; S o -b /??6

Wednesday, February 21, 1979 061:05:39 Al:LMDOC;MACRO 28 Page 1

qg - e ' ! o
V‘\z (,\:’-_ 1,98 s ; . g{“ b b L‘ Q‘:V
The LISP Machine Hacro-lnstructton Set. K

‘This document describes the LISP Machine’s interpreted order code.
referred to below as "macrocode.” The macrocode is designed to be highly
bit-efficient, and nell-suited to LISP. The compilation of LISP into macrocode
is verg stralghtforuard, as uill be shoun in examples belou.

) Nacrocode is created by the macrocompller, which is called *acrpP. *
It is never neccesary to write out macrocode manually, because it correspondes
. so closely ulth the LlSP source code that it uould be easy to urite the same thing
in LISP. . . >

Nhen QCHP is run on a functlon. it is said to “"macrocompile” the function.
It produces one "Function Entry Frame," referred to belou as a FEF, for each
function compiled. The resulting LISP pointer has datatype DTP—FEF—POINTER,
and points to the FEF, which is a block of memory at least 8 words long.

The FEF has several sections. The first section is aluays 7 words long,
and contains various information about the format of the FEF and information
about hou the function should be invoked. For complete details of the bit
layouts of these uords. see the FORMAT document.

" The next section of the FEF contains pointers to the VALUE cells and’
FUNCTION cells of symbols. These pointers are of datatype DTP-EXTERNAL-VALUE-CELL—PDlNTE'
and are used as an "exit vector", that is, compiled code can refer to these pointers
in order to access special variables. .

The next section contains the Argument Description List (ADL).
The ADL contains one entry for each argument uwhich the function expects to be
passed, and contains all relevant information about the argument: uwhether it is
required, optional, or rest, how to initialize it if it is not provided, -
whether it is local or special, datatype checking information, and so on.
Sometimes the ADL can be dispensed with if the "fast argument option® can
be used instead; this helps save time and memory for small, snmple functlons.
- The dctall can be found in the FORMAT document. :

The next section of the ADL contains various constants which the
function might want to refer to: if the function includes (FOO * (A B)),
then the list (A B) would be put in the constants area so that the microcode
can refer to it.

The rest of the FEF is the actual macroinstructions themselves.
Each macroinstruction is 16 bits long, and so tuwo macroinstructions
are stored in each word of the LISP machine. There are four conceptual
"classes" of mlcrotnstructtcns, each of which is broken doun into fields
ina dlfferent way.

CLASS I:

DEST. OPCODE  REGISTER. OFFSET

There are nine class | instructions, designated by @ through 18 (octal)
in the OPCODE field. Each instruction has a source, whose address
is computed from the "REGISTER" and OFFSET fields, and a destination




N -
3

Wednesday, February 21, 1973 81:85:33 - Al:LMDOC;MACRO 28 - Page 1.1

given by the DESTINATION field. The instructions are:
OPCODE NAME

8 CALL Upen a call block on the stack, to call the functlon
specified by the address. Whatever the function returns
uill go to the destination. The actual transfer of control
uill not happen until the arguments have been stored.
{See destinations NEXT and LAST.) ,

CALLB CALL in the case of a function uith no arguments.
The transfer of control happens immediately.
MOVE Move the contents of E to the destination. :
CAR Put the CAR of the contents of E in the destinatton.
COR Analogous.
CADR Analogous.
CODR Analogous.
COAR Analogous.
- CAAR Analogous.

ONDNBWN =

The effective address, E, is computed from the "register™ and the offset.
The instructions really use addressing relative to some convenient place specified
by the "register” field. The register may be: :

REG FUNCTION

(%) FEF This is the starting location of the currently-running
FEF. This is how the macrocode addresses the pointers
to value and function cells, and the constants area.

1 FEF+100 Same as B, plus 188 octal.

2 FEF+200 Analogous.,

3 FEF+300 Analogous.

4 CONSTANTS PAGE This is a page of widely used constants, such as T, NIL, |

small numbers, etc. There is only one constant page in t
machine. They are kept all on one page so that they can
be shared among a!l FEFs, so that they will not have - '
to be repeated in each FEF's constant area.

5 LOCAL BLOCK This is the address of the local block on the PDL, ;
- and is used for addressing local variables. : ; §
6 ARG POINTER This is the argument pointer into the POL, and is
used for addressing arguments of the function.:
7 PDL The offset must be 77. The top of the stack is

popped off and used as the operand. The other
possible values of offset are not currently used.

(See the FORMAT file for hou the POL frame for each function is divided
up into header, argument block, local block, and intermediate result stack.).

Note: The first 4 addressing modes are all provided to allon an effective
8-bit offset into the FEF. .
Note: The same register-offset scheme is used in the class 11 lnstructlone.

An additional complication in computing the "effective address" comes from
invisible pointers. Once the register and offset have been used to compute.
an initial effective address E, the word at that location is examined (even
if this is an instruction uhich uses E as a destination.) If the data type
of that word is "Effective Address Invisible", the pointer field of that word
is used as the effective address E. This is used, for example, to access




. v
]

Wednesday, February 21, 1979 81:85:33 Al:LMDOC;MACRO 28 =~ Page 1.2

value cells of special variables. The FEF "register™ is used, and the location
of the FEF addressed contains an effective address invisible pointer uhich
points to the desired value cell. This scheme saves bits in the instruction,
uithout requiring the use of extra instructions to make specna| value cells L
addressable. .

.The destination field is someuhat more complicated. First of all,
before the result is moved to the destination, tuo "indicators" are set. ,
The indicators are each stored as a bit, and correspond to processor status flags
such as N and Z on the POP-11. They are called the ATOM indicator, uwhich is set If
the result of the operation is an atom, and the NIL indicator, which is set if
the resuly is NIL. The class IIl instructions (BRANCH) may look at
the indicator‘s. - o I '
Note: In’ actual ntg. there are not actuallg ang physical indncators._
Instead, the last result computed is saved in an internal register, and examined
by the BRANCH instructions. The functional effect is the same.

The destinations are:

DEST FUNCTION

%) IGNORE - This is the simplest; the result is simply discarded.
It is still useful, because it sets the flags.
1 TO STACK This pushes the destination on the stack, which is
' . useful for passing arguments to Class IV instructions, et
2 TO NEXT This is actually the same thing as TO STACK, but it

is used for storing the next argument to the open

, function when it is computed.

3 TO LAST This is used for storing the last argument of the

‘ open function. It also pushes the result on the stack,

and then it "activates" the open call block. That is,
contro!l uill be passed to the function specified by
the last CALL instruction, and the value returned by the
function will be sent to the destination specified by the
destination fieid of the call instruction. - .

4 TO RETURN Return the result of the instruction as the value of this
function. (i.e. return from subroutine.)

) TO NEXT, QUOTED This is the same as TO NEXT, except that for error
: checking, the USER-CONTROL bit of the word being.
pushed is set, telling the called function that it
is getting a quoted argument (if it cares).
(This is not implemented.)
6 TO LAST, QUUTED Analogous. o S
7 TO NEXT LIST .This one is fairly tricky. 1t is used in conjunction
.. with the LIST (Class 1V) instruction to efficiently
. perform the lisp "LIST" function. It is documented
: under the LIST instruction. - :

Note: S and 6 (the QUOTED) destmatlons have not been mplemented as of 11/83/76.
Note: The same DESTINATION field is used by the class 1V instructlons.

CLASS 11:

——— s e e — ——— —— - e e > = 2 o B s S




e

“Uednesday, February 21, 1978  81:85:39 AI:LMDOC;MACRO 28 . Page 1.3
| 7 I 3 | 8 |
OPCODE  REGISTER  OFFSET

The class 1l instructions have no destination field; the result of the
operation (if any) is either pushed on the stack (like a destination TO STACK
or TO NEXT in a class one instruction) or is stored at the effectlve address.
The "register” and offset are used in exactly the same way
as in. the class | instructions, except that the E calculated is sometimes used
as a destination instead of a source. A

. The instructions are broken up into three subgroups by the first three bits

of the opcode lin the microcode they are referred to as Non-destination instruction
groups 1, 2 and 3], and then into the separate instuctions by the next four bits
as follous' (a2 "-" in the left hand column means that this mstructlon pops. the stack'
a "+" means that it pushes something onto the stack.)

GRP. DPCDDE FUNCTION :

11 8- -~ Not used. '
11 1 + " Adds C(E) to the top of the stack and replaces
: the result on the stack. ,
11 2 - Subtracts C(E)} from the top of the stack.
11 3 * Analogous. ‘
11 4 /  Analogous.
11 ) AND Analogous.
11 6 XOR Analogous.
11 7 OR Analogous. '
- 12 (7] = \ These compare C(E) to the top of the stack, and if the
- 12 1 > |-condition being tested is true, the NIL indicator is ct
- 12 2 < | otheruise it is set. The stack is popped.
- 12 3 EQ / .
12 4 SCOR Get the CDR of C(E), and store it in E.
12 5 SCODR  Analogous.
12 6 1+ Analogous.
12 7 1- Analogous. o o '
13 8 BIND The cell at E is bound to |tself. The linear binding
pdl is used. v ‘ |
13 1 BINDNIL The cell at E is bound to NIL.
- 13 2 BINDPOP The cell at E is bound to a value popped off the stack.
13 3 SETNIL Store NIL in E.
13 4 SETZERO Store fixnum B in E.
+ 13 5 PUSH-E Push a locative pointer to E on the stack.
13 6 - MOVEM HMove the data on top of the stack to E.
- 13 7 - POP Pop the top of the stack into E. .
CLASS 111
I 3 | 4 | 9 |
BRANCH (14) OFFSET
COoE ’

The class 111 instruction is for branching. There is a 3 bit Branch
Code field uwhich determines whether the branch happens, and sometimes
what to do if it fails. It is decoded as follous:

BRANCH




" Wednesday, February 21, 1979  01:05:33 . A1:LMDOC;MACRO 28 Page 1.4

CODE  FUNCTION

=sEmE==s mEEEEEus

ALUAYS : Aluays branch.
NILIND . Branch if the NIL indicator is set, else drop through.
NOT NILIND Branch if the NIL indicator is not set, else drop through

NILIND ELSE pPopP \ These tuo are the same as NILIND and NOT NILIND,
A | ‘except that if the condition falls.

NOT NILIND ELSE POP/  the stack is popped.

ATOMIND Branch if the ATOM indicator is set, else drop through.
NOT ATOMIND Analogous.

e WN=Q

1f the decision is made to perform the branch the offset, considered as a signed
(tuo’s complement) offset is added to the PC (i. e. a relative branch, such

as is used by the POP-11). If the offset is 777, houever, it is lnterpreted as .
meaning that this is a long—dnstance branch, and the real offset is obtained from the
next (16-bit) halfuord. The PC added to is aluays the incremented PC; - i.e. the
address of the instruction +1 in the short case, and the address of the

instruction +2 in the Iong case, :

CLASS IV

————— —— - ——— ——— ———— ———— -

- ———- - —————————— —— —— — ———— - - - - - - - -

DEST. (15) OPCODE

The class 1V (miscellaneous) instructions take their arguments on the
stack, and have a destination field wuhich works the same way as the Class |
instructions. They all have 15 (octal) in the opcode bits, and the actual
opcode is in the last 9 bits. Thus there can be up to 512. of them.

Most of them may be called directly from Interpret|ve LISP, and so

some of them duplicate functions available in classes I and Il. :
[Note on implementation: since there are far too many class 1V instructions
to dispatch on using the dispatch memory of the CONS machine, the starting
locations of the routines are kept in main memory. The location of the

base of the dispatch table is kept in A-V-MISC-BASE at all times.l]

‘Since most of these functions are callable from interpretive level -
(the normal LISP user sees them), they form part of the nuclear system, and
so are documented in the Lisp Machine Nuclear System document (LMNUC >).

The first 208 (octal) Class IV operations are not in the dispatch
table in main memory, but are specially checked for. - These are the "LIST"
instructions, which work in cooperation with the NEXT-LIST destination. - '

Operations B8-77 are called LIST 8 through LIST 77. The list
<N> instruction allocates N Q’s in the default consing area [A-CNSADF]
which is initialized to a COR-NEXT, COR-NIL style list of NiLs. Then
the instruction pushes three uwords on the stack: .

1) A pointer to the neuly allocated block,

2) The destination foeld of the LIST instruction,

3) A pointer to the neuly allocated block (another copy).

Note that the destination, as in the CALL instruction, is not used
instantly; it is saved and used later. ’ '

After the LIST instruction has been performed, further
instructions can store to destination NEXT-LIST; once the macro-code
computes the next arg of what was the LIST function in the source code




* ‘Wednesday, February 21, 1979  1:05:39 . AI:LMDOC;MACRO 28 . - Page 1.5

it stores it to NEXT LIST. What destination NEXT LIST does is: the word on
the top of the stack is taken to be a pointer to the next allocated S : .
cell. The pointer is popped, the result of the instruction is stored : i’
where it points, -and then the COR of the pointer is pushed back on to the stack,
1f the COR was NIL houever, then ue must be finished with the LIST :
operation, so the NIL is popped off the stack and discarded and a pointer : . }
to the neuly allocated area (another copy of uhich was thoughtfully stored ' - |
on the stack) is sent to the destination of the LIST <n> instruction (which

uwas also stored on the stack), and the two remaining words which the . .
LIST <n> pushed are popped off. ‘ ' : S o

CLASS V

Opcpdes 16 and 17 (octalf are not used and reserved for future expansion.

EXAMPLES:
Here is a (very) typical Lisp function, for computing factorials.

(defun fact (x)
(cond ({zerop x) 1)
(t (x x (fact (1- x))))))

This is the macrocode produced by the compiler, typed out bg the DISASSEHBLE
function on the Lisp Machine.

22 MOVE D-PDL ARG|B
23 MISC D-IGNORE ZEROP
24 BR-NIL 26

25 MOVE D-RETURN ’1

26 MOVE D-POL ARG|B s X o

27 CALL D-PDL FEF|19 s @FUNCTION-CELL FACT

30 MOVE D-PDL ARG|8 s X ‘ : -

31 MISC D-LAST 1- ' : {
32 x PDL-POP ’ :

33 MOVE D-RETURN PDL-POP

x

The first thing (line 22) is to push ‘argument 8 (x)} onto the stack,
and (line 23) check if it is equal to zero. Line 23 uses the ZEROP mtscellaneous
function, which sets the "indicators" to NIL if the quantity was not ZERO.
Line 24 is a branch instruction which tests the "indicators"; if NIL is set,
it will branch to 26. If NIL was not set (the number was zero), it falls through
to line 25, which returns the value 1. -

I1f the number was not zero (the second clause of the COND in the source),
then control passes to line 26, uhich pushes X on the POL (first argument to
the multiply on line 32). Next line 27 opens a call to FACT. Line 38 subtracts 1
from X (uith the 1- miscellaneous function), and moves the result to "destination LAST".
This result is thus the first and only argument to the recursive S :
invokation of FACT, the result of uhich is left on the POL because of the
destination field of the CALL instruction on line 27.

Nowu (FACT (1- x)) and X are on the POL, and they are multiplied by the
mul tiply instruction on line 32, 1t leaves its result on the POL, to be found by line
33, uhich returns the result. : :




