.
’

2.0.2 Set default temporary variables
2.0.2.1 Functions to set default values

(defun set-original-values ()
(setqg *original-contact-points-object-space*

(list (make-array ’(3) :initial-contents ‘(0 1.3 -0.8))
(make-array ’ (3) :initial-contents ‘(0 1.3 0.8))
(make-array ’ (3) :initial-contents /(0 -1.3 0))))

(setq *original-contact-normals-object-space*

(list (make-array ’(3) :initial-contents ‘(0 1 0))
(make-array ‘ (3) :initial-contents (0 1 0))
(make-array ’ (3) :initial-contents ‘(0 =1 0)))))

(set-original-values)

’

(setq

(setqg

(setg
(setq
(setq

.
,

2.0.2.2 Set temporary variables
hand-frame (make-array ‘(3 4) :initial-contents ’((1 0 0 0)
(020 0)
(001 0))))
original-object-frame (make-array ' (3 4) :initial-contents f((0 01 -0.8)
(100 2.7)
(01 0 ~-3.0))))
contact-points-object-space *original-contact-points-object-space*)
contact-normals-object-space *original-contact-normals-object-space*)
object-frame *original-object-frame*)

2.1 Define sensed global variables

(defvar *contact-points*)
(defvar *contact-normals*)
(defvar *contact-framesx)

.
’

I3
’

2.2 Set defualt initial global variables
2.2.1 Functions to set initial global variables

(defun generate-grasp-frame ()
(let* ((x1 (aref (first *contact-frames*) 0 3))

(vl (aref (first *contact-frames*) 1 3))

(zl (aref (first *contact-frames*) 2 3))

(x2 (aref (second *contact~frames*) 0 3))
(y2 (aref (second *contact-frames*) 1 3))
(z2 (aref (second *contact-frames*) 2 3))
(x3 (aref (third *contact-frames*) 0 3))

(y3 (aref (third *contact-frames*) 1 3))

(z3 (aref (third *contact-frames*) 2 3))

{centroid (make-array ’ (3)))

(normal (make-array ‘ (3))))

(setf (aref centroid 0) (/ (+ x1 x2 x3) 3))

(setf (aref centroid 1) (/ (+ yl y2 y3) 3))

(setf (aref centroid 2) (/ (+ zl1l z2 z3) 3))

(setf (aref normal 0) (- (* (- y3 yl) (- z2 zl)) (* (- z3 z1) (- v2 yv1))))
(setf (aref normal 1) (- (* (- z3 zl) (- %2 x1)) (* (- x3 x1) (- 22 z1))))
(setf (aref normal 2) (- (* (- x3 x1) (- y2 yl)) (* (- yv3 yv1) (- x2 x1))))
(generate-frame centroid normal)))

(defun normalize-contact-normals (contact-normals)

(cond

((null contact-normals) nil)
(t (cons (normalize-contact-normal (car contact-normals))
(normalize-contact-normals (cdr contact-normals))))))

(defun normalize-contact-normal (contact-normal)
{let ((magnitude (sqrt (+ (sqr (aref contact-normal 0))

(sqr (aref contact-normal 1))
{sqr (aref contact-normal 2))))))

(setf (aref contact-normal Q) (/ (aref contact-normal 0) magnitude))
(setf (aref contact-normal 1) (/ (aref contact-normal 1) magnitude))
(setf (aref contact-normal 2) (/ (aref contact-normal 2) magnitude))
contact-normal))

(defun normalize-object-frame (object-frame)
(let ((magnitude (zero-vector 3)))

(do

(setf (aref magnitude i) (sqrt (+ (sqr (aref object-frame 0

((i 0 (+i1)))
((=1 3))

(sqr (aref object-frame 1
(sqr (aref object-frame 2

e e e

)))

(do ((3 0 (+ 3 1))

((= 3 3
(setf (aref object-frame j i) (/ (aref object-frame j i) (aref magnitude i))))))

object-frame)

’

2.2.2 Set global-variables

(defun initialize~global-variables ()

(setqg

(setqg
(setg

(setqg

(setqg
(setq

contact-normals-object-space

(normalize-contact-normals *contact-normals-object-space*))

object~frame (normalize-object-frame *object-frame¥*))

contact-points (transform-points-frame-global *object-frame*
contact-points-object-space))

contact-normals (transform-direction-frame-global *object-frame*

contact-normals-object-space))
contact-frames (generate-frame *contact-points* *contact-normals¥*))
grasp-frame (generate-grasp-frame)))

(initialize-global-variables)

;i
% % % Kk K

N ve e e N

i
* %k k
;

(defvar
(defvar
(defvar
(defvar

AR 7Y

-;***!

3. Constraint

AAKAKRKKKAAAAKRAKRAAARAARhhkkhkhkhkhkhkhkhhkhhkhkkhhhhkhhhkkhhkhhkdkhdkhkhkkhkdkkhkhhkkhkhkkkkhkhkhhkhkhkhkhhkhkhhhkkkkk!

3.1 Define constraint variables

basis-wrenches¥)
basis-wrench¥)
virtual-work¥)
contact-types¥)

Set defualt variable value section

3.2.1
3.2.1.1 Functions for setting global variables

(defun construct-basis-wrench (contact-frames)
(cond ((null contact-frames) nil)

(t (cons (transform-basis-wrench *basis-wrench* (car contact-frames))
(construct-basis-wrench (cdr contact-frames))))))

(defun transform-basis-wrench (basis-wrench contact-frame)

(let*

((transformed-basis-wrench

(setf

(setf

(transform-direction-frame-global contact~frame basis-wrench))
(x (aref contact-frame 0 3))
(y (aref contact-frame 1 3))
(z (aref contact-frame 2 3)))
((1 0 (+1 1))
((= i 11) transformed-basis-wrench)

(aref transformed-basis-wrench 3 i)

(+ (* (aref transformed-basis-wrench 1 i) z -1)
(* (aref transformed-basis-wrench 2 i) y)
(aref transformed-basis-wrench 3 i)))

(aref transformed-basis-wrench 4 i)

(+ (* (aref transformed-basis-wrench 2 i) x -1)
(* (aref transformed-basis-wrench 0 i) z)
(aref transformed-basis-wrench 4 1)))

(aref transformed-basis-wrench 5 i)

(+ (* (aref transformed-basis-wrench 0 i) y -1)
(* (aref transformed-basis-wrench 1 i) x)
(aref transformed-basis-wrench 5 1))))))

3.2.1.2 Set constraint variables

(setqg *contact-types* (list (make-array ’ (12) :initial-contents

11101111000 1))

(make-array ’ (12) :initial-contents

11100011000 0))

(make-array ’ (12) :initial-contents

(00100000000 0))

(make-array ’ (12) :initial-contents

(000000000CO0O0 0))))

(setq *basis-wrench* (make-array ‘(6 12) :initial-contents ’((1 0 0 0 0 0 =1 0 0 0 0 0)

(01 00000-10000)
(00100000 -12000)
(000100000 -100)
(0000100000 -10)
(00000100000 -1)))!

(setq *basis-wrenches* (construct-basis-wrench *contact-frames*))

’

.
’

3.3 Constraint functions
3.3.1 CONSTRUCT~VIRTUAL-WORK-LIST

(defun construct-virtual-work-list (basis-wrenches twist)

(cond ((null basis-wrenches) nil)
(t (cons (construct-virtual-work (car basis-wrenches) twist)

(construct-virtual-work-list (cdr basis-wrenches) twist)))))

.
’

3.3.1.A CONSTRUCT-VIRTUAL~-WORK-LIST Auxiliary

(defun construct-virtual-work (basis-wrench twist)
(let ((virtual-work-vector (make-array ’ (12))))
(do ((1 0 (+ 1 1)))
((= i 12) virtual-work-vector)
(setf (aref virtual-work-vector i)
(virtual-work (get-array-column basis-wrench i) twist)))))

(defun virtual-work (wrench twist)

(+ (*
(*
(*
(*
(*
(*

(aref wrench
(aref wrench
(aref wrench
(aref wrench
(aref wrench
(aref wrench

0)
1)
2)
3)
4)
5)

(aref
(aref
(aref
(aref
(aref
(aref

twist
twist
twist
twist
twist
twist

3
4))
5))
0))
1))
2))))

3.3.2 DETERMINE-CONTACT-TYPES

(defun determine-contact-types (virtual-work-pattern-list)
(cond ((null virtual-work-pattern-list) nil)
(¢t (cons (determine-contact-type {(car virtual-work-pattern-list) *contact-types*!

(determine-contact-types (cdr virtual-work-pattern-list))))))

;/ 3.3.2.A DETERMINE-CONTACT-TYPES Auxiliary

(defun determine-contact-type (virtual-work-pattern contact-types)
(cond ((null contact-types) nil)
(t (cons (test-slip virtual-work-pattern (car contact-types))
(determine~-contact-type virtual-work-pattern (cdr contact-types))))))

(defun test-slip (virtual-work-pattern contact-type-pattern)
(let ((total 0))
(do ((1 0 (+ 1 1i)))
((=1i 12) (= total 0))
(setqg total (+ total (* (aref virtual-work-pattern i)
(aref contact-type-pattern i)))))))

(defun construct-virtual-work-pattern-list (virtual-work-list)
(cond ((null virtual-work-1list) nil)
(t (cons (construct-virtual-work-pattern (car virtual-work-list))
(construct-virtual-work-pattern-list (cdr virtual-work-list))))))

(defun construct-virtual-work-pattern (virtual-work)
(let ((virtual-work-pattern-vector (make-array ’(12))))
(do ((1 0 (+ 1 1)))
((= i 12) virtual-work-pattern-vector)
(cond ((>= (aref virtual-work i) 0) (setf (aref virtual-work-pattern-vector i) 0))
{(t (setf (aref virtual-work-pattern-vector i) 1))))))

(defun constraint-state (twist twist-ref)
(constraint-state-aux (constraint twist twist-ref)))

(defun constraint-state-aux (states)
(cond ((null states) nil)
(t (cons (constraint-state-aux-1 (car states))
{constraint~state-aux (cdr states))))))

(defun constraint-state-aux-1 (state)
(cond ((car state) 1)
((+ 1 (constraint-state-aux-1 (cdr state))))))

(defun constraint (twist twist-ref)
(let ((twist-origin (twist-org twist twist-ref)))
{(determine-contact-types
(construct-virtual-work-pattern-list
(construct-virtual-work-list *basis-wrenches* twist-origin)))))

(defun twist-org (twist twist-ref)
(let ((twist-org (make-array ' (6)))
(rx (* -1 (aref twist-ref 0)))
(ry (* -1 (aref twist-ref 1)))
(rz (* -1 (aref twist-ref 2))))
(setf (aref twist-org 0) (aref twist 0))
(setf (aref twist-org 1) (aref twist 1))
(setf (aref twist-org 2) (aref twist 2))
(setf (aref twist-org 3) (+ (aref twist 2)
(* (aref twist 1) rz)
(* (aref twist 2) ry -1)))
(setf (aref twist-org 4) (+ (aref twist 4)
(* (aref twist 2) rx)
(* (aref twist 0) rz -1)))

(setf (aref twist-org 5) (+ (aref twist 5)
(* (aref twist 0) ry)
(* (aref twist 1) rx ~-1)))
twist-org))

; 3.4 Geometric Constraint
; 3.4.1 DRAW-CONTACT-TRAJECTORY
(defun draw-contact-trajectory (contact-point twist twist-ref twist-magnitude steps)
(let ({(new-contact-point (zero-vector 3)))
(do ((i 1 (+ i 1)))
((= 1 steps))
(setq new-contact-point
(determine-contact-point contact-point twist twist-ref
(/ (* i twist-magnitude) steps)))
(draw-3d-grasp-window contact-point new-contact-point)
(setg contact-point new-contact-point))))

; 3.4.1.A DRAW-CONTACT-TRAJECTORY Auxiliary
(defun determine-contact-point (contact-point twist twist-ref twist-magnitude)
(let* ((rotation-matrix (zero-array 3 3))

(twist-radius (zero-vector 3))

(translation (zero-vector 3))

(new-contact-point (zero-vector 3))

(tl (aref twist 0))

(t2 (aref twist 1))

(t3 (aref twist 2))

(t4 (aref twist 3))

(t5 (aref twist 4))

(t6 (aref twist 5))

(cn (cos twist-magnitude))

(sn (sin twist-magnitude)))

(setf (aref rotation-matrix 0 0) (+ (* t1 t1 (- 1 cn)) cn))

(setf (aref rotation-matrix 0 1) (- (* t2 t1 (- 1 cn)) (* t3 sn)))
(setf (aref rotation-matrix 0 2) (+ (* £t3 t1 (- 1 cn)) (* t2 sn)))
(setf (aref rotation-matrix 1 0) (+ (* tl1 t2 (- 1 cn)) (* t3 sn)))
(setf (aref rotation-matrix 1 1) (+ (* t2 t2 (- 1 cn)) cn))

{(setf (aref rotation-matrix 1 2) (- (* £t3 t2 (- 1 cn)) (* £l sm)))
(setf (aref rotation-matrix 2 0) (- (* t1 t3 (- 1 cn)) (* £2 sn)))
(setf (aref rotation-matrix 2 1) (+ (* £t2 t3 (= 1 cn)) (* tl sn)))

(setf (aref rotation-matrix 2 2) (+ (* £t3 t3 (- 1 cn)) cn))

(setf (aref twist-radius 0) (- (aref contact-point 0) (aref twist-ref 0)))

(setf (aref twist-radius 1) (- (aref contact-point 1) (aref twist-ref 1)))

(setf (aref twist-radius 2) (- (aref contact-point 2) (aref twist-ref 2)))

(setf (aref translation 0) (* twist-magnitude t4))

(setf (aref translation 1) (* twist-magnitude t5))

(setf (aref translation 2) (* twist-magnitude t6))

(setq new-contact-point (add-array-list (list
(multiply-array-list (list rotation-matrix twist-radius))
twist-ref translation)))))

;;;***!
% % % k%

4. Body wrench

~e N N

;;;***!

% % %k k %k

; 4.1 Define body wrench variables
(defvar *body-wrench*)

(defvar *object-mass*)

(defvar *gravitational-accelerationt*)

; 4.2 Set body wrench variables section
; 4.2.1 Auxiliary body wrench functions

(defun construct-body-wrench ()

(let ((body-wrench (zero-vector 6))
(weight (* *object-mass* *gravitational-acceleration*)))
(setf (aref body-wrench 2) weight)
(setf (aref body-wrench 3) (* (aref *object-frame* 1 3) weight))
(setf (aref body-wrench 4) (* -1 (aref *object-frame* 0 3) weight))
body~wrench))

; 4.2.2 Set body wrench variables
(setg *object-mass* 0)

(setq *gravitational-acceleration* 32.2)

(setg *body-wrench* (construct-body-wrench))

; 4.3 Body wrench functions

; 4.3.1 ORIENTATION

(defun orientation (twist~cgq)

(let* ((t3 (aref twist-cg 3))
(t4 (aref twist-cg 4))
(t5 (aref twist-cg 5))
(twist-magnitude (sqrt (abs (+ (* t3 t3) (* t4 td4) (* t5 t5)))))
{theta (asin (/ t3 twist-magnitude)))
(phi (asin (/ (* -1 t4) twist-magnitude))))
(list theta phi)))

; 4.3.2 TWIST-CG
(defun twist-cg (twist twist-ref cg)
(let ((twist-cg (make-array ’ (6)))
(rx (- (aref cg 0) (aref twist-ref 0)))
(ry (- (aref cg 1) (aref twist-ref 1)))
(rz (- (aref cg 2) (aref twist-ref 2)))
(setf (aref twist-cg 0) (aref twist 0))
(setf (aref twist-cg 1) (aref twist 1))
(setf (aref twist-cg 2) (aref twist 2))
(setf (aref twist-cg 3) (+ (aref twist 2)
(* (aref twist 1) rz)
(* (aref twist 2) ry -1)))
(setf (aref twist-cg 4) (+ (aref twist 4)
(* (aref twist 2) rx)
(* (aref twist 0) rz -1)))
(setf (aref twist-cg 5) (+ (aref twist 5)
(* (aref twist 0) ry)
(* (aref twist 1) rx -1)))

)

twist-cg))

i ;***!
%k Kk Kk k

;

H 5. Contact Wrenches

;

] ***!
* % %k %k %

; 5.1 Define contact wrench variables
(defvar *fingertip-stiffnessx*)
(defvar *finger-stiffness¥)

(defvar *contact-stiffness*)
(defvar *contact-stiffness-contact-frame*)
(defvar *contact-stiffness-hand-frame*)

(defvar *grasp-stiffness*)
(defvar *grasp-compliance*)

(defvar *contact-wrench*)
(defvar *contact-wrench-contact-frame*)

H 5.2 Set contact wrench variables section

; 5.2.1 Functions to set contact wrench variables
(defun construct-contact~-wrench-variables ()
(setq *contact-stiffness* (construct-contact-stiffness *fingertip-stiffness*
finger-stiffness
contact-frames))
(setg *contact-stiffness-contact-frame* (construct-contact-stiffness-contact-frame
contact-stiffness
contact-frames))
(setg *contact-stiffness-hand-frame* (construct-contact-stiffness-hand-frame
contact-stiffness
contact-frames))
(setqg *grasp-stiffness* (add-array-list *contact-stiffness-hand-frame*))
(setq *grasp-compliance* (math:invert-matrix *grasp-stiffness*))
(setqg *contact-wrench* (construct-contact-wrenches *contact-stiffness-contact-frame*
offset-wrench))
(setq *contact-wrench-contact-frame*
(construct-contact-wrenches-contact-frame *contact-wrench* *contact-frames*)))

; 5.2.1.1 Contact stiffness
(defun construct-contact-stiffness (fingertip-stiffness finger-stiffness contact-frames)
(cond ((null contact-frames) nil)
(t (cons (construct-one-contact-stiffness (car fingertip-stiffness)
(car finger-stiffness)
(car contact-frames))
(construct-contact-stiffness (cdr fingertip-stiffness)
{(cdr finger-stiffness)
(cdr contact-frames))))))

(defun construct-one-contact-stiffness (fingertip-stiffness finger-stiffness contact-fra!
me)
(cond ((null finger-stiffness) (abs-array (transform-direction-frame-global
contact-frame fingertip-stiffness)))
(t (add-stiffness finger~stiffness
(abs-array (transform-direction~frame-global
contact-frame fingertip-stiffness))))))

(defun add-stiffness (stiffness-1 stiffness-2)
(let* ((stiffness-dimension (array-dimension stiffness-1 0))
(new-stiffness (zero-vector stiffness-dimension)))
(do ((1 0 (+ i 1)))
((= i stiffness~dimension) new-stiffness)
(setf (aref new-stiffness i) (/ (* (aref stiffness-1 i) (aref stiffness-2 1i))
(+ (aref stiffness-l1 i) (aref stiffness-2 i)))))))

; 5.2.1.2 Contact stiffness contact frame
(defun construct-contact-stiffness-contact-frame (contact-stiffness contact-frames)
(cond ((null contact-frames) nil)
(t (cons (construct-one-contact-stiffness-contact-frame (car contact-stiffness)
(car contact-frames))
(construct-contact-stiffness-contact-frame (cdr contact-stiffness)
(cdr contact-frames))))))

(defun construct-one-contact-~stiffness-contact-frame (contact-stiffness contact-frame)
(let ((rx (aref contact-frame 0 3))
(ry (aref contact-frame 1 3))
(rz (aref contact-frame 2 3))
(kx (aref contact-stiffness 0))
(ky (aref contact-stiffness 1))
(kz (aref contact-stiffness 2))
(ktx (aref contact-stiffness 3))
(kty (aref contact-stiffness 4))
(ktz (aref contact-stiffness 5))
(contact-stiffness-contact-frame (zero-array 6 6)))
(setf (aref contact-stiffness-contact-frame 0 1) (* kx rz))

(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf

(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref

contact-stiffness-contact-frame
contact-stiffness-contact-frame
contact-stiffness-contact-frame
contact-stiffness-contact-frame
contact-stiffness-contact-frame
contact-stiffness~contact-frame
contact-stiffness-contact-frame
contact-stiffness~-contact-frame
contact-stiffness-contact-frame
contact-stiffness-contact-frame
contact-stiffness-contact-frame

contact-stiffness-contact-frame))

.
’

A WD PP OO

2) (* -1

3) kx)

0) (* -1
2) (* ky

4) ky)

0) (* kz
1) (* -1

5) kz)

0) ktx)
1) kty)
2) ktz)

kx ry))

ky rz))
rx))

ry))
kz rx))

5.2.1.3 Contact stiffness hand frame
(defun construct-contact-stiffness-hand-frame (contact-stiffness contact-frames)
(cond ((null contact-frames) nil)
(t (cons (construct-one-contact-stiffness-hand-frame {(car contact-stiffness)
(car contact-frames))
(construct-contact-stiffness~hand-frame (cdr contact-stiffness)
(cdr contact-frames))))))

(defun construct-one-contact-stiffness-hand-frame (contact-stiffness contact-frame)

(let ((rx

(aref contact-frame 0 3))

(ry (aref contact-frame 1 3))
(rz (aref contact-frame 2 3))
(kx (aref contact-stiffness 0))
(ky (aref contact-stiffness 1))
(kz (aref contact-stiffness 2))
(ktx (aref contact-stiffness 3))
(kty (aref contact-stiffness 4))
(ktz (aref contact-stiffness 5))

{contact-stiffness-hand-frame (zero-array

(setf
(setf
(setf
(setf
(setf
(setf
(setf
{setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf
(setf

(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref

contact-stiffness-hand-frame 0
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-~hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact~stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame
contact-stiffness-hand-frame

NN OO dAE_LWLWWWWNDNNNNHERERPLPROO

contact-stiffness-hand-frame))

!
.
’

’

1)
2)
3)
0)
2)
4)
0)
1)

6 6)))

(* kx rz))

(* -1 kx ry))
kx)

(* -1 ky rz))

(* ky rx))

ky)

(* kz ry))

(* -1 kz rx))
kz)

(+ (* ky rz rz)
(* -1 kz rx ry))
(* -1 ky rx rz))
(* -1 ky rz))

(* kz ry))

(* -1 kz rx ry))
(+ (* kx rz rz)
(* -1 kx ry rz))
(* kx rz))

(* -1 kz rx))

(* -1 ky rx rz))
(* -1 kx ry rz))
(+ (* kx ry ry)
(* -1 kx ry))

(* ky rx))

5.2.1.3 Grasp stiffness
5.2.1.4 Grasp compliance

5.2.1.5 Contact wrench
(defun construct-contact-wrenches (contact-stiffness-contact-frame offset-wrench)
(cond ((null contact-stiffness-contact-frame) nil)
(t (cons (construct-contact-wrench (car contact-stiffness-contact-frame)
(car offset-wrench))
(construct-contact-wrenches (cdr contact-stiffness-contact-frame)

(cdr offset-wrench))))))

(* kz ry ry) ktx))

(* kz rx rx) kty))

(* ky rx rx) ktz))

(defun construct-contact-wrench {(contact-stiffness~-contact-frame offset-wrench)
{add-array-list (list (multiply-array-list
(list
(multiply-array-list
(list contact-stiffness-contact-frame *grasp-compliance*))
body-wrench))
offset-wrench)))

H 5.2.1.5 Contact wrench contact frame
(defun construct-contact-wrenches-contact-frame (contact-wrenches contact-frames)
(cond ((null contact-wrenches) nil)
(t (cons (transform-direction-global~-frame (car contact-frames)
(car contact-wrenches))
(construct-contact-wrenches-contact~frame (cdr contact-wrenches)
(cdr contact-frames))))))

H 5.2.2 Set contact wrench variables

(setq *fingertip-stiffness* (list (make-array ' (6) :initial-contents ‘(10 10 25 0 0 6))
(make-array ' (6) :initial-contents ‘(10 10 25 0 0 6))
(make-array ' (6) :initial-contents ‘(10 10 25 0 0 6)))!

)

(setq *finger~-stiffness* (list nil nil nil))
(construct-contact-wrench-variables)

;;;***!
* k ok k%

6. Contact-types

;;***!
* k% %k

; 6.1 Define contact type variables
(defvar *fric-coeff*)
(defvar *mom-coeff*)

H 6.2 Set contact type variables section
(setqg *fric-coeff* 0.6)
(setqg *mom-coeff* 0.1)

; 6.3
; 6.3.
(defun contact-type (contact-wrenches)
(cond ((null contact-wrenches) nil)
(t (cons (contact-type-aux (car contact-wrenches))

(contact-type (cdr contact-wrenches))))))

Contact type functions
1 CONTACT-TYPE

H 6.3.1.A Auxiliary contact type functions
(defun contact-type-aux (contact-wrench)
(let* ((normal-force (aref contact-wrench 2))
(tangent-force (sqrt (+ (* (aref contact-wrench 0) (aref contact-wrench 0))
(* (aref contact-wrench 1) (aref contact-wrench 1)))))
(moment (abs (aref contact-wrench 5)})
(max-tangent-force (* *fric-coeff* (abs normal-force)))
(max-moment (* *mom-coeff* (abs normal-force))))
(cond ((>= normal-force 0) 4)
((>= tangent-force max-tangent-force) 3)
((>= moment max-moment) 2)
(t 1))))

;;;***!
% %k Kk

.
’

; 7. Offset wrench

;
;2 ***!
% % %k k Kk

H 7.1 Define offset wrench variables
(defvar *offset~wrench¥)
(defvar *offset-wrench-contact-framex*)

(defvar *scale-forcex*)

H 7.2 Set offset wrench defaults
(setqg *offset-wrench* (list (zero-vector 6) (zero-vector 6) (zero-vector 6)))
(setq *offset-wrench-contact-frame* (zero-vector 6))

(setq *scale-force* 1.0)

; 7.3 Offset wrench functions
; 7.3.1 CONSTRUCT-OFFSET-WRENCHES
(defun construct-offset-wrenches (force-center force-magnitude)
(setq *offset-wrench* (offset-wrench-three-contacts force-center force-magnitude))
(setqg *offset-wrench-contact-frame*
(transform-direction~-global-frame *contact-frames* *offset-wrenchx)))

7.3.1,A OFFSET-WRENCH-THREE-CONTACTS

There are two solutions for the forces. One solution in which most of the force vector!
are
; directed into the force-centroid and other in which two or more force vectors are
; directed away from the centroid.
(defun offset-wrench-three-contacts (force-center force-magnitude)
(let* ((force-array (zero-array 3 3))

(reduced-force-array (make-array ‘(3 3)))

(offsetl (zero-vector 6))

(offset2 (zero-vector 6))

(offset3 (zero-vector 6))

(length~1) (length-2) (length-3)

(force-1) (force-2) (force-3)

(x (aref force-center 0))

(v (aref force-center 1))

(z (aref force-center 2))

(a) (b))

U ~e S~

(setqg length-1 (sqrt (+ (sqr (- x (aref (first *contact-frames*) 0 3)))
(sqr (- y (aref (first *contact-frames*) 1 3)))
(sqr (- z (aref (first *contact-frames*) 2 3))))))
{setq length-2 (sqrt (+ (sqr (- x (aref (second *contact-frames*) 0 3)))
(sqr (- y (aref (second *contact-frames*) 1 3)))
{sqr (- z (aref (second *contact-frames*) 2 3))))))
(setq length-3 (sqrt (+ (sqr (- x (aref (third *contact-frames*) 0 3)))
(sqr (- y (aref (third *contact-frames*) 1 3)))
(sqr (- z (aref (third *contact~frames*) 2 3))))))
(setf (aref force-array 0 0) (/ (- x (aref (first *contact-frames*) 0 3)) length-1))
(setf (aref force-array 0 1) (/ (- x (aref (second *contact-frames*) 0 3)) length-2)!

2) (/ (- x (aref (third *contact-frames*) 0 3)) length-3))
(aref (first *contact-frames*) 1 3)) length-1))
(aref (second *contact-frames*) 1 3)) length-2)!

(setf (aref force-array 0
(setf (aref force-array 1 0) (/ (-
(setf (aref force-array 1 1) (/ (-

LSS

(setf (aref force-array 1 2) (/ (- y (aref (third *contact-frames*) 1 3)) length-3))!

(setf (aref force-array 2 0) (/ (- z (aref (first *contact-frames*) 2 3)) length-1))
(setf (aref force-array 2 1) (/ (- z (aref (second *contact-frames*) 2 3)) length-2)!

(setf (aref force~array 2 2) (/ (- z (aref (third *contact-frames*) 2 3)) length-3))
(if (< force-magnitude 0) (setq force-array (multiply-array-list (list -1 force-arra!
yhon

(setq reduced-force-array (row-reduced-echelon force-array))

(setq a (aref reduced-force-array 0 2))

(setq b (aref reduced-force-array 1 2))

(setq force-3 (sqrt (/ (sqr force-magnitude) (+ (sqr a) (sqr b) 1))))
(setq force-2 (* -1 b force-3))

(setq force-1 (* -1 a force-3))

(setf (aref offsetl 0) (* *scale-force* force-1 (aref force-array 0 0)))
(setf (aref offsetl 1) (* *scale-force* force-1 (aref force-array 1 0)))
(setf (aref offsetl 2) (* *scale-force* force-l (aref force-array 2 0)))
(setf (aref offset2 0) (* *scale-force* force-2 (aref force-array 0 1)))
(setf (aref offset2 1) (* *scale-force* force-2 (aref force-array 1 1)))
(setf (aref offset2 2) (* *scale-force* force-2 (aref force-array 2 1)))
(setf (aref offset3 0) (* *scale-force* force-3 (aref force-array 0 2)))
(setf (aref offset3 1) (* *scale-force* force-3 (aref force-array 1 2))})
(setf (aref offset3 2) (* *scale-force* force-3 (aref force-array 2 2)))

(list offsetl offset2 offset3)))

o KK Kk kK Kk Kk ok ok Kk Kk ok ok Kk ke ok ok ok k3 ok ok ok 3k ok ok %k ok ok %k ok ke gk ok ok kR K Sk ok ok ok ke sk ok ok ok ok ok gk ok 3k ok e e ok ok ok ok ok Sk ok ok ok ok ok Sk ok ok ok ok ok ok ok ok ok kok |

i
% % %k %k %k

H

H 8. Controlled Slip

;
;;;***!

* % % %k k

; 8.1 DETERMINE-CONSTRAINT-STATE
(defun determine~constraint-state (force-center force-magnitude)
(let ((grasp-vector-list)
(constraint-state)
(label-point
(transform-points-global-frame *grasp-frame* force-center)))
(construct~offset-wrenches force-center force-magnitude)
(setq grasp-vector-list (construct-grasp-points force-center force-magnitude))
{construct-contact-wrench-variables)
(setq constraint-state (contact-type *contact-wrench-contact-frame*))
(draw-coordinate-system)
(sphere-3d-grasp-window (first grasp-vector-list) 0.01)
(sphere-3d~grasp-window (second grasp-vector-list) 0.01)
(sphere-3d-grasp-window (third grasp-~vector-list) 0.01)
(sphere-3d-grasp-window force-center 0.02)
(setf (aref label-point 1) (+ (aref label-point 1) 0.025))
(setqg label-point (transform-points-frame-global *grasp-frame* label-point))
(draw-3d-1list label-point constraint-state)))

; 8.2 MAP-CONSTRAINT-SPACE

(defun map-constraint-state

(x-start x-end x-inc y-start y-end y-inc force-magnitude)
(let ((force-center-grasp-frame (zero-vector 3))
(force-center-hand-frame (zero-vector 3))
(label-point)
(constraint-state))
(do ((x x-start (+ x x-inc)))
{((>= x x-end))
(do ((y y-start (+ y y-inc)))
((>= y y-end))
(setf (aref force-center-grasp-frame 0) x)
(setf (aref force-center-grasp-frame 1) y)
(setq label-point force-center-grasp-frame)
(setq force~center-hand-frame
(transform-points-frame-global *grasp-frame* force-center-grasp-frame))

(construct-offset-wrenches force-center-hand-frame force-magnitude)
(construct-contact-wrench-variables)

(setq constraint-state (contact-type *contact-wrench-contact-framex))
{sphere-3d-grasp-window force-center-hand-frame 0.02)

(setf (aref label-point 1) (+ (aref label-point 1) 0.025))

(setq label-point (transform-points-frame-global *grasp-frame* label-point))
(draw-3d~1list label-point constraint-state)))))

(defun map-constraint-space (force-magnitude)

(let* ((point-grasp-frame (make-array ‘(3) :initial-contents ’ (0 0 0)))
(point-hand-frame (make-array ‘(3) :initial-contents ‘(0 0 0)))
(constraint-state))

(do ((i -1 (+ i 0.2)))

((>=1 1))
(do ((3 -1 (+ 3 0.2)))
((>= 3 1))

(setf (aref point-grasp-frame 0) i)
(setf (aref point-grasp-frame 1) 3J)
(setq point-hand-frame (transform-points-frame-global *grasp-frame* point-grasp-f!

rame))

(setq constraint-state (determine-constraint-state point-hand-frame force-magnitu!
de))

(sphere-3d-grasp-window point-~hand-frame 0.01)

(setf (aref point-grasp-frame 1) (+ j 0.01))

(setq point-hand-frame (transform-points-frame-global *grasp-frame* point-grasp-f!
rame))

(draw-3d-1list point-hand-frame constraint-state)))))

;;;***!

* %k %k % %k

;

; 9. Hand actuation routines
H
;;;***!

* % k &

H 9.1 Define actuation constants and variables

(defvar *default-trajectory-gen* (if (boundp ’‘tg) tg))
(defvar *default-parallel-conn* (if (boundp ’pc) pc))
(defvar *fingertip-radius¥)

{defvar *test-point¥)

(defvar *scale-force*)

; 9.3 Set actuation variables

(setq *fingertip-radius* 0.408)

(setq *test-point* (make-array ’(3) :initial-contents ’ (0.0 2.5 0.0)))

(setg *scale-force* 1.0)

(setqg *offset-wrench* (list (zero-vector 6) (zero-vector 6) (zero-vector 6)))

; 9.4 Grasp functions
; 9.4.1 MOVE-TO-CONTACT-POINTS

(defun move-to-contact-points ()
(let* ((fingertip-vector (construct-fingertip-vector
(determine-fingertip-centers *contact-points* *contact-fram!
es*)))
(dur 0.4))
(if (send tg :move-fingers-to fingertip-vector :duration dur)
(send tg :send-traj pc))))

; 9.4.2 MOVE~TO-GRASP-CENTER

{defun move-to-grasp-center (force-center force-magnitude)
(let* ((force-center-hand-frame (transform-points-frame-global *grasp-frame* force-cen!
ter))
(magnitude (* *scale-force* force-magnitude))
(grasp-vector-list (construct-grasp-points force-center~hand-frame magnitude))
(fingertip-center-list
(determine-fingertip-centers grasp-vector-1list *contact-frames*))
(fingertip-vector (construct-fingertip-vector fingertip-center-list))
(dur 0.4))
(construct-offset-wrenches force-center force-magnitude)
(clearscreen)
(draw-coordinate-system)
(sphere-3d-grasp-window (first grasp-vector-list) 0.01)
(sphere-3d-grasp-window (second grasp-vector-list) 0.01)
(sphere-3d-grasp-window (third grasp-vector-list) 0.01)
{sphere-3d-grasp-window force-center-hand-frame 0.02)
(if (send tg :move-fingers-to fingertip-vector :duration dur)
(send tg :send-traj pc))))

; 9.5 Auxiliary functions

9.6.1 MOVE-TO~CONTACT-POINTS auxiliary function!

-

(defun determine-fingertip-centers (contact-points contact-frames)
(cond ((null contact-frames) nil)
(t (cons (determine-fingertip-center (car contact-points) (car contact-frames))
(determine-fingertip~centers (cdr contact-points) (cdr contact-frames)))!

)))

(defun determine-fingertip-center (contact-point contact-frame)
(let* ((fingertip-center (zero-vector 3)))
(setf (aref fingertip-center 0)
(+ (* (aref contact-frame 0 2) *fingertip-radius*) (aref contact=-point 0)))
(setf (aref fingertip-center 1)
(+ (* (aref contact-frame 1 2) *fingertip-radius*) (aref contact-point 1)))
(setf (aref fingertip-center 2)
(+ (* (aref contact-frame 2 2) *fingertip-radius*) (aref contact-point 2)))
fingertip-center))

(defun construct-fingertip-vector (fingertip-centers)
(let* ((n-fingertips (count-atoms fingertip-centers))
(fingertip-vector (zero-vector (* 3 n-fingertips))))
(do ((1 0 (+ 1 1)))
((= i n-fingertips) fingertip-vector)
(do ((3 0 (+ 3 1)))
((= 3 3))
(setf (aref fingertip-vector (+ (* i 3) j)) (* 2.54 (aref (car fingertip-centers!
y 3NN
(setq fingertip-centers (cdr fingertip-centers)))))

; 9.5.2 MOVE-TO-GRASP-CENTER auxiliary functions

(defun construct-grasp-points (force-center force-magnitude)
(let* ((grasp-points (list (zero-vector 3) (zero-vector 3) (zero-vector 3)))
(offset-points (offset-wrench-three-contacts force-center force-magnitude)))

(setf (aref (first grasp-points) 0) (+ (aref (first *contact-frames*) 0 3) (aref (fi!
rst offset-points) 0)))

(setf (aref (first grasp-points) 1) (+ (aref (first *contact-frames*) 1 3) (aref (fi!
rst offset-points) 1)))

(setf (aref (first grasp-points) 2) (+ (aref (first *contact-frames*) 2 3) (aref (fi!
rst offset-points) 2)))

(setf (aref (second grasp-points) 0) (+ (aref (second *contact-frames*) 0 3) (aref (!
second offset-points) 0)))

(setf (aref (second grasp-points) 1) (+ (aref (second *contact-frames*) 1 3) (aref (!
second offset-points) 1)))

(setf (aref (second grasp-points) 2) (+ (aref (second *contact-frames*) 2 3) (aref (!
second offset-points) 2)))

(setf (aref (third grasp-points) 0) (+ (aref (third *contact-frames*) 0 3) (aref (th!
ird offset-points) 0)))

{(setf (aref (third grasp-points) 1) (+ (aref (third *contact-frames*) 1 3) (aref (th!
ird offset-points) 1)))

(setf (aref (third grasp-points) 2) (+ (aref (third *contact~frames*) 2 3) (aref (th!
ird offset-points) 2)))

grasp-points))

;;All the move functions will return either NIL or an integer. NIL is returned if the
;;trajectory is not feasible. NIL is also returned when there’s transmission
; ;problems in the parallel connection.

9.7 Move load functions
i.e. generates a trajectory but does not send i!

; 9.7.1 Advanced load moves

(defun move-to-contact-points-load ()
(let* ((fingertip-vector (construct-fingertip-vector
(determine~fingertip-centers *contact-points* *contact-fram!
es*)))
(dur 0.4))
(send tg :move-fingers-to fingertip-vector :duration dur)))

(defun move-to-grasp-center-load (force-center force-magnitude)
(let* ((force-center-hand-frame (transform-points-frame-global *grasp-frame* force-cen!
ter))
{magnitude (* *scale-force* force-magnitude))
(grasp-vector-list (construct-grasp-points force-center-hand-frame magnitude))
(fingertip-center-list
(determine-fingertip-centers grasp-vector-list *contact-frames*))
(fingertip-vector (construct-fingertip-vector fingertip-center-list))
(dur 0.8))
(print-array-list grasp-vector-1list)
(setq *offset-wrench* (list (multiply-array-list
(list *scale~force*
(add-array~-list (list (first grasp-vector-list)
(multiply-array-list
(list -1 (first *contact-points*)))'!
))¥))
(multiply-array-list
(list *scale-force*
(add-array-list (list (second grasp-vector-list)
(multiply-array-list
(list -1 (second *contact-points*))!
)))))
(multiply-array-list
(list *scale-force*
(add-array-list (list (third grasp-vector-list)
(multiply-array-list
{list -1 (third *contact-points*)))!
1M
(clearscreen)
{draw-coordinate-system)
(sphere-3d-grasp-window (first grasp-vector-list) 0.01)

(sphere-3d-grasp-window (second grasp-vector-list) 0.01)
(sphere-3d-grasp-window (third grasp-vector-list) 0.01)
(sphere-3d-grasp-window force-center-hand-frame 0.02)

{send tg :move-fingers-to fingertip-vector :duration dur)))

H 9.7.2 Basic load moves

(defun move-up-load (&optional (dist 1.0) &key number-of-segs duration
(traj-gen *default-trajectory-gen*))
(let ((nsegs (if number-of-segs number-of-segs (send traj-gen :default-segs-per-move)) !

(dur (if duration duration (send traj-gen :default-duration))))
(setf (aref work-transl-vect 0) 0.0
(aref work-transl-vect 1) 0.0
(aref work-transl-vect 2) dist)
(if (send traj-gen :generate-traj (list (list nil nil work-transl-vect))
:number-of~segs nsegs
:duration dur)
(progn (setf (aref *object-frame* 2 3) (+ (aref *object-frame* 2 3) (/ dist 2.54!
)))
(initialize-global-variables)))))

(defun move-down-load (&optional (dist 1.0) &key number-of-segs duration
(traj-gen *default-trajectory-gen*))
{let ((nsegs (if number-of-segs number-of-segs (send traj~gen :default-segs-per-move)) !
)
(dur (if duration duration (send traj-gen :default-duration))))
(setf (aref work-transl-vect 0) 0.0
(aref work-transl-vect 1) 0.0
(aref work-transl-vect 2) (- dist))
(if (send traj-gen :generate-traj (list (list nil nil work-transl-vect))
:number-of-segs nsegs
tduration dur)
(progn (setf (aref *object-frame* 2 3) (- (aref *object-frame* 2 3) (/ dist 2.54!
)))
(initialize-global-variables)))))

(defun move-left-load (&optional (dist 1.0) &key number-of-segs duration
(traj-gen *default-trajectory-gen¥*))
(let ((nsegs (if number-of-segs number-of-segs (send traj-gen :default-segs-per-move)) !
)
{(dur (if duration duration (send traj-gen :default-duration))))
(setf (aref work-transl-vect 0) (- dist)
(aref work-transl-vect 1) 0.0
(aref work-transl-vect 2) 0.0)
(if (send traj-gen :generate-traj (list (list nil nil work-transl-vect))
snumber-of-segs nsegs
:duration dur)
(progn (setf (aref *object-frame* 0 3) (- (aref *object-frame* 0 3) (/ dist 2.54!
1))
(initialize-global-variables)))))

(defun move-right-load (&optional (dist 1.0) &key number-of-segs duration
(traj-gen *default-trajectory-gen*))
(let ((nsegs (if number-of-segs number-of-segs (send traj-gen :default-segs-per-move))!
)
{(dur (if duration duration (send traj-gen :default-duration))))
(setf (aref work-transl-vect Q) dist
(aref work-transl-vect 1) 0.0
(aref work-transl-vect 2) 0.0)
(if (send traj-gen :generate-traj (list (list nil nil work-transl-vect))
:number-of-segs nsegs
:duration dur)
(progn (setf (aref *object-frame* 0 3) (+ (aref *object-frame* 0 3) (/ dist 2.54!
1))
(initialize-global-variables)))))

(defun move-in-load (&optional {(dist 1.0) &key number-of-segs duration
(traj-gen *default-trajectory-gen*)})
(let ((nsegs (if number-of-segs number-of-segs (send traj~gen :default-segs-per-move))!

(dur (if duration duration (send traj-gen :default-duration))))
(setf (aref work-transl-vect 0) 0.0
(aref work-transl-vect 1) (- dist)
(aref work-transl-vect 2) 0.0)
(if (send traj-gen :generate~-traj (list (list nil nil work-transl-vect))
:number-of-segs nsegs
:duration dur)
(progn (setf (aref *object-frame* 1 3) (- (aref *object-frame* 1 3) (/ dist 2.54!
M)
(initialize-global-variables)))))

(defun move-out-load (&optional (dist 1.0) &key number-of-segs duration
(traj-gen *default-trajectory-gen%*))
(let ((nsegs (if number-of-segs number-of-segs (send traj-gen :default-segs-per-move)) !
)
(dur (if duration duration (send traj-gen :default-duration))))
(setf (aref work-transl-vect 0) 0.0
(aref work-transl-vect 1) dist
(aref work-transl-vect 2) 0.0)
(if (send traj-gen :generate-traj (list (list nil nil work-transl-vect))
:number-of-segs nsegs
sduration dur)
(progn (setf (aref *object-frame* 1 3) (+ (aref *object-frame* 1 3) (/ dist 2.54!
)))
(initialize~global-variables)))))

(defun rotate-x-load (&optional (ang 10.0) &key number-of-segs
duration
(traj-gen *default-trajectory-gen¥*))
;;convert angles from degrees to radians
(setqg ang (* ang 0.01745329))
(let ((nsegs (if number-of-segs number-of-segs (send traj-gen :default-segs-per-move))!
)
(dur (if duration duration (send traj-gen :default-duration)))
(temp-frame (make-array ' (3 4) :initial-contents ’((1 0 0 0)
(010 0)
(001 0))))M)
(setf (aref temp-frame 0 3) (aref *grasp-frame* 0 3))
(setf (aref temp-frame 1 3) (aref *grasp-frame* 1 3))
(setf (aref temp-frame 2 3) (aref *grasp-frame* 2 3))
(setq *object-frame* (transform-frames-global-frame temp~frame *object-frame*))
(setf (aref temp-frame 0 1) (cos ang))
(setf (aref temp-frame 0 2) (* -1 (sin ang)))
(setf (aref temp-frame 1 1) (sin ang))
(setf (aref temp-frame 1 2) (cos ang))
(setqg *object-frame* (transform-frames-frame-global temp-frame *object-frame*))
(draw-coordinates *object~framex 0.5)
(if (send traj-gen :generate-traj (list (list ’=xhat ang nil))
:number-of-segs nsegs :duration dur)
{(progn (setq *object-frame* (transform-frames-frame-global temp-frame *object-fr!
ame*})
(initialize~-global-variables)))))

(defun rotate-y-load (&optional (ang 10.0) &key number-of-segs
duration
(traj-gen *default-trajectory-gen*))
(setqg ang (* ang 0.01745329))
(let ((nsegs (if number-of-segs number-of-segs (send traj-gen :default-segs—-per-move))!
)
(dur (if duration duration (send traj-gen :default-duration)))
(temp-frame (zero-array 3 4)))

(setf (aref temp-frame
(setf (aref temp-frame
(setf (aref temp-frame
(setf (aref temp-frame
(setf (aref temp-frame
(setf (aref temp-frame 3) (- (aref *grasp-frame* 0 3) (aref *object-frame* 0 3)))
(setf (aref temp-frame 3) (- (aref *grasp-frame* 1 3) (aref *object-frame* 1 3)))
(setf (aref temp-frame 3) (- (aref *grasp-frame* 2 3) (aref *object-frame* 2 3)))
(if (send traj-gen :generate-traj (list (list ’yhat ang nil))
:number-of-segs nsegs :duration dur)
(progn (setqg *object-frame* (transform-frames-frame-global temp-frame *object-fr!

1) 1)

0) (cos ang))

2) (* -1 (sin ang)))
0) (sin ang))

(cos ang))

MNHFEFONMNNOOR
[\
~

ame*))
(initialize-global-variables)))))

(defun rotate-z-load (&optional (ang 10.0) &key number-of-segs
duration
(traj-gen *default~-trajectory-gen¥))
(setq ang (* ang 0.01745329))
(let ((nsegs (if number-of-segs number-of-segs (send traj-gen :default-segs—-per-move))!
)
(dur (if duration duration (send traj-gen :default-duration)))
(temp-frame (zero-array 3 4)))
(setf (aref temp-frame 2) 1)
(setf (aref temp-frame 0) (cos ang))
(setf (aref temp-frame 1) (* -1 (sin ang)))
(setf (aref temp-frame 0) (sin ang))
(setf (aref temp-frame 1) (cos ang))

MR OMREOON

(setf (aref temp-frame 3) (- (aref *grasp~-frame* 0 3) (aref *object-frame* 0 3)))
(setf (aref temp-frame 3) (- (aref *grasp-frame* 1 3) (aref *object-frame* 1 3)))
(setf (aref temp-frame 3) (- (aref *grasp-frame* 2 3) (aref *object-frame* 2 3)))

(if (send traj-gen :generate-traj (list (list ’zhat ang nil))
:number-of-segs nsegs :duration dur)
(progn (setq *object-frame* (transform-frames-frame-global temp-frame *object-fr!
ame*))

(initialize-global~variables)))))

(defun move-finger=-load (finger-number displacement-vector)
(let ((traj-gen *default-trajectory-gen*)
(dur 0.3)
(displacement (zero-vector 9)))
(setf (aref displacement (+ (* 3 (- finger-number 1)) 0)) (aref displacement-vector !
0))
(setf (aref displacement (+ (* 3 (- finger-number 1)) 1)) (aref displacement-vector !
1))
(setf (aref displacement (+ (* 3 (~ finger-number 1)) 2)) (aref displacement-vector !
2))
(send traj-gen :move-fingers-by displacement :duration dur)))

(defun go-hand ()
(send tg :send-traj pc))

; 9.8 Basic moves

(defun up (&optional (distance 2.0))
(1f (move-up-load distance)
(progn (clearscreen)
(draw-coordinate~system)
(go-hand))))
(defun down (&optional (distance 2.0))
(if (move-down-load distance)
(progn (clearscreen)
(draw-coordinate-system)
(go-hand))))
(defun right (&optional (distance 2.0))
(if (move-right-load distance)
(progn (clearscreen)

(draw-coordinate-system)
(go-hand))))
(defun left (&optional (distance 2.0))
(if (move-left-load distance)
(progn (clearscreen)
(draw-coordinate-system)
{(go-hand))))
(defun in (&optional (distance 2.0))
(if (move-in-load distance)
(progn (clearscreen)
(draw-coordinate-~system)
(go~hand))))
(defun out (&optional (distance 2.0))
(if (move-out-load distance)
(progn (clearscreen)
(draw-coordinate-system)
(go-hand))))
(defun rot+x (&optional (angle 10.0))
(if (rotate-x-load angle)
(progn (clearscreen)
(draw-coordinate-system)
{(go~hand))))
(defun rot+y (&optional (angle 10.0))
(if (rotate-y-load angle)
(progn (clearscreen)
(draw-coordinate-system)
(go-hand))))
(defun rot+z (&optional (angle 10.0))
(if (rotate-z-load angle)
(progn (clearscreen)
(draw-coordinate-system)
(go-hand))))
(defun rot-x (&optional (angle -10.0))
(if (rotate-x-load angle)
(progn (clearscreen)
(draw-coordinate-system)
{(go-hand))))
(defun rot-y (&optional (angle -10.0))
(if (rotate-y-load angle)
(progn (clearscreen)
(draw-coordinate-system)
{(go-hand))))
(defun rot-z (&optional (angle -10.0))
(if (rotate-z-load angle)
(progn (clearscreen)
(draw-coordinate-system)
(go-hand))))

2 ;***!
% % Kk k Kk

;

; 10. Menu

H

22 ***!
* Kk k k

H 10.1 Define menu variables

(defvar menu)

(defvar moves-menu)

(defvar dem-menu)

; 10.2 Define menu

(setqg menu (tv:make-window ’tv:momentary-menu
":label ' (:string #.(zl:string "Grasp Menu: "))
’:geometry (list 2)

‘ :borders 3

f:item-list ’ (("STANDARD GRAPHICS OPTIONS: " :no-select)
("STANDARD MOTION OPTIONS: " :no-select)
("Create grasp screen " :funcall make-grasp-screen)
("Reinit system " :funcall reinit)
("Clear screen" :funcall clearscreen)
("Reinit OOLAH trajectory " :funcall init-oolah)
("Draw coordinate system " :funcall draw-coordinate-system)
("Reinit VAX trajectory " :funcall init-vax)
("Change graphics variables" :funcall change-graphics-variables-me!

nu)
("Go home " :funcall go-home-and-init)
("" :no-select)
("BASIC MOVES " :funcall basic-moves-menu)
("" :no-select)
("Move finger " :funcall move-finger-menu)
("" :no-select)
("" :no-select)
("SLIP ANALYSIS OPTIONS: " :no-select)
("ADVANCED HAND ACTUATION OPTIONS: " :no-select)
("Change global variables " :funcall change-global-variables-menu)
("JKS move menu " :funcall move-menu)
("Permissible-twist " :funcall permissible-twist-menu)
("Move to contact points" :funcall move-to-contact-points)
("Determine constraint state " :funcall determine-constraint-state!
-menu)

("Pick grasp force center " :funcall grasp-force-center-menu)
{("Map constraint space " :funcall map-constraint-state-menu)
("Controlled slip " :funcall controlled-slip-menu)
("" :no-select)

~e

~

("DEMONSTRATIONS" :funcall demo-menu)
("" :no-select)

("" :no-select)

("" :no-select)

("QUIT" :eval 999))))

10.3 Standard graphics options
10.3.1 MAKE-GRASP-SCREEN

10.3.2 CLEARSCREEN
10.3.3 DRAW-COORDINATE-SYSTEM

(defun draw-coordinate-~system ()

.
’

(setg view-frame (construct-view-frame angle-x angle-z))
(draw-coordinates *hand-frame* 1) "
(draw-coordinates *object-frame* 0.75)

(draw-coordinates *grasp-frame* 0.5)

(draw-coordinates *contact-frames* 0.2))

10.3.4 CHANGE-GRAPHICS-VARIABLES-MENU

(defun change-graphics-variables-menu ()

~e

(let ((zl-user:scale~3d scale-3d)
{zl-user:x-origin-3d x-origin-3d)
(zl-user:y-origin-3d y-origin-3d)
(zl-user:angle-x angle-x)
(zl-user:angle-z angle-z})

{zl-user:choose-user-options zl-user:graphics-variables-menu)
(setq scale-3d zl-user:scale-3d)

(setq x-origin-3d zl-user:x-origin-3d)

(setq y-origin-3d zl-user:y-origin-3d)

(setqg angle-x zl-user:angle-x)

{setq angle-z zl-user:angle-z)))

10.4 Standard motion options
10.4.0 REINIT

’

10.4.1 INIT-OOLAH

(defun init-oolah ()

-
’

(send tg :init))
10.4.2 INIT-VAX

(defun init-vax ()

.
’

(send tg :init-traj pc))
10.4.3 GO-HOME-AND-INIT

(defun go-home-and-init ()

.
’

(set-original-values)

(setq *object-frame* *original-object-frame*)

(setq *contact-points-object-space* *original-contact-points-object-space*)
(setg *contact-normals-object-space* *original-contact-normals-object-space*)
(initialize-global-variables)

(init-oolah)

(init-vax)

(go-home)

(init-vax)

(go-home)

(clearscreen)

{(draw-coordinate-system))

10.4.4 BASIC-MOVES

(defun basic-moves-menu ()

(do ((1 0 (+ i 1)))
((equalp (send moves-menu ’:choose) 999) ’Done)))

(setq moves-~menu (tv:make-window tv:momentary-menu

’

":label ' (:string #.(zl:string "Basic moves menu: "))

! :geometry (list 3)

’ ;borders 2

":item-list ’ (("OUT" :funcall out)
("UP" :funcall up)
("" :no-select)
("LEFT" :funcall left)
("QUIT” :eval 999)
("RIGHT" :funcall right)
("" :no-select)
("DOWN" :funcall down)
("IN" :funcall in)
("" :no-select)
("" :no-select)
("" :no-select)
("ROT-X " :no-select)
("ROT-Y " :no-select)
("ROT-Z " :no-select)
(" " :funcall rot+x)
(" " :funcall rot+y)
& " :funcall rot+z)
" " :funcall rot-x)
(" = " :funcall rot-y)
(" - " :funcall rot-z))))

U+ o+ +

10.4.5 MOVE-FINGER-MENU

(defun move-finger-menu ()

(let ((displacement (make-array '’ (3))))
(zl-user:choose-user-options zl-user:finger-menu)
(setf (aref displacement 0) zl-user:x-displacement)
(setf (aref displacement 1) zl-user:y-displacement)
(setf (aref displacement 2) zl-user:z~displacement)
(move-finger-load zl-user:finger-number displacement)
(go-hand)))

10.5 SLIP-ANALYSIS

; 10.5.1 CHANGE-GLOBAL-VARIABLES-MENU
(defvar variables-menu)
(defun change-global-variables-menu ()
(do ((1 0 (+ i 1)))
((equalp (send variables-menu ’:choose) 999) ‘Done)))

(setq variables-menu (tv:make-window ‘tv:momentary-menu

f:label " (:string #.(zl:string "Variables moves menu: "))

f :geometry (list 1)

* :borders 2

f:item-list ’ (("Object variables"™ :funcall object-variable-menu)
("Contact variables" :funcall contact-variable-menu)
("Body wrench" :funcall body-wrench-menu)
("Finger variables" :no-select)
("" :no-select)
("QUIT” :eval 999))))

(defun object~variable-menu ()
(let ((zl-user:*object-frame* *object-frame*))
(zl-user:object-variable-menu)
(setq *object-frame* zl-user:*object-frame*)
(initialize-global-variables)))

(defun contact-variable-menu ()
(let ((zl-user:*contact-points-object-space* *contact-points-object-spacex*)
(zl-user:*contact-normals-object-space* *contact-normals-object-space*))
(zl-user:contact-variable-menu)
(setq *contact-points-object-space* zl-user:*contact-points-object-space*)
(setqg *contact-normals-object-space* zl-user:*contact-normals-object-space¥*)
(initialize-global-variables)))

(defun body-wrench-menu ()
(setqg zl-user:*body-wrench* *body-wrench*)
(zl-user:body-wrench~-menu)
(setqg *body-wrench* zl-user:*body-wrench¥*))

; 10.5.2 PERMISSIBLE-TWIST-MENU

(defun permissible-twist-menu ()
{(let ((twist (make-array ’‘(6))))
(zl-user:permissible-twist-menu)
(setqg twist zl-user:*twist*)
(permissible-twist twist)))

; 10.5.3 DETERMINE-CONSTRAINT-STATE-MENU

(defun determine-constraint-state-menu ()
(draw-coordinate-system)
(let ((magnitude 0)

(force~-center (zero-vector 3))

(force-center-hand-frame (zero-vector 3)))
{(zl-user:choose-user-options zl-user:constraint-state-menu)
(setq magnitude zl-user:magnitude)

(setq force-center (get-mouse~coordinates-grasp-frame))

(setq force-center-hand-frame (transform-points-frame-global *grasp-frame* force-cen!
ter))

(determine-constraint-state force-center-hand-frame magnitude)))

; 10.5.4 MAP-CONSTRAINT-STATE-MENU

(defun map-constraint-state-menu ()

(draw-coordinate-system)
(zl-user:choose-user-options zl-user:map-state-menu)
(let ((x-inc (/ (- zl-user:x-end zl-user:x-start) zl-user:x-steps))
(yv-inc (/ (- zl-user:y-end zl-user:y-start) zl-user:y-steps)))
(map-constraint-state zl-user:x-start zl-user:x-end x-inc
zl-user:y-start zl-user:y-end y-inc
zl-user:magnitude)))

; 10.6 ADVANCED-HAND-ACTUATION-OPTIONS
; 10.6.1 JKS MOVE-MENU

; 10.6.2 MOVE-TO-CONTACT-POINTS

; 10.6.3 GRASP-FORCE-CENTER-MENU

(defun grasp-force-center-menu ()
(let ((magnitude 0)

(force-center (zero-vector 3)))
(zl-user:choose-user-options zl-user:constraint-state-menu)
(setq magnitude zl-user:magnitude)

(setq force-center (get-mouse-coordinates-—-grasp-frame))
(move-to-grasp-center force-center magnitude)))

; 10.6.3.1 GRASP-FORCE-CENTER-MENU Auxiliary func!
tions

(defun get-mouse-coordinates-grasp-frame ()
(let ((mouse-coordinates-view~-frame (get-mouse-coordinates-view-frame)))
(transform-normals-view-grasp-frame mouse-coordinates-view-frame)))

(defun get-mouse-coordinates-view-frame ()
(let ((mouse~coordinates (get-mouse-coordinates))
(mc-view-frame (zero-vector 3))
(window~height (send grasp-screen :send-pane ‘grasp-window ’:height)))
(setf (aref mc-view~-frame 0) (/ (- (first mouse-coordinates) x-origin-3d) scale-3d))
(setf (aref mc-view-frame 2) (/ (- window-height (+ (second mouse-coordinates) y-ori!
gin-34d))
scale-3d))
mc-view~frame))

(defun get-mouse-coordinates ()
(let ((mouse-coordinates (cdr (multiple-value-list (tv:with-mouse-and-buttons-grabbed
(tv:wait-for-mouse-button-down)))!
1))
mouse-coordinates))

(defun transform-normals-view-grasp-frame (point-view-frame)
{let* ((grasp-to-view-frame (construct-grasp-to-view-frame))
(all (aref grasp-to-view-frame 0 0))
(al2 (aref grasp-to-view-frame 0 1))
(a31 (aref grasp-to-view-frame 2 0))
(a32 (aref grasp-to=-view-frame 2 1))
(al4 (aref grasp-to-view-frame 0 3))
(a34 (aref grasp-to-view-frame 2 3))
(determinant (- (* all a32) (* al2 a31)))
(xv (aref point-view-frame 0))
(zv (aref point-view-frame 2))
(point-grasp-frame (zero-vector 3)))
(setf (aref point-grasp-frame 0) (/ (+ (* a32 (-~ xv ald))
(* -1 al2 (- zv a34))) determinant))
(setf (aref point-grasp-frame 1) (/ (+ (* -1 a31 (- xv al4))
(* all (- zv a34))) determinant))
point-grasp-frame))

(defun construct-grasp-to-view-frame ()
(let ((grasp-to-view-frame (zero-array 3 4)))

(do ((i 0 (+ i 1)))
((= 1 3))
(do ((J 0 (+ 3 1)))
(=3 3N
(do ((k 0 (+ k 1)))
((= k 3))
(setf (aref grasp-to-view-frame i j) (+ (* (aref *grasp-frame* k j)
(aref view-frame k i))
(aref grasp-to-view-frame i j))))))
(do ((i 0 (+ 1i 1)))
((=1i 3))
(do ((3 0 (+ 3j 1)))
(=3 3N
(setf (aref grasp-to-view-frame i 3) (+ (* (aref view-frame j i)
(- (aref *grasp-frame* j 3)
(aref view-frame j 3)))
(aref grasp-to-view-frame i 3)))))

(setf (aref grasp-to-view-frame 0 2) 0)
(setf (aref grasp-to-view-frame 1 0) 0)
(setf (aref grasp-to-view-frame 1 1) 0)
(setf (aref grasp-to-view-frame 1 2) 0)
(setf (aref grasp-to-view-frame 1 3) 0)
(setf (aref grasp-to-view-frame 2 2) 0)

grasp-to-view-frame))
; 10.6.4 DEMO~MENU

(defun demo-menu ()
(do ((1 0 (+ i 1)))
((equalp (send dem-menu ’ :choose) 999) ‘Done)))

; 10.7 GRASP-MENU

(defun grasp-menu ()
(do ((i 0 (+ i 1)))
((equalp (send menu ' :choose) 999) ’‘Done)))

A '-***!
* % %k %k %k

;

; 11. Demos

H

N ’-***!
) Kk Kk k k

; 11.1 DEMO-MENU
(defvar dem-menu)

(setq dem-menu (tv:make-window ‘tv:momentary-menu
":label ’ (:string #.(zl:string "Advanced dexterity demonstrations: "))
’ :geometry (list 1)
! :borders 2
":item-list ' (("Can demo" :funcall dlb-can-demo)
("Can twirl demo” :funcall can-twirl)
{("Can spin demo" :funcall can-spin)
("Box demo" :funcall box-spin)
("QUIT"™ :eval 999))))

; 11.2 Demonstration programs
; 11.2.0 DLB~CAN-DEMO

(defun dlb-can-demo ()
{(print "You have 3 seconds to place the can")

(go-home-and-init)

(sleep 3)

{grab 4.2)

(sleep 2)

(move-in-load 5 :duration 0.8)
(move-out-load 3 :duration 0.8)

(move-left-load 5 :duration 0.6)
(move-right-load 10 :duration 0.8)
(move-left-load 5 :duration 0.6)

(move-up~load 4 :duration 0.6)
(move-down-load 6 :duration 1.0)
(move-up-load 2 :duration 0.6)

(rotate-x-locad 10 :duration 0.8)
(rotate-x~load -10 :duration 0.8)

(rotate-y-load 30 :duration 0.8)
(rotate-y-load -60 :duration 1.6)
(rotate-y-load 30 :duration 0.8)

(rotate-z-load 40 :duration 0.8)

(rotate-z-1load -80 :duration 1.6)
(rotate-z-~load 40 :duration 0.8)

(go-hand)

(sleep 15)

(print "Finished absolute moves")
(set-cube-~-frame)

(move-left-load 5 :duration 0.6)
(move-right-load 10 :duration 0.8)
(move-left-load 5 :duration 0.6)
(move-up-load 4 :duration 0.6)
(move-down-load 6 :duration 1.0)
(move-up-load 2 :duration 0.6)

(rotate~-x-load 20 :duration 0.8)
(rotate-x-load -40 :duration 0.8)
(rotate-x~load 20 :duration 0.8)
(rotate-y-load 40 :duration 0.8)
(rotate-y-load -80 :duration 1.86)
(rotate-y-load 40 :duration 0.8)
(rotate-z~load 40 :duration 0.8)
(rotate-z-load -80 :duration 1.6)
(rotate-z-load 40 :duration 0.8)

(sleep 15)
(go-hand)

(move-up-load 2 :duration 0.6)
(move-left-load 2 :duration 0.6)
(move-down-load 4 :duration 1.2)
(move-right-load 4 :duration 1.2)
(move-up-load 4 :duration 1.2)
(move-left-load 2 :duration 0.6)
(move-down-l1lcad 2 :duration 0.6)
(sleep 6)

(go-hand)

(send tg :back-to-basic))

; 11.2.1 TWIRL-CAN
(defun can-twirl ()

(print "You have 3 seconds to place the can")
(go—home)

(sleep 3)
(setqg *object-frame* (make-array ‘(3 4) :initial-contents ' ((1 0 0 0)
(0 0 -1 5.5)
(010 -2.7))))
(setg *contact-points-object-space*

(list (make-array ’(3) :initial-contents ’(-0.8 1.3 2.5))
(make-array ' (3) :initial-contents (0.8 1.3 2.5))
(make-array ' (3) :initial-contents 7 (0 -1.3 2.5))))

(initialize~global-variables)
(move-to-contact-points))
(sleep 1)

(let* ((force-magnitude 1.0)

(force-center (zero-vector 3)))
(move-to-grasp-center-load force-center force-magnitude)
{(move-right-load 4 :duration 0.6)

(move-left-load 8 :duration 1.0)

(move-right-load 4 :duration 0.6)

(move-down-load 2 :duration 0.6)

{move-up-load 4 :duration 1.0)

(move~down-load 2 :duration 0.6)
(move-to-grasp-center-load force-center force-magnitude)

(setq force-magnitude 0.2)

(setf (aref force-center 0) 0.9)

(setf (aref force-center 1) 0)
(move-to-grasp-center-load force-center force-magnitude)

(setg force-magnitude 1.2)

(setf (aref force-center 0) 0)
(move-to-grasp-center-load force-center force-magnitude)
(move-right-load 4 :duration 0.6)

(move-left-load 8 :duration 1.0)

(move-right-load 4 :duration 0.6)

(move-down-load 2 :duration 0.6)

(move~up-load 4 :duration 0.8)

(move-down-load 2 :duration 1.0)
(move-to-grasp-center-load force-center force-magnitude)
(go-hand)))

; 11.2.2 CAN-CRAWL

H 11.2.2 CAN-SPIN
(defun can-spin ()
(print "You have 2 seconds to place the can")
(go-home)
(sleep 2)
(setqg *object-frame* (make-array ’ (3 4) :initial-contents 7 ({(1 0 0 0)
(0 0 -1 5.5)
(001 0 -2.5))))
{setqg *contact-~points-object-space*
(list (make-array ’(3) :initial-contents ’ (-0.8 1.3 2.5))
(make-array ’(3) :initial-contents ‘(0.8 1.3 2.5))
(make-array ’ (3) :initial-contents (0 -1.3 2.5))))
(initialize-global-variables)
(move-to-contact-points)
(sleep 2)
(let* ((force-magnitude 0.3)
(force-center (zero-vector 3))
(displacement (zero-vector 3)))
{move-to-grasp-center-load force-center force-magnitude)

(setq force-magnitude 0.4)
(setf (aref force-center 0) -0.6)
{(move-to-grasp-center-load force-center force-magnitude)

(setf (aref displacement 0) 0)

(setf (aref displacement 1) 1)
(setf (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 2)
(setf (aref displacement 2) -2)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) -4)
(setf (aref displacement 2) -1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 1)
(setf (aref displacement 1) 1)
(setf (aref displacement 2) 2)
(move-finger-load 2 displacement)

(setf (aref displacement 0) -0.5)
(setf (aref displacement 1) 3)
(setf (aref displacement 2) -2)
{move-finger-load 2 displacement)

(setf (aref displacement 0) -0.5)
(setf (aref displacement 1) -4.5)
(setf (aref displacement 2) -1)

(move-finger-load 2 displacement)

(setf (aref displacement 0) 0.5)
(setf (aref displacement 1) 1.5)
(setf (aref displacement 2) 3)

(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 3)
(setf (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) -0.5)
(setf (aref displacement 1) 1.5)
(setf (aref displacement 2) -0.5)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) -4)
(setf (aref displacement 2) -0.5)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 1)
(setf (aref displacement 1) 1)
(setf (aref displacement 2) 1)
{(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 2)
(setf (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 0.5)
(setf (aref displacement 2) -2)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) -2.2)

;

(setf (aref displacement 2) 0)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 0)
(setf (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setqg force-magnitude 0.5)

(setf (aref force-center 0) -0.6)
{(move-to-grasp-center-load force-center force-magnitude)
(setqg force-magnitude 0.5)

(setf (aref force-center 0) 0)
{move-to-grasp-center-load force-center force-magnitude)

(go-hand)))

11.2.3 BOX-SPIN

(defun box-spin ()

’

(print "You have 3 seconds to place the box")
(go-home)
(sleep 3)
(setg *object-frame* (make-array ’ (3 4) :initial-contents ’((1 0 0 1.5)
(01 0 3.0)
(0 0 1 -2.21))))
(setq *contact-points-object-space¥*

(list (make-array ' (3) :initial-contents ’(-0.8 0.0 0.8))
(make-array ’(3) :initial-contents ' (0.8 0.0 0.8))
(make-array ’ (3) :initial-contents (0.8 0.0 -0.8))))

(initialize-global-variables)
(move~to-contact-points-load)
(move-left-load 7.6)
(go-hand)

(clearscreen)
(draw-coordinate-system)

(let* ((force-magnitude 0.05)
(force-center (zero-vector 3))
(displacement (zero-vector 3)))

(initialize-global-variables)
(setf (aref force-center 0) 0.8)

(do ((1 0 (+ 1 1)))
((= 1 3))
(setq force-magnitude 0.2)
(setf (aref force-center 0) 0.8)
(move-to-grasp-center-load force-center force-magnitude)

Bring the finger back

(setf (aref displacement 0) 1)
(setf (aref displacement 1) 0)
(setf (aref displacement 2) 2)
(move-finger-load 1 displacement)
(setf (aref displacement 0) 1.13)
(setf (aref displacement 1) -1.13)
(setf (aref displacement 2) 0)

Push in and rotate
(move-finger-load 1 displacement)
(setf (aref displacement 0) 0)
(setf (aref displacement 1) 0)
(setf (aref displacement 2) -2.5)
(move-finger-load 1 displacement)
(setf (aref displacement 0) -1.13)

(setf (aref displacement 1) 1.13)
(setf (aref displacement 2) 0)
(move-finger-load 1 displacement)
(setf (aref displacement 0) 1.13)
(setf (aref displacement 1) 1.13)
(setf (aref displacement 2) 0)

Bring the finger back
{move~finger-load 1 displacement)
(setf (aref displacement 0) 0)
(setf (aref displacement 1) 0)
(setf (aref displacement 2) 2.5)
(move-finger-load 1 displacement)
(setf (aref displacement 0) -1.13)
(setf (aref displacement 1) -1.13)
(setf (aref displacement 2) 0)
(move-finger-load 1 displacement)
(setf (aref displacement 0) 1.13)
{setf (aref displacement 1) -1.13)
(setf (aref displacement 2) 0)

Push in and rotate
(move-finger-load 1 displacement)
(setf (aref displacement 0) 0)
(setf (aref displacement 1) 0)
(setf (aref displacement 2) -2.5)
{(move-finger-load 1 displacement)
(setf (aref displacement 0) -1.13)
(setf (aref displacement 1) 1.13)
(setf (aref displacement 2) 0)
(move-finger-load 1 displacement)
(setf (aref displacement 0) 1.13)
(setf (aref displacement 1) 1.13)
(setf (aref displacement 2) 0)
(move-finger-load 1 displacement)

Bring the finger back

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 0)
(setf (aref displacement 2) 2.5)
(move-finger-load 1 displacement)
(setf (aref displacement 0) -1.13)
(setf (aref displacement 1) -1.13)
(setf (aref displacement 2) 0)
(move-finger-load 1 displacement)
(setf (aref displacement 0) 1.13)
(setf (aref displacement 1) -1.13)
(setf (aref displacement 2) 0)

Push in and rotate
(move-finger-load 1 displacement)
(setf (aref displacement 0) 0)
(setf (aref displacement 1) 0)
(setf (aref displacement 2) -2.5)
(move-finger-load 1 displacement)
(setf (aref displacement 0) -1.13)
(setf (aref displacement 1) 1.13)
(setf (aref displacement 2) 0)
(move-finger-load 1 displacement)
(setf (aref displacement 0) 1.13)
(setf (aref displacement 1) 1.13)
(setf (aref displacement 2) 0)

Bring the finger back
(move-finger-load 1 displacement)
(setf (aref displacement 0) 0)

(setf (aref displacement 1) 1)
(setf (aref displacement 2) 3)
(move-finger-load 1 displacement)
(setf (aref displacement 0) -1.13)
(setf (aref displacement 1) -1.13)
(setf (aref displacement 2) 0)
(move-finger-locad 1 displacement)

(setqg force-magnitude 0.0)
(setf (aref force-center 0) 0)
(move-to~grasp-center-load force-center force-magnitude)
{move-right-load 7.6)
(setqg force-magnitude 0.3)
(setf (aref force-center 0) -0.5)
(move-to-grasp-center-load force-center force-magnitude)
(move-left-load 7.6))

(go-hand)))

(defun back-rub()
(print "You have 2 seconds to place the back™)
(go-home)
(sleep 2)
(setqg *object-frame* (make-array ’(3 4) :initial-contents ’((1 0 0 0)
(0 0 -1 5.5)
(01 0 -2.5))))
(setq *contact-points-object-space*
(list (make-array ‘(3) :initial-contents ‘' (-0.8 1.3 2.5))
{(make-array ‘ (3) :initial-contents (0.8 1.3 2.5))
(make-~array ’(3) :initial-contents " (0 -1.3 2.5))))
(initialize-global-variables)
(move-to-contact-points)
(go-hand))

(sleep 2)
(let* ((force-magnitude 0.3)
(force-center (zero-vector 3))
(displacement (zero-vector 3)))
(move-to-grasp-center-load force-center force-magnitude)

(setqg force-magnitude 0.4)
(setf (aref force~center 0) -0.6)
(move-to-grasp-center-load force-center force-magnitude)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 1)
(setf (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 2)
(setf (aref displacement 2) -2)
{move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) -4)
(setf (aref displacement 2) -1)
(move-finger-load 2 displacement)

{(setf (aref displacement 0) 1)
(setf (aref displacement 1) 1)
(setf (aref displacement 2) 2)
{(move-finger-load 2 displacement)

(setf (aref displacement 0) -1)
(setf (aref displacement 1) 3)
(setf (aref displacement 2) -2)
(move~finger~load 2 displacement)

(setf (aref displacement 0) ~0.5)
(setf (aref displacement 1) -4.5)
(setf (aref displacement 2) -1)

(move-finger-load 2 displacement)

(setf (aref displacement 0) 0.5)
(setf (aref displacement 1) 1.5)
(setf (aref displacement 2) 3)

(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 3)
(setf (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) -1)
(setf (aref displacement 1) 1.5)
(setf (aref displacement 2) -0.5)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) =5)
(setf (aref displacement 2) -1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 1)
(setf (aref displacement 1) 1)
(setf (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
{(setf (aref displacement 1) 2)
(setf (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 0.5)
(setf (aref displacement 2) -2)
(move~finger~load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) =-2.5)
(setf (aref displacement 2) 0)
(move-finger-load 2 displacement)

(setf (aref displacement 0) 0)
(setf (aref displacement 1) 0)
(setf (aref displacement 2) 1)
(move-finger-load 2 displacement)

(setq force-magnitude 0.5)

(setf (aref force-center 0) =-0.6)
(move-to-grasp-center-load force-center force-magnitude)
(setqg force-magnitude 0.5)

(setf (aref force-center 0) 0)
(move-to-grasp-center-load force-center force-magnitude)

(go-hand)))

(defun pic ()

{sleep 10)

(let ((displacement (make-array ' ca)m
{setf (aref displacemsnt @) 0.0)
{setf (aref d.taphm 1) 0.0)

(setf (avef 4 it 2) -2.5) .
I (move-finger-1oad si~user:finger-nusber Asplace
R {go~hand) '
-{oetf (azef duam 9 0.0)
{setf (aref d4i st 1) 0.0)

(sotf (aref displacwment 2) 2.5)

(move~Linger-load sl-user:finger-ausber ﬁmﬂ

(go-hand)))

CS-TR Scanning Project _
Document Control Form Date: 7_/JF 1 45

Report # /‘\I‘T@ff ?Q—

Each of the following should be identified by a checkmark:
Originating Department:

ﬁ(Artiﬁcial Intellegence Laboratory (Al)
O Laboratory for Computer Science (LCS)

Document Type:

XTecnnical Report (TR) O Technical Memo (TM)
O Other:

Document Information Number of pages: 330(d2¢imsss)

Not fo include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
ﬂ‘ Single-sided or [J Single-sided or
O Double-sided X Double-sided
Print type: ‘
[] Typewiter [] Offset Press y\ Laser Print
[0 inkdetPrinter [] Unknown] Other:

Check each if included with document:

jﬂ_DOD Form (&) [0 Funding Agent Form O cover Page
0 spine O Printers Notes O Photo negatives
O Other:
Page Data:
Blank Page sy e smes;_Fotlosy |1, 111

Photographs/Tonal Material ey pege mmben: 35 3 95-9,

Other (now descriptonpage numben:
Description : Page Number:

VY- ey \/\.Nﬂ‘) N
ZASE MAR! (- 15 YPagesHEn i, Brameiin, Gu | VX
(13~ 16) PaGash’en | -15¢ APEEND > D

(l63 ~ 200) 5 UWNVAF'ED PAGES (FILE cowsTRRINS .LJ;o”)
(24 - 996) Scarsommol, DOD (Q) TRETS (N

Scanning Agent Signoff:
Date Received:) / 28/9S Date Scanned: _{3/_{l /§S Date Returned: Iy By qS

/“M‘M Qv@
Scanning Agent Signature: Ve ' %J e

ROVWDSILCSDOOIMWFMHM.M

UNCLASSIFIED

SECURITY CLASSIFICATION OF THI§S PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

. REPODRY NUMBER

2. GOVT ACCESSION NO.
AI-TR 992

RECIPIENT'S CATALOG NUMBER

TITLE (end Subtitie)

Enhancing the Dexterity of a Robot Hand
Using Controlled Slip

TYPE OF REPORT & PERIOD COVERED

technical report

PERFOARMING ORG. REPORT NUMBER

AUTHOR(s)

David Lawrence Brock

CONTRACT OR GRANT NUMBER(s)

NO0O014-86-K-0685
N00014-85-K-0124

. PERFORMING ORGANIZATION NAME AND ADDRESS

Artificial Intelligence'Laboratory
545 Technology Square
Cambridge, MA 02139

. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS

- CONTROLLING OFFICE NAME AND ADORESS

Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

12.

REPORT DATE
May 1987

1s.

HUMBER OF PAGES
218

- MONITORING AGENCY NAME & ADORESS(// difterent from Controlling Oflice)

Office of Naval Research
Information Systems
Arlington, VA 22217

. SECURITY CLASS. rof thie report)

UNCLASSIFIED

18a,

DEC
SCH

L ASSIFICATION/ DOWNGRADING
EDULE

OISTRIBUTION STATEMENT (of thie Report)

Distribution is unlimited

17.

ODISTRIBUTION STATEMENT (of tHe abatract entered in Block 20, I{ difterent from Report)

. SUPPLEMENTARY NOTES

None

., KEY WORDS (Continue on reverse side ! necessary and identity by block number)

robot hand
dexterity

slip

controlled slip

N

DD ,

20.

ABSTRACT (Continue on reverae eside If neceseary and identity by block number)

Abstract. ‘Humans can effortlessly manipulate objects in their hands, dex-
terously sliding and twisting them within their grasp. Robots, however, have .
none of these capabilities, they simply grasp objects rigidly in their end effec-
tors. To investigate this common form of human manipulation, an analysisiof
controlled slipping of a grasped object within a robot hand was performed.
The Salisbury robot hand demonstrated many of these controlled slipping

techniques, illustrating many results of this analysis.
oy 1473

JAN T3 EDITION OF 1 NOV 85 1S ODSOLETE

S/N 0:02-014-6601 §

O =

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS mAGE (When Dara Entere:

ﬁ/@éé 20 amf :

First, the possible slipping motions were found as a function of the lo-
cation, orientation, and types of contact between the hand and the object.
Second, for a given grasp, the contact types were determined as a function of
the grasping force and the external forces on the object. Finally, by chang-

ing the grasping force, the robot modified the constraints on the object and
affect controlled slipping motions.

Scanning Agent Identification - Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the ML.I.T. Laboratory for
Computer Sciences.

darptrgt. wpw Rev. 9/94

