. 17%9

‘Wednesday, February 21, 1979 0:34:22 - Al:LMDOC;FORMAT 77 Page 1
»‘ll\\‘l\gg T l@&\i& Wi

Lisp Machine Internal Storage Formats:

- Q formats, SYHBOL formats, ARRAY formats, PDL forﬁats. LINEAR BINDING PDL forﬁats. :
STACK GROUP formats, FEF formats, AREA formats, CALLING CONVENTIONS and ADI formats.

Unsatisfied with the structure of normal
computers. they are building at MiT's Al lab a
computer whose native language is LISP. It will
have 32 bits with virtual memory, and execute
LISP like a bat out of hell.

In a refreshing rversal of trends, it will
be for one user at a time. "Time sharing is an
idea whose time has gone,” chuckles one parti-
cipant. (Project MAC, uhere time-sharlng grew

! up, uas there.)

~-- Ted Nelson, Computer Lib/Dream Machines

"The formats are not in exactly this order. Also, it is hard to understand the
macro-code instruction set without first understanding the FEF format, and vice-versa;
they are very closely related. It is assumed that the reader of this document has read
the MACROCODE document (for the FEF formats) and is at least someuhat familiar uith
the workings of the CONS machlne.

Lisp objects in the LISP machine are stored in the follouing

forms
| 2 1] 5 I 2% I
COR TODE--! 4' | |
USER CONTROL-| fF '
. I !
DATA TYPE-—-——macceo-| |
PO ENTER = e e e '

COR CODE field (2 bits) - This field shous where the COR of this object is:
B - COR NORMAL: The COR is contained in the Q following this one. ‘
This is the "two pointers” form used by most Lisps.
1 - COR NiL: The CDR of this node is NIL.
2 - COR NEXT: The COR is the next Q. ‘
.3 - CDR ERROR: It is an error to take the COR of this location, since
this is the second half of a full (COR NORMAL) node.,‘

The codes aré set up this uay so that a2 list of N elements can be stored R
in N consecutive Q's using COR NEXT and COR NIL. This results in high storage densi ty.
The functions APPEND and LIST form these compact lists. CONS and friends as

of nou aluays create full nodes (CDR NORMAL, CDR ERROR). Note that to RPLACA.

an element of a COR NEXT list, you simply clobber the contents of the: location,

but RPLACDing is more difficult. The LISP machine does this by using the ‘ ’

CAR-CDR Invisible pointer (see belou).

‘Wednésday, February 21, 1979 = 00:36:22 AL:LMDOC;FORMAT 77 Page 1.1

USER CONTROL BIT field (1 bit) - This bit is not used by the system in normal list
structure, and is thus available for use by the user. In cells which are not
part of normal list structure, though, the system may use the bit. (For example,
it is used in mdexed-offset arrays.) '

DATA TYPE (5 bits) - This field determmes the data tgpe of the 0. Since
each Q has a separate data type field, there is no need for "fixnum epace. '
"llst -space, " etc. The datatgpes are: : N

‘NUMBER NAME . _ USE S :
8 DTP-TRAP © Any attempt to reference this cell uill cause a’ trap.
' This is mostly for error checking (maybe also for debugge

1 OTP-NULL - This datatype is used for various things to mean "nothing
, . . For example, an unbound atom has one of these as its valu
The pomter field points back at the atom. for ‘
ease in debugging.

2 . DTP-FREE This cell is free unallocated storage. The user should n
o see this too often.
3 DTP-SYMBOL This is a non-numeric atom. The pointer pomts to a four
Q "atom header" (see SYMBOL formats).
4 DTP-FIX A FIXNUM (fixed point number). The pointer is not :
' ‘ really a pointer; it is the actual value of the number,
so FIX numbers with the same value will aluays be EQ, uni

POP-18 MACLISP.
5 DTP-EXTENDED-NUMBER Any type of number other than FIXnums. Not in yet.
6 - DTP-INVOKE- This has the peculiar property that if anything tries to
perform a fundamental operation on it (such as CAR, CDR,
RPLACA, RPLACD, or CHECK-DATA-TYPE) the invoke pointer
gets called as a function. This feature is not yet
fully developed, so stay tuned for further developments.
7 .DTP-GC-FORWARD The forwarding address left behind by the garbage collect
18 DTP-SYMBOL-COMPONENT-FORWARD This causes indirection when used by operat
shich operate on symbol components’. }
11 DTP-Q-FORWARD Foruards only the @ that it is in, not the whole structur
12 D1P-FORUARD Foruarding address left behindg by anything which copuea
something other than the garbage collector. .
13 DTP-MEM-POINTER (going away. only used on simulator)
14 DTP-LOCATIVE-TO-LIST ,
15 DTP-LOCATIVE-INTO-STRUCTURE
16 DTP-LOCATIVE-INTO-SYMBOL
17 DTP-LIST " The pointer points to a list (actuallg, to a node).
20 DTP-LIST-INTO-STRUCTURE g
21 DTP-LIST-INTO-SYMBOL : ' o
22 DTP-U-ENTRY. The pointer pomts to a micro-coded function. The
" pointer field is actually an index into the MICRO-CODE-
ENTRY-AREA, which contains a pointer to the actual code.
23 DTP-HESA-ENTRY The pointer points to a mesa-compl led routme.
24 DTP-FEF-POINTER Points to a FEF-HEADER.
25 DTP-FEF-HEADER Header of a Function Entry Frame (see belou)
26 DTP-ARRAY-POINTER The pointer points to the ARRAY HEADER word of an arrag'
This is the equivalent of an "array object.”
27 DTP-ARRAY-HEADER There is an array header for each array. The po!nter fi
' holds various encoded information about the array (see th
section on ARRAY formats).
30 DTP-ARRAY-LEADER This datatype is used for the 0 at the head of an array
teader (see ARRAY formats).

" Wednesday, February 21, 1979 08:34:22 Al:LMDOC;FORMAT 77 " Page 1.2

31 DTP-STACK-GROUP See STACK GROUP formats.
- 32 DTP-CLOSURE Super win!!!
33-37 Not used at present. _
"POINTER (24 bits)' - The use is determined by the datatype of the Q. Uéual ly

it points to some other object in memory. Sometimes it just contains miscellaneous
data. ' : : ’ R :

Note that.some of the datatypes are useful mostly for their meaning
in "function context" (see SYMBOL formats). '

s - The invisible pointer datatype is a one of the LISP machine’s
sunique neu features. They are like indirect addressing where instead of the
sinstruction specifying the indirectness, the data referenced does! Thus if
syou take the CAR of a Q which is an invisible pointer, you uill really be" gwen
s the CAR of uhat the pointer POINTS TO. The posstbllitg of implementing ~ :
sinvisible pointers from the system demgn point of vieu depends on the fact that this
;is an INTEGRATED system. For example, in a conventional machine, it would clearly .
;‘be unacceptable to have a range of numbers such that when they are added
; together uith the ADD instruction, uhat gets added is not these instructions
s themselves, but the contents of the memory locatlon they point to. Here. that
:is exactly what happens. -

Some of the proposed uses for mvusvble pointers arte descrnbed in
the paper "The LISP Machine" [Grenblatt 74, A.l. Woking Paper 73] and in the
LISP machine progress report [uhatever].

' Uedn%sdag, February 21, 1979 00:34:22 Al:LMDOC;FORMAT 77 Page 2

SYMBOL FORMATS:

A sgmbol is stored as a 0 of datatype DTP-SYI uhose pointer: points to a four B

Q "atom header."™ The four uords are: .

NAME - USE
PRINT-NAME-CELL This cell holds a word of datatgpe ARRAY—PDINTER painting :
.- to a STRING ‘array uhich is the PNAME for the sgmbol. (See
: ARRAY formats). ‘
- VALUE-CELL This cell holds the value of the symbol, and so can be of
. any datatype. .
FUNCTION-CELL This cell holds the “functional property” of the symbol.
. If the symbol is called as a function, the contents of this
cell uill be analyzed to determine what function to perform.
Note that this replaces the purpose of the "EXPR," "SUBR“ etc.
. properties in Maclisp.
PROPERTY-CELL This cell contains the property list. Properties are not.
: used by the basic system at all, so this is likely to be NIL.

When a symbol is initially created, the value and function cells.
contain null data type.

The functions PRINT-NAME-CELL-LOCATION, VALUE-CELL-LOCATION, - etc.,

"can be used to obtain DTP-LOCATIVE pointers to these locations (see LMNUC)
and the contents can, of course, be gotten by taktng the CAR of the
pointers thus obtained.

WUhen a list of the form (<symbol> <args...>) is evaluated, EVAL Iooks at
the contents of <symbol>’s FUNCTION CELL to decide hou to evaluate the function.
The way EVAL uses the contents of the FUNCTION CELL is called the interpretation
of the datum in "function context.” When a symbol is used as the destination
of a CALL instruction, or the first argument to APPLY, its FUNCTION CELL is llkeuiae
examined and the contents considered in function context.

Here is uhat some of the datatypes mean in function context:

DATATYPE MEANING IN FUNCTION CONTEXY

LIST This should be handled by the interpreter. Usually

the list is a LAMBDA expression. It can also be a
MACRO expression.
- SYMBOL : ‘This means that the contents of the functlon cell of the
specified sgmbo! should be used as the function. :
-FRAME POINTER This function is macro compiled, so use the FEF pointed
to (see FEF formats). . -
HMICRO-CODE-ENTRY This function is micro-compiled.
MESA-CODE-ENTRY This function is MESA compiled, do that stuff.
~ ARRAY-POINTER This function is an array. Arrag referencung is handled
by the mlcrocode. so there is no "code"” assocuated uith an
array.
STACK-GROUP Transfer control to the designated stack group.

v

Hed:'lesdag, February 21, 1979 ©8:34:22 . Al:LMDOC;FORMAT 77 . Page 3

ARRAY FORMATS:

Every array has an ARRAY HEADER wuord. The pointer field is divided into fielda
- which hold various information about the array. The array may optionally have an
ARRAY LEADER which is formed of a number of words BEFORE the array header. 1f
there is a leader, then the O immediately before the header word is a FIXNUM O
holding the number of array leader words. Then before that are the array leader
words, which may have any datatype (since any object can be stored there), and
before that is a word of datatype ARRAY LEADER uhich is a self-relative pointer
- to the ARRAY HEADER. The presence of the ARRAY-LEADER Q is necessary for such
- routines as the garbage collecter uhich scan through memory in the usual
direction. The presence or absence of the Ieader is determined by a bit in the
array header.

_ I1f the array has more than one dimension, then there is a block of
<number of dims>-1 O'S immediately after the array header holding the size
of each dimension. Note that only <number of dims>-1 are needed because
one can compute the total index length from the array header itself.

1f the index length of the array (number of data elements) is too
big to fit in the field allocated for it in the array header O, an extra
Q is inserted betueen the header and the dimensions, which has data type
FIXNUM and contains the index length. A bit in the header Q is on)
to indicate the presence of this extra Q.

Nou all that is left are the actual storage cells of the array. An arrag
may optionally be "displaced,” according to 2 bit in the header. -1f the array
is not displaced, then the data Q's follou thereafter (in a l-dimensional non-
“displaced array, the data follous immediately after the header). However, if
the array is displaced, then the word which would be the first data Q is actually
a pointer to the data cells. Thus, a displaced array can be used to point at the
beginning of an area (this is done often, in fact). Folloxing the dlsplacement
word, in what would have been the SECOND data cell, is the length of the data in Q's
for the array. This is used instead of the normal index length, since that will
be 2 (or 3) to indicate the length of the pointer. This SECOND data cell is used
as the length even in the case of indirect arrays, unless that would cause a
reference off the end of the array indirected to.

Further hair is provided as follous: if the array is displaced and the word -
which would be the pointer has datatype ARRAY POINTER, then it points to another
array header! This is called an INDIRECT array. 1f that isn't hairy enough, get
this: 1f the USER CONTROL bit of the indirect array pointer is set, then
this array has an INDEX-OFFSET from the array pointed to. This means that uhenever
this array is referenced, it is as if that array uere referenced, but
with an index <n> higher. The <n> is the offset, and is stored as a FIXNUM in
uhat would be the THIRD data cell if this array were non-displaced. The offset
is expressed in elements (not 0°s), and is aluays 1 dimensional (it is added after
all the dimensions have been multiplied out). (Note that the length of the array
being pointed at is also stored, in that arrags header, etc. MWhen a reference
is made to an INDIRECT array, an error check is performed to make sure the
reference is not out of bounds.)

The format of the pointer field of the header word is as follous:

P o e o o e e o o > e = ———

I S 111 3 1e. o
I T A S R B |
ARRAY TYPE--] L 111 | 11 |
HIGH SPARE BIT-} 1 | | | || |

" Wednesday, February 21, 1973 80:36:22 A1:LMDOC;FORMAT 77 Page 3.1

-LONG LENGTH FLAG
NAMED-STRUCTURE FLAG
INDEX LENGTH OF ARRAY-

(I !

DISPLACED-------- RN |
LI -1 R —— R el
NUMBER OF DIMENSIONS-----| | |)
| |

I

The FLAG BIT, in the case of a string arrag. is 1 to indicate that
"this string may be relied upon to contain onlg ordinary printing

characters. Its use uith other array types is not yet defined. -
(THIS IS AN EFFICIENCY HACK, WHICH IS CURRENTLY IGNOREO).

The %AARRAY-NANED—STRUCTURE-FLAG is 1 to indicate that this
array is an instance of a NAMED-STRUCTURE (probably defined with DEFSTRUCT uith
the NAMED-STRUCTURE option, etc). The structure name is found in array leader T
-element 1 if XXARRAY-LEADER-BIT is set, otheruise array element 8.

Named structures may be viewed as implementing a sort of user defined
data typing facility. Certain system primitives, if handed a NAMED-STRUCTURE,
Wwill obtain the name and obtain from that a function to apply, ACTOR tike, to
perform the primitive. One can see that there is some potentlal ‘ .

The only one of these fields which has not yet been mentloned is the
ARRAY TYPE fleld. The options are:

NUMBER TYPE ' USE

(%] ART-ERROR This is aluags an error, to prevent randomness.

1 ART-1B Each element is one bit, and 32 are stored per word.

2 ART-2B Analogous. .
- 3 ART-4B . Analogous.

4 ART-8B Analogous.

S ART-16B Analogous. - :

6 ART-32B Analogous. Since FIXNUM datatype is supplied

24 bits of data are retrievable.

7 ART-Q Each element is a Q, that is, it has a datatgpe and
' : a pointer field.

8 ART-Q-LIST Same as 0, but the elements also form a list.

By using GET-LIST-POINTER-INTO-ARRAY and G-L-P,
you can get pointers into the beglnntng or even
' the middlie of such an array.
9 ART-STRING This is stored the same way as an 8 BIT arrag.
18. ART-STACK-GROUP-HEAD (see STACK GRUOP FORMATS)
11. ART-PDL-SEGMENT (see STACK GROUP FURNATS) , K o
12. ART-TVB TV Buffer o o
13. ART-TVB-PIXELS TV Buffer in pixel mode. o

Note: the elements of.arrags.(those which are smaller than 32 bits) are
stored right-to-left (i.e., the first element of a 4 BIT ARRAY would be
stored right-justified, including the least significant bit).

Houever, TV buffer arrégs (ART-TVB) are DIFFERENT, for harduare reasons.
Only the bottom 16 bits of each word are used, and the blts are stored
- left to right.

TV-BUFFER-PIXEL arrays have a plane mask in array leader element 8. 1 bits
in the plane mask correspond to active tv-buffer planes, g bits to inactive.

’ -
) .

Wednesday, February 21, 1979 ©88:34:22 - Al:LMDOC;FORMAT 77 - Page 3.2

planes. Each time a active plane is encountered on a store, the lou order

bit is stored in that plane (a la ART-TVB), and the remaining bits shifted
right one.

- STRING arrays are stored the same way as 0-ARRAYs, and ST_ACK-—GROUP-HEAD
and STACK-SEGMENT arrays are stored .the same as O-ARRAYs are. The reason for "
supporting both array types is so that programs can easily tell apart those
8-bit arrays used for strings, etc. Strings, although like 8-BIT arrays at lou levels, '
are treated differently at higher levels, such as bg READ, EVAL, and PRINT. .- :

1

Wednesday, February 21, 1979 ©0:34:122 Al:LMDOC;FORMAT 77 - | Page &

PDOL FORMATS:

The stack. in the LISP Hachine is stored in Main memory, with the

top kept in the PDL BUFFER memory of the CONS Machine. (The PDL Buffer
acts as a sort of 1K cache uwhich greatlg speeds up almost all references to-
the stack. The " swapping” is done in micro-code, invisibly to the macro-code
and all higher levels.) o R :

- For each function call, a CALL BLOCK is stored on the POL. The format
of a call block is: N ' ‘ ‘ o

Possible additional | <-- numerically louest address

information

. EXIT state

|

|

| :

| -CALL state
|

|

|

|

R I G G G S T —
o

<-- Argdment pointer

|
| intermediate
| result stack | <--+ Stack pointer

The "possible additional information" (ADI) is used by certain halrg
types of cails uhnch need to convey more lnformatton. ,

The furst four uords contain various information used by the microcode which performs
calls to and returns from functions. ‘The argumenis appear when instructions with
destinations "TO NEXT" and "TO LAST" are executed. When the block is activated

(see belou) space is reserved for that block's local variables (i.e. PRUG and

DO variables).

Each CALL instruction creates a neu open block, and stores in its CALL state
uword the delta (offset) to the ACTIVE block at the time of the CALL (i.e., the function
which called it) in the lou 8 bits. This is used to restore M-AP uhen leaving the
function. It also stores a delta-to the previous OPEN block
(just the previous block on the stack) in the next 8 bits. The CALL |nstruct|onv
also reserves tuo words for the EXIT and ENTRY state words, and then pushes the
FUNCTION object, uhich is typically a FEF pointer (DTP-FRAME, that is)

(vhen a macro-compiled function is being called). Further, CALL stores its
DESTINATION field in a three bit field in the CALL state word, so that uhen
the called function returns, its result can be stored in the correct place.

When something is stored in destination "T0 LAST," the current open call
block (the last block pushed) is ACTIVATED. The currently active block’s PC
is stored in the EXIT PC (the return address) in that block's
EXIT state word, and the PC is set to the starting address of the neu function

" Uednesday, February 21, 1979 80:34:22 . Al:LNDOC;FORHAT?? . Page 4.17

(see FEF formats). Also stored in the EXIT state word is the BINDS-PUT-ON—BINDING-PDL
bit (see LINEAR-BINDING-PDL formats). Then the neu block is entered, and in the

‘low 8 bits of the neu call block’s ENTRY word, the relative location of the LOCAL

- BLOCK is stored. Also, in the next 6 bits of the ENTRY word is stored the number

of args supplied to the neu function.

“UWhen somethlng is stored in destination "T0 RETURN, " the current block is
funlshed uith. The micro code follous the pointer stored in the dying block's
CALL state word to find its way back to the previous active call block, and then
restores the PC from that block’s EXIT state word where it uas saved at exit time.

Note that the way the stack and the macro-instruction set are set up, - .
to refer to its args the function need never reference indexed "negatively off the stack
pointer.”™ ‘That is, a function uith five args doesn’t refer to its second arg by

.=3(SP). Thus any function does refer to its second arg bg 2(AP) regardless of
the total number of args the function_ takes. B :

There are also some other useful blts among the CALL state, EX]T state,
and ENTRY state uwords, uwhich are not necessarily related to calling, exiting, _
or entering; they uwere ba5|callg put uherever they flt. Here are the exact formats
of the words: : " :

In the CALL state word: (%%LP-CLS-) _ '

CLOSURE-BINDING-BLOCK-PUSHED: An extra binding block was pushed because
this was a closure invocation.

ADI -PRESENT: There is ADI present (see ADI formats).
DOWNWARD-CLOSURE-PUSHED:
MACRO-SAVED-DESTINATION (3): Saved UESTINATION field of the CALL instruction.
DELTA-TO-OPEN-BLOCK (6): Delta on stack to previous open block.
DELTA-TO-ACTIVE-BLOCK: ditto)

In the EXIT state word (%%LP—EXS)
BINDING-BLOCK-PUSHED (1): The QBBFL blt in MN-FLAGS
and either
EXIT-PC (17): The saved PC, if ue are macro code, or
RETURN—HICRO-PC (14): if ue are micro code

In the ENTRY state word (%%LP-ENS-)
NUM-ARGS-SUPPLIED (B): Number of args passed to us.

And ei ther
' MACRO-LOCAL-BLOCK-ORIGIN (8): Offset from call state to local block? M-QLOCO.
or . U-MICRO-STACK-XFER-COUNT (8): Number of words transferred form ustack to specpdl

before this call,

Historical note: In the "LISP Machine" paper (W.P. 73) there is much talkvof

PDL Frames and Frame Pushdoun List mode. This feature has not been implemented,

and probably will not be. The original datatype FRAME POINTER would have been

used for these PDL frames as well as Function Entry Frames (FEFs) and others,

each of uwhich would have been a page long. Houever, this does not reflect the current
state of implementation. ' : :

| Wedmesday, February 21, 1979 ©0:34:22 “AI:LMDOC;FORMAT 77 Page §

FEF FORMATS:

- When a function is macro-compiled, the macrocompiler produces a -
Function Entry Frame (FEF). The FEF contains various things including
random information about the function, and the macrocode itself.
One of the things which must be kept handy is the manner in which the
function interprets its arguments. There must be provision for storing very
- complex, hairy specifications, such as uhether each arg is to be EVALed or not,
whether it is REQUIRED, OPTIONAL, or REST, whether it is SPECIAL or LOCAL, etc.
Houever, for simple functions a great deal of efficiency would be lost if such
-a general, hairy format uere aluways used. The solution to the problem is that
‘simple functions use only a "Numeric Argument Descriptlon" word and a
"Special Variable Bit map” (the third and fourth words in the FEF) to store this
information, while more complicated functions use the more general "Argument
Descriptor List" (ADL). Note that the ADL is, confusingly, sometimes called the
"Binding Descriptor List" or BOL; this should eventually be flxed.
The exact (ha ha) uay this uworks is as follous:
There is one bit in the FEF which tells whether the ADL is present. If it
is not present, then (of course) it is not used, and presumably the format is)
simple enough to be conveyed through the information in the Numeric arg description
and the S.V. Bit map word. Even if the ADL is present, it may not be used (and only
~be there for debugglng).
' There is a bit specnfgmg that there are special variables being bound
by this function. If this bit is set, then the information about which args
and/or locals are special will be found either in the S.Y. Bit map word, or
in the ADL, as follous:

The S.V. Bit map uord contains one bit telling whether it is actlve. and
also (if it is indeed active) 22 bits of bit map. |f there are special variables bound
by this function, but the word is not active,)
it is either because (1) there are more than 22 arguments+iocal vars, or _

(2) There is a 8REST arg and so it is not clear how much room will be allocated
on the stack for args, and therefore not clear uhere the local variables uill end
up. Therefore in this case, the information on whether various args and locals
are special must be obtained from the ADL.

If the S. V. bit map word IS active, it is mterpreted by consndermg it as
(of course) a bit map, in which the least significant bit corresponds to the
first variable, etc. (??? fraid its the most significant. This is semi-inconsistant
uith usual convention, but probably not uworth changing.). If the bit for a pdl-slot is
set, then that pdl—slot corresponds to a special variable. o :

-In all FEFs, the Numeric Argument Description Llst uill be present and’
accurate [he hel. It has the following fields:
QUOTED-REST: (1 bit) There is a 8REST arg, and it is quoted. -
(EVALED-REST: (1 bit) There is a 8REST arg, and it is EVALed. ,
Note: These two may not be on together, of course.
FEF-QUOTE-HAIR: (1 bit) There is hairy quotmg. the FEF must be checked bg
EVAL. .
INTERPRETED: (1 bit) This is an interpreted function. :
: Note: This will never be on in the FEF, but other kmds
i of functions use this format also. -
FEF-BIND-HAIR: (1 bit) There is hairy binding, the ADL must be checked by the linear
; enter routine (don’t worry about what that is).
-MIN-ARGS: (6 bits) The minimum number of required args.
MAX-ARGS: (6 bits) The maximum number of required + optional args.
; Note that neither of these tuo six-bit fields include the
rest arg, if any; it uas covered by the first tuwo bjts.

v

Wednesday, February 21, 1979 00:34:22 . Al:LMDOC; FORMAT 77 . Page 5.1

When the ADL is used:
1 f the FEF-QUOTE-HAIR bit is set, or the FEF-BIND-HAIR bit is set. or '
if the "S.V. bit map active” bit is clear and the Special Variables Present bit ls :
set, then the ADL must be present. (It may be present anyuay for debugging
purposes.) Also, there is a random bit in the FEF called FAST-ARGUMENT-OPTION-ACTIVE
which is semi-historical. If it is set, it is a guarantee <ho ho> that the ADL
can be safely ignored.

Also, note that the macro-compiler always generates an ADL and never the.
Numeric Arg Description word or the S.V. bit map word; the LAP program looks
at the ADL, and determines what the Numeric Arg Descrnption Word should be, ‘
and possibly creates an S.V. Bit map and posssblg doesn't actually generate the ADL.

The format of the ADL is as follous: '
For each argument and each local variable there are either one, two, or three Q's
in the ADL. The first Q is numeric, and specifies just about everything about the
variable in an encoded format. The second word is optional (presence indicated by a
bit in the first Q), and stores the name of the variable (usually a pointer to a
- LISP atom). None of the code uses this; it is for debugging purposes only. -
" The third Q, if present, is used to initialize the variable, under the control of
varlous options specified by the first Q. :

"The fields of the first Q are: ' :
'NAME-PRESENT: (1 bit) There is a second word containing the name of this variable.
SPECIAL-BIT: (1 bit) This variable is specnal- get a pointer to its value cell from

the next entry in the S.V. Value Cell Pointer Llst and
save the value in the Local block of the PDL.
DES-DT: (4 bits) Desired datatype for this variable, which may be (nn numeric
order starting with zero)
DT-DONTCARE We don't care what we get.

DT-NUMBER Any number.

DT-FIXNUM Only FIXNUM.

DT-SYH ' Only SYMBOL.

DT-ATOM Any number or symbol.

DT-LIST Only LIST. :
DT-FRAME Dnlg FRAME (i.e. FEF. This is

prettg random...)

QUOTE-STATUS: (2 bits) The desired quotage/evalage of the argument which

may bes (not implemented in any case)
QT-DONTCARE We don’t care uhat ue get.

QT-EVAL Should be EVALed.

ar-ar Should be QUOTEd (not EVALed).

QT7-BREAKOFF Should be the name of a function
compiled from a quoted lambda expreseion.r

ARG-SYNTAX: (3 bite) The desired arg syntax, which may be:

ARG-REQ Required. :
ARG-OPT : Optional. May be initialized if arg not present.
ARG-REST Rest arg. (There may only be one.) . ,
-- belou here, they're not really arguments . : . -
, ARG-AUX Prog-variable. May be initialized.
-- belou here, they’re ignored by the function entry operation
: ARG-FREE Variable is referenced free. Included merely

because this might be a nice thing to be able
" to determine sometime. Totally unnecessary
to actual execution of function.
ARG-INTERNAL cell used to pass an argument to an internal
LAMBDA.

v

’ Hednésdag. February 21, 1979 80:34:22 . Al:LMDOC;FORMAT 77 Page 5.2

ARG- INTERNAL-AUX cell used bg an internal PRDG.

INIT-UPTION. (4 btts) The desired initialization of thls vartable. which may be. IR l
. .
|

- INI-NONE . Do not initialize (all required args have this.)
INI-NIL Initialize to NIL. (The default for locals.)
INI-PNTR Initialize variable to 3rd Q.

INI-C-PNTR Initialize variable to what 3rd Q ponnts at.
INI-OPT-SA Optional starting address. Start function here

if this optional arg IS supplied. (Code betueen
normal starting address and here initializes
variable if it is not supplied and thus must be
. : initialized.) ,
INI-COMP-C Variable initialized by compiled code. .
‘ - .- Initialization too hairy to be done by above :
~ mechanisms. :
INI-EFF-ADR - Interpret 3rd Q as macro-code effectuve addresa
‘ . li.e. 3 bit register, 6 bit delta). Reference tha
adr and initialize variable to dhat you get.
(This is used to compile
(LAMBDA (A SOPTIONAL (B A)) ..)
~'With A and B local, for example.)
INI-SELF Initialize to self, used for
’ (LAMBDA (&OPTIONAL (FOO FOO)) ..)
‘which isn’t reasonable unless FOO is special.

* When the macrocode refers to special variables, the actual code compiled

uwill refer to an area in the FEF called the Special Variable Value Cell Pointer List
(the effective addresses of the functions use the FEF "register"” (or FEF+188 or FEF+288
etc.)). The pointer list contains invisible pointers to the value cells of
the special variables themselves.

When a special variable is given as a local variable (a PROG or DO
or &AUX variable) it must be bound. Instead of binding it by saving it on the
Linear Binding POL (see way below), the old values are saved in the slots
in the Local Block on the main PDL, which would otheruise be unused. This
is done for greater efficiency (sort aof. Additional flavor would perhaps be a better
description). ‘

I the macro-compiled program uses constants, the code generated ulll
be either of tuo things; if the constant is one of a few which many programs
use, such as NIL, T, and some small numbers, it may be on the Constants page.
and the code addresses it uith the Constants page "register."” But if
it is a constant most llkelg only used by this function, the constant
Hwill be placed in the FEF in an area following the ADL. The macro-compiler
uill, in both cases, generate a reference called QUOTE-VECTOR; it is the LAP
program which actually decides uhether to reference the Constants page, or to
create a neu constant in the FEF and reference it instead. :

And nou, here is the FEF format:

-There are first seven words of various information about -
the function. The first word contains the initial PC, relative to the :
top of the FEF (i.e. itself), uhich points to the macrocode for the function, -
which is stored at the end of the FEF. It also contains three one-bit '
fields which have already been discussed:
The NO-ADL-PRESENT bit, the FAST-ARGUMENT-OPTION-ACTIVE bit, and the
SPECIAL-VARIABLES-PRESENT bi t. o
The second word is the function name. This is only here for debugging.
The third word is the Numeric Argument Description word, and the fourth

v

Neénesdag. February 21, 1979 00:34:22 - A1:LMDOC; FORMAT 77 - Page

is the S. V. bit map word.
' The fifth word has three fields: ‘
The lou 7 bits: The size of the Local block. (When the functlon is actuvated
this many words will be reserved on the PDL.)
- The next 8 bits: The location of the ADL relative to the start of the FEF,
The next 8 bits: The number of entries on the ADL (the number of variables ;
') described; there may be one or two words per variable).

The sixth word has one 8 bit field which holds the maximum length of

the local block plus any pushing the function might do. This is here for use

by the microcode uhich suaps the POL in and out of the main memory, so that

it can assure that there uill be room for execution of the function.
The seventh word contains the total size of the FEF. '
Then, after these seven words, are the S. V. Value Cell Pointer List

(if any), the ADL (if any), the space for random constants used by the program .

(if any), and finally, the macrocode itself, packed tuo instructions per Hord.

5.3

.

'Hednésdag. February 21, 1979 00:34:22 - Al:LMDOC;FORMAT 77 . Page 6

LINEAR BINDING POL' formats:

The LINEAR BINDING POL (LBP) corresponds fatrlg closely uith the SPECPDL
in PDP-18 MACLISP. The LISP machine uses shallou-binding, so the current. B
-value of any symbol is aluags found in the symbol”’s value cell, and when a
symbol is bound, its prevuous value is saved on the Linear bindlng POL, and
the neu value is placed in the value cell. (Note, however, that the use
of the linear binding pdl is bypassed in the simple cases through the
mechanvsms described on the preceding paga.)

The LBP also serves some other functions. UWhen a MICRO-TO-MACRO 6all‘
is made, the "MICRO-POL" of the Cons machine is stored there (this is
needed because the harduare micro-POL is only 32 words long).

Note: When discussing the LBP, "first" means the location with L
the numerically highest address, and thus the LAST word pushed. The "last".
word is actually the FIRST pushed. Dh. uell... ,

The LBP is block oriented. The blocks are de!:mtted by setting
the USER CONTROL bit in the last O in each block (i.e. the first one
pushed). The datatype of the first word of each block determines what .
kind of block the block is, as follous:

DATATYPE USE
LOCATIVE The block is a normal binding block.

FIXNUM This is a block transferred from the CONS machine
: micro-stack (SPC)}. Each word in the block should
be a fixnum containing the old contents of the SPC.
Only the active part of the stack is transferred.
MESA ENTRY This is a MESA code leave block. The block
should be 2 @'s long; the first one (the MESA ENTRY
tupe Q) is a pointer to the MESA-FEF left, and the second is
the saved NESA-PC (the return address). (See MESA-CODE
formats.) : : S

9¢ 9O <0 W 9o

A normal binding block is stored as a pair of Q's for each binding;
the first Q is a LOCATIVE pointer to the bound location, and the second
is the saved contents of the location. Note that any location can be bound-
usually these locations will be the value cells of symbols, but they can.
also be arrag elements, etc. (only of arrays of type Q-LIST). :

The SPC blocks and the MESA code,leave blocks are aluays pushed onto
the LBP all at once, and so are never "open." However, the normal binding blocks
are created one pair at a time. To keep track of this, uhen a macrocompiled
function is running, the "OBBFL" bit in the "PC status” flags is turned on if a b'ndlng
block has been opened on the LBP. This bit is saved during MACRO-TO-MACRO calis
(see CALLING conventions) on the regular POL in the EXIT state word (see POL formats)
so that when a MACRO-compiled function is done, a binding block uill get popped off the
LBP. If the bit is not on, it means that not even one pair has yet been pushed. .

Micro-to-micro calls can also cause bindings, and in order to keép THAT straight,
a bit on the SPC is set to indicate that a block was bound. This is all very hairy;
anyone who is very, very interested is invited to read UCONS and/or LMI. .

The LBP is pointed to by the location GLBNDP in LMI, and by

. v
L}

Wednesday, February 21, 1973 ©0:34:22 - AL:LHDOC;FORMAT 77 Page 6.1

A-OLBNDP in the real machine. In the current setup there is an area
devoted to storing the LBP called LINEAR-PDL-AREA. ~)

v

) Nedﬁesdag, February 21.A1979 $8:34:22 - Al:LMDOC;FORMAT 77 . Page 7

AREA formats:

Areas don”t have much of a format, mostlg. but there are still
some mterestmg thmgs to sag about them. :

There are several areas uhtch are important to the basic keepmg ‘

"~ track of the other areas; in the nuclear system, the atoms with their names _
have as their properties arrays uwhich point at the areas, so that they can be
easily referred to. These are: AREA-NAME, AREA-ORIGIN, AREA-LENGTH, -
AREA-FREE-POINTER, AREA-PARTIALLY-FREE-PAGE, AREA-FREE-STORAGE-MODE,

and AREA-FREE-PAGE-LIST. The uses of these are documented in LMNUC,

sections 3.6.X . Each area has a number (simply numbered 8 and on up) uhich

is used to mdex into theses areas.

There are several nags free space may be allocated uithin an area;

. for each area the storage alocation mode is given by the area’s entry in the

AREA-FREE-STORAGE-MODE area. The ones currently implemented are LINEARLY-ALLOCATED,
FREE-LIST, and PAGE-ALLOCATED. All depend on the area’s item in the AREA-FREE-POINTER
area. In a LINEARLY-ALLOCATED area, the Qs are allocated linearly; that is,)
one at a time sequentially. The FREE-POINTER points to the next free (0, and so every tim
one is allocated, 1 is added to the FREE-POINTER. In order to reclaim storage,
the garbage collector would have to compactify. In a FREE-LIST allocated area,
the free Qs are kept in a linked list (they have datatype DTP-FREE) and the 23 bit
pointer field points to the next free element. Here a garbage collector
would have no need to compactify. In a PAGE-ALLOCATED area, allocation is done
one uhole page at a time. (A page is 288 (octal) words long.) The FREE-POINTER
points to the first word of the first page, and the first words of the pagea
form a linked list.

- Hedhesdag. February 21, 1979 ©0:34:22 . . Al:LMDOC;FORMAT 77 Page 8

stack groups, calllng convs, adi.
remember: shouw houw Numeric Arg Description Word is used by other than MACRO.
STACK GROUP formats: :

A stack-group is the data structure behnnd the :mplementatlon of ,

a "process" in the LISP machine. Interrupt context-suitching, co-routlnes. and
"generators" are facilitated by the use of stack groups. :

At all times, there is exactlg one "active" stack-group, which corresponds‘
to the "process currently being run” on a time-sharing system. Although ther
is no time-sharing betuen users on the LISP machine, it is still useful for _
system-hacking purposes to be able to support multiple processes; for example,
when a message is received from the CHAOSnet, some other stack-group could be _
activated to handle it. Stack-groups are also useful for certain control structures;
a solution to the "same-fringe" problem was uritten using them. o

A stack group is a pointer of datatupe DTP-STACK-GROUP, which points
to an array header word the same way an ARRAY-POINTER would; the reason for
using an additional datatype is so that any routine will aluays be able to
distinguish a stack group array from all other arrays. The array also has
its oun array type, ART-STACK-GROUP-HEAD, for the same reason.

The data section of the array holds the main PDL for the stack group, and
the array leader holds many other relevant data including a pointer to another array
holding the lunear-blndlng -pdl (g. v.) for the stack group, the pdl p0|nters
for both POLs, various micro-code variables, etc.

There is provision (although not initially implemented) for - :
allouwing the two POLs to be stored as a chain of linked arrays rather than just one
(so that getting a POL overflow would not require reallocating a bigger array and copying
such an array would be of type ART-PDL-SEGMENT. Both of these tuo array types
are treated by the lou-level routines the same as ART-Q arrays.

A useful feature is that by binding appropriate special variables,
the default cons area, etc, and error and invoke handier can be made a function
of uhlch stack group is active; each may have its oun.

The elements of the array leader are:

NAME USE
SG-PDL-PDL-POINTER Saved PDL potnter. stored as a flxnum offset

from SG-PDL-STORAGE-ARRAY.
SG-PDL-STORAGE-ARRAY This points to the the array in the chain uhuch
We are nou using.
SG-LINEAR-BINDING-ARRAY Points to array for LBP., (??? which is ART-uhat?)
SG-1LB-PDL-POINTER - PDL pointer to LBP, stored as a fixnum offset
: from SG-LINEAR-BINDING-ARRAY.
SG-PDL-OVFL-SECTION POL overflou section chain (???)
SG-LB-OVFL-SECTION Bindin PDL overflou section chain (??77?)
SG-U-STACK-QS Number of (s transferred to micro-stack
on suitchout (?2?7)
SG-INITIAL-FCTN-INDEX Position in SGBA (uhich is what???) of
the topmost function pointer cell. This is
' normally 3, but may difer if ADl is present.
SG-UCODE Used somehou (not in yet) to indicate uhat microcode
] packages this stack group requires to be loaded.
The following Qs "hold the state" across macro-instructioh boundaries:
SG-AP , , Points to currently running block on the stack in this st
group, stored as a fixnum offset to SG-PDL-STORAGE-ARRAY.
SG-1PMARK Points to currenlt open block on the stack. Stored the ¢

Hednesday, February 21,

SG-SAVED-QLARYH
SG-SAVED-QOLARYL
SG-SAVED-NARGS

v

1979 ©08:34:22 - AI:LMDOC;FORMAT 77 Page 8.1

way.

(i.e. the last array referenced.)

(i.e. the last element of an array referenced.)

(i.e. number of args.) This enables one to compute

hou much of the PDL beyond SG-IPMARK' is eveluated args.
and hou much is temp storage.

SG-SAVED-INDICATORS (i.e. PC flags, condition codes,‘etc.)

The follouing Os have to
SGSTAT

' CONTENTS

- SGNERR
SGNACT
- SGNINT
SGNIND
SGNINC
SGNAER
SGNAED
SGNAEC
SGNART
SGNACL
SGNAIC
SGNAGC
SGNEXH

NAME

===

do uith CALL-STACK-GROUP (see below)
The STACK-GROUP state. This has a field of the lou six

bits which may hold: (contents are gtven sgmbolicallg;
SGNERR=8, SGNACT=1 etc.)

NEANINB
Error (for the usual reason).
Active.
Interrupted.
Interrupted dirty.
Interrupted cleansed.
Auaiting error recovery.
Auaiting error recovery dirty.
Auaiting error recovery cleansed.
Auaiting return.
Auaiting call.
Auaiting initial call.
Auaiting garbage collection.
Exhausted.
It also has the following 1-bit fields
{numbering from 2.3 doun to 1.7)
MEANING
Halt if there is an attempt to "error out“ of this stack group (°

SGSHLT
SGSSVD

SGSSHI

SGSNSP

SGSSTO
SGSSCO
SGSSCI

The special variables in this SG are swapped out (this ts

a non-runnable state) ‘

A special variable suap is in progress. This should not be on ur
in the middle of the suapper. 1f some error occurs and the suap
is not completed, this bit will be left on; the stack group is tl
screuued fatally.

This SG binds no special variables at all, and lt will therefore '
an error if it tries. : : .

Suap special variables on trap-out.

Suap special variables on call out.

Suap special variabies of the SG which lS prev:ous to me
when about to enter me.

SG-PREYIQUS-STACK-GROUP Pointer to SG which called be or uas f

interrupted "for" me. (so that I could be run)

SG-CALLING-ARGS-POINTER Pointer to argument -block which last called me.
SG-CALLING-ARG-NUMBER Number of args in above block. :
SG-FOLLOWING-STACK-GROUP Pointer to SG I called or uas nnterrupted to run.

SGAAS
SGAAJ
SGAAI
SGAAQ

These locations are used to save the states of some of ti
locations in the CONS M-memory. - (It is OK for these
‘ cells to have DTP-TRAP}.

-

Néﬁnesdag. February 21, 1979 ©0:34:22 - Al:LMDOC;FORMAT 77 . Page 8.2

SGAAR
SGAAT
SGAAE
SGAAD
SGAAC
SGAAB
SGAAA
SGAAZR

SGSVMA - : Saved VMA reglster. Note that the HRD and HND are NOT sa

.This ends the elements of the array-leader of the ART-STACK-GROUP arrag. The Ieader
of an ART-PDL-SEGMENT array are: , :

NAME MEANING

PSGPRY Pointer to previous segment in chain.

PSGFOL - Pointer to following segment in chain.

FSGHDP Pointer to the ART-STACK-GROUP array.

