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LISP Machine Demonstration 

As many around the lab have become aware, I am working on a project 
designed to demonstrata the feasibility of a LISP machine concept. Below I 
briefly outline some aspects of the project. 

History 

The idea of a -LISP machine- has becn kicked around more or less 
constantly since t= -~. A wholij lore of techniques, etc. have been 
co~stantly building for many years. Recently, there are signs that this 
body to knowledge may be "g01ng legit", perhaps concident with the 
availability (or at least technical possiblility) of suitable variable 
microprogrammed machines on which such a system might ve implemented. 

!leter Dgutch of Xerox PARC wrote a paper for the 3I,JCAI which 
described his ideas, not too sirniliar to the present ones beyond the basic 
idea of a single user minicomputer running a specialized mlcrccode for 
LISP. As far as I know this is the only published reference along these 
lines. However the following draws freely on dozens of ideas from many 
systems including especially MACLISP, ~UDDLE, and CONNIVER. I will also 
acknowledge a touch of special influence from LISP 2 and Donald Eastlake's 
attempt to "write Conniver in machine language." 

Goa!s and Major Charactistics of th'3 Target System 

1. Capability to run large programs -- equivalent to several million PDp· 
10 words 

2. Single user stand alone operation -- (with possible communication to • 
time-shared file system for program sharing and bac!tllj». The 
computer runs tho s~ma speed ~t 3prn as 3am!! I!! 

3. Current non-prohibitive cost (rlijprox $70K per system) with ~rospects 
for further docrease (both absolutely and relative to athOl" Dleans 
of accomplishing these Dbjectiv~5) in the future. 

4. High degree of upward co~~atability with current PDP-IO KACLtsP 
programs. 

5. Competely integrated system -- all In common target language. Complete 
standdrdization of calls ~tc. 

6. No ordinary local file system- but instead something better (see 
description of storage area f~dturc). 

7. Great storage efficency of co~pilied prc~rams -- a factor of nearly 3 
better "bit efficency· than MACLISP now. 

8. -MUDDLE - CONNIVER" arg declaration syntax (available in an upward 
KACLISP compatable form). 

9. Contexts, control structure hackery, et al CONNIVER style, with low 
cost unless you use it. fully "co-recursive." 

10. -Hardware- data types for increased computational efficency and error 
checking. 

11. Extremely flexible base for experimentation in further changes to 
practically any aspect of the language. 

12. Additional flavor because basic SUBRs like READ an1 PRINT are in LISP. 



13. 
14. 

15. 
16. 

17. 

18. 

19. 

facilitating certain sorts of communication with them. 
Improved methods to reclaim storage without garbage collection. 
High speed transfer of data to and from Secondary store (a time-shared 

file system for example) via "SHIP" facility. This method does 
not involve conventional READing and PRINTing and is in some 
respects similar to the FASLOAD system on KACLISP. 

Display oriented console interaction available. 
High reliability and redundancy. If one machine goes down, others are 

still available. 
Provisions to maintain "continuity" over long periods of time ie you 

don't frequently walk up and type LISpAK and reload all ~our . 
stuff. Instead the system does a much better job of protecting 
itself from getting clobbered and allowing programs to be 
segmented so they don't "get in each other's way· as much as now. 

Frame oriented storage, "invisible" pointers, CDR codes, invoke 
pointers, trap pointers, etc. See description of storage 
conventions for details. 

ftiscellaneous other wonderful features. 

Implementation 

The basic components of the system are: 

1) the CONS microprocessor -- see the CONS machine writeup by Tom [night 
for a preliminary description. 

2) a PDP-l1110 which serves only as a console computer and UNIBUS 
supporter. The 11 cpu is idle in normal system operation after 
the system is loaded. In later, more "integrated· versions of 
the machine, the 11 would be eliminated. 

3) core memory -- 50-lOOK PDP-II memory (SI2-Z5K at current prices very 
roughly. ) 

4) !a$t backing store -- the key to the feasibility of the system at least 
for the short term. Several options are available currently 
including: 

·3600 RPM disk with 3 sets of heads around each track. max 
access = 5 213 ms 1/4 million wds·price SIDK 
-3600 RPM 1 set of heads lIZ million wds max access 16 2/3 ms 
price SI8K (strongly rumored new DEC disk). 
-existing on "tv" PDP-II - 1800 RPM 1/4 million wds. 
·existing on LOGO 11/45, 1800 RPM lIZ million wds 
-for the future, various "silicon disk" schemes now in the 
research phase. 

5) Slog backing store -- 2315 type moving head disks like on LOGO and mini­
robot machines. The one on LOGO cost $6K-$7K for 3 million wds. 
(Double density is now available at slight increase in ~rice.) 

6) Dt$plav -- "TI" type ·direct connected" approx cost S4K-S5K. 

Although ·silicon disks· are not available yet at reasonable 
prices, several suitable devices (16 Kilobit IC shift registers for 
example) are strongly rumored to be slated for fourth quarter 74 

announcement. Since fixed head disks have always been a prime source of 
pain, at the present time we greatly hope we wl11 be able to skip over the 
phase of running the system on a fixed head disk and go directly to • solid 
state disk. 

Processor 

The CONS micro-processor is fairly completely described in a memo 
by Tom ~ight, but the fundamentals will be gone over briefly here. The 
machine has provision for 4K of 45 bit words of control store. It has two 
scratch-pad memories internal to the processor, one of 32 words, the other 
of 256. The width of the basic data paths is 32 bits. The machine 
incorporates a map capable of dealing with a 23 bit virtual address space 
of 32 bit words. It also has a 1024 word pdl buffer, which greatly speeds 
up references to the top part of the stack. It is currently anticipated 
that it will require four 180 pattern Augat boards and In the neighborhood 
of 600 ICs. 

Storage Managment 

The fundamental unit of storage allocation is 32 bits, called a g. 
A Q is capable of holdi~g a Single pointer to any virtual storage location, 
and in addition contains a garbage collector bit, a user control bit, a Z 
bit ~ and a 5 bit data type field. It takes two Q's to make a 
general LISP node, but via the cdr code bits an N element list can be 
stored in N consecutive Qs. 

The mechanism of the storage area is highly integrated into the 
system. Essentially, CONS is a function of 3 arguments, the third being 
the area in which to do the CONS. A storage area is a region of contiguous 
pages each 64 Qs long. When allocated it is assigned a range of virtual 
addresses (which directly correspond to disk addresses). Each area has its 
own free storage list, which works in a way specified for that area (for 
example, an ascending free pointer or a list of free pages or a list or 
free nodes). These areas may not necessarily be data type related -- i.e. 
they do not correspond to FIXNU~ space or FLONU~ space etc. lhis sort of 
data type information is stored in data type fields of the Q's ccmprising a 
node. 

There are many reasons one might choose to segregate a certain type 
of storage into its own region, separate from the large worki~~Qr~ 
area. For example, an area can be declared read-only. An ar~a can be 
garbage collected independantly of other areas (or some othel' cUoas), An 
area can be set up for temporary storage then reclai~8d en masse ~lthout a 
garbage collection if desired. This is a "dangerous' 1peraticn, but a 
debugging mode will be available to perform a gc mark and tell you if thare 
are any live pointers to the area and where they are. 

Areas can be used to improve utilization of corr, storage. For 
example, by storing PNAMEs and OBLIST pointers in a separate area. they can 
be kept out of the way during computation runs. (It is a fairly simple 
matter for the system to do this itself in the case of PNAnEs, but the are. 



mechanism provides a convenient means for the user to do this himself for 
any type of storage he might choose to distinguish.) 

It is possible to operate on the contents of a area as a whole, by 
copying it for backup for example. The external pointers of a relatively 
constant area can be factored out into a contiguous exit vector. This then 
could greatly speed up garbage collections since the area would not be 
marked, just the exit vector. 

Since each area has its own routine for the sweep phase of garbage 
collection, certain storage conventions become possible that otherwise 
would not be even with the -hardware data types-. , 

This discussion does not by any means exhaust the possible uses ot 
areas. 

Storage Conventions 

Format of a Q: 

I I I I 
I 1 I 1 I 2 I 5 
I I I I 

I I 
gc bit--I I 

user bit--I I 
cdr code---I I 

23 

data type-----I I 
pointer--------------I 

gc bit (1 bit)- obvious - used in conventional way during GC. 
user control btt (1 bit) - unused by the system in ordinary list structure 

and is available for any use by the user .. One suggested use: 1t 
set, it indicates this node has a hash-link in a particular hash 
table. 

CDR code (2 bits) tells the CDR function what to do: 
o - normal node, CDR of this node is contained in the Q following 

this one. 
I . NIL CDR of this node is NIL. 
2 • CDR NEXT - CDR of this node is the following Q. 
3 - 2nd half of Q - for error checking. Says this Q is intended to be 

the 2nd half of a full node, so taking CDR of it directly is 
illegal. (As can been seen, these conventions allow the storage 
of an n element list in n consecutive Qs.) 

pOinter - (23 bits) pointer to element described by data tgpe. In the case 
of FIX, a Z3 bit immediate numeric quantity. 

data type - (5 blt~) 
TRAP - any attempt to reference this pointer will trap. 
LIST 
ARRAY HEADER· Followed by indexing an type information for array, 

followed by array data. Strings and Symbol PNAPIEs are stored as 

byte arrays. 
SY"BOL (the term SYMBOL is used instead of "non-numeric atom- or the 
-------common but imprecise "atom") - points to a four Q block. The 

first of these is an ARRAY POINTER to the PNAME array. There 
follows the VALUE cell, the FUNCTION cell and the PROPERTY cell. 
Values of SYMBOLS are stored in VALUE cells as in PDP-IO ~CLISP. 
However the VALUE cell is located directly following the SY~BOL 
header instead of being on the property list. 

FIX number - 23 bits. Does not require any extra storage to exist in 
list structure (similar to INUMs on PDP-IO LISP). 

Floating number - not implemented initially 
Big number - also not implemented initially 
Big Floating point number - also not implemented initially 
~ - pointer to a whole 64 Q page (such as a POL-FRAnE, FUNCTION­

ENTRY-FIWIE, etc). 
~ - Has peculiar property that if somebody attempts to take a 

fundamental operation of it (such as CAR, CDR, RPLACA, or RPLACD) 
the invoke pointer gets called as a function (ACTOR style, sort 
of). Two arguments are supplied, the original invoke pointer and 
the attempted operation. The value returned by the function is 
returned as the value of the fundamental operation. 

UCODE-ENTRY -entry pointer to microcompiled function. 
LOCATIVE - a pointer to a Single Q. Both CAR and CDR result in the , ... 

addressed Q. 
INVZ-GC 
~F-ADR 
INVZ-CAR-CDR 
INVZ-COMPONENT - inuisibe pointers 

Invisible Pointers 

The concept of an invisible pointer is similiar ~o the concept of 
indirect addressing in a conventional machine, with the difference that the 
speCification that indirection is to take place is made in the data rather 
than in the instruction. The possibility of implementing invisible 
pointers from the system design point of view depends on the fact that this 
is an integrated system. For example, in a conventional machine, it would 
clearly be unacceptable to have a range of number such that when they are 
added with the ADD instruction, what gets added is not these numbers 
themselves, but the contents of the memory location they,point to. Here, 
due to the systematic interpretation of the data-type field which is 
defined to occur, we can have exactly that effect. 

Since invisible pointers have never been available before to the 
system designer or to the data-base-structure designer, it is undoubtedly 
true that many uses for them will be found beyond what is forseen now. 
Already. however, it is apparent that they offer a new and very interesting 
dimension in these areas. 

Some Proposed Uses of I;wisible Pointers. 



The efficiency and cleanliness of a copying'type relocating garbage 
collector can be improved by the use of invisible pointers. Simply, as each 
piece of active data is moved into the new area, an invisible pointer to it 
is left behind in its old home pOinting to the new one. This eliminates 
the necessity of doing a separate update pass. The system data base is in 
a consistant runnable state at all times. If a form of invisible pointer 
is used which carries the additional message "snap me out if possible-, 
then the mark phase of the next succeeding garbage collection can serve to 
finish ~ any links not touched since the previous garbage 
collection. Indeed the system has a data type. INVZ-GC. which is used 
precisely in this manner. ---

Invisible pointers can be used to provide an escape mechanism to 
allow certain storage conventions to be used, which otherwise would lead to 
painful restrictions. For example, consider a scheme like the CDR-CODE 
scheme proposed, which allows more efficent storage of linearized lists. 
What happens if someone RPLACDs the list so it is no longer linear? 
Insufficent space has been allocated to store a full CDR pointer. If it 
were not for invisible pointers, this operation would have to be forbidden. 
With invisible pointers, one merely does a new CONS of a,full node 
(consisting of two Qs) and places an invisible pointer to it in the one 
available Q of the original list. The list has then been properly 
RPLACDed, and there are not even any problems about pre-existing pointers 
into the midde of the list. INVZ-EFF-ADR (invisible during effective 
address computation) type of invisible pointer turns out to have the right 
-micro-properties" for this application. 

Invisible pOinters can be used to solve certain design problems 
relating to the internal operation of the system in a convenient manner. 
For example, consider the problem of referencing SPECIAL versus LOCAL 
variables. The LOCAL variable values are stored on the PDL. and are 
referencable by supplying a delta from some index register (in this case 
the arguM~nt pointer register). The SPECIAL variable values, on the other 
hand, are stored in the VALUE cell of the particular variable involved. 
The best one can do toward making them referencable with a small delta is 
to have a table of pointers to the VALUE cells, and arrange to supply an 
index into this table. However doing this makes SPECIAL variables -one 
level of addressing" off compared to local variables. The problem is 
neatly solved by having the table consist'of invisible pointers. Then the 
same instructions can be used in either case, and the extra level of 
indirection will be automatically supplied if necessary., Again, INVZ-EFF­
ADR is the sort of invisible pointer that works here. 

Invisible pointers can be used to provide high level -language 
design" features in an efficient manner. For example consider the variable 
ltnlina mechanism as occurred in MICRO-PLANNER. Basically if a pattern 
match matched two unassigned variables, the values of the variables would 
become linled so that if one was assigned, the other would be also. This 
could be implemented efficently by storing an INVZ-EFF-ADR invisible 
pointer 1n the value cell of one variable to the other. This feature of 
"IeRO-PLANNER was very powerful, since it allowed certain theorems to be 
written in an ·equation- sort of way, applying equally in either direction. 

We also desired to make available to the LISP programmer a tOni of 

invisible pointer. The ones described so far are not really available to 
the LISP programmer in that he cannot for eXample, set variables to them 
since they are "invisible" to him. We define two more types. INVZ-CAR-CDR 
and INVZ-COMPONENT, INVZ-CAR-CDR does not act specially when referenced by 
data transmiSsion instructions. Thus if a variable is set to an INVZ-CAR­
CDR pointer and another variable is set equal to the first. the second 
~ariable will ~et set to the invisible pOinter, not the thing being 
invisibled to, However, if an INVZ-CAR-CDR pointer is fed to a 

!undamental component operation (CAR, CDR, RPLACA, RPLACD) the 
invisibleness" will occur. followed by the operation. 

INVZ-COMPONENT differs from INVZ-CAR-CDR in that only the component 
(CAR or CDR) in which it appears is invisibled, not both. Thus of the 
INVZ-COMPONENT is in the CAR pOSition, CDR is unaffected while if it had 
been an INVZ-CAR-CDR CDR would be obtained by indirecting, then taking CDR 
of the resulting pointer. 

This discussion does not exhaust by any means the obviously useful 
uses that have been found for invisible pointers already. In fact. they 
serv: an additional conceptual purpose of providing a means to -open one's 
mind in thinking about what is really gOing on in the system. For example, 
what happens if an inviSible pointer is passed as an argument? 

Subroutine calling 

• _ All subroutine calls in the system are directly ~ompatible (no 
UUO handler for argument conversion). 

As the args to a function are built up, they are placed directly in 
a frame in the correct position for their eventual reference by the target 
fUnction (i.e. no argument loading into the AC's just before the call). 

When a function is r~ally called (at destination last), if its 
FUNCTION cell does not contaIn a frame pointer (to the FUNCTION-ENTRY-FRAftE 
or FEF). a UCODE-ENTRY or an ARRAY-POINTER, then a trap to the error syste. 
(and possible interpretation) occurs. 

The FEF contains information as to the number of desired args 
desired data types or don't care, local ness or specialness, optionaln;ss. 
restness etc. If any exception occurs during the entry process a 
corresponding trap happ~ns after the entry operation is complet~, This 
greatly simplifies tracIng, since the trace function does not need to worry 
about being transparent to the supplied args. If any args or AUXes are 
~. appropriate binding is done. (This consists merely of swapping 
the current contents of the value cell with the allocated location that 
would have been used had the variable been local.) 

For initialization of ~ args not supplied and AUXes, the FEF 
contains a.po~nter and a field decoding the following options: 

Intttaltze uar to pointer 
Inttialize uar to contents oj pOinter 

The FEF also has pointers to QUOTEd list structure, numbers, 
pointers to value and function cells and other Q quantities needed by the 
compiled code. The FEF contains the initial PC and the -NAMES. of all 
varibles (special and local). 



PDL Frame 

FPL LPL 
t t 

(64 Qs) I I return address 1 1----------------------1 
1----------------------1 1 CALL state I 
1 control I ink 1 I EXl T state I 
I access I ink 1 I ENTRY state 1 
I local pdl pointer 1 

1 bind block pointer 1 
I FEF pointer I .. Argu.ent ptr 

1----------------------1 I (others) 1 

ArguMent ptr -. I FEF pointer 1 

1----------------------1 

I args 1 
1 + 1 
1----------------------1 

I args 1 I local block I 
I + I I + I 
1----------------------1 1----------------------1 I local block 1 1 local pdl 1- Stack polnl 
I + I + ~ 
1----------------------1 
1 local pdl 1 

Stack pointe"-~I ~ I 

As mentioned previously, the same frame is used to store the 
EVALuated args until they are all ready, transmit them to the called 
function and store them during the execution of the called function. It is 
allocated from a POL FRAME space, and is linked to other frames only by 
pointers. There is no storagewise linearity to the PDL. 

A PDL frame consists of first a fixed allocated section, followed 
by ara slots, internal variable slots, and internal pdl. 

The fixed allocated .section contains: 
A pointer to the FEF 
control link. up 
access link. up 
internal PDL pntr - a local pushdown list within the frame used 

for storing evaluated args and pointer to frames containing 
evaluated args. 

Various fields giving the lengths Of the other parts. 
Potentially, a PDL frame may overflow into more than one block, but 

this may not be implemented initially. 

linear Pushdown List Mode versus Frame Pushdown list Mode 

It is a very powerful feature to be able to save the entire context 
of the entire computation (variables and control structure), possibly to 
resume it at a later time. This feature is fundamental to the operation of 
Conniver, for example. Implementing this feature one finds that the 
conventional pushdown list generalizes into a tree-structured pushdown list 

(also refered to as a spaghetti stack). The maintainenc9 of this stuctur. 
in a conventional way presents severe storage allocation problems, since 
one can return to any node of the tree and expect to grow new -linear­
storage from there. 

In Conniver, the solution used is to maintain the necessary storage 
in LIST space, which works but at a heavy cost in CONSes and resulting 
garbage collections. This overhead is fairly severe even in Conniver which 
is an interpreter, but becomes completely unacceptable when one is 
considering a compiled system with basic execution speeds several hundred 
times that of the existing Conniver. 

The solution originally proposed is the so called Frame Pushdown 
List (FPL) scheme. The idea is that one maintain a pool blocks or pages, 
each of a fixed size. It would be expected that a single block could hold 
the calling an running environment for any function activation in the 
system, although overflow mechanism to use more than one page for a single 
call could be provided. Thus when it is desired for one function to call 
another, first a block is obtained from the free storage list of such 
blocks. The desired arguments then loaded in, along with access and 
control pointers as necessary. Finally, control is transfered to the 
called function, which also uses the block for any temporary storage it may 
require. Thus the logical push down list is completely delinearized. Each 
block would contain a bit saying "an environment pointer has been created 
pointing to me". When a function return occurs, the block can Simply be 
returnned to the free storage list if this bit is not set. If it is set, 
then the block remains as active storage, and the "environment pointer 
points here" bit of its father blocks along the ACCESS and CONTROL links 
must be set. The block would then be reclaimed only by conventional 
garbage collection. Quite a bit of storage is wasted due to the large 
grain size of the blocks (many CALL-EXECUTE transactions require much less 
space the the maximum). However this sort of overhead is a function of the 
depth of function nesting and relatively constant otherwise. Since it is 
believed that the depth of function nesting grows at some -log sort of 
rate- with increasing size of the entire system, at some point the wasted 
storage should be an acceptably small fraction of the total. 

This solution works fine for its intended purpose, but we came to 
realize that there was a tremendous amount of overhead involved in setting 
up a completely new local environment on each function call as opposed to 
just incrementing the push down pointer in a conventional system. We 
figured that the basic call instruction would be over 25 microseconds in 
memory references alone. This is not too bad if you are really making use 
of the context switching feature (it compares to a figure of several 
milliseconds in the current Conniver, for example), however this is too 
high a price to pay when running old-style LISP which is extremely 
dependant on subroutine calling and therefore very sensitive to any 
slowdown. 

The solution was made possible by the micro-coded nature of the 
machine. There is a machine state word bit which indicates at any tics 
whether the current mode of execution is FPL or a more conventional Linear 
Pushdown List (LPL) mode. All necessary changes are made to. the --­
computation of indexes, Call-Return sequences, etc such that the same 



identical source code can execute equally well in either mode. In fact, a 
dynamic transition is possible. Thus a function operatinq in LPL might 
call another function which does a SAVE-CONTEXT operation. This would 
result in the LPL stack being recopied into FPL form, with the appropriate 
implicit data being supplied at that time. When the called function 
returns, the calling function finds itself operating in FPL mode, but care. 
not since appropriate changes have occurred in the interpretation of the 
order code to allow the same instructions to work. 

Context Switching and Environments 

As has been explained, the pdl consists entirely of blocks linked 
by pointers so there are no great problems in allowing it to assume a tree 
or spaghetti shape. Variable context handling is somewhat more difficult 
however. 

The following scheme works and is Simple. No one knows how bad its 
overheads are, but we shall find out! 

Briefly - variables have value cells or shallow bindings exactly as 
in ~CLISP. The current value of a SYMBOL is always found immediately in 
the value ce 11. 

Each binding block (pdl frame) is considered to have a one bit 
direction associated with it (up or down). At any time, one node at the 
end of one branch of the POL tree is active. The links starting at the top 
of the tree to that node point down and all others point up. When a 
request is received to change context, the pointers from the target node 
are followed up block by block until a block with direction down is 
reached. This is the intersection of the target context with the current 
~. Then starting at the current active node, we work back up to the 
intersection "switching the arrows." This means swapping the current 
contents of the special variables bound in the block with the saved value 
in the block. When the intersection point is reached, we work back down to 
the target context, switching the arrows to the down state. This completes 
the context change. It should be noted that the PDL is not linked in the 
downward direction, thus in order to transverse it downward it is necessary 
either to have a temporary storage buffer and save the pointers on the way 
up or temporarily turn the pointers around on the way up. Probably the 
latter will be done initially. Normally POL frames are collected on 
return, however, if a environment pointer has been created to the frame, a 
bit is set which indicates that the frame cannot be returned and must 
eventually be reclaimed by garbage collection. This bit also is propagated 
on both the control and access links. 

Source Languages 

As mentioned previously, it is desirable for a number of reasons to 
maintain compatability with MACLISP. 

Therefore one normal mode of the compiler compiles ~CLISP 
directly. A slightly different mode allows the use of ·nuDDLE-CONNIVER· 
arg and variable declaration. The resulting output is in all ways run time 
compatible with that produced in the first mode. It is also possible to 

define a revised program structure (with read and print conventions) making 
use of the data types, a la HUDDLE. However, I have no plans to do this at 
the present time. 

Most of the other additional features are accessed thru special 
functions and thus are not reflected in the language syntax. 

Target Machine Details 

Macro Instruction Set 

The target machine macro-instruction is a 16 bit word divided a, 
follows: 

4 3 

I 
main op---I I 

destination----I 

I 
3 I 

I 

I 
I 
I 
I 

6 

register (index)--I I 
dtsplacement----------I 

Destination field 

The most interesting field is the destination field which (for data 
transfer instructions) specifies what to do with the data after it has been 
fetched from the effective address and operated on by the main op. The 
destination field has the following options. 

ignore 
to .stacl 
to next 
to last 
to return 
to next (qu(t~d) 
to last (quoted) 
to next list 

To stack - pushes data on local stack and increments the pdl pntr 
~ - find a pointer to a frame (ala CALL) on the top of the stack. 

Increment the arg pointer of this frame and store the data where 
it points. 

to last - store next argument like next. Then locate pointer to the en~er 
function left on the stack by CALL. Save exit state for current 
function and setup entry state for entering function. Transfer 
to starting address specified by FEF. 

To return - return data as value of this function 
Ignore - discard data but set test indicator.s (this is done in any case). 



To last (quote), next (guo~ - same as last and next but store a one in 
the user control bit telling the target function it is getting a 
quoted argument (if it cares). 

To next list - The LIST n instruction (of operate class) allocates a space 
of n Qs and pushes its destination code and two pointers to the 
block. Next list stores the data in CAR of whatls pointed to by 
the top of the stack. It then replaces the top of the stack by 
its CDR. If that result is NIL, the list has been filled and the 
other pointer to the head of the block is popped orf and stored 
in the saved destination. 

Main OP 

Call The effective address contains a pointer to the FUNCTION cell of 
the function to be called. A CALL block (four Qs) is allocated on 
the stack, the FEF pointer for the function to be entered is 
saved in one of them. The destination code along with other 
information is saved in the CALL state Q. 

~ Like a CALL followed i~~ediately by a destination last. (Used to 
call functions of no arguments.) 

"OV,CxR,CxxR Data instructions as above 
"1sc groups 1 and 2 -- decoded by destination field includes: 

110VEM data off top of stack to effective address (E) 
POP data off stack into E 
PCAR pop data, take car of it, and store in E. 
PCDR likewise but CDR 
ADD,SUB,MUL,DIV,REM, - one op on stack, other in E. result to 

stack. 
SCDR replace E with its CDR 
SCDOR replace E with its CDOR 
+1 replace E with its +1 
-1 replace E with its -1 
<, >, EQ set indicators. One arg in E, other on stack which is 

popped off. 
~ - 3 bit branch code and 9 bit delta. If delta equals 0, the real 

delta is obtained from the following word. 
There are two indicators, the ATOM indicator and the NIL 
indicator. They are set by all data transfer and arithmethic 
in~tructions. (for arithmetic instructions theu become the ZERO 
and POSITIVE tndicator~). 

operate group - 512. miscellaneous functions. Have destination field as 
above. They take arguments on the pdl only. Included are: 

NCONS 
CONS 
LIST 0-63 allocate 0-63 Qis and push two pointers to 
it (see discussion of destination NEXT LIST.) 
CxxxR 
CxxxxR 
GET 
GETL 

ASSQ 
ASSOC 
EQUAL 

These last are included only for speed, since this makes them 
accessible without gOing thru the frame handwavage. Eventually, provision 
t~r including certain type user functions in this group could be provided. 
with a compiler that compiled to microcode. 


