
t 
J 

Wednesday, February 21, 1979 01:05:39 AI: LMODe; MACRO· .28 

The LISP Machine Macro-instruction Set. 

·This docu~ent describes the LISPMachine~8 interpreted order code, 
referred to below -as ·"macrocode. w The .acrocode is designed to be highly 

Page 1 

bi t-efficient, and ... ell-sui ted ta LISP. The campi latian of LISP into macrocode 
~8 very ~traightforuard, as uill be shown In examples below. -

_ Macrci~ode Is created by the wmacrocompi ler, W whi"ch is called wOCMP. W 

It is· never neccesary to ..,rite out macrocode manually, because it correspondes 
so closely _uith the LISP source code that It ... ould be easy to write the same thing 
in LISP. . 

_ IJhen aCM? is run ona function, it is said to wmacrocompi lew the function. 
It produces one "Function Entry Fr.ame,w referred to below as a FEF, for each 
function compiled. The resulting LISP. pointer has datatype DTP-FEF-POINTER, 
and points to the FEF, which is a block of memory at least 8 words long. 

The FEF has several sections. The first section is always 1 words long. 
and .contains various information about the format of the FEF and information 
about ho~ the function should be invoked. For complete details of the bit 
I~youts of these words, see the FORMAT document. 

The next section of the FEF contains pointers to the VALUE celie and· 
FUNCTION cells of symbols. These pointers are of datatype DTP-EXTERNAL-VALUE-CELL-POINTE!­
and are used as an "e~it vector", that is, compiled code can refer to these pointers 
in order to access special variables. 

The next. section contains the Argu~ent Description List (ADL1. 
The ADL contains one entry for each argument which the function expects to be 
passed, and contains all relevant information about the argument: ~hether it is· 
required, optional, or rest, ho~ to initialize it if it is not provided, 
uhether it·is local· or special, datatype checking information, and so on. 
Sometimes the ADL can be dispensed with if the "fast argument option" can 
be used instead; this helps save time and memory for small, simple functions. 
ThE l.Ju t a i I ~ c.an bel oUfld in the FORMAT documen t. 

'---' 
The next section of the AOL contains various constants ~hlch the 

function might want to refer to: if the function includes (FOa '(A B)), 
then the list {A BJ ~ould be put in the constants area so that the microcode 
can refer to. it. 

The rest of the FEF is the actual macroinstructions themsel~es. 
Each macroinstruction is 1S bits long, and so t~o macroinstructions 
are stored in each word of the IISP machine. There are four ~onceptual 
"classes" of microinstructions, each of which is broken do",n into fields 
in a different ~ay. 

CLASS I; 

3 4 3 

DEST. OPCOOE REGISTER. OFFSET 

There are nine class I instructions, designated by 0 through 10 (octal) 
in the OPCOOE field. Each instruction has a source, whose address 
is computed from the "REGISTER" and OFFSET fields, and a destination 

i. 



Wednesday, February 21, 1979 01:05:39 AI:LMDOC;MACRO 28 Page 1.1 

given by the DESTINATION field. The instructions are: 

OPCODE NAME ------ ----
" CALL 

1 -CALLe 

2 MOVE 
3 CAR 

-4 COR 
5 CADR 
S CODR 
7 COAR 
8 CAAR 

Open a call ~Iock on the stack, to call the function 
specified by the address. Uhatever the function returns 
utll go to the destin~tion. The actual transfer of control 
uill not happen until the arguments have been stored. 
(See destinations NEXT and LAST.) 
CALL in the c~se of a function uith no arguments.­
The transfer ~f control happens immediately. 
Move the contents of E to the destination. 
Put the CAR of the c;ontents of E in the des t i nat ion. 
Analogous. 
Analogous. 
Analogous. 
Analogous. 
Analogous. 

The effective address, E, is computed from the "register" and the offset. 
The instructions really use addressing relative to some convenient plac~ specified 
by the "register" field. The register may be: 

REG ---0 

1 
2 
3 

FUNCTION 
=======ZI 
FEF 

FEF+100 
FEF+200 
FEF+300 

This is the starting location of the currently-running 
FEF. This is how the macrocode addresses the pointers 
to value and-function cells, and the constants area. 
Same as 0, plus 100 octal. 
Analogous. 

4 CONSTANTS PAGE 
Analogous. 
This is a page of ~idely used constants, such as T. NIL. i 
small numbers,ete. There 1 s only one constant page in t! 
mach i nee They are kept a lion one page so that they can ! 
be shnred among a' I FEFs, so that theyui II nnt have 

5 

6 

7 

LOCAL BLOCK 

ARG POINTER 

POL 

to be -repeated in each FEF's constant area. 
This is the address of the local block on the POL, 
and is used for addressing local variable9~ 
This is the argument pointer i~t~ the POL, and Is 
used for addressing arguments of the function. 
The offset must be 77. The top of the stack is 
popped off and used as the operand. The other 
possible values of offset are not currently _used. 

(See the FORMAT file for how the POL frame-for each function is divided 
up into header, argument block, local block, and intermediate result stack.)-

Note: The first 4 addressing modes are all provided to allo~ an effective 
8-bit offset into the FEF. 

Note: The same register-offset scheme Is used in the class 11 instructions. 

An additional complication in computing the "effective address" comes from 
invisible pointers. Once the register_and offset have been used to compute· 
an initial effective address E, the ~ord at that location is examined (even 
if this is an instruction ~hich uses E as a destination.) If the data type 
of that ~ord is ftEffective Address Invisible", the pointer field of that word 
is used as the effective address E. This is used, for example, to access 

. t 

I 



Wednesday, February 21. 1979 91:95:39 AI:lMDOC;MACAO 28 Page 1.2 

value cells of special variables. The FEF "register" ie used, and the location 
of the FEF addressed contains an effective address invisible pointer which 
points t~ the desired value cell. This scheme saves bits in the instruction, 
without requiring the' use of extra in~tructions to make special value cells 
addressable." .. 

. The destination field is someuhat more complicated. First of all. 
befor"e the result is moved to the destination, two "indicators" are set •. 
The indicators are each stored as'a bit, and corr~spond to processor statue flags 
such as Nand Z on the PDP-11. They are called the ATOM indicator, 'which is set 1 f' 
the result of the operation is an atom, and the NIL indicator, which ie eet if 
the.resulY is NIL. The class III instructions (BRANCH) may look at 
the indicators. 

Note: In'actuality, there are not actually any physical indicators." 
Instead, the last result computed is saved in·aninternal register, and examined 
by the BRANCH instructions. The functional effect is the same. 

The destinations are: 

DEST FUNCTION 
-=-==- 1:,-=-====-=_ 

e IGNORE 

1 TO STACK 

2 TO NEXT 

3 TO LAST 

4 TO RETURN 

This is the simplest; the result is simply discarded. 
It is still useful, because it sets the flags. 
This pushes the destination on the stack, which Is 
useful for passing arguments to Class IV instructions, et 
This is actually the same thing as TO STACK, but it 
is used for storing the next argument to the open 
function when it is'computed. 
This is used for storing the last argument of the 
open function. It also .pushes the result on" the stack, 
and then it "activates" the open call ~lock. That is. 
control will be passed to the function specified by 
the last CALL instructi6n, and the va"ue returned by the 
function will be sent to the destinati~n s~ecified by the 
destination fieid of the call Instruction. ' 
Return the result of the instructio~ as the value of ihis 
function. (i.e. return from subroutine.) 

5 TO NEXT, QUOTED This is the same as TO NEXT, except that for error 
checking, the USER-CONTROL bit of the word being, 
pushed is set, telling the called function that It 
is getting a quoted argument (if it cares). 
(This Is not implemented.) " 

S TO LAST; QUOT~O Analogous. 
7 TO NEXT LIST' "This one is fairly tricky. It is used in· conjunction 

with the LIST (Class IV) instruction to efficiently 
,perform the lisp "LIST" function. It is documented 
under the LIST instruction. 

Note: 5 and 6 (the QUOTED) destinatioos have not been implemented as of 11/93/76. 

Note: The same DESTINATION field is used by the class IV instructions. 

CLASS II: 



. 
- l • 

Wednesday. February 21, 1979 01:95:39 AI:LMDOC;MACRO 28 Page 1.3 . 

7 3 s 
OPCODE REGISTER OFFSET 

The class II~nst~uctions hav~ n~ destination field; the r~sult of the 
operation (if any) Is either pushed on the st~ck (like a destination-TO STACK. 
or TO NEXT in a class one instruction) or Is stored at the effective address. 
The "register" and offset are used in exactly the same way 
as in- the class I instructions, except that the E calculated is sometimes Used 
as a destination instead of a source. . .. : 

. The instructions are broken up into three subgroups by the fir~t three bits. 
of the opcode [in the microcode they are referred to as Non-destination instruction 
groups 1. 2 and 3], and then into the separate instuctions by the next four bits 
as fol lo~s: (a "-" In the left hand column-means that this instruction pops. the stack: 
a "+" Means that it pushes·something onto the stack.) 

GRP. OPCODE FUNCTION 

+ 

11 
11 

11 
11 
11 
11 
11 
11 
12 
12 
12 
12 
12 
12 
12 
12 
13 

13 
13 
13 
13 
13 
13 
13 

CLASS III 

3 

BRANCH 
CODE 

0- Not used. 
1 + . Adds C(E) to the top of the stack and replaces 

the result on the stack. 
2 Subtracts C(E) from the top of the stack. 
3 . * Analogous. 
4 I Analogous. 
5 AND Analogous. 
S XOR Analogous. 
7 OR Analogous. 
e c \ These compare C(E) to the top of the stack, and if the 
1 > I-condition being tested is true,the NIL indicator 19 c1· 
2 < I otherwise it is set. The stack is popped. 
3 EQ I 
4 SCOR Get the COR of C(E), and store it in E. 
5 SCDOR Analogous. 
S 1+ Analogous. 
7 1- Analogous. 
o BIND The cell at E is bound to itself. The linear binding 

pdl is used. 
1 BINONIL The cell at E is bound to NIL. 
2 BINDPOP The cell at E is bound to a value popped off the stack. 
3 SETNIL Store NIL in E. 
4 SETZERO Store fixnum e in E. 
5 PUSH-E Push a locative pointer to E on the stack. 
S MOVEM Move the data on top of the stack to E. 
7 POP Pop the top of the stack into E. 

4 9 
I I 

(14) OFFSET 

The class III instruction is for branching. There is a 3 bit Branch 
Code field which determines whether the branch happens, and sometimes 
uhat to do if it fails. It is decoded as fallo~s: 

BRANCH 



. "' 
,,"' . 

Wednesday, February 21, 1979 01:05:39 AI:LMDOC;MACRO 28 Page 1.4 

CODE FUNCTION 

8 ALWAVS Always branch. 
1 NILINO Branch if the NIL indicator is set, else drop through. 
2 NOT NILIND Branch·if the NIL indicator is not set, else drop through 
3 NILIND ELSE POP \ These two are the same as NILlNO and NOT NILINO, 

I except that if the condition fails, . 
4 NOT NILIND ELSE POPI the stack 1 s popped •. 
5 ATOMIND Branch if the ATOM indicator is set, els8 drop through. 
S NOT ATOMIND Analogou~. 

If the decision la made·to perform the branch the offset, considered as a signed 
(t~o's complement) offset is added to the PC (i. e. a relative branch, such 
as is used by the POP-11). If the offset is 777, however, it is interpreted- as . 
meaning that this is a long-distance branch, and the real offset is obtained froin the 
next (IG-bit) halfuord. - The PC added to is aluays the incremented PC;· i.e. the 
address of the instruction +1 in' the short case, and the address of the 
instruction +2 in the long case. . 

CLASS IV 

3 4 9 
-----------------------------------------~------. . 

OESTe (15) OPCOOE 

The class IV (miscellaneous) instructions take their arguments on the 
stack, and have a destination field which ~orks the same way as the Class 1 
instructions. They all have 15 (octal) in the ope ode bits, and the actual 
opcode is in the last 9 bits. Thus there can· be up to 512. of them. 
Most of them may be called directlY'from interpretive LISP, and so 
some of them duplicate functions available in classes I and II. _ 
[Note on implementation: since there are f~r too many class )J instructions 
to disp~tch on using the dispatch memory of the CONS machine, the starting 
locations of the routines are kept in main memory. The location of the 
b~se of the dispatch table is kept in A-V-MISC-BASE at all_ times.] 

Since most of these functions are callable from interpretive level .. 
(the normal LISP user sees them), they form part of the nuclear system, and 
so are documented in the Lisp Machine Nuclear System doc~ment (LMNUC ». 

The first.2ee (octal) Class IV operations are not in the dispatch 
table in main memory, but are specially checked for •. These are the "LIST" 
instructions, ~hich ~ork in ~ooperation ~ith the NEXT-LIST destination. 
. Operations 0-77 are called LIST 0 through LIST 77. The list 

<N> instruction allocates N a's in the default consing area [A-CNSADF1 
~hich is initialized to a COR-NEXT, COR-NIL style list of NILs. Then 
the instruction pushes three ~ords on the stack: 
1) A pointer to the ne~ly allocated block, 
2) Th.e destination foeld of the LIST instruction. 
3) A pointer to the ne~ly allocated block (another copy). 
Note that the destination, as in the CALL instruction, is not used 
instantly; it is saved and used later.-

After the LIST instruction has been performed, further 
instructions can store to destination NEXT-LIST; once the macro-code 
computes the next arg of ~hat ~as the LIST function in the source code 



p 

.. {J & 

.." 14 

Wednesday. February 21, 1979 01:95:39 AI:LMDOC;MACRO 28 Page 1.5 

it stores it to NEXT LIST. What destination NEXT LIST does is: the uord on 
the top of the stack is taken to be a pointer to the next allocated 
cel I. The pointer is popped. the result of the instruction is stored 
~here it points, ~nd then the COR of the pointer is pushed back on to the stack. 
If the COR ~as NIL ho~ever, then ue must be finished ~ith the LIST 
operation, so the NIL 'is popped' off the stack and discarded and a pointer 
to the ne~ly allocated area (another copy of ~hich uas thoughtfully stored 
on the stack) is sent to the destination of the LIST <n> instruction (~hich 
~as also stored on the stack), and the two remaining words which the 
LIST <n> pushed are popped off •. 

CLASS V 

Opcodes 1S and 17 (octal) are-not used and reserved for future expansion. 

EXAMPLES: 

Here is a (very) typical Lisp function, for computing factorials. 

'(defun fact (x) 
(cond ({zerop xli) 

(t (* x {fact (1- x)))))) 

This is the macrocode produced by the compiler, typed out by th~ DISASSEMBLE 
function on the Lisp Machine. 

22 NOVE O-PDL ARGI0 
23 MISC O-IGNORE ZEROP 
24 SR-NIL 26 
25 MOVE O-RETURN 'I 
26 MOVE D-POL ARGI0 
27 CALL O-POL FEF 110 
30 MOVE D-POL ARGI9 
31 MISC. D-LAST 1-
32 * POL-POP 
33 MOVE D-RETURN POL-POP 

;X 

;X 
;@FUNCTION-CELL FACT 
;X 

The first thing (line 22) is to push argument e {xl onto the stack, 
and (line 23) check if it is equal to zero. Line 23 uses the.ZEROP miscellaneous 
function, ~hich sets the "indicators" to NIL if the quantity ~as not ZERO. 
Line 24 -is a branch instruction which tests the "indicators"; if NIL is set, 
it~ill branch to 26. If NIL ~as not set (the number ~aszero). it falls through 
to line 25, &..shieh returns the value 1. . 

If the number ~as not zero (the second clause of the COND in the so~rce). 
then control passes to line 26, &..shieh pushes X on the POL (ftrst argument to 
the multiply on line 32). Next line 27 opens a call to FACT. Line 30 subtracts 1 
fr6m X (~ith the 1- miscellaneous function), and moves ihe result to "destin~tion LAST". 
This result is thus the first and only argument to the recursive 
invok~tion of FACT, the result of &..shieh is left on the POL because of the 
destination field of the CALL instrucfion on line 27. 

No~ (FACT (1- )()) and X are on the POL, and they are mu I t fp 1 i ed by the 
multi-ply instruction on line 32. It leaves its result on the POL, to be found by line 
33, ~hjch returns the result. 

Q 


