Lisp Machine Manual

Second Preliminary Version

January 1979

Daniel Weinreb
David Moon

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory's artificial intelligence research is provided
in part by the Advanced Research Projects Agency of the Department of Defense under Office
of Naval Research Contract number N00014-75-C-0643.

Preface

This is a preliminary version of the Lisp Machine manual, describing both the dialect of Lisp
used by the Lisp Machine, and the software environment of the Lisp Machine system. ‘Several
chapters have not been written, due to the early stage of the software they describe; this
includes chapters on Graphics, the Mouse, Menus, the Eine editor, the network control program
and higher level network programs, and the file system. Some of the chapters that are included
describe software that is still in a state of flux, and are likely to change drastically in the next
revision of this manual. The authors also plan to produce a document describing the internal
formats of data objects and the instruction set of the machine.

This version of the Lisp machine manual contains only minor editorial corrections from the
version -of November, 1978,

Any comments, suggestions, or criticisms will be welcomed. The authors can be reached by
any of%the following communication paths:

ARPA Network mail to BUG-LMMANG@MIT-AI
U.S. Mail to

Daniel L. Weinreb or David A. Moon

545 Technology Square

Cambridge, Mass, 02139

MIT Multics mail to Weinreb.SIP’B

Note

The software described herein was written by the Lisp Machine Group, whose current members
are Alan Bawden, Bruce Edwards, Richard Greenblatt, Jack Holloway, Thomas Knight, Michael
McMahon, David Moon, Michael Patton, Richard Stallman, and Daniel Weinreb.

This document was edited with the Emacs editor, and formatted by the Bolio text justifier. It
was printed on the MIT A.l. Lab's Xerox Graphic Printer.

Preliminary Lisp Machine Manual 1

Table of Contents

I. Introduction e,
1.1 General Information..................... .
1.2 Structureof theManual
1.3 Notational Conventions and Helpful Notes
1.4 Data Typesoiitiiiiinrienennnennnn.
1.5 LambdaLists

2. Predicates.t e e

3. Evaluation.................... cen
3.1 Functions and Special Forms.......................
3.2 Muitiple ValueReturnscoivvinn...
33 Evalhook...... il

4. FlowofControlttt
4.1 Conditionals ittt ittt i i i
4.2 Iteration......... .
4.3 Non-local Exits. ittt i
4.4 MapPINg. ...ttt e e e e e,

5. Manipulating List Structure,
T8 oY« -
5.3 Alterationof List Structureccouvunn
54 Cdr-Coding......ooviiiiiiiiniiniiieinnennnnn
5.5 Tables.o i i i e e
LI T Yo o 41 V-4 e

6. Symbols
6.1 The Value Cell
6.2 The FunctionCell
6.3 The Property Listcooiiiiii it
6.4 ThePrintName
6.5 The Creation and Interning of Symbols.

7. Numbers.oiiiiinnnn.. .
7.1 Numeric Predicates.ooviiivin i iininnnnns
T2 Arithmetic.ttt it
7.3 Random Functions................... ..
7.4 Logical Operationson Numbers.....................
7.5 Byte Manipulation Functions.
7.6 24-Bit Numbers.coeiviinnn... .
7.7 Double-Precision Arithmetic....................

Table of Contents

6-JAN-79

Table of Contents 2

8. Strings ... e e
8.1 String Manipulation e .
8.2 Maclisp-compatible Functions v
8.3 Formatted Qutput............... Chiereriasereen

e e e s e s s s et s s e e e s el

e 0 s s e e e e e s e s e e e

L TN S S R R

9.1 What Arrays A€,oveuneeunrerrnanaenneenns it teeeeae e
9.2 How Arrays Work. ..o oovviiieiininnenn P
9.3 Extra Features of Arraysoovvnenns et eeeeeriseaees e .
9.4 Basic Array Functionsvciviiiieeenn R P S
9.5 Named Structures: oo e

9.6 Array Leaders..... e e
9.7 Maclisp Array Compatibility.oovvnnn e

10. Closures...... st erenaeeeaetae e as
10.1 WhataClosureIs.......ooviniiiiiienen,

s e s s e s s e s BB e et

...... e s e e s s e s st o s e s s e s asr e e s

PN L O SRR R S I S

e s s s s e e s s e s s e e oo

Preliminary Lisp Machine Manual

.79

10.2 Examples of the Use of Closures............... e ereseeeraeeee s 103

10.3 Function Descriptions: e et eeeeeneece e

11. Stack GIroUPs. ..o vveenvrnennscesenes e

..

11.1 What is Going On Inside e

12, LOCatiVves . v v ieereiiearcnssnnans

12.1 Cells and Locatives.oveeveeenens e eeeeiereesee e 109

12.2 Functions Which Operate on Locatives

13. SUDPIIMILIVES . .ot veniin e e

£3.01 Data Types . oo ivrmaervnnneesionenrenanenens

§3.2 Creating Objects...........
13.3 Pointer Manipulation e e
134 Special.\{emoryReferencing...
13.5 The Paging Systemcoovnnennennen
13.6 Microcode Variables.oveenuevinenne et iirranaonresreessnneeeeees

| - N 27 L R R R

15. The Compiler............ e

15.1 TheBaﬂcOperanomoftheCompller
15.2 How to Invoke the Compiler..........coovvvvnenee
15.3 Input to the Compiler...... Cereesaerans
15.4 Compiler Declarationscocvvcvvranne e e Ceeeeceenane
15.5 Compiler Source-Level Optimizers e
15.6 Files that Maclisp Must Compile e eeiaae e

..

..

.o

.o

16. Macros....... et e e

16.1 Introduction to Macrosc.cooeeve e
16.2 Aids for Defining Macros. s
16.2.1 Defmacro......... e

DRI

e

16.2.2 Backquote e e ieeeeae

16.3 AndeforDebuggmgMacros

. 126
126
. 126
127
130
133
133

. 135
135
. 137
137
. 138
141
. 141

6-JAN-79

Preliminary Lisp Machine Manual 3 _ Table of Contents

16.5 Advanced Featuresof Defmacro...................ccviiiiunn., e 143
16.6 Functions t0 Expand Macros.cooiiiiiriin ittt iinieinenenennns 143
R B T 14 4 o] A 144
17.1 Introduction to Structure Macrosttt it iiiei i it e enneennnenn 144
17.2 Setfand Locf. ... e e 145
173 Howto Use Defstructciiiiiiiiiiiiiiiinennnn., C e tee e 147
17.4 Optionsto Defstruct........covvvuiineneiinenenn. e et ie e 148
17.5 Using the Constructor Macrocoovevven.. e e e ... 149
17.6 Grouped AITaysottt e iniinretannenen ot etieart e 150
17.7 The :include Option.. . ..ottt it it ettt ettt ienenennannns 150
I8, The /0 System. ... ittt ittt ittt it tenesesenssnneesnennnnnnas 151
18.1 The Character Set.u.uuiiiiitiint ittt iiieitieeneenenoroesenensanaonns 151
18.2 Printed Representation.ol iieenrnrnenenrnenns e et 154
18.2.1 Whatthe Printer Produces ...ttt it inieeneeeanannas. . 154
18.2.2 What The Reader Acceptsoiiiiiiiiniiiennneneneeencncnsanennns 156
18.2.3 Sharp-sign Abbreviations...............coevnvun.n et teieeeceeecee e 158
18.2.4 The Readtable............... e e, e 159
18.2.5 Reader Macros........ciiiiiiiiiniinneneennnns e Ceeeaees e 159
I18.3 Input FUunCHions i i i i i it ittt ieeeenaasasnennnnnns 159
18.4 OUtpUL FUNCHONS L .o ittt ettt it e ie i eieennneenaennnnensns 161
185 J/0 Streams. ... ittt it it e e 164
IB.5.1 What Streams Areottt eteenereeaenensesessacsnonennns 164
18.5.2 General Purpose Stream Operations.......... N et s e 164
18.5.3 Special Purpose Stream Operations.ovvrrerenerneneneneacnnenannns 167
18.5.4 Standard Streamscoiiiiiiinnrnenenns et reeeee et 168
18.5.5 Making Your OWn Stream.citvrrrrniereennesroanaaessnnssoons ... 169
18.6 Accessing Files....... et te e e e ettt e 171
18.6.1 Other File Operations et ettt 172
18.6.2 File Name Manipulation.................. SR e e eteceee 173
187 Rubout Handling ittt i iiietnrnrnnreeascsannaaannn . 173
18.8 Special I/O Devices ivi ittt it ittt te it erensenaesenenaannnans 175
19. Packages.......... e e e [P 176
19.1 The Need for Multiple Contextsttt tinirenrnrnrananonnnas cee.. 176
19.2 The Organization of Name Spaces...................... . et 177
19.3 Shared Programs.cuiiuiiiineenirineeeeeneeonenaneasosesanssas . 178
19.4 Declaring Packages.ottt i ittt tetnrecnacatonananas 179
19.5 Packages and Writing Code...........iiiiiiiniiii i iiiieranernennennenns 181
19.6 Shadowing.ot i i i it et et it e 182
19.7 Packages and Interning. iiiiriiiiiiii it iiiteeeranesiraneeanennnans 183
19.8 Status Information............... et tiaus et 186
19.9 How Packages Affect Loading and Compilation............. e e 187
19.10 Subpackages.ottt i i e ittt e 187
19.11 Initialization of the Package System. et 189
19.12 Initial Packages. it i it i ittt e 190
19.13 Multiple Instantiations of a Program................... Ceeees e 191

6-JAN-79

Table of Contents 4 Preliminary Lisp Machine Manual
20, Flles . o e e e e et e Ceereseseeneas 193
20.1 Functions for Loading Programs.iu.iineiirenerorneenrnrensaconas .. 193
20.1.1 Functions for Loading Single Files. ot he e ecet et 193
20.1.2 Loading and Compiling Whole Packages................... e et 194
) TP 4 T - 195
21.1 Functions for Manipulating Processes............ e eir et 196
20,2 LocKks. i i i e e e Ceeaaas Ceetertee ettt 198
22, TVOBs and Jobs ... i i i i i i i et i ettt 199
22.1 Introduction to the Concepts of ThisChaptert iiiiniiiiineenennenns 199
22,2 TVOBS . Lttt i e e ettt e e e e e 199
22,3 Jobs L i e ettt Ceeeanes et e e 202
224 Controlling Jobso i i i i e tevecersaeseratoenaannn 204
22.5 Functions for Manipulating TVOBs. feterettereeatteteensaaane 205
22.6 Functions for Manipulating Jobs.. it ittt et 209
23. The TV Display. . ..ottt i it ieenaenann Ceeteerecateteneaeaaen 210
231 The Hardware. . ..o oottt ittt ittt ittt tenenesosesneannsanas el 210
23,2 S IS, i ittt it et e e Ceieeasene N 210
23.3 Simple Bit Manipulation. i i i i it ettt 213
2 TR SR =2 + ¥ C N 213
P T TS 17K) = R O 215
23.6 Piecesof Paper. i i it i e ... 215
23.6.1 Simple Typeout i i i i i ittt et i 218
23.6.2 CUrsOr MOtiON . .ottt it ittt ietienneaeerosoacossasasansasonsons ...220
23.6.3 Erasing, 1. v v vttt et ein i Ceeiearaaan eesereeaeen 221
23.6.4 String TypeoUt. ... ittt ittt ittt teataciaert e 222
23.6.5 More Processingooiiiiiiiiiiiiiiiniinees e rieeseaenes ceeeneses. 224
23.6.6 ALU FUNRCUONS .ottt ittt ittt inenrosassensossssossosossenssnssans el 224
23.6.7 BInKers i it it ittt et 225
237 Graphics ..o i i it it it i e e 226
23.8 The Who Line.itii ittt iiiitenectnensnnannnnnes eeeeee... 227
23.9 Microcode ROUtNes.ttt iiiiiiitiiernerenessosesesssssssansnnos 229
23.10 OpeningaPieceof Paper.............civiiiiiininnn et eibeaterter e 230
23.11 Creating Pieces of Paper and Blinkers. Cetreeeas et 231
23.12 TheKeyboard.coiiiiiiiiririneenrnsnnnanen. e eeee e e 234
23,13 Internal Special Variables. i i i i i it i 236
23.14 Font Utility Routines.covvivunn. PP X 1
23.15 The FontCompiler......... ..o, e F . X ¥
24. Errorsand Debugging.cvoiviiviiinennenns SO X 3 .
24,1 The Error System ... ittt interneeeeeseeneesesnseneacnseneannsens 238
2401 ConditloNs ...ttt ii ittt riaeearaeenasasnasaanasane e eceeeaaas 238
24.1.2 Error Conditions. .. vttt iiii it ititneeiesnensonsnnanons B 14
24.1.3 Signalling Errors it iiiiieeiesasessassatosassasaseann 241
24.1.4 Standard Condition Names.ccovvennnn. e teeetear et 245
P 2 0 T 2 - S ... 247
242 The Debugger. i i ittt ittt e rceaeraeee it 247

6-JAN-79

Preliminary Lisp Machine Manual

24.2.1 Entering the Debugger
24.2.2 How to Use the Debugger ... cee
24.2.3 Debugger Commands....................
24.2.4 Summary of Commands.

24.2.5 Miscellany ...
243 Trace..........
24.4 The Stepper.....

24.4.1 How to Get Into the Stepper.............

R R

24.4.2 How to Use the Stepper ...

245 The MAR

25. Utility Programs . ..
25.1 Useful Commands
25.2 Querying the User

ER RN S S PR

PR R)

......................

............

.............

Table of Contents

e e v e e s e s e s e e e e e e o0
s s eas st e s 00 e s s e e e
............. e e e e e v e
R R I I S S A BN R A I]
s e e e I R R A
s e s e s e s s e s s s e e s s s e 0w s

cee... 248

ceee... 249

ceee.. 255
ceee.. 255
cee... 255

cee... 259

....... e 1 |

25.3 Stuff That Doesn’t Fit Anywhere Else........
25.4 Statusand SStatus.............. e
25.5 The Lisp Top Level

25.6 LoggingIn......

ConceptIndex
Variable Index

Function Index..........

R I IR
e e e 00 s .
e e e 0 s e e

........ DECEE I

e e s e s v e e e

e s e s 0 s 000 s s s 0B e e e s s
s e o0 s s e e s e e s s e oo o
440 s 00 0s e 0t as 00000 e 00000

¢ e s e e v es s s s s e e s s

R A A I I I

6-JAN-79

Preliminary Lisp Machine Manual | Introduction

1. Introduction

1.1 General Information

The Lisp Machine is a new computer system designed to provide a high performance
and economical implementation of the Lisp language. It is a personal computation system,
which means that processors and main memories are not time-multiplexed: each person gets
his own for the duration of the session. It is designed this way to relieve the problems of
the running of large Lisp programs on time-sharing systems. Everything on the Lisp Machine
is written in Lisp, including all system programs; there is never any need to program in
machine language. The system is highly interactive.

This document is intended to serve both as a User’s Guide and as a Reference Manual
for the language and the Lisp Machine itself. It is hoped that anyone with some previous
‘programming experience {not necessarily in Lisp) could learn all about the Lisp language
and the Lisp Machine from this manual.

This is a preliminary version of the Manual. The authors are well aware that several
sections are missing. Some small sections were left out in the interest of publishing a
manual as quickly as possible. Several full chapters have not been written because the
corresponding software has not settled down enough for a meaningful document to be
written; these include chapters on the Chaos network, the mouse, and menus. Many more
major software changes are expected in both the language and the system; this manual is far
from the last word.

The Lisp Machine executes a new dialect of Lisp called Lisp Machine Lisp, developed
at the M.LT. Artificial Intelligence Laboratory for, use in artificial intelligence research and
related fields. It is closely related to the Maclisp dialect, and attempts to maintain a good
degree of compatibility with Maclisp, while also providing many improvements and new
features. Maclisp, in turn, is based on Lisp L.5.

1.2 Structure of the Manual

This manual attempts to document both the dialect of Lisp used on the Lisp Machine,
and the system itself. The manual starts out with an explanation of the language. Chapter 2
presents some basic predicate functions, Chapter 3 explains the process of evaluation, and
Chapter 4 introduces the basic Lisp control structures.

Next, in Chapters 4 through 12, various Lisp data types are presented, along with
functions for manipulating objects of those types. These nine chapters discuss list structure,
symbols, numbers, strings, arrays, closures, stack groups, and locatives.

Chapter 13 explains the ‘“subprimitive" functions, which are primarily useful for

implementation of the Lisp language itself and the Lisp Machine’s “operating system"”.
Chapter 14 explains areas, which give the programmer control over storage and locality of

DSK:LMMAN;LNTRO 28 ' 6-JAN-79

Notational Conventions and Helpful Notes 2 Preliminary Lisp Machine Manual

reference.

Chapter 15 discusses the Lisp compiler, which converts Lisp programs into "machine
language”. Chapter 16 explains the Lisp macro facility, which allows users to write their
own extensions to Lisp, and Chapter 17 goes into detail about one such extension that
provides structures.

Chapter 18 explains the Lisp Machine’s Input/Output system, including streams and the
printed representation of Lisp objects. Chapter 19 describes the package system, which allows
many name spaces within a single Lisp environment. Chapter 20 talks about how files from
a file system are used from Lisp.

Chapter 21 discusses the job system, which allows shared access to the TV screen, and
multiple processes. Chapter 22 goes into detail on the TV display itself. Chapter 23
explains how exceptional conditions (errors) can be handled by programs, handled by users,
and debugged. Chapter 24 contains other miscellaneous functions and facilities.

1.3 Notational Conventions and Helpful Notes

There are several conventions of notation, and various points that should be understood
before reading the manual, particularly the reference sections, to avoid confusion.

Most numbers shown are in octal radix (base eight). Spelled out numbers and numbers
followed by a decimal point are in decimal. This is because, by default, Lisp Machine Lisp
types out numbers in base 8: don't be surprised by this. To change it, see the
documentation on the symbols ibase and base (page 157).

The symbol " => " will be used to indicate evaluation in examples. Thus, when you see
" foo => nil", this means the same thing as "the result of evaluating foo is (or would have
been) nil",

All uses of the phrase "Lisp reader”, unless further qualified, refer to the part of Lisp
which reads characters from 1/O streams (the read function), and not the person reading
this manual.

There are several terms which are used widely in other references on Lisp, but are not
used much in this document since they have become largely obsolete and misleading. For
the benefit of those who may have seen them before, they are: "S-expression”, which means
a Lisp object; "Dotted pair", which means a cons, and "Atom", which means, roughly,
symbols and numbers and sometimes other things, but not conses.

The characters acute accent (') (also called “single quote”) and semicolon (;) have special
meanings when typed to Lisp; they are examples of what are called macro characters.
Though the mechanism of macro characters is not of immediate interest to the new user, it
is important to understand the effect of these two, which are used in the examples.

DSK:LMMAN:INTRO 28 ' 6-JAN-79

Preliminary Lisp Machine Manual 3 Notational Conventions and Helpful Notes

When the Lisp reader encounters a "’ ", it reads in the next Lisp object and encloses it
in a quote special form. That is, foo-symbol turns into. (Juote foo-symbol), and
(cons 'a ’b) turns into (quote (cons (quote a) (quote b))). The reason for this is that
“quote” would otherwise have to be typed in very frequently, and would look ugly.

The semicolon is used as a commenting character. When the Lisp reader sees one, the
remainder of the line is discarded.

The character "/ is used for quoting strange characters so that they are not interpreted
in their usual way by the Lisp reader, but rather are treated the way normal alphabetic
characters are treated. So, for example, in order to give a "/" to the reader, you must type
*//", the first */" quoting the second one. When a character is preceeded by a “/" it is
said to be slashified. Slashifying also turns off the effects of macro characters such as "’ "
and ;"

The following characters also have special meanings, and may not be used in symbols
without slashification. These characters are explained in detail in the section on printed-
representation {page 156).

" String quote

Introduces miscellaneous reader macros
] .

, See

Package prefix

List structure construction
| Symbol quoter

® Octal escape

All Lisp code in this manual is written in lower case. In fact, the reader turns all
symbols into upper-case, and consequently everything prints out in upper case. You may
write programs in whichever case you prefer.

By convention, all "keyword" symbols in the Lisp machine system have names starting
with a colon (). The colon character is not actually part of the print name, but is a
package prefix indicating that the symbol belongs to the package with a null name, which
means the user package. If you are not using packages, that is, you are doing everything
in the user package, it is not necessary to type the colon. However, it is recommended
that you always put in the colon so that you will not have problems if you later put your
program into a package. But it is necessary to leave out the colon in programs that must
run in both Maclisp and Lisp Machine Lisp. The colon can usually be omitted when you
are simply typing at the top-level of Lisp, since your typein is being read in the user
package, but it is better to type it so you will get used to it. In this manual the colon will
always be included.

DSK:LMMAN;LNTRO 28 6-JAN-79

[g
et TR

Notational Conventions and Helpful Notes 4 Preliminary Lisp Machine Manual

Lisp Machine Lisp is descended from Maclisp, and a8 good deal of effort was gone
through to try to allow Maclisp programs to run in Lisp Machine Lisp. There is an
extensive section explaining the differences between the dialects, and how to convert
Maclisp programs to work in the Lisp Machine. For the new user, it is important to note
that many functions herein exist solely for Maclisp compatibility; they should not be used in
new programs. Such functions are clearly marked in the text.

The Lisp Machine character set is not quite the same as that used on LTS. nor on
Multics; it is described in all detail elsewhere in the manual. The important thing to note
for now is that the character "newiine” is the same as "return”, and is represented by the
number 215 octal.

When the text speaks of “typing Control-Q" (for example), this means to hold down the
CTRL key on 'the keyboard (either of the two), and, while holding it down, to strike the
"Q" key. Similarly, to type "Meta-P", hold down either of the META keys and strike "P".
To type "Control-Meta-T" hold down both CTRL and META. Unlike the PDP-10, there are
no “control characters” in the character set; Control and Meta are merely things that can be
typed on the keyboard.

Many of the functions refer to "areas’. The area feature is only of interest to writers of
large systems, and can be safely disregarded by the casual user. It is described elsewhere.

DSK:LMMAN:LNTRO 28 6-JAN-79

Preliminary Lisp Machine Manual 5 Data Types

The rest of this chapter explains more of the details of the Lisp Machine Lisp dialect.
This section is also suitable for the Maclisp user, as it goes into detail about important
differences between the dialects. Those Maclisp users who have skipped the previous
«ections should definitely read this one.

14 Data Types

This section enumerates the various different types of objects in Lisp Machine Lisp. The
types explained below include symbols, conses, various types of numbers, two kinds of
compiled code object, locatives, arrays, stack groups, and closures. With each is given the
associated symbolic name, which is returned by the function data-type. (page 1),

A symbol (these are sometimes called "atoms’ or “atomic symbols” by other texts) has a
print name, a binding, a definition, a property list, and a package.

The print name is a string, which may be obtained by the function get-pname (page
65). This string serves as the printed representation (see page 154) of the symbol. The
binding (sometimes also called the "value’) may be any object. It is also referred to
wometimes as the "contents of the value cell”, since internally every symbol has a cell called
the value cell which holds the binding. It is accessed by the symeval function (page 58),
and updated by the set function (page 57). (That is, given a symbol, you use symeval to
find out what its binding is, and use set to change its binding.) The definition may also be
any Lisp object. It is also referred to as the “contents of the function cell”, since internally
every symbol has a cell called the function cell which holds the definition. The definition
can be accessed by the fsymeval function (page 59), and updated with fset (page 59). The
property list is a list of an even number of elements; it can be accessed directly by plist
(page 64), and updated directly by setplist (page 64), although usually the functions get,
putprop, and remprop (page 63) are used. The property list is used to associate any
number of additional attributes with a symbol—attributes not used frequently enough to
deserve their cells as the value and definition do. Symbols also have a package cell, which
indicates which “package” of names the symbol belongs to. This is explained further in the
section on packages and can be disregarded by the casual user.

_The primitive function for creating symbols is make-symbol (page 66) (currently named
make-atom), although most symbols are created by read, intern, or fasload (who call
make-symbol themselves.)

A cons is an object that cares about two other objects, arbitrarily named the car and the
cdr. These objects can be accessed with car and cdr (page 38), and updated with rplaca
and rplacd (page 47). The primitive function for creating conses is cons (page 39).

There are several kinds of numbers in Lisp Machine Lisp. Fixnums represent integers in
the range of -2723 to 2°23-1. Bignums represent integers of arbitrary size, with more
overhead than fixnums. The system automatically converts between fixnums and bignums as
required. Flonums are floating-point numbers. Small-flonums are another kind of floating-
point numbers, with less range and precision, but less computational overhead. Other types

DSK:LMMAN;LLISP 30 6-JAN-79

e

ol Y e AT

i
#
i

s

of numbers are likely to be added in the future. See page 68 for full details.

The usual form of compiled code is a Lisp object called a "Function Entry Frame™ or
"FEF". A FEF contains the code for one function. This is analogous to what Maclisp calls
a “subr pointer". FEFs are produced by the Lisp Compiler (page 126), and are usually
found as the definitions of symbols. The printed representation of a FEF includes its name,

5 Lambda Lists 6 Preliminary Lisp Machine Manual
. so that it can be identified. |
|

P Another Lisp object which represents executable code is a8 "micro-code entry”. These are
; the microcoded primitive functions of the Lisp system, and user functions compiled into
y microcode.

About the only useful thing to do with one of these objects is to apply it to arguments.
However, some functions are provided for examining such objects, for user convenience.
See arglist (page 61), args-info (page 61), describe (page 261), and disassemble (page
263).

A locative (see page 109) is a kind of a pointer to a single cell anywhere in the system.
The contents of this cell can be accessed by either car or c¢dr (both do the same thing for
a locative) (see page 38) and updated by either rplaca or rplacd (see page 47).

An array (see page 88) is a set of cells indexed by a tuple of integer subscripts. The -
contents of cells may be accessed and changed individually. There are several types of
arrays. Some have cells which may contain any object, while others (numeric arrays) may
only contain small positive numbers. Strings are a type of array; the elements are 8-bit
positive numbers which encode characters.

s 1.5 Lambda Lists

: Note: the examples in this section are examples of lambda-lists, not of Lisp forms!

' A lambda-expression is the form of a user-defined function in Lisp. It looks like

" (lambda /ambda-list . body). The body may be any number of forms. In Maclisp and Lisp
1.5, the lambda-list (also called a bound-variable list) is simply a list of symbols (which act
like formal parameters in some other languages). When the lambda-expression is applied to
its arguments (which act like acrual parameters in other languages), the symbols are bound
to the arguments, and the forms of the body are evaluated sequentially; the result of the
last of these evaluations is returned. If the number of arguments is not the same as the
length of the lambda-list, an error is generated.

In Lisp Machine Lisp the same simple lambda-lists may be used, but there are additional
features accessible via certain keywords (which start with &) and by using lists as elements
of the lambda-list.

The principle weakness of the simple scheme is that any function must only take a

certain, fixed number of arguments. As we know, many very useful functions, such as list,
append, +, and so on, may take a varying number of arguments. Maclisp solved this

DSK:LMMAN:LLISP 30 6-JAN-79

Preliminary Lisp Machine Manual 1 Lambda Lists

problem by the use of Jexprs and /subrs, which were somewhat inelegant since the
parameters had to be referred to by numbers instead of names (e.g. (arg 3)). (For

compatibility reasons, Lisp Machine Lisp supports lexprs, but they should not be used in
new programs).

In general, a function in Lisp Machine Lisp has zero or more reguired parameters,
followed by zero or more optional parameters, followed by zero or one rest parameter. This
means that the caller must provide enough arguments so that each of the required
parameters gets bound, but he may provide some extra arguments for each of the optional
parameters. Also, if there is a rest parameter, he can provide as many exira arguments as
he wants, and the rest parameter will be bound to a list of all these extras. Also, optional
parameters may have a default-form, which is a form to be evaluated to produce the default
argument if none is supplied.

Here is the exact explanation of how this all works. When apply matches up the
arguments with the parameters, it follows the following algorithm:

The first required parameter is bound to the first argument. apply continues to bind
successive required parameters to the successive arguments. If, during this process, there
are no arguments left but there are still some required parameters which have not been
bound yet, then an error is caused ("too few arguments”).

Next, after all required parameters are handled, apply continues with the optional
parameters, binding each argument to each successive parameter. If, during this process,
there are no arguments left, each remaining optional parameter’s default-form is evaluated,
and the parameter is bound to it. "This is done one parameter at a time; that is, first one
default-form is evaluated, and then the parameter is bound to it, then the next default-form

is evaluated, and so on. This allows the default for an argument to depend on the previous
argument,

Finally, if there is no rest parameter and there are no remaining arguments, we are
finished. .If there is no rest parameter but there are still some arguments remaining, an error
1s caused ("too many arguments”). But if there is a rest parameter, it is bound to a list of
all of the remaining arguments. (If there are no remaining arguments, it gets bound to nil.)

The way you express which parameters are required, optional, and rest is by means of
specially recognized symbols, which are called &-keywords, in the lambda-list. All such
symbols’ print names begin with the character ‘&". A list of all such symbols is the value of
the symbol lambda-list-keywords.

The keywords used here are &optional and &rest. The way they are used is best
explained by means of examples; the following are typical lambda-lists, followed by
descriptions of which parameters are required, optional, and rest.

(a bc) a, b, and c are all required. This function must be passed three arguments.
(a b &optional c)
a and b are required, ¢ is optional. The function may be passed either two

DSK:LMMAN;LLISP 30 6-JAN-79

N I NG e O i

Lambda Lists 8 Preliminary Lisp Machine Manual

or three arguments.

(&optional a b c¢)

a, b, and c are all optional. The function may be passed any number of
arguments between zero and three, inclusively.

(&rest a) a is a rest parameter. The function may be passed any number of arguments.
(a b &optional c d &rest e)

a and b are required, ¢ and d are optional, and e is rest. The function
may be passed two or more arguments.

In all of the cases above, the default-forms for each parameter were nil. To specify
your own default forms, instead of putting a symbo! as the element of a lambda-list, put in
a list whose first element is the symbol (the parameter itself) and whose second element is
the default-form. For example:

{(a &optional (b 3))
The default-form for b is 3. a is a required parameter, and so it doesn't
have a default form.

(&optional (a “foo) b (c (symeval a)) &rest d)

a's default-form is foo, b's is nil, and ¢'s is (symeval a). Note that if the
function whose lambda-list this is were called on no arguments, a would be
bound to the symbol foo, and ¢ would be bound to the binding of the
symbol foo: this illustrates the fact that each variable is bound immediately
after its default-form is evaluated, and so later default-forms may take
advantage of earlier parameters in the lambda-list. b and d would be bound
to nil.

It is also possible to include, in the lambda-list, some other symbols which are bound to
the values of their default-forms upon entry to the function. These are mot parameters, and
they are never bound to arguments; they are like "prog variables".

To include such symbols, put them after any parameters, preceeded by the &-keyword
&aux. Examples:

(a &optional b &rest ¢ &aux d (e 5) (f (cons a e)))
d, e, and [are bound, when the function is called, to nil, 5, and a cons
of the first argument and 5.

Note that aux-variables are bound sequentially rather than in parallel.

It is important to realize that the list of arguments to which a rest-parameter is bound is
not a ‘real” list. It is temporarily stored in the function-calling stack, and loses its validity
when the function returns. If a rest-argument is to be returned or made part of permanent
list-structure, it must first be copied (see append). The system will not detect the error of
omitting 10 copy a rest-argument; you will simply find that you have a value which seems to
change behind your back.

DSK:LMMAN:LLISP 30 6-JAN-79

Preliminary Lisp Machine Manual 9 : Predicates

2. Predicates

A predicate is a function which tests for some condition involving its arguments and
returns the symbol ¢ if the condition is true, or the symbol nil if it is not true.

By convention, the names of predicates usually end in the letter “p” (which stands for
"predicate”).. (See [section on naming conventions)).

The following predicates are for testing data types. These predicates return t if the
argument is of the type indicated by the name of the function, nil if it is of some other
type.

symbolp arg
symbolp returns t if its argument is a symbol, otherwise nil.

nsymbolp arg
nsymbolp returns nil if its argument is a symbol, otherwise t.

listp arg
listp returns ¢ if its argument is a cons, otherwise nil. (listp nil) is nil even though
nil is the empty list.

nlistp arg
nlistp returns t if its argument is anything besides a cons, otherwise nil. This is the

recommended predicate for terminating iterations or recursions on lists. It is, in
fact, identical to atom.

atom arg
"The predicate atom returns t if its argument is not a cons, otherwise nil.

fixp arg
fixp returns t if its argument is a fixnum or a bignum, otherwise nil.

floatp arg
floatp returns t if its argument is a flonum or a small flonum, otherwise nil.

small-floatp arg
small-floatp returns t if arg is a small flonum, otherwise nil.

bigp arg
bigp returns t if arg is a bignum, otherwise nil.

DSK:LMMANFD.DTP 28 6-JAN-79

Predicates 10 Preliminary Lisp Machine Manual

numberp arg
numberp returns t if its argument is any kind of number, otherwise nil.

stringp arg
stringp returns t if its argument is a string, otherwise nil.

arrayp arg
arrayp returns t if its argument is an array, otherwise nil. Note that strings are
arrays.

subrp arg

subrp returns t if its argument is any compiled code object, otherwise nil. The

Lisp Machine system doesn't use the term *subr”, but the name of this function
comes from Maclisp.

closurep arg
closurep returns t if its argument is a closure, otherwise nil.

locativep arg
locativep returns t if its argument is a locative, otherwise nil.

typep arg

typep is not really a predicate, but it is explained here because it is used to

determine the datatype of an object. It returns a symbol describing the type of its
argument, one of the following:

:symbol A symbol.
fixnum A fixnum.
flonum A flonum.

-small-flonum
A small flonum.

:bignum A bignum.

list A cons.

:string A string.

:array An array that is not a string.

:random Any built-in data type that does not fit into one of the above
categories.

foo An object of user-defined data-type foo (any symbol). See Named

Structures, page 91.

See also data-type, page L1l

DSK:LMMAN:FD.DTP 28 6-JAN-79

Preliminary Lisp Machine Manual 11 : Predicates

The following functions are some other general purpose predicates.

eq x Jy

(eq x y) => t if and only if x and y are the same object. It should be noted that
things that print the same are not necessarily eq to each other. In particular,
numbers with the same value need not be eq, and two similar lists are usually not
eq.
Examples:

(eq “a 7b) => nil

(eq “a 7a) => t

(eq (cons “a “b) (cons “a “b)) => nil

(setg x “(a . b)) (eq x x) => t
Note that in Lisp Machine Lisp equal fixnums are eq; this is not true in Maclisp.
Equality does not imply eq-ness for other types of numbers,

neq Macro

(neq x y) = (not (eq x y)). This is provided simply as an abbreviation for typing
convenience.

equal x y

The equal predicate returns ¢ if its arguments are similar (isomorphic) objects. (cf.
eq) Two numbers are equal if they have the same value (a flonum is never equal to
a fixnum though). Two strings are equal if they have the same length, and the
characters composing them are the same. Alphabetic case is ignored. For conses,
equal is defined recursively as the two car's being equal and the two cdr’s being
equal. All other objects are equal if and only if they are eq. Thus equal could
have been defined by:
(defun equal (x y)
(or (eq x y) :
(and (numberp x) (numberp y) (= x y))
(and (stringp x) (stringp y) (string-equal x y))
(and (listp x)
(listp y)
(equal (car x) (car y))
(equal (cdr x) (cdr y)))))

As a consequence of the above definition, it can be seen that equal need not
terminate when applied to looped list structure. In addition, eq always implies
equal; that is, if (eq a b) then (equal a b). An intuitive definition of equal (which
is not quite correct) is that two objects are equal if they look the same when
printed out. For example: ’

(setq a 7(1 2 3))

(setg b (1 2 3))

(eq a b) => nil

(equal a b) => t

(equal "Foo" "foo") => t

DSK:LMMAN:FD.OP 23 ' 6-JAN-79

Predicates 12 Preliminary Lisp Machine Manual

not x
null x ,
not returns t if x is nil, else nil. null is the same as not; both functions are
included for the sake of clarity. Use null to check whether something is nil; use
not to invert the sense of a logical value. Even though Lisp uses the symbol nil to
represent falseness, you shouldn't make understanding of your program depend on
this fortuitously. For example, one often writes:
(cond ((not (null 1Ist)) ...)
(...)))
rather than
(cond (Ist ...)
(...)))

There is no loss of efficiency, since these will compile into exactly the same
instructions.

DSK:LMMAN:FD.OP 23 6-JAN-79

Preliminary Lisp Machine Manual 13 Evaluation

8. Evaluation

The following is a complete description of the actions taken by.the evaluator, given a
form to evaluate.

If form is a number, the result is form.
If form is a string, the result is form.

If form is a symbol, the result is the binding of form. If form is unbound, an error is
signalled.

If form is not any of the above types, and is not a list, an error is signalled.

If form is a special form, indentified by a distinguished symbol as its car, it is handled
accordingly; each special form works differently. All of them are documented in this
manual.

If form is not a special form, it calls for the application of a function to arguments.
The car of the form is a function or the name of a function. The cdr of the form is a list
of forms which are evaluated to produce arguments, which are fed to the function.
Whatever results the function returns is the value of the original form.

[Here there should be the rest of the moby description of evaluation and application,
particularly multiple values. Explain the term “variables’, also a very brief bit about locals
and specials (fluids and lexicals??). The nature of functions should be revealed:; including
compiled-code, interpreted-code, arrays, stack-groups, closures, symbols. Discuss macros.
Talk about function-calling in compiled code, how this is essentially identical to the apply
function, and no need for (sstatus uuolinks) and the like.]

3.1 Functions and Special Forms

eval x
(eval x) evaluates x, and returns the result.
Example:
(setq x 43 foo “bar)
(eval (list “cons x “foo))
=> (43 . bar)

It is unusual to explicitly call eval, since usually evaluation is done implicitly. If
you are writing a simple Lisp program and explicitly calling eval, you are probably
doing something wrong. eval is primarily useful in programs which deal with Lisp
itself, rather than programs about knowledge or mathematics or games.

DSK:LMMAN:FD.EVA 40 6-JAN-79

Functions and Special Forms 14 Preliminary Lisp Machine Manual

Also, if you are only interested in getting at the value of a symbol (that is, the
contents of the symbol's value cell), then you should use the primitive function
symeval.

Note: the actual name of the compiled code for eval is “si:Xeval” this is because
use of the evalhook feature binds the function cell of eval. If you don't understand
this, you can safely ignore it.

Note: unlike Maclisp, eval never takes a second argument; there are no "binding
context pointers” in Lisp Machine Lisp. They are replaced by Closures (see page
102).

apply fn arglist

(apply fn arglist) applies the function fn to the list of arguments arglist. arglist
should be a list; fn can be a compiled-code object, or a "lambda expression”, ie. a
list whose car is the symbol lambda, or a symbol, in which case its definition (the
contents of its function cell) is used. :
Examples:

(setq f “+) (apply f 7(1 2)) =>3

(setq f 7-) (apply f 7(1 2)) => -1

(apply “cons “((+ 2 3) 4)) =>

((+23).4) not(5.4)

Of course, arglist may be nil.

Note: unlike Maclisp, apply never takes a third argument; there are no "binding
context pointers” in Lisp Machine Lisp.

Compare apply with funcall and eval.

funcall f &rest args

(funcall f al a2 ... an) applies the function f to the arguments al, a2, ..., an. f{
may not be a special form nor a macro; this would not be meaningful.
Example:

(cons 1 2) => (1 . 2) .
(setq cons “plus)
(funcall cons 1 2) => 3

lexpr-funcall f &rest args
lexpr-funcall is like a cross between apply and funcall. (lexpr-funcall f a7 a2 ...
an list) applies the function f to the arguments al through an followed by the
elements of list.

DSK:LMMAN:FD.EVA 40 6-JAN-79

Preliminary Lisp Machine Manual 15

Functions and Special Forms

Examples:
(Yexpr-funcall “plus 111 “7(111)) =>6

(defun report-error (&rest args)
(lexpr-funcall (function format) error-output args))

Note: the Maclisp functions subrcall, Isubrcall, and arraycall are not needed on the
Lisp Machine; funcall is just as efficient.

quote Special Form

(quote x) simply returns x. It is useful because it takes the argument guoted, so

that it is not evaluated by eval. quote is used to include constants in a form.
Examples:

(quote x) => x
(setg x (quote (some list))) x => (some list)

Since quote is so useful but somewhat cumbersome to type, the reader normally

converts any form preceded by a single quote (') character into a quote form.
For example,

(setq x “(some list))
is converted by read into
(setq x (quote (some 1list)))

function Special Form

(function x) is similar to quote, except that it implies to the compiler that x is a
function. In the interpreter, if x is a symbol (function x) returns x's definition;
otherwise x itself is returned. Because of this, using function rules out the

possibility of later changing the function definition of x, including tracing it. Care is
required!

comment Special Form

comment ignores its form and returns the symbol comment.
Example:
(defun foo (x)
(cond ((null x) 0)
(t (comment x has something in it)
(1+ (foo (cdr x))))))

Usually it is preferable to comment code using the semicolon-macro feature of the
standard input syntax. This allows the user to add comments to his code which are
ignored by the lisp reader.
Example:
(defun foo (x)
(cond ((null x) 0)

(t (1+ (foo (cdr x)))) ;X has something in it
))

DSK:LMMAN:FD.EVA 40 6-JAN-79

R

Functions and Special Forms 16 Preliminary Lisp Machine Manual

A problem with such comments is that they are discarded when the S-expression is
read into lisp. If the function is read into Lisp, modified, and printed out again,
the comment will be lost. However, this style of operation is hardly ever used;
usually the spurce of a function is kept in an editor buffer and any changes are

made to the buffer, rather than the actual list structure of the function. Thus, this is
not a real problem.

@define Macro

progn

This macro turns into nil. It exists for the sake of the @ listing generation program,
which uses it to declare names of special forms which define objects (such as
functions) which @ should cross-reference.’

Spccial Form
A progn-form looks like (progn formI form2 ...). The forms are evaluated in order
from left to right and the value of the last one is the result of the progn. progn is
the primitive control structure construct for “compound statements”. Although
lambda-expressions, cond-forms, do-forms, and many other control structure forms
use progn implicitly, that is, they allow multiple forms in their bodies, there are
occasions when one needs to evaluate a number of forms for their side-effects and
make them appear to be a single form,
Example:
(foo (cdr a)
(progn (setq b (extract frob))
(car b))
(cadr b))

progl Special Form

progl is similar to progn, but it returns the value of its first form. It is most
commonly used to evaluate an expression with side effects, and return a value which
must be computed before the side effects happen.
Example:

(setq x (progl y (setq y x)))
which interchanges the values of the variables x and y.

progl could have been defined as:

{defun progl (&rest values)
(car values))

It is actually implemented as a macro which expands into a prog2.

prog2 Special Form

prog2 is similar to progn and progl, but it returns its second argument. It is
included largely for Maclisp compatibility. It has two ;= ~oses: to evaluate two
forms sequentially, which can be done more generally witii progn, or to do what

* progl is used for (c.f. progl above).

DSK:LMMAN:FDEVA 40 6-JAN-79

Preliminary Lisp Machine Manual 17 Functions and Special Forms

let Special Form

let is used to bind some variables for some objects. A let form looks like
(let ((varl vforml)
(var2 vform2)
ced)
bformli
bform2
eed) :
When this form is evaluated, first the vforms are evaluated, Then the vars are
bound to the values returned by the corresponding vforms. Finally, the bforms are
evaluated sequentially and the result of the last one returned.

let is implemented as a macro which expands into a lambda-combination; however,
it is preferable to use let rather than lambda because the variables and the
corresponding forms appear textually close to each other, which increases readability
of the program,

See also let-globally, page 35.

progv Special Form

progv is a special form to provide the user with extra control over lambda-binding.
It binds a list of symbols to a list of values, and then evaluates some forms. The
lists of symbols and values are computed quantities; this is what makes progv
different from lambda, let, prog, and do.
(progv symbol-list value-list forml form2 ...)

first evaluates symbol-list and value-list, Then the symbols are bound to the values.
In compiled code the symbols must be special, since the compiler has no way of
knowing what symbols might appear in the symbol-list. If too few values are
supplied, the remaining symbols are bound to nil. If t0oo many values are supplied,
the excess values are ignored.

After the symbols have been bound to the values, the forms are evaluated, and
finally the symbols’ bindings are undone. The result returned is the value of the last
form. Note that the "body" of a progv is similar to that of progn, not that of prog.
Example:

(setq a “foo b “bar)

(progv (list a b “b) (1ist b) (list a b foo bar))
=> (foo nil bar nil)
During the evaluation of the body of this progv, foo is bound to bar, bar is
bound to nil, b is bound to nil, and a remains bound to foo.

See also bind (see page 118), which is a subprimitive which gives you maximal control
over binding,

DSK:LMMAN;FD.EVA 40 6-JAN-79

Functions and Special Forms 18 Preliminary Lisp Machine Manual

The following three functions (arg, setarg, and listify) exist only for compatibility with
Maclisp lexprs. :

arg x
(arg nil), when evaluated during the application of a lexpr, gives the number of
arguments supplied to that lexpr. This is primarily a debugging aid, since lexprs also
receive their number of arguments as the value of their lambda-variable.

(arg i), when evaluated during the application of a lexpr, gives the value of the i'th
argument to the lexpr. i must be a fixnum in this case. It is an error if i is less than
1 or greater than the number of arguments supplied to the lexpr.

Example: ,
(defun foo nargs ;define a lexpr foo.
(print (arg 2)) ; print the second argument,
(+ (arg 1) sreturn the sum of the first

(arg (- nargs 1)))) ;and next to last arguments.

setarg 7/ x
setarg is used only during the application of a lexpr. (setarg i x) sets the lexpr’s
i'th argument to x. i must be greater than zero and not greater than the number of

arguments passed to the lexpr. After (setarg i x) has been done, (arg 7) will return
X.

listify n
(listify n) manufactures a list of n of the arguments of a lexpr. With a positive
argument 71, it returns a list of the first n arguments of the lexpr. With a negative
argument n, it returns a list of the last (abs n) arguments of the lexpr. Basically, it
works as if defined as follows:
(defun listify (n)
(cond ((minusp n)

(1istifyl (arg nil) (+ (arg nil) n 1)))

(t

(listifyl n 1))))

(defun listifyl (n m) ; auxiliary function.
(do ((i n (1- 1))
(result nil (cons (arg i) result)))
((¢ 1 m) result)))

DSK:LMMAN:FD.EVA 40 6-JAN-79

Preliminary Lisp Machine Manual 19 Multiple Value Returns

3.2 Multiple Value Returns

multiple-value Special Form

(multiple-value var-list form) is a special form used for calling a function which is
expected to return more than one value. var-list should be a list of variables. form
is evaluated, and the variables in var-/list will be set (not lambda-bound) to the values
returned by form. If more values are returned than there are variables in var-list,
then the extra values are ignored. If there are more variables than values returned,
extra values of nil are supplied. It is allowed to have nil in the var-list, which
means that the corresponding value is to be ignored (you can't use nil as a variable.)
Example:
(multiple-value (symbol already-there-p)
(intern "goo"))

intern returns a second value, which is t if the symbol returned as the first value
was already on the obarray, or else nil if it just put it there. So if the symbol goo
was already on the obarray, the variable already-there-p will be set to t, else it
will be set to nil.

multiple-value is usually used for effect rather than for value, however its value is
defined to be the first of the values returned by form.

multiple-value-list Special Form

(multiple-value-list form) is another special form used on functions which may
return multiple values. (multiple-value-list form) evaluates form, and returns a
list of the values it returned.
Example:

(setg a (multiple-value-list (intern “goo")))

a => (goo nil #<Package User>)
This is similar to the example of multiple-value above; a will be set to a list of
three elements, the three values returned by intern. The first is the newly interned
symbol goo, the second is nil to indicate that it is newly-interned, and the third is
the package on which it was interned.

multiple-value-call Special Form

(multiple-value-call (function argl arg2 ..)) applies the function to the arguments,
and returns from the current function with the same values as function returns. This
only works in compiled programs,

multiple-value-return Special Form

(multiple-value-return (function argl arg2 .)) applies the function to the

arguments, and returns from the current prog or do with the same values as
function returns.

DSK:LMMAN:FD.EVA 40 6-JAN-79

Evalhook 20 Preliminary Lisp Machine Manual

3.3 Evalhook

evalhook V¥Variable
If the value of evalhook is non-nil, then special things happen in the evaluator.
When a form (even an atom) is to be evaluated, evalhook is bound to nil and the
function which was evalhook’s value is applied to one argument—the form that was
trying to be evaluated. The value it returns is then returned from the evaluator.
This feature is used by the step program (see page 255).

evalhook is bound to nil by hreak and by the error handler, and setq’'ed to nil by
errors that go back to top level and print X, This provides the ability to escape from this
mode if something bad happens.

In order not to impair the efficiency of the Lisp interpreter, several restrictions are
imposed on evalhook. It only applies to evaluation — whether in a read-eval-print loop,
internally in evaluating arguments in forms, or by explicit use of the function eval. It does
not have any effect on compiled function references, on use of the function apply, or on
the "mapping” functions, (On the Lisp Machine, as opposed to Maclisp, it is not necessary
to do (Xrset t) nor (sstatus evalhook t))

(Also, Maclisp's special-case check for store is not implemented.)

evalhook form hook
evalhook is a function which helps exploit the evalhook feature. The form is
evaluated with evalhook lambda-bound to the functional form hook. The checking
of evalhook is bypassed in the evaluation of form itself, but not in any subsidiary
evaluations, for instance of arguments in the form. This is like a “one-instruction
proceed” in a machine-language debugger.
Example:
« This function evaluates a form while printing debugging information,
{(defun hook (x)
(terpri)
(evalhook x “hook-function))

: Notice how this function calls evalhook to evaluate the form f,
2 S0 as to hook the sub-forms. ‘
(defun hook-function (f)
(let ((v (evalhook f “hook-function)))
(format t "form: ~s~%value: ~s~%" f v)

v))

The following output might be seen from (hook ’(cons (car *(a . b)) ’c)):

DSK:LMMAN;FD.EVA 40 6-JAN-79

Preliminary Lisp Machine Manual 21 Evalhook

form: (cons (car (quote (a . b))) (quote c))
form: (car (quote (a . b))) ‘
form: (quote (a . b))

value: (a . b)

value: a

form: (quote c)

value: ¢

value: (a . c)

(a . c)

DSK:LMMAN;:FD.EVA 40 6-JAN-79

o

Flow of Control 22 Preliminary Lisp Machine Manual

4. Flow of Control

Lisp provides a variety of structures for flow of control.

Function application is the basic method for construction of programs. Operations are
written as the application of a function to its arguments. Usually, Lisp programs are written
as a large collection of small functions, each of which implements a simple operation. These
functions operate by calling one another, and so larger operations are defined in terms of
smaller ones,

A function may always call itself in Lisp. The calling of a function by itself is known as
recursion; it is analogous to mathematical induction,

The performing of an action repeatedly (usually with some changes between repetitions)
is called iteration, and is provided as a basic control structure in most languages. The do
statement of PL/I, the for statement of ALGOL/60, and so on are examples of iteration
primitives. Lisp provides a general iteration facility called do, which is explained below.

A conditional construct is one which allows a program to make a decision, and do one
thing or another based on some logical condition. Lisp provides and and or, which are
simple conditionals, and cond, which is a more general conditional.

Non-local exits are similar to the /leave, exit, and escape constructs in many modern
languages. They are similar to a return, but are more general. In Lisp, their scope is
determined at run-time. They are implemented as the catch and Xthrow functions.

Lisp Machine Lisp also provides a multiple-process or coroutine capability. This is
explained in the section on stack-groups (page 105).

4.1 Conditionals

and Spccial Form
(and forml form2 ..) evaluates the forms one at a time, from left to right. If any
form evaluates to nil, and immediately returns nil without evaluating the remaining
forms. If all the forms evaluate non-nil, and returns the value of the last form.
and can be used both for logical operations, where nil stands for False and t stands
for True, and as a conditional expression.
Examples:

(and x y)

(and (setq temp (assq x y))
(rplacd temp z))

(and (not error-p)

(princ "There was no error."))
Note: (and) => t, which is the identity for this operation.

DSK:LMMAN:FD.FLO 61 6-JAN-79

Preliminary Lisp Machine Manual - 23 Conditionals

or Special Form

(or forml form2 ..) evaluates the forms one by one from left to right. If a’form
evaluates to nil, or proceeds to evaluate the next form. If there are no more
forms, or returns nil. But if a form evaluates non-nil, or immediately returns that
value without evaluating any remaining forms. or can be used both for logical
operations, where nil stands for False and t for True, and as a conditional
expression.

Note: (or) => nil, the identity for this operation.

cond Special Form

The cond special form consists of the symbol cond followed by several clauses.
Each clause consists of a predicate followed by zero or more forms. Sometimes the
predicate is called the antecedent and the forms are called the conseguents.
(cond (antecedent consequent consequent. . .)
(antecedent)
(antecedent consequent . . .)

een)

The idea is that each clause represents a case which is selected if its antecedent is
satisfied and the antecedents of all preceding clauses were not satisfied. When a
clause is selected, its consequent forms are evaluated.

cond processes its clauses in order from left to right. First, the antecedent of the
current clause is evaluated. If the result is nil, cond advances to the next clause.
Otherwise, the cdr of the clause is treated as a list of forms, or consequents, which
are evaluated in order from left to right. After evaluating the consequents, cond
returns without inspecting any remaining clauses. The value of the cond special
form is the value of the last consequent evaluated, or the value of the antecedent if
there were no consequents in the clause. If cond runs out of clauses, that is, if
every antecedent is nil, that is, if no case is selected, the value of the cond is nil.
Example:

(cond ({zerop x) ; First clause:
(+ y 3)) ; (zerop x) is the antecedent.
; (+ y 3) is the consequent.
((null y) ; A clause with 2 consequents:
(setq y 4) ; this
(cons x z)) ; and this.
(z) ;A clause with no consequents:
; the antecedent is just z.
(t ; An antecedent of t
105) ; is always satisfied,
) ; This is the end of the cond.

DSK:LMMAN;FD.FLO 61 6-JAN-79

Conditionals 24 Preliminary Lisp Machine Manual

if Macro
if allows a simple "if-then-else” conditional to be expressed as (if pred-form then-
form clse-form). if is provided for stylistic reasons; some people think it looks nicer
than cond for the simple case it handles. (if x y z) expands into (cond (x y) (¢

z)).

selectq Macro
Many programs require cond forms which check various specific values of a form.
A typical example:
(cond ((eq x “foo) es)
((eq x “bar) S
((memq x “(baz quux mum)) ...)
(t ...))
The selectq macro can be used for such tests. Its form is as follows:
(selectq key-form
(pattern consequent consequent . . .)
(pattern consequent consequent . . .)
(pattern consequent consequent . . .)
L)
Its first "argument’ is a form, which is evaluated (only once) as the first thing
selectq does. The resulting value is called the key. It is followed by any number
of clauses. The car of each clause is compared with the key, and if it matches, the
consequents of this clause are evaluated, and selectq returns the value of the last
consequent. If there are no matches, selectq returns nil. Note that the patterns are
not evaluated; if you want them to be evaluated use select rather than selectq.

A pattern may be any of:

1) A symbol If the key is eq to the symbol, it matches.

2) A number If the key is eq to the number, it matches. Only
small numbers (fixnums) will work.

3) A list If the key is eq to one of the elements of the list,
then it matches. The elements of the list should be
symbols or fixnums.

4) t or otherwise The symbols t and otherwise are special keywords
which match anything. Either symbol may be used, it
makes no difference. t is accepted for compatibility
with Maclisp's caseq construct.

Example:
(selectq x : This is the same as the cond example
(foo ...) ; above.
(bar ...)

((baz quux mum) ...)
(otherwise ...))

DSK:LMMAN:FD.FLO 61 6-JAN-79

Preliminary Lisp Machine Manual 25 Iteration

select Macro
select is the same as selectq, except that the elements of the patterns are evaluated
before they are used.
Example:
(select (frob x)
(foo 1)
{(bar baz) 2)
(otherwise 3))
is equivalent to
(let ((var (frob x)))
(cond ({eq var foo) 1)
((or (eq var bar) (eq var baz)) 2)
(t 3)))

dispatch Macro
(dispatch byte-specifier n clauses...) is the same as select (not selectq), but the key
is obtained by evaluating (Idb byre-specifier n). byte-specifier and n are both
evaluated.
Example:
(princ (dispatch 0202 cat-type
(0 "Siamese.")
(1 “Persian.")
(2 "Alley.")
(3 (ferror nil
"~S is not a known cat type."
cat-type))))
It is not necessary to include all possible values of the byte which will be dispatched
on. [This function may get flushed.

4.2 lteration

prog Special Form
prog is a special form which provides temporary variables, sequential evaluation of
forms, and a “goto” facility. A typical prog looks like:
(prog (varlvar2 (var3init3) vard (var$ init5))
tagl '
statement I
statement2
tag2?
statement2
)
varl, var2, ... are temporary variables. When the prog is entered, the values of
these variables are saved. When the prog is finished, the saved values are restored.
The initial value of a variable inside the prog depends on whether the variable had
an associated init form or not; if it did, then the init form is evaluated and becomes

DSK:LMMAN:FD.FLO 61 6-JAN-79

3

#3

Iteration 26 Preliminary Lisp Machine Manual

the initial value of the corresponding variable. If there was no init form, the
variable is initialized to nil.

Example:
(prog ((a t) b (c 5) (d (car “(zz . pp))))
<body >
)

The initial value of a is t, that of b is nil, that of ¢ is the fixnum 5, and that of d
is the symbol zz. The binding and initialization of the variables is done sequentially,
so each one can depend on the previous ones.

The part of a prog after the variable list is called the body. An item in the body
may be a symbol or a number, in which case it is called a tag, or some other form
(i.e. a list), in which case it is called a statement.

After prog binds the temporary variables, it processes each form in its body
sequentially. rags are skipped over. Statements are evaluated, and their returned
values discarded. If the end of the body is reached, the prog returns nil. However,
two special forms may be used in prog bodies to alter the flow of control. If
(return x) is evaluated, prog stops processing its body, evaluates x, and returns the
result. If (go tag) is evaluated, prog jumps to the part of the body labelled with
the tag. tag is not evaluated. The "computedgo” (mis)feature of Maclisp is not
supported,

The compiler requires that go and return forms be lexically within the scope of the
prog: it is not possible for one function to return to a prog which is in progress in
its caller. This restriction happens not to be enforced in the interpreter. Thus, a
program which contains a go which is not contained within the body of a prog (or
a do, see below) cannot be compiled. Since virtually all programs will be compiled
at some time, the restriction should be adhered to.

Sometimes code which is lexically within more than one prog (or do) form wants 10
return from one of the outer progs. However, the return function normally
returns from the innermost prog. In order to make returning from outer progs
more convenient, a prog may be given a name by which it may be referenced by a
function called return-from, which is similar to return but aliows a particular
prog to be specified. If the first subform of a prog is a non-nil symbol (rather than
a variable list), it is the name of the prog. See the description of the return-from
special form, on page 31.
Example:
(prog george (a b d)

(prog (c b)
(return-from george (cons b d))
ee))

DSK:LMMAN:FD.FLO 61 6-JAN-79

Preliminary Lisp Machine Manual 27 Iteration

If the symbol t is used as the name of a prog, then it will be made “invisible” to
returns; returns inside that prog will return to the next outermost level whose
name is not t. (return-from t ..) will return from a prog named t.

See also the do special form, which uses a body similar to prog. The do, *catch,
and Xthrow special forms are included in Lisp Machine Lisp as an attempt to
encourage goto-less programming style, which often leads to more readable, more
easily maintained code. The programmer is recommended to use these functions
instead of prog wherever reasonable.

Example:
(prog (x y z) ;x, y, zare prog variables - temporaries.
(setq vy (car w) z (cdr w)) :w is a free variable,
loop
(cond ((null y) (return x))
({(null 2) (go err)))
rejoin
(setq x (cons (cons (car y) (car z))
X))
(setq y (cdr y)
z (cdr z))
(go loop)
err
{break are-you-sure? t)
(setq z y)

(go rejoin))

do Special Form

The do special form provides a generalized iteration facility, with an arbitrary
number of “index variables" whose values are saved when the do is entered and
restored when it is left, ie. they are bound by the do. The index variables are
used in the iteration performed by do. At the beginning, they are initialized to
specified values, and then at the end of each trip around the loop the values of the
index variables are changed according to specified rules. do allows the programmer
to specify a predicate which determines when the iteration will terminate. The value
to be returned as the result of the form may, optionally, be specified.

do comes in two varieties.

The newer variety of do looks like:
(do ((varinit repeat)...)
(end-test exit-form. . .)
body. ..) '

The first item in the form is a list of zero or more index variable specifiers. Each
index variable specifier is a list of the name of a variable var, an initial value init,
which defaults to nil if it is omitted, and a repeat value repeat. If repeat is omitted,
the var is not changed between loops.

DSK:LMMAN;FD.FLO 61 ’ 6-JAN-79

Iteration | 28 Preliminary Lisp Machine Manual

All assignment to the index variables is done in parallel. At the beginning of the
first iteration, all the inits are evaluated, then the vars are saved, then the vars are
set to the values of the inits. To put it another way, the vars are lambda-bound to
the values of the inits. Note that the inits are evaluated before the vars are bound,
i.e. lexically outside of the do. At the beginning of each succeeding iteration those
vars that have repeats get setq'ed to the values of their respective repeats. Note
that all the repeats are evaluated before any of the vars is changed.

The second element of the do-form is a list of an end-testing predicate end-test, and
zero or more forms, called the exit-forms. At the beginning of each iteration, after
processing of the repeats, the end-rest is evaluated. If the result is nil, execution
proceeds with the body of the do. If the result is not nil, the exit-forms are
“evaluated from left to right and then do returns. The value of the do is the value
of the last exir-form, or nil (not the value of the end-test as you might expect) if
there were no exit-forms. Note that the second element of the do-form resembles a
cond clause.

If the second element of the form is nil, there is no end-test nor exit-forms, and
the body of the do is executed only once. In this type of do it is an error to have
repeats. This type of do is a "prog with initial values.”

If the second element of the form is (nil), the end-rest is never true and there are
no exit-forms. The body of the do is executed over and over. The infinite loop
can be terminated by use of return or Xthrow.

The remainder of the do-form constitutes a prog-body: that is, go's and return
forms are understood within the do body, as if it were a prog body. When the end
of the body is reached, the next iteration of the do begins. If a return form is
evaluated, do returns the indicated value and no more iterations occur,

The older variety of do is:
(do var init repeat end-test body...)

The first time through the loop var gets the value of init; the remaining times
through the loop it gets the value of repeat, which is re-evaluated each time. Note
that init is evaluated before the value of var is saved, i.e. lexically outside of the do.
Each time around the loop, after var is set, end-test is evaluated. If it is non-nil,
the do finishes and returns nil. If the end-test evaluated to nil, the body of the loop
is executed. The body is like a prog body. go may be used. If return is used, its
argument is the value of the do. If the end of the prog body is reached, another
loop begins.

DSK:LMMAN:FD.FLO 61 6-JAN-79

Preliminary Lisp Machine Manual 29

Examples of the older variety of do:

(setg n (array-length foo-array))
(do i 0 (1+ i) (= i n)

Iteration

(aset 0 foo-array i)) ;zeroes out the array foo-array

(do zz x (cdr zz) (or (null z2z)
(zerop (f (car zz)))))
; this applies f to each element of x
; continuously until f returns zero.
: Note that the do has no body.

return forms are often useful to do simple searches:

(do i 0 (1+ i) (= i n) ;Iterate over the length of foo-array.
(and (= (aref foo-array i) 5) ;If we find an element which
:equals 9,
(return i))) ; then return its index.

Examples of the new form of do:

(do ((i 0 (1+ 1)) ; This is just the same as the above example,

(n (array-length foo-array)))

((= i n)) : but written as a new-style do..
(aset 0 foo-array i))

(do ((z,list (cdr z)) ;zstarts as list and is cdred each time.

(y other-1ist) ;y starts as other-list, and is unchanged by the do.

(x)) : x starts as nil and is not changed by the do.
(nil) : The end-test is nil, so this is an infinite loop.
body)

(do ((x) (y) (2)) (nil) body)

is like

(prog (x y z) body)
except that when it runs off the end of the body,
do loops but prog returns nil.
On the other hand,
(do ((x) (y) (2)) nil body)

is identical to the prog above (it does not loop.)

The construction

DSK:LMMAN:FD.FLO 61

6-JAN-79

Iteration 30 Preliminary Lisp Machine Manual

(do ((x e (cdr x))
(oldx x x))
((null x))
body)
exploits parallel assignment to index variables. On the first iteration, the value of
oldx is whatever value x had before the do was entered. On succeeding iterations,
oldx contains the value that x had on the previous iteration.

In either form of do, the body may contain no forms at all. Very often an iterative
algorithm can be most clearly expressed entirely in the repeats and exit-forms of a
new-style do, and the body is empty.
(do ({x x (cdr x))
(y y (cdr y))
(z nil (cons (f x y) z))) ;exploits parallel

((or (null x) (null y)) ; assignment,
(nreverse z)) ;typical use of nreverse.
) ;no do-body required.

is like (maplist “f x y).

do-named Special Form

do-named is just like do except that its first subform is a symbol, which is
interpreted as the name of the do. The return-from special form sllows a return
from a particular prog or do-named when several are nested. See the description

of such names in the explanation of the prog special form on page 25, and that of
return-from on page 31.

go Special Form

The (go tag) special form is used to do a “go-to” within the body of a do or a
prog. The fag must be a symbol. It is not evaluated. go transfers control to the
point in the body labelled by a tag eq to the one given. If there is no such tag in
the body, the bodies of lexically containing progs and dos (if any) are examined as
well. If no tag is found, an error is signalled.

Note that the go form is a very special form: it does not ever return a value. A
go form may not appear as an argument to a regular function, but only at the top
level of a prog or do, or within certain special forms such as conditionals which are
within a prog or do. A go as an argument to a regular function would be not only
useless but possibly meaningless. The compiler does not bother to know how to
compile it correctly. return and Xthrow are similar.

DSK:LMMAN:FD.FLO 61 6-JAN-79

Preliminary Lisp Machine Manual 3l Iteration

Example:
(prog (x y 2)
(setq x some frob)
loop
do something
(and some predicate (go endtag))
do something more
(and (minusp x) (go loop))
endtag
(return 2))

return arg
return is used to return from a prog or a do. The value of return’s argument is
returned by prog or do as its value. In addition, break recognizes the typed-in S-
expression (return value) specially. If this form is typed at a break, value will be
evaluated and returned as the value of break. If not at the top level of a form
typed at a break, and not inside a prog or do, return will cause an error.
Example: '
(do ((x x (cdr x))
(n 0 (xn 2)))
((null x) n)
(cond ((atom (car x))
(setg n (1+ n)))
((memq (caar x) “(sys boom bleah))
(return n))))
return is, like go, a special form which does not return a value.

return can also be used to return multiple values from a prog or do, by giving it
multiple arguments. For example, '
(defun assgn (x table)
(do ({1 table (cdr 1))
(n 0 (1+ n)))
((null 1) nil)
(and (eq (caar 1) x)
(return (car 1) n))))
This function is like assq, but it returns an additional value which is the index in
the table of the entry it found. See the special forms multiple-value (page 19) and
multiple-value-list (page 19).

return-from Special Form
A return-from form looks like (return-from name forml form2 form3). The
forms are evaluated sequentially, and then are returned from the innermost
containing prog or do-named whose name is name. See the description of prog
(page 25) in which named progs and dos are explained, and that of do-named
(page 30).

DSK:LMMAN:FD.FLO 61 6-JAN-79

Non-local Exits - 32 _ Preliminary Lisp Machine Manual

return-list /st

list must not be nil. This function is like return except that the prog returns all of
the elements of /list; if /ist has more then one element, the prog does a multiple-
value return.

To direct the returned values to a prog or do-named of a specific name, use
(return-from name (return-list fist)).

defunp AMacro

Usually when a function uses prog, the prog form is the entire body of the
function; the definition of such a function looks like (defun name arglist (prog
varlist ..)). For convenience, the defunp macro can be used to produce such
definitions. A defunp form expands as follows:
(defunp fctn (args)
forml
form2
formn)
expands into '
(defun fctn (args)
(prog nil
forml
form2

PR

(return formn)))

43 Non-local Exits

*catch rag form

Xcatch is the Lisp Machine Lisp function for doing structured non-local exits.
(%catch tag form) evaluates form and returns its value, except that if, during the
evaluation of form, (Xthrow trag y) should be evaluated, *catch immediately
returns y without further evaluating x. Note that the form argument is not
evaluated twice; the special action of Xcatch happens during the evaluation of its
arguments, not during the execution of Xcatch itself,

The tag's are used to match up *Xthrow's with Xcatch's. (kcatch foo form) will
catch a (Xthrow ’foo form) but not a (Xthrow ’bar form). It is an error if
*Xthrow is done when there is no suitable ¥catch (or catch-all; see below).

The values t and nil for rag are special and mean that all throws are to be caught.
~ These are used by unwind-protect and catch-all respectively. The only difference
between t and nil is in the error checking; t implies that after a "cleanup handler” is
executed control will be thrown again to the same tag, therefore it is an error if a
specific catch for this tag does not exist higher up in the stack.

DSK:LMMAN:FD.FLO 61 ‘ 6-JAN-79

Preliminary Lisp Machine Manual 33 Non-local Exits

Xcatch returns up to four values: trailing null values are not returned for reasons
of microcode simplicity, however the values not returned will default 1o nil if they
are received with the multiple-value special form. If the catch completes normally,
the first value is the value of form and the second is nil. If a Xthrow occurs, the
first value is the second argument to Xthrow, and the second value is the first
argument to Xthrow, the tag thrown to. The third and fourth values are the third
and fourth arguments to Xunwind-stack if that was used in place of *throw,
otherwise nil. To summarize, the four values returned by *catch are the value, the
tag, the active-frame-count, and the action.
Example
(xcatch “negative
(mapcar (function (lambda (x)
(cond ((minusp x)
(xthrow “negative x))
(t (f x)))))
y)
)

which returns a list of f of each element of y if they are all positive, otherwise the
first negative member of vy,

Note: The Lisp Machine Lisp functions Xcatch and Xthrow are improved versions
of the Maclisp functions catch and throw. The Maclisp ones are similar in purpose,
but take their arguments in reversed order, do not evaluate the tag, and may be
used in an older form in which no tag is supplied. Compatibility macros are
supplied so that programs using the Maclisp functions will work.

*throw tag value

Xthrow is used with %catch as a structured non-local exit mechanism.

(xthrow tag x) throws the value of x back to the most recent Xcatch labelled with
tag or t or nil. Other *catches are skipped over. Both x and tag are evaluated,
unlike the Maclisp throw function. ‘

The values t and nil for tag are reserved. nil may not be used, because it would
cause an ambiguity in the returned values of *Xcatch. t invokes a special feature
whereby the entire stack is unwound, and then a coroutine transfer to the invoking
stack-group is done. During this process unwind-protects receive control, but
catch-alls do not. This feature is provided for the benefit of system programs which
want to completely unwind a stack. It leaves the stack-group in a somewhat
inconsistent state; it is best to do a stack-group-preset immediately afterwards.

See the description of Xcatch for further details.

DSK:LMMAN:FD.FLO 61 6-JAN-79

Non-local Exits 34 Preliminary Lisp Machine Manual

catch Macro
throw Macro
catch and throw are provided only for Maclisp compatibility. They expand as
follows:
(catch form tag) ==> (xcatch (quote tag) form)
(throw form tag) ==> (xthrow (quote tag) form)
The forms of catch and throw without tags are not supported.

xunwind-stack rag value active-frame-count action :

This is a generalization of Xthrow provided for program-manipulating programs such
as the error handler.

tag and value are the same as the corresponding arguments to *throw.

active-frame-count, if non-nil, is the number of frames to be unwound. If this
counts down to zero before a suitable *catch is found, the *unwind-stack
terminates and rthat frame returns value to whoever called it. This is similar to
Maclisp’s freturn function.

If action is non-nil, whenever the *unwind-stack would be ready to terminate
(either due to active-frame-count or due to tag being caught as in *throw), instead,.
a stack-group call is forced to the previous stack-group, generally the error handler.
The unwound stack-group is left in awaiting-return state, such that the value-
returned when the stack-group is resumed will become the value returned by the
frame, (i.e. the value argument to xunwind-stack will be ignored in this case, and
the value passed to the stack group when it is resumed will be used instead.)

Note that if both active-frame-count and action are nil, *unwind-stack is identical
to Xthrow.

unwind-protect Macro
Sometimes it is necessary to evaluate a form and make sure that certain side-effects
take place after the form is evaluated: a typical example is:
(progn

(turn-on-water-faucet)

(hairy-function 3 nil “foo)

(turn-off-water-faucet))
The non-local exit facility of Lisp creates a situation in which the above code won't
work, however: if hairy-function should do a Xthrow to a *catch which is
outside of the progn form, then (turn-off-water-faucet) will never be evaluated
(and the faucet will presumably be left running).

In order to allow the above program to work, it can be rewritten using unwind-
protect as follows:

DSK:LMMAN:FD.FLO 61 6-JAN-79

Preliminary Lisp Machine Manual 35 Mapping

(unwind-protect
(progn (turn-on-water-faucet)
(hairy-function 3 nil “foo))

(turn-off-water-faucet))
If hairy-function does a *throw which attempts to quit out of the evaluation of
the unwind-protect, the (turn-off-water-faucet) form will -be evaluated in
between the time of the Xthrow and the time at which the Xcatch returns. If the
progn returns normally, then the (turn-off-water-faucet) is evaluated, and the
unwind-protect returns the result of the progn. One thing to note is that
unwind-protect cannot return multiple values.

The general form of unwind-protect looks like
(unwind-protect protected-form
formi
form2
cel)
protected-form is evaluated, and when it returns or when it attempts to quit out of
the unwind-protect, the forms are evaluated.

let-globally Macro
let-globally is similar in form to let (see page 17). The difference is that let-
globally does not bind the variables; instead, it sets them, and sets up an unwind-
protect (see page 34) to set them back. The important difference between let-
globally and let is that when the current stack group (see page 105) cocalls some
other stack group, the old values of the variables are nor restored.

catch-all Macro
(catch-all form) is like (Xcatch some-tag form) except that it will catch a Xthrow
to any tag at all. Since the tag thrown to is the second returned value, the caller of
catch-all may continue throwing to that tag if he wants. The one thing that

catch-all will not catch is a Xthrow to t. catch-all 'is a macro which expands
into Xcatch with a tag of nil.

4.4 Mapping

map fcn &rest lists
mapc fen &rest lists
maplist fon &rest lists
mapcar fcn &rest lists
mapcon fcn &rest lists
mapcan fcn &rest lists

Mapping is a type of iteration in which a function is successively applied to pieces
of a list. There are several options for the way in which the pieces of the list are

chosen and for what is done with the results returned by the applications of the
function.

DSK:LMMAN:FD.FLO 61 6-JAN-79

Mapping 36 Preliminary Lisp Machine Manual

For example, mapcar operates on successive elements of the list. As it goes down
the list, it calls the function giving it an element of the list as its one argument:
first the car, then the cadr, then the caddr, etc., continuing until the end of the
list is reached. The value returned by mapcar is a list of the results of the
successive calls to the function. An example of the use of mapcar would be
mapcar'ing the function abs over the list (1 -2 -4.5 6.0el5 -4.2), which would be
written as (mapcar (function abs) '(1 -2 -4.5 6.0el5 -4.2)). The result is (1 2 4.5
6.0el5 4.2).

In general, the mapping functions take any number of arguments. For example,
(mapcar fx/x2...xn)

In this case f must be a function of n arguments. mapcar will proceed down the

lists: xI, x2, ..., xn in parallel. The first argument to f will come from x/, the

second from x2, etc. The iteration stops as soon as any of the lists is exhausted.

There are five other mapping functions besides mapcar. maplist is like mapcar
except that the function is applied to the list and successive cdr's of that list rather
than to successive elements of the list. map and mapc are like maplist and mapcar
respectively, except that they don’t return any useful value, These functions are
used when the function is being called merely for its side-effects, rather than its
returned values. mapcan and mapcon are like mapcar and maplist respectively,
except that they combine the results of the function using nconc instead of list.
That is,
(defun mapcon (f x y)
(apply “nconc (maplist f x y)))
Of course, this definition is less general than the real one.

Sometimes a do or a straightforward recursion is preferable to a map; however, the
mapping functions should be used wherever they naturally apply because this
increases the clarity of the code.

Often f will be a lambda-expression, rather than a symbol; for example,
{mapcar (function (lambda (x) (cons x something)))
some-list)

The functional argument to a mapping function must be acceptable to apply - it
cannot be a macro or the name of a special form. Of course, there is nothing
wrong with using functions which have optional and rest parameters,

DSK:LMMAN:FD.FLO 61 6-JAN-79

o re apededs G

Preliminary Lisp Machine Manual

the six map functions.

; its own
second
argument
list of the
function
results
nconc of the
function
results

returns

There are also functions (mapatoms and mapatoms-all) for mapping over all |
symbols in certain packages. See the explanation of packages (page 176).

DSK:LMMAN:FD.FLO 61

37

Here is a table showing the relations between

applies fu

successive
sublists

- - - -

nction to

| successive |
| elements |
Fommemem—— - +
| |
| mapc |
| |
D itttk ettt +
| |
| mapcar |
| |
o -+
| |
| mapcan |
| |
fomomc - +

Mapping

6-JAN-79

Manipulating List Structure 38 Preliminary Lisp Machine Manual

5. Manipulating List Structure

5.1 Conses

car x
Returns the car of x.
Example:
(car “(a bc)) =>a

cdr x
Returns the cdr of x.
Example:
(cdr “(a b c)) => (b c)

Officially car and cdr are only applicable to conses and locatives. However, as a matter
of convenience, a degree of control is provided over the action taken when there is an:
attempt to apply one of them to a symbol or a number. There are four mode-switches
known as the car-number mode, cdr-number mode, car-symbol mode, and cdr-symbol mode.
Here are the meanings of the values of these mode switches:

car-number =0 car of a number is an error. This is the default.

car-number = | car of a number is nil.
cdr-number =0 cdr of a number is an error. This is the default.

cdr-number = | cdr of a number is nil.

car-symbol = 0 car of a symbol is an error.

car-symbol = 1 car of nil is nil, but the car of any other symbol is an error. This is the
default.

car-symbol =2 car of any symbol is nil.

car-symbol = 3 car of a symbol is its print-name.

cdr-symbol =0 cdr of a symbol is an error.

cdr-symbol = | cdr of nil is nil, but the cdr of any other symbol is an error. This is the
default.

cdr-symbol =2 cdr of any symbol is nil.

cdr-symbol =3 cdr of nil is nil, cdr of any other symbol is its property list.

The values of the mode switches can be altered with the function set-error-mode (see
page 264). They are stored as byte fields in the special variable Zm-flags. The reason that
the two symbol modes default in that fashion is to allow programs to car and cdr off the
ends of lists without having to check, which is sometimes useful. A few system functions
depend on car and cdr of nil being nil, although they hadn't ought to, so things may
break if you change these modes.

DSK:LMMAN:FD.CON 85 6-JAN-79

Preliminary Lisp Machine Manual 39 Conses

The value of 3 for the symbol modes exists for compatibility with ancient versions of
Maclisp, and should not be used for any other reasons. (The appropriate functions are get-
pname (see page 65) and plist (see page 64).) Note: unlike Maclisp, the values of the
symbols car and cdr are not used: the various mode switches above serve their purpose.
Also unlike Maclisp, this error checking is always done, even in compiled code, regardless
of the value of Xrset. -

C.fT X

All of the compositions of up to four car’s and cdr's are defined as functions in
their own right. The names of these functions begin with "¢” and end with 1", gnd
in between is a sequence of "a”s and 'd”s corresponding to the composition
performed by the function.
Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))
The error checking for these functions is exactly the same as for car and cdr above.

cons x y

ncons

Xxcons

cons is the primitive function to create a new cons, whose car is x and whose cdr
is y.
Examples:

(cons “a “b) => (a . b)

(cons “a (cons “b (cons “c nil))) => (a b c)

(cons “a “(b ¢c d)) => (a b c d)

p 4
(ncons x) is the same as (cons x nil). The name of the function is from "nil-cons".

x y
xcons (‘exchanged cons’) is like cons except that the order of the arguments is
reversed.
Example:
(xcons “a “b) => (b . a)

There are two reasons this exists: one is that you might want the arguments to cons
evaluated in the other order, and the other is that the compiler might convert calls
to cons into calls to xcons for efficiency. In fact, it doesn’t.

cons-in-area x y area-number

This function creates a cons in a specific area. (Areas are an advanced feature of
storage management; if you aren’t interested in them, you can safely skip all this
stuff). The first two arguments are the same as the two arguments to cons, and the
third is the number of the area in which to create the cons.
Example:

(cons-in-area “a ‘b my-area) => (a . b)

DSK:LMMAN:FD.CON 85 6-JAN-79

Lists 40 Preliminary Lisp Machine Manual

ncons-in-area x area-number
(ncons-in-area x area-number) = (cons-in-area x nil area-number)

Xxcons-in-area x y area-number
(xcons-in-area x y area-number) = (cons-in-area y x area-number)

The backquote reader macro facility is also generally useful for creating list structure,
especially mostly-constant list structure, or forms constructed by plugging variables into a
template. It is documented in the chapter on Macros, see page 135.

car-location cons
car-location returns a locative pointer to the cell containing the car of cons.

Note: there is no cdr-location function; it is difficult because of the cdr-coding
scheme.

5.2 Lists

The following section explains some of the basic functions provided for dealing with
lists. There has been some confusion about the term /list ever since the beginnings of the
language: for the purposes of the following descriptions, a list is the symbol nil, or a cons
whose cdr is a list. Note well that although we consider nil to be a list (the list of zero
elements), it is a symbol and not a cons, and the listp predicate is not true of it (but
perhaps listp will be changed in the future).

last /ist
last returns the last cons of fist. If list is nil, it returns nil,
Example:
(setq x “(a b c d))
{last x) => (d)
(rplacd (last x) “(e f))
x =>“(abcdef)
last could have been defined by:
(defun last (x)
(cond ((atom x) x)
((atom {(cdr x)) x)
((last (cdr x)))))

length /ist
length returns the length of fist. The length of a list is the number of top-level
conses in it
Examples:
(length nil) => 0
(length -“(a b c d)) => 4
(length “(a (b c) d)) => 3
length could have been defined by:

DSK:LMMAN:;FD.CON 85 6-JAN-79

- Ak
o

Preliminary Lisp Machine Manual 41 Lists

(defun length (x)
(cond ((atom x) 0)
((1+ (length (cdr x))))))
or by:

(defun length (x)
(do ((n 0 (1+ n))
(y x (cdr y)))
((atom y) n)))

first Macro

second Macro

third Macro

fourth Macro

fifth Macro

sixth Macro

seventh Macro
(first x) ==> (car x)
(second x) ==> (cadr x)
(third x) ==> (caddr x)
(fourth x) ==> (cadddr x)

etc.
restl Macro
rest2 Macro
restd Macro
restd Macro
(restl x) ==> (cdr x)
(rest2 x) ==> (cddr x)
(rest3 x) ==> (cdddr x)
(rest4 x) ==> (cddddr x)
nth n list)
(nth n list) returns the n'th element of list, where the zeroth element is the car of
the list.
Examples:

(nth 1 “(foo bar gack)) => bar

(nth 3 “(foo bar gack)) => nil
Note: this is not the same as the InterLisp function called nth, whose precise
equivalent is the function nthedr. Also, some people have used macros and
functions called nth of their own in their Maclisp programs, which may not work
the same way; be careful.

nth could have been defined by:

DSK:LMMAN;FD.CON 85 6-JAN-79

Lists 42 Preliminary Lisp Machine Manual

(defun nth (n list)
(do ((i n (1- 1))
(1 list (cdr 1)))
((zerop i) (car 1))))

nthedr n ist
(nthedr n list) cdrs list n times, and returns the result.
Examples:
(nthedr 0 “(a b c)) => (a b c)
(nthcdr 2 “(a b c)) => (c)
In other words, it returns the n'th cdr of the list. This is the same as InterLisp’s
function nth. nthedr is defined by:
(defun nthcdr (n list)
(do ((i 0 (1+ 1))
{(list list (cdr 1list)))
((= i n) list)))

list &rest args
list constructs and returns a list of its arguments.
Example:
(list 34 “a (car “(b . c)) (+6 -2)) =>(34aba)
list could have been defined by: :
(defun list (&rest args)
(let ((list (make-list default-cons-area (length args))))
(do ((1 Vist (cdr 1))
(a args (cdr a)))
{(null a) list)
(rplaca 1 (car a)))))

listx &rest args
listx is like list except that the last cons of the constructed list is "dotted”. It must
be given at least two arguments.
Example:
(listx “a b “c “d) => (abc . d)
This is like
(cons “a (cons “b (cons “c “d)))

list-in-area arca-number &rest args
list-in-area is exactly the same as list except that it takes an extra argument, an
area number, and creates the list in that area.

make-list arca size ‘
This creates and returns a list containing size elements, each of which is nil. size
should be a fixnum. The list is allocated in the area specified; if you are not using
areas in any special way, just use the value of the symbol default-cons-area.

DSK:LMMAN;FD.CON 85 6-JAN-79

b
%

Preliminary Lisp Machine Manual 43

Example:
(make-1ist default-cons-area 3) => (nil nil nit)

Of course, this function is not usually used when the value of the second argument

is a constant; if you want a list of three nils, it is easy enough to type (nil nil nil).

make-list is used when the number of elements is to be computed while the

program is being run.

make-list and cons are the two primitive list-creation functions which all the other
functions call. The difference is that make-list creates a cdr-coded list (see page
48).

circular-list &rest args

circular-list constructs a circular list whose elements are args, repeated infinitely.

circular-list is the same as list except that the list itself is used as the last cdr,

instead of nil. circular-list is especially useful with mapcar, as in the expression
(mapcar (function +) foo (circular-list 5))

which adds each element of foo 10 5.

append &rest [ists

The arguments to append are lists. The result is a list which is the concatenation of
the arguments. The arguments are not changed (cf. nconc).
Example: ‘

(append “(a b c) “(d e f) nil “(g)) => (abcdef g)
To make a copy of the top level of a list, that is, to copy the list but not its
elements, use (append x nil).

A version of append which only accepts two arguments could have been defined by:
(defun append? (x y)
(cond ((null x) y)
((cons (car x) (append2 (cdr x) y)) »))

The generalization to any number of arguments could then be made:
(defun append (&rest args)
(and args (appendZ (car args)
(apply (function append) (cdr args)))))

These definitions do not express the full functionality of append; the real definition
minimizes storage utilization by cdr-coding the list it produces, using cdr-next except
at the end where a full node is used to link to the last argument, unless the last
argument was nil in which case cdr-nil is used.

reverse [ist

reverse creates a new list whose elements are the elements of list taken in reverse
order. reverse does not modify its argument, unlike nreverse which is faster but
does modify its argument,

DSK:LMMAN:FD.CON 85 6-JAN-79

Lists 44 Preliminary Lisp Machine Manual

Example:

(reverse “(a b (c d) e)) => (e (¢ d) b a)
reverse could have been defined by:

(defun reverse (x)

(do ((1 x (cdr 1)) ; scan down argument,
(r nil ; putting each element
{(cons (car 1) r))) ; into list, until
{(null 1) r))) ; no more elements.

nconc &rest lists

nconc takes lists as arguments. It returns a list which is the arguments concatenated
together. The arguments are changed, rather than copied. (cf. append, page 43)
Example:

(setq x “(a b c))

(setg y 7(d e f))

(nconc x y) => (abcdef)

=> (abcdef)

Note that the value of x is now different, since its last cons has been rplacd’d to
the value of y. [If the nconc form is evaluated again, it would yield a piece of
“circular” list structure, whose printed representation would be @1 bcdefdef d
e { ..), repeating forever, '

nconc could have been defined by:

(defun nconc (x y) ; for simplicity, this definition
(cond ((null x) y) ;only works for 2 arguments.
(t (rplacd (last x) y) ;hooky onto x
x))) ;and return the modified x.

nreverse /ist ‘
nreverse reverses its argument, which should be a list. The argument is destroyed
by rplacd’s all through the list (cf. reverse).
Example:
(nreverse “(a b c)) => (c b a)
nreverse could have been defined by:
(defun nreverse (x)
(cond ((null x) nil)
({(nreversel x nil))))

(defun nreversel (x y) ;auxiliary function
(cond ((null (cdr x)) (rplacd x y))
((nreversel (cdr x) (rplacd x y)))))
; 5 this last call depends on order of argument evaluation.

~ Currently, nreverse does something inefficient with ¢dr-coded lists, however this will
be changed. In the meantime reverse might be preferable in some cases.

DSK:LMMAN:FD.CON 85 6-JAN-79

Preliminary Lisp Machine Manual 45 Lists

nreconc x y

(nreconc x y) is exactly the same as (nconc (nreverse x) y) except that it is more
efficient. Both x and y should be lists.

nreconc could have been defined by:
(defun nreconc (x y)
(cond ((null x) y)
((nreversel x y))))
using the same nreversel as above.

push Macro
The form is (push item place), where item is an arbitrary object and place is a
reference to a cell containing a list. Usually place is the name of a variable. item is
consed onto the front of the list.

The form

(push (hairy-function x y 2) variable)
replaces the commonly-used construct

(setq variable (cons (hairy-function x y z) variable))
and is intended to be more explicit and esthetic. In general, (push item place)
expands into (setf place (cons item place)). (See page 146 for an explanation of
setf.) ‘

pop Macro
The form is (pop place). The result is the car of the contents of place, and as a
side-effect the cdr of the contents is stored back into place.
Example:
(setq x “(a b c))
(pop x) => a
x => (b ¢)
In general, (pop place) expands into (progl (car place) (setf place (edr place))).”
(See page 146 for an explanation of setf.)

butlast /ist
This creates and returns a list with the same elements as fisf, excepting the last
element.
Examples:
(butlast “(a b c d)) => (a b c)
(butlast “((a b) (c d)) => ((a b))
(butlast “(a)) => nil
(butlast nil) => nil
The name is from the phrase “all elements but the last”.

DSK:LMMAN;:FD.CON 85 6-JAN-79

PR

T Wl
]

Alteration of List Structure 46 Preliminary Lisp Machine Manual

nbutlast /s
This is the destructive version of butlast; it changes the cdr of the second-to-last
cons of the list to nil. If there is no second-to-last cons (that is, if the list has fewer
than two elements) it returns nil.
Examples:
(setq foo “(a b c d))
(nbutlast foo) => (a b c)
foo => (a b ¢)
(nbutlast “(a)) => nil

firstn »n /ist
firstn returns a list of length n, whose elements are the first n elements of list. If
list is fewer than n elements long, the remaining elements of the returned list will be
nil.
Example:
(firstn 2 “(a b c d)) => (a b)
(firstn 0 “(a b c d)) => nil
(firstn 6 “(a b c d)) => (abcdnilnil)

Mff lise sublise
list should be a list, and sublist should be a sublist of /ist, i.e. one of the conses that
make up /ist. Idiff (meaning List Difference) will return a new list, whose elements
are those elements of /ist that appear before sublist.
Examples:
(setg x “(a b c de))
(setq y (cdddr x)) => (d e)
(1diff x y) => (a b c)
but
(1diff “(a b c d) “(c d)) => (abcd)
since the sublist was not eq to any part of the list.

5.3 Alteration of List Structure

The functions rplaca and rplacd are used to make alterations in already-existing list
structure; that is, to change the cars and cdrs of existing conses.

The structure is not copied but is physically altered; hence caution should be exercised
when using these functions, as strange side-effects can occur if portions of list structure
become shared unbeknownst to the programmer. The nconc, nreverse, nreconc, and
nbutlast functions already described, and the delq family described later, have the same
property. However, they are normally not used for this side-effect; rather, the list-structure
modification is purely for efficiency and compatible non-modifying functions are provided.

DSK:LMMAN:FD.CON 85 6-JAN-79

Preliminary Lisp Machine Manual 47 Alteration of List Structure

rplaca

rplacd

subst

sublis

x y
(rplaca x y) changes the car of x to y and returns (the modified) x. x should be a
cons, but y may be any Lisp object.
Example:

(setq g “(a b c))

(rplaca (cdr g) “d) => (d c)

Now g => (a d c)

xy
(rplacd x y) changes the cdr of x to y and returns (the modified) x. x should be a
cons, but y may be any Lisp object.
Example:

(setq x “(a b c))

(rplacd x “d) => (a . d)

Now x => (a . d)
Note to Maclisp users: rplacd should not be used to set the property list of a
symbol, although there is a compatibility mode in which it will work. See car (page
38). The right way to set a property list is with setplist (see page 64).

xyz
(subst x y z) substitutes x for all occurrences of y in z, and returns the modified
copy of z. The original z is unchanged, as subst recursively copies all of z
replacing elements eq to y as it goes. If x and y are nil, z is just copied, which is
a convenient way to copy arbitrary list structure,

Example:

(subst “Tempest “Hurricane
“(Shakespeare wrote (The Hurricane)))
=> (Shakespeare wrote (The Tempest))

subst could have been defined by:
(defun subst (x y z)
(cond ((eq z y) x) ;if item eq to y, replace.
((atom z) z) ;if no substructure, return arg.
((cons (subst x y (car z)) ;otherwise recurse.
(subst x y (cdr z))))))

Note that this function is not “destructive” that is, it does not change the car or cdr
of any already-existing list structure.

alist S-expression

sublis makes substitutions for symbols in an S-expression (a structure of nested lists).
The first argument to sublis is an association list (see the next section). The second
argument is the S-expression in which substitutions are to be made. sublis looks at
all symbols in the S-expression; if a symbol appears in the association list occurrences
of it are replaced by the object it is associated with. The argument is not modified;
new conses are created where necessary and only where necessary, so the newly
created structure shares as much of its substructure as possible with the old. For
example, if no substitutions are made, the result is eq to the old S-expression.

DSK:LMMAN;FD.CON 85 6-JAN-79

AT IS R S v T e e

e gt

Cdr-Coding 48 Preliminary Lisp Machine Manual

Example:
(sublis “((x . 100) (z . zprime))
“(plus x (minus g z x p) 4))
=> (plus 100 (minus g zprime 100 p) 4)

54 Cdr-Coding

There is an issue which those who must be concerned with efficiency will need to think
about. In the Lisp Machine there are actually two kinds of lists; normal lists and cdr-coded
lists. Normal lists take two words for each cons, while cdr-coded lists require only one
word for each cons. The saving is achieved by taking advantage of the usual structure of
lists to avoid storing the redundant cdrs which link together the conses which make up the
list. Ordinarily, rplacding such a list would be impossible, since there is no explicit
representation of the cdr to be modified. However, in the Lisp machine system it is merely
somewhat expensive; a 2-word ordinary cons must be allocated and linked into the list by
an invisible pointer. This is slower than an ordinary rplacd, uses extra space, and slows
down future accessing of the list.

One should try to use normal lists for those data structures that will be subject to
rplacding operations, including nconc and nreverse, and cdr-coded lists for other
structures. The functions cons, xcons, ncons, and their area variants make normal lists.
The functions list, listx, list-in-area, make-list, and append make cdr-coded lists. The
other list-creating functions, including read, currently make normal lists, but this should not
be relied upon. Some functions, such as sort, take special care to operate efficiently on
cdr-coded lists (sort treats them as arrays). nreverse is rather slow on cdr-coded lists,
currently, since it simple-mindedly uses rplacd, however this will be changed.

It is currently not planned that the garbage collector compact ordinary lists into cdr-
coded lists. (append x nil) is a suitable way to copy a list, converting it into cdr-coded
form.

5.5 Tables

Lisp Machine Lisp includes several functions which simplify the maintenance of tabular
data structures of several varieties, The simplest is a plain list of items, which models
(approximately) the concept of a set. There are functions to add (cons), remove (delete,
delq, del, del-if, del-if-not, remove, remq, rem, rem-if, rem-if-not), and search for
(member, memq, mem) items in a list. Set union, intersection, and difference functions
are easily written using these.

Association lists are very commonly used. An association list is a list of conses. The car

of each cons is a "key” and the cdr is a "datum”, or a list of associated data. The functions
assoc, assq, ass, memass, and rassoc may be used to retrieve the data, given the key.

DSK:LMMAN:FD.CON 85 6-JAN-79

B T

Preliminary Lisp Machine Manual 49 Tables

Structurcd records can be stored as association lists or as stereotyped cons-structures
where each element of the structure has a certain car-cdr path associated with it. However,
these are better implemented using structure macros (see page 144).

Simple list-structure is very convenient, but may not be efficient enough for large data
bases because it takes a long time to search a long list. Lisp Machine lisp includes a hashing
function (sxhash) which aids in the construction of more efficient, hairier structures.

memgq item list
(memq item list) returns nil if item is not one of the elements of list. Otherwise, it
returns the portion of list beginning with the first occurrence of item. The
comparison is made by eq. list is searched on the top level only. Because memgq
returns nil if it doesn't find anything, and something non-nil if it finds something, it
is often used as a predicate.
Examples:
(memg “a (1 2 3 4)) => nil
(memq’a’(g(xy)cadeaf))=>(adeaf)
Note that the value returned by memq is eq to the portion of the list beginning
with @. Thus rplaca on the result of memq may be used, if you first check to make
sure memgq did not return nil.
Example:
(xcatch “lose
(rplaca (or (memg X 2)
(xthrow “lose nil))
y)
)

memq could have been defined by:
(defun memg (item list)
(cond ((atom list) nil)
((eq item (car list)) list)
((memq item (cdr list)))))

memyq is hand-coded in microcode and therefore especially fast.

member irem list
member is like memg, except equal is used for the comparison, instead of eq.

member could have been defined by:
(defun member (item list)
(cond ({null 1list) nil)
((equal item (car list)) list)
((member item (cdr 1ist)))))

DSK:LMMAN:FD.CON 85 6-JAN-79

ATy P R

Tables

mem predicate item list

delq item list &optional n

delete

del predicate item list &optional n

remq item list &optional n
remq is similar to delq, except that the list is not altered; rather, a new list is
) L]

DSK:LMMAN:FD.CON 85 6-JAN-79

50 Preliminary Lisp Machine Manual

mem is the same as memq except that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instead of eq. (mem

‘eq a b) is the same as (memq a b). (mem ’equal a b) is the same as (member a
b).

mem is usually used with equality predicates other than eq and equal, such as =
char-equal or string-equal.

»

(delq irem list) returns the fist with all top-level occurrences of item removed. eq is
used for the comparison. The argument list is actually modified (rplacd’ed) when
instances of item are spliced out. delq should be used for value, not for effect.
That is, use

(setg a (delq “b a))
rather than

(delq “b a)
The latter is not equivalent when the first element of the value of a is b.

(delq item list n) is like (delq item list) except only the first n instances of item are
deleted. n is allowed to be zero. If n is greater than the number of occurrences of
item in the list, all occurrences of item in the list will be deleted.
Example:

(delq “a “(b ac (ab) dae))=>(bc(ab)de)

delq could have been defined by:
(defun delg (item list &optional (n 7777777)) ;7777777 as infinity,
(cond ((or (atom list) (zerop n)) list)
((eq item (car list))
(delq item (cdr 1list) (1- n)))
((rplacd list (delg item (cdr list) n)))))

item list &optional n
delete is the same as delq except that equal is used for the comparison instead of
eq.

del is the same as delq except that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instead of eq. (del
‘eq a b) is the same as (delqg a b). (cf. mem, page 50)

returned.

Preliminary Lisp Machine Manual 51 Tables

Examples:
(setq x “(abcde f))
(remg ‘b x) => (acde f)
x => {abcdef)
(remq’b’(abcbab)2)=>(acab)

remove item list &optional n
remove is the same as remg except that equal is used for the comparison instead of
eq.

rem predicatc item list &optional n
rem is the same as remq except that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instead of eg. (rem
’eq a b) is the same as (remq a b). (cf. mem page 50)

rem-if predicate list
predicate should be a function of one argument rem-if makes a new list by
applying predicate to all of the elements of /list and removing the ones for which the
predicate returns non-nil. The function’s name means ‘remove if this condition is
true”.

rem-if-not predicate list
predicate should be a function of one argument. rem-if-not makes a new list by
applying predicate to all of the elements of list and removing the ones for which the
predicate returns nil. The function’s name means ‘remove if this condition is not
true’: ie. it keeps the elements for which predicate is true.

del-if predicate list
del-if is just like rem-if except that it modifies /ist rather than creating a new list.
See rem-if.

del-if-not predicate list
del-if-not is just like rem-if-not except that it modifies list rather than creating a
new list. See rem-if-not.

every list predicate &optional step-function
every returns t if predicate returns non-nil when applied to every element of list,
or nil if predicate rewurns nil for some element. If step-function is present, it
replaces cdr as the function used to get to the next element of the list.

some list predicate &optional step-function
some returns t if predicate returns non-nil when applied to some element of list, or
nil if predicate returns nil for every element. 1f step-function is present, it replaces
cdr as the function used to get to the next element of the list.

DSK:LMMAN:;FD.CON 85 . 6-JAN-79

T
SEEs A s :

Tables 52 Preliminary Lisp Machine Manual

tailp sublist list

Returns t if sublist is a sublist of list (i.e. one of the conses that makes up /ist).
Otherwise returns nil.

sxhash S-expression
sxhash computes a hash code of an S-expression, and returns it as & fixnum, which
may be positive or negative. A property of sxhash is that (equal x y) implies (=
(sxhash x) (sxhash y)). The number returned by sxhash is some possibly large
number in the range allowed by fixnums. It is guaranteed that:
1) sxhash for a symbol will always be positive.
2) sxhash of any particular expression will be constant in a particular implementation
for all time, probably.
3) sxhash of any object of type random will be zero.
4) sxhash of a fixnum will = that fixnum.

Here is an example of how to use sxhash in maintaining hash tables of S-expressions:
(defun knownp (x) ;look up x in the table
(prog (i bkt)

(setqg i (plus 76 (remainder (sxhash x) 77)))
;The remainder should be reasonably randomized between
;~76 and 76, thus table size must be > 175 octal.

(setqg bkt (aref table i))
:bkt is thus a list of all those expressions that hash
;into the same number as does x.

(return (memq x bkt))))

To write an “intern" for S-expressions, one could
(defun sintern (x)
(prog (bkt i tem)
(setq bkt (aref table
(setq i (+ 2n-2 (\ (sxhash x) 2n-1)))))
;2n-1 and 2n-2 stand for a power of 2 minus one and
;minus two respectively. This is a good choice to
;randomize the result of the remainder operation.
(return {cond ((setq tem (memq x bkt))
(car tem))
(t (aset (cons x bkt) table i)
x))))

assq item alist

(assq item alist) looks up item in the association list (list of conses) afist. The value
is the first cons whose car is eq to x, or nil if there is none such.

DSK:LMMAN:FD.CON 85 6-JAN-79

Preliminary Lisp Machine Manual 53 ‘ Tables

Eiamplesz
(assq “r “((a . b) (c . d) (r . x) (s .y)(r. z)))
=> (r . X)

(assq “fooo “((foo . bar) (zoo . goo))) => nil
(assq “b “((abc) (bc d) (xy z))) =>(bc d)

It is okay to rplacd the result of assq as long as it is not nil, if your intention is to
“update” the “table” that was assq’s second argument.
Example:

(setq values “((x . 100) (y . 200) (z . 50)))

(assq “y values) => (y . 200)

(rplacd (assq Yy values) 201)

(assq “y values) => (y . 201) now

A typical trick is to say (cdr (assq x y)). Assuming the cdr of nil is guaranteed to
be nil, this yields nil if no pair is found (or if a pair is found whose cdr is nil)

assq could have been defined by:
(defun assq (item list)
(cond ((null list) nil)
((eq item (caar list)) (car list))
((assq item (cdr list))))

assoc item alist
assoc is like assq except that the comparison uses equal instead of eq.
Example:
(assoc “(a b) “((x . y) ((ab) .7) ((c . d) .e)))
=> ((ab) .7)
assoc could have been defined by:
(defun assoc (item 1ist)
(cond ((null 1ist) nil)
((equal item (caar list)) (car 1ist))
((assoc item (cdr list)))))

ass predicate item alist
ass is the same as assq except that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instead of eq. (ass
‘eq a b) is the same as (assq a b). (cf. mem page 50)

memass predicate item alist
memass searches alist just like ass, but returns the portion of the list beginning with
the pair containing item, rather than the pair itself. (car (memass x y z)) = (ass x
y z).

DSK:LMMAN;FD.CON 85 6-JAN-79

iy

Tables 54

Preliminary Lisp Machine Manual

rassoc item alist
rassoc means reverse assoc. It is like assoc, but it tries to find an element of alist
whose cdr (not car) is equal to item. rassoc is defined by:
(defun rassoc (item in-list)
(do 1 in-list (cdr 1) (null 1)
(and (equal item (cdar 1))
(return (car 1)))))

sassq irem alist fcn
(sassq item alist fen) is like (assq item alist) except that if item is not found in alist,

instead of returning nil, sassq calls the function fen with no arguments. sassq
could have been defined by:

(defun sassq (item alist fcn)
(or (assq item alist)
(apply fcn nil)))

sassq and sassoc (see below) are of limited use. These are primarily leftovers from
Lisp L.5.

sassoc item alist fcn

(sassoc item alist fen) is like (assoc item alist) except that if item is not found in

alist, instead of returning nil, sassoc calls the function fen with no arguments.
sassoc could have been defined by:

(defun sassoc (item alist fcn)
(or (assoc item alist)
(apply fcn nil)))

pairlis cars cdrs

pairlis takes two lists and makes an association list which associates elements of the
first list with corresponding elements of the second list.
Example:
(pairlis “(beef clams kitty) “(roast fried yu-shiang))
=> ((beef . roast) (clams . fried) (kitty . yu-shiang))

find-position-in-list irem list
find-position-in-list looks down [ist for an element which is eq to item, like

memq. However, it returns the numeric index in the list at which it found the first
occurence of item, or nil if it did not find it at all.
Examples:

(find-position-in-list 7a “(abc)) =>0
(find-position-in-list ¢ “{a b ¢c)) => 2
(find-position-in-l1ist e 7(a b c)) => nil

DSK:LMMAN:FD.CON 85 6-JAN-79

Preliminary Lisp Machine Manual 55 Sorting

find-position-in-list-equal item list
find-position-in-list-equal is exactly the same as find-position-in-list, except
that the comparison is done with equal instead of eq.

56 Sorting

Several functions are provided for sorting arrays and lists. These functions use
algorithms which always terminate no matter what sorting predicate is used, provided only
that the predicate always terminates. The array sort is not necessarily stable; that is, equal
items may not stay in their original order. However the list sort is stable.

After sorting, the argument (be it list or array) is rearranged internally so as to be
completely ordered. In the case of an array argument, this is accomplished by permuting
the elements of the array, while in the list case, the list is reordered by rplacd’s in the
same manner as nreverse. Thus if the argument should not be clobbered, the user must
sort a copy of the argument, obtainable by fillarray or append, as appropriate.

Should the comparison predicate cause an error, such as a wrong type argument error,
the state of the list or array being sorted is undefined. However, if the error is corrected
the sort will, of course, proceed correctly.

The sorting package is smart about cdr-coded lists.

sort table predicate

The first argument to sort is an array or a list. The second is a predicate, which

must be applicable to all the objects in the array or list. The predicate should take

two arguments, and return non-nil if and only if the first argument is strictly less

than the second (in some appropriate sense). .
The sort function proceeds to-sort the contents of the array or list under the
ordering imposed by the predicate, and returns the array or list modified into sorted
order, ie. its modified first argument. Note that since sorting requires many
comparisons, and thus many calls to the predicate, sorting will be much faster if the
predicate is a compiled function rather than interpreted.
Example:

(defun mostcar (x)

(cond ((symbolp x) x)
((mostcar (car x)))))

(sort “fooarray
(function (lambda (x y) .
(alphalessp {mostcar x) (mostcar y)))))
If fooarray contained these items before the sort:

DSK:LMMAN;FD.CON 85 6-JAN-79

Sorting 56 Preliminary Lisp Machine Manual

(Tokens (The lion sleeps tonight))
(Carpenters (Close to you))
((Rolling Stones) (Brown sugar))
((Beach Boys) (I get around))
(Beatles (I want to hold your hand))
then after the sort fooarray would contain;
((Beach Boys) (I get around))
(Beatles (I want to hold your hand))
(Carpenters (Close to you))
((Rolling Stones) (Brown sugar))
(Tokens (The lion sleeps tonight))

sortcar x predicate
sortcar is exactly like sort, but the items in the array or list being sorted should
all be conses. sortcar takes the car of each item before handing two items to the
predicate. Thus sortcar is to sort as mapcar is to maplist.

The spelling of the names of the next two functions will be corrected at’some point.

sort-grouped-array array group-size predicate
sort-grouped-array considers its array argument to be composed of records of
group-size elements each. These records are considered as units, and are sorted with
respect to one another. The predicate is applied to the first element of each record:
so the first elements act as the keys on which the records are sorted.

sort-grouped-array-group-key array group-size predicate
This is like sort-grouped-array except that the predicate is applied to four
arguments: an array, an index into that array, a second array, and an index into the
second array. predicate should consider each index as a subscript of the first element
of a record in the corresponding array, and compare the two records. This is more
general than sort-grouped-array since the function can get at all of the elements
of the relevant records, instead of only the first element.

DSK:LMMAN;:FD.CON 85 6-JAN-79

i e <

Preliminary Lisp Machine Manual 57 Symbols
6. Symbols

6.1 The Value Cell

Each symbol has associated with it a value cell, which refers to one Lisp object. This
object is called the symbol’s binding or value, since it is what you get when you evaluate
the symbol. The binding of symbols to values allows symbols to be used as the
implementation of variables in programs.

The value cell can also be empty, referring to no Lisp object, in which case the symbol
is said to be wnbound. This is the initial state of a symbol when it is created. An attempt
to evaluate an unbound symbol causes an error.

The binding of a symbol can be changed either by lambda-binding or by assignment.
The difference is that when a symbol is lambda-bound, its previous value is saved away, to
be restored later, whereas assignment discards the previous value.

The symbols nil and t are always bound to themselves; they may not be assigned nor
lambda-bound. (The error of changing the value of t or nil is not yet detected, but it will
be.)

When closures are in use, the situation is a little more complicated. See the section on
closures. '

When a Lisp function is compiled, most of its variables are compiled into local variables,
which are not represented by means of symbols. However the compiler recognizes usage of
the setq special form, and of the set and value-cell-location functions with a quoted
argument, as referring to variables rather than symbols, and generates the appropriate code
to access the corresponding local variable rather than the symbol.

set symbol value

set is the primitive for assignment of symbols. The symbol’s value is changed to

value; value may be any Lisp object. set returns value,

Example:

{set (cond ((eq a b) “c)
(t 7d))
“fo0)
will either set ¢ to foo or set d to foo.

setq Special Form
The special form (setq var! forml var2 form2...) is the “variable assignment
statement” of Lisp. First forml is evaluated and the result is assigned to varl, using
, set, then form2 is evaluated and the result is assigned to var2, and so forth. setq
returns the last value assigned, i.e. the result of the evaluation of its last argument.

" DSK:LMMAN:FDSYM 43 : 6-JAN-79

The Value Cell 58 Preliminary Lisp Machine Manual

Example:

(setg x (+ 3 2 1) y (cons x nil))
X is set to 6, y is set to (6), and the setq returns (6). Note that the first assignment
was performed before the second form was evaluated, allowing that form to use the
new value of x.

psetq Macro
A psetq form is just like a setq form, except that the assignments happen in parallel;
first all of the forms are evaluated, and then the symbols are set to the resulting
values.
Example:
(setq a 1)
(setg b 2)
(psetq a b b a)
=> 2
b=>1

symeval sym
symeval is the basic primitive for retrieving a symbols’s value. (symeval sym)
returns sym’s current binding. This is the function called by eval when it is given a
symbol to evaluate. If the symbol is unbound, then symeval causes an error.

boundp sym
boundp returns t if sym is bound: otherwise, it returns nil.

makunbound sym
makunbound causes sym to become unbound.
Example:
(setq a 1)
=> 1
(makunbound “a)
=) causes an error.
makunbound returns its argument. i

value-cell-location sym
value-cell-location returns a locative pointer to sym's value cell. See the section

on locatives.

[Must explain about external vs internal value cell]

DSK:LMMAN:FD.SYM 43 ' 6-JAN-79

Preliminary Lisp Machine Manual 59 The Function Cell

6.2 The Function Cell

Every symbol also has associated with it a function cell. The function cell is similar to
the valuc cell; it refers to a Lisp object. When a function is referred to by name, that is,
when a symbol is applied or appears as the car of a form to be evaluated, that symbol’s
function cell is used to find its definition, the functional object which is to be applied. For
example; when evaluating (+ 5 6), the evaluator looks in +'s function cell to find the
definition of +, in this case a FEF containing a compiled program, to apply to 5 and 6.

Maclisp does not have function cells; instead, it looks for special properties on the
property list. This is one of the major incompatibilities between the two dialects.

Like the value cell, a function cell can be empty, and it can be lambda-bound or
assigned. The following functions are analogous to the value-cell related functions in the
previous section,

fsymeval sym ~
fsymeval returns sym's definition, the contents of its function cell. If the function
cell is empty, fsymeval causes an error.

fset sym x
fset stores x, which may be any Lisp object, into sym’s function cell. It returns x.

fboundp sym

fboundp returns nil if sym’s function cell is empty, ie. sym is undefined.
Otherwise it returns t.

fmakunbound sym

fmakunbound causes sym’s to be undefined, i.e. its function cell to be empty. It
returns sym.

function-cell-location sym
function-cell-location returns a locative pointer to sym’s function cell. See the
section on locatives.

The usual means of putting a function in a symbol’s function cell (defining the symbol)
is by means of the defun special form. Macros are put in a symbol’s function cell by means
of the macro special form.

defun Spccial Form
defun is used for defining functions. A defun form looks like:
(defun name type lambda-list
body)
The type is only for Maclisp compatibility, and is optional and usually absent. The
lambda-list is as described on page 6 and may contain “&-keywords".

DSK:LMMAN:FD.SYM 43 6-JAN-79

macro

The Function Cell 60 Preliminary Lisp Machine Manual

Examples:
(defun addone (x)
(i+ x))

(defun foo (a &optional (b 5) c &rest e &aux j)
(setq j (+ a b))
(cond ((not (null c))
(cons j e))

(t)
A list (lambda Jambda-list . body) is left in the function cell of name.

For compatibility, the Maclisp types expr, fexpr, and macro, and Maclisp lexprs
(which have an atomic lambda-list) are recognized and the corresponding Lisp
Machine flavor of defun is assumed.

Special Form
macro is used for defining macros. Its form is:
(macro name (arg)
body)
Examples:
(macro addone (x)
(list 71+ (cadr x)))

(macro increment (x)
(list “setq (cadr x) (list 71+ (cadr x))))

In the function cell of mame is placed a cons whose car is the symbol macro, and
whose cdr is a lambda-expression of the form (lambda (arg) . body).

Much of the time it is more convenient and clear to use a macro-defining macro
such as defmacro (see page 137) to define macros.

fset-carefully symbol definition &optional force-flag

This is the same as ([set symbol definition) except that it makes some checks and
saves the old definition. defun, macro, undefun, load, and the compiler call
fset-carefully when they define functions.

fset-carefully prints a message and asks the user if the current package (value of
package) is not allowed to redefine the symbol. Specifying force-flag non-nil
suppresses this check.

The previous definition, if any, of symbol is saved on the :previous-definition
property. If it is a list, it is also saved on the :previous-expr-definition property.
These properties are used by the undefun function (page 61), which restores the
previous definition, and the uncompile function (page 126), which restores the
previous interpreted definition.

DSK:LMMAN;FD.SYM 43 6-JAN-79

o i PR w2 T 7

Preliminary Lisp Machine Manual 61 The Function Cell

If symbol is not a symbol, but a list (name prop), then the definition is put on
name's prop property, the package error check is not done, and the old definition is
not saved. This is used to implement the (defun (name prop) ..) feature.

undefun symbol

If symbol has a :previous-definition property, undefun interchanges it with
symbol's function definition. This undoes the effect of a defun, compile, etc.

arglist function

arglist is given a function, and returns its best guess at the nature of the function’s
lambda-list.

If function is a symbol, arglist of its function definition is used.

If the function is an actual lambda-expression, its cadr, the lambda-list, is returned.
But if function is compiled, arglist attempts to reconstruct the lambda-list of the
original definition, using whatever debugging information was saved by the compiler.
Sometimes the actual names of the bound variables are not available, and arglist
uses the symbol *unknownx for these. Also, sometimes the initialization of an
optional parameter is t00 complicated for arglist to reconstrucy; for these it rewurns
the symbol *hairyX.

Since arglist cannot be relied upon to return the exactly correct answer, it is not
very useful in programs; it exists to be called by the user to get a little
documentation on how to call a function. For program-usable information, use the
function args-info.

args-info function

args-info returns a fixnum called the “numeric argument descriptor” of the function,
which describes the way the function takes arguments. The information in it is
stored in various bits and byte fields in the fixnum, which are referenced by the
symbolic names shown below. By the usual Lisp Machine convention, those starting
with a single "%" are bit-masks (meant to be loganded with the number), and those
starting with "%%" are byte descriptors (meant to be used with ldb).

Here are the fields:

%arg-desc-quoted-rest

If this bit is set, the function has a "rest” argument, and it is "quoted”.
Most special forms have this bit.

%arg-desc-evaled-rest
If this bit is set, the function has a *rest” argument, and it is not
"quoted”.

%arg-desc-fel-quote-hair
If this bit is set, there are some quoted arguments other than the

"rest” argument (if any), and the pattern of quoting is too
complicated to describe here. The ADL (Argument Description List)

DSK:LMMAN:FD.SYM 43 6-JAN-79

. LR AR i T

The Property List 62 Preliminary Lisp Machine Manual

in the FEF should be consulted.

%arg-desc-interpreted
This function is not a compiled-code object, and a numeric argument
descriptor cannot be computed. Usually args-info will not return
this bit, although %args-info will.

%arg-desc-fef-bind-hair
There is argument initialization, or something else too complicated to
describe here. The ADL (Argument Description List) in the FEF
should be consulted. ,

%7%arg-desc-min-args
This is the minimum number of arguments which may be passed to
this function, ie., the number of “required” parameters.

%%arg-desc-max-args
This is the maximum number of arguments which may be passed to
this function, ie. the sum of the number of “required” parameters
and the number of "optional” paramaters. If there is a rest argument,
this is not really the maximum number of arguments which may be
passed; an arbitrarily-large number of arguments is permitted, subject
to limitations on the maximum size of a stack frame,

Note that %arg-desc-quoted-rest and %arg-desc-evaled-rest cannot both be set.

%args-info function
This is an internal function of args-info; it is like args-info but only works for
compiled-code objects. It exists because it has to be in the microcode anyway, for
apply.

6.3 The Property List

Every symbol has associated with it a property list, which is a list used for associating
"attributes” with symbols. A property list has an even number of elements, Each pair of
elements constitutes a property; the first of the pair is a symbol called the indicator, and the .
second is a Lisp object called the value or, more loosely, the property. The indicator serves
as the name of the property, and the value as the value of the property. Here is an
example of the property list of a symbol named bl which is being used by a program which
deals with blocks: v .

(color blue on b6 associated-with (b2 b3 b4))

There are three properties, and so the list has six elements. The first property’s indicator
is the symbol color, and its value is the symbol blue. One says that "the value of bl's
color property is blue’, or, informally, that "bl’s color property is blue." The program is
probably representing the information that the block represented by bl is blue. Similarly, it
is probably representing in the rest of the property list that block bl is on top of block b6,
and that bl is associated with blocks b2, b3, and b4.

DSK:LMMANFD.SYM 43 6-JAN-79

Preliminary Lisp Machine Manual 63 The Property List

When a symbol is created, its property list is initially nil.

Because of the existence of print-name, value, function, and package cells, none of the
Maclisp system property names (expr, fexpr, macro, array, subr, Isubr, fsubr, and in
former times value and pname) exist in Lisp Machine lisp. The compiler (see page 126)
and the editor use several properties, which are documented in those sections.

It is also possible to have a "disembodied” property list, which is not associated with any
symbol. A disembodied property list is a cons. Its car may be used for any purpose. The
property list resides in its cdr. The way to create a disembodied property list is with
(ncons nil). In all of the functions in this section, disembodied property lists may be used
as well as symbols; for brevity, the text speaks only of symbols.

get sym indicator
get looks up sym’s indicator property. If it finds such a property, it returns the
value; otherwise, it returns nil.
Example: If the property list of foo is (baz 3), then
(get “foo “baz) => 3
(get “foo “zo0) => nil

getl sym indicator-list
getl is like get, except that the second argument is a list of indicators. getl
searches down sym's property list for any of the indicators in indicator-list, until it
finds a property whose indicator is one of the elements of indicator-list.

getl returns the portion of sym’s property list beginning with the first such property
which it found. So the car of the returned list is an indicator, and the cadr is the
property value. If none of the indicators on indicator-list are on the property list,
getl returns nil.
Example:

If the property list of foo were

(bar (1 2 3) baz (3 2 1) color blue height six-two)

then

(get1 “foo “(baz height))

=> (baz (3 2 1) color blue height six-two)

putprop sym x indicator
This gives sym an indicator-property of x. After this is done, (get sym indicator)
will return x.
Example:
(putprop “Nixon “not “crook)

If sym already has a property with the name indicator, then that property is removed
first; this insures that getl will always find the property that was added most recently.

‘ DSK:LMMAN:FD.SYM 43 6-JAN-79

The Print Name 64 Preliminary Lisp Machine Manual

defprop Special Form
defprop is a form of putprop with unevaluated arguments, which is sometimes more
convenient for typing.
Example:
(defprop foo bar next-to)
i1s the same as
{putprop “foo “bar “next-to)

remprop sym indicator
This removes sym's indicator property, by splicing it out of the property list. It
returns that portion of sym's property list of which the former indicator-property was
the car.
Example:
If the property list of foo was
(color blue height six-three near-to bar)
then
(remprop “foo “height) => (six-three near-to bar)
and foo’s property list would be
(color blue near-to bar)
If sym has no indicator-property, then remprop has no side-effect and returns nil.

plist sym
This returns the property list of sym.

setplist sym property-list
This sets the property list of sym to property-list. setplist is to be used with
caution, since property lists sometimes contain internal system properties, which are
used by many useful system functions. Also it is inadvisable. to have the property
lists of two different symbols be eq, since the shared list structure will cause
unexpected effects on one symbol if putprop or remprop is done to the other.

property-cell-location sym
This returns a locative pointer to the location of sym's property-list cell. See the
section on locatives.

6.4 The Print Name

Every symbol has an associated string called the print-name, or pname for short. This
string is used as the external representation of the symbol: if the string is typed in to read,
it is read as a reference to that symbol (if it is interned), and if the symbol is printed,
print types out the print-name. For more information, see the section on the reader (see '
page 156) and printer (see page [54).

DSK:LMMAN:FDSYM 43 ' 6-JAN-79

Preliminary Lisp Machine Manual 65 The Creation and Interning of Symbols

samepnamep syml sym2
This predicate returns t if the two symbols syml and sym2 have equal print-names;
that is, if their printed representation is the same. Upper and lower case letters are
normally considered the same. If either or both of the arguments is a string instead
of a symbol, then that string is used in place of the print-name.
Examples: :

(samepnamep “xyz (maknam “(x y 2)) => t

(samepnamep “xyz {maknam “(w x y)) => nil
(samepnamep “xyz *xyz") => t
This is the same function as string-equal (see page 80).

get-pname sym
This returns the print-name of the symbol sym.
Example:
(get-pname “xyz) => "xyz"

print-name-cell-location sym
This returns a locative pointer to the location of sym’s print-name cell. See the
section on locatives. Note that the contents of this cell is not actually the print
name, but the symbol header, an object which may not be directly manipulated. Use
get-pname, the microcode primitive which knows how to extract the pname from
the symbol header.

6.5 The Creation and Interning of Symbols

Normally, one wants to refer to the same symbol every time the same print-name-like
string is typed. So, when read sees such a character-string in the input to Lisp, it looks in
a table called the obarray for some symbol with that print-name. If it finds such a symbol,
then that is what it returns; otherwise, it creates a symbol with that print-name (using the
make-symbol function, see below), enters that symbol on the obarray, and returns it. The
sub-function of read which performs these functions is called intern, and when a symbol
has been entered on the obarray it is said to be interned.

A symbol can also be uninterned, indicating that it is not on the obarray and cannot be
referred to simply by typing its print name. Such symbols can be used as objects within a
“data-structure, but can cause trouble during debugging because they cannot be "typed in”
directly, yet they look just like interned symbols when "typed out".

Actually there can be many obarrays; the Lisp Machine system includes a feature called

the package system (see page 176) which keeps track of multiple packages or name spaces
and their interrelationships, using separate obarrays for each package.

DSK:LMMAN:FDSYM 43 ‘ 6-JAN-79

The Creation and Interning of Symbols 66 Preliminary Lisp Machine Manual

mak;-

symbol pname &optional value definition plist package :
This creates a new uninterned symbol, whose print-name is the string pname. You
may optionally supply the value binding, the function definition binding, the
property list, and the owning package. These default to unbound, unbound, nil,
and nil respectively. The package should be nil if the symbol is not going to be
interned.
Examples:

(setq a (make-symbol “foo")) => foo

(symeval a) => ERROR!

(setq a (make-symbol “foo" “bar)) => foo
(symeval a) => bar
Note that the symbol is not interned: it is simply created and returned.

copysymbol sym copy-p

This returns a new uninterned symbol with the same print-name as sym.: If copy-p is
non-nil, then the initial value and function-definition of the new symbol will be the
<ame as those of sym, and the property list of the new symbol will be a copy of

sym’s. If copy-p is nil, then the new symbol will be unbound and undefined, and its
property list will be nil. .

gensym &optional x

gensym invents a print-name, and creates a new symbol with that print-name. It
returns the new, uninterned symbol.

The invented print-name is a character prefix (the value of sizkgensym-prefix)
followed by the decimal representation of a number (the value of sizkgensym-

counter), eg "g0001". The number is increased by one every time gensym is
called. E

If the argument x is present and is a fixnum, then si:*gensym-countei is set to, x.
If x is a string or a symbol, then si:xgensym-prefix is set to the first character of
the string or of the print-name. After handling the argument, gensym creates a
symbol as it would with no argument. ‘
Examples:
if (gensym) => g0007
then (gensym “foo) => f0008 : ;
(gensym 40) => 0032 : ' N
(gensym) => 0033

Note that the number is in decimal and always has four digits, and the prefix is
always one character.

gensym is usually used to create a symbol which should not normally be seen by the
user, and whose print-name is unimportant, except to allow easy distinction by eye
between two such symbols. The optional argument is rarely supplieﬂ. The name
comes from “generate symbol’, and the symbols produced by it are often called

DSK:LMMAN:FDSYM 43 6-JAN-79

S s AR A R AP S i

The Creation and Interning of Symbols

Preliminary Lisp Machine Manual 67

"gensyms”.

pickage-cell-location symbol
Returns a locative pointer to symbol’
page 176) which owns symbol.

s package cell, which contains the package (see

DSK:LMMAN:FD.SYM 43 6-JAN-79

Numbers 68 Preliminary Lisp Machine Manual

7. Numbers

Lisp Machine Lisp includes several types of numbers, with different characteristics. Most
numeric functions will accept any type of numbers as arguments and do the right thing.
That is to say, they are generic. In Maclisp, there are generic numeric functions (like plus)
and there are specific numeric functions (like +) which only operate on a certain type. In.
Lisp Machine Lisp, this distinction does not exist; both function names exist for
compatibility but they are identical. The microprogrammed structure of the machine makes
it possible to have only the generic functions without loss of efficiency.

The types of numbers in Lisp Machine Lisp are:

fixnum Fixnums are 24-bit 2's complement binary integers. These are the “preferred,
most efficient” type of number,

bignum Bignums are arbitrary-precision binary integers.

flonum Flonums are floating-point numbers, They have a mantissa of 32 bits and an

exponent of L1 bits, providing a precision of about 9 digits and a range of
about 107300. Stable rounding is employed.

small-flonum Small flonums are another form of floating-point number, with a mantissa of
18 bits and an exponent of 7 bits, providing a precision of about 5 digits
and a range of about 10719. Small flonums are useful because, like fixnums,
they don't require any storage. Computing with small flonums is more
efficient than with regular flonums,

Numbers are different from other objects in that they don't "have identity." To put it
another way, eq does not work on them. Numbers do not behave "like objects.” Fixnums
and small flonums are exceptions to this rule; some system code knows that eq works on
fixnums used to represent characters or small integers, and uses mema or assq on them.

The Lisp machine automatically converts between fixnums and bignums as necessary
when computing with integers. That is, if the result of a computation with fixnums is too
large to be represented as a fixnum, it will be represented as a bignum. If the result of a
computation with bignums is small enough to be represented as a fixnum, it will be,

The Lisp machine never automatically converts between flonums and small flonums,
since this would lead either to inefficiency or to unexpected numerical inaccuracies. The
user controls whether floating-point calculations are done in large or small precision by the
type of the original input data.

Integer computations cannot “overflow”, except for division by zero, since bignums can
be of arbitrary size. Floating-point computations can get exponent overflow or underflow, if
the result is too large or small to be represented. This will signal an error,

When an arithmetic function of more than one argument is given arguments of different

numeric types, uniform coercion rules are followed to convert the arguments to a common
type, which is also the type of the result (for functions which return a number). When a

DSK:LMMAN:FD.NUM 47 6-JAN-79

Preliminary Lisp Machine Manual 69 Numeric Predicates

fixnum meets a bignum, the result is (usually) a bignum. When a fixnum or a bignum meets
a small flonum or a flonum, the result is a small flonum or a flonum (respectively). When a
small flonum meets a regular flonum, the result is a regular flonum.

Unlike Maclisp, Lisp Machine Lisp does not have number declarations in the compiler.
Note that because fixnums and small flonums are "inums” (require no associated storage) they
are as efficient as declared numbers in Maclisp.

The different types of numbers are distinguished by their printed representations. A
leading or embedded decimal point, and/or an exponent separated by ‘e”, indicates a
flonum. If a number has an exponent separated by "s", it is a small flonum. Small flonums
require a special indicator so that naive users will not be accidentally tricked into
computing with the lesser precision. Fixnums and bignums have similar printed

representations; the number is 8 bignum if it is too big to be a fixnum.

7.1 Numeric Predicates

zerop x
Returns t if x is zero. Otherwise it returns nil. If x is not a number, zerop causes
an error. . '

plusp x

Returns t if its argument is a positive number, strictly greater than zero. Otherwise
it returns nil. If x is not a number, plusp causes an error.

minusp x ‘
Returns t if its argument is a negative number, strictly less than zero. Otherwise it
returns nil. If x is not a number, minusp causes an error.

oddp number
Returns t if number is odd, otherwise nil. If number is not a fixnum or a bignum,
oddp causes an error.

signp Special Form
signp is used to test the sign of a number. It is present only for Maclisp
compatibility, and is not recommended for use in new programs. (signp test x)
returns t if x is a number which satisfies the rest, nil if it is not. test is not
evaluated, but x is. rest can be one of the following:

l x<o0
le x<0
e x=0
n x#0
ge x20
g x>0

DSK:LMMAN;FD.NUM 47 : 6-JAN-79

X
A
fs
?
13
%
¥
*
£
f

S it bt g R L e PR 0 TRy SR g L P S ¥

Numeric Predicates 70 Preliminary Lisp Machine Manual

Examples:
(signp le 12) => t
(signp n 0) => nil
(signp g “foo) => nil

See also the data-type predicates fixp, floatp, bigp, small-floatp, and numberp (page
9). .

All of these functions require that their arguments be numbers, and signal an error if
given a non-number. They work on all types of numbers, automatically performing any
required coercions.

- X y
Returns t if x and y are numerically equal.

greaterp x y &rest more-args
greaterp compares its arguments from left to right. If any argument is not greater
than the next, greaterp returns nil. But if the arguments are monotonically strictly

decreasing, the result is t.

Examples:
(greaterp 4 3) => t
(greaterp 4 3 2 1 0) => ¢t
(greaterp 4 3 12 0) => nil
> x y

Returns t if x is strictly greater than y, and nil otherwise.

>= Macro
2 Macro
Returns t if x is greater than or equal to y, and nil otherwise.

lessp x y &rest more-args
lessp compares its arguments from left to right. If any srgument is not less than the
next, lessp returns nil. But if the arguments are monotonically strictly increasing,

the result is t.

Examples:
(lessp 3 4) => t
(lessp 1 1) => nil
(lessp 0123 4) =>1t
(lessp 01 3 2 4) => nil

< xy
Returns t if x is strictly less than y, and nil otherwise.

DSK:LMMAN:FDNUM 47 6-JAN-79

Preliminary Lisp Machine Manual 71 Arithmetic

<= Macro
< Macro ,
Returns ¢ if x is less than or equal to y, and nil otherwise.

Macro
Returns t if x is not equal to y, and nil otherwise.

1.2 Arithmetic

All of these functions require that their arguments be numbers, and signal an error if
given a non-number. They work on all types of numbers, automatically performing any
required coercions.

plus &rest args

+ &rest args

+$ &rest args
Returns the sum of its arguments. If there are no arguments, it returns O, which is
the identity for this operation.

difference arg &rest args ,
Returns its first argument minus all of the rest of its arguments..

- arg &rest args

-$ arg &rest args
With only one argument, - is the same as minus; it returns the negative of its
argument. With more than one argument, - is the same as difference; it returns its
first argument minus all of the rest of its arguments.

times &rest args

X &rest args

*$ &rest args
Returns the product of its arguments. If there are no arguments, it returns 1, which
is the identity for this operation.

quotient arg &rest args
Returns the first argument divided by all of the rest of its arguments.

// arg &rest args

//8 arg &rest args
The name of this function is written // rather than / because / is the quoting
character in Lisp syntax and must be doubled. With more than one argument, // is
the same as quotient; it returns the first argument divided by all of the rest of its
arguments. With only one argument, (// x) is the same as (// 1 x).

DSK:LMMAN:FD.NUM 47 6-JAN-79

Arithmetic 72 Preliminary Lisp Machine Manual

Examples:
(/77 32) =>1 :Fixnum division truncates.
(/7 3 2.0) => 1.5
(/7 3 2.0s0) => 1.5s0
(/7 4 2) => 2
(/7 12. 2. 3.) => 2
addl x
1+ x
1+8 x
(addl x) is the same as (plus x 1).
subl «x
1- x
1-$ x

(subl x) is the same as (difference x 1). Note that the short name may be
confusing: (1- x) does not mean 1-x; rather, it means x-1.

remainder x y

\ xy
Returns the remainder of x divided by y. x and y may not be flonums nor small
flonums.

ged x y
xy
Returns the greatest common divisor of x and y. x and y may not be flonums nor
small flonums,

expt x y

~x y

l\' xy
Returns x raised to the y'th power. y must be a fixnum. [I guess this is
incompatible with Maclisp.]

max &rest args
max returns the largest of its arguments.
Example:
(max 1 3 2) =>3
max requires at least one argument.

min &rest args
min returns the smallest of its arguments,
Example:
(min 1 3 2) =>1
min requires at least one argument.

DSK:LMMAN:FD.NUM 47 6-JAN-79

Preliminary Lisp Machine Manual 73 Random Functions

abs x .
Returns |x], the absolute value of the number x. abs could have been defined by:
(defun abs (Xx) ‘
(cond ((minusp x) (minus x))
(t x)))
minus x
Returns the negative of x.
Examples: '
(minus 1) => -1
(minus -3) => 3
xdif x y
*plus x y
Xxquo x y

*times x y
These are the internal micro-coded arithmetic functions. There is no reason why
anyone should need to refer to these explicitly, since the compiler knows how to

generate the appropriate code for plus, +, etc. These names are only here for
Maclisp compatibility.

The following functions are provided to allow specific conversions of data types to be
forced, when desired.

fix x
Converts x to a8 fixnum,

float x
Converts x to a flonum.

small-float x
Converts x to a small flonum.

1.3 Random Functions

random &optional arg (array si:random-array)
(random) returns a random fixnum, positive Or negative. If arg is present, a fixnum
between O and arg-1 inclusive is returned. If array is present, the given array is

used instead of the default one (see below). [The random algorithm should be
described.]

si:random-create-array size offset seed &optional (area default-array-area)
Creates, initializes and returns a random-number-generator array. This is used for
more advanced applications of the pseudo-random number generator, in which it is
desirable to have several different controllable resettable sources of random numbers.
For the exact meaning of the arguments, read the code.
size is the size of the array, offset is an integer less than size, seed is a fixnum. This

DSK:LMMAN;FD.NUM 47

6-JAN-79

Logical Operations on Numbers 74 Preliminary Lisp Machine Manual

calls si:random-initialize on the random array before returning it.

si:random-initialize array
array must be a random-number-generator array, such as is created by si:random-
create-array. It reinitializes the contents of the array from the seed (calling
random changes the contents of the array and the pointers, but not the seed).

si:random-array Variable
The value of sirandom-array is the default random-number-generator array. It is
created if random is called and si:random-array is unbound. A random-number-
generator array has a leader which is a structure with the following elements:

si:random-fill-pointer
The fill-pointer, the length of the array.

si:random-seed
The seed from which to initialize the contents.

si:random-pointer-1
The first pointer.

si:random-pointer-2
The second pointer.

7.4 Logical Operations on Numbers

Except for Ish and rot, these functions operate on either fixnums or bignums. As a
compromise between consistency and Maclisp compatibility, there are some funny rules
about negative numbers. Normally these functions will not accept negative inputs and will
not produce negative results. However, if all the arguments to be logically combined are
fixnums, the result will always be a fixnum, and consequently may be negative. In this case
negative fixnums are accepted as input, and treated as the corresponding 24-bit 2’s-
complement representation. :

logior &rest args :
Returns the bit-wise logical inclusive or of its arguments, A minumum of one
argument is required.
Example:
(logior 4002 67) => 4067

logxor &rest args .
Returns the bit-wise logical exclusive or of its arguments. A minumum of one
argument is required.
Example:
(logxor 2531 7777) => 5246

DSK:LMMAN:FD.NUM 47 ~ 6-JAN-79

Preliminary Lisp Machine Manual 75 Logical Operations on Numbers

logand &rest args
Returns the bit-wise logical and of its arguments. A minumum of one argument is
required.
Example:
(logand 3456 707) => 406

boole fn &rest args
boole is the generalization of logand, logior, and logxor. fn should be a fixnum
between 0 and 17 octal inclusive; it controls the function which is computed. If the
binary representation of fn is abed (a is the most significant bit, d the least) then the
truth table for the Boolean operation is as follows:

y
|0 1
0} a ¢
x |
11 b d

If boole has more than three arguments, it is associated left to right; thus,
(boole fn x y z) = (boole fn (boole fn x y) z)
With two arguments, the result of boole is simply its second argument. A minimum
of two arguments is required.
Examples:
{boole 1 x y)
(boole 6 x y)

(logand x y)
(logxor x y)

logand, logior, and logxor are usually preferred over boole.

bit-test x y
bit-test is a predicate which returns t if any of the bits designated by the I's in x
are 1's in y. bit-test is implemented as a macro which expands as follows:
(bit-test x y) ==> (not (zerop (logand x y)))

ldb-test ppss y
Idb-test is a predicate which returns t if any of the bits designated by the byte
specifier ppss are 1's in y. That is, it returns t if the designated field is non-zero.
Idb-test is implemented as a macro which expands as follows:
(1db-test ppss y) ==> (not (zerop (1db ppss y)))

Ish x y
Returns x shifted left y bits if y is positive or zero, or x shifted right |y| bits if y is

negative. Zero bits are shifted in (at either end) to fill unused positions. x and y
must be fixnums.

DSK:LMMAN;:FD.NUM 47 ’ 6-JAN-79

Byte Manipulation Functions 76 Preliminary Lisp Machine Manual

Examples;
(1sh 4 1) => 10 (octal)
(Ish 14 -2) => 3
(1sh -1 1) => -2

rot x y

Returns x rotated left y bits if y is positive or zero, or x rotated right |y| bits if y is
negative. The rotation considers x as a 24-bit number (unlike Maclisp, which
considers x to be a 36-bit number in both the pdp-10 and Multics implementations).
x and y must be fixnums.
Examples:

{rot 1 2) =>4

(rot 1 -2) => 20000000

(rot -17) => -1

(rot 15 24.) => 15

haipart x n
Returns the high # bits of the binary representation of |x}, or the low |a| bits if n is
negative, x may be a fixnum or a bignum; note that if x is negative its absolute
value is used.

haulong x

This returns the number of significant bits in x. x may be a fixnum or a bignum.

The result does not depend on the sign of x. The result is the least integer not less

than the base-2 logarithm of |x|+1.

Examples:
(haulong 0) =>
(haulong 3) =>
(haulong -7) => 3

0
2

15 Byte Manipulation Functions

Several functions are provided for dealing with an arbitrary-width field of contiguous bits
appearing anywhere in an integer (a fixnum or a bignum). Such a contiguous set of bits is
called a byre. Note that we are not using the term byre to mean eight bits, but rather any
number of bits within a number. These functions use numbers called byte specifiers to
designate a specific byte position within any word. Byte specifiers are fixnums whose two
lowest octal digits represent the size of the byte, and whose higher (usually two, but
sometimes more) octal digits represent the position of the byte within a number, counting
from the right in bits. A position of zero means that the byte is at the right end of the
number. For example, the byte-specifier 0010 (i.e., 10 octal) refers to the lowest eight bits
of a word, and the byte-specifier 1010 refers to the next eight bits. These byte-specifiers
will be stylized below as ppss. The maximum value of the ss digits is 30 (octal), since a
byte must fit in a fixnum although bytes can be loaded from and deposited into bignums.
The format of byte-specifiers is taken from the pdp-10 byte instructions.

DSK:LMMAN:FD.NUM 47 6-JAN-79

Preliminary Lisp Machine Manual 77 24-Bit Numbers

Idb ppss num
ppss specifies a byte of num, which is returned as a number, right-justified. The ss
bits of the byte starting at bit pp are the lowest ss bits in the returned value, and the
rest of the bits in the returned value are zero. The name of the function, ldb,
means “load byte".
Example: '
' (1db 0303 567) => 6

mask-field ppss num
This is similar to 1db; however, the specified byte of num is returned as a8 number in
position pp of the returned word, instead of position 0 as with ldb.
Example:
(mask-field 0303 567) => 60

dpb byre ppss num
Returns a number which is the same as num except in the bits. specified by ppss.
The low ss bits of byre are placed in those bits. byte is interpreted as being right-
justified, as if it were the result of ldb.
Example: '
(dpb 2 0303 567) => 527

deposit-field byre ppss num
This is like dpb, except that byre is not taken to be left-justified; the ppss bits of byte
are used for the ppss bits of the result, with the rest of the bits taken from num.
Example:
(deposit-field 20 0303 567) => 527

#logldb ppss fixnum
%logldb is like ldb except that it only loads out of fixnums and doesn’t worry about
negative numbers.

%logdpb byte ppss fixnum
Zlogdpb is like dpb except that it only deposits into fixnums and doesn’t worry
about negative numbers.

1.6 24-Bit Numbers

Sometimes it is desirable to have a form of arithmetic which has no overflow checking
(which would produce bignums), and truncates results to the word size of the machine. In
Lisp Machine Lisp, this is provided by the following set of functions. Their answers are
only correct modulo 2724,

These functions should not be used for “efficiency”; they are probably less efficient than

the functions which do check for overflow. They are intended for algorithms which require
this sort of arithmetic, such as hash functions and pseudo-random number generation.

DSK:LMMAN:FD.NUM 47 6-JAN-79

Double-Precision Arithmetic 78 Preliminary Lisp Machine Manual

%24-bit-plus x y
Returns the sum of x and y modulo 2°24. Both arguments should be fixnums.

%24 -bit-difference x y
Returns the difference of x and y modulo 2~24. Both arguments should be fixnums.

%24-bit-times x y
Returns the product of x and y modulo 2724. Both arguments should be fixnums,

1.1 Double-Precision Arithmetic

These peculiar functions are useful in programs that don't want to use bignums for one
reason or another.

%multiply-fractions numl num2
Returns bits 24 through 46 (the most significant half) of the product of numl and
num2. 1f you call this and %24-bit-times on the same arguments numl and num2,
regarding them as integers, you can combine the results into a double-precision
product. If numl and num2 are regarded as fractions, -1 € num < 1, Zmultiply-
fractions returns 1/2 of their correct product as a fraction. (The name of this
function isn't t0o great.)

%divide-double dividend[24:46] dividend[0:23] divisor
Divides the double-precision number given by the first two arguments by the third
argument, and returns the single-precision quotient. Causes an error if division by
zero or if the quotient won't fit in single precision.

Y%remainder-double dividend(24:46] dividend[0:23] divisor
Divides the double-precision number given by the first two arguments by the third
argument, and returns the remainder. Causes an error if division by zero.

%float-double high24 low24 _
high24 and low24, which must be fixnums, are concatenated to produce a 48-bit
unsigned positive integer. A flonum containing the same value is constructed and
returned. Note that only the 31 most-significant bits are retained (after removal of
leading zeroes.) This function is mainly for the benefit of read.

DSK:LMMAN:FD.NUM 47 6-JAN-79

Preliminary Lisp Machine Manual 79 Strings

8. Strings

Strings are a type of array which are constants (they self-evaluate) and have as their
printed representation a sequence of characters enclosed in quote marks, for example “foo
bar". Strings are the right data type to use for text-processing.

‘The functions described in this section provide a variety of useful operations on strings.
Several of the functions actually work on any type of 1-dimensional array and may be useful
for other than string processing. art-16b arrays (arrays of 16-bit positive numbers) are often
used as strings; the extra bits allow for an expanded character set.

In place of a string, most of these functions will accept a symbol or a fixnum as an
argument, and will coerce it into a string. Given a symbol, its print name, which is a
string, will be used. Given a fixnum, a 1 character long string containing the character
designated by that fixnum will be used.

Note that the length of a string is computed using array-active-length, so that if a
string has an array-leader, element 0 of the leader {called the fill pointer) will be taken as
the length.

Since strings are arrays, the usual array-referencing function aref is used to extract the
characters of the string as fixnums. For example,
(aref "“frob" 1) => 162 ;lower-caser
It is also legal to store into strings (using aset). As with rplaca on lists, this changes the
actual object; one must be careful to understand where side-effects will propagate to.

8.1 String Manipulation

character x
character coerces x to a single character, represented as a fixnum. If x is a
number, it is returned. If x is a string or an array, its first element is returned. If x
is a symbol, the first character of its pname is returned. Otherwise, an error occurs.

char-equal chl ch2
This is the primitive for comparing characters for equality; many of the string
functions call it. chl and ch2 must be fixnums. The result is t if the characters are
equal ignoring case and font, otherwise nil. %%ch-char is the byte-specifier for the
portion of a character which excludes the font information.

char-lessp chl ch2
This is the primitive for comparing characters for order; many of the string functions
call'it. chl and ch2 must be fixnums. The result is t if ch/ comes before ch2
ignoring case and font, otherwise nil.

DSK:LMMAN;FD.STR 47 6-JAN-79

String Manipulation 80 Preliminary Lisp Machine Manual

string x
string coerces x into a string. Most of the string functions apply this to their string
arguments. If x is a string or an array, it is returned. If x is a8 symbol, its pname is
returned. If x is a number, a I-character long string containing it is returned.
Otherwise, an error occurs,

string-length string
string-length returns the number of characters in string. This is 1 if string is a
number, the array-active-length (see page 100) if string is an array, or the
array-active-length of the pname if string is a symbol.

string-equal stringl string? &optional (idxl 0) (idx2 0) liml lim2
string-equal compares two strings, returning t if they are equal and nil if they are
not. The comparison ignores the extra “font” bits in 16-bit strings, ignores font-
change and other formatting characters (characters with numeric values between 240
and 377), and ignores alphabetic case. equal calls string-equal if applied to two
strings.

The optional arguments idx! and idx2 are the starting indices into the strings. The
optional arguments /iml and lim2 are the final indices; the comparison stops just
before the final index. [liml and /im2 default to the lengths of the strings. These
arguments are provided so that you can efficiently compare substrings.
Examples:

(string-equal "Foo" "foo") => t

(string-equal "foo" "bar") => nil

(string-equal "element” "select" 01 3 4) => t

string-lessp stringl string2
string-lessp compares two strings using dictionary order. The result is t if stringl
is the lesser, and nil if they are equal or string2 is the lesser.

substring srring start &optional end area

This extracts a substring of string, starting at the character specified by srart and
going up to but not including the character specified by end. start and end are 0-
origin indices. The length of the returned string is end minus start. If end is not
specified it defaults to the length of string. The area in which the result is to be
consed may be optionally specified.

Example:

(substring "Nebuchadnezzar" 4 8) => "chad"

nsubstring string start &optional end area
nsubstring is the same as substring except that the substring is not copied; instead
an indirect array (see page 92) is created which shares part of the argument string.
Modifying one string will modify the other.

DSK:LMMAN:FDSTR 47 6-JAN-79

-

Preliminary Lisp Machine Manual 81 String Manipulation

Note that nsubstring does not necessarily use less storage than substring; an

nsubstring of any length uses the same amount of storage as a substring 12
characters long.

string-append &rest strings
Any number of strings are copied and concatenated into a single string. With a
single argument, string-append simply copies it. If the first argument is an array,
the result will be an array of the same type. Thus string-append can be used to
copy and concatenate any type of 1-dimensional array.
Example:

(string-append 41 *foo" 41) => "!foo!"

string-trim char-list string
This returns a substring of string, with all characters in char-list stripped off of the
beginning and end.
Example: '
(string-trim 7(40) * Dr. No ") => "Dr. No“

string-left-trim char-list string

This returns a substring of string, with all characters in char-list stripped off of the
beginning.

string-right-trim char-list string
This returns a substring of string, with all characters in char-list stripped off of the
end.

char-upcase ck
If ch, which must be a fixnum, is a lower-case alphabetic character its upper-case
form is returned; otherwise, ch itself is returned. If font information is present it is
preserved.

char-downcase ch

If ch, which must be a fixnum, is a upper-case alphabetic character its lower-case
form is returned; otherwise, ck itself is returned. If font information is present it is
preserved.

string-upcase string
Returns a copy of string, with all lower case alphabetic characters replaced by the
corresponding upper case characters.

string-downcase string

Returns a copy of string, with all upper case alphabetic characters replaced by the
corresponding lower case characters.

DSK:LMMAN;FD.STR 47 6-JAN-79

RSTY

String Manipulation . 82 Preliminary Lisp Machine Manual

string-reverse string

Returns a copy of string with the order of characters reversed. This will reverse a
1-dimensional array of any type.

string-nreverse string
Returns string with the order of characters reversed, smashing the original string,
rather than creating a new one. If string is a number, it is simply returned without
consing up a string. This will reverse a {-dimensional array of any type.

string-search-char char string &optional (from 0)
string-search-char searches through string starting at the index from, which
defaults to the beginning, and returns the index of the first character which is char-
equal to char, or nil if none is found.
Example:
(string-search-char 101 "banana") => 1

string-search-not-char char string &optional (from 0)
string-search-not-char searches through string starting at the index from, which
defaults to the beginning, and returns the index of the first character which is not
char-equal to char, or nil if none is found.
Example:
(string-search-char 102 "banana") => 1

string-search key string &optional (from 0)
string-search searches for the string key in the string string. The search begins at
from, which defaults to the beginning of string. The value returned is the index of
the first character of the first instance of key, or nil if none is found.
Example:
(string-search “an" "banana") => 1
(string-search "an" "banana" 2) => 3

string-search-set char-list string &optional (from 0)
string-search-set searches through string looking for a character which is in char-
list. The search begins at the index from, which defaults to the beginning. It
returns the index of the first character which is char-equal to some element of
char-list, or nil if none is found.
Example:
(string-search-set 7(116 117) "banana") => 2

string-search-not-set char-list string &optional (from 0)
string-search-not-set searches through string looking for a character which is not
in char-list. The search begins at the index from, which defaults to the beginning.
It returns the index of the first character which is not char-equal to any element of
char-list, or nil if none is found.
Example:
(string-search-not-set “(14]1 142) "banana®) => 2

DSK:LMMAN:FD.STR 47 6-JAN-79

Preliminary Lisp Machine Manual 83 String Manipulation

string-reverse-search-char char string &optional from

string-reverse-search-char searches through string in reverse order, starting from
the index one less than from, which defaults to the length of string, and returns
the ‘index of the first character which is char-equal to char, or nil if none is
found. Note that the index returned is from the beginning of the string, although
the search starts from the end.
Example:

(string-reverse-search-char 156 "banana") => 4

string-reverse-search-not-char char string &optional from

string-reverse-search-not-char searches through string in reverse order, starting
from the index one less than from, which defaults to the length of string, and
returns the index of the first character which is nor char-equal to char, or nil if
none is found. Note that the index returned is from the beginning of the string,
although the search starts from the end.
Example:

(string-reverse-search-not-char 101 "banana%“) => 4

string-reverse-search key string &optional from

string-reverse-search searches for the string key in the string string. The search
proceeds in reverse order, starting from the index one less than from, which
defaults to the length of string, and returns the index of the first (leftmost) character
of the first instance found, or nil if none is found. Note that the index returned is
from the beginning of the string, although the search starts from the end. The from
condition, restated, is that the instance of key found is the rightmost one whose
rightmost character is before the from'th character of string.
Example:

(string-reverse-search "na" "banana") => 4

string-reverse-search-set char-list string &optional from

string-reverse-search-set searches through string in reverse order, starting from
the index one less than from, which defaults to the length of string, and returns
the index of the first character which is char-equal to some element of char-list, or
nil if none is found. Note that the index returned is from the beginning of the
string, although the search starts from the end. ,

(string-reverse-search-set (141 142) "banana®) => 5

string-reverse-search-not-set char-list string &optional from

string-reverse-search-not-set searches through string in reverse order, starting
from the index one less than from, which defaults to the length of string, and
‘returns the index of the first character which is not char-equal to any element of
char-list, or nil if none is found. Note that the index returned is from the
beginning of the string, although the search starts from the end.
(string-reverse-search-not-set (141 156) “"banana®) => 0

DSK:LMMAN:FD.STR 47 6-JAN-79

Maclisp-compatible Functions 84 Preliminary Lisp Machine Manual

See also intern (page 184), which given a string will return “the" symbol with that print
name,

82 Maclisp-compatible Functions

alphalessp string1 string2
(alphalessp string1 string2) is equivalent to (string-lessp stringl string2).

getchar string index
Returns the index'th character of string as a symbol. Note that 1-origin indexing is
used. This function is mainly for Maclisp compatibility; aref should be used to
index into strings (however aref will not coerce symbols or numbers into strings).

getcharn string index
Returns the index’th character of string as a fixnum. Note that I-origin indexing is
used. This function is mainly for Maclisp compatibility; aref should be used to
index into strings (however aref will not coerce symbols or numbers into strings).

ascii x
ascii is like character, but returns a symbol whose printname is the character
instead of returning a fixnum.
Examples:
(ascii 101) => A
(ascii 56) => /.
The symbol returned is interned in the user package.

maknam char-list
maknam returns an uninterned symbol whose print-name is a string made up of the
characters in char-list.
Example:
(maknam “(a b 60 d)) => abod

implode char-list
implode is like maknam except that the returned symbol is interned in the current
package.

The samepnamep function is also provided; see page 65.

DSK:LMMAN:FDSTR 47 6-JAN-79

Preliminary Lisp Machine Manual 85 Formatted Output '

8.3 Formatted Output

format destination control-string &rest args

format is used to produce formatted output. format outputs the characters of
control-string, except that a tilde ("~") introduces a directive. The character after
the tilde, possibly preceded by arguments and modifiers, specifies what kind of

formatting is desired. Some directives use an element of args 1o create their output.

The output is sent to destination. If destination is nil, a string is created which
contains the output. If destination is a stream, the output is sent to it. If destination
is t, the output is sent to standard-output.

A directive consists of a tilde, optional decimal numeric arguments separated by
commas, optional colon (") and atsign ("@") modifiers, and a single character
indicating what kind of directive this is. The alphabetic case of the character is
ignored. Examples of control strings:
"S5 ; This is an S directive with no arguments.
"~3,4:@s" ; This is an § directive with two arguments, 3 and 4,
; and both the colon and atsign flags.

The kinds of directives will now be described. arg will be used to refer to the next
argument from args.

~D arg, a number, is printed as a decimal integer. ~nD uses a column
width of n; spaces are inserted on the left if the number requires
less than n columns for its digits and sign. If the number doesn't fit
in n columns, additional columns are used as needed. ~n,mD uses
m as the pad character instead of 40 (space).

~0 This is just like ~D but prints in octal instead of decimal.

~F arg is printed in floating point. Not yet implemented nor fully
defined.

~E arg is printed in exponential notation. Not yet implemented nor

fully defined.

~A arg, any Lisp object, is printed without slashification (like princ).
~nA inserts spaces on the right, if necessary, 10 make the column
width at least a. ~mincol,colinc,minpad,padcharA is the full form of
~A, which allows elaborate control of the padding. The string is
padded on the right with at least minpad copies of padchar; padding
characters are then inserted colinc characters at a time until the total
width is at least mincol. The defaults are Q for mincol, 1 for colinc
and minpad, and 40 (space) for padchar.

~S This is just like ~A, but arg is printed with slashification (like prinl
rather than princ).

~C (character arg) is printed as a keyboard character, whose bits are
described by the %%kbd- fields (see page 152). Control and meta bits

DSK:LMMAN:FDSTR 47 6-JAN-79

Formatted Output

~P
~%
~%

~Are
’

~]

86 Preliminary Lisp Machine Manual

are printed as a preceding alpha (control), beta (meta), or epsilon
(control and meta); the characters alpha, beta, epsilon, and
equivalence-sign are preceded by an equivalence-sign to quote them.
With the colon flag (i.e. ~:C), the control and meta bits, as well as
non-printing characters (those in the 200 to 377 range) are spelled
out. With both colon and atsign, characters which are typed in using
the "TOP" key produce something like "> (Top-S)".

If arg is not 1, a lower-case s is printed.
arg is ignored. ~nX ignores the next n arguments.
Outputs a newline. ~n% outputs n newlines. No argument is used.

The :fresh-line operation is performed on the output stream. Unless
the stream knows that it is already at the front of a line, this outputs
a newline,

Outputs a formfeed. ~n} outputs n formfeeds.
Outputs a space. ~nX outputs n spaces.

Spaces over to a given column. ~n,mT will output sufficient spaces
to move the cursor to column n. If the cursor is already past
column n, it will output spaces to move it to column a+mk, for the
smallest integer value k possible, #n and m default to 1. Without the
colon flag, n and m are in units of characters; with it, they are in
units of pixels. Note: this operation only works properly on streams
that support the :read-cursorpos and :set-cursorpos stream
operations (see page 167). On other streams (and when format is
creating a string), any ~T operation will simply output two spaces.

Outputs a tilde. ~n~ outputs n tildes.

"Goes to" the nth argument. ~0G goes back to the first argument in
args. Directives after a ~nG will take sequential arguments after the
one gone to.

This begins a set of alternative control strings. The alternatives are
separated by ~; and the construct is terminated by ~]. For example,
“~[Siamese ~;Manx ~;Persian ~;Tortoise-Shell ~;Tiger ~;Yu-
shiang ~] kitty". The argth alternative is selected; @ selects the
first. If arg is out of range no alternative is selected. After the
selected alternative has been processed, the control string continues
after the ~].

~:[false~;true~] selects the false control string if arg is nil, and
selects the frue control string otherwise.
Separates alternatives after ~[.

Ends a ~[construction.

DSK:LMMAN:FD.STR 47 6-JAN-79

Preliminary Lisp Machine Manual 87 Formatted Output

~R arg is printed as a cardinal English number, eg. four. With the
colon modifier, arg is printed as an ordinal number, e.g. fourth.
With the atsign modifier, arg is printed as a Roman numeral, e.g.
IV. With both atsign and colon, arg is printed as an old Roman
numeral, e.g. IlIL

In 'place of a numeric argument to a directive, you can put the letter V, which
takes an argument from @rgs as an argument to the directive. Normally this should
be a number but it doesn't really have to be. This feature allows variable column-
widths and the like.

The user can define his own directives. How to do this is not documented here;
read the code. Names of user-defined directives longer than one character may be
used if they are enclosed in backslashes (e.g. ~4 3\GRAPH\).
Examples:
(format nil "foo") => "foo"
(setq x 5)
(format nil “The answer is ~D." x) => "The answer is 5."
(format nil "The answer is ~3D." x) => “The answer is 5.4
(setq y "elephant")
(format nil "Look at the ~A!" y) => “"Look at the elephant!*
(format nil "The character ~:@C is strange." 1003)
=> "The character Meta-g (Top-X) is strange."
(setq n 3)
(format nil "~D item~P found." n n) => "3 items found.”
(format nil "~R dog~:[s are~; is~] here.” n (= n 1))
=) "three dogs are here."

format also allows control-string to be a list of strings and lists, which is processed
from left to right. Strings are interpreted as in the simple case. Lists are taken as
extended directives; the first element is the directive letter, and the remaining
elements are the numeric arguments to the directive. If the car of a list is r
recognized directive, the list is simply evaluated as a form; anything it writes t0 .e
standard-output stream will appear in the result of format.

For formatting Lisp code (as opposed to text and tables), there is the Grind package.
See <not-yet-written>, '

DSK:LMMANFD.STR 47 6-JAN-79

B A AR L Sk L N

Arrays 88 Preliminary Lisp Machine Manual
9. Arrays

9.1 What Arrays Are

An array is a Lisp object that consists of a group of cells, each of which may contain a
Lisp object. The individual cells are selected by numerical subscripts.

There are many types of arrays. Some types of arrays can hold Lisp objects of any type;
the other types of arrays can only hold fixnums, The array types are known by a set of
symbols symbols whose names begin with “art-" (for ARray Type).

array-types Variable

The value of array-types is a list of all of the array type symbols such as art-q,
art-4b, art-string and so on.

array-types array-type-code
An array of the array type symbols, indexed by their internal numeric codes.

array-elements-per-q Variable
array-elements-per-q is an association list (see page 52) which associates each

array type symbol with the number of array elements stored in one word, for an
array of that type.

array-elements-per-q array-type-code

This is an array, indexed by the internal codes of the array types, containing the
number of array elements stored in one word, for an array of that type.

array-bits-per-element Variable
The value of array-bits-per-element is an association list (see page 52) which
associates each array type symbol with the number of bits of unsigned number it can
hold, or nil if it can hold Lisp objects. This can be used to tell whether an array
can hold Lisp objects or not.

array-bits-per-element array-type-code
This is an array, indexed by the internal codes of the array types, containing the

number of bits per cell for unsigned numeric arrays, and nil for full-Lisp-object-
containing array. v

array-element-size array :
Given an array, returns the number of bits that fit in an element of that array. For

non-numeric arrays, the result is 24 assuming you will be storing unsigned fixnums -
in the array.

The most commonly used type is called art-q. An art-q array simply holds Lisp
objects of any type.

DSK:LMMAN:FD.ARR 74 6-JAN-79

Preliminary Lisp Machine Manual 89 What Arrays Are

Similar to the art-q type is the art-q-list. Like the art-q, its elements may be any
Lisp object. The difference is that the art-g-list array "doubles” as a list; the function g-l-
p will take an art-q-list array and return a list object whose elements are those of the
array, and whose actual substance is that of the array. If you rplaca elements of the list,
the corresponding element of the array will change, and if you store into the array, the
corresponding element of the list will change the same way.

There is a set of types called art-1b, art-2b, art-4b, art-8b and art-16b: these
names are short for “{ bit", "2 bits", and so on. Each element of an art-lb array is a
fixnum, and only one bit (the least significant) is remembered in the array; all of the others
are discarded. Similarly, in an art-2b array, only the two least significant bits are
remembered. So if you store a 5 into an art-2b array, for example, and look at it later,
you will find a { rather than a 5.

These arrays are used when it is known beforehand that the fixnums which will be
stored are non-negative and limited in size to a certain number of bits. Their advantage
over the art-q array is that they occupy less storage, because more than one element of the
array is kept in a single machine word. (For example, 32 elements (decimal) of an art-1b
array or 2 elements of an art-16b array will fit into one word).

Character strings are implemented by the art-string array type. This type acts similarly
to the art-8b; its elements must be fixnums, of which only the least significant eight bits
are stored. However, many important system functions, including read, print, and eval,
treat art-string arrays very differently from the other kinds of arrays. These arrays are
usually called strings, and an entire chapter of this manual deals with functions which
manipulate them.

There are three types of arrays which exist only for the purposes of stack groups; these
types are called art-stack-group-head, art-special-pdl and art-reg-pdl. Their elements
may be any Lisp object; their use is explained in the section on stack groups (see page 105).

There are also two array types which exist only for the TV output device; these are
called art-tvb and art-tvb-pixel. The former holds one bit of a fixnum (like an art-1b
array), and the latter is more complicated. Their use is described in the section on the TV
(see page 210).

DSK:LMMAN:FD.ARR 74 - 6-JAN-79

How Arrays Work 90 Preliminary Lisp Machine Manual :

92 How Arrays Work

The dimensionality of an array (or, the number of dimensions which the array has) is the
number of subscripts used to refer to one of the elements of the array. The dimensionality
may be any integer from one to seven, inclusively.

The lowest value for any subscript is zero; the highest value is a property of the array.
Each dimension has a size, which is the lowest number which is too great to be used as a
subscript. For example, in a one dimensional array of five elements, the size of the one
and only dimension is five, and the acceptable values of the subscript are zero, one, two,
three, and four.

The most basic primitive subrs for handling arrays are: make-array, which is used for
the creation of arrays, aref, which is used for examining the contents of arrays, and aset,
which is used for storing into arrays.

An array is a regular Lisp object, and it is common for an array to be the binding of a
symbol, or the car or cdr of a cons, or, in fact, an element of an array. Another way of
handling arrays, inherited from Maclisp, is to treat them as functions. In this case each
array has a name, which is a symbol whose function definition is the array. The Lisp
machine supports this style by allowing an array to be applied to arguments, as if it were a
function. The arguments are treated as subscripts and the array is referenced appropriately.
The store special form (see page 101) is also supported. This form of array referencing is
considered to be obsolete, and should not be used in new programs.

Here are some issues of Maclisp compatibility:

Fixnum arrays do not exist (however, see the Lisp machine’s small-positive-number
arrays). Flonum arrays do not (currently) exist. "Un-garbage-collected” arrays do not exist.
Readtables and obarrays are represented as arrays, but unlike Maclisp special array types are
not used. See the descriptions of read (page 159) and intern (page 184) for information
about readtables and obarrays (packages). There are no "dead” arrays, nor are Multics
"external” arrays provided.

Subscripts are always checked for validity, regardless of the value of Xrset and whether
the code is compiled or not. However, in a multi-dimensional array, an error is only
caused if the subscripts would have resulted in a reference to storage outside of the array;
so if you have a 2 by 7 array and refer to an element with subscripts 3 and 1, no error
will be caused despite the fact that the reference is invalid; but if you refer to element 1 by
100, an error will be caused. In other words, any subscript error which is not detected
will only refer to somewhere else in your array, and not to any other part of storage.

loadarrays and dumparrays are not provided. However, arrays can be put into
"QFASL" files; see the section on fasloading (page 194).

DSK:LMMAN:FD.ARR 74 6-JAN-79

Preliminary Lisp Machine Manual 91 Extra Features of Arrays

9.3 Extra Features of Arrays

Any array may have an array leader. An array leader is like a one-dimensional art-q
array which is attached to the main array. So an array which has a leader acts like two
arrays joined together. It can be stored in and examined by a special set of functions which
are analogous to those used for the main array: array-leader and store-array-leader.
The leader is always one-dimensional, and always can hold any kind of Lisp object,
regardless of the type or dimensionality of the array. :

By convention, the zeroth element of the array leader of an array is used to hold the
number of elements in the array that are "active” in some sense. When the zeroth element is
used this way, it is called a fill pointer. Specifically, if a string (an array of type art-
string) has seven elements, but it has a fill pointer of five, then only elements zero through
four of the string are considered to be “active”; the string's printed representation will be
five characters long, string-searching functions will stop after the fifth element, etc.

The second element is also used in conjunction with the “named structure” feature; see
below.

[Note: The named-structure feature is going to be revised in the future, and the
following material will become incorrect.}

Any array may be a named structure. Several functions (currently the printer and

describe), when given an array, check to see if the array is a named structure and take
special action accordingly.

Within each named structure array there is a symbol called the named structure symbol.
If the array has a leader, then the symbol is found in element 1 of the leader; otherwise it
is found in element O of the array. (Note: if a numeric-type array is to be a named

structure, it must have a leader, since a symbol cannot be stored in any element of a
numeric array,)

The symbol should be defined as a function. The functions which know about named
sttuctures will apply this function to several arguments. The first is a "keyword™ symbol to
dentify the calling function, and the second is the named structure itself. The rest of the
arguments passed depend on the caller; any named structure function should have a "&rest”
parameter 1o absorb any extra arguments that might be passed. Just what the function is
expected to do depends on the keyword it is passed as its first argument.

Using named structures, you can control the printed representation of your array, and
4o you can control what a user gets if he tries to describe it. Currently, the keyword
will be :print for the printer, and :describe for describe. See the documentation on the
printer and on describe for explanations of what the named structure function should do.

The. following explanation of displaced arrays is probably not of interest to a beginner;
the section may be passed over without losing the continuity of the manual.

DSK:LMMANFD.ARR 74

6-JAN-79

Extra Features of Arrays 92 Preliminary Lisp Machine Manual

Normally, an array consists of a small amount of header information, followed by the
contents of the array. However, sometimes it is desirable to have the header information
removed from the actual contents. One such occasion is when the contents of the array
must be located in a special part of the Lisp Machine’s address space, such as the area used
for the control of input/output devices. Displaced arrays are also used to reference certain
special system tables, which are at fixed addresses so the microcode can access them easily.

If you give make-array a fixnum as its fourth argument, it will create a displaced array
refering to that location of virtual memory. References to elements of the displaced array
will access that part of storage, and return the contents; the regular aref and aset
functions are used. If the array is one whose elements are Lisp objects, caution should be
used: if the region of address space does not contain typed Lisp objects, the integrity of
the storage system could be damaged by the garbage collector. If the array is one whose
elements are bytes (such as an art-4b type), then there is no problem. It is important to
know. in this case, that the elements of such arrays are allocated from the right to the left
within the 32-bit words. See the description of internal array formats on <not-yet-written>.

It is also possible to have an array whose contents, instead of being located at a fixed
place in virtual memory, are defined to be those of another array. Such an array is called
an indircct array, and is created by giving make-array an array as its fourth argument.
The effects of this are simple if both arrays have the same type; the two arrays share all
elements, An object stored in a certain element of one can be retrieved from the
corresponding element of the other. This, by itself, is not very useful. However, if the
arrays have different dimensionality, the manner of accessing the elements differs. Thus, by
creating a one-dimensional array of nine elements which was indirected to a second, two-
dimensional array of three elements by three, then the elements could be accessed in either
a one-dimensional or a two-dimensional manner. Even more complex effects can be
produced if the new array is of a different type than the old array; see the description of
internal array formats on <not-yet-written>,

It is also possible to create a one-dimensional indirect array in such a way that when an
attempt is made to reference it or store into it, a constant number is added to the subscript
given. This number is called the index-offset, and is specified at the time the indirect array
is created, by giving a fixnum to make-array as its sixth argument. The nsubstring
function (see page 80) creates such arrays.

DSK:LMMAN:FD.ARR 74 6-JAN-79

Preliminary Lisp Machine Manual 93 - Basic Array Functions

+

9.4 Basic Arfay Functions

make-array area type dims &optional displaced-p leader index-offset named-structure

This creates and returns an array, according to various specifications.

The arca parameter specifies the area in which to allocate the array's storage; if you
are not concerned with areas, simply use the value of default-array-area. For
convenience, if dgrea is nil, default-array-area is used instead.

type should be a symbolic name of an array type; the most common of these is art-
q. The elements of the array are initialized according to the type: if the array is of
a type whose elements may only be fixnums, then every element of the array will
initially be @; otherwise, every element will initially be nil. See the description of
array types on page 88. '

dims should be a list of fixnums which are the dimensions of the array; the length of
the list will be the dimensionality of the array. For convenience, if the
dimensionality should be one, the single dimension may be provided as a fixnum in
place of the list. '
Examples: .
(setg a (make-array nil “art-q 5)) ; Create a one-d array
‘ ;of 5 elements.

(setq b (make-array nil “art-4b “(3 4))) ; Create a four-bit two-d
;array, 3 by 4.

If displaced-p is not nil, then the array will be a displaced array. displaced-p may
either be a fixnum, to create a regular displaced array which refers to a certain

section of virtual address space, or an array, to create an indirect array (see page
92).

If leader is not nil, then the array will be given a leader. If leader is a fixnum, the

array’s leader will be leader elements long, and its elements will be initialized to nil.

Leader may also be a list, in which case the length of the leader is equal to that of
the list, and the elements are initialized to the elements of the list, in reverse order
(i.e., the car of the list is stored in the highest-subscripted location in the leader).

If index-offset is present, displaced-p should be an array, and index-offset should be a
fixnum; it is made to be the index-offset of the created indirect array. (See page
92.)

If named-structure is not nil, it is a symbol to be stored in the named-structure cell
element of the array. The array created will be a named structure.

DSK:LMMAN;FD.ARR 74 6-JAN-79

Basic Array Functions 94 ~ Preliminary Lisp Machine Manual
{

Examples:
(make-array nil “art-q 5 nil 3) wleader 3 elements long.
(setq a (make-array nil “art-1b 100 nil 7(t nil)))
(array-leader a 0) => nil
(array-leader a 1) => t

make-array returns the newly-created array, and also returns, as a second value,
the number of words allocated from area in the process of creating the array.

array-displaced-p array
array may be any kind of array. This predicate returns t if array is any kind of
displaced array (including indirect arrays). Otherwise it returns nil.

array-indirect-p array .
array may be any kind of array. This predicate returns t if array is an indirect
array. Otherwise it returns nil,

array-indexed-p array
array may be any kind of array. This predicate returns t if array is an indirect
array with an index-offset. Otherwise it returns nil.

adjust-array-size array new-size

array should be a one-dimensional array. Its size is changed to be new-size. If this
results in making array smaller, then the extra elements are lost; if array is made.
bigger, the new elements are initialized in the same fashion as make-array (see
page 93): either to nil or 0. [Currently there is a bug which causes initialization to.
zero not to work.]
Example:

(setqg a (make-array nil “art-q 5))

(aset “foo a 4)

(aref a 4) => foo

(adjust-array-size a 2)

(aref a 4) => ERROR

If the size of the array is being increased, adjust-array-size must allocate a new
array somewhere; it then alters array so that references to it will be made to the
new array instead, by means of an ‘invisible pointer”, adjust-array-size will return
this new array if it creates one, and otherwise it will return array. Be careful about
using the returned result of adjust-array-size, because you may end up holding
two arrays which are not the same (i.e, not eq) which share the same contents.

return-array array
Return array to free storage. If it is displaced, this returns the pointer, not the data
pointed to. Currently does nothing if the array is not at the end of its area. This
will eventually be renamed to reclaim, when it works for other objects than arrays.

DSK:LMMAN:FD.ARR 74 : 6-JAN-79

Preliminary Lisp Machine Manual 95 Basic Array Functions

aref

ar-1

ar-2

ar-3

aset

as-1

as-2

as-3

aloc

ap-1

array &rest subscripts
Returns the element of array selected by the subscripts. The subscripts must be
fixnums and their number must match the dimensionality of array.

array i
array should be a one-dimensional array, and i should be a fixnum. This returns the
i'th element of array.

array i j
array should be a two-dimensional array, and i and j should be fixnums. This
returns the 7/ by j'th element of array. ‘

array i j k
array should be a three-dimensional array, and i, j, and k should be fixnums. This
returns the i by j by k'th element of array.

x array &rest subscripts
Stores x into the element of array selected by the subscripts. The subscripts must be
fixnums and their number must match the dimensionality of array.

x array i
array should be a one-dimensional array, and i should be a fixnum. x may be any
object. x is stored in the i'th element of array. as-l returns x.

x array i j
array should be a two-dimensional array, and i and j should be fixnums. x may be
any object. x is stored in the i by j'th element of array. as-2 returns x.

x array i j k

array should be a three-dimensional array, and i, j, and k should be fixnums. x
may be any object. x is stored in the i by j by k'th element of array. as-3 returns
x.

array &rest subscripts

Returns a locative pointer to the element-cell of array selected by the subscripts.
The subscripts must be fixnums and their number must match the dimensionality of
array.

array i

array should be a one-dimensional array whose elements contain Lisp objects, and i
should be a fixnum. This returns a locative pointer to the i’th element of array.
See the explanation of locatives, page 109.

DSK:LMMAN:FD.ARR 74 6-JAN-79

Basic Array Functions 96 Preliminary Lisp Machine Manual

ap-2 array i j
array should be a two-dimensional array whose elements contain Lisp objects, and i
and j should be fixnums. This returns a locative pointer to the i by j’th element of
array. See the explanation of locatives, page 109.

ap-3 array i j k
array should be a three-dimensional array whose elements contain Lisp objects, and
i, j, and k should be fixnums. This returns a locative pointer to the i by j by k’th
element of array. See the explanation of locatives, page 109.

The compiler turns aref into ar-1, ar-2, etc. according to the number of subscripts
specified, turns aset into as-1, as-2, etc, and turns aloc into ap-1, ap-2, etc. For arrays
with more than 3 dimensions the compiler uses the slightly less efficient form since the
special routines only exist for 1, 2, and 3 dimensions. There is no reason for any program
to call ar-1, as-1, ar-2, etc. explicitly; they are documented because there used to be
such a reason, and many existing programs use these functions, New programs should use
aref, aset, and aloc.

arraycall ignored array &rest subscripts
(arraycall nil array subl sub2..) is the same as (aref array subl sub2..). It exists
for Maclisp compatibility.

get-list-pointer-into-array array-ref
The argument array-ref is ignored, but should be a reference to an art-q-list array
by applying the array to subscripts (rather than by aref). This returns a list object
which is a portion of the °list" of the array, beginning with the last element of the
array which has been referenced.

g-l-p array
array should be an art-g-list array. This returns a list which shares the storage of
array. The art-q-list type exists so that g-l-p can be used.
Example:
(setq a (make-array nil “art-q-list 4))
(aref a 0) => nil
(setq b (g-1-p a)) => (nil nil nil nil)
{(rplaca b t)
b => (t nil nil nil)
(aref a 0) => t
(aset 30 a 2)
b =>(t nil 30 nil)

get-locative-pointer-into-array array-ref

get-locative-pointer-into-array is similar to get-list-pointer-into-array,
except that it returns a locative, and doesn’t require the array to be art-q-list.

DSK:LMMAN:FD.ARR 74 6-JAN-79

|

Preliminary Lisp Machine Manual 97 Basic Array Functions

arraydims array
array may be any array; it also may be a symbol whose function cell contains an
array, for Maclisp compatibility (see page 100). It returns a list whose first element
is the symbolic name of the type of array, and whose remaining elements are its
dimensions,
Example:
‘ (setq a (make-array nil “art-q “(3 5)))

(arraydims a) => (art-q 3 5)

array-dimensions array
array-dimensions returns a list whose elements are the dimensions of array.
Example:
(setq a (make-array nil “art-q 7(3 5)))
(array-dimensions a) => (3 5)
Note: the list returned by (array-dimensions x) is equal to the cdr of the list
returned by (arraydims x).

array-in-bounds-p array &rest subscripts
This function checks whether the subscripts are all legal subscnpts for array, and
returns t if they are; otherwise it returns nil.

array-length array

array may be any array. This returns the total number of elements in array. For a
one-dimensional array, this is one greater than the maximum allowable subscript.
(But if fill pointers are being used, you may want to use array-active-length (see
page 100)).
Example:

(array-length (make-array nil “art-q 3)) => 3

(array-length (make-array nil “art-q (3 5)))

=> 17 octal, which is 15. decimal

array-/s«-dims array
Returns the dimensionality of array. Note that the name of the function includes a
“#, which must be slashified if you want to be able to compile your program with
the compiler running in Maclisp.
Example:
(array-/#- d1ms (make-array nil “art-q 7(3 5))) => 2

array-dimension-n n array
array may be any kind of array, and n should be a fixnum. If n is between 1 and
the dimensionality of array, this returns the n'th dimension of array. If n is 0, it
returns the length of the leader of array; if array has no leader it returns nil. If n
is any other value, it returns nil.

DSK:LMMAN:FD.ARR 74 6-JAN-79

R R T 0

Basic Array Functions 98 Preliminary Lisp Machine Manual

Examples:
(setq a (make-array nil “art-g “7(3 5) nil 7))

(array-dimension-n 1 a) => 3
(array-dimension-n 2 a) => 5
(array-dimension-n 3 a) => nil
(array-dimension-n 0 a) => 7

array-type array
Returns the symbolic type of array.
Example:
(setq a (make-array nil “art-q 7(3 5)))
(array-type a) => art-q

fillarray array x /
Note: for the present, all arrays concerned must be one-dimensional.

array may be any type of array, or, for Maclisp compatibility, 8 symbol whose
function cell contains an array. There are two forms of this function, depending on
the type of x.

If x is a list, then fillarray fills up array with the elements of /ist. If x is too short
to fill up all of array, then the last element of x is used to fill the remaining
elements of array. If x is too long, the extra elements are ignored.

If x is an array (or, for Maclisp compatibility, a symbol whose function cell contains
an array), then the elements of array are filled up from the elements of x. If x is
too small, then the extra elements of array are not affected.

fillarray returns array.

listarray array &optional limit
Note: for the present, all arrays concerned must be one-dimensional.

array may be any type of array, or, for Maclisp compatibility, a symbol whose
function cell contains an array. listarray creates and returns a list whose elements
are those of array. If limit is present, it should be a fixnum, and only the first limit
(if there are more than that many) elements of array are used, and so the maximum
length of the returned list is limit.

copy-array-contents from to
from and to must be arrays. The contents of from is copied into the contents of to,
element by element. Presently the first subscript varies fastest in multi-dimensional
arrays (opposite fram Maclisp). If to is shorter than from, the excess is ignored. If
from is shorter than to, the rest of fo is filled with nil if it is a q-type array or O if
it is @ numeric array. t is always returned.

DSK:LMMAN:FD.ARR 74 6-JAN-79

Preliminary Lisp Machine Manual 99 Named Structures

9.5 Named Structures

Named structures were introduced at the beginning of the chapter. This section presents
various functions which operate on named structures.

named-structure-p x
This predicate returns t if x is a8 named structure; otherwise it returns nil.

named-structure-symbol x
x should be a named structure. This returns x's named structure symbol: if x has an
array leader, element 1 of the leader is returned, otherwise element 0 of the array is
returned.

make-array-into-named-structure array
array is made to be a named structure, and is returned.

9.6 Array Leaders

Array leaders were introduced at the beginning of the chapter. This section presents
various functions which operate on array leaders.

array-has-leader-p array

array may be any array. This predicate returns t if array has a leader; otherwise it
returns nil.

array-leader-length array

array may be any array. This returns the length of array’s leader if it has one, or
nil if it does not. '

array-leader array i
array should be an array with a leader, and i should be a fixnum. This returns the
i'th element of array’s leader. This is analogous to aref. -

store-array-leader x array i
array should be an array with a leader, and i should be a fixnum. x may be any
object. x is stored in the i'th element of array’s leader. store-array-leader
returns x. This is analogous to aset.

ap-leader array i
array should be an array with a leader, and i should be a fixnum. This returns a -
locative pointer to the i'th element of array’s leader. See the explanation of
locatives, page 109. This is analogous to aloc.

DSK:LMMAN;FD.ARR 74 6-JAN-79

Maclisp Array Compatibility 100 Preliminary Lisp Machine Manual

array-active-length array
If array does not have a fill pointer, then this returns whatever (array-length
array) would have. If array does have a fill pointer, array-active-length returns
it. See the general explanation of the use of fill pointers, which is at the beginning
of this section,

array-push array x

array must be a one-dimensional array which has a fill pointer, and x may be any
object. array-push attempts to store x in the element of the array designated by
the fill pointer, and increase the fill pointer by one. If the fill pointer does not
designate an element of the array (specifically, when it gets too big), it is unaffected
and array-push returns nil: otherwise, the two actions (storing and incrementing)
happen uninterruptibly, and array-push returns the former value of the fill pointer
(one less than the one it leaves in the array). If the array is of type art-q-list, an
operation similar to nconc has taken place, in that the element has been added to
the list by changing the cdr of the formerly last element,

array-push-extend array x
array-push-extend is just like array-push except that if the fill pointer gets too
large, the array is grown to fit the new element; i.e. it never "fails" the way array-
push does. and so never returns nil.

array-pop arra:
array mu. - a one-dimensional array which has a fill pointer. The fill pointer is
decreased by one, and the array element designated by the new value of the fill
pointer is returned. If the new value does not designate any element of the array
(specifically, if it has reached zero), an error is caused. The two operations
(decrementing and array referencing) happen uninterruptibly. If the array is of type
art-q-list, an operation similar to nbutlast has taken place.

copy-array-contems-and-leader from to
This is just like copy-array-contents (see page 98), but the leaders of from and to
are also copied.

9.7 Maclisp Array Compatibility

Note: the functions in this section should not be used in new programs.

In Maclisp, arrays are usually kept on the array property of symbols, and the symbols
are used instead of the arrays. In order to provide some degree of compatibility for this
manner of using arrays, the array, Xarray, and store functions are provided, and when
arrays are applied to arguments, the arguments are treated as subscripts and apply returns
the corresponding element of the array. However, the Xrearray, loadarrays, and
dumparrays functions are not provided. Also, flonum, readtable, and obarray type
arrays are not supported.

DSK:LMMAN:FD.ARR 74 6-JAN-79

AP, g e

T e

Preliminary Lisp Machine Manual 101 Maclisp Array Compatibility

array "e symbol type &eval &rest dims
This creates an art-q type array in default-array-area with the given dimensions.
(That is, dims is given to make-array as its third argument.) fype is ignored. If
symbol is nil, the array is returned; otherwise, the array is put in the function cell
.of symbol, and symbol is returned.

Xarray symbol type &rest dims
This is just like array, except that all of the arguments are evaluated.

store "e array-ref x
x may be any object; array-ref should be a form which references an array. First x
is evaluated, then array-ref is evaluated, and then the value of x is stored into the
array cell which was referenced by the evaluation of array-ref.

xstore x array-ref ,
This is just like store, bt it is not a special form; this is because the arguments are
in the other order. This function only exists for the compiler to compile the store
special form, and should never be used by programs.

DSK:LMMAN;FD.ARR 74 6-JAN-79

Closures 102 Preliminary Lisp Machine Manual

10. Closures

A closure is a type of Lisp functional object useful for implementing certain advanced
access and control structures.: Closures give the programmer more explicit control over the
environment, by allowing him to "save up” the environment created by the entering of a
dynamic contour (i.e. a lambda, do, prog, progv, let, or any of several other special
forms), and then use that environment elsewhere, even after the contour has been exited.

10.1 What a Closure ls

There is a view of lambda-binding which we will use in this section because it makes it
easier to explain what closures do. In this view, when a variable is bound, a new value
cell is created for it. The old value cell is saved away somewhere and is inaccessible. Any
references to the variable will get the contents of the new value cell, and any setq's will
change the contents of the new value cell. When the binding is undone, the new value
cell goes away, and the old value cell, along with its contents, is restored.

For example, consider the following sequence of Lisp forms:
(setqg a 3)

((7ambda (a)
(print (+ a 6)))
10)

(print a) ,

Initially there is a value cell for a, and the setq form makes the contents of that value cell
be 3. Then the lambda-combination is evaluated. a is bound to 10: the old value cell,
which still contains a 3, is saved away, and a new value cell is created with 10 as its
contents. The reference to a inside the lambda expression evaluates to the current binding
of a, which is the contents of its current value cell, namely 10. So 16 is printed. Then the
binding is undone,_ discarding the new value cell, and restoring the old value cell which
still contains a 3. The final print prints out a 3.

The form (closure var-list function), where var-list is a list of variables and function is
any function, creates and returns a closure, When this closure is applied to some
arguments, all of the value cells of the variables on var-list are saved away, and the value
. cells that those variables had at the time closure was called are made to be the value cells
of the symbols. Then function is applied to the argument. (This paragraph is somewhat
complex, but it completely describes the operation of closures; if you don’t understand it,
come back and read it again.)

Here is another, lower level explanation. The closure object stores several things inside
of it. First, it saves the function. Secondly, for each variable in var-list, it remembers what
that variable’s value cell was when the closure was created. Then when the closure is called
as a function, it first temporarily restores the value cells it has remembered, and then
applies function to the same arguments to which the closure itself was applied.

DSK:LMMAN:FD.CLO (1 6-JAN-79

Preliminary Lisp Machine Manual 103 Examples of the Use of Closures

Now, if we evaluate the form
(setq a
((lambda (x)
(closure “(x) (functlon car)))

3))
what happens is that a new value cell is created for x, and its contents is 8 fixnum 3. Then
a closure is created, which remembers the function car, the symbol X, and that value cell.
Finally the old value cell of x is restored, and the closure is returned. Notice that the new
value cell is still around, because it is still known about by the closure. When the closure
is applied, this value cell will be restored and the value of x will be 3.

Because of the way closures are implemented, the variables to be closed over must not
get turned into "local variables” by the compiler. Therefore, all such variables should be
declared special.

In the Lisp Machine’s implementation of closures, lambda-binding never really allocates
any storage to create new value cells. Value cells are only created (sometimes) by the
closure function itself. Thus, implementors of large systems need not worry about storage
allocation overhead from this mechanism if they are not using closures. See the section on
internal formats,

Lisp Machine closures are not closures in the true sense, as they do not save the whole
variable-binding environment; however, most of that environment is irrelevant, and the
explicit declaration of which variables are to be closed allows the implementation to have
high efficiency. They also allow the programmer to explicitly choose for each variable
whether it is to be bound at the point of call or bound at the point of definition (e.g.
creation of the closure), a choice which is not conveniently available in other languages. In
addition the program is clearer because the intended effect of the closure is made manifest
by listing the variables to be affected.

10.2 Exarhples of the Use of Closures

This section gives some examples of things that can be done easily and elegantly with
closures, which would be difficult to do without them.

We will start with a simple example of a generator. A generator is a kind of function
which is called successively to obtain successive elements of a sequence. We will implement
a function make-list-generator, which takes a list, and returns a generator which will
return successive elements of the list. When it gets to the end it should return nil.

The problem is that in between calls to the generator, the generator must somehow
remember where it is up to in the list. Since all of its bindings are undone when it is
exited, it cannot save this information in a bound variable. It could save it in a global
variable, but the problem is that if we want to have more than one list generator at a nme,
they will all try to use the same global variable and get in each other’s way.

DSK:LMMAN:FD.CLO 11 6-JAN-79

Function Descriptions 104 Preliminary Lisp Machine Manual

Here is how we can use closures to solve the problem:
(defun make-list-closure (1)
(closure “(1)
(function (lambda ()
(progl (car 1)
(setqg 1 (cdr 1)))))))
Now we can make as many list generators as we like; they won't get in each other’s way
because each has its own value cell for l. Each of these value cells was created when the
make-list-closure function was entered, and the value cells are remembered by the
closures.

10.3 Function Descriptions

closure var-list function
This creates and returns a closure of function over the variables in var-list. Note
that all variables on var-list must be declared special if the function is to compile
correctly.

symeval-in-closure closure symbol
This returns the binding of symbol in the environment of closure; that is, it returns
what you would get if you restored the value cells known about by closure and then
evaluated symbol. This allows you to "look around inside” a closure.

set-in-closure closure symbol x
This sets the binding of symbol in the envorinment of closure to x; that is, it does
what would happen if you restored the value cells known about by closure and then
set symbol to x. This allows you to change the contents of the value cells known
about by a closure. '

let-closed Macro
When using closures, it is very common to bind a set of variables with initial values,
and then make a closure over those variables. Furthermore the variables must be
declared as “special” for the compiler. let-closed expands into a form which does
all of this. It is best described by example:
(let-closed ((a 5) b (c “x))
(function (lambda () ...)))

expands into
(local-declare ((special a b c))
(Tet ((a 5) b (c “x))

(closure “(a b ¢)
(function (lambda () ...)))))

DSK:LMMAN:FD.CLO {1 6-JAN-79

oo

Preliminary Lisp Machine Manual 105 ‘ Stack Groups

11. Stack Groups

A stack group (usually abbreviated “SG") is a type of Lisp object useful for
implementation of certain advanced control structures such as coroutines and generators. A
stack group represents a computation and its internal state, including the Lisp stack. At any
time, the computation being performed by the Lisp Machine is associated with one stack
group, called the current or running stack group. The operation of making some stack
group be the current stack group is called a resumption or a stack group switch; the running
stack group is said to have resumed the new stack group. The resume operation has two
parts: first, the state of the running computation is saved away inside the current stack
group, and secondly the state saved in the new stack group is restored, and the new stack
group is made current. Then the computation of the new stack group resumes its course.

The stack group remembers all functions which were active at the time of the
resumption (that is, the running function, its caller, its caller’s caller, etc.), and where in

"each function the computation was up to. In other words, the entire control stack (or

regular pdl) is saved. In addition, the bindings that were present are saved also; that is, the
environment stack (or special pdl) is saved. When the state of the current stack group is
saved away, all of its bindings are undone, and when the state is restored, the bindings are
put back. Note that although bindings are temporarily undone, unwind-protect handlers are
not run (see let-globally).

There are several ways that a resumption can happen. First of all, there are several Lisp
functions, described below, which resume some other stack group. When some stack group
(call it) calls such a function, it is suspended in the state of being in the middle of a call
to that function. When someone eventually resumes ¢, the function will return. The
arguments to these functions and the returned values can therefore be used to pass
information back and forth between stack groups. Secondly, if an error is signalled, the
current stack group resumes an error handler stack group, which handles the error in some
way. Thirdly, a sequence break can happen, which transfers control to a special stack group
called the scheduler (see page 195).

Note: the following discussion of resumers is incomplete, and the way they work is
being changed anyway.

Each stack group has a resumer. c¢'s resumer is some other stack group, which
essentially is the last stack group to resume ¢. This is not completely right, however,
because some resume-forms set the resumed stack group’s resumer, and some don’t. So ¢’s
resumer is actually the last stack group to resume ¢ by means of one of the types of resume-
form which does set the resumer.

si:%Zcurrent-stack-group-previous-stack-group Variable
The binding of this variable is the resumer of the current stack group.

There are currently four kinds of resume-forms:

DSK:LMMAN;FD.SG 38 6-JAN-79

What is Going On Inside 106 Preliminary Lisp Machine Manual

1) If ¢ calls s as a function with an argument x, then s is resumed, and the
object transmitted is x. s's resumer is now c.

2) If ¢ evaluates (stack-group-return x), then its resumer is resumed, and
the object transmitted is x. The resumer’s resumer is not affected.

3) A If ¢ evaluates (stack-group-resume s x), then c is resumed, and the object
transmitted is x. ¢'s resumer is not affected. (This is not currently
implemented.)

4) If the initial function of ¢ attempts to return a value x, the regular kind of
Lisp function return cannot take place, since the function did not have any
caller (it got there when the stack group was initialized). So instead of
returning, its resumer is resumed, and the value transmitted is x. The
resumer’s resumer is not affected. ¢ is left in a state from which it cannot
be resumed again; any attempt to resume it would signal an error.

There is one other way-a stack group can be resumed. If the running stack group c gets
a microcode trap, then the error handler stack group is resumed. The object transmitted is
nil, and the error handler’s resumer is set to ¢. This kind of resuming will only happen to
the error handler, so regular programs should not see it.

'11.1 What is Going On Inside

The stack group itself holds a great deal of state information. First of all, it contains
the control stack, or "regular PDL". The control stack is what you are shown by the
backtracing commands of the error handler (currently the Control-B and Meta-B commands);
it remembers the function which is running, its caller, its caller’s caller, and so on, and
remembers the point of execution of each function (i.e. the “return addresses” of each
function). Secondly, it contains the environment stack, or “special PDL". This contains all
of the values saved by lambda-binding. Finally, it contains various internal state
information (contents of machine registers and so on).

When one stack group resumes a second, the first thing that happens is that (some of)
the state of the processor is saved in the first stack group. Next, all of the bindings in
effect are undone: each stack group has its own environment, and the bindings done in one
stack group do not affect another stack group at all. Then the second stack group’s bindings
are restored, its machine state is restored, and the second stack group proceeds from where
it left off. While these things are happening, the transmitted object is passed into the
second stack group, and optionally the second stack group’s resumer is made to be the first
stack group.

sizXicurrent-stack-group Variable

The value of sicurrent-stack-group is the stack group which is currently
running. A program can use this variable to get its hands on its own stack group.

DSK:LMMAN:FD.SG 38 6-JAN-79

Preliminary Lisp Machine Manual 107 What is Going On Inside

1
|

make-stack-group name &optional options
- This creates and returns a new stack group. name may be any symbol; it is used to
- identify and print the stack group. Each option is a keyword followed by a value
for that option; any number of options may be given, including zero. The options
are not too useful; most calls to make-stack-group don’t have any options at all.
. The options are:

'sg-area The area in which to create the stack group structure itself. Defaults
‘ to default-array-area.

:regular-pdl-area
The area in which to create the regular PDL. Note that this may not
be any area; only certain areas may hold regular PDL, because
accessing a regular PDL as memory must go through special
microcode which checks an internal cache called the pd! buffer.
Defaults to error-linear-pdl-area.

:special-pdl-area »
The area in which to create the special PDL. Defaults to default-
array-area.

:regular-pdl-size

Length of the regular PDL to be created. Defaults to 3000.
:special-pdl-size

Length of the special PDL to be created. Defaults 1o 400.
:car-sym-mode

The "error mode” which determines the action taken when there is an

attempt to apply car to a symbol. This, and the other "error mode"
options, are documented with the fucntions car and cdr. Defaults to

1.

:car-num-mode)
As above, for applying car to a number. Defaults 10 0.

:cdr-sym-mode
As above, for applying c¢dr to a symbol. Defaults to 1.

:cdr-num-mode :
As above, for applying c¢dr to0 a number. Defaults to 0.

:swap-sv-on-call-out
:swap-sv-of -sg-that-calls-me

:trap-enable This determines what to do if a microcode error occurs. If it is 1
the system tries to handle. the error; if it is @ the machine halts.
Defaults to 1.

;safe If 1 (the default), a strict call-return discipline among stack-groups is
enforced. If 8, no restriction on stack-group switching is imposed.

DSK:LMMAN;FD.SG 38 6-JAN-79

What is Going On Inside 108 Preliminary Lisp Machine Manual

stack-group-preset stack-group function &rest arguments
This sets up stack-group so that when it is resumed, function will be applied to
arguments within the stack group. Both stacks are made empty. stack-group-
preset is used to initialize a stack group just after it is made, but it may be done to
any stack group at any time.

stack-group-return x
Let s be the current stack-group’s resumer; stack-group-return will resume s,
transmitting the value x. s's resumer is not affected.

stack-group-resume s x

stack-group-resume will resume s, transmitting the object x. s’s resumer is not
affected. This function is not currently implemented.

DSK:LMMAN:FDSG 38 6-JAN-79

Preliminary Lisp Machine Manual 109 Locatives

12. Locatives

12.1 Cells and Locatives

A locative is a type of Lisp object used as a pointer 10 a cell. Locatives are inherently a
more “low level” construct than most Lisp objects; they require some knowledge of the
nature of the Lisp implementation. Most programmers will never need them.

A cell is a machine word which contains a (pointer to a) Lisp object. A symbol has five
cells: the print name cell, the value cell, the function cell, the property list cell, and the
package cell. The value cell holds (a pointer to) the binding of the symbol, and so on.
Also, an array leader of length n has n cells, and an array of n elements has n cells
provided the array is not a numeric array. However, a numeric array contains a different
kind of cell, which cannot be pointed to by a locative.

There are a set of functions which create locatives to cells; the functions are
documented with the kind of object to which they create a pointer. See ap-1, ap-leader,
car-location, value-cell-location, etc. The macro locf (see page 146) can be used to
convert a form which accesses a cell to one which creates a locative pointer to that cell:
for example,

(locf (fsymeval x)) ==)> (function-cell-location x)

12.2 Functions Which Operate on Locatives

Either of the functions car and cdr (see page 38) may be given a locative, and will
return the contents of the cell at which the locative points.
For example,
(car (value-cell-location x))
is the same as
(symeval x)

Similarly, either of the functions rplaca and rplacd may be used to store an object into
the cell at which a locative points.
For example,
(rplaca (value-cell-location x) y)
is the same as
(set x y)

If you mix locatives and lists, then it matters whether you use car and rplaca or cdr
and rplacd, and care is required. For example, this function takes advantage of value-
cell-location to cons up a list in forward order without special-case code. The first time
through the loop, the rplacd is equivalent to (setq res ..); on later times through the loop
the rplacd tacks an additional cons onto the end of the list.

DSK:LMMANFD.LOC 13 6-JAN-79

Functions Which Operate on Locatives 110 Preliminary Lisp Machine Manual

(defun sort-of-mapcar (fcn 1Ist)
(do ((1st Ist (cdr 1ist))
(res nil)
(loc (value-cell-location “res)))
((null 1st) res)
(rplacd loc
(setq loc (ncons (funcall fcn (car 1st)))))))
You might expect this not to work if it was compiled and res was not declared special,

since non-special compiled variables are not represented as symbols. However, the compiler
arranges for it to work anyway.

DSK:LMMAN:FD.LOC 13 6-JAN-79

S TTRE R R ALTRESR T

Preliminary Lisp Machine Manual 111 Subprimitives

13. Subprimitives

Subprimitives are functions which are not intended to be used by the average program,
only by “system programs’. They allow one to manipulate the environment at a level lower
than normal Lisp. Subprimitives usually have names which start with a % character. The
"primitives” described in other sections of the manual typically use subprimitives to
accomplish their work. The subprimitives take the place of machine language in other
systems, to some extent. Subprimitives are normally hand-coded in microcode.

Subprimitives by their very nature cannot do full checking. Improper use of
subprimitives can destroy the environment.

131 Data Types

data-type arg
data-type returns a symbol which is the name for the internal data-type of the
“pointer" which represents arg. Note that some types as seen by the user are not
distinguished from each other at this level, and some user types may be represented
by more than one internal type.

si:dtp-symbol
The object is a symbol.

si:dtp-fix The object is a fixnum; the numeric value is contained immediately
in the pointer field.

si:dtp-small-flonum :
The object is an immediate small floating-point number.

si:dtp-extended-number
The object is a flonum or a bignum. This value will be used for
future numeric types.

si:dtp-list The object is a cons.

si:dtp-locative
The object is a locative pointer.

si:dtp-array-pointer
The object is an array.

si:dtp-fef-pointer
The object is a fef.

si:dtp-u-entry
The object is a microcode entry.

si:dtp-closure
The object is a closure.

DSK:LMMAN:FD.SUB 26 6-JAN-79

Data Types 112 Preliminary Lisp Machine Manual

si:dtp-stack-group
The object is a stack-group.

si:dtp-instance
The object is an "active object”. These are not documented yet.

si:dtp-entity The same as dtp-closure except it is a kind of "active object".
These are not documented yet.

si:dtp-select-method
Another type associated with "active objects” and not documented
yet.

si:dtp-header An internal type used to mark the first word of a multi-word
structure.

si:dtp-array-header
An internal type used in arrays.

si:dtp-symbol-header
An internal type used to mark the first word of a symbol.

si:dtp-instance-header
An internal type used to mark the first word of an instance.

si:dtp-null Nothing to do with nil. This is used in unbound value and function
cells.

si:dtp-trap The zero data-type, which is not used. This hopes to detect
microcode errors.

si:dtp-free This type is used to fill free storage, to catch wild references.

si:dtp-external-value-cell-pointer
An ’invisible pointer” used for external value cells, which are part of
the closure mechanism (see page 102). and used by compiled code
to address value and function cells.

si:dtp-header-forward
An ‘invisible pointer” used to indicate that the structure containing it
has been moved elsewhere. The “header word™ of the structure is
replaced by one of these invisible pointers. See the function
structure-forward (page 113).

si:dtp-body-forward
An “invisible pointer” used to indicate that the structure containing it
has been moved elsewhere. This points to the word containing the
header-forward, which points to the new copy of the structure.

si:dtp-one-q-forward
An ‘invisible pointer” used to indicate that the single cell containing
it has been moved elsewhere.

si:dtp-gc-forward
This is used by the copying garbage collector to flag old objects that

DSK:LMMAN:FDSUB 26 6-JAN-79

Preliminary Lisp Machine Manual 113 Creating Objects

have already been copied.

q-data-types Variable
The value of q-data-types is a list of all of the symbolic names for data types
described above under data-type. (the symbols whose print names begin with dtp-

")

q-data-types rype-code
An array, indexed by the internal numeric data-type code, which contains the
corresponding symbolic names.

13.2 Creating Objects

make-list area size
This function makes a cdr-coded list of nils of a specified length in a specified area.
area is which area to create it in, which may be either a fixnum or a symbol whose
value will be used. size is the number of words to be allocated. Each word has cdr
code cdr-next, except for the last which has cdr-nil.

This function is to be used only for making lists. If making a “structure” (any data
type that has a header), use one of the two functions below. This is because the
two classes of object must be created in different storage regions, for the sake of
system storage conventions and the garbage collector.

%allocate-and-initialize data-type hcader-type header second-word area size

This is the subprimitive for creating most structured-type objects. area is the area in
which it is to be created, as a fixnum or a symbol. size is the number of words to
be allocated. The value returned points to the first word allocated, and has data-
type data-type. Uninterruptibly, the words allocated are initialized so that storage
conventions are preserved at all times. The first word, the header, is initialized to
have header-type in its data-type field and header in its pointer field. The second
word is initialized to second-word. The remaining words are initialized to nil. The
cdr codes are initialized as in make-list, currently.

%allocate-and-initialize-array header data-length leader-length area size
This is the subprimitive for creating arrays, called only by make-array. It is
different from Z%allocate-and-initialize because arrays have a more complicated
header structure.

structure-forward old-object new-object

This causes references to old-object to actually reference new-object, by storing
invisible pointers in old-object. It returns old-object.

DSK:LMMAN;FD.SUB 26 6-JAN-79

Pointer Manipulation 114 Preliminary Lisp Machine Manual

13.3 Pointer Manipulation

It should again be emphasized that improper use of these functions can destroy the Lisp
environment, primarily because of interactions between the garbage collector and the illegal
pointers that can be created by these sub-primitives.

%data-type «x
Returns the data-type field of x, as a fixnum.

Zpointer x
Returns the pointer field of x, as a fixnum. For most types, this is dangerous since
the garbage collector can copy the object and change its address.

%make-pointer data-type pointer
This makes up a pointer, with data-type in the data-type field and pointer in the
pointer field, and returns it. This is most commonly used for changing the type of a
pointer. Do not use this to make pointers which are not allowed to be in the
machine, such as dtp-null, invisible pointers, etc.

“make-pointer-offset dara-type pointer offset
This returns a pointer with data-type in the data-type field, and pointer plus offset in
the pointer field. The types of the arguments are not checked, their pointer fields
are simply added together. This is useful for constructing locative pointers into the
middle of an object. However, note that it is illegal to have a pointer to untyped
data, such as the inside of a FEF or a numeric array.

%pointer-difference pointer-1 pointer-2
Returns a fixnum which is pointer-1 minus pointer-2. No type checks are made.
For the result to be meaningful, the two pointers must point into the same object,
so that their difference cannot change as a resuit of garbage collection.

/find-structure-header pointer
This subprimitive finds the structure into which pointer points, by searching backward
for_ a header. It is a basic low-level function used by such things as the garbage
collector. pointer is normally a locative, but its data-type is ignored. Note that it is
illegal to point into an "unboxed” portion of a structure, for instance the middle of a
numeric array.

In structure space, the "containing structure” of a pointer is well-defined by system
storage conventions. In list space, it is considered to be the contiguous, cdr-coded
segment of list surrounding the location pointed to. If a cons of the list has been
copied out by rplacd, the contiguous list includes that pair and ends at that point.

DSK:LMMAN:FD.SUB 26 6-JAN-79

Preliminary Lisp Machine Manual 145 Special Memory Referencing

%structure-boxed-size object
Returns the number of "boxed Q's" in object. This is the number of words at the
front of the structure which contain normal Lisp objects. Some structures, for

example FEFs and numeric arrays, containing additional “unboxed Q's" following
their "boxed Q's".

%structure-total-size object
Returns the total number of words occupied by the representation of object.

13.4 Special Memory Referencing

%store-conditional pointer old new
This is the basic locking primitive. pointer points to a cell which is uninterruptibly
read and written. If the contents of the cell is eq to o/d, then it is replaced by new
and t is returned. Otherwise, nil is returned and the contents of the cell is not
changed.

The following four functions are for I/O programming.

%unibus-read address
Returns the contents of the register at the specified Unibus address, as a fixnum.
You must specify a full 18-bit address. This is guaranteed to read the location only
once. Since the Lisp Machine Unibus does not support byte operations, this always
references a 16-bit word, and so address will normally be an even number.

%unibus-write address data
Writes the 16-bit number data at the specified Unibus address, exactly once.

%xbus-read io-offset :
Returns a fixnum which is the low 24 bits of the contents of the register at the
specified Xbus address. io-offset is an offset into the 1/O portion of Xbus physical
address space. This is guaranteed to read the location exactly once,

%xbus-write io-offset data
Writes the pointer field of dara, which should be a fixnum, into the register at the
specified Xbus address. The high eight bits of the word written are always zero. io-
offset is an offset into the 1/0 portion of Xbus physical address space. This 1is
guaranteed to write the location exactly once.

%p-contents-offset base-pointer offset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, it adds offset 1o the
resulting forwarded base-pointer and returns the contents of that location.

DSK:LMMAN:FD.SUB 26 _ 6-JAN-79

s

Special Memory Referencing 116 Preliminary Lisp Machine Manual

Ap-contents-as-locative pointer
Given a pointer to a memory location containing a pointer which isn't allowed to be
"in the machine” (typically an invisible pointer) this function returns the contents of
the location as a dtp-locative. le. it changes the disallowed data type to locative
so that you can safely look at it and see what it points to.

%p-contents-as-locative-offset base-pointer offset

This checks the cell pointed to by base-pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, it adds offset to the
resulting forwarded base-pointer, fetches the contents of that location, and returns it
with the data type changed to dtp-locative in case it was a type which isn’t
allowed to be "in the machine” (typically an invisible pointer), This is used, for
example, to analyze the dtp-external-value-cell-pointer pointers in a FEF, which
are used by the compiled code to reference value cells and function cells of
symbols,

%p-store-contents pointer value
value is stored into the data-type and pointer fields of the location addressed by
pointer. The cdr-code and flag-bit fields remain unchanged. value is returned.

Zp-store-contents-offset value base-pointer offset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, it adds offset 1o the
resulting forwarded base-pointer, and stores value into the data-type and pointer
fields of that location. The cdr-code and flag-bit fields remain unchanged. value is
returned.

%p-store-tag-and-pointer pointer miscfields pntrfield
Creates a Q by taking 8 bits from miscfields and 24 bits from pntrfield, and stores
that into the location addressed by pointer. The low 5 bits of miscfields become the
data-type, the next bit becomes the flag-bit, and the top two bits become the cdr-
code. This is a good way to store a forwarding pointer from one structure to
another (for example).

%p-ldb ppss pointer »
This is like ldb but gets a byte from the location addressed by pointer. Note that
you can load bytes out of the data type etc. bits, not just the pointer field, and that
the word loaded out of need not be a fixnum. The result returned is always a
fixnum, unlike %p-contents and friends.

%p-ldb-offset ppss base-painter offset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, the byte specified by
ppss is loaded from the contents of the location addressed by the forwarded base-
pointer plus offset, and returned as a fixnum. This is the way to reference byte
fields within a structure without violating system storage conventions,

DSK:LMMAN:FD.SUB 26 6-JAN-79

Preliminary Lisp Machine Manual 117 Special Memory Referencing

%p-dpb value ppss pointer ,
The value, a fixnum, is stored into the byte selected by ppss in the word addressed
by pointer. nil is returned. You can use this to alter data types, cdr codes, etc.

%p-dpb-offset value ppss base-pointer offset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, the value is stored into
the byte specified by ppss in the location addressed by the forwarded base-pointer
plus offset. nil is returned. This is the way to alter unboxed data within a structure
without violating system storage conventions.

%p-mask-field ppss pointer
This is similar to %p-ldb, except that the selected byte is returned in its original
position within the word instead of right-aligned.

%p-mask-field-offset ppss base-pointer offset
This is similar to %p-ldb-offset, except that the selected byte is returned in its
original position within the word instead of right-aligned.

%p-deposit-field value ppss pointer
This is similar to %p-dpb, except that the selected byte is stored from the
corresponding bits of value rather than the right-aligned bits.

%p-deposit-field-offset value ppss base-pointer off set .
This is similar to %p-dpb-offset, except that the selected byte is stored from the
corresponding bits of value rather than the right-aligned bits.

%“p-pointer pointer
Extracts the pointer field of the contents of the location addressed by pointer and
returns it as a fixnum.

%p-data-type pointer
Extracts the data-type field of the contents of the location addressed by pointer and
returns it as a fixnum,

%p-cdr-code pointer ‘ ‘
Extracts the cdr-code field of the contents of the location addressed by pointer and
returns it as a fixnum,

%p-flag-bit pointer

Extracts the flag-bit field of the contents of the location addressed by pointer and
returns it as a fixnum.

DSK:LMMAN;FD.SUB 26 6-JAN-79

By

The Paging System 118 Preliminary Lisp Machine Manual

Zp-store-pointer pointer value

Clobbers the pointer field of the location addressed by pointer to value, and returns
value.

Jp-store-data-type pointer value

Clobbers the data-type field of the location addressed by pointer to value, and returns
value,

%p-store-cdr-code pointer value

Clobbers the cdr-code field of the location addressed by pointer to value, and returns
value.

%p-store-flag-bit pointer value

Clobbers the flag-bit field of the location addressed by pointer to value, and returns
value,

%stack-frame-pointer

Returns a locative pointer to its caller’s stack frame. This function is not defined in
the interpreted Lisp environment; it only works from compiled code. Since it turns
into a "misc” instruction, the “caller’s stack frame" really means “the frame for the
FEF that executed the %stack-frame-pointer instruction”,

bind /ocative value

%halt

[This will be renamed to %bind in the future.] Binds the cell pointed to by /locative
to x, in the caller’s environment. This function is not defined in the interpreted
Lisp environment; it only works from compiled code. Since it turns into an
instruction, the “caller’s environment” really means “"the binding block for the FEF
that executed the bind instruction”,

Stops the machine.

13.5 The Paging System

[Someday this will discuss how it works.]

siz/ichange-page-status virtual-address swap-status access-status-and-meta-bits

The page hash table entry for the page containing virtual-address is found and altered
as specified. t is returned if it was found, nil if it was not (presumably the page is
swapped out.) swap-sratus and access-status-and-meta-bits can be nil if those fields are
not to be changed. This doesn’t make any error checks; you can really screw things
up if you call it with the wrong arguments.

DSK:LMMAN;FD.SUB 26 6-JAN-79

l’reiiminary Lisp Machine Manual 119 Microcode Variables

si:4Acompute-page-hash virtual-address
This makes the hashing function for the page hash table available to the user.

si:icreate-physical-page physical-address :
This is used when adjusting the size of real memory available to the machine. It
adds an entry for the page frame at physical-address to the page hash table, with
virtual address -1, swap status flushable, and map status 120 (read only). This
doesn’t make error checks; you can really screw things up if you call it with the
wrong arguments,

si:%delete-physical-page physical-address _
If there is a page in the page frame at physical-address, it is swapped out and its
entry is deleted from the page hash table, making that page frame unavailable for
swapping in of pages in the future. This doesn't make error checks; you can really
screw things up if you call it with the wrong arguments.

si:%disk-restore high-16-bits low-16-bits
Loads virtual memory from the partition named by the catenation of the two 16-bit
arguments, and starts executing it. The name 0 refers to the default load (the one
the machine loads when it is started up).

si:%disk-save physical-mem-size high-16-bits low-16-bits
Copies virtual memory into the partition named by the catenation of the two 16-bit
arguments (0 means the default), then restarts the world, as if it had just been
restored. The physical-mem-size argument should come from %sys-com-memory-
size in system-communication-area.

13.6 Microcode Variables

The following variables' values actually reside in the scratchpad memory of the
processor. They are put there by dtp-one-q-forward invisible pointers. The values of
these variables are used by the microcode.

%microcode-version-number Variable
This is the version number of the currently-loaded microcode, obtained from the
version number of the microcode source file.

sys:Znumber-of -micro-entries Variable

Size of micro-code-entry-area and related areas. Currently the data-type is
missing from this number.

default-cons-area Variable

The area number of the default area in which new data are to be consed. This 1is
normally working-storage-area.

DSK:LMMAN:FD.SUB 26 6-JAN-79

Microcode Variables 120 Preliminary Lisp Machine Manual

si:%initial-fel Variable
The function which is called when the machine starts up. Normally si:lisp-top-
level.

%error-handler-stack-group Variable
The stack group which receives control when a microcode-detected error occurs.
This stack group cleans up, signals the appropriate condition, or enters the debugger.

si:%current-stack-group Variable
The stack group which is currently running,

%initial-stack-group Variable
The stack group in which the machine starts up.

si:%current-stack-group-state Variable
The sg-state of the currently-running stack group.

siz/icurrent-stack-group-previous-stack-group Variable
The resumer of the currently-running stack group.

si:%current-stack-group-calling-args-pointer Variable
The argument list of the currently-running stack group.

si:%current-stack-group-calling-args-number Variable
The number of arguments to the currently-running stack group.

siz/trap-micro-pc Variable
The microcode address of the most recent error trap.

si:%count-first-level-map-reloads Variable
The number of times the first-level virtual-memory map was invalid and had to be
reloaded from the page hash table.

siz/icount-second-level-map-reloads Variable
The number of times the second-level virtual-memory map was invalid and had to be
reloaded from the page hash table.

si:%count-pdl-buffer-read-faults Variable
The number of read references to the pdl buffer which happened as virtual memory
references which trapped.

st:Zcount-pdl-buffer-write-faults Variable

The number of read references to the pdl buffer which happened as virtual memory
references which trapped.

DSK:LMMAN:;FD.SUB 26 6-JAN-79

Preliminary Lisp Machine Manual 121 Microcode Variables

si:Acount-pdl-buffer-memory-faults Variable
The number of virtual memory references which trapped in case they should have

gone to the pdl buffer, but turned out to be real memory references after all (and
therefore were needlessly slowed down.)

si:zZcount-disk-page-reads Variable
The number of pages read from the disk.

si:Zicount-disk-page-writes Variable
The number of pages written to the disk.

si:%count-disk-errors Variable
The number of recoverable disk errors.

si:icount-fresh-pages Variable

The number of fresh (newly-consed) pages created in core, which would have
otherwise been read from the disk.

si:4aging-rate Variable
The number of age steps per disk read or write. This parameter controls how long a
page must remain unreferenced before it is evicted from main memory.

si:Acount-aged-pages Variable :
The number of times the page ager set an age trap on a page, to determine whether
it was being referenced.

si:'/.count'-age-flushed-pages Variable
The number of times the page ager saw that a page still had an age trap and hence
made it "flushable’, a candidate for eviction from main memory.

“mar-low Variable

A fixnum which is the inclusive lower bound of the region of virtual memory
subject to the MAR feature.

%mar-high Variable

A fixnum which is the inclusive upper bound of the region of virtual memory
subject to the MAR feature.

%sell Variable
The instance which has just been called. (See <not-yet-written>.)

%“method-class Variable
The class in which the current method was found. (See <not-yet-written>.)

DSK:LMMAN:FD.SUB 26 6-JAN-79

Microcode Variables 122 Preliminary Lisp Machine Manual

inhibit-scheduling-flag Variable
If non-nil, no process other than the current process can run.

inhibit-scavenging-flag Variable
If non-nil, the scavenger is turned off. The scavenger is the quasi-asynchronous
portion of the garbage collector, which normally runs during consing operations.

DSK:LMMAN:FD.SUB 26 6-JAN-79

Preliminary Lisp Machine Manual 123 ' ; Areas

14. Areas

[Note: this chapter will be completely rewritten in the next edition of this manual, to
reflect the existence of the garbage collector. The present chapter is very incomplete.]

Storage in the Lisp machine is divided into areas. Each area contains related objects, of
any type. Areas are intended to give the user control over the paging behavior of his
program, among other things. By putting related data together, locality can be greatly
increased. Whenever a new object is created, for instance with cons, the area to be used
can optionally be specified. There is a default Working Storage area which collects those
objects which the user has not chosen to control explicitly.

Areas also give the user a handle to control the garbage collector. Some areas can be
declared to be “static", which means that they change slowly and the garbage collector
should not attempt to reclaim any space in them. This can eliminate a lot of useless
copying. All pointers out of a static area can be collected into an “exit vector”, eliminating
any need for the pgarbage collector to look at that area. As an important example, an
English-language dictionary can be kept inside the Lisp without adversely affecting the speed
of garbage collection. A ‘static" area can be explicitly garbage-collected at infrequent
intervals when it is believed that that might be worthwhile,

Each area can potentially have a different storage discipline, a different paging algorithm,
and even a different data representation. The microcode will dispatch on an attribute of the
area at the appropriate times. The structure of the machine makes the performance cost of
these features negligible; information about areas is stored in extra bits in the memory
mapping hardware where it can be quickly dispatched on by the microcode. These
dispatches usually have to be done anyway to make the garbage collector work, and to
implement invisible pointers.

Since the garbage collector is not yet implemented, the features mentioned in the
previous two paragraphs are not either. Also, with the implementation of the garbage
collector will come a new, more sophisticated area scheme. The two most visible effects of
the new scheme will be that garbage will be collected, and that areas will be able to shrink
and grow. When this happens, it will be documented; stay tuned. Most of this chapter will
become inoperative at this time, so don't depend on it.

Each area has a name and a number. The name is a symbol whose value is the number.
The number is an index into various internal tables, Normally the name is treated as a
special variable, so the number is what is given as an argument to a function that takes an
area as an argument. Thus, areas are not Lisp objects.

The following variables hold the areas most often used:

DSK:LMMAN:AREAS 17 6-JAN-79

Areas 124 Preliminary Lisp Machine Manual

default-cons-area Variable
The value of this variable is the number of the area to which all of the creators of
conses (cons, xcons, list, append, etc.) use by default. It is initially the number
of working-storage-area. Note that you can either bind this variable or use
functions such as cons-in-area (see page 39) which take an area as an explicit
argument.

default-array-area Variable
The value of this variable is the number of the area which make-array uses by
default. It is initially the number of working-storage-area.

define-area name size
Create a new area whose name is the symbol name. The size of the area will be
size words, rounded up to the nearest multiple of the machine page size. define-
area fills in all of the area tables appropriately, and returns the number of the
created area.

area-list Variable
The value of area-list is a list of the names of all existing areas. This list shares
storage with the internal area name table, so you should not change it.

%area-number pointer
Returns the number of the area to which pointer points, or nil if it does not point
within any known area. The data-type of pointer is ignored. '

%region-number pointer
Returns the number of the region to which pointer points, or nil if it does not point
within any known region. The data-type of pointer is ignored. Regions will be
explained later.

We will now list those areas with which the user may need to be concerned. This
section will be expanded later.

area-name Variable
Indexed by area number. Contains the area’s name (a symbol).

area-name

The function definition of area-name is an array of area names, indexed by area
numbers.

DSK:LMMAN;AREAS 17 6-JAN-79

Areas

i Preliminary Lisp Machine Manual 125

working-storage-area Variable
This is the normal value of default-cons-area and default-array-area. Most

working data are consed in this area.

permanent-storage-area Variable
This is to be used for "permanent’ data, which will (almost) never become garbage.

: Unlike woring-storage-area, the contents of this area are not continually copied
§ by the garbage collector.

sys:p-n-string Variable
Print names are stored here.

sys:nr-sym Variable
This contains most of the symbols in the Lisp world, except t and nil.

macro-compiled-program Variable
FEFs are put here by the compiler and by fasload.

DSK:LMMAN:;AREAS 17 : 6-JAN-79

The Compiler 126 Preliminary Lisp Machine Manual

15. The Compiler

15.1 The Basic Operations of the Compiler

The purpose of the Lisp compiler is to convert Lisp functions into programs in the Lisp
Machine's instruction set, so that they will run more quickly and take up less storage.
Compiled functions are represented in Lisp by FEFs (Function Entry Frames), which
contain machine code as well as various other information. The format of FEFs and the
instruction set are explained in <not-yet-written>,

There are three ways to invoke the compiler from the Lisp Machine. First, you may
have an interpreted function in the Lisp environment which you would like to compile.
The function compile is used to do this. Second, you may have code in an editor buffer
which you would like to compile. The EINE editor has commands to read code into Lisp
and compile it. Third, you may have a program (a2 group of function definitions and other
forms) written in a file on the file system. The compiler can translate this file into a QFASL
file. Loading in the QFASL file is like reading in the source file, except that the functions
in the source file will be compiled. The qc-file function is used for translating source files
into QFASL files.

152 How to Invoke the Compiler

compile symbol

symbol should be defined as an interpreted function (its definition should be a
lambda-expression). The compiler converts the lambda-expression into a FEF, saves
the lambda-expression as the :previous-expr-definition and :previous-definition
properties of symbol, and changes symbol's definition to be the FEF. (See fset-
carefully, page 60. (Actually, if symbol is not defined as a lambda-expression,
compile will try to find a lambda-expression in the :previous-expr-definition
property of symbol and use that instead.)

uncompile symbol
If symbol is not defined as an interpreted function and it has a :previous-expr-
definition property, then uncompile will restore the function cell from the value of
the property. This "undoes” the effect of compile.

qc-file filecname &optional output-file load-flag in-core-flag package
The file filename is given to the compiler, and the output of the compiler is written
to a file whose name is filename except with an FN2 of "QFASL", The input format
for files to the compiler is described on page 127. Macro definitions and special
declarations created during the compilation will be undone when the compilation is
finished.

DSK:LMMAN:COMPIL 44 ' 6-JAN-79

%
¥
b
£
H
H

e e

Preliminary Lisp Machine Manual 127 Input to the Compiler

The optional arguments allow certain modifications to this procedure. output-file lets
you change where the output is written. package lets you specify in what package
the source file is to be read. Normally the system knows, or asks interactively, and
you need not supply this argument. load-flag and in-core-flag are incomprehensible;
you don't want to use them.

qc-file-load filename
qc-file-load compiles a file and then loads it in.

See also the disassemble function (page 263), which lists the instructions of a compiled
function in symbolic form.

The compiler can also be run in Maclisp on ITS. On the MIT-Al machine, type
:LISPML:QCMP. It will type out "READY" and leave you at a Maclisp top level. Then
type (qc-file filename), expressing filename in Maclisp form.

Example:
(qc-file 7((Vispm) foo >))

153 Input to the Compiler

The purpose of qc-file is to take a file and produce a translated version which does the
same thing as the original except that the functions are compiled. qc-file reads through the
input file, processing the forms in it one by one. For each form, suitable binary output is
sent to the QFASL file so that when the QFASL file is loaded the effect of that source form
will be reproduced. The differences between source files and QFASL files are that QFASL
files are in a compressed binary form which reads much faster (but cannot be edited), and
that function definitions in QFASL files have been translated from S-expressions to FEFs.

So, if the source contains a (defun ..) form at top level, then when the QFASL file is
loaded, the function will be defined as a compiled function. If the source file contains a
form which is not of a type known specially to the compiler, then that form will be output
“directly” into the QFASL file, so that when the QFASL file is loaded that form will be
evaluated. Thus, if the source file contains (setq x 3), then the compiler will put in the
QFASL file instructions to set X to 3 at load time.

However, sometimes we want to put things in the file that are not merely meant to be
translated into QFASL form. One such occasion is top level macro definitions; the macros
must actually get defined within the compiler in order that the compiler be able to expand
them at compile time. So when a macro form is seen, it should (sometimes) be evaluated at
compile time, and should (sometimes) be put into the QFASL file.

Another thing we sometimes want to put in a file is compiler declarations. These are

forms which should be evaluated at compile time to tell the compiler something. They
should not be put into the QFASL file.

DSK:LMMAN:COMPIL 44 6-JAN-79

Input to the Compiler : 128 Preliminary Lisp Machine Manual

Therefore, a facility exists to allow the user to tell the compiler just what to do with a
form. One might want a form to be:

PPut into the QFASL file (translated), or not.
Evaluated within the compiler, or not.

Evaluated if the file is read directly into Lisp, or not.

Two forms are recognized by the compiler to allow this. The less general but Maclisp
compatible one is declare; the completely general one is eval-when.

An eval-when form looks like
(eval-when times-list

formlI

form2

cel)
The times-list may contain any of the symbols load, compile, or eval. If load is present,
the forms are written into the QFASL file to be evaluated when the QFASL file is loaded
(except that defun forms will put the compiled definition into the QFASL file instead). If
compile is present, the forms are evaluated in the compiler. If eval is present, the forms
are evaluated when read into Lisp; this is because eval-when is defined as a special form
in Lisp. (The compiler ignores eval in the times-list) For example, (eval-when (compile
eval) (macro foo (x) (cadr x))) would define foo as a macro in the compiler and when
the file is read in interpreted, but not when the QFASL file is fasloaded.

For the rest of this section, we will use lists such as are given to eval-when, eg.
(load eval). (load compile), etc. to describe when forms are evaluated.

A declare form looks like (declare forml form2 ..). declare is defined in Lisp as a
special form which does nothing: so the forms within a declare are not evaluated at eval
time. The compiler does the following upon finding form within a declare: if form is a
call to either special or unspecial, form is treated as (load compile); otherwise it is
treated as (compile).

If a form is not enclosed in an eval-when nor a declare, then the times at which it
will be evaluated depend on the form. The following table summarizes at what times
evaluation will take place for any given form seen at top level by the compiler.

(eval-when times-list form1 ...)
times-list

(declare (special‘ ...)) or (declare (unspecial ...))
(load compile)

(declare anything-elsc)
(compile)

(special ..) or (unspecial ..)
(load compile eval)

DSK:LMMAN;COMPIL 44 ' 6-JAN-79

U

Preliminary Lisp Machine Manual 129 Input to the Compiler

(macro ..) or (defstruct ...)
(load compile eval)

(comment ..) Ignored

(begf ...) or (endf ..)
Ignored but may one day put something in the QFASL file.

(compiler-let ((varvah ..) body..)
At (compile eval) time, processes the body with the indicated variable
bindings in effect. Does nothing at load time.

(local-declare (decl decl...) body..)
Processes the body in its normal fashion, with the indicated declarations

added to the front of the list which is the value of local-declarations.

anything-clse (load eval)

Sometimes a macro wants to return more than one form for the compiler top level to
see (and 10 be evaluated). The following facility is provided for such macros. If a form
(progn (quote compile) forml form2 ...)
is seen at the compiler top level, all of the forms are processed as if they had been at
compiler top level. (Of course, in the interpreter they will all be evaluated, and the (quote
compile) will harmlessly evaluate to the symbol compile and be ignored.)

eval-when Special Form
An eval-when form looks like
(eval-when times-list forml form2 ...)
If one of the element of times-list is the symbol eval, then the forms are evaluated;

otherwise eval-when does nothing.

But when seen by the compiler, this special form does the special things described
above.

declare Special Form
declare does nothing, and returns the symbol declare.

But when seen by the compiler, this special form does the special things described
above.

DSK:LMMAN:COMPIL 44 6-JAN-79

Compiler Declarations 130 Preliminary Lisp Machine Manual

15.4 Compiler Declarations

This section describes functions meant to be called during compilation, and variables
meant to be set or bound during compilation, by using declare or local-declare.

local-declare Special Form
A local-declare form looks like
(local-declare (decll decl2 ...)

formli

form2

ced) ;
Each decl is consed onto the list local-declarations while the forms are being
evaluated (in the interpreter) or compiled (in the compiler). There are two uses for
this. First, it can be used to pass information from outer macros fo inner macros.
Secondly, the compiler will specially interpret certain decls as local declarations,
which only apply to the compilations of the forms. It understands the following-
forms:

(special varlvar2..)
The variables var!, var2, etc. will be treated as special variables
during the compilation of the forms,

(unspecial var’ var2...)
The variables varl, var2, etc. will be treated as local variables
during the compilation of the forms,

(macro namelambda (x) body)
name will be defined as a macro during the compilation of the
forms. Note that the cddr of this item is a function.

special Spccial Form
(special varl var2 ..) causes the variables to be declared to be “special’ for the
compiler.

unspecial Special Form .
(unspecial var! var2 ..) removes any “special” declarations of the variables for the
compiler.

The next three declarations are primarily for Maclisp compatibility.

Xexpr Special Form
(kexpr symlI sym2 ..) declares syml, sym2, etc. to be names of functions. In
addition it prevents these functions from appearing in the list of functions referenced
but not defined printed at the end of the compilation.

DSK:LMMAN;COMPIL 44 6-JAN-79

Preliminary Lisp Machine Manual 131 Compiler Declarations

Xlexpr Spccial Form
(xlexpr syml sym2 ..) declares syml, sym2, etc. to be names of functions. In
addition it prevents these functions from appearing in the list of functions referenced
but not defined printed at the end of the compilation.

xfexpr Spccial Form
(xfexpr syml sym2 ..) declares syml, sym2, etc. to be names of special forms. In
addition it prevents these names from appearing in the list of functions referenced
but not defined printed at the end of the compilation.

There are some advertised variables whose compile-time values affect the operation of
the compiler. The user may set these variables by including in his file forms such as
(declare (setq open-code-map-switch t))

run-in-maclisp-switch Variable

If this ‘variable is non-nil, the compiler will try to warn the user about any
constructs which will not work in Maclisp. By no means will all Lisp machine
system functions not built in to Maclisp be cause for warnings; only those which
could not be written by the user in Maclisp (for example, *catch, make-array,
value-cell-location, etc.). Also, lambda-list keywords such as &optional and
initialized prog variables will be mentioned. This switch also inhibits the warnings
for obsolete Maclisp functions. The default value of this variable is nil.

obsolete-function-warning-switch Variable
If this variable is non-nil, the compiler will try to warn the user whenever an
"obsolete” Maclisp-compatibility function such as maknam or samepnamep is used.
The default value is t.

allow-variables-in-function-position-switch Variable
If this variable is non-nil, the compiler allows the use of the name of a variable ..
function position to mean that the variable's value should be funcall’d. This is for
compatibility with old Maclisp programs. The default value of this variable is nil.

open-code-map-switch Variable
If this variable is non-nil, the compiler will attempt to produce inline code for the
mapping functions (mapc, mapcar, etc, but not mapatoms) if the function being
mapped is an anonymous lambda-expression. This allows that function to reference
the local variables of the enclosing function without the need for special
declarations. The generated code is also more efficient. The default value is T.

all-special-switch Variable
If this variable is non-nil, the compiler regards all variables as special, regardless of
how they were declared. This provides full compatibility with the interpreter at the
cost of efficiency. The default is nil. "

DSK:LMMAN:COMPIL 44 6-JAN-79

Compiler Declarations 132 Preliminary Lisp Machine Manual

-

+

inhibit-style-warnings-switch Variable :
If this variable is non-nil, all compiler style-checking is turned off. Style checkmg is
used to issue obsolete function warnings and won't-run-in-Maclisp warnings, and
other sorts of warnings. The default value is nil. See also the inhibit-style-
warnings macro, which acts on one level only of an expression.

retain-variable-names-switch Variable

This controls whether the generated FEFs remember the names of the variables in

the function: such information is useful for debugging (the arglist function uses it,

see page 61), but it increases the size of the QFASL file and the FEFs created. The

variable may be any of

nil No names are saved.
args Names of arguments are saved.
all Names of arguments and &aux variables are saved.

The default value of this symbol is args, and it should usually be left that way.

compiler-let Macro
(compiler-let ((variable value)..) body..), syntactically identical to let, allows
compiler switches to be bound locally at compile time, during the processing of the
body forms,
Example:
{compiler-let ((open-code-map-switch nil)) -
(map (function (lambda (x) ...)) foo))
will prevent the compiler from open-coding the map. When interpreted, compiler-
let is equivalent to let. This is so that global switches which affect the behavior of
macro expanders can be bound locally.

inhibit-style-warnings Macro
(inhibit-style-warnings form) prevents the compiler from performing style-checking
on the top level of form. Style-checking will still be done on the arguments of
form. Both obsolete function warnings and won't-run-in-Maclisp warnings are done
by means of the style-checking mechanism, so, for example,
{setq bar (inhibit-style-warnings (value-cell-location foo)))
will not warn that value-cell-location will not work in Maclisp, but
(inhibit-style-warnings (setq bar (value-cell-location foo)))
will warn, since inhibit-style-warnings applies only to the top level of the form
inside it (in this case, to the setq).

DSK:LMMAN:COMPIL 44 6-JAN-79

i
$

Preliminary Lisp Machine Manual 133 Compiler Source-Level Optimizers

155 Compiler Source-Level Optimizers

The compiler stores optimizers for source code on property lists so as to make it easy
for the user to add them. An optimizer can be used to transform code into an equivalent
but more efficient form (for example, (eq obj nil) is transformed into (null 0bj), which can
be compiled better). An optimizer can also be used to tell the compiler how to compile a
special form. For example, in the interpreter do is a special form, implemented by a
function which takes quoted arguments and calls eval. In the compiler, do is expanded in
a macro-like way by an optimizer, into equivalent Lisp code using prog, cond, and go,
which the compiler understands,

The compiler finds the optimizers to apply to a form by looking for the
compiler:optimizers property of the symbol which is the car of the form. The value of
this property should be a list of optimizers, each of which must be a function of one
argument. The compiler tries each optimizer in turn, passing the form to be optimized as
the argument. An optimizer which returns the original form unchanged (and eq to the
argument) has “done nothing", and the next optimizer is tried. If the optimizer returns
anything else, it has "done something", and the whole process starts over again. This is
somewhat like a Markov algorithm. Only after all the optimizers have been tried and have
done nothing is an ordinary macro definition processed. This is so that the macro
definitions, which will be seen by the interpreter, can be overridden for the compiler by an
optimizer.

156 Files that Maclisp Must Compile

Certain programs are intended to be run both in Maclisp and in Lisp Machine Lisp.
These files need some special conventions. For example, such Lisp Machine constructs as
&aux and &optional must not be used. In addition, eval-when must not be used, since
only the Lisp Machine compiler knows about it. All special declarations must be enclosed
in declares, so that the Maclisp compiler will see them. It is suggested that you turn on
run-in-maclisp-switch in such files, which will warn you about a lot of bugs.

The macro-character combination "#Q" causes the object that follows it to be visible
only when compiling for the Lisp Machine. The combination "#M" causes the following
object to be visible only when compiling for Maclisp. These work only on subexpressions of
the objects in the file, however. To conditionalize top-level objects, put the macros if-
for-lispm and if-for-maclisp around them. (You can only put these around a single
object) The if-for-lispm macro turns off run-in-maclisp-switch within its object,
preventing spurious warnings from the compiler. The #Q macro-character does not do this,
since it can be used to conditionalize any S-expression, not just a top-level form.

There are actually three possible cases of compiling: you may be compiling on the Lisp
Machine for the Lisp Machine; you may be compiling in Maclisp for the Lisp Machine (with
:LISPML:QCMP): or you may be compiling in Maclisp for Maclisp (with COMPLR). (You
can’t compile for Maclisp on the Lisp Machine because there isn't a Lisp Machine Lisp
version of COMPLR.) To allow a file to detect any of these conditions it needs to, the

DSK:LMMAN;COMPIL 44 6-JAN-79

Files that Maclisp Must Compile 134 Preliminary Lisp Machine Manual

following macros are provided:

if-for-lispm Macro
If (if-for-lispm form) is seen at the top level of the compiler, form is passed to
the compiler top level if the output of the compiler is a QFASL file intended for the
Lisp Machine. If the Lisp Machine interpreter sees this it will evaluate form (the
macro expands into form).

if-for-maclisp Macro .
If (if-for-maclisp form) is seen at the top level of the compiler, form is passed to
the compiler top level if the output of the compiler is a FASL file intended for
Maclisp (e.g. if the compiler is COMPLR). If the Lisp Machine interpreter sees this
it will ignore it (the macro expands into nil).

if -for-maclisp-else-lispm Macro
If (if-for-maclisp-else-lispm form! form2) is seen at the top level of the
compiler, forml is passed to the compiler top level if the output of the compiler is
a FASL file intended for Maclisp; otherwise form2 is passed to the compiler top
level.

if-in-lispm Macro S
On the Lisp Machine, (if-in-lispm form) causes form to be evaluated; in Maclisp,
form is ignored. ‘

if -in-maclisp Macro
In Maclisp, (if-in-maclisp form) causes form to be evaluated; on the Lisp
Machine, form is ignored.

When you have two definitions of one function, one conditionalized for one machine
and one for the other, indent the first (defun” by one space, and the editor will put both
function definitions together in the same file-section.

In order to make sure that those macros and macro-characters are defined when reading
the file into the Maclisp compiler, you must make the file start with a prelude, which will
have no effect when you compile on the real machine. The prelude can be found in "Al
LMDOC: .COMPL PRELUD" this will also define most of the standard Lisp Machine
macros and reader macros in Maclisp, including defmacro and the backquote facility.

Another useful facility is the form (status feature lispm), which evaluates to t when
evaluated on the Lisp machine and to nil when evaluated in Maclisp.

DSK:LMMAN:COMPIL 44 6-JAN-79

Preliminary Lisp Machine Manual 135 Macros
16. Macros

16.1 Introduction to Macros

If eval is handed a list whose car is a symbol, then eval inspects the definition of the
symbol te find out what to do. If the definition is a cons, and the car of the cons is the
symbol macro, then the definition (i.e. that cons) is called a macro. The cdr of the cons
should be a function of one argument. eval applies the function to the form it was
originally given. Then it takes whatever is returned, and evaluates that in lieu of the
original form. ‘ '

Here is a simple example. Suppose the definition of the symbol first is
(macro lambda (x)
(1ist “car (cadr x)))
This thing is a macro: it is a cons whose car is the symbol macro. What happens if we try
to evaluate a form (first (@ b ¢))? Well, eval sees that it has a list whose car is a symbol
(namely, first), so it looks at the definition of the symbol and sees that it is a cons whose
car is macro; the definition is a macro. eval takes the cdr of the cons, which is a lambda
expression, and applies it 1o the original form that eval was handed. So it applies (lambda
(x) (list ’car (cadr x))) to (first (a b ¢}). x is bound to (first (a b ¢)), (cadr x)
evaluates to (a b ¢), and (list 'car (cadr x)) evaluates to (car *(a b ¢)), which is what the
function returns. eval now evaluates this new form in place of the original form. (car (a
b ¢)) returns a, and so the result is that (first "(a b ¢)) returns a,

What have we done? We have defined a macro called first. What the macro does is
to translate the form to some other form. Our translation is very simple—it just translates
forms that look like (first x) into (car x), for any form x. We can do much more
interesting things with macros, but first we will show how to define a macro.

Macros are normally defined using the macro special form. A macro definition looks
like this:
{macro name (arg)
body)
To define our first macro, we would say
(macro first (x)
(list “car (cadr x)))

Here are some more simple examples of macros. Suppose we want any form that looks
like (addone x) to be translated into (plus 1 x). To define a macro to do this we would
say

(macro addone (x)
(list 7plus 71 (cadr x)))

Now say we wanted a macro which would translate (increment x) into (setq x (1+ x).
This would be:

DSK:LMMAN:MACROS 39 6-JAN-79

Introduction to Macros 136 Preliminary Lisp Machine Manual

(macro increment (x)
(list “setq (cadr x) (list 71+ (cadr x))))
Of course, this macro is of limited usefulness. The reason is that the form in the cadr of
the increment form had better be a symbol. If you tried (increment (car x)), it would be
translated into (setq (car x) (I+ (car x))), and setq would complain.

You can see from this discussion that macros are very different from functions. A
function would not be able to tell what kind of subforms are around in a call to itself; they
get evaluated before the functions ever sees them. However, a macro gets to look at the
whole form and see just what is going on there. Macros are not functions; if first is
defined as a macro, it is not meaningful to apply first to arguments. A macro does not
take arguments at all; it takes a Lisp form and turns it into another Lisp form.

The purpose of functions is to compute; the purpose of macros is to translate. Macros
are used for a variety of purposes, the most common being extensions to the Lisp language.
For example, Lisp is powerful enough to express many different control structures, but it
does not provide every control structure anyone might ever possibly want. Instead, if a
user wants some kind of control structure with a syntax that is not provided, he can
translate it into some form that Lisp does know about.

For example, someone might want a limited iteration construct which increments a
symbol by one until it exceeds a limit (like the FOR statement of the BASIC language). He
might want it to look like

(for a 1 100 (print a) (print (x a a)))
To get this, he could write a macro to translate it into

(do a 1 (1+ a) (> a 100) (print a) (print (x a a)))
A macro to do this could be defined with

(macro for (x)

(cons “do
{cons (cadr x)
(cons (caddr x)
(cons (list 71+ (cadr x))
(cons (1ist 7> (cadr x) (cadddr x))
(cddddr x)))))))

Now he has defined his own new control structure primitive, and it will act just as if it
were a special form provided by Lisp itself.

DSK:LMMAN:MACROS 39 6-JAN-79

-

Preliminary Lisp Machine Manual 137 Aids for Defining Macros

16.2 Aids for Defining Macros

The main problem with the definition for the for macro is that it is verbose and clumsy.
If it is that hard to write a macro to do a simple specialized iteration construct, one would
wonder how anyone would write macros of any real sophistication,

There are two things that make the definition so inelegant. One is that the programmer
must write things like "(cadr x)" and "(cddddr x)" to refer to the parts of the form he wants
to do things with. The other problem is that the long chains of calls to the list and cons
functions are very hard to read.

Two features are provided to solve these two problems. The defmacro macro solves
the former, and the "backquote" ("‘ ") reader macro solves the latter.

16.2.1 Defmacro

Instead of referring to the parts of our form by "(cadr x)* and such, we would like to
give names to the various pieces of the form, and somehow have the (cadr x) automatically
generated. This is done by a macro called defmacro. It is easiest to explain what
defmacro does by showing an example. Here is how you would write the for macro using
defmacro:

(defmacro for (var lower upper . body)
(cons “do
(cons var
(cons lower
(cons (list 7“1+ var)
(cons (list 7> var upper)

body))))))

The (var lower upper . body) is a partern 1o match against the body of the macro (to
be more precise, to match against the cdr of the argument to the macro). defmacro tries
to match the two lists

(var lower upper . body)

and

(a1l 100 (print a) (print (x a a)))
var will get bound to the symbol a, lower to the fixnum 1, upper to the fixnum 100, and
body to the list ((print a) (print (%X a a))). Then inside the body of the defmacro, var,
lower, upper, and body are variables, bound to the matching parts of the macro form.

defmacro Macro A
defmacro is a general purpose macro-defining macro. A defmacro form looks like
(defmacro name pattern . body)
The pattern may be anything made up out of symbols and conses. It is matched
against the body of the macro form; both pattern and the form are car'ed and
cdr'ed identically, and whenever a symbol is hit in pattern, the symbol is bound to
the corresponding part of the form. All of the symbols in partern can be used as

DSK:LMMAN:MACROS 39 6-JAN-79

Aids for Defining Macros 138 - Preliminary Lisp Machine Manual

variables within body. name is the name of the macro to be defined. body is
evaluated with these bindings in effect, and is returned to the evaluator.

Note that the pattern need not be a list the way a lambda-list must. In the above
example, the pattern was a “dotted list", since the symbol body was supposed to matgh the
cddddr of the macro form. If we wanted a new iteration form, like for except that it our
example would look like

(for a (1 100) (print a) (print (x a a)))
(just because we thought that was a nicer syntax), then we could do it merely by modifying

the pattern of the defmacro above: the new pattern would be (var (lower upper) .
body). : -

Here is how we would write our other examples using defmacro:
(defmacro first (the-list)
(list “car the-list))

(defmacro addone (form)
(list “plus “1 form))

(defmacro increment (symbol)
(1ist “setq symbol (list 71+ symbol)))
All of these were very simple macros and have very simple patterns, but these examples
show that we can replace the (cadr x) with a readable mnemonic name such as the-list or
symbol, which makes the program clearer.

There is another version of defmacro which defines displacing macros (see page 141).
defmacro has other, more complex features; see page 143,

16.2.2 Backquote

Now we deal with the other problem: the long strings of calls to cons and list. For
this we must introduce some reader macros. Reader macros are not the same as normal
macros, and they are not described in this chapter; see page 156.

The backquote facility is used by giving a backquote character ("«'", ASCII code 140
octal), followed by a form. If the form does not contain any use of the comma macro-
character, the form will simply be quoted. For example,

“(a bc) ==>(abc)

“abc) ==>(abc)
So in the simple cases, backquote is just like the regular single-quote macro. The way to
get it to do interesting things is to include a use of the comma somewhere inside of the
form following the backquote. The comma is followed by a form, and that form gets
evaluated even though it is inside the backquote. For example,

DSK:LMMAN:MACROS 39 6-JAN-79

Preliminary Lisp Machine Manual 139

Aids for Defining Macros

(setqg b 1)
“(abc) ==>(abc)
“a ,bc) ==>(alc)

In other words, backquote quotes everything except things preceeded by a comma; those
things get evaluated.

When the reader sees the “(a ;b ¢) it is actually generating a form such as (list ’a b “c).
The actual form generated may use list, cons, append, or whatever might be a good idea;
you should never have to concern yourself with what it actually turns into. All you need
to care about is what it evaluates to.

This is generally found to be pretty confusing by most people; the best way to explain
further seems to be with examples. Here is how we would write our three simple macros
using both the defmacro and backquote facilities.

(defmacro first (the-list)
“(car ,the-list))

(defmacro addone (form)
“(plus 1 ,form))

(defmacro increment (symbol)
“(setq ,symbol (1l+ ,symbol)))
To finally demonstrate how easy it is to define macros with these two facilities, here is the
final form of the for macro.
(defmacro for (var lower upper . body)
“(do ,var ,lower (l+ ,var) (> ,var ,upper) . ,body))
Look at how much simpler that is than the original definition. Also, look how closely it
resembles the code it is producing. The functionality of the for really stands right out
when written this way.

If a comma inside a backquote form is followed by an “atsign™ character ("@"), i1t has a
special meaning. The ",@" should be followed by a form whose value is a fist; then each of
the elements of the list are put into the list being created by the backquote. In other words,
instead of generating a call to the cons function, backquote generates a call 1o append.
For example, if a is bound to (x y z), then ‘(1 ;a 2) would evaluate to (1 (x y z) 2), but
‘(1 ,@a 2) would evaluate to ‘(1 x y z 2).

Here is an example of a macro definition that uses the "J@" construction. Suppose you
wanted to extend Lisp by adding a kind of special form called repeat-forever, which
evaluates all of its subforms repeatedly. One way to implement this would be to expand

(repeat-forever forml form2 form3)
into

DSK:LMMAN:MACROS 39 6-JAN-79

A g

Aids for Defining Macros 140 Preliminary Lisp Machine Manual

(prog ()
a forml
form2
form3

(go a))

You could define the macro by
(macro repeat-forever body
“(prog ()
a ,@body
(go a)))

Advanced macro writers sometimes write "macro-defining macros™ forms which expand
into forms which, when evaluated, define macros. In such macros it is often useful to use
nested backquote constructs. The following example illustrates the use of nested backquotes
in the writing of macro-defining macros.

This example is a very simple version of defstruct (see page 147). You should first
understand the basic description of defstruct before proceeding with this example. The
defstruct below does not accept any options, and only allows the simplest kind of items;
that is, it only allows forms like

(defstruct (name)
item1
item2
item3
itemd4

ced)

We would like this form to expand into

(progn
(defmacro iteml (x)
“aref ,x 1))
(defmacro item2 (x)
“aref ,x 2))
(defmacro item3 (x)
Maref ,x 3))
(defmacro itemd4 (x)
“(aref ,x 4))

o)

Here is the macro to perform the expansion:

DSK:LMMAN:MACROS 39 6-JAN-79

g o

prpapr——

v e 1 e

e e

Preliminary Lisp Machine Manual 141 Aids for Debugging Macros

(defmacro defstruct ((name) . items)

(do ((item-1ist items (cdr item-list))
(ans nil)
(i 0 (1+ 1i)))
((null item-list)
(cons “progn (nreverse ans)))

{setg ans
(cons “(defmacro ,(car item-list) (x)
“(aref ,x ,7,1))

ans))))

The interesting part of this definition is the body of the (inner) defmacro form: ‘(aref
X i), Instead of using this backquote construction, we could have written (list ’aref x ,i);
that is, the *)," acts like a comma which matches the outer backquote, while the =,
preceeding the "x" matches with the inner backquote. Thus, the symbol i is evaluated when
the defstruct form is expanded, whereas the symbol x is evaluated when the accessor

macros are expanded.

Backquote can be useful in situations other than the writing of macros. Whenever there
is a piece of list structure to be consed up, most of which is constant, the use of backquote
can make the program considerably clearer.

16.3 Aids for Debugging Macros "

mexp
mexp goes into a loop in which it reads forms and sequentially expands them,
printing out the result of each expansion. It terminates when it reads an atom
(anything that is not a cons). If you type in a form which is not a macro form,
there will be no expansions and so it will not type anything out, but just prompt
you for another form. This allows you to see what your macros are expanding into,
without actually evaluating the result of the expansion, '

16.4 Displacing Macros

Every time the the evaluator sees a macro form, it must call the macro to expand the
form. If this expansion always happens the same way, then it is wasteful to expand the
whole form every time it is reached; why not just expand it once? A macro is passed the
macro form itself, and so it can change the car and cdr of the form to something else by
using rplaca and rplacd! This way the first time the macro is expanded, the expansion will
be put where the macro form used to be, and the next time that form is seen, it will
already be expanded. A macro that does this is called a displacing macro, since it displaces
the macro form with its expansion.

DSK:LMMAN:MACROS 39 6-JAN-79

Displacing Macros 142 Preliminary Lisp Machine Many

The major problem with this is that the Lisp form gets changed by its evaluation. If ygg:'t'

were to write a program which used such a macro, call grindef to look at it, then run thy i

program and call grindef again, you would see the expanded macro the second time,

Presumably the reason the macro is there at all is that it makes the program look nicer; we ‘
would like to prevent the unnecessary expansions, but still let grindef display the program .

in its more attractive form. This is done with the function displace.

displace form expansion ,
form must be a list. displace replaces the car and cdr of form so that it looks like;
(si:displaced original-form expansion)
original-form is equal to form but has a different top-level cons so that the replacing '
mentioned above doesn't affect it. si:displaced is a macro, which returns the caddr
of its own macro form. So when the si:displaced form is given to the evaluator, it
“expands” to expansion. displace returns expansion.

The grinder knows specially about si:displaced forms, and will grind such a form as if it
had seen the original-form instead of the si:displaced form.

So if we wanted to rewrite our addone macro as a displacing macro, instead of writing
(macro addone (x)
(list “plus “1 (cadr x)))
we would write
(macro addone (x)
(displace x (list “plus “1 (cadr x))))

Of course, we really want to use defmacro to define most macros. Since there is no

way to get at the original macro form itself from inside the body of a defmacro, another:
version of it is provided:

defmacro-displace Macro

defmacro-displace is just like defmacro except that it defines a displacing macro,
using the displace function.

Now we can write the displacing version of addone as
(defmacro-displace addone (form)
(list “plus “1 form))
All we have changed in this example is the defmacro into defmacro-displace. addone is
now a displacing macro.

DSK:LMMAN:MACROS 39 6-JAN-79

Preliminary Lisp Machine Manual 143 Advanced Features of Defmacro

16.5 Advanced Features of Defmacro

(To be supplied.)

(The basic matter is that you can use &optional and &rest with defmacro. The
interactions between &optional’s initialization, and the fact that the “lambda-list” in
defmacro can be arbitrary list structure are not clear. If you need to use this feature, try
it out.)

16.6 Functions to Expand Macros

The following two functions are provided to allow the user to control expansion of
macros; they are often useful for the writer of advanced macro systems.

macroexpand-1 form &optional compilerp
If form is a macro form, this expands it (once) and returns the expanded form.
Otherwise it just returns form. If compilerp is t, macroexpand-1 will search the
compiler’s list of intenally defined macros (sys:macrolist) for a definition, as well as
the function cell of the car of form. compilerp defaults to nil.

macroexpand form &optional compilerp
If form is a macro form, this expands it repeatedly until it is not a macro form, and
returns the final expansion. Otherwise, it just returns form. compilerp has the same
meaning as in macroexpand-1. '

DSK:LMMAN;MACROS 39 6-JAN-79

Defstruct 144 Preliminary Lisp Machine Manual

17. Defstruct

17.1 Introduction to Structure Macros

defstruct provides a facility in Lisp for creating and using aggregate datatypes with
named elements. These are like "structures” in PL/I, or “records” in PASCAL. In the last
chapter we saw how to use macros to extend the control structures of Lisp; here we see
how they can be used to extend Lisp's data structures as well.

To explain the basic idea, assume you were writing a Lisp program that dealt with space
ships. In your program, you want to represent a space ship by a Lisp object of some kind.
The interesting things about a space ship, as far as your program is concerned, are its
position (X and Y), velocity (X and Y), and mass. How do you represent a space ship?

Well, the representation could be a 5-list of the x-position, y-position, and so on.
Equally well it could be an- array of five elements, the zeroth being the x-position, the first
being the y-position, and so on. The problem with both of these representations is that the
"elements” (such as x-position) occupy places in the object which are quite arbitrary, and
hard to remember (Hmm, was the mass the third or the fourth element of the array?). This
would make programs harder to write and read. What we would like to see are names,
easy to remember and to understand. If the symbol oo were bound to a representation of
a space ship, then

(ship-x-position fo0)
could return its x-position, and
{ship-y-position foo)
its y-position, and so forth. defstruct does just this.

defstruct itself is a macro which defines a structure. For the space ship example above,
we might define the structure by saying:
{defstruct (ship)
ship-x-position
ship-y-position
ship-x-velocity
ship-y-velocity
ship-mass)

(This is a very simple case of defstruct: we will see the general form later.) The
evaluation of this form does several things. First, it defines ship-x-position to be a macro
which expands into an aref form; that is, (ship-x-position foo) would turn into (aref
foo 0). All of the "elements" are defined to refer to sequentially increasing elements of the
array, e.g., (ship-mass foo) would turn into (aref foo 4). So a ship is really implemented
as an array, although that fact is kept hidden. These macros are called the accessor macros,
as they are used to access elements of the structure.

DSK:LMMAN:DEFSTR 26 6-JAN-79

Preliminary Lisp Machine Manual 145 ; Setf and Locf

defstruct will also define make-ship to be a macro which expands into a call to
make-array which will create an array of the right size (namely, 5 elements). So (setq x
(make-ship)) will make a new ship, and x will be bound to it. This macro is called the
constructor macro, because it constructs a new structure.

We also want to be able to change the contents of a structure. To do this, we use the
setl macro (see page 146), as follows (for example):
(setf (ship-x-position x) 100) ;
Here x is bound to a ship, and after the evaluation of the setf form, the ship-x-position
of that ship will be 100. The way this works is that the setf form expands into (aset 100 x
0): again, this is invisible to the programmer.

By itself, this simple example provides a powerful structure definition tool. But, in fact,
defstruct has many other features. First of all, we might want to specify what kind of Lisp
object to use for the "implementation” of the structure. The example above implemented a
“ship” as an array, but defstruct can also implement structures as array-leaders and as lists.
(For array-leaders, the accessor macros expand into calls to array-leader, and for lists, to
car, cadr, caddr, and so on.)

Most structures are implemented as arrays. Lists take slightly less storage, but elements
near the end of a long list are slower to access. Array leaders allow you to have a
homogeneous aggregate (the array) and a heterogeneous aggregate with named elements (the
leader) tied together into one object.

defstruct allows you to specify to the constructor macro what the various elements of
the structure should be initialized to. It also lets you give, in the defstruct form, default
values for the initialization of each element.

171.2 Setf and Locf

In Lisp, for each function to access (read) any piece of information, there is almost
always a corresponding function to update (write) it as well. For example, symeval accesses
a symbol's value cell, and set updates it. array-leader accesses the contents of an array
leader element, and store-array-leader updates it. The knowledge of how these functions
correspond is accessible through a macro called setl.

setf is particularly useful in combination with structure-accessing macros, such as those
created with defstruct, because the knowledge of the representation of the structure is
embedded inside the macro, and the programmer shouldn’t have to know what it is in order
to alter an element of the structure,

DSK:LMMAN:DEFSTR 26 6-JAN-79

Setf and Locf 146 Preliminary Lisp Machine Manual

setf Macro
setf takes a form which accesses something, and “inverts" it to produce a
corresponding form to update the thing. The form for setf is
(setf access-form value)
It expands into an update form, which stores the result of evaluating the form value
into the place referenced by the access-form,
Examples:
(setf (array-leader foo 3) “bar)
==z) (store-array-leader ‘bar foo 3)
(setf a 3) ===> (setq a 3)
(setf (plist “a) “(foo bar)) ===> (setplist “a 7(foo bar))
(setf (aref q 2) 56) ===> (aset 56 q 2)
(setf (cadr w) x) ===> (rplaca (cdr w) x)

locf Macro ,
locf takes a form which accesses some cell, and produces a corresponding form to
create a locative pointer to that cell. The form for locf is
(locf access-form) ’
Examples:
(locf (array-leader foo 3)) ===> (ap-leader foo 3)
(locf a) ===> (value-cell-location “a)
(locf (plist “a)) ===> (property-cell-location “a)
(locf (aref q 2)) ===> (aloc q 2)

Both setf and locf work by means of property lists. When the form (setf (aref q 2)
56) is expanded, setf looks for the setf property of the symbol aref. The value of the
setfl property of a symbol should be a cons whose car is a pattern to be matched with the
access-form, and whose cdr is the corresponding update-form, with the symbol si:val in the
place of the value to be stored. The setf property of aref is a cons whose car is (aref
array . subscripts) and whose c¢dr is (aset sicval array . subscripts). If the
transformation which setf is to do cannot be expressed as a simple pattern, an arbitrary
function may be used. When the form (setf (foo bar) baz) is being expanded, if the setf
property of foo is a symbol, the function definition of that symbol will be applied to two
arguments, (foo bar) and baz, and the result will be taken to be the expansion of the setf.

Similarly, the locf function uses the locf property, whose value is analogous. For
example, the locf property of aref is a cons whose car is (aref array . subscripts) and
whose cdr is (aloc array . subscripts). There is no si:val in the case of locf.

As a special case. setf and locf allow a variable as the reference. In this case they
turn into setq and value-cell-location, respectively.

For the sake of efficiency, the code produced by setf and locf does not preserve order
of evaluation of the argument forms. This is only a problem is the argument forms have
interacting side-effects. In addition, the value produced by setf is dependant on the
structure type and is not guaranteed; setl should be used for side effect only.

DSK:LMMAN:DEFSTR 26 6-JAN-79

R

T e

Preliminary Lisp Machine Manual 147 How to Use Defstruct

171.3 How to Use Defstruct

defstruct Macro
A call to defstruct looks like:
(defstruct (name option-1 option-2 ...)
item-1 \./
item-2
...) .
name must be a symbol: it is the name of the structure. It is used for many
different things, explained below. k

option-n may be either a symbol (which should be one of the recognized ogtion
names, listed below) or a list (whose car should be one of the option names and the
rest of which should be "arguments” to the option).

item-n may be in any of three forms:

1 item-name
(2) (item-name default-init) /
(3) ((item-name-1 byte-spec-1 default-init-1)

(item-name-2 byte-spec-2 default-init-2)
cel)

item-name must always be a symbol, and each item-name is defined as an access
macro. Each item allocates one entry of the physical structure, even though in form
(3) several access macros are defined.

In form (1), item-name is simply defined as a macro to return the corresponding
element of the structure. The constructor macro will initialize that entry to nil (or
0 in a numeric array) by default. In form (2), the access macro is defined the same
way, but the default initialization is provided by the user of defstruct. |
]

In form (3), several access macros are defined, and each one refers to the single ur'h

structure element allocated for this item. However, if byte-spec is a fixnum, the ealived -
access macros will ldb that byte from the entry (see the function ldb, page 77).
byte-spec may also be nil, in which case the usual form of access macro is defined,
returning the entire entry in the structure. Note that it is possible to define two or
more different overlapping byte fields. (If more than one of these has a default‘ init
the results of initializing the entry are undefined and unpredictable.) For example. if
the third item of a call to defstruct were
((foo-high-byte 1010)
(foo-low-byte 0010) L
(foo-whole-thing nil))
then (foo-high-byte foo) would expand to (ldb 1010 (aref foo 2)), and (foo-
whole-thing foo) would expand to (aref foo 2).

DSK:LMMAN:DEFSTR 26 6-JAN-19

i
i

Options to Defstruct 148 Preliminary Lisp Machine Manual

Form (3) can also be used if you want to have an element with more than one
access macro. By putting ((foo nil) (bar nil)), both foo and bar will be defined
identically.

174 Options to Defstruct

Note that options which take no arguments may be given as just a symbol, instead of a

list,

xviarray

The structure should be implemented as an array. This is the default. (No
arguments.)

" :array-leader The structure should implemented as be an array-leader. (No arguments.)

XV :list

The structure should be implemented as a list. (No arguments.)

:grouped-array

:times

size
:size-macro

)(constructor

See page 150.
Used by grouped arrays. See page 150.

Takes one argument, a symbol. The symbol gets set to the size of the
structure, at load-time (not compile-time).

One argument, a symbol. The symbol gets defined as # macro, which
expands into the size of the structure.

One argument, a symbol which will be the name of the constructor macro.
If the option is not present, the name of the constructor will be made by
concatenating “make-" with the name of the structure. If the argument is
nil. do not define any constructor macro.

X :named-structure

One optional argument. If present, the argument is the named structure
symbol. If not, the named structure symbol will be the name of the
structure. This causes the constructor to create named structure arrays (and
thus may not be used with the :list option) and automatically allocate the
appropriate slot in the structure and put the symbol there,

:default-pointer

:make-array

iinclude

One argument. The access macros will be defined in such a way that if they
are called on no "arguments’, the argument to the :default-pointer option
will be used instead. (Normally, access macros will signal an error if their
“argument” is missing.)

One argument, arguments to the make-array function. See below:

See page 150.

DSK:LMMAN:DEFSTR 26 6-JAN-79

Preliminary Lisp Machine Manual 149 Using the Constructor Macro

11.5 Using the Constructor Macro

If the argument to the :constructor option is nil, no constructor macro is defined.
But otherwise, defstruct creates a constructor macro, which will create an instance of the
structure. -This section explains how the constructor macro interprets its “arguments’.

A call to a constructor macro, in general, has the form
(name-of-constructor-macro
symbol-1 form-1
symbol-2 form-2
o)

Each symbol may be either a name of an item of the structure, or a specially recognized
keyword. All forms are evaluated.

If symbol is the name of an item, then that element of the created structure will be
initialized to the value of form. 1f no symbol is present for a given item, then the item
will be initialized in accordance with the default initialization specified in the call to
defstruct. If the defstruct itself also did not specify any initialization, the element will be
initialized to nil, unless the structure is implemented by a numeric array, in which case it
will be initialized to 0. (In other words, the initialization specified to the constructor
overrides the initialization specified to defstruct.)

There are two symbols which are specially recognized by the constructor. One 1s
:make-array, which should only be used for array and array-leader type structures. The
value of form is used as the argument list to the make-array function call created by the
constructor. This way, you can specify the area in which you wish the structure to be
created, the type of the array to be created, and so on. Of course, if you provided all of
the arguments to make-array, the constructor would not be able to do its job; so the
constructor overrides your specifications of certain elements. If the structure is array type,
your specification of the array’s dimensions (the third argument to make-array) is ignored;
if it is of array-leader type, the array-leader argument (the fifth argument to make-array)
is ignored. Also, in both cases the named-structure argument (the seventh argument to
make-array) is ignored. They are ignored because it is the constructor macro’s job to fill
them in. If the list you provide is shorter than the number of arguments to make-array, it
will be as if you had given the missing elements as nil. Similarly, if your list is too long,
the extra elements will be ignored. If you do not provide the :make-array keyword at all,
the arguments default from the value of the :make-array option to defstruct. If you did
not even provide that, the default argument lists are:

For arrays: (default-array-area ’art-q whatever nil nil nil whatever)

For array-leaders:
(default-array-area ’art-q 0 nil whatever nil whatever)

The second keyword recognized by the constructor is :times, which should only be
used for grouped-arrays. Its value is the number of repetitions of the structure in the
grouped-array. If :times is not provided, it defaults from the :times option of defstruct.

DSK:LMMAN;DEFSTR 26 6-JAN-79

Grouped Arrays 150 Preliminary Lisp Machine Manual

If you did not even provide that, the default is |.

176 Grouped Arrays

The grouped array feature allows you to store several instances of a structure side-by-
side within an array. This feature is somewhat limited, and requires that the structure be
implemented as an array, that it not have any :include option, and that it not be a named
structure,)

The accessor macros are defined to take a “first argument” which should be a fixnum,
and is the index into the array of where this instance of the structure starts. It should be a
multiple of the size of the structure, for things to make sense.

Note that the "size” of the structure (as given in the :size symbol and the :size-macro)
is the number of elements in one instance of the structure; the actual length of the array is
the product of the size of the structure and the number of instances. The number of
instances to be created by the creator macro is given as the argument to the :times or
:grouped-array option, or the :times keyword of the constructor macro (see below).

1771 The :include Option.

(To be supplied)

DSK:LMMAN:DEFSTR 26 : 6-JAN-79

P v i ix o N - & i B S Ty S e

Preliminary Lisp Machine Manual 151 The 1/0 System

18. The I/O System

The Lisp Machine provides a powerful and flexible system for performing input and
output to peripheral devices. To allow device independent 1/O (that is, to allow programs
to be written in a general way so that the program’s input and output may be connected
with any device), the Lisp Machine 1/0 system provides the concept of an "I/O stream”.
What streams are, the way they work, and the functions to create and manipulate streams,
are described in this chapter. This chapter also describes the Lisp “1/0" operations read and
print, and the printed representation they use for Lisp objects.

it e s

18.1 The Character Set

The Lisp Machine normally represents characters as fixnums, The mapping between these
numbers and the characters is listed here. The mapping is similar to ASCII, but somewhat
modified to allow the use of the so-called SAIL extended graphics, while avoiding certain
ambiguities present in ITS. For a long time ITS treated the Backspace, Control-H, and
Lambda keys on the keyboard identically as character code 10 octal; this problem is avoided
from the start in the Lisp Machine's mapping. '

Fundamental characters are eight bits wide. Those less than 200 octal (with the 200 bit
off) and only those are printing graphics: when output to a device they are assumed to
print a character and move the “cursor’ one character position to the right. (All software
provides for variable-width fonts, so the term “character position” shouldn’t be taken too
: : literally.)

T P

Characters in the range of 200 to 237 inclusive are used for special characters.
Character 200 is a "null character”, and is not used for anything much. Characters 201 to
215 correspond to the special keys on the keyboard such as Form and Call. The rest of this
group is reserved for future expansion.

The remaining characters are used for control operations. The characters 240 to 247
inclusively mean "Switch to font 0", "Switch to font 1°, etc. The rest of this group is
reserved for future expansion,

In some contexts, a fixnum can hold both a character code and a font number for that
character. The following byte specifiers are defined:

%%ch-char Variable

The value of %Zch-char is a byte specifier for the field of a fixnum character which
holds the character code.

DSK:LMMAN:IOS 95 6-JAN-79

The Character Set 152 Preliminary Lisp Machine Manual

%7%ch-font Variable

The value of Z/ch-font is a byte specifier for the field of a fixnum character which
holds the font number.

Characters read in from the keyboard include a character code and the Control and
Meta bits. The following byte specifiers are provided:

%7kbd-char Variable

The value of %%kbd-char is a byte specifier for the field of a keyboard character
which holds the normal eight-bit character code.

%7 kbd-control Variable

The value of %ZJkbd-char is a byte specifier for the bit of a keyboard character
which is | if either Control key was held down.

%7%kbd-meta FVariable
The value of %%kbd-char is a byte specifier for the field of a keyboard character
which is 1 if either Meta key was held down.

%%kbd-control-meta Variable
The value of %%kbd-char is a byte specifier for the two-bit field of a keyboard
character whose low bit is the Control bit, and whose high bit is the Meta bit,

%%kbd-mouse Variable
The value of %%kbd-mouse is a byte specifier for the bit in a keyboard character
which indicates that the character is not really a character, but a signal from the
nouse,

%Likbd-mouse-button Variable
The value of %Zkbd-mouse-button is a byte specifier for the field in a mouse
signal which says which button was clicked. The value is 0, 1, or 2 for the left,
middle, and right buttons, respectively.

%7%kbd-mouse-n-clicks Variable
The value of %Z%Zkbd-mouse-n-clicks is a byte specifier for the field in a mouse
signal which says how many times the button was clicked. The value is one less than
the number of times the button was clicked.

Since the Control and Meta bits are not part of the fundamental 8-bit character codes,
there is no way to express keyboard input in terms of simple character codes. However,
there is a convention which many programs accept for encoding keyboard input into
character codes: if a character has its Control bit on, prefix it with an Alpha; if a character
has its Meta bit on, prefix it with a Beta; if a character has both its Control and Meta bits
on, prefix it with an Epsilon. To get an Alpha, Beta, Epsilon, or Equivalence into the
string, quote it by prefixing it with an Equivalence.

DSK:LMMAN:IOS 95 : 6-JAN-79

Preliminary Lisp Machine Manual

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

200
201
202
203
204
205
206
207

center-dot (-)
down arrow (V)
alpha (a)

beta (8)

and-sign (n)
not-sign (-)
epsilon ()

pi (w)

lambda (A)

gamma (Y)

delta (&)

uparrow (1)
plus-minus ()
circle-plus (o)
infinity (w)
partial delta (3d)
left horseshoe (c)
right horseshoe (D>)
up horseshoe (n)
down horseshoe (U)

universal quantifier (V)
existential quantifier (3)

circle-X (o)
double-arrow (e)

left arrow («)

right arrow (=)
not-equals (=)
diamond (altmode) (¢)
less-or-equal (<)
greater-or-equal (2)
equivalence (=)

or (v)

null character

break

clear

call

escape (NOT altmode!)
backnext

help

rubout

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

210
211
212
213
214
2195

153

space

+ ¥~ N2 R W R

v VWO NDEDEWN O N

EXEA VAR e X

bs

tab
line
vt
form
return

216-237 reserved for future special keys

250-377 reserved for future control operations

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

240
241
242
243
244
245
246
247

The Lisp Machine Character Set

DSK:LMMAN:IOS 95

D m M N A X ECCAUVMDOTOZIrRARUuHIODTMOOE>

switch
switch
switch
switch
switch
switch
switch
switch

to
to
to
to
to
to
to
to

The C

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176

st
~
~

font
font
font
font
font
font
font
font

haracter Set

 w=memm N X T <t TODVDODD 3 =wX-=To-00a00Coa /

~

NG D WN = O

6-JAN-79

Printed Representation 154 Preliminary Lisp Machine Manual

18.2 Printed Representation

People cannot deal directly with Lisp objects, because the objects live inside the
machine. In order to let us get at and talk about Lisp objects, Lisp provides a
representation of objects in the form of printed text; this is called the printed representation.
This is what you have been seeing in the examples throughout this manual. Functions such
as print, prinl, and princ take a Lisp object, and send the characters of its printed
representation to a stream. These functions (and the internal functions they call) are known
as the printer. The read function takes characters from a stream, interprets them as a
printed representation of a Lisp object, builds a corresponding object and returns it; it and
its subfunctions are known as the reader.

This section describes in detail what the printed representation is for any Lisp object,
and just what read does. For the rest of the chapter, the phrase "printed representation”
will be abbreviated as "p.r.".

1821 What the Printer Produces

The printed representation of an object depends on its type. In this section, we will
consider each type of object and expiain how it is printed.

Printing is done either with or without s/ashification. The non-slashified version is nicer
looking in general, but if you give it to read it won't do the right thing. The slashified
version is carefully set up so that read will be able to read it in. The primary effects of
slashification are that special characters used with other than their normal meanings (e.g., a
parenthesis appearing in the name of a symbol) are preceeded by slashes or cause the name
of the symbol to be enclosed in vertical bars, and that symbols which are not from the
current package get printed out with their package prefixes (a package prefix looks like a
string followed by a colon).

For a fixnum: if the fixnum is negative, the printed representation begins with a minus
sign ("="). Then, the value of the variable base is examined. If base is a positive fixnum,
the number is printed out in that base (base defaults to 8); if it is a symbol with a :princ-
function property, the value of the property will be funcalled on two arguments: minus of
the fixnum to be printed, and the stream to which to print it; otherwise the value of base
is invalid. * This is a hook to allow output in Roman numerals and the like. Finally, if base
equals 10. and the variable Xnopoint is nil, a decimal point is printed out. Slashification
does not affect the printing of fixnums.

base Variable

The value of base is a number which is the radix in which fixnums are printed, o:- a
symbol with a :princ-function property. The initial value of base is 8.

DSK:LMMAN:IOS 95 6-JAN-79

l’relimina;’y Lisp Machine Manual . 155 Printed Representation

Xnopoint Variable
If the value of Xnopoint is nil, a trailing decimal point is printed when a fixnum is
printed out in base 10. This allows the numbers to be read back in correctly even if
ibase is not 10. at the time of reading. If Xnopoint is non-nil, the trailing decimal
points are suppressed. The initial value of Xnopoint is nil.

For a symbol: if slashification is off, the pur.is simply the successive characters of the
print-name of the symbol. If slashification is on, two changes must be made. First, the
symbol might require a package prefix in order that read work correctly, assuming that the
package into which read will read the symbol is the one in which it is being printed. See
the section on packages (page 176) for an explanation of the package name prefix.
Secondly, if the p.r. would not read in as a symbol at all (that is, if the print looks
like a number, or contains special characters), then the p.r. must have some qu ung for
those characters, either by the use of slashes ("/") before each special character, or by the
use of vertical bars (") around the whole name. The decision whether quoting is required
is done using the readtable, so it is always accurate provided that readtable has the same
value when the output is read back in as when it was printed.

For a string: if slashification is off, the pur.is simply the successive characters of the
string. If slashification is on, the string is printed between double quotes, and any
characters inside the string which need to be preceeded by slashes will be. Normally these
are just double-quote and slash. Incompatibly with Maclisp, carriage return is not ignored
inside strings and vertical bars.

For an array which is a named structure: if the named structure has a named structure
symbol which is defined as a function (which it always ought to), then that funcuon is
called on four arguments: the symbol :print, the object itself, the current depth of list
structure (see below), and whether slashification is enabled. A suitable printed
representation should be sent to the value of standard-output, which the printer lambda-
binds to the correct stream. This allows a user to define his own pua.for his named
structures; examples can be found in the named structure section (see page 91). If the
named structure is not "well formed" (if the symbol is undefined or not present), it is
handled as if it were not a named structure, as follows,

Other arrays: the p.r.starts with a number sign and a less-than sign. Then ‘the "art-"
symbol for the array type is printed. Next the dimensions of the array are printed,
separated by hyphens. This is followed by a space, the machine address of the array, and a
greater-than sign,

Conses: The pur.for conses tends to favor lists. It starts with an open-parenthesis.
Then, the car of the cons is printed, and the ¢dr of the cons is examined. If it is nil, a
close parenthesis is printed. If it is anything else but a cons, space dot space followed by
that object is printed. If it is a cons, we print a space and start all over (from the point
after we printed the open-parenthesis) using this new cons. Thus, a list is printed as an
open-parenthesis, the p.r's of its elements separated by spaces, and a ¢lose-parenthesis.

DSK:LMMAN:IOS 95 » 6-JAN-79

Printed Representation 156 Preliminary Lisp Machine Manual

Thus. the usual printed representations such as (a b (foo bar) ¢) are printed.

The following additional feature is provided for the pr.of conses: as a list is printed,
Print maintains the length of the list so far, and the depth of recursion of printing lists. If
the length exceeds the value of the variable prinlength, print will terminate the printed
representation of the list with an ellipsis (three periods) and a close-parenthesis. If the depth
of recursion exceeds the value of the variable prinlevel, then the list will be printed as
"#X". These two features allow a kind of abbreviated printing which is more concise and
suppresses detail. Of course, neither the ellipsis nor the "**' can be interpreted by read,
since the relevant information is lost. '

prinlevel Fariable
~prinlevel can be set to the maximum number of nested lists that can be printed
before the printer will give up and just print a "**"If it is nil, which it is initially,
any number of nested lists can be printed. Otherwise, the value of prinlevel must
be a fixnum.

prinlength Variable
printength can be set to the maximum number of elements of a list that will be
printed before the printer will give up and print a “." If it is nil, which it is
initially, any length list may be printed. Otherwise, the value of prinlength must be
a fixnum,

For any other data type: the pur. starts with a number sign and a less-than sign (’<%), the
‘dtp-" symbol for this datatype, a space, and the machine address of the object. Then, if
the object is a microcoded function, compiled function, or stack group, its name is printed.
Finally a greater-than sign (">") is printed.

None of the pr.'s beginning with a number sign can be read back in, nor, in general,
can anything produced by named structure functions. Just what read accepts is the topic of
the next section, .

18.2.2 What The Reader Accepts

The purpose of the reader is to accept characters, interpret them as the pr.of a Lisp
object, and return a corresponding Lisp object. The reader cannot accept everything that*
the printer produces; for example, the pr's of arrays (other than strings), compiled code
objects, closures, stack groups etc. cannot be read in. However, it has many features
which are not seen in the printer at all, such as more flexibility, comments, and convenient
abbreviations for frequently-used unwieldy constructs.

This section shows what kind of p.r.’s the reader understands, and explains the readtable,
reader macros, and various features provided by read.

DSK:LMMAN;IOS 95 6-JAN-79

}
4
i
H
{
i
i

Preliminary Lisp Machine Manual 157 Printed Representation

The reader understands the p.r'’s of fixnums in a way more general than is employed by
the printer. Here is a complete description of the format for fixnums.

Let a simple fixnum be a string of digits, optionally preceeded by a plus sign or a minus
sign, and optionally followed by a trailing decimal point. A simple fixnum will be
interpreted by read as a fixnum. If the trailing decimal point is present, the digits will be
interpreted in decimal radix; otherwise, they will be considered as a number whose radix is
the value of the variable ibase.

ibase Variable

The value of ibase is a number which is the radix in which fixnums are read. The
initial value of ibase is 8.

read will also understand a simple fixnum, followed by an underscore (“.") or a
circumflex ("), followed by another simple fixnum. The two simple fixnums will be
interpreted in the usual way, then the character in between indicates an operation to be
performed on the two fixnums, The underscore indicates a binary “left shift”; that is, the
fixnum to its left is doubled the number of times indicated by the fixnum to its right. The
circumflex multiplies the fixnum to its left by ibase the number of times indicated by the
fixnum to its right. Examples: 645_6 means 64500 (in octal) and 645"3 means 645000.

Here are some examples of valid representations of fixnums to be given to read:
4
23456.
-546
+45”+6
2_11

A string of letters, numbers, and “extended alphabetic" characters is recognized by the
reader as a symbol, provided it cannot be interpreted as a number. When the reader sees
one, it interns it on a package (see page 176 for an explanation of interning and the
package system). Symbols may start with digits; you could even have one named "-345T;
read will accept this as a symbol without complaint. If you want to put strange characters
(such as lower-case letters, parentheses, or reader macro characters) inside the name of a
svmbol, put a slash before the strange characters. If you want to have a symbol whose
print-name looks like a number, put a slash before some character in the name. You can
also enclose the name of a symbol in vertical bars, which quotes all characters inside,
except vertical bars and slashes, which must be quoted with slash,

Examples of symbols:
foo
bar/(baz/)
34w23
|Frob Salej

The reader will also recognize strings, which should be surrounded by double-quotes. If
you want to put a double-quote or a slash inside a string, preceed it by a slash.

DSK:LMMAN:IOS 95 6-JAN-79

Printed Representation 158 Preliminary Lisp Machine Manual

Examples of strings:
"This is a typical string."
"That is known as a /"cons cell/" in Lisp."

When read sees an open parenthesis, it knows that the pr.of a cons is coming, and
calls itself recursively to get the elements of the cons or the list that follows. Any of the
following are valid: '

(foo . bar)

(foo bar baz)

(foo . (bar . (baz . nil)))

(foo bar . quux)
The first is a cons, whose car and cdr are both symbols. The second is a list, and the third
is exactly the same as the second (although print would never produce it). The fourth is a
“dotted list"; the cdr of the last cons cell (the second one) is not nil, but quux,

Whenever the reader sees any of the above, it creates new cons cells; it never returns
existing list structure, This contrasts with the case for symbols, as very often read returns
symbols that it found on the package rather than creating new symbols itself. Symbols are
the only thing that work this way.

The dot that separates the 2 elements of a dotted-pair p.r. for a cons is only recognized
if it is surrounded by delimiters. Thus dot may be freely used within print-names of symbols
and within numbers.

18.2.3 Sharp-sign Abbreviations

The reader’s syntax includes several abbreviations introduced by sharp sign (#). These
take the general form of a sharp sign, a second character which identifies the syntax, and
following arguments. Here are the currently-defined sharp-sign constructs; more are likely to
be added in the future.

n/ #/ x reads in as the number which is the character code for the character x.
For example, #/a is equivalent to 141 but clearer in its intent. This is the
recommended way to include character constants in your code. Note that
the slash causes this construct to be parsed correctly by the editors, Emacs
and Eine.

s\ #\ name reads in as the number which is the character code for the non-
printing character symbolized by name. (In the Lisp-machine compatible
Maclisp environment, Lisp-machine character code is used if the file is being
compiled for the Lisp machine, or ascii character code if the result is
intended to be used in Maclisp.)

The following character names are recognized: brk, clr, call, esc,
back-next, help, rubout, bs, tab, If, vt, ff, cr, sp. These are generally
self-explanatory; cr is the key marked return, sp is space, ff is the key
marked form,

DSK:LMMAN:IOS 95 6-JAN-79

Preliminary Lisp Machine Manual 159 Input Functions

sM

#48

#’foo is an abbreviation for (function foo). foo is the p.r. of any object.

#,foo evaluates foo (the pr. of a Lisp form) at read time, unless the
compiler is doing the reading, in which case it is arranged that foo will be
evaluated when the QFASL file is loaded. This is a way, for example, to
include in your code complex list-structure constants which cannot be
written with quote. Note that the reader does not put quote in front of
the result of the evaluation. You must do this yourself if you want it
typically by using the ’ macro-character.

#Q foo reads as foo if the input is being read by the Lisp machine or being
compiled to run on the Lisp machine, otherwise it reads as nothing {white
space). '

#M foo reads as foo if the input is being read into Maclisp or compiled to
run in Maclisp, otherwise it reads as nothing (white space).

This is an obsolete form of #/. You write #s followed by a space, followed
by the character whose character code you want.

182.4 The Readtable

(To be supplied.)

18.25 Reader Macros

(To be supplied.)

18.3 Input Functions

read &optional stream eof-option

read reads in the printed representation of a Lisp object from stream, builds a
corresponding Lisp object, and returns the object. If the end-of-file is reached
before a valid object starts, it returns eof-option instead. If the end-of-file is reached
in the middle of an object, e.g. inside parentheses, an error is signalled. stream
defaults to the value of standard-input, and eof-option defaults to nil.

In order to allow compatibility with Maclisp, the arguments are interpreted in a
slightly more complicated way. If the stream is nil, then the value of standard-
input is used. If stream is t, the value of terminal-io is used.

Maclisp allows the two arguments to be interchanged, but the Lisp machine does
not.

There is an array called the readtable (see page 159) which is used to control the

reader. It contains information about the syntax of each character. Initially it is set up to
give the standard Lisp meanings to all the characters, but the user can change them to make

DSK:LMMAN:IOS 95 6-JAN-79

Input Functions 160 Preliminary Lisp Machine Manual

the reader usable as a lexical analyzer for a wide variety of input formats or languages. It is
also paossible to have several readtables describing different syntax and to switch from one to
another by binding the symbol readtable.

The format of the readtable is not yet documented herein.

readtable Fariable
The value of readtable is the current readtable.

tyi &optional stream cof-option
tyl inputs one character from stream and returns it. The arguments are the same as
for read.

readline &optional stream eof-option
readline reads in a line of text, terminated by a newline. It returns the line as a
character string, without the newline character. This function is usually used to get a
line of input from the user. The arguments are the same as for read.

readch &optional stream eof-option
readch is just like tyi, except that instead of returning a fixnum character, it
returns a symbol whose print name is the character read in. This is just like a
Maclisp “character object”. The symbol is interned, on the user package. The
arguments are the same as for read.

tyipeek &optional peek-type stream eof-option
What tyipeek does depends on the peck-type, which defaults to nil. With a peek-
type of nil, tyipeek returns the next character to be read from stream, without
actually removing it from the input stream. The next time input is done from stream
the character will still be there; in general, (= (tyipeek) (tyi)) is t.

If pcek-type is a fixnum less than 1000 octal, then tyipeek reads characters from
stream until it gets one equal to peek-type. That character is not removed from the
input stream,

If peek-type is t, then tyipeek skips over input characters until the start of the
printed representation of a Lisp object is reached. As above, the last character (the
one that starts an object) is not removed from the input stream.

The form of tyipeek supported by Maclisp in which peek-type is a fixnum not less

than 1000 octal is not supported, since the readtable formats of the Maclisp reader
and the Lisp Machine reader are quite different.

The stream and eof-option arguments are the same as for read.

Note that all of these functions will echo their input if used on an interactive stream
(one which supports the :rubout-handler operation; see below.) The functions that input
more than one character at a time (read, readline) allow the input to be edited using

DSK:LMMAN:I0S 95 6-JAN-79

Preliminary Lisp Machine Manuai 161 Output Functions

rubout. tyipeek echoes all of the characters that were skipped over if tyi would have
echoed them; the character not removed from the stream is not echoed either.

readlist char-list
char-list is a list of characters. The characters may be represented by anything that
the function character accepts: fixnums, strings, or symbols. The characters are
given successively to the reader, and the Lisp object built by the reader is returned.
Macro characters and so on will all take effect.

read-from-string string
The characters of string are given successively to the reader, and the Lisp object
built by the reader is returned. Macro characters and so on will all take effect.
Example:
(read-from-string "(a b c)") => (a b c)

184 Output Functions

prinl x &optional stream
prinl outputs the printed representation of x to stream, with slashification (see page
154). stream defaults to the value of standard-output. If stream is nil, the value
of standard-output is used. If it is ¢, the value of terminal-io is used. If it is a
list of streams, then the output is performed to all of the streams (this is not
implemented yet).

prinl-then-space x &optional stream
prinl-then-space is like prinl except that output is followed by a space.

print x &optional stream

print is just like prinl except that output is preceeded by a newline and followed
by a space.

princ x &optional stream
princ is just like prinl except that the output is not slashified.

tyo char &optional stream

tyo outputs the character char to stream. The stream argument is the same as for
prinl.

terpri &optional stream

terpri outputs a newline character to stream. The stream argument is the same as
for prinl.

The format function (see page 85) is very useful for producing nicely formatted text.
It can do anything any of the above functions can do, and it makes it easy to produce
good looking messages and such.

DSK:LMMAN:IOS 95 ~ 6-JAN-79

Output Functions 162 Preliminary Lisp Machine Manual

The grindef function is useful for formatting Lisp programs. See <not-yet-written>.

cursorpos &optional argl arg2
This function exists primarily for Maclisp compatibility. Usually it is preferable to
call the TV routines directly. cursorpos only operates on console-io-pc-ppr and
does not work if a different font than the default is being used. The Maclisp Newio
feature where one of the arguments to cursorpos can be a file is not supported.

(cursorpos) => (fine. column), the current cursor position,

(cursorpos line column) moves the cursor to that position. It returns t if it
succeeds and nil if it doesn't.

(cursorpos op) performs a special operation coded by op, and returns t if it
succeeds and nil if it doesnt. op is tested by string comparison, it is not a keyword.
Moves one space to the right.

Moves one space to the left.

Moves one line down.

Moves one line up.

Clears the piece of paper.

Homes up (moves to the top left corner).

Clear from the cursor to the end of the piece of paper.

Clear from the cursor to the end of the line.

Clear the character position at the cursor.

B then K.

Home down (moves to the bottom left corner).

NXXRXrrm=0coom=

exploden x
exploden returns a list of characters (as fixnums) which are the characters that
would be typed out by (princ x) (i.e. the unslashified printed representation of x).
Example:
(exploden “(+ /12 3)) => (50 53 40 61 62 40 63 51)

explodec «x
explodec returns a list of characters represented by character objects which are the
characters that would be typed out by (princ x) (ie. the unslashified printed
representation of x),
Example:
(explodec “(+ /12 3)) => (/(+ / /1 /2 / 13 7))
(Note that there are slashified spaces in the above list.)

explode x
explode returns a list of characters represented by character objects which are the
characters that would be typed out by (prinl x) (ie. the slashified printed
representation of x).

DSK:LMMAN:IOS 95 6-JAN-79

D P W AT S

Preliminary Lisp Machine Manual 163 Output Functions

Example:
(explode 7(+ /12 3)) => (/(+/ /1 /Y 12/ [3/))
{Note that there are slashified spaces in the above list.)

flatsize x

flatsize returns the number of characters in the slashified printed representation of
x.

flatc x
flatc returns the number of characters in the unslashified printed representation of x.

stream-copy-until-eof from-stream to-stream &optional leader-size
stream-copy-until-eof inputs characters from from-stream and outputs them to fo-
strcam, until it reaches the end-of-file on the from-stream. For example, if X is
bound to a stream for a file opened for input, then (stream-copy-until-eof x
terminal-io) will print the file on the console.

If from-stream supports the :line-in operation and to-stream supports the :line-out
operation, then stream-copy-until-eof will use those operations instead of :tyi
and :tyo, for greater efficiency. /leader-size will be passed as the argument to the
:line-out operation.

DSK:LMMAN:10S 95 6-JAN-79

1/0 Streams 164 Preliminary Lisp Machine Manual

185 1/0 Streams

185.1 What Streams Are

Many programs accept input characters and produce output characters. The method for
performing input and output to one device js very different from the method for some
other device. We would like our programs to be able to use any device available, but
without each program having to know about each device.

In order to solve this problem, we introduce the concept of a stream. A stream is a
source and/or sink- of characters, A set of Operations is available with every stream:
oOperations include things like ‘output a character” and “input a character". The way to

the stream is very different depending on what kind of a stream it is. So all g program has
to know is how to deal with streams,

Some streams can only do input, some can only do output, and some can do both,
Some operations are only supported by some streams, Also, there are some operations
which the stream may not support by itself, but will work anyway, albeit slowly, because the
“stream default handler" can handle them, If you have a stream, there is an operation called
:which-operations that will return a list of the names of all of the operations that are
gsupported ‘natively” by the stream. A/l streams support :which-operations. and so it isn"t
in the list itself.

185.2 General Purpose Stream Operations

Here are some simple operations, Listed are the name of the operation, what arguments
it takes, and what it does.

tyo Takes one argument, which is g character. The stream will output that
character, For example, if s is bound to a stream, then the form
(funcall s “:tyo 102)
will output a "B" 1o the stream,

‘tyi Takes one optional argument, described later. The stream will input one
character and return it. For example, if the next character to be read in by
the stream is a ‘C", then the form

(funcall g “:tyi)
will return 103. Note that the :tyij operation will not "echo" the character in
any fashion; it just does the input. The tyi function (see page 160) will do
echoing when reading from the terminal. The argument to the :tyi
operation tells the stream what to do if it gets to the end of the file. [f the

DSK:LMMAN:I0OS 95 6-JAN-79

Preliminary Lisp Machine Manual 165 1/0 Streams

argument is not provided or is nil, the stream will return nil at the end of
file. Otherwise it will signal an error, and print out the argument as the
error message.

untyi Takes one argument, which is a character. The stream will remember that

character, and the next time a character is input, it will return the saved
character. In other words, :untyi means “stuff this character back into the
input source”. For example,

(funcall s “:untyi 120)

(funcall s 7:tyi) ==> 120
This operation is used by read, and any stream which supports :tyi must
support :untyi as well. Note that you are only allowed to :untyi one
character before doing a :tyi, and you aren't allowed to :untyi a different
character than the last character you read from the stream. Some streams
implement :untyi by saving the character, while others implement it by
backing up the pointer to a buffer.

:which-operations
Takes no arguments. It returns a list of the operations supported "natively”
by the stream.
Example:
{funcall s “:which-operations)
zz) (:tyi :tyo :untyi :line-out :listen)

Any stream must either support :tyo, or support both :tyi and :untyi. There are
several other, more advanced input and output operations which will work on any stream
that can do input or output (respectively). Some streams support these operations
themselves: you can tell by looking at the list returned by the :which-operations
operation. Others will be handled by the "stream default handler” even if the stream does
not know about the operation itself. However, in order for the default handler to do one
of the more advanced output operations, the stream must support :ityo, and for the input
operations the stream must support :tyi (and :untyi).

Here is the list of such operations:

listen On an interactive device, the :listen operation returns non-nil if there are
any input characters immediately available, or nil if there is no immediately
available input. On a non-interactive device, the operation always returns
nil, by virtue of the default handler. The main purpose of :listen is to test
whether the user has hit a key, perhaps trying 10 stop a program in progress.

fresh-line An output operation which takes no arguments. It tells the stream that it
should position itself at the beginning of a new line: if the stream is already
at the beginning of a fresh line it will do nothing, otherwise it will output a
newline. For streams which don’t support this, the default handler will
always output a newline,

string-out An output operation which takes one required argument, & string to output.
The characters of the string are successively output to the stream. This
operation is provided for two reasons; first, it saves the writing of a loop

DSK:LMMAN:IOS 95 6-JAN-79

I/0O Streams

:line-out

line-in

:clear

finish

force-output

166 Preliminary Lisp Machine Manual

which is used very often, and second, some streams can perform this
operation much more efficiently than the equivalent :tyo operations. The
'string-out operation also takes two optional arguments, which are a range
of characters withing the string to output; the second argument is the index
of the first character to output (defaulting to @), and the third is one greater
than the index of the last character to output (defaulting to the length of the
string). Callers need not pass these arguments, but all streams that handle
:string-out must check for them and interpret them appropriately. If the
stream doesn’t support :string-out itself, the default hander will turn it into
a bunch of :tyos.

An output operation which takes one argument, a string. The characters of
the string, followed by a newline character, are output to the stream. If the
stream doesn't support :line-out itself, the default hander will turn it into a
bunch of :tyos.

An input operation which takes one argument. The stream should input one
line from the input source, and return it as a string with the newline
character stripped off. Many streams will have a string which is used as a
buffer for lines. If this string itself is returned, there would be problems
caused if the caller of the stream attempted to save the string away
somewhere, because the contents of the string would change when the next
line was read in. In order to solve this problem, the string must be copied.
On the other hand, some streams don’t reuse the string, and it would be
wasteful to copy it on every :line-in operation. This problem is solved by
using the argument to :line-in. If the argument is nil, the stream will not
bother to copy the string, and the caller should not rely on the contents of
that string after the next operation on the stream. If the argument is t, the
stream will make a copy. If the argument is a fixnum, 2, then the stream
will make a copy with an array leader n elements long. (This is used by the
editor, which represents lines of buffers as strings with additional information
in their array-leaders, to eliminate an extra copy operation.) If the stream
reaches the end-of-file while reading in characters, it will return the
characters it has read in as a string, and return a second value of t, The
caller of the stream should therefore arrange to receive the second value,
and check it to see whether the string returned was a whole line or just the
trailing characters after the last newline in the input source.

Takes no arguments. The stream will clear any buffered input or output. If
the stream does not handle this, the default handler will ignore it. [To be
renamed to :clear-input and :clear-output.)

Takes no arguments. It returns when the currently pending 1/O operation is
completed. It does not do anything itself; it is just used to await completion
of an operation. If the stream does not handle this, the default handler will
ignore it.

Takes no arguments. It causes any buffered output to be sent to the device.

DSK:LMMAN:IOS 95 6-JAN-79

~error. These are;

Preliminary Lisp Machine Manual 167 1/0 Streams

If the stream does not handle this, the default handler will ignore it.

:close Takes no arguments. It causes the stream to be “closed”, and no further
operations should be performed on it. However, it is all right to :close a
closed stream. If the stream does not handle :close, the default handler will
ignore it.

‘tyi-no-hang Just like :tyi except that if it would be neccesary to wait in order to get the
character, returns nil instead. This lets the caller efficiently check for input
being availible and get the input if there is any.

18.5.3 Special Purpose Stream Operations

There are several other defined operations which the default handler cannot deal with;
if the stream does not support the operation itself, then an attempt to use it will signal an

:read-pointer This is supported by the file stream (see page 171). It takes no arguments,
and returns the position that the stream is up to in the file, as a number of
characters.

‘name This is supported by the file stream. It returns the name of the file open on
the stream, as a string.

:rubout-handler
This is supported by interactive streams such as the tv-terminal-stream,
and is described in its own section below (see page 173).

'untyo-mark This is used by grind if the output stream supports it. It takes no arguments.
The stream should return some object which indicates where o has
gotten up to in the stream.

‘untyo This is used by grind in conjunction with :untyo-mark. It takes one
argument, which is something returned by the :untyo-mark operation of
the stream. The stream should back up output to the point at which the
object was returned.

‘get-unique-id
This is supported by the file stream. It returns a string which identifies the
file which is open, including its full name, its length, and its creation date.

:read-cursorpos

This operation is supported by piece-of-paper streams (see tv-make-stream,
page 234). It returns two values: the current x and Y positions of the
cursor. It takes one argument, which is a symbol indicating in what units x
and y should be; the symbols :pixel and :character are understond. This
operation, and :set-cursorpos, are used by the format "~T" request (see
page 86), which is why "~T" doesn’t work on all streams. Any stream that
supports this operation must support 'set-cursorpos as well.

DSK:LMMAN;IOS 95 6-JAN-79

I/0 Streams 168 Preliminary Lisp Machine Manual

set-cursorpos
This operation is supported by the same streams that support :read-
cursorpos. It sets the position of the cursor. It takes three arguments: a
symbol indicating the units (just like :read-cursorpos), the new x position,
and the new y position.

185.4 Standard Streams

There are several variables whose values are streams used by many functions in the Lisp
system. These variables and their uses are listed here. By convention, variables which are
expected to hold a stream capable of input have names ending with -input, and similarly
for output. Those expected to hold a bidirectional stream have names ending with -io.

standard-input FVariable
In the normal Lisp top-level loop, input is read from standard-input (that is,
whatever stream is the value of standard-input). Many input functions, including
tyi and read, take a stream argument which defaults to standard-input.

standard-output Variable
In the normal Lisp top-level loop, output is sent to standard-output (that is,
whatever stream is the value of standard-output). Many output functions,
including tyo and print, take a stream argument which defaults to standard-
output.

error-output Variable
The value of error-output is a stream to which error messages should be sent.
Normally this is the same as standard-output, but standard-output might be
bound to a file and error-output left going to the terminal. [This seems not be
used by things which ought to use it]

query-io Fariable
The value of query-io is a stream which should be used when asking questions of
the user. The question should be output to this stream, and the answer read from it.
The reason for this is that when the normal input to a program may be coming from
a file, questions such as "Do you really want to delete all of the files in your
directory??” should be sent elsewhere (usually directly to the user). [This seems not
be used by things which ought to use it]

terminal-io Variable
The value of terminal-io is always the stream which connects to the user’s console.
For someone using the Lisp Machine from its keyboard and TV, the value will be
tv-terminal-stream. The default values of the above four variables are streams
which simply take whatever operations they are given and pass them on to whatever
stream is the value of terminal-io. No user program should ever change the value
of terminal-io. A program which wants (for example) to divert output to a file
should do so by binding the value of standard-output; that way error messages

DSK:LMMAN:IOS 95 | 6-JAN-79

Preliminary Lisp Machine Manual 169 1/0 Streams

sent to error-output can still get to the user by going through terminal-io, which
is usually what is desired.

make-syn-stream symbol
make-syn-stream creates and returns a “synonym stream’. Any operations sent to
this stream will be redirected to the stream which is the value of symbol.

standard-input, standard-output, error-output, and query-io are initially
bound to synonym streams which use the value of terminal-io.

185.5 Making Your Own Stream

Here is a sample output stream, which accepts characters and conses them onto a list.
(defun list-output-stream (op &optional argl &rest rest)
(selectq op

(:tyo

(setq the-list (cons argl the-list)))

(:which-operations “(:tyo))

(otherwise

(multiple-value-call

(stream-default-handler (function list-output-stream)
op argl rest)))))

The lambda-list for a stream must always have one required parameter (op), one optional
parameter (argl), and a rest parameter (rest). This allows an arbitrary number of arguments
1o be passed to the default handler. This is an output stream, and so it supports the :tyo
operation. Note that all streams must support :which-operations. If the operation is not
one that the stream understands (e.g. :string-out), it calls the stream-default-handler.
The calling of the default handler is required, since the willingness to accept :tyo indicates
to the caller that :string-out will work. The multiple-value-call (see page 19) is used so
that if the default handler returns multiple values, the stream will return all of them.

Here is a typical input stream, which generates successive characters of a list.

DSK:LMMAN:IOS 95 6-JAN-79

1/0 Streams 170 Preliminary Lisp Machine Manual

(defun list-input-stream (op &optional argl &rest rest)
(selectq op
(:tyi
(cond ((not (nul untyied-char))
(progl untyied-char (setq untyied-char nil)))
((null the-1list)
(or argl
(ferror nil "You got to the end of the stream.")))
(t (progl (car the-list)
(setq the-list (cdr the-1list))))))
(:untyi
(setq untyied-char argl))
(:which-operations “(:tyi :untyi))
(otherwise
(multiple-value-call
(stream-default-handler (function list-input-stream)
op argl rest)))))

The important things to note are that untyi must be supported, and that the stream
must check for having reached the end of the information, and do the right thing with the
argument to the :tyi operation.

The above stream uses a free variable (the-list) to hold the list of characters, and
another one (untyied-char) to hold the :untyied character (if any). You might want to
have several instances of this type of stream, without their interfering with one another.
This is a typical example of the usefulness of closures in defining streams. The following
function will take a list, and return a stream which generates successive characters of that
list.

(defun make-a-list-input-stream (list)
(let-closed ((1ist list) (untyied-char nil))
(function list-input-stream)))

stream-default-handler stream op argl rest
stream-default-handler tries to handle the op operation on Stream, given
arguments of argl and the elements of rest. The exact action taken for each of the
defined operations is explained with the documentation on that operation, above.:

-

DSK:LMMAN:IOS 95 ' 6-JAN-79

é
!

Preliminary Lisp Machine Manual 171 Accessing Files

18.6 Accessing Files

As of this writing, the Lisp Machine uses the Al PDP-10's file system to read and
write files. The A.l. machine is accessed through the Chaos network. When the Lisp
Machine is started, it will tell you whether it has successfully connected to the file system.
The function si:file-use-chaos (not documented in this manual) allows you to initiate a
connection to the file system server, and to control which machine is used as a file system.

At present, there may be no more than one file open for reading and one file open for
writing at a time.

All of the functions herein are subject to change, and in general you shouldn’t belive
too much of this. However, it does describe the existing software.

[Blurb about “sectioned” file structure.]

open filename options
This is the function for accessing files. It returns a stream which is connected to the
specified file, Unlike Maclisp, the open function only creates streams for files; other
streams are created by other functions.

filename is the name of the file to be opened: it must be a string. Currently, files
are stored on ITS and filename must be an ITS file name. If an ITS error (such as
file not found) occurs when opening the file, a Lisp error is signalled.

options is either a single symbol or a (possibly-null) list of symbols. The following
option symbols are recognized:

:iin, :read Select opening for input (the default).

out, :write, :print
Select opening for output; a new file is to be created.

fixnum Select binary mode, otherwise character mode is used. Note that
fixnum mode uses 16-bit binary words and is not compatible with
Maclisp fixnum mode which uses 36-bit words.

:ascii The opposite of :fixnum. This is the default.

:single, :block
Ignored for compatibility with Maclisp.

For example, evaluating any of the forms

(open "“info;dir >" “:in)

(open "INFO;DIR >" “(:read))

(open "DIR > INFO;" “:read)
will open the file "Al: INFO; DIR >*, and return an input stream which will return
successive characters of the file, and support the following operations: :tyi, :untyi,
:clear, :close, :name, :line-in, and :get-unique-id. When the caller is finished
with the stream, it should close the file by using the :close operation or the close
function.

DSK:LMMAN:10S 95 6-JAN-79

Accessing Files 172 Preliminary Lisp Machine Manual

Opening a file output stream creates a new file with specified name (calling it
"_LSPM_ OUTPUT" until it has been successfully closed) and returns a stream which
supports the following operations: :tyo, :close, :finish, :read-pointer, :name,
:line-out, and :string-out.

close stream
The close function simply performs the :close operation on stream.

186.1 Other File Operations

file—-command &rest strings
This concatenates all of the strings and sends the result as a command to the PDP-
10 FILE job. It returns the string which is the FILE program’s response, except that
if the response was empty, it returns nil. The returned string is special and will be
clobbered by the next file operation, so you should copy it (with string-append,
see page 81) if you want to save it.

file-command-careful &rest strings
This is the same as file~-command, but if the string returned from the FILE
program is not empty, it signals an error, using that string as the error-message.

file-error Variable
When an error such as "File Not Found” or "No Such Directory” occurs, (i.e. errors
due to the current state of the file system), then instead of directly calling error,
the file-access functions apply the value of file-error to the arguments upon which
error would have been called. In fact, the default binding of file~error is to the
symbol error. However, this convention allows flexibility in such programs as
EINE, which may want to handle such errors specially.

This little feature is recognized as an inelegant kludge, which will be repaired when
the error system is more fully developed.

file~error-status filecname
This tries to open the file filename. 1If it gets an error, it returns the ITS error
code, which will always be a small positive fixnum; otherwise it returns nil. In any
case it leaves the file closed.

file-mapped-open filcname &optional (write-p nil)
Tells the pdpl0 FILE program to map the specified file into its address space for
random access, searching, etc. This is used in the present implementation of multi-
sectioned files. file-mapped-open returns a stream to read from the file if write-p is
nil, or write to it if write-p is t. The stream will apply only to the subrange of the
file set by the latest mapset or finddef command given to the FILE job. On
reading, when you get to the end of the range, it is considered the end-of-file.
Giving another mapset or finddef command will make it start reading from a
different range. To skip the rest of a range, do another mapset or finddef and do

DSK:LMMAN:IOS 95 ' 6-JAN-79

Preliminary Lisp Machine Manual 173 Rubout Handling

a :clear operation .on the stream. To set the range with mapset, do (file-
command “mapset start size") where start and size are numbers converted to
decimal. To set the range to foo's definition, do (file-command "finddefl * “foo").

file-qfasl-p filename
If the file is a QFASL file, return t; otherwise return nil. This works by checking
the file itself, not the name; if opening the file gives an ITS error, an error is
signalled.

file-exists-p pathname
Returns nil if the file parhkname does not exist. If it does exist, returns :qfasl if it is
a QFASL file, and otherwise t.

18.6.2 File Name Manipulation

file-expand-pathname filename
This defaults the FN2 to ">" and any other unspecified components from the
current default filename. It then sets up the current default filename 1o be the
resulting filename, and returns it. This will always return the filename in a canonical
form.
Example:
(file-expand-pathname "1ispm;foo") => “Al: LISPM; FOO >*

file-default-fn2 filename fn2
If filename does not specify its FN2 component, this returns a filename whose FN2
is fn2, and whose other components are from filename.
Example:
(file-default-fn2 "1ispm;foo* *bar*) => “Al: LISPM; FOO BAR"

file-set-fn2 filename fn2
Returns a filename whose FN2 is fn2, and whose other components are from
filename.
Example:
(file-set-fn2 "lispm;foo >" "qfasl") => "AI: LISPM; FOO QFASL"

18.7 Rubout Handling

The rubout handler is a feature of all interactive streams, that is, streams which connect
to terminals. Its purpose is to allow the user to edit minor mistakes in typein. At the same
time, it is not supposed to get in the way: input is to be seen by Lisp as soon as a
syntactically complete form has been typed. The rubout handler also provides a few
commands to do things like clear the screen.

DSK:LMMAN:IOS 95 o 6-JAN-79

Rubout Handling 174 Preliminary Lisp Machine Manual

The rubout handler will eventually provide the same editing commands as the editor,
but at this writing they have not yet been conjoined.

The basic way that the rubout handler works is as follows. When an input function that
reads an “object’, such as read or readline but not tyi, is called to read from a stream
which has :rubout-handler in its :which-operations list, that function “enters” the rubout
handler. It then goes ahead :tyi'ing characters from the stream. Because control is inside
the rubout handler, the stream will echo these characters so the user can see what he is
typing. (Normally echoing is considered to be a higher-level function outside of the
province of streams, but when the higher-level function tells the stream to enter.the rubout
handler it is also handing it the responsibility for echoing). The rubout handler is also
saving all these characters in a buffer, for reasons disclosed in the following paragraph.
When the function, read or whatever, decides it has enough input, it returns and control
"leaves” the rubout handler. That was the easy case.

If the user types a rubout, a Xthrow is done, out of all recursive levels of read,
reader macros, and so forth, back to the point where the rubout handler was entered. Also
the rubout is echoed by erasing from the screen the character which was rubbed out. Now
the read is tried over again, re-reading all the characters which had been typed and not
rubbed out, not echcoing them this time. When the saved characters have been exhausted,
additional input is read from the user in the usual fashion.

The effect of this is a complete separation of the functions of rubout handling and
parsing, while at the same time mingling the execution of these two functions in such a way
that input is always "activated” at just the right time. It does mean that the parsing function
(in the usual case, read and all macro-character definitions) must be prepared to be thrown
through at any time and should not have non-trivial side-effects.

If an error occurs while inside the rubout handler, the error message is printed and the
buffered input is redisplayed. The user can then type as he wishes; the input will be
reparsed from the beginning in the usual fashion after he rubs out the characters which
caused the error,

The rubout handler also recognizes the special characters Clear and Form. Form clears
the screen and echoes back the buffered input. Clear is like hitting enough rubouts to flush
all the buffered input.

If a Control or Meta character is typed to the rubout handler, the character is not
echoed nor given to the program as input. The function which is the value of rubout-
handler-control-character-hook is called. The default binding of this looks for control-
Z and does a "Quit" if one is typed. This hook will go away when the rubout handler uses
Control and Meta characters for editor commands. Note that when not inside the rubout
handler, Control and Meta characters are passed through as input like ordinary characters.

DSK:LMMAN:IOS 95 6-JAN-79

Preliminary Lisp Machine Manual 175 Special 1/0 Devices

rubout-handler-control-character-hook Variable

: The value of this variable is a function called by the rubout handler when a Control
or Meta character is typed. The function should take one argument, which is the
character.

The way that the rubout handler is entered is complicated, since a %catch must be
established. The variable si:rubout-handler is non-nil if the current process is inside the
rubout handler. This is used to handle recursive calls to read from inside reader macros
and the like. If si:rubout-handler is nil, and the stream being read from has :rubout-
handler in its :which-operations, functions such as read send the :rubout-handler
operation to the stream with arguments of the function and its arguments. The rubout
handler initializes itself and establishes its Xcatch, then calls back to the specified function.
If you look at the code in read, you will see some magic hair which is used to make sure
that multiple values pass back through all this correctly. This will eventually become
unnecessary.

£
H

e

sicrubout-handler Variable
t if control is inside the rubout handler in this process.
18.8 Special 1/0O Devices
-> pointers to separate chapter on TV, keyboard, and mouse.
-> pointer to separate chapter on Chaos net

-> how to use whatever else ought to go in here

DSK:LMMAN:IOS 95 6-JAN-79

Packages 176 Preliminary Lisp Machine Manual
19. Packages

19.1 The Need for Multiple Contexts

A Lisp program is a collection of function definitions. The functions are known by their
names, and so each must have its own name to identify it. Clearly a programmer must not
use the same name for two different functions.

The Lisp machine consists of a huge Lisp environment, in which many programs must
coexist, All of the "operating system”, the compiler, the EINE editor, and a wide variety of
programs are provided in the initial environment. Furthermore, every program which the
user uses during his session must be loaded into the same environment. Each of these
programs is composed of a group of functions; apparently each function must have its own
distinct name to avoid conflicts. For example, if the compiler had a function named pull,
and the user loaded a program which had its own function named pull, the compiler’s pull
would be redefined, probably breaking the compiler.

It would not really be possible to prevent these conflicts, since the programs are written
by many different people who could never get together to hash out who gets the privilege
of using a specific name such as pull.

Now, if we are to enable two programs to coexist in the Lisp world, each with its own
function pull, then each program must have its own symbol named “pull’, because there
can't be two function definitions on the same symbol. This means that separate “name
spaces’—mappings between names and symbols—must be provided for them. The package
system is designed to do just that.

Under the package system, the author of a program or a group of closely related
programs identifies them together as a "package”. The package system associates a distinct
name space with each package.

Here is an example: suppose there are two programs named chaos and arpa, for
handling the Chaos net and Arpanet respectively. The author of each program wants to
have a function called get-packet, which reads in a packet from the network (or
something). Also, each wants to have a function called allocate-pbuf, which allocates the
packet buffer. Each "get” routine first allocates a packer buffer, and then reads bits into the
buffer; therefore, each version of get-packet should call the respective version of
allocate-pbuf.

Without the package system, the two programs could not coexist in the same Lisp
environment. But the package feature can be used to provide a separate name space for
each program. What is required is to declare a package named chaos to contain the Chaos
net program, and another package arpa to hold the Arpanet program. When the Chaos net
program is read into the machine, its symbols would be entered in the chaos package's
name space. So when the Chaos net program’s get-packet referred to allocate-pbuf, the
allocate-pbuf in the chaos name space would be found, which would be the allocate-

DSK:LMMAN:PACKD 63 6-JAN-79

N A - ¢

Preliminary Lisp Machine Manual 177 The Organization of Name Spaces

pbuf of the Chaos net program—the right one. Similarly, the Arpanet program’s get-
packet would be read in using the arpa package's name space and would refer to the
Arpanet program’s allocate-pbuf. ‘

An additional function of packages is to remember the names of the files which
constitute each program, making it easy to ask to load or recompile all of them at once.

To understand what is going on here, you should keep in mind how Lisp reading and
loading works. When a file is gotten into the Lisp machine, either by being read or by
being fasloaded, the file itself obviously cannot contain Lisp objects; it contains printed
representations of those objects. When the reader encounters a printed representation of a
symbol, it calls intern to look up that string in some name space and find a corresponding
symbol to return. The package system arranges that the correct name space is used
whenever a file is loaded.

19.2 The Organ.ization of Name Spaces

We could simply let every name space be implemented as one obarray, e.g. one big
table of symbols. The problem with this is that just about every name space wants to
include the whole Lisp language: car, cdr, and so on should be available to every
program. We would like to share the main Lisp system between several name spaces without
making many copies,

Instead of making each name space be one big array, we arrange packages in a tree.
Each package has a "superpackage” or “parent’, from which it “inherits” symbols. Also, each
package has a table, or "obarray’, of its own additional symbols. The symbols belonging to a
package are simply those in the package’s own obarray, followed by those belonging to the
superpackage. The root of the tree of packages is the package called global, which has no
superpackage. global contains car and cdr and all the rest of the standard Lisp system. In
our example, we might have two other obarrays called chaos and arpa, each of which
would have global as its parent. Here is a picture of the resulting tree structure:

global

In order to make the sharing of the global package work, the intern function is made
more complicated than in basic Lisp. In addition to the string or symbol to intern, it must
be told which package to do it in. First it searches for a symbol with the specified name in
the obarray of the specified package. If nothing is found there, intern looks at its
superpackage, and then at the superpackage’s superpackage, and so on, until the name is
found or a root package such as global is reached. When intern reaches the root package,
and doesn't find the symbol there either, it decides that there is no symbol known with that
name, and adds a symbol to the originally specified package.

DSK:LMMAN:PACKD 63 6-JAN-79

R RTardE T RR S % 7

Shared Programs 178 Preliminary Lisp Machine Manual

Since you don't normally want to worry about specifying packages, intern normally uses
the “current” package, which is the value of the symbol package. This symbol serves the
purpose of the symbol obarray in Maclisp.

Here's how that works in the above example. When the Chaos net program is read into
the Lisp world, the current package would be the chaos package. Thus all of the symbols
in the Chaos net program would be interned on the chaos package. If there is a reference
to some well known global symbol such as append, intern would look for "append” on the
chaos package, not find it, look for “append” on global, and find the regular Lisp append
symbol, and return that. If, however, there is a reference to a symbol which the user made
up himself (say it is called get-packet), the first time he uses it, intern won't find it on
either chaos nor global. So intern will make a new symbol named get-packet, and install
it on the chaos package. When get-packet is refered to later in the Chaos net program,
intern will find get-packet on the chaos package.

When the Arpanet program is read in, the current package would be arpa instead of
chaos. When the ArpaNet program refers to append, it gets the global one; that is, it
shares the same one that the Chaos net program got. However, if it refers to get-packet,
it will nor get the same one the Chaos net program got, because the chaos package is not
being searched. Rather, the arpa and global packages are getting searched. So intern will
create a new get-packet and install it on the arpa package.

So what has happened is that there are two get-packets: one for chaos and one for
arpa. The two programs are loaded together without name conflicts.

19.3 Shared Programs

Now, a very important feature of the Lisp machine is that of "shared programs” if one
person writes a function to, say, print numbers in Roman numerals, any other function can
call it to print Roman numerals. This contrasts sharply with PDP-10 system programs, in
which Roman numerals have been independently reimplemented several times (and the ITS
filename parser several dozen times).

For example, the routines to manipulate a robot arm might be a separate program,
residing in a package named arm. If we have a second program called blocks (the blocks
world, of course) which wanted to manipulate the arm, it would want to call functions
which are defined on the arm obarray, and therefore not in blocks’s own name space.
Without special provision, there would be no way for any symbols not in the blocks name
space 1o be part of any blocks functions.

The colon character (") has a special meaning to the Lisp reader. When the reader
sees 4 colon preceeded by the name of a package, it will read in the next Lisp object with
package bound to that package. The way blocks would call a function named go-up
defined in arm would be by asking to call arm:go-up, because "go-up would be interned
on the arm package. What arm:go-up means precisely is "The symbol named go-up in the
name space of the package arm.”

DSK:LMMAN:PACKD 63 6-JAN-79

g h i o

Preliminary Lisp Machine Manual 179 Declaring Packages

Similarly, if the chaos program wanted to refer to the arpa program's allocate-pbuf
function (for some reason), it would simply call arpa:allocate-pbuf.

An important question which should occur at this point is how the names of packages
are associated with their obarrays and other data. This is done by means of the “refname-
alist” which each package has. This alist associates strings called reference names or
rcfnames with the packages they name. Normally, a package's refname-alist contains an
entry for each subpackage, associating the subpackage with its name. In addition, every
package has its own name defined as a refname, referring to itself. However, the user can
add any other refnames, associating them with any packages he likes. This is useful when
multiple versions of a program are loaded into different packages. Of course, each package
inherits its superpackage's refnames just as it does symbols.

In our example, since arm is a subpackage of global, the name arm is on global’s
refname-alist, associated with the arm package. Since blocks is also a subpackage of global,
when arm:go-up is seen the string "arm" is found on global’s refname alist.

When you want to refer to a symbol in a package which you and your superpackages
have no refnames for—say, a subpackage named foo of a package named bar which is
under global—you can use multiple colons. For example, the symbol finish in that
package foo could be referred to as foo:bar:finish. What happens here is that the second
name, bar, is interpreted as a refname in the context of the package foo.

194 Declaring Packages

Before any package can be referred to or loaded, it must be declared. This is done
with the special form package-declare, which tells the package system all sorts of things,
including the name of the package, the place in the package hierarchy for the new package
to go, its estimated size, the files which belong in it, and some of the symbols which belong
in it,

Here is a sample declaration:
(package-declare foo global 1000
(("lispm;foo qfasli®)
("lispm;bar qfasl")
("lispm;barmac >" defs))
(shadow array-push adjust-array-size)
(extern foo-entry))

What this declaration says is that a package named foo should be created as an inferior
of global, the package which contains advertised global symbols. Its obarray should initially
be large enough to hold 1000 symbols, though it will grow automatically if that isn’t enough.
Unless there is a specific reason to do otherwise, you should make all of your packages
direct inferiors of global. The size you give is increased slightly to be a good value for the
hashing algorithm used.

DSK:LMMAN:PACKD 63 6-JAN-79

Declaring Packages 180 Preliminary Lisp Machine Manual

After the size comes the file-alist”. The files in the foo package are “lispmifoo” and
“lispm:bar”, both of which should be compiled, and "lispm:barmac”, which should be read in
as a text file. In addition, "barmac” is marked as a DEFS file, which means that the latest
version of "barmac” must always be loaded before attempting to compile or load any of the
other files. Typically a DEFS file contains macro definitions, compiler declarations,
structure definitions, and the like. All the source files should start with

(pkg-contained-in "foo")
to help detect processing them in the wrong package. Soon it- will automatically cause them
to be processed in the right package, even if copied under strange names. (NOTE: pkg-
contained-in IS NOT IMPLEMENTED YET! DON'T USE IT')

Finally. the foo package "shadows” array-push and adjust-array-size, and “externs’
foo-entry. What shadowing means is that the foo package should have its own versions of
those symbols, rather than inheriting its superpackage's versions. Symbols by these names will
be added to the foo package even though there are symbols on global already with those
names. This allows the foo package to redefine those functions for itself without redefining
them in the global package for everyone else. What externing means is that the foo
package is allowed to redefine foo-entry as inherited from the global package, so that it is
redefined for everybody. If foo attempts to redefine a function such as car which is
present in the global package but neither shadowed nor externed, confirmation from the
user will be requested.

Note that externing doesn't actually put any symbols into the global package. It just
asserts permission to redefine symbols already there. This is deliberate; the intent is to
enable the maintainers of the global package to keep control over what symbols are present
in it. Because inserting a new symbol into the global package can cause trouble to -
unsuspecting programs which expect that symbol to be private, this is not supposed to be
done in a decentralized manner by programs written by one user and used by another
unsuspecting user. Here is an example of the trouble that could be caused: if there were
two user programs, each with a function named move-square, and move-square were put
on the global package, all of a sudden the two functions would share the same symbol,
resulting in a name conflict. While all the definitions of the functions in global are actually
supplied by subpackages which extern them (global contains no files of its own), the list of
symbol names is centralized in one place, the file "ai: lispm2: global >", and this file is not
changed without notifying everyone, and updating the global documentation.

Certain other things may be found in the declarations of various internal system
packages. They are arcane and needed only to compensate for the fact that parts of those
packages are actually loaded before the package system is. They should not be needed by
any user package,

Your package declarations should go into separate files containing only package
declarations. Group them however you like, one to a file or all in one file. Such files can
be read with load. It doesn't matter what package you load them into, so use user, since
that has to be safe.

DSK:LMMAN:PACKD 63 6-JAN-79

[ERv——

St BN A e ey

-

NIV

|

PP,

Preliminary Lisp Machine Manual 181 Packages and Writing Code

If the declaration for a package is read in twice, no harm is done. If you edit the size
to replace it with a larger one, the package will be expanded. If you change the file-alist,
the new one will replace the old. At the moment, however, there is no way to change the
list of shadowings or externals; such changes will be ignored. Also, you can’t change the
superpackage. If you edit the superpackage name and read the declaration in again, you
will create a new, distinct package without changing the old one.

package-declare Macro
The package-declare macro is used to declare a package to the package system. Its
form is:
(package-declare name superpackage size file-alist option-1 option-2 ...)
The interpretation of the declaration is complicated; see page 179.

195 Packages and Writing Code

The unsophisticated user need never be aware of the existence of packages when writing
his programs. He should just load all of his programs into the package user, which is also
what console type-in is interned in. Since all the functions which users are likely to need
are provided in the global package, which is user’s superpackage, they are all available. In
this_manual, functions which are not on the global package are documented with colons in
their names, so typing the name the way it is documented will work.

However, if you are writing a generally useful tool, you should put it in some package
other than user, so that its internal functions will not conflict with names other users use.
Whether for this reason or for any other, if you are loading your programs into packages
other than user there are special constructs that you will need to know about.

One time when you as the programmer must be aware of the existence of packages is
when you want to use a function or variable in another package. To do this, write the
name of the package, a colon, and then the name of the symbol, as in eine:ed-get-
defaulted-file-name. You will notice that symbols in other packages print out that way,
too. Sometimes you may need 1o refer to a symbol in a package whose superior is not
global. When this happens, use multiple colons, as in foo:bar:ugh, 1o refer to the symbol
ugh in the package named bar which is under the package named foo.

Another time that packages intrude is when you use a “keyword™ when you check for
eqgness against a constant symbol, or pass a constant symbol to someone else who will check
for it using eq. This includes using the symbol as either argument to get. In such cases,
the usual convention is that the symbol should reside in the user package, rather than in
the package with which its meaning is associated. To make it easy to specify user, a colon
before a symbol, as in :select, is equivalent to specifying user by name, as in user:select.
Since the user package has no subpackages, putting symbols into it will not cause name
conflicts,

DSK:LMMAN;PACKD 63 6-JAN-79

Shadowing 182 Preliminary Lisp Machine Manual

Why is this convention used? Well, consider the function tv-define-pc-ppr, which

takes any number of keyword arguments. For example,

(tv-define-pc-ppr "foo" (list tvfont) “vsp 6 “sideways-p t)
specifies, after the two peculiar mandatory arguments, two options with names vsp and
sideways-p and values 6 and t. The file containing this function’s definition is in the
system-internals package, but the function is available to everyone without the use of a
colon prefix because the symbol tv-define-pc-ppr is itself inherited from global. But all
the kevword names, such as vsp, are short and should not have to exist in global.
However, it would be a shame if all callers of tv-define-pc-ppr had to specify system-
internals: before the name of each keyword. After all, those callers can include programs
loaded into user, which should by rights not have to know about packages at all. Putting
those keywords in the user package solves this problem. The correct way to type the above
form would be

(tv-define-pc-ppr "foo" (list tvfont) “:vsp 6 “:sideways-p t)

Exactly when should a symbol go in user? At least, all symbols which the user needs
to be able to pass as an argument to any function in global must be in user if they aren't
themselves in global. Symbols used as keywords for arguments by any function should
usually be in user, to keep things consistent. However, when a program uses a specific
property name to associate its own internal memoranda with symbols passed in from outside,
the property name should belong to the program’s package, so that two programs using the
same property name in that way don’t conflict.

19.6 Shadowing

Suppose the user doesn't like the system nth function; he might be a former interlisp
user, and expecting a completely different meaning from it. Were he to say (defun nth --
-) in his program (call it interloss) he would clobber the global symbol named ‘nth", and
so affect the 'nth” in everyone else’s name space. (Actually, if he had not “externed” the
symbol "nth", the redefinition would be caught and the user would be warned.)

In order to allow the interloss package to have its own (defun nth ---) without
interfering with the rest of the Lisp environment, it must "shadow” out the global symbol
“nth” by putting a new symbol named "nth" on its own obarray. Normally, this is done by
writing (shadow nth) in the declaration of the interloss package. Since intern looks on
the subpackage’s obarray before global, it will find the programmer’s own nth, and never
the global one. Since the global one is now impossible to see, we say it has been
"shadowed.”

Having shadowed nth, if it is sometimes necessary to refer to the global definition, this
can be done by writing global:nth. This works because the refname global is defined in
the global package as a name for the global package. Since global is the superpackage of
the interloss package, all refnames defined by global, including "global”, are available in
interloss.

DSK:LMMAN:PACKD 63 6-JAN-79

i
¢
|
i
|

Preliminary Lisp Machine Manual 183 Packages and Interning

19.7 Packages and Interning

The function intern allows you to specify a package as the second argument. [t can be
specified either by giving the package object itself, or by giving a string or symbo! which is
the name of the package. intern returns three values. The first is the interned symbol.
The second is t if the symbol is old (was already present, not just added to the obarray).
The third is the package in which the symbol was actually found. This can be either the
specified package or one of its superiors.

When you don't specify the second argument to intern, the current package, which is
the value of the symbol package, is used. This happens, in particular, when you call read.
Bind the symbol package temporarily to the desired package, before calling things which
call intern, when you want to specify the package. When you do this, the function pkg-
find-package, which converts a string into the package it names, may be useful. While
most functions that use packages will do this themselves, it is better to do it only once
when package is bound. The function pkg-goto sets package to a package specified by a
string. You shouldn’t usually need to do this, but it can be useful to "put the keyboard
inside” a package when you are debugging.

package Variable
The value of package is the current package; many functions which take packages as
optional arguments default to the value of package, including intern and related
functions.

pkg-goto &optional pkg
pkg may be a package or the name of a package. pkg is made the current package.
It defaults to the user package.

pkg-bind Macro
The form of the pkg-bind macro is (pkg-bind pkg . body). pkg may be a package
or a package name. The forms of the body are evaluated sequentially with the
variable package bound to pkg.
Example: ‘
(pkg-bind "eine"
(read-from-string function-name))

There are actually four forms of the intern function: regular intern, intern-soft,
intern-local, and intern-local-soft. -soft means that the symbol should not be added to
the package if there isn't already one: in that case, all three values are nil. -local means
that the superpackages should not be searched. Thus, intern-local can be used to cause
shadowing. intern-local-soft is a good low-level primitive for when you want complete
control of what to search and when to add symbols. All four forms of intern return the
same three values, except that the soft forms return nil nil nil when the symbol isn’t
found.

DSK:LMMAN;:PACKD 63 6-JAN-79

Packages and Interning 184 Preliminary Lisp Machine Manual

intern string &optional (pkg package)
intern searches pkg and its superpackages sequentially, looking for a symbol whose
print-name is equal to string. If it finds such a symbol, it returns three values: the
symbol, t, and the package on which the symbol is interned. If it does not find
one, it creates a new symbo! with a print name of string, and returns the new
symbol, nil, and pkg.

intern-local string &optional (pkg package)
intern searches pkg (but not its superpackages), looking for a symbol whose print-
name is equal to string. If it finds such a symbol, it returns three values: the
symbol, t, and pkg If it does not find one, it creates a new symbol with a print
name of srring, and returns the new symbol, nil, and pkg.

intern-soft string &optional (pkg package)
intern searches pkg and its superpackages sequentially, looking for a s)'mbol whose
print-name is equal to string. If it finds such a symbol it returns three values: the
symbol, t, and the package on which the symbol is mterned If it does not find
one, it returns nil, nil, and nil.

intern-local-soft string &optional (pkg package)
intern searches pkg (but not its superpackages), looking for a symbol whose print-
name is equal to string. 1If it finds such a symbol, it returns three values: the
symbol, t, and pkg If it does not find one, it returns nil, nil, and nil.

Each symbol rememberes which package it belongs to. While you can intern a symbol in
any number of packages, the symbol will only remmeber one: normally, the first one it was
interned in, unless you clobber it. This package is available as (cdr (package-cell-location:
symbol)). If the value is nil, the symbol believes that it is uninterned.

The printer also implicitly uses the value of package when printing symbols. If
slashification is on, the printer tries to print something such that if it were given back to the
reader, the same object would be produced. If a symbol which is not in the current name
space were just printed as its print name and read back in, the reader would intern it on
the wrong package, and return the wrong symbol. So the printer figures out the right colon
prefix so that if the symbol’s printed representation were read back in to the same package,
it would be interned correctly. The prefixes only printed if slashification is on, i.e. prinl
prints them and princ does not. :

remob symbol &optional package
remob removes symbol from package (the names means "REMove from OBarray").
symbol itself is unaffected, but intern will no longer find it on package. remob is
always “local”, in that it removes only from the specified package and not from any
superpackages. It returns t if the symbol was found to be removed. package defaults
to the contents of the symbol's package cell, the package it is actually in.
(Sometimes a symbol can be in other packages also, but this is unusual.)

DSK:LMMAN:PACKD 63 6-JAN-79

i g el i

Preliminary Lisp Machine Manual 185 Packages and Interning

mapatoms function &optional (package package) (superiors-p t)

function should be a function of one argument. mapatoms applies function to all of
the symbols in package. 1f suyperiors-p is t, then the function is also applies to all
symbols in package’s superpackages. Note that the function will be applied to
shadowed symbols in the superpackages, even though they are not in package's name
space. If that is a problem, function can try applying intern in package on each
symbol it gets, and ignore it if it is not eq to the result of intern; this measure is
rarely needed.

mapatoms-all function &optional (package ‘global”)

function should be a function of one argument. mapatoms-all applies function to all
of the symbols in package and all of package’s subpackages. Since package defaults to
the global package, this normally gets at all of the symbols in all packages. It is
used by such functions as apropos and who-calls (see page 261)

Example:

(mapatoms-all
(function
{lambda (x)
(and (alphalessp 7z x)
(print x)))))

pkg-create-package name &optional (super package) (size 200)
pkeg-create-package creates and returns a new package. Usually packages are
created by package-declare, but sometimes it is useful to create a package just to
use as a hash table for symbols, or for some other reason.

If name is a list, its first element is taken as the package name and the second as the
program name; otherwise, name is taken as both. In either case, the package name
and program name are coerced to strings. super is the superpackage for this package;
it may be nil, which is useful if you only want the package as a hash table, and
don’t want it to interact with the rest of the package system. size is the size of the
package; as in package-declare it is rounded up to a "good” size for the hashing
algorithm used.

pke-kill pkg
pkg may be either a package or the name of a package. The package should have a

superpackage and no subpackages. pkg-kill takes the package off its superior’s
subpackage list and refname alist.

pkg-find-package x &optional (create-p nil) (under ‘global”)
pkg-find-package tries to interpret x as a package. Most of the functions whose
descriptions say “.. may be either a package or the name of a package” call pkg-
find-package to interpret their package argument.

If x is a package, pkg-find-package returns it. Otherwise it should be a symbol or
string, which is taken to be the name of a package. The name is looked up on the
refname alists of package and its superpackages, the same as if it had been typed as

DSK:LMMAN:PACKD 63 6-JAN-79

Status Information 186 Preliminary Lisp Machine Manual

part of a colon prefix. If this finds the package, it is. returned. Otherwise, create-p
controls what happens. If create-p is nil, an error is signalled. Otherwise, a new
package is created, and installed as an inferior of under.

pkg-map-refnames function package

pkg-map-refnames is used by the printer to figure out the correct package prefix
for symbols, when they are being printed with slashification. It is provided for
sophisticated use of the package system. package should be the package of the
symbol to be printed. function should be a function of two arguments which will be
called successively on each reference name to be printed. The first argument to
function is the name (as a string), and the second is the number of reference names
to be printed after this one (i.e, function is called on successive reference names, on
a decreasing fixnum which is @ on the last call). Of course, function need not print
the reference names; it may do anything it wants with them,

A package is implemented as a structure, created by defstruct. The following accessor
macros are available on the global package:

pkg-name The name of the package, as a string.
pkeg-refname-alist The refname alist of the package, associating strings with packages.

pkeg-super-package The superpackage of the package.

19.8 Status Information

The current package—where your type-in is being interned—is always the value of the
symbol package. A package is a named structure which prints out nicely, so examining the
value of package is the best way to find out what the current package is. Normally, it
should be user, except when inside compilation or loading of a file belonging to some
other package. :

To get more information on the current package or any other, use the function pkg-
describe. Specify either a package object or a string which is a refname for the desired
package as the argument. This will print out everything except a list of all the symbols in
the package. If you want rhat, use (mapatoms ’print package nil). describe of a package
will call pkg~describe.

DSK:LMMAN:PACKD 63 6-JAN-79

Preliminary Lisp Machine Manual 187How Packages Affect Loading and Compilation

199 How Packages Affect Loading and Compilation

It's obvious that every file has to be loaded into the right package to serve its purpose.
It may not be so obvious that every file must be compiled in the right package, but it's just
as true. . Luckily, this usually happens automatically.

When you have mentioned a file in a package’s file-alist, requesting to compile that file
with qc-file or loading it with load automatically selects that package to perform the
operation. This is done by inverting the package-to-file correspondence described by the
file-alists and remembering the inversion in the form of :package properties on symbols in

the files package (the symbol representing the file is (intern (file-expand-pathname
filcname) "files")).

The system can get the package of a source file from its “editor property list". For
instance, you can put at the front of your file a line such as " -* Mode:Lisp;
Package:System-Internals -*-", The compiler puts the package into the QFASL file. If a file
is not mentioned in a package’s file-alist and doesn't have such a package specification in it,
the system loads it into the current package, and tells you what it did.

To compile or load all of the files of a package, you can use the pkg-load function
(see page 194), which ufes the file-alist from the package declaration.

19.10 Subpackages

Usually, each independent program occupies one package, which is directly under
global in the hierarchy. But large programs, such as Macsyma, are usually made up of a
number of sub-programs, which are maintained by a small number of people. We would like
each sub-program to have its own name space, since the program as a whole has too many
names for anyone to remember. So, we can make each sub-program into its own package.
However, this practice requires special care.

It is likely that there will be a fair number of functions and symbols which should shared
by all of the sub-programs of Macsyma. These symbols should reside in a package named
macsyma, which would be directly under global. Then, each part of macsyma (which
might be called sin, risch, input, and so on) would have its own package, with the
macsyma package as its superpackage. To do this, first declare the macsyma package, and
then declare the risch, sin, etc. packages, specifying macsyma as the superpackage for
each of them. This way, each sub-program gets its own name space. All of these
declarations would probably be in a together in a file called something like "macpkg”.

However, to avoid a subtle pitfall (described in detail in the appendix), it is neceéssary
that the macsyma package itself contain no files; only a set of symbols specified at
declaration time. This list of symbols is specified using shadow in the declaration of the
macsyma package. At the same time, the file-alist specified in the declaration must be nil
(otherwise, you will not be allowed to create the subpackages). The symbols residing in the
macsyma package can have values and definitions, but these must all be supplied by files in

DSK:LMMAN;PACKD 63 ' 6-JAN-79

Subpackages 188 Preliminary Lisp Machine Manual

macsyma’s subpackages (which must “extern” those symbols as necessary). Note that this is
exactly the same treatment that global receives: all its functions are actually defined in files
which are loaded into system-internals (si), compiler, etc.

To demonstrate the full power and convenience of this scheme, suppose there were a
second huge program called owl which also had a subprogram called input (which,
presumably, does all of the inputting for owl), and one called database. Then a picture
of the hierarchy of packages would look like this:

global
|
e R L LT T - \
| |
macsyma owl
| |
(N | | | | | (I
(others) risch sin input input database (others)

Now, the risch program and the sin program both do integration, and so it would be
natural for each to have a function called integrate. From inside sin, sin’s integrate
would be referred to as ‘integrate" (no prefix needed), while risch’s would be referred to
as ‘risch:integrate”, Similarly, from inside risch, risch’s own integrate would be called
“integrate”, whereas sin’s would be referred to as "sin:integrate”.

If sin’s integrate were a recursive function, the implementor would be referring to it
from within sin itself, and would be happy that he need not type out “siniintegrate” every
time: he can just say ‘integrate”. .

From inside the macsyma package or any of its other sub-packages, the two functions
would be referred to as "sin:integrate” and as "risch:integrate”. From anywere else in the
hierarchy. they would have to be called ‘macsyma:sin:integrate” and
"‘macsyma:risch:integrate”,

Similarly, assume that each of the input packages has a function called get-line. From
inside macsyma or any of macsyma’s subprograms (other than input), the relevant
function would be called input:get-line, and the irrelevant one owl:input:get-line. The
converse is true for owl and its sub-programs. Note that there is no problem arising from
the fact that both owl and macsyma have subprograms of the same name (input).

You might also want to put Macsyma's get-line function on the macsyma package.
Then, from anywehere inside Macsyma, the function would be called get-line; from the
owl package and subpackages it could be referred to as macsyma:get-line.

DSK:LMMAN:PACKD 63 6-JAN-79

Preliminary Lisp Machine Manual 189 Initialization of the Package System

19.11 Initialization of the Package System

This section describes how the package system is initialized when generating a new
software release of the Lisp Machine system: none of this should affect users.

When the world begins to be loaded, there is no package system. There is one
“obarray”, whose format is different from that used by the package system. After sufficiently
much of the Lisp environment is present for it to be possible to initialize the package
system, that is done. At that time, it is necessary to split the symbols of the old-style
obarray up among the various initial packages.

The first packages created by initialization are the most important ones: global, system,
user, and system-internals. All of the symbols already present are placed in one of those
packages. By default, a symbol goes into system-internals. Only those placed on special
lists: go into one of the others. These lists are the file “Al: LISPM2; GLOBAL >" of
symbols which belong in global, the file "Al: LISPM2; SYSTEM >" which go in system,
and the file "Al: LISPM2; KWDPKG >" of symbols which belong in user (at the moment,
these are actually loaded into global, because not everything has been converted to use
colons where necessary),

After the four basic packages exist, the package system's definition of intern is installed,
and packages exist. Then, the other initial packages format, compiler, eine, etc. are
declared and loaded using package-declare and pkg-load, in almost the normal manner.
The exception is that a few of the symbols present before packages exist really belong in
one of these packages. Their package declarations contain calls to forward and borrow,
which exist only for this purpose and are meaningful only in package declarations, and are
used to move the symbols as appropriate. These declarations are kept in the file "Al:
LISPM: PKGDCL >".

globalize &rest symbols

~ Sometimes it will be discovered that a symbol which ought to be in global is not
there, and the file defining it has already been loaded, thus mistakenly creating a
symbol with that name in a package which ought just to inherit the one from global.
When this happens, you can correct the situation by doing (globalize "symbol-
name"). This function creates a symbol with the desired name in global, merges
whatever value, function definition, and properties can be found on symbols of that
name together into the new symbol (complaining if there are conflicts), and forwards
those slots of the existing symbols to the slots of the new one using one-q-forward
pointers, so that they will appear to be one and the same symbol as far as value,
function definition, and property list are concerned. They cannot all be made eq to
each other, but globalize does the next-best thing: it takes an existing symbol from
user, if there is one, to put it in global. Since people who check for eq are
normally supposed to specify user anyway, they will not perceive any effect from
moving the symbol from user into global.

DSK:LMMAN:PACKD 63 6-JAN-79

Initial Packages 190 Preliminary Lisp Machine Manual

19.12 1

The

global

user

¢

If globalize is given a symbol instead of a string as argument, the exact symbol
specified is put into global. You can use this when a symbol in another package,
which should have been inherited from global, is being checked for with eq—as
long as there are not two different packages doing so. But, if the symbol is supposed

to be in global, there usually should not be,

nitial Packages

initially present packages include:

Contains advertised global functions.

Used for interning the user's type-in. Contains all keyword symbols.

Sys or system

Contains various internal global symbols used by various system programs.

si or system-internals

Contains subroutines of many advertised system functions. si

of sys.
compiler Contains the compiler and fasload. compiler is a subpackage
eine Contains the Eine editor.
chaos Contains the Chaos net controller.
supdup Contains the Supdup program,
peek Contains the Peek program.
format Contains the function format and its associated subfunctions.

Packages which are used for special sorts of data:

fonts

files

format

Her

Contains the names of all fonts.

is a subpackage

of sys.

Contains the file-symbols of all files. Many properties are kept on these
symbols to remember information about files which are in use.

Contains the keywords for format, as well as the code.
e is a picture depicting the inital package hierarchy:
global
|
e e e -ommse- SRRRELEE
| | | | | | | | |
user eine chaos system supdup format fonts files peek
|
[mmmmmmmeemeee e \
| |
system-internals compiler

DSK:LMMAN:PACKD 63

6-JAN-79

e

At g e

[E P

Preliminary Lisp Machine Manual 191 Mutltiple Instantiations of a Program

19.13 Multiple Instantiations of a Program
This isn't finished yet, which is why we don't say how to do any of this.

Suppose a maintainer of EINE (the Lisp Machine editor) has made some changes to
EINE, and would like to debug them. He has a problem: if he reads in the new version,
which presumably may be full of bugs, then he will not be able to do any editingt! This
would be annoying, since the editor is very useful.

We would like both the regular and the experimental versions of the editor to both be
loaded into the Lisp world. In order for two definitions of each editor function to coexist,
we need to load the new version into a separate package, which must have a different name
(not named ‘eine”, like the package the original editor is in). If the test version’s package is
called “"test-eine”, then the user can try it by calling (test-eine:ed), and edit it using (ed).

However, there is a problem to be faced. The editor redefines a few entry-point
functions (ed, edprop, etc) which reside in global. If the test editor redefined them, the
whole point of the separate package would be lost. So, the test-eine package must
shadow all the symbols which the regular eine package externs.

Further complications are needed to make it possible to test one program using another
instead of by hand. Suppose that there is a program named random residing in its own
package, and containing a function named number. Suppose that we have a debugged
program dp (Dissociated Press) which uses random:number. And now, we have written a
new version of random and want to test it using dp, without installing it and breaking
system tools which use random. What we want to do is to load in a test version of
random, test-random, and also a test-dp which will refer to it, to test it with.

This can be done if we can make the test-dp package take references to random as
references to the test-random package. All this takes is an entry on test-dp's refname-
alist, associating the name ‘random” with the test-random package. Then, when
random:number is seen in the course of reading in the old dp program into test-dp,
test-random:number will actually be used. Note that normally test-dp wouldn't have an
entry on its own refname-alist for ‘random” it would inherit the association from global.
We are actually “shadowing” in test-dp the definition of ‘random” as a package refname
which is present in global. Here is what we will get.

global ([random -> random]
| N
R --=\

| | | |
dp => random test-dp => test-random

[random -> test-random]}
("=>" indicates who calls whom; "->" indicates a refname).

So far, every package has had its own name as a refname for itself. A test package,

however, shouldn't have its actual name as a refname for itself, but the name its program
expects: ‘random”, not “test-random”. This is necessary to handle test packages with

DSK:LMMAN:PACKD 63 6-JAN-79

Multiple Instantiations of a Program 192 Preliminary Lisp Machine Manual

subpackages right, together with shadowing. In fact every package has a "program name" as
well as a "name”. For ordinary packages, they are the same, but for a test package, the
program name is identical to that of the original package.

Suppose we have the Macsyma program with all of its sub-packages as described above.
Further assume that the input sub-program’s author has his own symbol named simp, and he
calls macsyma:simp in various places to get the one in the macsyma package. Now, say
someone wants to load an experimental macsyma into the machine: he would name the
new obarray test-macsyma or something. In order to assure that the reference to
macsyma:simp is properly resolved, the refname-alist of test-macsyma must contain test-
macsyma under the name macsyma. This, finally, is the reason why each package has a
reference to itself on its refname-alist.

DSK:LMMAN:PACKD 63 6-JAN-79

Preliminary Lisp Machine Manual 193 Files

20. Files

This chapter explains how the Lisp Machine system interacts with files and the file
system. It explains how to keep your programs in files and how to get them into the Lisp
environment, how they relate to packages, how they are divided into sections, and how
they are seen by EINE (the editor).

Eventually, Lisp Machines will be able to support their own file sytems, or use a special
purpose “File Computer” over the Chaosnet. At the moment, the prototype Lisp Machine
uses the Al PDP-10 file system. To allow it to access the PDP-10 (which is not yet
attached to the Chaosnet), a special program must be run on the PDP-10, which is invoked
by typing :lmio;file to DDT.

A pathname or filename is a string of characters which identifies a file in the file system.
On the existing file system, a pathname looks like

“device: dircctory; fnl fn2”

It is assumed that the reader of this document is familiar with the meanings of these
pathnames, and the use of ">" as the fn2 in a pathname. Unlike Maclisp, Lisp Machine
functions usually take filenames as a character string, rather then as a list. Most functions
understand pathnames in which some components are not specified. For example, in the
string "lispm;qmod"”, the device and fn2 are not specified.

20.1 Functions for Loading Programs

20.1.1 Functions for Loading Single Files

load pathname &optional pkg

This function loads the file pathname into the Lisp environment. If the file is a
QFASL file, it calls fasload: otherwise it calls readfile. pkg should be a package or
the name of a package, and if it is given it is used as the current package when the
file is read in. Usually it is not given: when it is not supplied explicitly, load tries
to figure out what package to use by calling pkeg-find-file-package. 1f the FN2 is
not specified in pathname, load first tries appending the fn2 “qfasl”, and then tries
the fn2 ">" if the "qfasl” file is not found.

readfile pathname

readfile sequentially reads and evaluates forms from the file pathname, in the
current package.

DSK:LMMAN:FILES 16 ‘ 6-JAN-79

+5

Functions for Loading Programs 194 Preliminary Lisp Machine Manual

fasload pathname
fasload reads in and processes a QFASL file, in the current package. That is, it
defines functions and performs other actions as directed by the specifications inserted
in the file by the compiler.

20.1.2 Loading and Compiling Whole Packages

Because each package has a file-alist, it is possible to request that the files of a package
be compiled or loaded, as needed. This is done with the pkg-load function, which takes as
arguments a package and a list of keywords (or one keyword) specifying the precise nature
of the operation. For example, (pkg-load "eine" ’:compile) would recompile and reload
the files of the eine package, such as require it.

pkeg-load package &optional keywords
This function loads and/or compiles the files of a package. package may be a
package or a package name; keywords should be one of the keyword symbols below
or a list of keywords. The keywords control what pkg-load does.

The keywords defined include:

:confirm Ask for confirmation before doing it (this is the default);
:noconfirm Don't ask for confirmation

:compile Compile files before loading:

:nocompile Do not compile (this is the default);

dload Load files (the default);

:noload Don't load (but compile, if that was specified);

:selective Ask about each file;

:complete Don't ask about each file (the default);

:reload Compile or load even files which appear not to neeé ity
:noreload Only process files which have newer versions on disk (the default);
:recursive Also process packages this one refers to;

:defs Process only DEFS files.

See also recompile-world (page 262).

- DSK:LMMAN:FILES 16 6-JAN-79

o

ozt st

AN e 4 e

ot v e

i
[
13
i

-

Preliminary Lisp Machine Manual 195 : Processes

21. Processes

Processes are used to implement multi-processing. Several computations can be executed
“concurrently” by placing each in a separate process. A computation in a process may also
wait for something to happen, during which time it does not execute at all.

A process is a Lisp structure with the following components:

process-name
The name of the process, as a string. This string is only used for the
process’s printed representation, and for programs to print out; it can be
anything reasonably mnemonic.

process-stack-group
The stack group currently associated with this process. When the process is
run, this stack group will be resumed. See below.

process-wait-function
A function, applied to the argument list in the process’s process-wait-
argument-list to determine whether the process is runnable. The function
should return nil if the process is not ready to run.

process-wait-argument-list
The arguments to which the process-wait-function is applied.

process-whostate
The reason this process is waiting, as a string. This is only used for display
by the who-line or various programs; it can be anything reasonably
mnemonic.

process-job The job associated with this process, or nil if the process is not associated
with any job. See the chapter on jobs (page 199).

process-initial-stack-group
The function process-preset (see page 197) will make the process-stack-
group be this stack group.

At any time there is a set of active processes. Each active process is either trying to run,
or waiting for some condition to become true. The active processes are managed by a
special stack group called the scheduler, which repeatedly cycles through the active
processes, determining for each process whether it is ready to be run, or whether it is
waiting. The scheduler determines whether a process is ready to run by applying the
process's wait-function to its wait-argument-list. 1f the wait-function returns a non-nil value,
then the process is ready to run; otherwise, it is waiting. If the process is ready to run,
the scheduler resumes the process-stack-group of the process. For example, if a process
were waiting for input from the keyboard, its wait-function might be kbd-char-available,
which returns non-nil if there is a character available from the keyboard. Since kbd-char-
available takes no arguments, the wait-argument-list of the process would be nil.

DSK:LMMAN:PROCES 2 6-JAN-79

FENENSEY

Functions for Manipulating Processes 196 Preliminary Lisp Machine Manual

When a process’s wait-function returns non-nil, the scheduler will resume its stack group
and let it proceed. The process is now the current process, that is, the one process that is
running on the machine. The scheduler sets the variable current-process to it. It will
remain the current process and continue to run until either it decides to wait, or a sequence
break occurs. A process can wait for some condition to become true by calling process-
wait (see page 197), which will set up its wait-function and wait-argument-list accordingly,
and resume the scheduler stack group. A sequence break is a kind of interrupt that is
generated by the Lisp system for any of a variety of reasons; when it occurs, the scheduler
is resumed. In either case, the scheduler will continue cycling through the active processes.
This way, each process that is ready to run will get its share of time in which to execute.

Note: Sequence breaks are not yet implemented, and so the scheduler only regains
control when the running process calls process-wait. Any process that simply computes
for a long time without waiting will keep all of the other processes from running. In the
future, segence breaks will happen periodically and at interesting times when some process'’s
wait condition may have become true.

21.1 Functions for Manipulating Processes

process-create name job &rest options
process-create creates and returns a new process. name may be any string, job is
usually t, and there are usually no options. The options are used in creating the
stack group which executes on behalf of this process.

The fields of the new process are set up as follows:

process-name
name, which should be a string.

process—job job. 1If job is t, the current job is used instead. Otherwise job
should be nil (meaning that the process is not associated with any
job), or a job.

process-stack-group
A newly created stack group. The options argument to process-
create are the options passed to make-stack-group (see page 107)
used when creating this stack group.

process-initial-stack-group
The same as the process-stack-group.

The rest of the fields are set to nil; the process should not be enabled until
process—-preset (see below) is called.

DSK:LMMAN:PROCES 2 6-JAN-79

ot =

X
i
H
i
i
H
H

e N W

IR

Preliminary Lisp Machine Manual 197 Functions for Manipulating Processes

process-preset process initial-function &rest options

‘ process-preset initializes the state of a process. First, it restores the process-
stack-group from the process-initial-stack-group. Then it presets the stack
group, passing the initial-function and options arguments to stack-group-preset
(see page 108). Finally it sets the process-wait-function and process-argument-
list to return t, so that the process will be ready to run. The process is now ready
to be enabled (see process-enable below).

process-kill process
This deactivates process if it is active, and dissociates it from its associated job (if
any).

process-enable process
Enable process._ If process has no associated job, or if its job if process-enabled,
process is activated.

process-disable process
Disable process. If it was active, deactivate it.

process-wait whostate function &rest arguments

process-wait sets the current-process’s process-whostate, process-wait-function,
and process-wait-argument-list from its three arguments, which makes the current
process wait until the application of function 10 arguments returns non-nil (at which
time process-wait returns). Note that function is applied in the environment of the
scheduler, not the environment of the process-wait, so bindings in effect when
process-wait was called will not be in effect when function is applied. Be careful
when using any free references in function.
Example:

;; This won’t work.

((1ambda (until)

(process-wait "sleep" “(lambda () (> (time) until))))
500)

;; This is the right way to do it.
(process-wait "sleep" “(lambda (until) (> (time) until)) 500)

When running the process-wait-function, the scheduler sets the variables
current-process and current-job to the process being considered and its job, so
the process-wait-function can use them; for example:

;; Wait until I get the keyboard.

(process-wait "kbd" “(lambda () (eq kbd-job current-job)))

DSK:LMMAN:PROCES 2 6-JAN-79

Locks 198 Preliminary Lisp Machine Manual

process-sleep interval

This simply waits for interval sixtieths of a second, and then returns. It uses
process~-wait,

process-allow-schedule
This function simply waits for a condition which is always true; all other processes
will get a chance to run before the current process runs again.

21.2 Locks

A Jock is a software construct used for synchronization of two processes. A lock is
either held by some process, or is free. When a process tries to seize a lock, it waits until
the lock is free, and then it becomes the process holding the lock. When it is finished, it
should unlock the lock.

In the Lisp Machine, a lock is a locative pointer to a cell. If the lock is free, the cell
contains nil; otherwise it contains the process that holds the lock. The process-lock and
process-unlock functions are written in such a way as to guarantee that two processes can
never both think that they hold a certain lock: only one process can ever hold a lock at a
time,

process-lock /locative
This is used to seize the lock which locative points to. If necessary, process-lock
will wait until the lock becomes free. When process-lock returns, the lock has
been seized.

process-unlock /Jocative ;
This is used to unlock the lock which Jlocative points to. If the lock is free or was
locked by some other process, an error is signaled. Otherwise the lock is unlocked.

It is a good idea to use unwind-protect to make sure that you unlock any lock that
. you seize. For example, if you write
(unwind-protect
(progn (process-lock lock-3)
(function-1)
(function-2))
(process-uniock lock-3))
then even if function-1 or function-2 does a *throw, lock-3 will get unlocked
correctly.

process-lock and process-unlock are written by use of a sub-primitive function called
%store-conditional (see page 115), which is sometimes useful in its own right.

DSK:LMMAN:PROCES 2 6-JAN-79

- Preliminary Lisp Machine Manual 199 TVOBs and Jobs

22. TVOBs and Jobs

[The subject of this chapter is currently being redesigned. The contents of this chapter
will be completely changed in the next edition of this manual.

22.1 Introduction to the Concepts of This Chapter

TVOBs (TV OBjects) represent permission to use the TV screen. The TVOB mechanism
is provided to allow the TV to be shared between all of the activities the user may be
conducting, without those activities getting in each other’s way.

A job is a collection of processes and TVOBs, grouped together for the user's
convenience. The processes can be started and stopped together, and the TVOBs can be
put on or taken off the TV together.

222 TVOBs

A TVOB (TV OBject) is a Lisp structure with the following components:

tvob-name This is the name of the TVOB, as a string. It is only used for the TVOB’s
printed representation, and can be anything reasonably mnemonic.

tvob-x1 The first (leftmost) column of the TVOB's area of the screen.

tvob-yl The first (highest) line of the TVOB's area of the screen. The tvob-xl and
tvob-yl are the co-ordinates of the upper-left-hand corner of the TVOB's
rectangular area, ’

tvob-x2 The first (leftmost) column to the right of the TVOB’s area of the screen.

tvob-y2 The first (highest) line below the TVOB's area of the screen. The tvob-x2
and tvob-y2 are the co-ordinates of the lower-right-hand corner of the
TVOB's rectangular area, with | added to each. Thus the height of the tvob
is the difference between its tvob-y2 and tvob-yl, and the width is the
difference between the tvob-x2 and tvob-x1.

tvob-handler A function, described below.

tvob-info This field may contain anything at all; it is meant 10 be used by the tvob-
handler function.

tvob-job The job associated with this TVOB, or nil if there is no associated job.

tvob-priority .
Either t or nil.” If it is t, the functions which allocate area on the screen
(tvob-create and tvob-create-expandable, see page 206) will be
reluctant to allocate over this TVOB's area of the screen.

tvob-screen The screen on which this TVOB is displayed. See page 210.

DSK:LMMAN:JOBSYS 85 6-JAN-79

TVOBs 200 Preliminary Lisp Machine Manual

tvob-status This field is provided for the convenience of tvob-handler functions. It
contains one of the following symbols:

:selected The TVOB is the selected TVOB. Only one
TVOB will have this tvob-status.

:exposed The TVOB is not selected, but is on
exposed-tvobs. This means that this TVOB
is not covered by any other TVOB: its screen
area is fully exposed.

nil The TVOB is not on exposed-tvobs.

tvob-clobbered-p
This field is provided for the convenience of tvob-handler functions. It is
t if the TVOB has been sent a :clobber or :;set-edges command more
recently than an :update command; otherwise it is nil.

tvob-mouse-handler
A function to call when the mouse enters this TVOB's screen region. This
allows the TVOB to take over control of the mouse. This field is nil if this
TVOB does not do anything special with the mouse.

tvob-mouse-action
See mouse-default-handler (<not-yet-written>),

tvob-plist A disembodied property list. Use, for example, (get (locf (tvob-plist
tvob)) 'mumble).

It is often useful to divide the TV screen up into several parts, and do different things
in each part. Sometimes one program wants to split up the screen, as Eine does; sometimes
the user wants to run several programs at once, and each program wants some space on the
screen. At any time, there is a set of active TVOBs (TV objects) which are sharing the
screen. Each TVOB has a rectangular piece of the screen on which it does its displaying; it
is not allowed to go outside its area.

It is possible for two active TVOB's regions of the screen to overlap. When this
happens, only one of them is exposed (fully visible); the other is partially or fully buried.
There is a subset of the active TVOBs called the exposed TVOBs; no two exposed TVOBs
overlap. The TVOBs act as if they were a bunch of rectangular sheets of paper on a
desktop: some are up at the top, and others are partially buried. Various programs can
"pull” a non-exposed TVOB up to the top, making it exposed and making some other
TVOB(s) non-exposed. Several functions of the job system, explained below, keep track of
and change which TVOBs are active, and which are exposed.

The job system also keeps track of one TVOB called the selected TVOB. Conceptually,
the selected TVOB is the one in which the user is interested at the moment, and it is
usually the one that is responding to the keyboard. For example, when Eine is being used,
the TVOB of the window in which the user is editing is the selected TVOB. The selected
TVOB is always exposed. A TVOB's being selected, exposed but not selected, or not
exposed at all is called the TVOB's starus.

DSK:LMMAN:JOBSYS 85 6-JAN-79

S RS

Preliminary Lisp Machine Manual 201 TVOBs

Usually a program will want certain actions to be taken when the status of a TVOB
changes. When the TVOB associated with an Eine window becomes exposed, Eine
generally wants to redisplay the window, and when the TVOB is selected, Eine starts
blinking the window’s blinkers and makes its buffer be the current buffer. In order to let a
user program know that the status of a TVOB has changed, so that it can do these things,
there is a function called the handler associated with every TVOB. When the status of the
TVOB changes, its handler is applied to three arguments: the TVOB itself, a keyword
symbol indicating what kind of change of status is occurring, and a list of other information
whose meaning is dependant on the value of the second argument. The applications of this
function can be thought of as a "command” being sent to the TVOB. For example, when a
TVOB becomes selected, it is "sent a command” telling it so; that is, the handler is applied
to the TVOB, the keyword :select, and nil.

Here is a list of all of the keyword symbols (i.e. all of the kinds of commands) that are
used. In addition to status changes, requests for the TVOB to update and relocate itself
cause the handler to be invoked.

:expose The TVOB is being made exposed. This command is only sent when the
TVOB is active and not exposed.

:deexpose The TVOB is no longer exposed. This command is only sent when the
TVOB is active and exposed.

select The TVOB is now selected. This command is only sent when the TVOB is
exposed and not selected.

deselect The TVOB is no longer selected. This command is only sent when the
TVOB is selected.

«clobber This command means that for some reason, the TVOB's area of the screen
has been altered:; future :update and :clean commands should not assume
that the screen is as it was left. Most TVOBs will ignore this message, since
the information is saved in the tvob-clobbered-p element of the TVOB
(see below). This command is only sent when the TVOB is exposed.

:update This command is only sent when the TVOB is exposed. The TVOB should
‘ assure that its area of the screen contains whatever it is supposed to contain.
Just what :update means depends on the program. Some programs can
remember the contents of what is on the TVOB and can refresh it at will;
others do not remember the contents, and cannot reconstruct them.

The former kind, upon receiving the :update command, should update
the TVOB. If the TVOB has not been clobbered, the handler can assume
that whatever it last put there is still there, and it may be able to avoid
redisplaying. The tvob-clobbered-p field of the TVOB is set to t by the
job system after a :clobber or :set-edges command is sent, and to nil after
an :update or :clean command is sent. The handler can determine whether
or not its area of the screen has been clobbered by simply looking at the
tvob-clobbered-p.

DSK:LMMAN:JOBSYS 85 6-JAN-79

Jobs 202 Preliminary Lisp Machine Manual

The latter kind of TVOB cannot update, and should ignore the :update_',

command entirely.

:clean :clean is like :update except that TVOBs of the kind that cannot refresh
themselves should clear their areas instead of doing nothing. Like :update,
this command is only sent when the TVOB is exposed. :clean is sent to all
exposed TVOBs when the user requests that the screen be cleaned up: for
instance when the FORM key is pressed in most programs.

:set-edges The TVOB should change its area of the screen. This command takes four
arguments: the new left edge, top edge, bottom edge, and right edge, in
raster units, The first two are inclusive, and the other two are exclusive.
The elements of the TVOB structure that hold the screen area (tvob-x1
etc.) will be updated automatically; the handler need not change them itself.
The handler should update any other associated information; for example, if
the TVOB has an associated “piece of paper”, it should call tv-redefine-pc-~
ppr (see page 233).

The tvob-info component of the TVOB is provided to give the handler somewhere to
put its internal state. It is usually some kind of structure, depending on what program
created the TVOB. For example, it might be a piece of paper (see page 215).

22.3 Jobs

A job is a Lisp structure with the following components:

job-name The name of the job, as a string. This is only used for the printed
representation of the job or for display by programs, and may be anything
reasonably mnemonic.

job-tvobs A list of all TVOBs associated with this job.

job-processes
A list of all processes associated with this job.

job-enabled-tvobs :
A list of this job's enabled tvobs. Each TVOB on this list is also on the
job-tvobs list. The order of the enabled tvobs list is “highest” first; this list
is sometimes passed to tvob-setup.

job-enabled-processes ,
A list of this job's enabled processes. This list is a subset of the job-
processes list. '

job-tvob-enabled-p
If this is non-nil, this job is tvob-enabled; its enabled TVOBs are active.

job-process-enabled-p
If this is non-nil, this job is process-enabled; its enabled processes are active.

DSK:LMMANJOBSYS 85 . 6-JAN-79

ST e T

O omemorny

T

Preliminary Lisp Machine Manual 203 Jobs

job-who-line-process
Whenever this job becomes the kbd-job, the process in this component
becomes the tv-who-line-process (The process whose process-whostate
is displayed in the who-line) (see page 228).

job-tvob-selector ~ ,

nil, or a function which is called by tvob-setup (see page 207) when this
job is current and a new selected-tvob is needed. The function takes no
arguments and doesn't return anything in particular. It isn't required to do

anything, but it normally should call tvob-select with an appropriate
TVOB.

job-forced-input
If non-nil, a character or a string which is forced input for this job. This is
a character or characters which are pretending to come from the keyboard
but really originated from another process or the mouse. See the function
force-kbd-input (page 235).

job-forced-input-index
Index into job-forced-input when it is a string.

At any time, the user of the Lisp Machine may be conducting several different activities.
For example, he may want to temporarily stop editing in order to send some mail; he might
want to start up a file transfer, and while waiting for it to finish, continue editing.

Each such activity, in general, will want some processes to do computation, and some
pieces of the screen (TVOBs) on which to do output. When the user is not concerned with
some activity, he may want its processes to stop, and/or its TVOBs to stop displaying. In
order to make it easy to deactivate a set of processes and TVOBs, such a set may be
grouped together as a job.

Every job has a set of processes and TVOBs; these sets are represented by the lists in
the job-processes and job-tvobs of the job. Of each set, there is a subset that is
enabled; these are the job-enabled-processes and job-enabled-tvobs of the job. A
process’s being enabled means that whenever the job is told that it may run, that process
will be made active. The same is true for TVOBs. When the job is told that it may run its
enabled processes, it is said to be process-enabled; when it is told that it may display its
enabled TVOBs, it is said to be tvob-enabled. A job can control which of its processes and
TVOBs are enabled by means of the functions process-enable, process-disable, tvob-
enable, and tvob-disable, which are described below.

At any time there is one job which is said to "own the keyboard”, this job is the value
of the variable kbd-job. When a function calls any of the keyboard input functions (such
as kbd-tyi), the function will wait until the current job is the kbd-job before returning.
The reason for this is that while the TV can be split up into areas so that several programs
can type on it at once, there is no similar way to split up the keyboard; if several jobs
want keyboard input, one of them will get what the user types, and the rest will wait until
they become the kbd-job.

DSK:LMMAN:JOBSYS 85 ' 6-JAN-79

Controlling Jobs 204 Preliminary Lisp Machine Manual

When Lisp is initialized, one job is created and given the keyboard. The job is given a
single, active TVOB, the size of the screen, and a single, active process. It is both process-
enabled and TVOB-enabled, so the process and TVOB are both active,

22.4 Controlling Jobs

It should be made easy for the user to control which jobs are process-enabled and which
are TVOB-enabled. Unfortunately, the commands to allow easy control of these parameters
have not yet been fully developed. This section describes what has been implemented so
far, but this will probably change.

The following two simple functions control whether a job is process-enabled or TVOB-
enabled.

job-set-process-state job state

If state is non-nil, job is made process-enabled; otherwise, it is made process-
disabled.

job-set-tvoh-state job srate
If state is non-nil, job is made TVOB-enabled; otherwise, it is made TVOB-disabled.
Since this function can change the set of active TVOBs, the caller should follow
with a call to tvob-setup (see page 207).

There is one job designated as the top-level job, from which other jobs are selected.
This job is the value of the variable si:top-job, When Lisp is initialized, si:top-job is set
to the initial job, and usually it is never set again. If this job wants to let some other job
run, it uses the function job-select, which may be called directly by the user, or by a
program’s “command interface” function. (The functions ed, edval, and edprop serve this
purpose for Eine, and the function supdup for the Supdup program.)

job-select job
job-select should be called from the top-level job to give the keyboard to job. The
top-level job is made process-disabled and TVOB-disabled, and job is made process-
enabled and TVOB-enabled, and is given the keyboard (made to be the kbd-job).

When the keyboard belongs to some job other than the top-level job, the "CALL" key is
interpreted specially to mean "Return the keyboard to the top-level job." If the user types a
"CALL", the current kbd-job will be made process-disabled and TVOB-disabled, the top-
level job will be made process-enabled and TVOB-enabled, and the top-level job will be
given the keyboard. The Control and Meta keys can be used with CALL: Control prevents
the current kbd-job from being made TVOB-disabled, and Meta stops it from being
process-disabled.

DSK:LMMAN:JOBSYS 85 6-JAN-79

Preliminary Lisp Machine Manual 205 Functions for Manipulating TVOBs.

225 Functions for Manipulating TVOB:s.

The following four functions are all used to create- TVOBs; they differ primarily in the
way the caller specifies the TVOB's area of the screen. To fully specify the area, use tvoh-
create-absolute. If you just want an area of a certain size, but don't care where the area
is, use tvob-create. If you need at least a certain size but would accept a larger size if
the space is available, use tvob-create-expandable. If you have a pc ppr (piece of paper)
and want to make a TVOB for it, use tvob-create-for-pc-ppr.

tvob-create-absolute x/ yI x2 y2 &rest options

tvob-create-absolute creates and returns a new TVOB. Its fields are set up as
follows:

tvob-handler The value of the :handler option.
tvob-info The value of the :info option.

tvob-job The value of the :job option. If it is t, the current job is used
instead: this is the default. Otherwise it should be nil (meaning that
the TVOB is not associated with any job), or a job.

tvob-priority _
The value of the :priority option.

tvob-x1 xl.
tvob-yl yi.
tvob-x2 x2.
tvob-y2 . y2.

tvob-screen The value of the :screen option, which should be a screen. It
defaults to the value of tv-default-screen. :

tvob-status The value of the :status option.

tvob-clobbered-p
nil.

tvob-mouse-handler
The value of the :mouse-handler option. If the value is t, use the
default mouse handler.

The options to tvob-create-absolute are:

:handler The tvob-handler function.
tinfo The value to go in the tvob-info field.
:job The job with which the TVOB will be associated. t means the

current job and nil means no job. The default is the current job.

:mouse-handler
! The tvob-mouse-handler function. nil means this TVOB doesn't

DSK:LMMAN:JOBSYS 85 6-JAN-79

SRR N

Functions for Manipulating TVOBs. 206 Preliminary Lisp Machine Manual

do anything special with the mouse,, and t means the mouse-
default-handler should be used.

:name The print-name of the TVOB.
priority t to make this TVOB more tenacious of its place on the screen.
'screen The screen on which the TVOB will appear. The default is tv-

default-screen.

tvob-create x y &rest options
This allocates an area of the screen of width x and height y, and creates and
returns a TVOB with that area. The options are the same as for tvob-create-
absolute. The screen area of the TVOB will be within the rectangular boundaries
described by the screen-xl, screen-yl, screen-x2, and screen-y2 of the screen
on which the TVOB is created. tvob-create tries to choose an area that will
overlap the fewest interesting TVOBs, Specifically, it tries to stay out of the area
used by the exposed TVOB of the highest priority, then that of the exposed TVOB
of the second-highest priority, etc. The way priority works is that the exposed tvobs
are divided into two groups: those with tvob-priority of t, and those with tvob-
priority of nil; the former all have higher priority than the latter. Within these two
groups, the TVOBs are ordered by their ordering in the list active-tvobs. The
priority is remembered by the ordering of the list exposed-tvobs, of which the first
element is the TVOB of lowest priority, and the last is the TVOB of highest priority.

tvob-create-expandable min-x min-y &optional max-x max-y &rest options
This first finds a min-x by min-y area of the screen, the same way tvob-create
does. Then it tries to make that area larger, up to max-x by max-y, without
overlapping any other exposed TVOBs. Otherwise it is like tvob-create. max-x
" defaults to the size of the area in which automatic allocation takes place: the
difference between the screen-x2 and screen-x1 of the screen. max-y defaults
similarly.

tvob-create-for-pc-ppr pc-ppr &rest options

’ If you want to use a pc ppr, you need an associasted TVOB in order to get
permission for your pc ppr to use the screen. This function takes a8 pc ppr and
creates a TVOB, whose area of the screen is that of the pc ppr. The tvob-info
will be the pc ppr, the tvob-handler a function called si:pc-ppr-tvob-handler
(which does the right thing for pieces of paper which don't remember what they are
displaying and hence cannot :update), and the screen used will be the pc-ppr-
screen of the pc ppr. If you give the :handler option, though, it will override the
si:pc-ppr-tvob-handler. The rest of the options are the same as in tvob-create-
absolute.

DSK:LMMAN;JOBSYS 85 6-JAN-79

Preliminary Lisp Machine Manual 207 Functions for Manipulating TVOBs.

tvob-kill ot
This deactivates rvob if it is active, and dissociates it from its associated job (if any).

tvob-enable b
Enable tveb. If tvob has no associated job, or if its job is tvob-enabled, activate
tvob. After. making some calls to tvob-enable and tvob-disable, the caller should
call tvob-setup (see page 207).

tvob-disable rvob
Disable tvob. If it was active, deactivate it. After making some calls to tvob-
enable and tvob-disable, the caller should call tvob-setup (see page 207).

tvob-setup no-reselection &rest tvobs

This is the function in charge of keeping the state of the screen and the internal
database consistent when tvobs are activated, deactivated, moved, etc. After a
program makes some calls to tvob-enable and tvob-disable, it may have changed
the set of active TVOBs, and it should call tvob-setup to make sure that the set of
exposed TVOBs is recomputed, and that the right messages are sent to all TVOBs. (If
tvob-enable etc. did that themselves, then unneccesary redisplay and computation
would be unavoidable.) The job-set-tvob-state function can also change the set
of active TVOBs, and it too should be followed by a call to tvob-setup.

tvob-setup looks at its argument, tvobs, and at the list of active TVOBs and figures
out which TVOBs should be exposed.

First, tvob-setun examines the elements of tvobs, all of which should be active,
and rearranges the order of active-tvobs. The TVOBs in tvobs are moved to the
front of active~tvobs, and placed in the order they were given to tvob-setup.
The first TVOB in rvobs is guaranteed to be first in active-tvobs. The remaining
active TVOBs are moved to the end of active-tvobs. Their relative order is not
changed. The job-enabled-tvobs lists of the TVOB's jobs are similarly reordered.

Next, tvob-setup figures out the new subset of the active TVOBs that should be
exposed, by walking down the active-tvobs list and taking every TVOB that
doesn’t overlap with some TVOB already on the new exposed-tvobs list. Since the
new list starts out as nil, the first element of active~tvobs, which was the second
argument to tvob-setup, will always be exposed. The exposed list is kept in
reverse priority order, as explained under tvob-create (see page 206).

Having determined the new set of exposed tvobs, tvob-setup sends out :deselect,
:deexpose, and :expose commands as needed. It only sends :deselect if the
selected tvob would no longer be exposed; when it does this, it also sets selected-
tvob to nil. At this point, exposed-tvobs is set to its new value. tvob-select
then sends :clobber and :update commands to all of the new exposed TVOB:s.

DSK:LMMAN;JOBSYS 85 6-JAN-79

Functions for Manipulating TVOBs. 208 Preliminary Lisp Machine Manual

Finally, if there is no selected-tvob, and no-reselection is nil, tvob-setup tries to
choose a new selected-tvob by calling the job-tvob-selector function of the
kbd-job (if there is a kbd-job and it has a job-tvob-selector).

tvob-select tvob
This makes tvob be the selected-tvob. It makes sure that mob’s job is TVOB-
enabled, and that tvob is exposed. Then it deselects the current selected-tvob (if
any) and selects fvob. '

tvob-update
If the variable tvob-complete-redisplay is non-nil, set it to nil and call tvob-
complete-redisplay. Otherwise send an :update message to all exposed TVOBs.

tvob-complete-redisplay Variable

Used as a flag by tvob-update (see above): if non-nil, tvob-update should do a
tvob-complete-redisplay.

tvob-complete-redisplay
Clears the screen, outlines the screen area of partially-exposed enabled TVOBs, and
sends :clobber and :update to all exposed TVOB:s.

tvob-clean
This “cleans up” the screen. It sends a :clean message to all exposed TVOBs, and
clears portions of the screen not occupied by exposed TVOBs,

tvob-command command tvob &rest arguments
Sends command to tvob, with the given arguments. command should be one of the
symbols mentioned above (:set-edges, :clobber, etc.). After sending the command,
tvob-command updates the rvob’s tvob-status, ‘tvob-clobbered-p, or the screen
area (tvob-x1 et. al.) as appropriate.

In order to preserve consistency, only the tvob-setup and tvob-select functions
should send any of the commands :select, :deselect, :expose, and :deexpose; you
should never send these yourself.

tvob-under-point x y &optional screen
Returns the TVOB under the point (x,y) on screen, or nil if there is none. If there
are several TVOBs at that point, the “"top-most” one, i.e. the one which is actually
visible, is returned. screen defaults to tv-default-screen. '

DSK:LMMAN:JOBSYS 85 6-JAN-79

Preliminary Lisp Machine Manual 209 Functions for Manipulating Jobs.

22.6 Functions for Manipulating Jobs.

job-create name _
Creates and returns a job, whose name is name. The job is created with no
processes and no TVOBs, and its initial job-process-enabled-p and job-tvob-
enabled-p are both nil. job-create also puts the job on job-list.

job=kill job
Deactivates and kills all of job's processes and TVOBs, and removes job from the
job-list.

job-list Variable
A list of all jobs. See job-create and job-kill.

job-reset-processes job
Disables all of job's enabled processes, and unwinds those processes’s stack groups.

job-select job
This is meant to be called from the top-level job, which should have the keyboard at
the time. It disables the kbd-job’s processes and TVOBs, enables those of job, and
gives job the keyboard. ' '

job-return
This is meant to be -called from jobs other than the top-level job. It disables the
current job’s processes and TVOBs, enables those of the top-level job, and gives the
top-level job the keyboard. [The job calling it had better have the keyboard.]

DSK:LMMAN;JOBSYS 85 6-JAN-79

The TV Display 210 Preliminary Lisp Machine Manual

23. The TV Display

The principal output device of the Lisp Machine is the TV display system. It is used in
conjunction with the keyboard as an interactive terminal, and it can output printed text or
graphics. This chapter describes the Lisp functions used to manipulate the TV.

23.1 The Hardware

The Lisp machine display system is a raster-scan, bit-map system. This means that the
screen is divided up rectangularly into points. The video signal that enters the TV comes
from a memory which has one bit for every point on the screen. This memory is directly
accessible to the program, allowing extremely flexible graphics.

The coordinate system normally used has the origin (0,0) at the top left corner of the
screen. X increases to the right, and Y increases downward.

There are currently two TV controllers in use. The 16-bit controller, which is going
away, generates industry-standard composite video, allowing a screen size of 454. lines
from top to bottom with 5§76. points on each line. The newer, 32-bit controller, provides
various options. With the CPT monitor it generates a black-and-white display of 896. lines
with 768. points on each line. Other monitors can also be supported.

One thing to be aware of is that the same fonts cannot be used with both controllers,
because the 16-bit controller has its bits reversed.

It is possible to have a display in which there is more than one bit per - visible point,
allowing gray-scale or color. The set of all bits which contribute to a single point on the
screen is called a pixel. (The point on the screen itself is also sometimes called & pixel.)
Some of the software operates in terms of pixels. Pixels are implemented in an entirely
different way in the two controllers. This document doesn’t really discuss them yet.

Because of all these options, the Lisp machine system includes screem objects. A screen
object contains all the attributes of a particular TV controller and display monitor.

23.2 Screens

There is a type of Lisp object called a screen, which is the internal representation for a
physical display with someone looking at it. Both microcode and Lisp functions look at
screen objects. A screen is a structure which contains the following fields:

screen-name An arbitrary character string which appears in the printed
representation of the screen-object.

screen-height
The total height of the screen in bits (raster lines, pixels).

DSK:LMMAN:TV 74 - ’ 6-JAN-79

Preliminary Lisp Machine Manual 211 Screens

screen-width The total width of the screen in bits (pixels).

screen-xl, screen-x2, screen-yl, screen-y2
The coordinates of a rectangle which is the portion of the screen in
which allocation of tvobs may occur. Usually this is the whole
screen, but if there is a who-line it is excluded. There could be
other reserved areas of the screen.

screen-plane-mask
0 if this screen is on a 32-bit controller.” If it is on a 16-bit
controller, one of the bits in this mask is on corresponding to the
memory “plane” which contains this screen. (For instance, for plane
0 the value of this field would be 1.) Having more than one bit on
in this mask is not really supported.

screen-bits-per-pixel
The number of bits in a pixel.

screen-attributes
This is a list of keywords for special features of this screen.

:sideways The monitor is standing on its left side. The
TV routines know how to draw characters on
such a screen, given a rotated font, sO that
the text comes out in the normal orientation.

:color Has color (not yet implemented).
igray Has gray-scale.

screen-font-alist
An a-list that associates from font names to font objects. This is not
really used yet.

screen-default-font
The font to be used by default on this screen.

screen-buffer
The address in virtual memory of the video buffer for this screen.

screen-locations-per-line
The number of locations (containing 16 or 32 bits depending on the
controller) of the video buffer for a scan line.

screen-buffer-pixel-array
A two-dimensional array of positive integers, which are pixel values.
The first subscript is the X coordinate and the second subscript is the
Y coordinate.

screen-buffer-halfword-array .
A one-dimensional array of 16-bit words of video buffer. This is
provided to allow direct manipulation of the video buffer, bypassing
the usual microcode primitives. Note that on a 16-bit controller, the

DSK:LMMAN:TV 74 6-JAN-79

Screens

212 Preliminary Lisp Machine Manual

bits in these words are reversed.

tv-default-screen Variable
The value of tv-default-screen is the "normal" screen where text display happens.
Various functions that take a screen as an optional argument default to this.

tv-defline-screen name &rest options
Creates and returns a screen whose name is name (a string) and whose attributes are
controlled by the options. These attributes has better correspond to an existing

hardware screen. options is alternating keywords and arguments to those keywords.
The following keywords are accepted:

;plane-mask

:height
:width
:x1

:who-line-p

:buffer

The value of the screen-plane-mask field. Defaults to 1. 0 for
screens on the 32-bit TV controller.

The value of the screen-height field. Defaults to 454.
The value of the screen-width field. Defaults to 576.
The value of the screen-xl field. Defaults to 0.

The value of the screen-yl field. Defaults to 0.

The value of the screen-x2 field. Defaults to the width.

The value of the screen-y2 field. Defaults to the height, unless the
:who-line-p option is specified, in which case one line of space is
left at the bottom of the screen for the who-line.

t to leave space for a who-line, nil to make the entire screen
available for TVOB allocation. Defaults to t.

A fixnum which is the address of the video buffer containing the bits
for this screen. Defaults to the address of the 16-bit TV buffer.

:locations-per-line

:bits-per-pixel

:attributes

font-alist

The value of the screen-locations-per-line field, Defaults from
the width, the bits per pixel, and the controller type. -

The value of the screen-bits-per-pixel field. Defaults to |.
The value of the screen-attributes field. Deafults to nil.

The value of the screen-font-alist field. Defaults to nil.

:default-font The value of the screen-default-font field. Defaults according to

DSK:LMMAN:TV 74

the type of controller used.

6-JAN-79

e e

B ot Tt 12

Preliminary Lisp Machine Manual 213 Simple Bit Manipulation

23.3 Simple Bit Manipulation

Some arrays of numbers exist which allow access 10 the TV memory. These are regular
Lisp arrays -and all array operations work on them, but they are set up so that their data

storage is actually in the TV memory. These arrays are normally found in fields of a screen
object,

screen-buffer-pixel-array is a two-dimensional array. Array element (x,y)
corresponds to the point whose coordinates are x and y: if the array element is O, the
point is illuminated, and if the element is 1, the point is dark. (The opposite is true when
the TV is in reverse-video mode; see below).

The elements of this array are single bits in the usual case, but they can be small
positive numbers in the case of gray-scale or color screens.

In the case of a 16-bit TV, this array accesses whichever plane is currently selected.

screen-buffer-halfword-array is a one-dimensional array of 16-bit elements, whose
exact interpretation depends on the type of TV screen. Certain programs use this 10 access
the TV buffer memory.

It is possible to do anything to a TV screen, albeit slowly, using the above two arrays.
However, for efficiency several microcode primitives are provided which perform certain
common operations at much higher speed, typically close to the maximum speed of the
memory. Most programs use these microcode primitives or the higher-level functions built
on them rather than accessing the TV buffer memory directly. The remainder of this
chapter describes these facilities.

234 Fonts

A font is a set of related characters. It is represented by an array (of type art-l1b)
which contains the bit patterns used to actually draw the characters. The leader of that
array contains other required information such as character widths, height, bookkeeping
information, etc.

There is a microcode entry for drawing characters, which understands the structure of
fonts. It exists so as to make character drawing as fast as possible. User functions do not
call the microcode entry directly, as it is rather kludgey, and handles only the easy cases.
Instead the TV routines do all the necessary calls.

A font usually contains 128 characters. The widths may be variable, but the height is
always fixed (characters need not actually have ink all the way from the top to the bottom
of the height, but the distance between lines is fixed for each font). There are special
provisions for fixed-width fonts to save space and time. There is a thing called the baseline,
which is a certain vertical position in each character. For example, the baseline touches the
bottom of the legs of a capital A, and passes through the stem of a lower-case p. When
several fonts are used together, all the baselines are made to line up.

DSK:LMMAN;TV 74 6-JAN-79

Fonts ‘ 214 Preliminary Lisp Machine Manual

The way characters are drawn is a little strange (it is done this way for speed). There is
a thing called a raster element, which is a row of 1-bits and 0-bits. A character is drawn by
taking a column of raster elements, (making a rectangle) and OR'ing this into the bit-map
memory. A raster element can be at most 16 bits wide for hardware reasons, so for large
characters it may take several side-by-side columns to draw the character. The font is stored
with several raster elements packed into each 32-bit word. The width of a raster element is
chosen to give maximum packing, and depends on the font. The reason for the existence of
raster elements is to decrease the number of memory cycles by processing several bits at a
time.

The structure of the array leader of a font is defined by defstruct macros. Here we
list the element names and what they are for. This structure is not guaranteed not to be
changed in the future, however the macros are automatically made available to user
programs,

font-name A symbol, in the fonts package, whose value is this font. This symbol also
appears in the printed representation.

font-char-height.
Height of the characters in this font (with a VSP of 0, this is how far apart
the lines would be.)

font-char-width
Width of the characters if this is a fixed-width font, ie. how far apart
successive characters are drawn. Otherwise contains the width of “space”.

font-raster-height
Number of raster lines of "ink" in a character (often the same as font-char-
height).

font-raster-width
Width of a raster element.

font-rasters-per-word
Number of elements packed per word (used when accessing the font.)

font-words-per-char
Number of words needed to hold one column of elements.

font-baseline Number of raster lines down from the top of the character cell of the
position to align.

font-char-width-table

nil for fixed width fonts. Otherwise, contains the 128-long array of
character widths. ' ‘

font-left-kern-table
nil for non-kerned fonts. Otherwise, contsins the 128-long array of left-
kerns, This is the amount (positive or negative) to back up the X position
before drawing the character.

font-indexing-table
nil for narrow fonts which only take one column of raster elements to draw.

DSK:LMMAN:TV 74 6-JAN-79

R AT AN S T

Preliminary Lisp Machine Manual 215 TVOBs

Otherwise, contains a 129-long array which determines what columns of the
font to draw for that character as follows: for character i, draw columns
indexingtable(i) through indexingtable(i+1)-1 inclusive. Note that 2 of the
above 3 arrays only contain small positive numbers, so they are usually of
type art-16b or art-8b to save space.

font-next-plane

nil usually. For multi-plane fonts, contains the font for the next higher.
plane. This field is obsolete and no longer supported.

font-blinker-width
Default width for blinkers.

font-blinker-height
Default height for blinkers.

The data part of a font array contains an integral number of words per character (per
column in the case of wide characters that need an indexing table). Each word contains an
integral number of raster elements, left adjusted and processed from left to right. All 32
bits of each element in this array are used. For easiest processing by Lisp programs, it
should be of art-1b array type.

The exact format of the data part of a font array depends on whether the font is
intended to be used with a 16-bit TV controller or a 32-bit controller. In the 32-bit case,
the bits are displayed from right to left. The maximum width of a raster element is 32. bits;
use of the font-indexing-table is required if characters are wider than this. If there is
more than one raster element per word, the elements are displayed from right to left. In
the 16-bit case, the bits and raster elements are displayed from left to right, and the
maximum width of a raster element is 16. bits,

23.5 TVOBs

[Here explain what TVOBs are, how they differ from pieces of paper, what you use
them for, and point to JOBSYS chapter.] Until this is written, see page 199.

23.6 Pieces of Paper

A piece of paper is something on which you draw characters. It is displayed on a certain
rectangular portion of a screen. It remembers what fonts to use, where to display the next
character, how to arrange margins and spacing, and what to do when certain special
conditions arise. It optionally displays a blinking cursor (or several of them).

All character-drawing in the Lisp Machine system is accomplished with pieces of paper.
-One thing to note is that pieces of paper do not remember the characters you draw on
them, except by making dots on the TV screen. This means that if one piece of paper
overlays another, or if the screen is cleared, the contents of the first is lost. A higher-level
facility (e.g. editor buffers) must be used if the characters are to be remembered. The

DSK:LMMAN:TV 74 ~ 6-JAN-79

Pieces of Paper 216 Preliminary Lisp Machine Manual

abbreviation "pc ppr” is often used for “piece of paper”.

A piece of paper is represented as an ordinary array whose elements are named by the
following accessor macros. These are automatically available to the user, but should not
normally be used as they are not guaranteed to remain unchanged, and often contain
internal values which are made into more palatable form by the interface functions. All
screen coordinates in this structure are absolute screen coordinates; the user interface
functions convert these into coordinates which are relative to the margins of the piece of
paper.

pc-ppr-name An arbitrary string which appears in the printed representation.

pc-ppr-screen :
The screen-object representing the screen on which this pc ppr displays.

pPc-ppr-top ‘ The raster line number of the topmost screen line in this pc ppr.

pc-ppr-top-margin
The raster line number of the topmost screen line used to draw characters.
The difference between pc-ppr-top-margin and pc-ppr-top is the size of
the top margin.

pc-ppr-bottom
The raster line number of the screen line just below this pc ppr.

pc-ppr-bottom-margin
The raster line number of the screen line just below the bottommost point
on which a character can be drawn. The difference between pc-ppr-
bottom and pc-ppr-bottom-margin is the size of the bottom margin.

pc-ppr-bottom-limit .
The lowest raster line to which the cursor may be positioned. This is a
suitable value to prevent excursion below the bottom margin.

pc-ppr-left The bit number of the leftmost bit in the pc ppr's screen area.

pc-ppr-left-margin
The bit number of the leftmost bit used to draw characters. The difference
between pc-ppr-left-margin and pc-ppr-left is the left margin.

pc-ppr-right The bit number of the bit just to the right of the pc ppr's screen area.

pc-ppr-right-margin ~
The bit number of the bit just to the right of the portion of the pc ppr in
which characters may be drawn. The difference between pc-ppr-right and
pc-ppr-right-margin is the right margin.

pc-ppr-right-limit

The rightmost bit position to which the cursor may be positioned. This is set
to a suitable value to prevent excursion past the right margin,

Pc-ppr-current-x
The X position of the left edge of the next character to be drawn, i.e. the

DSK:LMMAN;TV 74 6-JAN-79

§
|

AT YA T o S

[P —

Preliminary Lisp Machine Manual 217 Pieces of Paper

X coordinate of the cursor position.

pc-ppr-current-y
The Y position of the top edge of the next character to be drawn, ie. the
Y coordinate of the cursor position,

pc-ppr-flags A fixnum containing various bit flags, as follows:

pc-ppr-sideways-p
0 normally. 1 if the pc ppr is on a sideways screen, so the X and Y

coordinates should be interchanged before calling the microcode.
y

pc-ppr-exceptions
Non-zero if any special conditions which prevent typeout are active.
The conditions are:

pc-ppr-end-line-flag
1 if pc-ppr-current-x is greater than pc-ppr-right-limit.
The default response to this is to advarice to the next line.

pc-ppr-end-page-flag
1 if pc-ppr-current-y is greater than pc-ppr-bottom-
limit. The default response to this is to return to the top of
the pc ppr.

pc-ppr-more-flag
1 if "more-processing” must happen before the next character
can be output. The default response to this is to display
“**MORE**" and await keyboard input.

pc-ppr-output-hold-flag
{ if some higher-level function has decided that output is not
to be allowed on this pc ppr. For example, its region of the
screen might be in use for something else. When this is seen
a function specified when the pc ppr was created is called.

pc-ppr-more-vpos
Y passing here triggers "more processing” by setting pc-ppr-more-flag. Add
100000 to this field to delay until after screen wraparound. Store nil here
to inhibit more processing.

pc-ppr-baseline
The number of raster lines from the top of the character cell (pc-ppr-
current-y) to the baseline.

pc-ppr-font-map 4
An array of fonts. Normally a font-change command specifies a code
number, which is looked up in this array to find what font to actually use.
Font 0 is the "principal” font. The array is usually 26. long.

pc-ppr-current-font
The font which is currently selected.

DSK:LMMAN:TV 74 6-JAN-79

Pieces of Paper 218 Preliminary Lisp Machine Manual

pc-ppr-baseline-adj
Y offset for current font to align baseline. This is the difference between
the pc-ppr-baseline and the font’s baseline.

pc-ppr-line-height
The number of raster lines per character line.

pc-ppr-char-width
A character width which is just used for old-style space/backspace/tab
operations and for blinkers.

pc-ppr-char-aluf
ALU function for drawing characters. The default is the value of tv-alu-
ior.

pc-ppr-erase-aluf
ALU function for erasing characters/lines/whole pc ppr. The default is the
value of tv-alu-andeca.

pc-ppr-blinker-list
(Possibly null) list of blinkers on this pc ppr.

pc-ppr-end-line-fcn
Function called when typeout is attempted with pc-ppr-end-line-flag set.
The default is to wrap around to the next line.

pc-ppr-end-screen-fcn
Function called when typeout is attempted with pc-ppr-end-page-flag set.
The default is to wrap around to the top margin.

pc-ppr-output-hold-fen
Function called when typeout is attempted with pc-ppr-output-hold-flag
set. The default is to wait for the flag to be cleared by some other process.

pc-ppr-more-fcn
Function called when typeout is attempted with pc-ppr-more-flag set. The
default is to type **MORE®** and await typein.

23.6.1 Simple Typeout

tv-tyo pc-ppr char
Draws a printing character, or executes a special format character. The character is
drawn at the current cursor position, in the current font, and the cursor position is

shifted to the right by the width of the character. The following format effectors are
recognized:

200 Null. Nothing happens.

210 Backspace. The cursor is moved left the width of 8 space. At the beginning
of a line it sticks. ’

DSK:LMMAN:TV 74 | 6-JAN-79

[e S YT

Preliminary Lisp Machine Manual 219 Pieces of Paper

211 Tab. The cursor is moved right to the next multiple of 8 times the width of
a space.

215 Carriage return. The cursor is advanced to the beginning of the next line,
and that line is erased. More-processing and screen wrap-around may be
triggered.

240-247

Font change. The low 3 bits are the font number.
Other non-printing characters are displayed as their name enclosed in a box. These
displays are quite wide and currently don’t bother to respect the right margin.

tv-beep
This function is used to attract the user’s attention. It flashes the screen and beeps
the beeper. Doesn’t really have that much to do with TVs.

tv-beep Variable

If the value of tv-beep is non-nil, the tv-beep function doesn't flash the screen, it
only sounds a beep. The initial value is nil.

si:tv-move-bitpos pc-ppr delta-x delta-y
Move current X, current Y on piece of paper, keeping inside boundaries. This
function is called from many others. It is the central place to keep track of edges,
automatic wrap-around, **MORE** processing, etc. It will set the pc~ppr-
exceptions flags as necessary.

si:tv-exception pc-ppr
This function is called by various TV functions when they encounter a pc-ppr-
exceptions flag which they care about (for example, tv-crlf does not care about
pc-ppr-end-line-flag). The appropriate function (stored in the pc ppr) is called. It
is up to that function to correct the condition and clear the exception flag.

If you want to supply your own exception-handling function for a piece of paper, you
would be well-advised to read the corresponding system default function first. They need to
do non-obvious things in some cases.

si:tv-end-line-default pc-ppr
This is the default end-of-line function, called if an attempt is made to display a
character when the cursor is off the end of a line. It essentially just does a crif.

si:tv-end-screen-default pc-ppr
This is the default end-of-screen function, called when an attempt is made to display
a character when the cursor is off the bottom of the pc ppr. It wraps around to the

top of the pc ppr. Note that more-processing is separate from and unrelated to end-
of-screen processing.

DSK:LMMAN:TV 74 6-JAN-79

Pieces of Paper 220 Preliminary Lisp Machine Manual

si:tv-more-default pc-ppr
This is the default more processor. It types out **MORE**, waits for input, and
decides where the next "more” should happen.

tv-note-input

The purpose of tv-note-input is to prevent "more’s from happening during normal
interactive usage, since typeout is frequently pausing for user input anyway, and
presumably the user is keeping up in his reading. This function is called by the
keyboard handler when a process hangs waiting for input. tv-note-input arranges
(on each active pc ppr) for a more not to happen until the current line is reached .
again; except, if this line is far from the bottom, we prefer to more at the bottom
before wrapping around. This makes moreing usually happen at the bottom.

23.6.2 Cursor Motion

Note that the “cursor” is the xy position where the top-left corner of the next character
printed will be placed. (This is not strictly true because there is base-line adjustment and
kerning.) The cursor doesn't necessarily have a corresponding blinker; this is under the
control of the user program.

Many of these functions are not used by real Lisp Machine code, but are present for
completeness and to aid compatibility with ITS 1/O. On the other hand, some are heavily
used.

tv-home pc-ppr
Home up to the top-left corner. Usually you then want to do a tv-clear-eol.

tv-home-down pc-ppr
Home down the cursor to the bottom-left corner (the beginning of the last line in
the pc ppr).

tv-crlf pc-ppr
Advance to the beginning of the next line, and erase its previous contents.

tv-space pc-ppr
Space forward.

tv-backspace pc-ppr
Space backward. Not too useful with variable-width fonts.

tv-tab pc-ppr
Tab. Spaces forward to the next multiple of 8 times the width of space.

DSK:LMMAN:TV 74 6-JAN-79

|

e e

T s

T

P T

g A P it PR SIS

g B i

Preliminary Lisp Machine Manual 221 Pieces of Paper

tv-set-font pc-ppr font

This is the common internal routine for changing what font a piece of paper is to
print with. It does some bookkeeping, such as adjusting the baseline. It is OK 1o
set the font to one which is not in the font map, however this won't change the
line-spacing, which is initially set up according to the tallest font in the font map.

tv-set-cursorpos pc-ppr x y

Sets the “cursor” position of the piece of paper in raster units (not character units).
x and y are relative to the margins of the pc ppr.

tv-read-cursorpos pc-ppr

Returns two values, the X and Y coordinates of the cursor. These are relative to
the margins of the pc ppr.

23.6.3 Erasing, etc.

tv-clear-char pc-ppr

Clear the current character position. In a variable-width font, the width of space is
used, which isn't likely to be the right thing.

tv-clear-eol pc-ppr
Clear from current position to end of line.

tv-clear-eof pc-ppr
Clear from current position to end of piece of paper.

tv-clear-pc-ppr pc-ppr
Clear whole piece of paper.

tv-clear-pc-ppr-except-margins pc-ppr

Clear all of pc-ppr except the margins, which are unaffected. This is useful if the
margins contain decorative graphics such as outlines.

tv-clear-screen &optional screcn

Clears the entire screen, and tells the who-line it has been clobbered. screen defaults
to tv-default-screen.

tv-delete-char pc-ppr &optional (char-count 1)
Deletes the specified number of character positions immediately to the right of the

cursor, on the current line. The remainder of the line slides to the left, and blank
space slides in from the right margin.

DSK:LMMAN:TV 74 6-JAN-T9

Pieces of Paper 222 Preliminary Lisp Machine Manual

tv-insert-char pc-ppr &optional (char-count 1)
Inserts the specified number of blank character positions immediately to the right of
the cursor, on the current line. The remainder of the line slides to the right, and
anything that goes off the right margin is lost.

tv-delete-line ;- - &optional (line-count 1)
Deletes the specified number of lines immediately at and below the cursor. The
remaining lines of the piece of paper slide up, and blank spaces slides in from the
bottom margin,

tv-insert-line pc-ppr &optional (line-count 1)
Inserts the specified number of blank lines at the cursor. The remaining lines of the
piece of paper slide down, and anything that goes off the bottom margin is lost,

tv-black-on-white &optional screen
Makes the hardware present the screen as black characters on a white background.
(Presently, the screen argument can also be a plane-mask.)

tv-white-on-black &optional screen
Makes the hardware present the screen as white characters on a black background.
(Presently, the screen argument can also be a plane-mask.)

tv-complement-bow-mode &optional screen
Makes the hardware present the screen in the reverse of its current mode.
(Presently, the screen argument can also be a plane-mask.)

tv-white-on-black-state &optional screen
Returns :white if the screen is currently presented as white-on-black, or :black if it
is currently presented as black-on-white. The screen argument can also be a plane-
mask. If more than one bit is on in the plane-mask, and not all the planes are in
the same state, :both is returned.

2364 String Typeout

tv-string-out pc-ppr string &optional (start 0) end :
Print a string onto a piece of paper. Optional starting and ending indices may be
supplied: if unsupplied, the whole string is printed. This is basically just iterated tv-
tyo, except in the case of simple fonts it runs much faster by removing a lot of
overhead from the inner loop.

tv-line-out pc-ppr string &optional (start 0) end
This variant of tv-string-out is used by the editor’s display routines to output one
line. The argument is a string of either 8-bit or 16-bit characters (usually this is an
EINE “line”, but the leader is not touched except for the fill pointer.) The high 8
bits (4%ch-font) of each character are the index into the font map for the font in
which that character is to be displayed. 8-bit chars use font 0. There are optional
starting and ending indices; if these are omitted the whole string is specified. If

DSK:LMMAN:TV 74 | | 6-JAN-79

Preliminary Lisp Machine Manual 223 Pieces of Paper

during printing the cursor runs off the end of the line, typeout stops and the index
of the next character to be output is returned. At this point, the pc-ppr-end-line-
flag is 1 and the cursor is off the end of the line. If the whole string is successfully

output, nil is returned, and the pc ppr is pointing somewhere in the middle of the
line. '

tv-string-length pc-ppr string &optional (start 0) end stop-x
Compute the display-length of a swring, which is the sum of the widths of the
printing characters in it. Newline characters are ignored. Tab characters act as if
the string starts at the left margin. pc-ppr is used mainly for its font map. start and
end allow you to process a substring. stop-x, if non-nil, is a tv-length at which to
stop. The index in the string of the character after the one which exceeded the
stop-x is returned as the second value.

The first returned value is the x-position reached, i.e. the tv-length of the string.
The second returned value is the next index in the string, which is end if stop-x was
not supplied.

Contrast tv-compute-motion, which does a two-dimensional computation taking
line-length into account. ‘

tv-compute-motion pc-ppr x y string &optional (start 0) end (cr-at-end-p nil)
(stop-x 0) stop-y

Compute the motion that would be caused by outputting a string. This is used by
the editor to aid in planning its display, to compute indentations with variable width
fonts, to position the cursor on the current character, etc. Note that this does not
use the “case shift" flavor of font hacking. Instead, it uses the 16-bit-character flavor
that the editor uses. This means that if you give it an ordinary 8-bit string it will be
assumed to be all in font 0.

The arguments are: the piece of paper, the X and Y position to start at (nils here
use the current position of the pc ppr), the string, and optionally the starting and
ending indices, a flag saying to fake a crif at the end of the string, and two
additional arguments which are the X and Y to stop at; if not given these default to
the end of the screen. Returns 3 values: final-X, final-Y, and an indication of how
far down the string it got. This is nil if the whole string (including the fake carriage
return, if any) was processed without reaching the stopping point, or the index of
the next character to be processed when the stopping point was reached, or t if the
stopping point was reached after the fake carriage return.

tv-char-width pc-ppr char
Returns the width of the character, if displayed in the font current in the pc-ppr.
The width of backspace is negative, the width of tab depends, on the pc ppr’s cursor
position, and the width of carriage return is zero.,

DSK:LMMAN:TV 74 6-JAN-79

Pieces of Paper 224 Preliminary Lisp Machine Manual

23.6.5 More Processing

More processing is a flow control mechanism for output to the user. Lisp machine more
processing is similar to more processing in ITS. The problem that more processing solves is
that displayed output tends to appear faster than the user can read it. The solution is to
stop just before output which has not been read yet is wiped out, and display "**MORE**",
The user then reads the whole screen and hits space to allow the machine to continue
output. More processing normally occurs one line above where the cursor was when the
machine last waited for user input; however, 'it tries to do an extra **MORE** at the
bottom of the pc ppr, so as to get into a phase where the **MORE** always appears at the
bottom, which is more aesthetic.

23.6.6 ALU Functions

Some TV operations take an argument called an ALU Function, which specifies how data
being stored into the TV memory is to be combined with data already present. The ALU
function is OR’ed directly into a microinstruction, so specifying a value other than one of
those listed below may produce unexpected disasters. The following special variables have
numeric values which are useful ALU functions.

tv-alu-ior Variable

Inclusive-OR. Storing a 1 turns on the corresponding bit, otherwise the bit in TV
memory is left unchanged.

tv-alu-xor Variable
Exclusive-OR. Storing a | complements the corresponding bit, otherwise the bit in
TV memory is left unchanged.

tv-alu-andca Variable _
AND-with-complement. Storing a | turns off the corresponding bit, otherwise the bit
in TV memory is left unchanged.

tv-alu-seta Variable

Bits are simply stored, replacing the previous contents. With most functions, this is
not useful since it clobbers unrelated bits in the same word as the bits being
operated on. However, it is useful for bitblt.

DSK:LMMAN:TV 74 6-JAN-79

i AN

Preliminary Lisp Machine Manual 225 Pieces of Paper

23.6.7 Blinkers

A blinker is an attention-getting mark on the screen. Often, but not always, it will
blink. The most common type is a character-sized rectangle which blinks twice a second,
but several other types exist, and it is easy for the user to define new ones. Often a piece
of paper will have an associated blinker which shows where the next character will be
drawn. A blinker can be on top of a character, and the character will still be visible. This
done by XORing the blinker into the TV memory. Synchronization between pieces of paper
and blinkers is provided so that when characters are being drawn on the screen, blinkers are

turned off to prevent the picture from being messed up. (This is called "opening” a piece of
paper, and should be invisible to the user.)

A blinker is an array, described as follows:

tv-blinker-x-pos .
X position of the left edge of the blinker. nil if the blinker should follow
the tv-blinker-pc-ppr's current X and Y.

tv-blinker-y-pos
Y position of the top edge of the blinker.

tv-blinker-pc-ppr
Pc ppr the blinker is associated with. nil for a roving blinker, which can go
anywhere.

tv-blinker-screen
The screen on which the blinker is displayed.

tv-blinker-visibility
nil invisible, t visible, blink blinking.

tv-blinker-half-period
Time interval in 60ths of a second between changes of the blinker.

tv-blinker-phase

nil means not visible, anything else means visible in some form. A
complementing blinker has only two phases, nil and t, but provision is made
for blinkers which go through an elaborate sequence of states.

tv-blinker-time-until-blink
Time interval in 60ths of a second until the next change. The scheduler
decrements this 60 times a second if the tv-blinker-visibility is blink. If

it reaches zero, the blinker is blinked. If this field is nil, the blinker is not
to be looked at by the scheduler.

tv-blinker-function
The function to call to blink the blinker. The next two fields are for its use.
The arguments to the function are the blinker, an operation code, the tv-
blinker-x-pos, and the tv-blinker-y-pos. The operation codes are nil to
make the blinker invisible, t to make it visible, and blink to blink it. When
this function is called, interrupts have been disallowed and the proper screen

DSK:LMMAN:TV 74 6-JAN-79

Graphics 226 Preliminary Lisp Machine Manual

has been selected. For additional conventions, read the function tv-blink.

tv-blinker-width

Width in bits of area to complement if tv-rectangular-blinker. For other
blinker types, miscellaneous data,

tv-blinker-height
Height in raster lines of area to complement if tv-rectangular-blinker.
For other blinker types, miscellaneous data.

tv-blinker-sideways-p
t => interchange X and Y before calling microcode.

tv-set-blinker-cursorpos blinker x y -
Set the cursor position of a blinker. If blinker is a roving blinker, x and y are
absolute coordinates. Otherwise, they are relative to the margins of blinker's piece
of paper. If this blinker was following the pc ppr's cursor, it won't any more.

tv-read-blinker-cursorpos blinker
Read the cursor position of a blinker, returning two values, X and Y. If the blinker
is not roving, these are relative to the margins of its piece of paper.

tv-set-blinker-visibility blinker type
Carefully alters the visibility of a blinker. fype may be nil (off), t (on), or blink.

tv-set-blinker-function blinker function &optional argl arg2
Carefully alters the function which implements a blinker. argl apd arg2, if supplied,
change tv-blinker-height and tv-blinker-width, which are really just general
arguments to the function. ‘

tv-set-blinker-size blinker width height
Carefully changes the size of a blinker, consulting the function which implements it
if that function has a tv-set-blinker-size-function property.

23.7 Graphics

tv-draw-line xI yI x2 y2 alu screen
- Draws a straight line between the points (x/,y1) and (x2,y2), merging the line into
the existing contents of the screen with the specified alu function. This is a fast
micro-coded function.

bitblt alu width hcight from-array from-x from-y to-array to-x fto-y
This function moves a portion of one two-dimensional numeric array into a portion
of another, merging them under the control of a specified alu function. It has
several applications, including shifting portions of the TV screen around (use the
screen-buffer-pixel-array), saving and restoring portions of the TV screen,
writing half-tone and stipple patterns into the TV screen, and general array-moving.

DSK:LMMAN:TV 74 6-JAN-79

Preliminary Lisp Machine Manual 227 The Who Line

bitblt operates on a rectangular region of fo-array which starts at the coordinates
(to-x,to-y) and has extent (abs width) in the X direction and (abs height) in the Y 1
direction. An error occurs if this region does not fit within the bounds of to-array.
Note that the coordinates and the height and width are in terms of array elements,
; not bits, although the actual operation is done bitwise. from-array needn’t be as big
\ as the specified region: conceptually, bitblt replicates from-array a sufficiently-large
number of times in both X and Y, then picks out a rectangular region containing
the same number of bits as the destination region, starting at the coordinates (from-
x.fram-y). bitblt combines these two regions under control of alu, The “A"
operand is the from-array, thus an alu function of tv-alu-seta copies the from-
array, ignoring the previous contents of the selected region of the to-array.

e S T3

The specified X and Y coordinates are always the upper-left corner (minimum
coordinate values) of the selected region.

bitblt normally works in a left-to-right and top-to-bottom order, that is with
increasing coordinate values. When using overlapping from and ro arrays, for
instance when shifting a portion of the TV screen slightly, it may be necessary to
work in one of the other three possible orders. This is done using the sign of the
width and height arguments. If width is negative, decreasing X coordinates are used,
and if hecight is negative, decreasing Y coordinates are used.

For the sake of efficiency, bithlt requires that the from-array and to-array have
word-aligned rows, This means that the first dimension of these arrays must be a
multiple of 32. divided by the number of bits per array-element. All TV screen
arrays are forced by hardware to satisfy this criterion anyway.

238 The Who Line

The who line is a line at the bottom of the screen which contains information on what
the program is currently doing. The who line has its own pc ppr and is updated whenever
the software goes into an I/O wait. In addition, there are two short line segments (called
run lights) at the bottom of the screen which are controlled by the microcode and by the
scheduler. The one on the right lights up when the machine is running (not waiting !
not paging), and the one on the left lights up when the disk is running (paging).

tv-who-line-update &optional srate
This function updates all fields of the who-line which have changed. It is called
from various functions which change the “state of the machine” as perceived by the
user. The optional argument, state, is a string to be displayed in the state field. If

state is not specified, the value of tv-who-line-run-state is used, which is usually
"RUN”'

DSK:LMMAN;TV 74 ' 6-JAN-79

The Who Line 228 Preliminary Lisp Machine Manual

tv-who-line-list Variable
The value of tv-who-line-list is a list of who-line fields. Each field is a list; the
first four elements of the list constitute a structure containing the following
components:

tv-who-line-item-function
A function to call, given the field as its argument. The function is
supposed to update the field of the who-line if it has changed. The
list elements of the field after the first four are for the use of this
function.

tv-who-line-item-state
If nil, the who-line has been clobbered (e.g. by clearing of the
screen) and the field must be updated. Otherwise, this is used by the
function in an unspecified way to remember its previous state.

tv-who-line-item-left
The bit position of the left edge of the portion of the who-line
containing this field.

tv-who-line-item-right
The bit position (+1) of the right edge of the portion of the who-line
containing this field.

The initial tv-who-line-list is set up to display the time, the name of the person
logged-on to the machine, the current package, the “state” of a certain selected
process, and name and position of the current input file.

tv-who-line-prepare-field field
This is called by tv-who-line-item-functions in preparation for redisplay of 8
who-line field. The portion of the screen on which the field displays is erased and
the tv-who-line-pc-ppr's cursor is set to the beginning of the field.

tv-who-line-string field
This is a useful function to put into-a who-line field. It displays the string which is
the value of the symbol which is the fifth element of the field, if it is not eq to the
string previously displayed.

tv-who-line-pe-ppr Variable

The value of tv-who-line-pc-ppr is a piece of paper which is used to dlsplay the
characters in the who-line.

tv-who-line-stream Variable

The value of tv-who-line-stream is a stream whose output displays on the tv-
who-line-pc-ppr.

DSK:LMMAN:TV 74 ' 6-JAN-70

o S e s

P

ST

el
Microcode Routines

Preliminary Lisp Machine Manual 229

tv-who-line-process Variable
The value of tv-who-line-process is the process whose state is to be displayed in
the who-line. process-wait calls tv-who-line-update if this is the current process.

tv-who-line-process is normally the main process of the job which owns the
keyboard.

tv-who-line-run-state Variable

Normally the string "RUN". This is what appears in the wholine when the machine
isn't waiting for anything.

tv-who-line-run-light-loc Variable
Unibus address of the TV memory location used for the run-light.

ty-who-line-state Variable
This is a special variable which exists inside of tv-who-line-update.

239 Microcode Routines

tv-select-screen screen

This microcode primitive selects a screen for use by the tv-draw-char and tv-
erase functions. It sets up microcode variables and hardware registers. Note that
this state is not preserved through process switching, so this primitive should only be

called with inhibit-scheduling-flag bound to t, which is normally desired for other
reasons anyway.

tv-select-screen should also be used before referencing the TV arrays, such as the
screen-buffer-pixel-array, if a 16-bit TV controller is being used.

tv-draw-char font-array char-code x-bit-pos y-bit-pos alu-func
The x-bit-pos and y-bit-pos are of the top left corner of the character. (0,0) is the
top left corner of the screen. tv-draw-char extracts the raster elements for one
character (or one column of a wide character) and displays them at the indic 'ed
address in the currently-selected plane, using the indicated ALU functuic to
combine them with the bits already there. Note that this function does not know
anything about pieces of paper; no pc ppr handling is in microcode.

tv-erase width height x-bit-pos y-bit-pos alu-func
This function is in microcode. width and height are in bits, and should be fixnums.
A rectangle of the indicated size, of all Is, is created and merged into the rectangle
of TV memory in the currently-selected plane whose top left corner is at (x-bit-
pos,y-bit-pos), using the specified alu-func. Usually the ANDCA function is used for

erasing, but XOR is used for the blinking cursor etc. Note that width and height
must be greater than zero.

DSK:LMMAN:TV 74 6-JAN-79

L
e TR e A ety o

Opening a Piece of P'aper 230 Preliminary Lisp Machine Manual

tv-draw-line x0 y0 xI yl alu-func screen
This function is in microcode. A straight line is drawn from the point (x0,y0) to
the point (xI.yl). These points had better not lie outside the screen. The bits that
form the line are merged into the screen with the specified alu function. tv-select-
screen is applied to screen before the line is drawn,

23.10 Opening a Piece of Paper

Before a piece of paper can be manipulated, any blinkers which may intercept it must
be turned off (ie. their tv-blinker-phase must be nil). The operation of assuring this is
called opening the piece of paper. Similarly, before a blinker's location, size, shape,
visibility, or other attributes can be changed, it must be opened, that is made to have no
visible effect on the screen.

Once a blinker has been opened, we must make sure that the clock function, which
implements the blinking, does not come in and turn the blinker back on. This is done in
the simplest possible fashion, by binding the inhibit-scheduling-flag non-nil, which causes
the microcode not to switch to another process. [In the present system processes are never
interrupted, not even by the clock, and this variable is ignored.] This also prevents any
other process from coming in and messing up the piece of paper by trying to type on it at
the same time.

Once we are done with a blinker or piece of paper, and don’t need to have it opened
any more, we want the blinkers to reappear. It looks best if a blinker reappears right away,
rather than at the next time it would have blinked. However, for efficiency we don’t want
to disappear and reappear the blinker every time a TV operation is performed. Rather, if a
program is doing several TV operations right in a row, the first one will turn off the
blinkers, the succeeding ones will notice that the blinkers are already off, and then soon
after the sequence is completed the blinker will come back on. This is implemented by
having the next clock interrupt after we get out of the TV code turn the blinker on.

tv-prepare-pc-ppr Macro
The form (tv-prepare-pc-ppr (pc-ppr) forml form2 ...) opens the piece of paper
which is the value of the variable pc-ppr and evaluates the forms with it open, This
macro contains all the knowledge of how to open a pc ppr, including disabling
interrupts, finding and opening the blinkers, and selecting the proper screen.

tv-open-blinker blinker
The specified blinker is temporarily turned off: the next clock interrupt when
inhibit-scheduling-flag is nil will turn it back on.

DSK:LMMAN:TV 74 6-JAN-79

P

Preliminary Lisp Machine Manual 231 Creating Pieces of Paper and Blinkers

tv-open-screen

Opens all the visible blinkers, preparatory to arbitrary munging of the screen, for
instance picture drawing.

tv-blink b&linker type
The function to blink a blinker. fype is one of the symbols nil (off), t (on), or
blink. tv-blink checks rype, selects the proper screen, digs up the blinker position

out of the pc ppr if necessary, and calls the blinker’s function to do the actual
display. .
tv-rectangular-blinker blinker type x y

A tv-blinker-function function for rectangular blinkers (the default). Ignores #ype,
just complements,

tv-hollow-rectangular-blinker blinker type x y
Function for hollow rectangles.

tv-character-blinker blinker type x y
Function for blinkers defined by a character. Argl (‘height) is the font, and arg2

(‘width") is the character in the font. The character is XORed in and out as the
blinker blinks.

23.11 Creating Pieces of Paper and Blinkers

tv-define-pc-ppr name font-map &rest options
This function creates a returns a piece of paper. Keyword arguments allow the user
to specify some of the many attributes of the piece of paper and leave the remainder
to default. name is just a string which is remembered in the pc-ppr and appears in
its printed representation, font-map may be either a list or an array of fonts; or it
may be nil, which causes the font map to be taken from the screen’s default. The
remaining arguments are alternating keywords (which should be quoted) and values
for those keywords. For example,
(setq foo (tv-define-pc-ppr "foo" (list fonts:tvfont)
7 :top 300
“:bottom 400))

Valid option keywords are:

:screen The screen on which the piece of paper is to display. The default is
tv-default-screen.

itop Raster line number of highest line in the pc ppr. Defaults to
screen-yl of the specified screen, the top.

:hottom Raster line number + 1 of lowest line in the pc ppr. Defaults to
screen-y2 of the specified screen, just above the who line (if there
is one) at the bottom of the screen.

DSK:LMMAN;TV 74 6-JAN-79

R At e s e g e N AT G IIAGY £ ETE PR S

Creating Pieces of Paper and Blinkers 232 Preliminary Lisp Machine Manual

dleft Raster point number of left edge of pc ppr. Defaults to screen-x1
of the specified screen, the left edge.

:right rer point number + 1 of right edge of the pc ppr. Defaults to
screen-x2 of the specified screen, the right edge.

:blinker-p t if this pc ppr should have a blinker on its cursor, nil if the cursor
should be invisible. Default is t.

:activate-p t if this pc ppr should be initially active. Active means that its
blinkers can blink. The default is t.

:reverse-video-p
t if this pc ppr should be in the inverse of the normal black-on-white
mode. This works by changing pc-ppr-char-aluf and pc-ppr-
erase-aluf. Default is nil.

more-p t if this pc ppr should have more processing. Default is t.

vsp Number of raster lines between character lines. This is added to the
maximum height of the fonts in the font map to get the height of a
line in this pc ppr. The default is 2.

dleft-margin Amount of unused space at the left edge of the pc ppr. The default
is 0.

:top-margin Amount of unused space at the top. The default is 0.
:right-margin Amount of unused space at the right. The default is 0.

:bottom-margin
Amount of unused space at the bottom. The default is O.

:end-line-fen A function which is invoked when typeout reaches the end of a line.
The default is one which wraps around to the next line.

:end-screen-fcn
A function which is invoked when typeout reaches the bottom of the
pc ppr. The default is one which wraps around to the top.

:output-hold-fen
A function which is invoked when typeout encounters the output-
hold flag. The default is one which waits for some other process to
clear the flag.

:more-fcn A function which is invoked when more processing is necessary. The
default is one which types *MORE** and waits for the user to hit
a character, then ignores that character and continues typing.

:blink-fen The function to implement the blinker if :blinker-p is not turned
off. The default is tv-rectangular-blinker.

:sideways-p t means the monitor is standing on its left side instead of its bottom:
change things around appropriately. The default comes from the
specified screen.

DSK:LMMAN:TV 74 6-JAN-79

Preliminary Lisp Machine Manual 233 Creating Pieces of Paper and Blinkers

sintegral-p t means that the piece of paper should be forced to be an integral
number of lines high; it will be made slightly smaller than the
specified size if necessary. The default is nil.

:font-map Set the font-map. This is intended to replace the passing in of the
font-map as the second argument.

R

tv-define-blinker pc-ppr &rest options
Define a blinker on a piece of paper. The options are similar in syntax to those in
tv-define-pc-ppr. Valid options are:

v W g

theight Number of raster lines high. The default comes from the first font in
the pc ppr's font map.

:width Number of raster points wide. The default comes from the first font
in the pc ppr's font map.

:function The function to implement the blinker. The default is tv-
rectangular-blinker.

:argl Another name for :width. Use this with :functions which don't
interpret their first "argument” as a width.

:arg Another name for :height. Use this with :functions which don't
interpret their second "argument” as a height.

:visibility Initial visibility, t, nil, or blink. Default is blink.

follow-p t if this blinker should follow that pc ppr's cursor, Default is nil.

rroving-p t if this blinker is not confined to a single piece of paper. In this
case the pc ppr argument is ignored and should be nil. Defau
nil.

:activate-p t if this blinker should be initially active. The default is nil.

thalf-period Number of 60ths of a second beiween changes in the blinker.
Default is 15.

screen The screen on which the blinker should appear. The default is to
take it from the pc ppr, or from tv-default-screen in the case of a
roving blinker.

;sideways-p t 1o make the blinker be rotated 90 degrees. Default is to take it
from the pc ppr.
You may give nil as a pc-ppr, in which case you must specify :width and :height
(or :argl and :arg2) since they will default to nil. You should give nil as pc-ppr if
and only if you specify :roving-p, probably, since :roving-p means this blinker is
not on a pc ppr. .

DSK:LMMAN:TV 74 6-JAN-79

The Keyboard 234 Preliminary Lisp Machine Manual

tv-redefine-pc-ppr pc-ppr &rest &eval options
Redefine some of the parameters of a pc ppr. The allowed options are :top,
:bottom, :left, :right, :top-margin, :bottom-margin, :left-margin, :right-
margin, :vsp, :integral-p, :more-p, :screen, and :fonts. :fonts allows you to
change the font map, which can change the line height. The size of the blinker will
not be changed, but perhaps it should be.

tv-deactivate-pc-ppr pc-ppr
Cause a piece of paper's blinkers to stop blinking. It is illegal to type out on a pc
ppr which is deactivated.

tv-activate-pc-ppr pc-ppr
Cause blinkers to blink again.

tv-deactivate-pc-ppr-but-show-blinkers pc-ppr
Cause all blinkers on this piece of paper to be stuck in the blunk (t) state. lLe.
mark place but don’t flash. Deactivates so that they won't flash. Typing out on this
piece of paper will cause blinkers to start blinking again.

tv-return-pc-ppr pc-ppr
return-array all of a piece of paper.

tv-make-stream pc-ppr
Returns a stream which accepts output and displays it on pc-ppr, and reads input
from the keyboard, echoing it on pc-ppr.

23.12 The Keyboard

Keyboard input can be done either by reading from the standard-input stream, which
is preferred. or by calling these keyboard routines directly.

The characters read by the functions below are in the Lisp Machine character set, with
extra bits to incicate the Control and Meta keys. Also, the characters may come from the
forced-input mechanism (see page 235), and may be from the mouse. The byte fields which
make up the fixnums returned by these functions have names beginning with ‘%%kbd-", and
are explained on page 152,

The special characters Break, Call, and Escape are normally intercepted by the keyboard
routines, Break causes the process which reads it to enter a break loop (see page 266).
Call returns control to the top-level job, or enters a break loop if control is already in the
top-level job. Control and Meta modifiers cause additional effects. See page 204 for details.
Escape is a prefix for various commands, as in ITS., Commands consist of Escape, an
optional numeric argument (in octal), and a letter, and do not echo. The commands that
currently exist are:

<esc>C Complement TV black-on-white mode.

DSK:LMMANTV 74 6-JAN-79

B

Preliminary Lisp Machine Manual 235 The Keyboard

<esc>nC Complement black-on-white mode of plane n.
<esc>nS Select video-switch input n.

<esc>M Complement more-processing enable.
<esc>0M Turn off more-processing.

<esc>IM Turn on more-processing.

kbd-tyi &optional (whostate "TYI")
This is the main routine for reading from the keyboard. The optional argument is
what to display as the program state in the who line (usually just “TYI") while
awaiting typein. The value returned is a number which consists of a Lisp machine

character code, augmented with bits for the control and meta keys. The character is
not echoed.

kbd-tyi-no-hang

Returns nil if no character has been typed, or the character code as kbd-tyi would
return it.

kbd-char-available

Returns non-nil if there is a character waiting to be read; otherwise returns nil. It
does not read the character out. This function can be used with process-wait.

kbd-super-image-p Variable
If the value of kbd-super-image-p is non-nil, checking for the special characters

Break, Call, and Escape is disabled. Note that you cannot lambda-bind this variable,
because it is looked at in different stack-groups.

kbd-simulated-clock-fcn-list Variable

List of functions to be called every 60th of a second (while the machine is waiting
for typein.) This is used to implement blinkers. [This variable should be renamed and
moved to the scheduler section,]

force-kbd-input job input
This is used to make a job think it has keyboard input that was not actually typed by
the user. The menu system, for example, uses this. job is the job to receive the
input. input is either a fixnum, representing a single character, or an array of
characters (which may or may not be a string). force-kbd-input waits until
previous forced input has been read, then gives the new forced input to the job.

DSK:LMMAN:TV 74 6-JAN-79

Internal Special Variables 236 Preliminary Lisp Machine Manual

23.13 Internal Special Variables

tv-blinker-list Variable
This is a list of all blinkers which are visible (blinking or solidly on). It is used by
the tv-blinker-clock routine and by tv-open-screen.

tv-roving-blinker-list Variable ‘
This is a list of peculiar blinkers which don't stay on any single piece of paper.
Whenever any piece of paper is opened, in addition to that piece of paper’s own
blinkers, all of the roving blinkers will be temporarily turned off. Only the visible
ones are on this list. This is primarily for the mouse’s blinker.

tv-pc-ppr-list Variable
This is a list of all the pieces of paper. Currently for no particular reason.

tv-white-on-black-state Variable

™"

tv-beep-duration Variable
Controls beeping.

tv-beep-wavelength Variable
Controls beeping.

tv-more-processing-global-enable Variable
This flag controls whether "**MORE**"s can happen. Complemented by <esc>M.
The initial value is t,

23.14 Font Utility Routines

[Are these the latest word? I suspect not.]

tv-get-font-pixel font char row col :
Returns a number which is the pixel value of the specified point in the specified
character in the specified font. This is 0 or 1 for normal fonts, or a gray-level value
for multi-plane fonts. The value returned is zero if you address outside of the
character raster,

tv-store-font-pixel pixel font char row col
This is similar to the above, but stores. It is an error to store outside of the
character raster.

DSK:LMMAN:TV 74 ‘ 6-JAN-79

Preliminary Lisp Machine Manual 237 The Font Compiler

tv-make-sideways-font fonr

Returns a new font which is the same, except turned on its side in such a way that
it works on pieces of paper created with the sideways-p t option.

tv-make-dbl-hor-font font
Returns a new font with alternating bits split into two planes in such a way that it

will work with doubled horizontal resolution (producing squished characters if the
original font had a normal aspect ratio.)

tv-make-gray-font font! &optional (x-ratio 2) (y-ratio 2) (n-planes 2)
Returns a new font which is the original font with areas x-ratio wide and y-ratio
high converted into single points with an appropriate gray level value n-planes
determines the number of gray levels available.

23.15 The Font Compiler

The Font Compiler is a lisp program which runs on the pdpl10. It converts fonts
represented as AST files into QFASL files which can be loaded into the Lisp machine.

When a font is loaded, a symbol in the fonts package is setq'ed to the representation of
that font.

To run the font compiler, incant
:lispml ;gcmp
(fasload (Imio)fcmp)
(crunit dsk Imfont) ;Or whatever directory you keep fonts on
(femp-1 “input “output fontname screen-type)

input is the first-name of the AST file containing the font to be processed. output is the
first-name of the QFASL file to be produced. fontname is the name of the symbol in the
fonts package whose value will be the font. This symbol will also appear in the font-
name field of the font and in the printed representation of the font. screen-type is t if the
font is to be used with the 32-bit TV controller, or nil if the font is to be used with the
16-bit controller.

[Here insert a catalog of fonts when things settle down a little more.]

DSK:LMMAN:TV 74 6-JAN-79

Errors and Debugging 238 Preliminary Lisp Machine Manual

24. Errors and Debugging

The first section of this chapter explains how programs can handle errors, by means of
condition handlers. It also explains how a program can signal an error if it detects
something it doesn't like. '

The second explains how users can handle errors, by means of an interactive debugger;
that is, it explains how to recover if you do something wrong. For a new user of the Lisp
Machine, the second section is probably much more useful; you may want to skip the first.

The remaining sections describe some other debugging facilities. Anyone who is going
to be writing programs for the Lisp machine should familiarize himself with these.

The rrace facility provides the ability to perform certain actions at the time a function is
called or at the time it returns. The actions may be simple typeout, or more sophisticated
debugging functions,

The step facility allows the evaluation of a form to be intercepted at every step so that
" the user may examine just what is happening throughout the execution of the form.

The MAR facility provides the ability to cause a trap on any memory reference to a
word (or a set of words) in memory. If something is getting clobbered by agents unknown,
this can help track down the source of the clobberage.

241 The Error System

24.1.1 Conditions

Programmers often want to control what action is taken by their programs when errors
or other exceptional situations occur. Usually different situations are handled in different
ways, and in order to express what kind of handling each situation should have, each
situation must have an associated name. In Lisp Machine Lisp there is the concept of a
'condition. Every condition has a name, which is a symbol. When an unusual situation
occurs, some condition is signalled, and a handler for that condition is invoked.

When a condition is signalled, the system (essentially) searches up the stack of nested
function invocations looking for a handler established to handle that condition. The handler
is a function which gets called to deal with the condition. The condition mechanism itself
is just a convenient way for finding an appropriate handler function given the name of an
exceptional situation. On top of this is built the error-condition system, which defines what
arguments are passed to a handler function and what is done with the values returned by a
handler function. Almost all current use of the condition mechanism is for errors, but the
user may find other uses for the underlying mechanism.

DSK:LMMAN;ERRORS 43 6-JAN-79

3
4

a7 gy

s

Preliminary Lisp Machine Manual 239 The Error System

The search for an appropriate handler is done by the function signal:

signal condition-name &rest args

signal searches through all currently-established condmon handlers, starting with the
most recent. If it finds one that will handle the condition condition-name, then it

calls that handler with a first argument of condition-name, and with args as the rest

of the arguments. If the first value returned by the handler is nil, signal will

continue searching for another handler; otherwise, it will return the first two values

returned by the handler. If signal doesn't find any handler that returns a non-nil

value, it will return nil.

Condition handlers are established through the condition-bind special form:

condition-bind Special Form
The condition-bind special form is used for establishing handlers for conditions. It
looks like:
(condition-bind ((cond-1 hand-1)
(cond-2 hand-2)
.)
body)
Each cond-n is either the name of a condition, or a list of names of conditions, or
nil. If it is nil, a handler is set up for all conditions (this does not mean that the
handler really has to handle all conditions, but it will be offered the chance to do
so, and can return nil for conditions which it is not interested in). Each hand-n is
a form which is evaluated to produce a handler function. The handlers are
established sequentially such that the cond-1I handler would be looked at first.
Example:
(condition-bind ((:wrong-type-argument “my-wta-handler)
((lossage-1 lossage-2) lossage-handler))
(princ "Hello there.")
(= t 69))
This first sets up the function my-wta-handler to handle the :wrong-type-
argument condition. Then, it sets up the binding of the symbol lossage-handler to
handle both the lossage-1 and lossage-2 conditions. With these handlers set up, it
prints out a message and then runs headlong into a wrong-type-argument error by
calling the function = with an argument which is not a number. The condition
handler my-wta-handler will be given a chance to handle the error. condition-
bind makes use of ordinary variable binding, so that if the condition-bind form is
thrown through, the handlers will be disestablished. This also means that condition
handlers are established only within the current stack-group.

DSK:LMMAN;;ERRORS 43 6-JAN-79

VSR AR g

The Error System _ 240 Preliminary Lisp Machine Manual

24.1.2 Error Conditions

The use of the condition mechanism by the error system defines an additional protocol
for what arguments are passed to error-condition handlers and what values they may return.

There are basically four possible responses to an error: proceeding, restarting, throwing,
or entering the dcbugger. The default action, taken if no handler exists or deigns to handle
the error (returns non-nil), is to enter the debugger. A handler may give up on the
execution that produced the error by throwing (see Xthrow, page 33). Proceeding means to
repair the error and continue execution. The exact meaning of this depends on the
particular error, but it generally takes the form of supplying a replacement for an
unacceptable argument to some function, and retrying the invocation of that .function.
Restarting means throwing to a special standard catch-tag, error-restart. Handlers cause
proceeding and restarting by returning certain special values, described below.

Each error condition is signalled with some parameters, the meanings of which depend
on the condition. For example, the condition :unbound-variable, which means that
something tried to find the value of a symbol which was unbound, is signalled with one
parameter, the unbound symbol. It is always all right to signal an error condition with extra
parameters,

An error condition handler is applied to several arguments. The first argument is the
name of the condition that was signalled (a symbol). This allows the same function to
handle several different conditions, which is useful if the handling of those conditions is
very similar. (The first argument is also the name of the condition for non-error
conditions.) The second argument is a format control string (see the description of format,
on page 85). The third argument is ¢t if the error is proceedable; otherwise it is nil. The
fourth argument is t if the error is restartable; otherwise it is nil. The fifth argument is the
name of the function that signalled the error, or nil if the signaller can’t figure out the
correct name to pass. The rest of the arguments are the parameters with which the
condition was signalled. If the format control string is used with these parameters, a
readable English message should be produced. Since more information than just the
parameters might be needed to print a reasonable message, the program signalling the
condition is free to pass any extra parameters it wants to, after the parameters which the
condition is defined to take. This means that every handler must expect to be called with
an arbitrarily high number of arguments, so every handler should have a &rest argument
(see page 7).

An error condition handler may return any of several values. If it returns nil, then it is
stating that it does not wish to handle the condition after all; the process of signalling will
continue looking for a prior handler (established farther down on the stack) as if the
handler which returned nil had not existed at all. (This is also true for non-error
conditions.) If the handler does wish to handle the condition, it can try to proceed from
the error if it is proceedable, or restart from it if it is restartable, or it can throw to a
catch tag. Proceeding and restarting are done by returning two values. To proceed, return
the symbol return as the first value, and the value to be returned by the function cerror
as the second. To restart, return the symbol error-restart as the first value, and the value

DSK:LMMAN:ERRORS 43 - 6-JAN-79

Preliminary Lisp Machine Manual 241 The Error System

to be thrown to the tag error-restart as the second. The condition handler must not
return any other sort of values. However, it can legitimately throw to any tag instead of
returning at all. If a handler tries to proceed an unproceedable error or restart an
unrestartable one, an error is signalled.

Note that if the handler returns nil, it is not said to have handled the error; rather, it
has decided not to handle i1, but to “continue to signal” it so that someone else may handle

it. If an error is signalled and none of the handlers for the condition decide to handle it,
the debugger is entered.

Here is an example of an excessively simple handler for the :wrong-type-argument

condition.

; This function handles the :wrong-type-argument condition,

;3 which takes two defined parameters: a symbol indicating

;; the correct type, and the bad value.

defun sample-wta-handler (condition control-string proceedable-flag
restartable-flag function
correct-type bad-value &rest rest)

..
’

.
”
-
1 4
.
’
(

(prog ()

(format error-output "~%There was an error in ~S~%" function)
(lexpr-funcall (function format)

' control-string correct-type bad-value rest)
(cond ((and proceedable-flag

(yes-or-no-p query-io "Do you want use nil instead?"))
(return “return nil))
(t (return nil))))) ;don’t handle

24.1.3 Signalling Errors

Some error conditions are signalled by the Lisp system when it detects that something
has gone wrong. Lisp programs can also signal errors, by using any of the functions ferror,
cerror, or error. f[error is the most commonly used of these. cerror is used if the
signaller of the error wishes 10 make the error be proceedable or restartable, or both. error
is provided for Maclisp compatibility.

A ferror or cerror that doesn't have any particular condition to signal should use nil
as the condition name. The only kind of handler that will be invoked by the signaller in
this case is the kind that handles alf conditions, such as is set up by

(condition-bind ((nil something) ...) ...)
In practice, the nil condition is used a great deal.

DSK:LMMAN::ERRORS 43 6-JAN-79

L e sk e e A Y s el &mﬁ‘g&

The Error System Co242 Preliminary Lisp Machine Manual

ferror condition-name control-string &rest params

ferror signals the condition condition-name. Any handler(s) invoked will be passed
condition-name and control-string as their first and second arguments, nil and nil for

the third and fourth arguments (ie. the error will be neither proceedable nor

restartable), the name of the function that called ferror for the fifth argument, and
params as the rest of their arguments.

Note that condition-name can be nil, in which case no handler will probably be
found and the debugger will be entered.
Examples:
(cond ((> sz 60)
(ferror nil
"The size, ~S, was greater then the maximum"
sz))
(t (foo sz)))

- (defun func (a b) _
(cond ((and (> a 3) (not (symbolp b)))
(ferror 7 :wrong-type-argument
"The name, ~16~S, must be a symbo1l1®
“symbolp
b))
(t (func-internal a b))))

cerror proccedable-flag restartable-flag condition-name control-string &rest params

cerror is just like ferror (see page 242) except that the handler is passed
proceedable-flag and restartable-flag as its third and fourth arguments. If cerror is
called with a non-nil proceedable-flag, the caller should be prepared to accept the
returned value of cerror and use it to restart the error. Similarly, if he passes
cerror a non-nil restartable-flag, he should be sure that there is a *catch above
him for the tag error-restart.

Note: Many programs that want to signal restartable errors will want to use the
error-restart special form; see page 243.
Example:
(do ()
((symbolp a))
. Do this stuff until a becomes a symbol.
(setq a (cerror t nil 7 :wrong-type-argument
“The argument ~26~A was ~16~§, which is not ~3G~A"
“symbolp a “a “a symbol1")))
Note: the form in this example is so useful that there is a standard special form to
do it, called check-arg (see page 244).

2

DSK:LMMAN:ERRORS 43 6-JAN-79

K

Preliminary Lisp Machine Manual 243 The Error System

error message &optional object interrupt
error is provided for Maclisp compatibility. In Maclisp, the functionality of error
is, essentially, that message gets printed, preceeded by object if present, and that
interrupt, if present, is a user interrupt channel to be invoked.

In order to fit this definition into the Lisp Machine way of handling errors, error is
defined to be:
(cerror (not (null interrupt))
nil
(or (get interrupt “si:condition-name)
interrupt)
(cond ((missing object) ;If no object given
"ox~a")
(t "~s ~au))
object
message)

Here is what that means in English: first of all, the condition to be signalled is nil
if interrupt is nil. If there is some condition whose meaning is close to that of one
of the Maclisp user interrupt channels, the name of that channe! has an
si:condition-name property, and the value of that property is the name of the
condition to signal. Otherwise, interrupt is the name of the condition to signal;
probably there will be no handler and the debugger will be entered.

If interrupt is specified, the error will be proceedable. The error will not be
restartable. The format control string and the arguments are chosen so that the
right error message gets printed, and the handler is passed everything there is to
pass.

error-restart Macro
error-restart is useful for denoting a section of a program that can be restarted if
certain errors occur during its execution. An error-restart form looks like:
(error-restart

form-1

form-2

..l)
The forms of the body are evaluated sequentially. If an error occurs within the
evaluation of the body and is restarted (by a condition handler or the debugger), the
evaluation resumes at the beginning of the error-restart’s body.

DSK:LMMAN:ERRORS 43 6-JAN-79

The Error System 244 Preliminary Lisp Machine Manual

Example:
(error-restart
(setq a (x b d))
(cond ((> a maxtemp)
(cerror nil t “overheat
"The frammistat will overheat by ~D. degrees!'"
(- a maxtemp))))
(setq q (cons a a))) .
If the cerror happens, and the handler invoked (or the debugger) restarts the error,
then evaluation will continue with the (setq a (X b d)), and the condition (> a
maxtemp) will get checked again.
error-restart is implemented as a macro that expands into:
(prog ()
loop (xcatch “error-restart
“(return (progn
form-1
form-2
..)))
(go loop))

check-arg Macro
The check-arg form is useful for checking arguments to make sure that they are
valid. A simple example is:
(check-arg foo stringp "a string")
foo is the name of an argument whose value should be a string. stringp is a
predicate of one argument, which returns t if the argument is a string. "a string” is
an English description of the correct type for the variable.

The general form of check-arg is
(check-arg var-name

predicate

description

type-symbol)
var-name is the name of the variable whose value is of the wrong type. If the error
is proceeded this variable will be setg'ed to a replacement value. predicate is 8 test
for whether the variable is of the correct type. It can be either a symbol whose
function definition takes one argument and returns non-nil if the type is correct, or
it can be a non-atomic form which is evaluated to check the type, .and presumably
contains a reference to the variable var-name. description is a string which expresses
predicate in English, to be used in error messages. type-symbol is a symbol which is
used by condition handlers to determine what type of argument was expected. It
may be omitted if it is to be the same as predicate, which must be a symbol in that
case. :

The use of the type-symbol is not really well-defined yet, but the intention is that if
it is numberp (for example), the condition handlers can tell that a number was
needed, and might try to convert the actual supplied value to a number and

DSK:LMMAN::ERRORS 43 6-JAN-79

Preliminary Lisp Machine Manual 245 The Error System

proceed.

[We need to establish a conventional way of “registering” the type-symbols to be used
for various expected types. It might as well be in the form of a table right here.}

The predicate is usually a symbol such as fixp, stringp, listp, or closurep, but
when there isn't any convenient predefined predicate, or when the condition is
complex, it can be a form. In this case you should supply a type-symbol which
encodes the type. For example:
(check-arg a
(and (numberp a) (< a 10.) (> a 0.))
"a number from one to ten"
. one-to-ten)
If this error got to the debugger, the message
The argument a was 17, which is not a number from one to ten.
would be printed.

In general, what constitutes a valid argument is specified in three ways in a check-
arg. description is human-understandable, type-symbol is program-understandable, and
predicate is executable. It is up to the user to ensure that these three specifications
agree.

check-arg uses predicate 1o determine whether the value of the variable is of the
‘correct type. If it is not, check-arg signals the :wrong-type-argument condition,
with four parameters. First, type-symbol if it was supplied, or else predicate if it was
atomic, or else nil. Second, the bad value. Third, the name of the argument (var-
namc). Fourth, a string describing the proper type (description). If the error is
proceeded, the variable is set to the value returned, and check-arg starts over,
checking the type again. Note that only the first two of these parameters are defined
for the :wrong~-type-argument condition, and so :wrong-type-argument handlers
should only depend on the meaning of these two.

24.1.4 Standard Condition Names

Some condition names are used by the kernel Lisp system, and are documented below;
since they are of global interest, they are on the keyword package. Programs outside the
kernel system are free to define their own condition names; it is intended that the
description of a function include a description of any conditions that it may signal, so that
people writing programs that call that function may handle the condition if they desire.
When you decide what package your condition names should be in, you should apply the
same criteria you would apply for determining which package a function name should be in;
if a program defines its own condition names, they should not be on the keyword package.
For example, the condition names chaos:bad-packet-format and arpa:bad-packet-
format should be distinct. For further discussion, see page 176.

DSK:LMMAN:ERRORS 43 6-JAN-79

The Error System 246 Preliminary Lisp Machine Manual

The following table lists all standard conditions and the parameters they-take; more will
be added in the future. These are all error-conditions, so in addition to the condition
name and the parameters, the handler receives the other arguments described above.

:wrong-type-argument type-name value
value is the offending argument, and fype-name is a symbol for what type is
required. Often, fype-name is a predicate which returns non-nil if applied to
an acceptable value. [f the error is proceeded, the value returned by the
handler should be a new value for the argument to be used instead of the
one which was of the wrong type.

:inconsistent-arguments /ist-of-inconsistent-argument-values
These arguments were inconsistent with each other, but the fault does not
belong to any particular one of them. This is a catch-all, and it would be
good to identify subcases in which a more specific categorization can be
made. If the error is proceeded, the value returned by the handler will be
returned by the function whose arguments were inconsistent,

:wrong-number-of-arguments function number-of-args-supplied list-of-args-supplied
function was invoked with the wrong number of arguments,” The elements of
list-of-args-supplied have already been evaluated. If the error is proceeded,
the value returned should be a value to be returned by function.

:invalid-function function-name
The name had a function definition but it was no good for calling. You can
proceed, supplying a value to return as the value of the call to the function.

:iinvalid-form form
The so-called form was not a meaningful form for eval. Probably it was of
a bad data type. If the error is proceeded, the value returned should be a
new form; eval will use it instead.

:undefined-function function-name
The symbol function-name was not defined as a function. If the error is
proceeded, then the symbol will be defined to the function returned, and
that function will be used to continue execution.

:unbound-variable variable-name
The symbol variable-name had no value. If the error is proceeded, then the
symbol will be set to the value returned by the handler, and that value will
be used to continue execution.

Currently, errors detected by microcode do not signal conditions. Generally this means

that errors in interpreted code signal conditions and some errors in compiled code do not.
This will be corrected some time in the future.

DSK:LMMAN:ERRORS 43 6-JAN-79

Preliminary Lisp Machine Manual 247 The Debugger

2415 Errset

As in Maclisp, there is an errset facility which allows a very simple form of error
handling. If an error occurs inside an errset, and no condition handler handles i1, i.e. the
debugger would be entered, control is returned (thrown) to the errset. The errset can
control whether or not the debugger's error message is printed.

A problem with errset is that it is roo powerful; it will apply to any unhandled error at
all. If you are writing code that anticipates some specific error, you should find out what
condition that error signals and set up a handler. If you use errset and some unanticipated
error crops up, you may not be told—this can cause very strange bugs.

errset Spccial Form
The special form (errset form flag) catches errors during the evaluation of form.
If an error occurs, the usual error message is printed unless flag is nil; then,
control is thrown and the errset-form returns nil. flag is evaluated first and is
optional, defaulting to t. If no error occurs, the value of the errset-form is a list of
one element, the value of form.

errsetl Variable
If this variable is non-nil, errset-forms are not allowed to trap errors. The debugger
is entered just as if there was no errset. This is intended mainly for debugging
errsets, The initial value of errset is nil.

err Special Form
This is for Maclisp compatibility.

(err) is a dumb way to cause an error. If executed inside an errset, that errset
returns nil, and no message is printed. Otherwise an unseen throw-tag error occurs.

(err form) evaluates form and causes the containing errset to return the result. If
executed when not inside an errset, an unseen throw-tag error occurs.

(err form flag), which exists in Maclisp, is not supported.

24.2 The Debugger

When an error condition is signalled and no handlers decide to handle the error, an
interactive debugger is entered to allow the user to look around and see what went wrong,
and to help him continue the program or abort it. This section describes how to use the
debugger.

The user interface described herein is not thought too well of, and we hope to redesign
it sometime soon.

DSK:LMMAN;ERRORS 43

6-JAN-79

The Debugger 248 Preliminary Lisp Machine Manual

242.1 Entering the Debugger

There are two kinds of errors: those generated by the Lisp Machine’s microcode, and
those generated by Lisp programs (by using ferror or related functions). When there is a
microcode error, the debugger prints out a message such as the following:

>>TRAP 5543 (TRANS-TRAP)
The symbol FOOBAR is unbound.
While in the function %EVAL « SI:LISP-TOP-LEVELI]

The first line of this error message indicates entry to the debugger and contains some
mysterious internal microcode information: the micro program address, the microcode trap
name and parameters, and a microcode backtrace. Users can ignore this line in most cases.
The second line contains a description of the error in English. The third line indicates
where the error happened by printing a very abbreviated "backtrace” of the stack (see
below): in the example, it is saying that the error was signalled inside the function *eval,
which was called by si:lisp-top-levell.

Here is an example of an error from Lisp code:
>>ERROR: The argument X was 1, which is not a symbol,
While in the function { FERROR « } FOO « xEVAL

Here the first line contains the English description of the error message, and the second
line contains the abbreviated backtrace. The backtrace indicates that the function which
actually entered the error handler was ferror, but that function is enclosed in braces
because it is not very important; the useful information here is that the function foo is
what called ferror and thus signalled the error.

There is not any good way to manually get into the debugger; the interface will
someday be fixed so that you can enter it at any time if you want to use its facilities to
examine the state of the Lisp environment and so on. In the meantime, just type an
unbound symbol at Lisp top level.

242.2 How to Use the Debugger

Once inside the debugger, the user may give 3 wide variety of commands. This section
describes how to give the commands, and then explains them in approximate order of
usefulness. A summary is provided at the end of the listing.

When the error hander is waiting for a command, it prompts with an arrow:
-

At this point, you may either type in a Lisp expression, or type a command (a Control
or Meta character is interpreted as a command, whereas a normal character is interpreted as
the first character of an expression). If you type a Lisp expression, it will be interpreted as
a Lisp form, and will be evaluated in the context of the function which got the error.
(That is, all bindings which were in effect at the time of the error will be in effect when
your form is evaluated.) The result of the evaluation will be printed, and the debugger will

DSK:LMMAN:ERRORS 43 6-JAN-79

Preliminary Lisp Machine Manual 249 The Debugger

prompt again with an arrow. If, during the typing of the form, you change your mind and
want to get back to the debugger’s command level, type a Control-Z; the debugger will
respond with an arrow prompt. In fact, at any time that typein is expected from you, you
may type a Control-Z to flush what you are doing and get back to command level. This
read-eval-print loop maintains the values of +, X, and - just as the top-level one does.

Various debugger commands ask for Lisp objects, such as an object to return, or the
name of a catch-tag. Whenever it tries 10 get a Lisp object from you, it expects you to
type in a form: it will evaluate what you type in. This provides greater generality, since
there are objects to which you might want to refer that cannot be typed in (such as arrays).
If the form you type is non-trivial (not just a constant form), the debugger will show you
the result of the evaluation, and ask you if it is what you intended. It expects a Y or N
answer (see the function y-or-n-p, page 263), and if you answer negatively it will ask you
for another form. To quit out of the command, just type Control-Z.

24.2.3 Debugger Commands

All debugger commands are single characters, usually with the Control or Meta bits.
The single most useful command is Control-Z, which exits from the debugger and throws
back to the Lisp top level loop. ITS users should note that Control-Z is not Call. Often
you are not interested in using the debugger at all and just want to get back to Lisp top
level: so you can do this in one character. This is similar to Control-G in Maclisp.

Self-documentation is provided by the Help (top-H) or "7 command, which types out
some documentation on the debugger commands.

Often you want to try to continue from the error. To do this, use the Control-C
command. The exact way Control-C works depends on the kind of error that happened.
For some errors, there is no standard way to continue at all, and Control-C will just tell
you this and return to the debugger’s command level. For the very common “unbound
symbol” error, it will get a Lisp object from you, which it will store back into the symbol.
Then it will continue as if the symbol had been bound to that object in the first place. For
unbound-variable or undefined-function errors, you can also just type Lisp forms to set the
variable or define the function, and then type Control-C; it will proceed without asking
anything.

Several commands are provided to allow you to examine the Lisp control stack (regular
pdl), which keeps a record of all functions which are currently active. If you call foo at
Lisp’s top level, and it calls bar, which in turn calls baz, and baz gets an error, then a
backtrace (a backwards trace of the stack) would show all of this information. The debugger
has two backtrace commands. Control-B simply prints out the names of the functions on the
stack; in the above example it would print

BAZ « BAR « FOO « %SI:EVAL ¢ SI:LISP-TOP-LEVEL]l « SI:LISP-TOP-LEVEL
The arrows indicate the direction of calling. The Meta-B command prints a more extensive
backtrace, indicating the names of the arguments to the functions and their current values,
and also the saved address at which the function was executing (in case you want to look at

DSK:LMMAN:ERRORS 43 6-JAN-79

The Debugger 250 Preliminary Lisp Machine Manual

the code generated by the compiler); for the example above it might look like:
FOO: (P.C. = 23)
Arg 0 (X): 13
Arg 1 (Y): 1

BAR: (P.C. = 120)
Arg 0 (ADDEND): 13
and so on. This means that foo was executing at instruction 23, and was called with two
arguments, whose names (in the Lisp source code) are x and y. The current values of x
and vy are 13 and 1 respectively.

The debugger knows about a “current stack frame”, and there are several commands
which use it. The initially "current” stack frame is the one which signalled the error; either
the one which got the microcode error, or the one which called ferror or error.

The command Control-L (or Form) clears the screen, retypes the error message that was
initially printed when the debugger was entered, and then prints out a description of the
current frame, in the format used by Meta-B. The Control-N command moves "down" to
the "next” frame (that is, it changes the current frame to be the frame which called it), and
prints out the frame in this same format. Control-P moves "up” to the “previous” frame (the
one which this one called), and prints out the frame in the same format. Meta-< moves to
the top of the stack, and Meta-> to the bottom; both print out the new current frame.
Control-S asks you for a string, and searches the stack for a frame whose executing
function’s name contains that string. That frame becomes current and is printed out. These
commands are easy to remember since they are analogous to editor commands.

Meta-L prints out the current frame in “full screen” format, which shows the arguments
and their values, the local variables and their values, and the machine code with an arrow
pointing to the next instruction to be executed. Meta-N moves to the next frame and prints
it out in full-screen format, and Meta-P moves to the previous frame and prints it out in
full-screen format. Meta-S is like Control-S but does a full-screen display.

Control-A prints out the argument list for the function of the current frame, as would
be returned by the function arglist (see page 61). Control-R is used to return a value from
the current frame: the frame that called that frame continues running as if the function of
the current frame had returned. This command prompts you for a form, which it will
evaluate; it returns the resulting value, possibly after confirming it with you. Meta-R is
used to return multiple values from the current frame, but it is not currently implemented.
The Control-T command does a throw to a given tag with a given value; you are prompted
for the tag and the value.

Commands such as Control-N and meta-N, which are meaningful to repeat, take a prefix
numeric argument and repeat that many types. The numeric argument is typed by using
Control- or Meta- and the number keys, as in the editor.

DSK:LMMAN:ERRORS 43 6-JAN-79

A e

AR NI g

Preliminary Lisp Machine Manual

251 ' The Debugger

Control-Meta-A takes a numeric argument n, and prints out the value of the nth
argument of the current frame. It leaves X set 1o the value of the argument, so that you
can use the Lisp read-eval-print loop to examine it. It also leaves + set to a locative
pointing to the argument on the stack, so that you can change that argument (by calling
rplaca or rplacd on the locative). Control-Meta-L is similar, but refers to the nth local
variable of the frame.

2424 Summary of Commands

Control-A

Control-Meta-A

Control-B
Meta-B
Control-C
Meta-C
Control-G
Control-L
Meta-L
Control-N
Meta-N

Control-P
Meta-P

Control-R
Meta-R
Control-S
Meta-S
Control-T
Control-Z
? or Help
Meta-<
Meta->

Form

DSK:LMMAN;ERRORS 43

Print argument list of function in current frame.

Examine or change the nth argument of the current frame.
Print brief backtrace.

Print longer backtrace.

Attempt to continue,

Attempt to restart.

Quit to command level.

Redisplay error message and current frame.

Full-screen typeout of current frame.

Move to next frame. With argument, move down »n frames.

Move to next frame with full-screen typeout. With argument, move down n
frames.

Move to previous frame. With argument, move up n frames.

Move to previous frame with full-screen typeout. With argument, move up
n frames.

Return a value from the current frame.

Return several values from the current frame. (doesn’t work)
Search for a frame containing a specified function.

Same as control-S but does a full display.

Throw a value to a tag.

Throw back to Lisp top level.

Print a help message.

Go to top of stack.

Go to bottom of stack.

Same as Control-L.

6-JAN-79

Trace 252 Preliminary Lisp Machine Manual

Line Move to next frame. With argument, move down n frames. Same as
Control-N.

Return Move to previous frame. With argument, move up n frames. Same as
control-P.

24.2.5 Miscellany

Sometimes, e.g. when the debugger is running, microcode trapping is “disabled” any
attempt by the microcode to trap will cause the machine to halt.

trapping-enabled-p
This predicate returns t if trapping is enabled; otherwise it returns nil.

enable-trapping &optional (arg 1)
If arg is 1, trapping is enabled. If it is 0, trapping is disabled.

243 Trace

The rrace facility allows the user to trace some functions. When a function is traced,
certain special actions will be taken when it is called, and when it returns. The function
trace allows the user to specify this.

The trace facility is closely compatible with Maclisp. Although the functions of the trace
system which are presented here are really functions, they are implemented as special forms
because that is the way Maclisp did it.

trace Spccial Form
A trace form looks like:
(trace spec-1 spec-2 ...)

A spec may be either a symbol, which is interpreted as a function name, or a list of
the form (function-name option-1 option-2 ..). If spec is a symbol, it is the same as
giving the function name with no options.. Some options take "arguments’, which
should be given immediately following the option name.

The following options exist:

:break prcd Causes a breakpoint to be entered after printing the entry trace information
but before applying the traced function to its arguments, if and only if pred
evaluates to non-nil.

:exitbreak pred
This is just like break except that the breakpoint is entered after the
function has been executed and the exit trace information has been printed,
but before control returns,

"DSK:LMMAN:ERRORS 43 6-JAN-79

ot A A DR TS 8 M T S T

Preliminary Lisp Machine Manual 253 Trace

'step Causes the function to be single-stepped whenever it is called. See the
documentation on the step facility below.

:entrycond pred
Causes trace information to be printed on function entry only if pred
evaluates to non-nil,

:exitcond pred

Causes trace information to be printed on function exit only if pred
evaluates to non-nil.

:cond pred This specifies both exitcond and entrycond together.

:wherein function
Causes the function to be traced only when called, directly or indirectly,
from the specified function function. One can give several trace specs to
trace, all specifying the same function but with different wherein options,
so that the function is traced in different ways when called from different
functions,

:argpdl pd/ This specifies a symbol pdl, whose value is initially set to nil by trace.
When the function is traced, a list of the current recursion level for the
function, the function’s name, and a list of arguments is consed onto the pd/
when the function is entered, and cdr'ed back off when the function is
exited. The pdl/ can be inspected from within a breakpoint, for example, and
used to determine the very recent history of the function. This option can
be used with or without printed trace output. Each function can be given
its own pdl, or one pdl may serve several functions.

:entry list This specifies a list of arbitrary forms whose values are to be printed along
with the usual entry-trace. The list of resultant values, when printed, is
preceded by a \\ to separate it from the other information.

:exit /st This is similar to entry, but specifies expressions whose values are printed
with the exit-trace. Again, the list of values printed is preceded by \\.

:arg :value :both nil

These specify which of the usual trace printout should be enabled. If arg is
specified, then on function entry the name of the function and the values of
its arguments will be printed. If value is specified, then on function exit the
returned value(s) of the function will be printed. If both is specified, both
of these will be printed. If nil is specified, neither will be printed. If none
of these four options are specified the default is to both. If any further
options appear after one of these, they will not be treated as options!
Rather, they will be considered to be arbitrary forms whose values are 1o be
printed on entry and/or exit to the function, along with the normal trace
information. The values printed will be preceded by a //, and follow any
values specified by entry or exit. Note that since these options “swallow”
all following options, if one is given it should be the last option specified.

DSK:LMMAN;DB.AID 34 , 6-JAN-79

u

Trace 254 Preliminary Lisp Machine Manual

" If the variable arglist is used in any of the expressions given for the cond, break,

entry, or exit options, or after the arg, value, both, or nil option, when those
expressions are evaluated the value of arglist will be bound to a list of the arguments given
to the traced function. Thus

(trace (foo break (null (car arglist))))
would cause a break in foo if and only if the first argument to foo is nil. arglist should
have a colon, but it is omitted because this is the name of a system function and therefore
global.

Similarly, the variable si:fnvalues will be a list of the resulting values of the traced
function. For obvious reasons, this should only be used with the exit option.

The trace specifications may be “factored.” For example,
(trace ((foo bar) wherein baz value))
is equivalent to
(trace (foo wherein baz value) (bar wherein baz value))
This is not yet supported.

All output printed by trace can be ground into an indented, readable format, by simply
setting the variable sprinter to t. Setting sprinter to nil changes the output back to use
the ordinary print function, which is faster and uses less storage but is less readable for
large list structures. This is not yet supported.

trace returns as its value a list of names of all functions traced; for any functions
traced with the wherein option, say (trace (foo wherein bar)), instead of putting just
foo in the list it puts in a 3-list (foo wherein bar).

If you attempt to specify to trace a function already being traced, trace calls untrace
before setting up the new trace.

It is possible to call trace with no arguments. (trace) evaluates to a list of all the
functions currently being traced.

untrace Special Form :
untrace is used to undo the effects of trace and restore functions to their normal,
untraced state. The argument to untrace for a given function should be what trace
returned for it; ie. if trace returned foo, use (untrace foo); if trace returned
(foo wherein bar) use (untrace (foo wherein bar)). untrace will take multiple
specifications, e.g. (untrace foo quux (bar wherein baz) fuphoo). Calling
untrace with no arguments will untrace all functions currently being traced.

Unlike Maclisp, if there is an error trace (or untrace) will invoke the error system and
give an English message, instead of returning lists with question marks in them. Also, the
remtrace function is not provided, since it is unnecessary.

DSK:LMMAN:DB.AID 34 6-JAN-79

Preliminary Lisp Machine Manual 255 The Stepper

trace-compile-flag Variable
If the value of trace-compile-flag is non-nil, the functions created by trace will
get compiled, allowing you to trace special forms such as cond without interfering
with the execution of the tracing functions. The default value of this flag is nil.

24.4 The Stepper

The Step facility provides the ability to follow every step of the evaluation of a form,
and examine what is going on. It is analogous to a single-step proceed facility often found
in machine-language debuggers. If your program is doing something strange, and it isn't
obvious how it’s getting into its strange state, then the stepper is for you.

2441 How to Get Into the Stepper.
There are two ways to enter the stepper. One is by use of the step function.

step form
This evaluates form with single stepping. It returns the value of form.

For example, if you have a function named foo, and typical arguments to it might be t
and 3, you could say
(step “(foo t 3))
and the form (foo t 3) will be evaluated with single stepping.

The other way to get into the stepper is 1o use the step option of trace (see page 252).
If a function is traced with the step option, then whenever that function is called it will be
single stepped.

Note that any function to be stepped must be interpreted; that is, it must be a lambda-
expression. Compiled code cannot be stepped by the stepper.

24.42 How to Use the Stepper

When evaluation is proceeding with single stepping, before any form is evaluated, it is
(paruially) printed out, preceded by a forward arrow (=) character When a macro is
expanded, the expansion is printed out preceded by a double arrow (#) character. When a
form returns a value, the form and the values are printed out preceded by a backwards
arrow (¢) character; if there is more than one value being returned, an and-sign (A)
character is printed between the values.

Since the forms may be very long, the stepper does not print all of a form; it truncates
the printed representation after a certain number of characters. Also, to show the recursion
- pattern of who calls whom in a graphic fashion, it indents each form proportionally to its
level of recursion.

DSK:LMMAN;DB.AID 34 ' 6-JAN-79

The Stepper 256 Preliminary Lisp Machine Manual

After the stepper prints any of these things, it waits for a command from the user.
There are several commands to tell the stepper how to proceed, or to look at what is
happening. The commands are:

Control-N (Next)
Step to the Next thing. The stepper continues until the next thing to print
out, and it accepts another command.

Space Go to the next thing at this level. In other words, continue to evaluate at
this level, but don't step anything at lower levels. This is a good way to
skip over parts of the evaluation that don't interest you.)

Control-U (Up)
Continue evaluating until we go up one level. This is like the space
command, only more so; it skips over anything on the current level as well
as lower levels.

Control-X (eXit)
Exit: finish evaluating without any more stepping.

Control-T (Type)
Retype the current form in full (without truncation).

Control-G (Grind)
Grind (i.e. prettyprint) the current form.

Control-E (Editor)
Editor escape (enter the Eine editor).

Control-B (Breakpoint)
Breakpoint. This command puts you into a breakpoint (ie. a read-eval-print
loop) from which you can examine the values of variables and other aspects
of the current environment. From within this loop, the following variables
are available: '

step-form which is the current form.
step-values which is the list of returned values.

step-value which is the first returned value.
If you change the values of these variables, it will work.

Control-L Clear the screen and redisplay the last 10. pending forms (forms which are
being evaluated).

Meta-L Like Control-L, but doesn't clear the screen.

Control-Meta-L
Like Control-L, but redisplays all pending forms.

? or Help Prints documentation on these commands.
It is strongly suggested that you write some little function and try the stepper on it, If

you get a feel for what the stepper does and how it works, you will be able to tell when it
is the right thing to use to find bugs.

DSK:LMMAN:DB.AID 34 6-JAN-T9

3
E
§

il S AR - N B KR Y

o I B 7 A

OSSPSR VSR P S

L e M A DY I RIS AT 2 T B

Preliminary Lisp Machine Manual 257 The MAR

245 The MAR

The MAR facility allows any word or contiguous set of words to be monitored
constantly, and can cause an error if the words are referenced in a specified manner. The
name MAR is from the similar device on the ITS PDP-10’; it is an acronym for "Memory
Address Register’., The MAR checking is done by the Lisp Machine's memory management
hardware, and so the speed of general execution when the MAR is enabled is not
significantly slowed down. However, the speed of accessing pages of memory containing the
locations being checked is slowed down, since every reference involves a microcode trap.

These are the functions that control the MAR:

set-mar location cycle-type &optional n-words

The set-mar function clears any previous setting of the MAR, and sets the MAR
on n-words words, starting at location. location may be any object. n-words
currently defaults to I, but eventually it will default to the size of the object. cycle-
type says under what conditions to trap. :read means that only reading the location
should cause an error, :write means that only writing the location should, t means
that both should. To set the MAR on the value of a variable, use

(set-mar (value-cell-location symbol) :write)

clear-mar

This turns off the MAR. Restarting the machine disables the MAR but does not
turn it off, i.e. references to the MARed pages are still slowed down. clear-mar

does not currently speed things back up until the next time the pages are swapped
out: this may be fixed some day. '

si:%~mar-low Variable
si:Zzmar-high Variable

These two fixnums are the inclusive boundaries of the area of memory monitored by
the MAR. The values of these variables live inside the microcode.

mar-mode
(mar-mode) returns a symbol indicating the current state of the MAR. It returns
one of:
nil The MAR is not set.
read The MAR will cause an error if there is a read.
‘write The MAR will cause an error if there is a write.
t The MAR will cause an error if there is any reference.

Note that using the MAR makes the pages on which it is set considerably slower to
access, until the next time they are swapped out and back in again after the MAR is shut
off. Also, use of the MAR currently breaks the read-only feawre if those pages were read-
only. Currently it is not possible to proceed from a MAR trrap, because some machine

DSK:LMMAN:DB.AID 34 6-JAN-79

Er A Rplvet s Mewwer

g

The MAR 258 Preliminary Lisp Machine Manual

state is lost. Eventually, most MAR traps will be continuable.

DSK:LMMAN:DB.AID 34 6-JAN-79

o e

€L RN T BN EONEYCSIS & SRR OO SN

Preliminary Lisp Machine Manual 259 Utility Programs

26. Utility Programs

e e Ba it e STeh e o o

ed &optional x

g ed is the main function for getting into the editor, Eine. Eine is not yet
documented in this manual, however the commands are very similar 10 Emacs.

(ed) or (ed nil) simply enters Eine, leaving you in the same buffer as the last time
Eine was running.

(ed t) puts you in a fresh buffer with a generated name (like BUFFER-4).

(ed 'foo) tries hard to edit the definition of the foo function. If there was a buffer
named FOO already, it selects it. 1f foo is defined as an interpreted function (or if
it was compiled on the Lisp machine and the compiler saved the interpreted
E function) then that function is grindef'ed into a new buffer called FOO. If foo is
; not defined but has a value, it will edit that value in a buffer called FOO-VALUE.
' Otherwise it will create a buffer called FOO and put in (defun foo (" so that you
can type in the definition.

If you call ed on a list, it will grindef that list into a new buffer.

If you call ed on a buffer, or a string or symbol which is the name of a buffer, it
will edit that buffer.

edval sym .

: Enters Eine, selecting a buffer called sym-VALUE. If that buffer did not previously
E exist, a setq of sym to its current value is grindef'ed into the buffer.

edprop sym prop
Enters Eine, selecting a buffer called sym-prop-PROPERTY. If that buffer did not

previously exist, a putprop of sym to its current prop-property is grindef'ed into
the buffer.

peek &optional character
peek is similar to the ITS program of the same name. It displays various information
about the system, periodically updating it. Like ITS PEEK, it has several modes,
which are entered by typing a single key which is the name of the mode. The initial

mode is selected by the argument, character. If no argument is given, peek. starts
out in "N" mode.

T

s

The currently implemented modes are:

N (for Normal)
Display all active processes, showing their names and whostates (see
page 195).

M (for Memory)
Display the amount of room left in all areas (this is the same as

4
¥

DSK:LMMAN:PROGS 15 6-JAN-79

Utility Programs 260 Preliminary Lisp Machine Manual

(room t) (see page 262).

K (for Chaosnet)
Display various information about all open Chaosnet connections (see
<not-yet-written>),

? Give self-documentation,

B (for Back) Go back to the previous mode.

Q (for Quit) Exit from peek.

Space Update the display immediately.

At the top of the screen, peek displays the version number of the microcode, the

time (as returned by (time)), and the amount of room left in the working-storage-
area and macro-compiled-program areas.

supdup &optional host window-size

host may be a string or symbol, which will be taken as a host name, or a number,
which will be taken as a host number. If no host is given, MIT-MC is assumed.
This function opens a connection to the host over the Chaosnet using the SUPDUP
protocol, and allows the Lisp Machine to be used as a terminal for any ITS system.

window-size should be a fixnum: it defaults to 3. Its value will be used as the
window size of the Chaos net connection.

To give commands to supdup, type a Break followed by one character. The
commands are as closely compatible with ITS as possible. The characters currently
implemented are:

Call Enter a breakpoint.
C (for Change) Change the escape character (normally Break) to something else.
Q (for Quit) Close the connection and return.

L (for Logout) Tell the foreign host to try to log out your process, then close the
connection and return.

Help or ? Document these commands.

Rubout Do nothing (useful if you accidentally type Break).

dribble-start filename

dribble-start opens filename as a “dribble file" (also known as a "wallpaper file”). It
rebinds standard-input and standard-output so that all of the terminal interaction
is directed to the file as well as the" terminal.

Currently, there can only be one output file open at a time; thus, while you are
dribbling, you can't write files.

DSK:LMMAN:PROGS 15 6-JAN-79

A

S A S o T

i

RV

i
%
¢
E
}
&
H

Preliminary Lisp Machine Manual 261

Useful Commands

dribble-end
This closes the file opened by dribble-start and resets the 1/O streams.

25.1 Useful Commands

who-calls x &optional package
who-uses x &optional package

x must be a symbol. who-calls tries to find all of the compiled functions in the
Lisp world which call x as a function, use x as a variable, or use x as a constant.
(It won't find things that use constants which contain x, such as a list one of whose
elements is x: it will only find it if x itself is used as a constant.) It tries to find all
of the compiled code objects by searching all of the function cells of all of the

symbols on package and package’s decendants. package defaults to the global
i package, and so normally all packages are checked.

g e s T

RIS

If who-calls encounters an interpreted function definition, it simply tells you if x
appears anywhere in the interpreted code.

who-uses is currently the same thing as who-calls.

o e S i - S S N

The symbol unbound-function is treated specially by who-calls. (who-calls
'unbound-function) will search the compiled code objects for any calls through a
symbol which is not currently defined as a function. This is useful for finding errors.

apropos string &optional package
(apropos string) tries to find all symbols whose print-names contain string as a
substring. Whenever it finds a symbol, it prints out the symbol’s name; if the symbol
is defined as a function and/or bound, it tells you so, and prints the function (if

any). It finds the symbols on package and package's decendants. package defaults to
the global package, so normally all packages are searched.

e pe R i

where-is pname &optional package
Prints the names of all packages which contain a symbol with the print-name pname.

pname gets upper-cased. The package package and all its sub-packages are searched;
package defaults to the global package, which causes all packages to be searched.

o end (O

describe «x

P e T

describe tries to tell you all of the interesting information about any object x
(except for array contents). describe knows about arrays, symbols, flonums,
packages, stack groups, closures, and FEFs, and prints out the attributes of each in
human-readable form. Sometimes it will describe something which it finds inside
something else; such recursive descriptions are indented appropriately. For instance,
describe of a symbol will tell you about the symbol's value, its definition, and each
i of its properties. describe of a flonum (regular or small) will show you its internal

4 representation in a way which is useful for tracking down roundoff errors and the
% : like.

b 4 L 2N

T

DSK:LMMAN:PROGS 15

6-JAN-79

Useful Commands 262 Preliminary Lisp Machine Manual

If x is a named-structure, describe handles it specially. To understand this, you
should read the section on named structures (see page 91). First it gets the named-
structure symbol, and sees whether its function knows about the :describe operation.
If tRe operation is known, it applies the function to two arguments: the symbol
:describe, and the named-structure itself. Otherwise, it looks on the named-
structure symbol for information which might have been left by defstruct; this
information would tell it what the symbolic names for the entries in the structure
are, and describe knows how to use the names to print out what each field's name
and contents is. '

describe-file filename

This prints what the system knows about the file filename. It tells you what package
it is in and what version of it is loaded.

describe-package package-name

(describe-package package-name) is equivalent to (describe (pkg-find-package
package-name)); that is, it describes the package whose name is package-name.

describe-area area

room

room

arca may be the name or the number of an area. Various attributes of the area are
printed.

&optional arg

room tells you how much room is left in some areas. For each area it tells you
about, it prints out the name of the area, the number of words used in the area, the
size of the area, and the percentage of words which are used in the area.

If arg is not given, the value of room should be a list of area numbers and/or area
names; room describes those areas. If arg is a fixnum, room describes that area. If
arg is t, room describes all areas,

Variable

The value of room is a list of area names and/or area numbers, denoting the areas

which the function room will describe if given no arguments.’ Its initial value is:
(working-storage-area macro-compiled-program)

set-memory-size n-words

set-memory-size tells the virtual memory system to only use n-words words of
main memory for paging. Of course, n-words may not exceed the amount of main
memory on the machine. '

recompile-world &rest keywords

recompile-world is a rather ad-hoc tool for recompiling all of the Lisp Machine
system packages. It works by calling the pkg-load facility (see page 194). It will
find all files that need recompiling from any of the packages:

DSK:LMMAN:FD.HAC 48 6-JAN-79

et it e s 2 e i

S

it Sl N NP PRRES

[P STPRIP

Preliminary Lisp Machine Manual 263 Querying the User

system-internals format compiler
chaos supdup peek eine
keywords is a list of keywords; usually it is empty. The useful keywords are:

load After compiling, load in any files which are not loaded,
noconfirm Don't ask for confirmation for each package.
selective Ask for confirmation for each file.

Any of the other keywords accepted by pkg-load will also work.

qld &optional restart-p
qld is used to generate a new Lisp Machine system after the cold-load is loaded in.
If you don't know how to use this, you don't need it. If restart-p is non-nil, then
it ignores that it has done anything, and starts from scratch.

disassemble function
function should be a FEF, or a symbol which is defined as a FEF. This prints out a
human-readable version of the macro-instructions in function. The macro-code
instruction set is explained on <not-yet-written>,

print-disk-label
Tells you what is on the disk.

set-current-band band

Sets which "band” (saved virtual memory image) is to be loaded when the machine is
started. Use with caution!

set-current-microload band

Sets which microload (MCR1 or MCR2) is to be loaded when the machine is
started. Use with caution!

25.2 Querying the User

y-or-n-p &optional strecam message
' This is used for asking the user a question whose answer is either "Yes" or "No". It
types out message (if any) and reads in one character from the keyboard. If the
character is Y, T, or space, it returns t. If the character is N or rubout, it returns
nil. Otherwise it prints out message (if any), followed by (Y or N)', to stream and
tries again. stream defaults 10 standard-output.

y-or-n-p should only be used for questions which the user knows are coming. If
the user is not going to be anticipating the question (e.g., if the question is "Do you
really want to delete all of your files? out of the blue) then y-or-n-p should not
be used, because the user might type ahead a T, Y, N, space, or rubout, and
therefore accidentally answer the question. In such cases, use yes-or-no-p.

DSK:LMMAN:FD.HAC 48 6-JAN-79

Querying the User 264 Preliminary Lisp Machine Manual

yes-or-no-p &optional stream message

This is used for asking the user a question whose answer is either "Yes" or "No" It
types out message (if any) and reads in a line from the keyboard. If the line is the
string "Yes', it returns t. If the line is "No, it returns nil. (Case is ignored, as are
leading and trailing spaces and tabs) Otherwise it prints out message (if any),
followed by ‘Please type either "Yes' or "No" to stream and tries again. Sstream
defaults to standard-output.

To allow the user to answer 3 yes-0r-no question with a single character, use y-or-
n-p. yes-or-no-p should be used for unanticipated or momentous questions.

setup-—key'board—dispatch—table array lists

Several programs on the Lisp Machine accept characters from the keyboard and take
a different action on each key. This function helps the programmer initialize a
dispatch table for the keyboard.

array should be a two-dimensional array with dimensions (4 220). The first subscript
to the array represents the Control and Meta keys: the Control key is the low order
bit and the Meta key is the high order bit. The second subscript is the character
typed, with the Control and Meta bits stripped off. In other words, the first

subscript is the %%kbd-control-meta part of the character and the second is the
%%kbd-char part.

Jists should be a list of four lists. Each of these lists describes a row of the table.
The elements of one of these lists are called irems, and may be any of a number of
things. 1f the item is not a list, it is simply stored into the next location of the row.
If the item is a list, then its first element is inspected. If the first element is the
symbol :repeat, then the second element should be 3 fixnum n, and the third
element is stored into the next 7 locations of the row. If the first element is
:repeat-eval, it is treated as is :repeat except that the third element of the item is
- a form which is evaluated before being put into the array. The form may take
advantage of the symbol si:rpent, which is set to 0 the first time the form is
evaluated, and is increased by one every subsequent time. If the first element of an
item is eval, then the second element is evaluated, and the result is stored into the
next location of the row. Otherwise, the item itself is stored in the next location of
the row. Altogether exactly all 220 locations of the row must be filled in, or else
an error will be signalled.

DSK:LMMAN:FD.HAC 48 6-JAN-79

R

Preliminary Lisp Machine Manual 265 Stuff That Doesn’t Fit Anywhere Else

953 Stuff That Doesn’t Fit Anywhere Else

time
(time) returns a number which increases by | every 1/60 of a second, and wraps

around at some point (currently after 18 bits' worth). The most important thing
about time is that it is completely incompatible with Maclisp; this will get changed.

defun-compatibility x
This function is used by defun and the compiler to convert Maclisp-style defuns to
Lisp Machine definitions. x should be the cdr of a (defun ..) form. defun-

compatibility will return a corresponding (defun ..) or (macro ..) form, in the
usual Lisp Machine format.

set-error-mode &optional (car-sym-mode 1) (cdr-sym-mode 1)
(car-num-mode 9) (cdr-num-mode 0)
set-error-mode sets the four “error mode” variables. See the documentation of car
and cdr (page 38) which explains what these mean.

print-error-mode &optional mode stream
This prints an English description of the error-mode number mode onto the output

stream stream. mode defaults to the mode currently in effect, and stream defaults to
standard-output,

Xrset flag

Sets the variable Xrset to flag. Nothing looks at this variable; it is a vestigial crock
left over from Maclisp.

disk-restore &optional partition
partition may be the name or the number of a disk partition containing a virtual-
memory load, or nil or omitied, meaning to use the default load, which is the one
the machine loads automatically when it is booted. The specified partition is copied
into the paging area of the disk and then started. Lisp-machine disks currently

contain seven partitions on which copies of virtual-memory may be saved for later
execution in this way.

disk-restore asks the user for confirmation before doing it.

disk-save partition
partition may be the name or the number of a disk partition containing a virtual-
memory load, or nil, meaning to use the default load, which is the one the machine
loads automatically when it is booted. The current contents of virtual memory are
copied from main memory and the paging area of the disk into the specified
partition, and then restarted as if it had just been reloaded.

disk-save asks the user for confirmation before doing it.

DSK:LMMAN:FD.HAC 48 6-JAN-79

R A

|

Status and SStatus 266 Preliminary Lisp Machine Manual

25.4 Status and SStatus

The status and sstatus special forms exist for compatibility with Maclisp. Programs that
wish to run in both Maclisp and Lisp Machine Lisp can use status to determine which of
these they are running in. Also, (sstatus feature ..) can be used as it is in Maclisp.

status Spccial Form
' (status features) returns a list of symbols indicating features of the Lisp
environment. The complete list of all symbols which may appear on this list, and

their meanings, is given in the Maclisp manual. The default list for the Lisp
Machine is:

(sort fasload strings newio roman trace grindef grind lispm)
The value of this list will be kept up to date as features are added or removed from
the Lisp Machine system. Most important is the symbol lispm, which is the last
element of the list; this indicates that the program is executing on the Lisp Machine.

(status feature symbol) returns t if symbol is on the (status features) list,
otherwise nil,

(status nofeature symbol) returns t if symbol is not on the (status features) list,
otherwise nil.

(status status) returns a list of all status operations.
(status sstatus) returns a list of all sstatus operations.

sstatus Spccial Form
(sstatus feature symbol) adds symbol to the list of features.

| (sstatus nofeature symbol) removes symbol from the list of features.

2&3.5 The Lisp Top Level
. These functions constitute the Lisp top level, and its associated functions.

si:lisp-top-level
’ This is the first function called in the initial Lisp environment. It calls lisp-
reinitialize, clears the screen, and calls silisp-top-levell.

lisp-reinitialize

This function does a wide variety of things, such as resetting the values of various
global constants and initializing the error system.

DSK:LMMAN:FD.HAC 48 6-JAN-79

Preliminary Lisp Machine Manual

si:lisp-top-levell

267 “The Lisp Top Level

This is the actual top level loop. It prints out "105 FOOBAR" and then goes into a
loop reading a form from standard-input, evaluating it, and printing the result
(with slashification) to standard-output. If several values are returned by the form

all of them will be printed. Also the values 1of %, +, and - are maintained (see

below).

break Spccial Form

break is used to enter a breakpoint loop, which is similar to a Lisp top jevel loop.
(break rag) will always enter the loop: (break tag conditional-form) will evaluate
conditional-form and only enter the break loop if it returns non-nil. If the break

loop is entered, break prints out
;bkpt tag
and then enters a loop reading,

evaluating, and printing forms. A difference

between a break loop and the top level loop is that after reading 3 form, break
checks for the following special cases: if the symbol ¢g is typed, break throws back
to the Lisp top level. If @p is typed, break returns nil. If (return form) is typed,
break evaluates form and returns the result.

- Variable

While a form is being evaluated b)3 a read-eval-print loop, - is bound to the form

itself.

+ Variable
While a form is being evaluated

by a read-eval-print loop, + is bound to the

previous form that was read by the loop.

% Variable
While a form is being evaluated by

a read-eval-print loop, ¥ is bound to the result

printed the last time through the loop. If there were several values printed (because
of a multiple-value return), X is bound to the first value.

lisp—initialization—list Variable

The value of lisp—initialization-list is a list of forms, which are sequentially

evaluated by lisp-reinitialize.
lisp-crash-list Variable

The value of lisp-crash-list is
evaluates these forms, and then sets

DSK:LMMAN:;TOPLEV 14

a list of forms. lisp-reinitialize sequentially
lisp-crash-list to nil.

6-JAN-79

’*‘37‘{»”{5}7&& PR

Logging In 268 Preliminary Lisp Machine Manual

256 Logging In

Logging in tells the Lisp Machine who you are, so that other users can see who is
logged in, you can receive messages, and your INIT file can be run. An INIT file is a
Lisp program which gets loaded when you log in: it can be used to set up a personalized
environment. The init file is named wser; .LISPM (INIT) if you have a directory.

When you log out, it should be possible to undo any personalizations you have made so
that they do not affect the next user of the machine. Therefore, anything done by an INIT
file should be undoable. In order to do this, for every form in the INIT file, a Lisp form
to undo its effects should be added to the list which is the value of logout-list. The
functions login-setq and login-eval help make this easy; see below.

user-id FVariable
The value of user-id is either the name of the logged in user, as a string, or else
an empty string if there is no user logged in. It appears in the who-line.

logout-list Variable
The value of logout-list is a list of forms which are evaluated when a user logs
out.

login name
If anyone is logged into the machine, login logs him out. (See logout.) Then user-
id is set from name. Finally login attempts to find your INIT file. It first looks in
“user-id; LISPM (INIT)", then in "(INIT): user-id .LISPM", and finally in the default
init file "(INIT): * .LISPM", When it finds one of these that exists, it loads it in.
login returns t.

logout
First, logout evaluates the forms on logout-list. Then it tries to find a file to run,
looking first in “user-id; .LSPM_ (INIT), then in “(INIT); wuser-id .LSPM_", and
finally in the default file "(INIT): * .LSPM_". If and when it finds one it these that
exists, it loads it in. Then it sets user-id to an empty string and logout-list to nil,
and returns t,

login-setq Spccial Form
login-setq is like setq except that it puts a setq form on logout-list to set the
variables to their previous values.

login-eval x
login-eval is used for functions which are “meant to be called” from INIT files,
such as eine:ed-redefine-keys, which conveniently return a form to undo what
they did. login-eval adds the result of the form x to the logout-list.

DSK:LMMAN:TOPLEV (4 6-JAN-79

s

Preliminary Lisp Machine Manual

ceSekbd fields

area.....
array

D Y

R IR Y

array initialization,
array leader......

association lists ,
atom. feee.
attribute.
binding
blocks
byte..........
byte specifiers .,
catch.........
cell...........
character object
character set . ..

cleanup handlers.

closure.
compiler

condition handler.

conditional
conditions.
CONS. . vvvunan
cons vs list. ...,
CONSes

control structure,

data-type
debugger......

declaring packages

definition.
defstruct

.o

.
“ e e

..

.
v e e e
v e .
o
“ e e
“ s
DR
e
o s e
oo
e
« oo
Eara
oo
oo o

..
. es
oo e
0.
v,
e e
PR
s e
v e e

..
R

.

e s e e

disembodied property list. ..
displaced array
displacing macros

dotted list
dotted pair
eq versus equal.
error system ...

.

evalhook
evaluation......
exits.
fef
file...........

..

e e e
e e s e e

e e
.. .
e e e

269

Concept Index

D I IR T P S Y
PR S Y s e e a0 e e e
D I I R I LA NN R R R P Y
................... e e e e e
e e s e e e e e .. s e e s e s w e e ae
D I R I I I R RN A A
P I I I TSR I R O
D R I S I R P R S
e . e e e s a0 e e e ey s e e
e s e e s s e . I
R R D I NN Y
D A N T T T ST S Y ..
..... D I I RN S PR AP S P)

Concept Index

R $-p
ee.... 39,123
cee.... 10,88
L |
....91,94,99
.. 48,52
e 2,9
A .
O
N -
R —
R
B b]
ceeeee... 109
ceree.... 160
ceeeeal.a 151
R 1
cee... 10,102
R 1
ceeeea...239
. Jp
ceiee....238
I
ceveie.... 40
R ¥
... 22
R I
e, . 247
R A
cee.....559
ceeeee... 144
... 63
.91,93
.. 141
R §-1.
NP
ceee.....238
R |
R &)
e, 22

ceveee... 193

.
.
.
.
.

.
.
.
.
.
.
.

6-JAN-79

Concept Index

fill pointer.
flow of control
font ... coovinninnn
font compiler
formatted output.
functioncell
handling conditions . .
handling errors......
hash table.
index offset
indicator
indirect array
indirect arrays.
input and output.....
input to the compiler.
intern.
iteration.
job. ..o
keyboard characters ..
lambda lists
lexprooovnnnn
HSTS. o v ee e
locative
lock ...,
macro defining macros
macro-defining macros

macros.

mapping.
multiple value.......
multiprocessing.
named structure
named-structure

names structures.

nammg convention. ..

e e s e e e e e

e e e e e e v

« s e s s e e s

nil, used as a condition name. . ..

non-localexit
number-

package

package dedaranons.

PC PPl oo v iiennns
piece of paper...... .

PPSS c i

predicate.
printname..........
printer.............

property list.........

. e e s v e
e e s e e e s
s e s 0w e

..... ‘e e
. et e v s
.. .. .
e s e e e e

270

Preliminary Lisp Machine Manual

s e s e s e s s e e s e e

s s e s e e s s e s e e st e

e s s e s e s e e s e s e e e 0o

s e e s s s s e s s em 00 s

N I R R IR AR SR N B BURE SE R)

P R R R A AR R N R B

.

.. 9
.22
.213
.237
.. 85
.. 59
. 239
.238
.. 52

92, 93

.. 62

92,93

.

.. 92
. 151
. 127
.. 65

22,25

.

. 199
. 152
... 6
.. 18

Ceerereeeseiseeanea.. 10,109

.
.
-
.
.
.
.
.
-
.
.
.
.
.
-
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

[I I A A I A R B

.

.

. 198
. 144
. 137
. 135
.. 35
.. 19
. 195
.. 99
. 155
.. 91
...9
. 241

22,32
10, 68

..

.

.

..

.

. 176
179
215
.215
.. 76
...9
5, 64
154
195

. 5,62

6-JAN-79

Preliminary Lisp Machine Manual 271 Concept Index

quote........... e

..‘.-.........--.-oo-......-o..-......-15

reader e e 156
recursion...... P e e e e 22
resumer.,..... 105

returning multiple values.
S-exXpression i
scheduler.o oo
L =X = P

~et48

\ngndller239
signalling conditions. .. 239
signalling errors 241
SISHIBICAtION + v v v s et e et et e e e e ettt e eiees e eaeeaes 154
.... 55
89, 105
. 10,79

.
.
.
.
.
.
»
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

sorting.

B F T - o1V + IS R R R

SUUCTUIES. o oo vennennn s ... 144
ﬂubpnmmveslll
SUDSCIIPY L vt ie ittt ii e aenans88
subxmuuon47
5,9.56
t)pesofarra)<88
unwindprotection..34
unwinding a stack...... R e e R IR 1
value cell. .. i i i e
Wall .ttt i i e

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
o
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

6-JAN-79

4
£
g

Variable Index

eCech-char

cC~ch-font .
CeCokbd- chdr

.

.

CeCokbd- contml
CeCikbd-control-meta

CrCrkbd-meta.

CeCekbd-mouse ..
CeCekbd-mouse-button. .
CrCekbd-mouse-n-clicks.
Srerror-handler-stack-group.
Seinitial-stack-group . .

Sem-flags

.

.

.

.

.

-

e

R Y

Semar-high,

2

Cemar-low L.
remethod-class

SR I

/(‘Self.........

*

D A)

*nopoint
*rset,.....

“ e s s s s v s v s e s

.

.

LR

all-special-switch, ..

allow-variables-in-function-position-switch

area-list
area-name .

“ e e e s e e

..

R

Temicrocode-version-number.

.

.

D

.

.

P A A

array-bits-per-element.
array-elements-per-q. .
array-types.......

base..........
car...........
cdr...........

default-array-area
default-cons-area.

error-output , ..
errset.
evalhook
file-error
ibase.

.

e
P
“ e
..
..
o e
“ ..
e
e

.

.

inhibit-scavenging-flag
inhibit-scheduling-flag.
inhibit-style-warnings- <thch
job-list.

c e s e s e

DR

.

.

.

.

.

.

.

.

.

.

.o

.

.

.

.

.

.

.

.

272

Variable

.

.

L A I I

“ e s s e s e s e

.

.

..

..
..
..

.
.o
.
.o
o
3
..
.
.o

.

.

.

.

.

DR A S AR
e e et s
D A
D

D)

s e e s e e e

e e e e

R)

P

e e e s e e e
..... D A Y
A I

.
.
.
.
.
.
.

Index

Preliminary Lisp Machine Manual

A b1
S .1

PP .1 |
, 124

6-JAN-79

E—

T

Preliminary Lisp Machine Manual - 273 Variable Index

kbd-simulated-clock-fen-list
LT E R U o= T (T o YU PP K 1

B LR 0 o N 4 1 PSP APe.1 ¥ |
B - Il Zat ON- ISt L L o i i i i i i ettt 267
OO Ut ISt L it i i i i i e it e it a et aea.. . 208

macro-compiled-program.................
obsolete-function-warning-switch
open-code-map-switch
PACKA o ot vttt it ettt ettt ettt ete e ttetaienrtenenrarareeasasaensss 183
permanent-storage-area
prinlengtho iiiLtt,
prinfevel L. .
o L L A AAPURUUPURRARPUPHPRR PP I
readtable il
retain-variable-names-switch
rubout-handler-control-character-hook..............
run-in-maclisp-switcho oo
SECCAgINE-Tale .. . ittt i e
sifecount-age-flushed-pages. ittt i it iinreneeneeerenacneanena... 121
si:fecount-aged-pages AU 123 |
si:Cecount-disk-errors
si:fecount-disk-page-reads. L. L L i e
siCecount-disk-page-writes. i i i i et i .
si:%ecount-first-level-mapreloads.o vttt ittt i 120
si:Cecount-fresh-pages.o il
siiCecount-pdl-buffer-memory-faults. ov i i i i et e cr e 121
si:fecount-pdl-buffer-read-faults. i i i i i it e el 120
si:ccount-pdl-buffer-write-faults i il oo,
siifecount-second-level-map-reloadso i i it . 2 120
si:Ccurrent-stack-groupl e et iietee i, aa.. 106,120
si:Cecurrent-stack-group-calling-args-number.
si:Crcurrent-stack-group-calling-args-pointer.iiviiiiriiiiieieeaneena.... 120
si:Ci-current-stack-group-previous-stack-group.o oo,
S ECUTTeNt-staCK-BroUP-StaLettt ittt it it ittt e ve-.... 120
sCeinitialfel. L i e ittt ettt aeeeeaaean.e. 120
R B 1174+ A 3. X
| Ry B A0 1P o 1P 2.1 |
' SHECETTAP MICTOPC « vttt e e veenseannasonneennesotnasnasoneonenssssasasncnaonesss 120
SETANAOM-AITAY . oo vttt ittt iirecereerasasannanan
= sirubout-handler. i i i ittt ir i cie s eeaeaaaaaas UTS
standard-input. e UG 1.3
standard-output. e A AU X .1
sys:Cenumber-of-micro-entries
SYSINT-SYIMl & v ettt te e et e e s etes s e narseenanenesoansesonsacsaonsssasaensneesens 28
B T o7 125

6-JAN-79

“‘%‘ Hpr g g

By

s i b ass

Variable Index

terminal-io.
trace-compile-flag .

tv-alu-andca ...
tv-alu-ior,
tv-alu-seta
tv-alu-xor.
tv-beep.

tv-beep-duration. . .
tv-beep-wavelength,

.

tv-blinker-list. . ..

tv-default-screen

.

.

tv-more-processing-global-enable.

tv-pc-ppr-list .

.

.

.

tv-who-line-process.
tv-who-line-run-light-loc
tv-who-line-run-state ...
tv-who-line-state......
tv-who-line-stream

tvob-complete-redisplay

user-id........

working-storage-area ..

.

tv-roving-blinker-list. .
tv-white-on-black-state
tv-who-line-list . ., ..
tv-who-line-pc-ppr ...

.

Preliminary Lisp Machine Manual

P 14
P & 1
B .2
. 2.
S » £ |
P 2|
.
e 1
A X 1
...:.-..'.........‘....‘...'236
.S ¥4
B X 1
D X 1
. 1
D 1.
R X
. 3
. 3
D .2
e X
¥ 1]
. X
D 14|
1 1.
U P4

6-JAN-79

ERRPR RN

Preliminary Lisp Machine Manual

Function Index

Fo i ces et 71
<. ... e e LTl
2 e e 10
Ge24-bit-difference e 78
Co24-bitplus ... i e 78
Co24-bit-times L. ... i i 78
Ceallocate-and-initialize e 113
Crallocate-and-initialize-array. RIS § K

Cearea-number. Veeees e 124
Ceargs-info. DN 62
Codata-type i i 114
Cedivide-double. L iLallLL, 78
Cefind-structure-header. e . 114
Crfloat-double, e 78
cehalt.o 118
Celogdpb Lo Ll ceen e .77
Cologldb. il e 77
Cemake-pointercovevevee.... 114
Cemake-pointer-offset, ... oLl 114
Semultiply-fractions. B £
Gepcdrcode i, 117
Cep-contents-as-locative 116
Cep-contents-as-locative-offset 116
cep-contents-offset L L. 115
Cep-data-type........ et 117
Sep-deposit-fieldo oL 117
Cep-deposit-field-offset 17
Sep-dpbl e 117
ep-dpb-offset L Ll 117
ep-flag-bit. e 117
Cep-ldb. 116
Sep-ldb-offset.l ce... 116
Cep-mask-field oL oL, 117
Cep-mask-field-offset 117
Cep-pointer e 117
%p-\tore-cdr»code 118
Cep-store-contents.ieiann. 116
Cep-store-contents-offset. 116
Cop-store-data-typeoiiia. 118
Tep-store-flag-bit L ool 118
Cep-store-pointer.ovveiie v nnenn. 118
Sep-store-tag-and-pointer 116

Function Index

/opomter ettt 114

Pepointer- dxfference e 114
/cregxonnumber............... 124
%remainder-double 78
%estack-frame-pointer-................. 118
%%store-conditional e k15
Sestructure-boxed-size 115
Pestructure-total-size, o ovi it 115
%unibus-read 0 ... LS
Srunibus-write. o eeeereaeaeeaas 115

Coxbus-reada

Texbus-write AP & ¥
i e et 71
i TP S PP i |
*array ettt e 101
*catCh .. ittt i i e e 32
o 1 73
(-3 327 SR et 130
i (=34 o3 131

13 311 (N

*plus .. .oieiiinies
¥QUO . ivih it

*throw.oovvenn.
*times e
*unwind-stack........
T
+$...... e cees
S A

..
I+ . .
1-$......

wcolor. v vvvvinininnns

sidewaysl

e veee.. 13
............... 265
et 33
et 73
et 34
e 71
et 71
................ 71
e ie e, 71
fe e, 71
e o071
e 72
e .72
....... R]
e e .12
R 1 | |
et 200
e ... 211
e ...200
e el 211
................ 70
6-JAN-79

Function Index

@define............
abs ... i
addi..........
adjust-array-size
aloc.....
alphalessp

ap-3

ap-leader...........
append.............
apply
apropos
ar-1 ...
ar-2
ar-3 ...
area-name
arefl
-] ..
arghist.
args-info
rrayc0.n.
array-/#-dims.......
array-active-length . ..
array-bits-per-element.
array-dimension-n. ...
array-dimensions.
array-displaced-p.
array-element-size. . ..
array-elements-per-q. .
array-has-leader-p. ...
array-in-bounds-p....
array-indexed-p......
array-indirect-p......
array-leader.........
array-leader-length . ..
array-length.
array-pop.

array-push

array-push-extend. ...
array-type

.16

.73
.72
.94
.95
. 84
.22
. 95

.96

. 96
.99
. 43
14
261
. 95
. 95
. 95
124
. 95
.18
.61
. 61
101
.97
100
. 88
.97
.97
. 94
.88
. 88
.99
.97
. 94
. 94
.99
.99
.97
100
100
100
. 98

276

Preliminary Lisp Machine Manual

array-types. .
arraycall. . ..
arraydims. . .
arrayp
as-1
as-2
as-3
ascil.......
aset ...,....
F: 3 S
assoc
F: K« N
atom,
bigp.......
bind.......
bit-test.....

Cbitblt L.

boole......
boundp
break
butlast
Clevvnnn.
caaaar
caaadr.....
caaar
caadar.....
caaddr.....
caadr......
caar.......
cadaar
cadadr.....
cadar,.....
caddar.....
cadddr.....
caddr......
cadr.......
car........
car-location.
catch......
catch-all, , ..
cdaaar
cdaadr.....
cdaar......
cdadar.....
cdaddr.....
cdadr......

c.....88
... 15,96
ceee. .97

e v e

LIRS

.

.

.

-

.

.

. 10
.95
.95
.95
. 84
.95
.53
.53
.52
..9
..9
118
.75
226
.75
.58
267
.45
.39
.39
. 39
.39
.39
.39
.39
.39
.39
.39
.39
.39
.39
.39
.39
.38
.40
.34
.35
.39
.39
.39
-39
. 39
.39

6-JAN-79

St T s

b I

B

[

Preliminary Lisp Machine Manual

edar. .. 39
cddaar.............. 39
cddadr............. .. oo, 39
cddar.o i 39
cdddar....... e e e e, 39
cddddr. ... oo 39
cdddr........... Pttt 39
cddr. oo 39
edr............ e 38
150 =] 8 L] 242
char-downcase 81
charequal....................... el 19
char-lessp............................ 79
char-upcase.......................... 81
character............................ 79
check-arg........................... 244
circular-list 43
clearrmar........................... 257
close ... 172
closure. 104
closurep.......... i 10
COMMENT i iiiiinnnninnnen.s 15
compile............. 126
compiler-let....... e, 132
cond 23
condition-bind 239
Lo 0 £ 39
CONS-IN-Area. . .. v vttt snenennnnn, 39
copy-array-contents 98
copy-array-contents-and-leader 100
copysymbol.......................... 66
CUrsorpos. e 162
data-type......... e It
declare............................. 129
define-area.......................... 124
defmacro......... e R 137
defmacro-displace.................... 142
defprop............ N e 64
defstruct 147
defun........ i, 59
defun-compatibility. 265
defunp......... 32
del....., e 50
del-if 51
del-if-not............................ 51
delete., 50

Function Index

delq...... ..o i 50
deposit-field. 17
describe............................ 261
describe-area.............. e 262
describefile. 262
describe-package..................... 262
difference 71
disassemble 263
disk-restore......................... 265
disksave 265
dispatch....... 25
displace............................ 142
do e 27
donamed 30
dpb. .. 77
dribble-end 261
dribble-start. 260
ed 259
edprop.......... . 259
edval 259
enable-trapping...................... 252
L= 11
equal f e et 11
1= 247
1=) 243
error-restart. 00tnnn... 243
(=28 1 S N 247
eval L. i e e 13
eval-when e 129
evalhook, Cer e e 14, 20
BV BIY ot i e e e 51
explode...................., 162
explodec.............. 162
exploden........................... 162
LD] 72
fasload........ Fe st aceaann e 194
fooundp....... 59
ferror. ... 242
fifth ... L. 41
filecommand........................ 172
file-command-careful 172
file-default-fn2. 173
file-error-status 172
file-exists-p. 173
file-expand-pathname 173
file-mapped-open 172

6-JAN-79

Function Index

file-qfasl-p.......... e e 173
fileset-fn2 il 173
fillarray e98
find-position-in-list L. 54
find-position-in-list-equal A - |
first............. e e 41

floatp. e 9
fmakunbound PP X
font-baseline e ceree.... 214
font-blinker-height e co.n 215
font-blinker-width. 215
font-char-height e .. 214
font-char-width. cee.. 214

font-indexing-table 214
font-left-kern-table ve...214
font-name e 214
font-next-plane....... B §
font-raster-height e .. 214
font-raster-width........ Ceeeesease.. 214
font-rasters-per-word214
font-words-per-char e 214
force-kbd-input............... ceee...235
format e cee...85

fset-carefully 60
fsymeval. e c....59
funcall............ e cere... 14

get......... e R X
get-list-pointer-into-array creeeea.l 96
get-locative-pointer-into-array........... 96
get-pname e 39, 65
getchar. vee.... 84

Preliminary Lisp Machine Manual

getcharn

geth P .

globalize
o TN
Breaterp....o.euveienans
haipart......ocivvvennns
haulong................
if ...,
if-for-lispm.
if-for-maclisp............
if-for-maclisp-else-lispm . . .
if-in-lispm ..o
if-in-maclisp.............
implode................
inhibit-style-warnings
intern.....o.vvvveunnnns
intern-local
intern-local-soft.
intern-soft..............
job-create e
job-enabled-processes.
job-enabled-tvobs
job-forced-input
job-forced-input-index. . ..
jobkill..........ial.,
job-name...............
job-process-enabled-p.
job-processes............
job-reset-processes
jobreturn
job-select...............

.

.

.

job-set-process-state

job-set-tvob-state.........
job-tvob-enabled-p

.

job-tvob-selector..........

job-tvobs...............
job-who-line-process.
kbd-char-available........
kbd-tyi..........c00he.
kbd-tyi-no-hang..........
last...... Cheeeeen ceeeen
Idb-test.ovviinan..

.

v

°

.

.

.

diff oo e
lengthcvnt..
lessp. . cvieiiiiiiii e

.

DY

o .

....84
....63
... 189
.... 30
....70
....76
....76
....24
... 134
... 134
... 134
... 134
... 134
....84
... 132
... 184
... 184
... 184
... 184
...209
...202
...202
...203
...203
...209
...202
...202
...202
...209
...209

204, 209

... 204
... 204
...202
...203
...202
...203
...235
... 235
... 235
....40

.25: 77

N .15

o

.... 46
.... 40
.... 70

6-JAN-79

i

Corn o HA S o

A

Preliminary Lisp Machine Manual

let oo 17
let-closed......... e 104
let-globally. DA ce... 35
lexpr-funcall 14
lisp-reinitialize. 266
st . .. 42
st o e 42
listin-area....................... ve. . 42
listarrayo i, cie.. 98
listify PR £
Bstp oo R
load veer.. 193
local-declare........................ 130
locativep................ O Lt
locf Ll e e 146
logand i 75
login e, .. 268
login-eval 268
login-setq. et 268
logior. ..o 74
logout 268
logxor ... 74
Ish oo 75
Isubreall. o 15
mMmacroovvvenn.. e vee.. 60
macroexpand. i 143
macroexpand-1...................... 143
make-array....... e e 93
make-array-into-named-structure......... 99
make-hst, 42, 113
make-stack-group, 107
make-symbol o Ll 66
make-syn-stream e e 169
maknam....... i i 84
makunbound......................... 58
MAP L ottt e e i 35
MaPalOMS. oo v vttt i ieei e e 185
mapatoms-all, 185
MAPC . Lt ittt et et 35
MEAPCAN . .ottt ittt iienennanreenas 35
MAPCAT . .« ottt et ieaaeraenanens ... 35
MEPCON . ittt e i ee i itaneenas 35
maplist. ...l e .. 35
mar-mode i, 257
mask-field L., 77
MEX ¢ vitennnennnennn e 72

279 Function Index
mem...... et ettt 50
memass e e 53
member................ e iae e 49
memgq. e . e 49
11130 O £
MIN ... iiee i e .. R ¥}
minus. e ce....13
MINUSP. . oo veninenrnnes e 69
multiple-value................. 19
multiple-value-call e .19
multiple-value-list...........19
multiple-value-return 19
NAamed-struCtUre-p......coveevenevennnn 99
named-structure-symbol 99
nbutlast...... e et 46
nconc e ettt 44
NCONS.cvuvennn. ettt 39
ncons-in-area. e eeee e 40
11T R et 11
nil oL, e 200
nlistp....... e e e eee e 9
not......... . ceeee R 1
NFECONC. . ..ovuunen.. e 45
NIEVEerse.ovvvnnnnn ettt 44
NSUbSUING .. vv it in i ieeeeennn. 80, 92
nsymbolp. ..o i e 9
nth....... e eeesa et 41
121431 ce cee . 42
null ..., et 12
numberp e 10
oddp e 69
open ..., ettt 171
Lo) e 23
package-cell-location 67
package-declare 181
pairhis., e 54
pc-ppr-baseline i 217
pc-ppr-baseline-ady............... ..., 218
pc-ppr-blinker-list. oL 218
pc-ppr-bottom........ et et 216
pe-ppr-bottom-limit. 216
pc-ppr-bottom-margin. 216
pe-ppr-char-aluf, 218
pc-ppr-char-width. e 218
pc-ppr-current-font.l 217
PCPPI-CUTENt-X . . oo v ev e veeannen- 216

6-JAN-79

Function Index

PC-PPI-CUITENT-Y . . .t iiiiiennnnananans 217
pc-ppr-end-line-fen...o.o ool 218
pc-ppr-end-line-flag. 217
pe-ppr-end-page-flag. oo 217
pc-ppr-end-screen-fen. Lol 218
pc-ppr-erase-aluf. L. L. 218
PC-PPI-eXCeptions . ..o vveiininennnnn 217
pe-ppr-flags ..o o o il 217
PC-PPr-font-mapovveenreanenan- 217
pe-ppr-left. oo e 216
pe-ppr-leftmargin. 216
pc-ppr-line-height. 218
pe-ppr-more-fen ... i i, 218
pe-ppr-more-flag o iiii, 217
PC-ppr-more-vpos e 217
PC-PPI-NAME ...ttt itiiriinerrranens 216
pc-ppr-output-hold-fen. ..o oo oLl 218
pc-ppr-output-hold-flag. 217
PC-ppr-right. ...ttt 216
pe-ppr-right-limit.o o oia L 216
pe-ppr-right-margin.ol 216
PC-PPI-SCIEEM . .. iiirnrvinnrncnnnn. 216
pC-ppr-sideways-p.......oiniiiinnn, 217
[oLEt 7 0] S0l A + 3O 216
PC-PPr-tOP-MaArgin.ovivivnvnennnn 216
PeeK. . it 259
pke-bind ... 183
pkg-create-packageoiuaun 185
pkg-find-package................. ..., 185
pkg-goto e . .. 183
pke-kill ... 185
pkg-load. 194
pkg-map-refnames.................... 186
pkg-name............ .. . i, 186
pkg-refname-alist. 186
pkg-super-package.......... e 186
plist .o e 39, 64
Plus .. e 71
Plusp ..o 69
POP t i i i e e 45
prinl o e 161
prinl-then-space..................... 161
PIiNC ..ttt et 161
Print. e 161
print-disk-label 263
print-error-mode. 265

Preliminary Lisp Machine Manual

print-name-cell-location................ 65
process-allow-schedule................ 198
Process-Create .,o....o... e 196
process-disable, 197
process-enable................. ceee.. 197
process-initial-stack-group ceeanen 195
Process-Job ittt eaaan 195
process-kill it 197
process-lock ... iiiiiiiei i, 198
process-name........ Ceieiesea veees 195
process-preset....... ceeenean ceeeans 197
process-sleep.........coeiviiiaa.. 198
process-stack-group. et 195
process-unlock il 198
process-wait. et eeeece e 197
process-wait-argument-list 195
process-wait-function................. 195
process-whostate. Crereieees 195
PIOB. v veneennnens .o e 25
progh.......oovit ettt 16
prog2......... ‘e O 1
PrOBN. v v vt ervnnnes ceeee e 16
PIOBV. . ittt iieeencnrnsnnennsnananns 17
property-cell-location.................. 64
L] e 58
push....... Cereseerieanessecuanenans 45
101401 '] » ve:. 63
q-data-types.c00..n R § k)
qcfile...........oiill R 1.
qc-file-load ceeensese 127
0« 1 X
quote.......... APPSO ¥
quotient.eiennnnn teroaenans 71
random P K
TASSOC. ottt veetteasocconnnnnnnos -1
read.......... e eraeeeaea Ceecenae . 159
read-from-string PN ce... 161
readch........ et eiieeeas 160
readfile L. 193
readline. it .. 160
readlist. i i e 161
recompile-world..................... 262
TEM L i tiiiiieitennenacnnansnnnnns 51
rem-if. ... e 51
rem-if-not, Cere e 51
remainderot iiiiaiaenan .12

6-JAN-79

THETNER SV

e

b g B

Preliminary Lisp Machine Manual

remob L. e e e 184
TEMOVE . L. ittt iiirennennnnennns 51
remprop........ . e ...64
3 T [. . e 50
restl.. N et 41
TeS2. i i e RPN 41
Test3. ... et 41
restd, et e 41
AT 5 2 B 1 |
FeUIM-array. . ..oov e vnnnnnnnn e 94
return-from..... U) |
return-list et ... 32
TeVerse.c.0... . e .. 43
FOOM Lyttt it iiaennnnennnns ee.. 2062
rot...... e e, P £
placa. . ..o e e 47
rplacd e et ... 47
samepnamep e e 65
SANNOC, ot ettt .. 54
SANSQL v it vt e 54
screen-attributes e, 211
screen-bits-per-pixel 211
screen-buffer., 211
screen-buffer-halfword-array 211
screen-buffer-pixel-array. 211
screen-default-font 211
screen-font-alist. o.. .. 211
screen-height., 210
screen-locations-per-line 211
SCIeen-Nameoou.n. et 210
screen-plane-mask. e 211
screen-width.,.............. A B |
screen-x|, screen-x2, screen-yl, screen-y2 211
second. i e 4]
select. ... e e 25
selectq. ..o i e 24
R 57
set-current-band 263
set-current-microload. 263
set-error-mode, 38, 265
set-in-closure., 104
RI=) CF 11 F: | S 257
Set-MeMOTY-SIZ€. .. v v et i ieninnenenann 262
LT3 F: 1 o P R £
setf. . . R ¢ 13
setplist L Lo, ... 47, 64

Function Index

Selg . iiiinnnn.. e 57
setup-keyboard-dispatch-table 264
seventh R) |
si:%change-page-status cev... 118
si:focompute-page-hash. 119
si:%ccreate-physical-page........... ... 119
si:%delete-physical-page............... 119
si:Cedisk-restore. e 119
si:%disk-save........ Craereceenen ... 119

silisp-top-level 266
silisp-top-levell267
si:random-create-array L...13
strandom-fill-pointer 74
sirandom-initialize 74

si:random-pointer-{......... R £
strandom-pointer-2. 000 n... 14
sirandom-seedc 0. 74
sitv-end-line-default. 219
siztv-end-screen-default. 219
SLEIV-EXCePUON. . . v v v ii et ieennnnnannn 219
si:tv-more-default 220
si;tv-move-bitpos.
signal..... e ee et 239
SIEAP ittt e ce... 69
sixth...... e et 41
small-float ceiee....13
small-floatp et ..9
SOME .\ teere i tvvnnnonenossoonsnnnnns 51
sort B e 55
SOTt-grouped-arfayoeeeeeeennnsnnn 56
sort-grouped-array-group-key. 56
SOMCAr. . .oovvuu. Ceeeeane et 56
special e e e 130
SSTATUS 4 vttt e e eeenrenncooananannns 266
stack-group-preset.oeii e 108
stack-group-resume. P 108
stack-group-return creena 108
Statls . .o v ennennn. e ceeee... 266
SeP ittt PP ceene... 255
store. e, e 101
store-array-leader e....99
stream-copy-until-eof 163
stream-default-handler 170
SUINE . ot v et ievnrrineneenenaennnnens 80
string-append i il 81
string-downcaseiieinn . 81

6-JAN-79

Function Index

string-equal e e 80
string-left-trim., .o oo 81
string-length oo 80
String-lessp. .ol 80
SUHNG-NIEVETSe ... veveencnsnuennns 82
SUINE-TEVEIse ... vvvrannns e 82
string-reverse-search............ vee....83
string-reverse-search-char. 83
string-reverse-search-not-char 83
string-reverse-search-not-set.............83
string-reverse-search-set. e 83
string-right-trim. o i g1
string-search ... i 82
string-search-char oot 82
string-search-not-char, 82
string-search-not-set e 82
string-search-set 82
SUHNE-TFM ot i e in e 81
SHMNE-UPCASE . v vt vvnnneeosasnsensns 81
SUINEP . o e v e v et ivaanaenans veve... 10
structure-forward e 113
subl.o o e 72
sublis. o it e 47
subreall ... oo il e 15
subtp ... o e 10
SUDSE. i e i e 47
SUDSEIING . ot 80
supdup. ..ol e 260
sxhash P 52
Symbolp. .o v 9
symeval e R 14, 58
symeval-in-closure 104
tailp................ e . 4
terpri......o.o... e R 1} |
third. R 2
throw..........coenn. e ... 34
HME . .t eeeennenananenes veeee.. 265
HMeS ...t iiiiiianenens e 71
trace O ... 252
trapping-enabled-p e 252
tV-2CUiVAte-PC-PPT o v e v e ieeaeranean 234
tv-backspacet Lo 22

tv-beep. ...l e 219
tv-black-on-white 222
tv-blink ... L e 231
tv-blinker-function 225

tv-blinker-half-period
tv-blinker-height.
tv-blinker-pc-ppr
tv-blinker-phase.
tv-blinker-screen
tv-blinker-sideways-p
tv-blinker-time-until-blink. .
tv-blinker-visibility
tv-blinker-width
tv-blinker-x-pos
tv-blinker-y-pos
tv-char-width. .
tv-character-blinker .
tv-clear-char
tv-clear-eof
tv-clear-eol
tv-clear-pc-ppr ..
tv-clear-pc-ppr-except-margins.
tv-clear-screen ..
tv-complement-bow-mode
tv-compute-motion.

............

..........

............

..............

tv-deactivate-pc-ppr
tv-deactivate-pc-ppr-but-show-blinkers
tv-define-blinker
tv-define-pc-ppr
tv-define-screen
tv-delete-char ..
tv-delete-line..................
tv-draw-char
tv-draw-line
tv-erase
tv-get-font-pixel
tv-hollow-rectangular-blinker.

.............

tv-home-down,
tv-insert-char
tv-insert-line . . .
tv-line-out. .
tv-make-dbl-hor-font.
tv-make-gray-font..........
tv-make-sideways-font
tv-make-stream
tv-note-input
tv-open-blinker
tv-open-screen .

.................

................

Preliminary Lisp Machine Manual

.. 225

.. 231
212
L0221

ees.. 222
cee.. 229
. 226, 230
cee...229

.. 236
.. 231
.. 220
.. 220
.. 222
.. 222
.. 222
.. 237
.. 237

6-JAN-79

Preliminary Lisp Machine Manual
tV-prepare-pe-ppr e 230
tv-read-blinker-cursorpos.ooo e e 226
tv-read-Cursorposo 221
tv-rectangular-blinker.l 231
tv-redefine-pe-ppr.....oooveiiiieen 234
IV-TEIUIM-PCPPT oot vv v vvoenrannnssses 234
Iv-select-sCreen. . .o vv e 229
tv-set-blinker-cursorpos ee 226
tv-set-blinker-function il 226
tv-set-blinker-size......... ... e 226
tv-set-blinker-visibilityo .. 226
LV-SET-CUFSOIPOS. o o v v e rnrrovansses 221
tv-set-font e . vee.l 221
IV-SPACE . oo v e e e e ... 220
tv-store-font-pixel. e 236
tv-string-length e 223
TV-STIME-OUL Lo viee i aanaaasceennes 222
LR T\« T 220
L 3 o R R R 218
tv-white-on-black 222
tv-white-on-black-state oo 222
tv-who-line-item-function. ve... 228
tv-who-line-item-left.o ovv e 228
tv-who-line-item-right. e 228
tv-who-line-item-state. e 228
tv-who-line-prepare-field 228
tv-who-line-stringo ovvvveereennn 228
tv-who-line-update oiiaien 2217
tvob-Clean ove ittt e 208
tvob-clobbered-p. o i 200
tvob-command e 208
tvob-complete-redisplayoon-e 208
IVOD-CIeate . . v v i i ieiiiisaannnsns . 206
tvob-create-absoluteo el 205
tvob-create-expandable.l 206
tvob-create-for-pe-pprooeeaeennn 206
tvob-disable. e 207
tvob-enable . v i i i 207
tvob-handler e 199
IVOD-INEO o o i et e 199
TVOD-JOD. et 199
tvob-kill. e cee... 207
tvob-mouse-aCtioncoeveeerorenen . 200
tvob-mouse-handler oo 200
tvob-namecceeaeeon A .. 199
tVOb-plist . o oo e 200

283

Function Index
tvob-priority I 199
tvob-sCreen« e 199
tvob-select. [P 208
tvob-setup ... ovove e PP . . 207
tvob-status. T 200
tvob-under-point, AP 208
tvOb-UPdBte. . o vv v 208
IVOD-X1 +ivirireasonennn JU RN 199
IVOD-X2 v vvee v vnocaamnses e e ;99
tvob-y1 J T 199
tvob-y2 e es e 199
137 PP e ae e 160
T S AR . 160
1317 DN 161
LypeP . cveeeenns . . e eeaeenae 10
uncompile. e ne e 126
undefun........ RN N 61
unspecialooeel e RN . . 130
UNLFACE v v v emsvonsnosoonuensn s 254
unwind-protect. e ... 34
value-cell-locationcovvvvene .58
where-1s. .. oo v v v JA261
who-calls....... S261
who-uses J P 261
KCOMS. e o vonennnnasenss et 39
xcons-in-area. PR 40
XSTOT@. o v veemevannns s nea e 101
y-or-n-p..... e e ienea e 263
YES-OT-NOP 4 vvevnnvnnnvonnnssss st 264
ZEIOP. o vvaeensns e P 69
N e eennnnoononeaconns e e 72
A\ VT e 72
N e e et . .72

6-JAN-79

New Window System

Takle of Contents

1. Basic Window Features .
1.1 Flavor Naming Conventions .
1.2 Creating a Window.
1.3 Relations Between Windows .
1.4 Dimensions and Margins .
1.5 Displaying in a Window .

1.6 Lower-level Display Primitives .

1.7 Character input .

1.8 The Mouse .

1.9 Notification .

1.10 Sclf documentation. .
1.11 Margins, Borders, Labels. .

Function Index
Message Index.
Variable Index.
wWindow Creation Options

Table of Contents

RO bt e

12
17
17
18
19
20
20

23
24
27
28

30-MAY-80

New Window System 1 Basic Window Features

1. Basic Window Features

This chapter describes the features provided by the window flavor, which thercfore apply to
most windows. Later chapters describe hairier features which are incorporated into some
windows. Most of the features are cxplained with a brief description followed by an
enumeration of the messages that you can send to invoke them, the instance-variables associated
with the featurc, and the related window creation options (if any).

Most of the messages described in this chapter are cssential to the workings of the system,
and should not have their primary methods redefined by the user. When this is not the case,
the text will say so cxplicitly. In any case, it is all right to put dacmons on any mcssage.

1.1 Flavor Naming Conventions

The following conventions are followed for naming flavors of windows. In this section the
word frobboz is used to stand for any feature, attribute. or class of windows that would appear
in a flavor namec (c.g. peek. lisp-listener, or delayed-redisplay-label). Numing conventions
arc different for instantiatable flavors (which are complete and can support instances of
themselves) and mixin flavors (which are incomplete and only supply one particular aspect of
behavior).
frobboz An instantiatable Ravor whose most distinguishing characteristic is that it is a-

"frobboz”. frobboz is preferred o frobboz-window except when it is necessary
to make a distinction.

frobboz-mixin A flavor which provides the "frobboz" feature when mixed into other flavors.
This generally has no cxplicit components, only included-flavors. Not
instantiatable by itself.

basic-frobboz The same as frobboz-mixin except that it alters the "essential character” of the
window. It does not work to mix two “"basic” flavors together unless they know
about cach other. In certain cases a basic-frobboz may be instantiatable without
other flavors, while in other cases it is more like a mixin and not instantiatable.

essential-frobboz

essential-frobboz-mixin _
Something which is necded in order to work. These are often but not always

components of minimum-window. They arc also usually internal things the user
does not see.

minimum-frobboz
A simpler type of "frobboz™ than frabboz or basic-frobboz, for the case where
those latter flavors want to be built out of components.

window The simplest type of window. Almost all user-defined windows should be built
by adding mixins to the window flavor, although occasionally the nced will

DSK:LMWIND;BASWIN 4 30-MAY-80

New Window System : 3 Creating a Window

:adges-from source
Specifies that the window is to take its cdges (position and size) from source. which can

be one of:

astring The inside-size of the window is made large cnough to display the
string, in font 0.

a list (lef? top right bottom)
Those edges, relative to the superior, are used.

:mouse The user is asked to point the mouse to where the top-left and bottom-
right corners of the window should go.

a window That window’s cdges are copied.

:minimum-width n-pixels

:minimum-height n-pixels
In combination with the :edges-from mouse init option, these options specify the
minimum size of the rectangle accepted from the user.

:1eft x-position

'X Xx-position

:top y-position

1y J-position

:right right-cdge-x-position

:bottom bottom-edge-y-position

:edges (left top right bottom)

cwidth outside-width-in-pixels

height outside-height-in-pixels
These st the position and size of the window relative to its superior. The default if the
position is unspecificd is (0,0). The default if the size is unspecified is the inside-size of
the superior. The right thing happens if you specify only some parts of this information.

:character-width spec
This is another way of specifying the width. spec is cither a number of characters or a
character string. The inside-width of the window is made to be wide cnough to display
those characters in font 0.

:character-height spec
This is anothcr way of specifying the height. spec is cither a count of lincs or a
character string containing a ccrtain number of lincs separated by carriage returns. The
inside-height of the window is made to be that many lines.

DSK:LMWIND;BASWIN 4 30-MAY-80

Ncw Window System 5 Reclations Between Windows

bits-action controls what happens to the bits which compose this window's display. The

allowed values are:

rrestore The bits arc restored to what they used to be. That is, the window’s
bits are moved from where they were automatically saved, into the
screen’s physical bits, : ’

:clean The window is refreshed, that is, made blank for the most part.

:noop Nothing is done with the bits. The window's bits become set to
whatever was on that part of the screen previously.

bits-action defaults to :restore if that is possible (the window has a bit-save-array),

otherwise to :clean.

:deexpose &optional save-bits-p screen-bits-action remove-from-superior
This is the opposite of :expose. This message is sent by the system when a window
neceds to be removed from thé screen. [t is usually a mistake to send it yoursclf; unless
screen-management is delayed, the screen manager will immediately re-expose the
window, since it is not covered by anything. Scc the :bury message.

If the window is currently selected, it is first deselected, since the selected window must
always be exposed.

The allowed values for save-bits-p are:

default The bits are saved if a bit-save array exists, othcrwise they are not.
This is, of course, the default.

force If a bit-save array does not exist, one is crecated. and the bits are saved.

nil The bits are not saved.

screen-bits-action controls what is done to the bits left behind on the screen. If this is a
temporary window, the supplied value is ignored and the bits belonging to the windows
underncath are restored from where they were temporarily saved. Otherwise the allowed

values are:

:noop Leave them there (however. the screen manager will come along and
replace them with the bits of whatever window shows through). This is
the defauit.

clean Clear them out.

remove-from-superior is for internal usc, and should not be supplied.

DSK:LMWIND:BASWIN 4 ' 30-MAY-80

New Window System 7 Relations Between Windows

ractivate
Causes the window to be on its supcrior’s list of inferiors. Active windows are visible to
the rest of the system for automatic exposure and screen management. When a window
is cxposed, it will be automatically activated if it is not already.

:deactivate
Causes the window to bc deexposed and removed from its supcrior's list of inferiors.
The window system will not remember this window anywhere, so it can be garbage
collected.

kil :
Causes the window to become deactivated, with the intent that it will never be used
again. Distinct from :deactivate so that dacmons can be placed on it to clean up things
like processes.

:select &optional (save-selected t)
[The save-selected argument is obsolete and doesn’t do anything now.]

Causecs the window to become the selected window, which is the one that is allowed to
:tyi from the keyboard. It and all its superiors arc automatically activated and exposed
if they were not alrcady. The currently sclected window is scnt a :deselect message
with argument nil, causing it to be remembered as the previously-selected window. The
window’s blinkers are made to blink if that is appropriate (scc <not-yct-written>).

tv:selected-window Variable .
This is nil or the currcently-selected window.

:deselact &optional (restore-selected t)
Causes the window to no longer be the selected window. If restore-selected is t, then
the window that was selected before this one is selected again, and this window is put
on the end of the ring buffer of previously-selected windows. Otherwise this window- is
put on the front of the ring buffer and no window is sclected. This window’s blinkers
are sct to their deselected-blinker-visibility; typically they stop blinking.

You don’t normally want to send this message yoursclf with an argument of nil, since
the screen manager, if not delayed, will automatically select a window, which may be
this one.

:mouse-salect &optional (save-selected 1)
This is used when you sclect a window by pointing to it with the mousc or by using the
select operation in the system menu. [t represents a “stronger” form of sclection. The
arguments are the same as for :select. Dcexposes any temporary windows that lock the
window, copics any keyboard typeahcad into the currently sclected window's io-buffer,
and then scnds a :select message to the window.

DSK:LMWIND;BASWIN 4 30-MAY-80

New Window System 9 Relations Between Windows

:save-hits
:set-save-bits trornil
Get or set whether the window saves its bits when it is deexposed.

:set-superior new-superior
Causes the superior of the window to be new-superior. Use -this with caution! It doesn’t
completely work for all cases.

:1isp-1istener-p
Returns nil if the window is not a lisp listener, :idle if a lisp listener and not currently
eval'ing a form, or :busy if a lisp listener but currently eval'ing a form.

The: following instance variables are relevant to thesc issues and may be of interest to the
user. There are of course quite a few related instance variables which are internal and not
documented here [but perhaps they should be?]

tv:screen-array Variable
The two-dimensional array of bits on which a window’s output is drawn. nil if the
window is deexposed and has no bit array.

tv:bit-array Variable 4 .
The airay in which the window saves its bits when not exposed, or nil if it does not do
so. Several aspects of a window's behavior depend on whether or not this is null.

tv:superior Variable
The window within which this one appears. nil if this is top-level (typically a screen).

tv:restored-bits-p Variable ,
This is used for communication to the :after :refresh methods; if it is t the bits of the
window have been restored from the saved copy, but if it is nil they need to be
regenerated. '

tv:name Variable
The name of the window. This string is the default thing displayed in the label and
appears in the printed-representation of the window.

tv:process Variable
For a window that incorporatcs the process-mixin flavor, this is the process associated
with the window, or nil.

[Should the locking and temporary stuff be documented here, or assumed to be internal?]

Here are some relevant window-creation options.

DSK:LMWIND;BASWIN 4 30-MAY-80

New Window System 11 Dimensions and Margins

:inside-edges
Like :edges, but returns the edges cxcluding the margins.

:set-adges new-lefl new-top new-right new-boitom &optional option

Changes the size and position of a window as specified by the first four arguments.
option may be :verify, in which case t is returned if the edges are acceptable, or nil if
they are not, and nothing is actually changed. Sends the :verify-new-edges message in
order to check the new edges. If not merely verifying, and not changing the size of the
window, then the window is moved without any furthur message transmission. On the
other hand, if the size is changing, then a :change-of-size-or-margins message is sent
to the window.

:full-screen &optional option
Sends a :set-edges message to the window making it the full inside size of its superior.
option is passed dircctly to the :set-edges message.

:set-size new-width new-height &optional option
Sends a :set-edges message to the window sctiting it to the specified size without
moving its upper-left corner. option is passed dircctly to the :set-edges message.

tset-inside-size new-width new-height &optional option
Sends a :set-edges message to the window setting it to the specified size not including
the margins. The upper-left corner does not move. option is passed directly to the :set-
edges message. ' :

:set-position newx newy &optional option
Sends a :set-edges mcssage to the window setting its position to the specified place.
option is passed dircctly to the :set-edges message.

scenter-around x y
Positions the center of the window as close to x and y as is possible without hanging off
the edge of the superior. ‘

:change-of-size-or-margins &rest options

This message is sent by the system whenever the size of the inside part of a window, or
anything about its margins, is changed. The primary method actually does the changes,
moves the inside bits around as necessary, and blanks out the margins. You can define
:after dacmons for this message to do such things as modification of intcrmal data
structurcs that depend on the number of lines that fit in the window. Normal code
should never redefine the primary method nor send the message dircctly. options is a
list of altcrnating kcywords and values specifying what is changing, similar to the
options uscd when creating a window.

DSK:LMWIND:BASWIN 4 ' 30-MAY-80

New Window System 13 Displaying in a Window

:string-out string &optional (siart 0) (end nil)
Outputs string. start and end specify a substring of the string. More cfficient than

character by character output.

:11ne-out string &optional (start 0) (end nil)
Outputs string followed by a newline. start and end specify a substring of the string.

More cfficient than outputting the string character by character.

:clear-screen &optional margins .
Erases the window and homes its cursor. If margins is nil {the default), the inside of

the window is crasced and the margins are left alone. If margins is t, the margins are
also erased.

:clear-eof A
Erases from the current position of the cursor to the end of the window.

:clear-e0l’
Erases from the current cursor position to the end of the line.

:clear-char :
Erases the character position under the cursor. In casc of multiple or variable width

fonts, this may not be the actual width of the character there.

:home-cursor :
Positions the cursor to the upper-leftmost character position in the window, inside the

‘margins.

tread-cursorpos &optional (units ":pixel) _
Returns the current cursor position as two values, x and y. The cursor position is

rclative to the upper-left-hand corner of the window inside the margins. The units of
measurement may be specified as :pixel or :character.

:sat-cursorpos x y &optional (units ':pixel)
Puts the cursor at the specified position. units the same as for :read-cursorpos.

:fresh-1ine v
If the cursor is not at the beginning of the line, advances to the ncxt line. In either

case¢ does a :clear-eol.

:draw-rectangle width height x y alu
Makes a rectangle of 1-bits of the spccified dimiensions, and merges it into the window

at the spccified x,p position using the alu function supplicd. The position is relative to
the outside of the window, unlike the position returned by :read-cursorpos. ‘'This is
uscful for erasing, darkcning, and complementing rectangular arcas of a window. The
rectangle is clipped if it would lie outside of the window.

DSK:LMWIND;BASWIN 4 30-MAY-80

New Window System 15 Displaying in a Window

:more-exception A
Called when more-vpos is reached. Prompts with **more** and waits for the user to

type a character before continuing. Resets more-vpos.

:note-input-wait
Called when :tyi hangs waiting for input. Scts more-vpos appropriately.

soutput-hold-exception
-Called when output is attempted on the window but cither the output hold flag is set or
the window is locked by a temporary window. If the latter is true, then waits until the
window is no longer locked. If the former, and thc window is deexposed, then
deexposed-typeout-action is inspected (sce <not-yet-written>). Always returns with the
window no longer output held.

.delete-1ine &optional (n I)
Deletes lincs at and below the current cursor position. n specifies the number of lines

to delete. Lines below the deleted lines are shifted up, and blank lines are brought in
at the bottom of the window.

.insert-11ne &optional (n)
Makes n blank lines at the cursor by shifting the lincs at and below the cursor down. n

lines at the bottom of the window arc lost.
The following instance variables are relevant.

tv:cursor-x Variable

tv:cursor-y Variable
The position at which to put the next character. These are relative to the upper-left-
hand corner of the window outside the margins, unlike the values returned by the :read-

Cursorpos message.

tv:more-vpos Variable A
The Y position at which a e*more** will happen, or 100000 plus the Y position if it is

to be deferred until after the bottom of the window has becn reached, or nil if there is
no more-processing on this window.

tv:current-font Variable
The currently sclected font for character display.

tv:font-map Variable ‘
An array of fonts. The O’th entry is the "standard” font.

DSK:LMWIND;BASWIN 4 30-MAY-80

]

New Window System 17 Lower-level Display Primitives

tVSp Vvsp
Selects the number of blank raster lines between character lines. The default is 2. The
line-hcight of a window is initialized from this and the height of the tallest font initially

specified.

:more-p fornil .
Enables or disables more-processing. The default is t, but many flavors change the
default to nil for their own purposes.

[Exactly what forms of typeout arc controlled by these next two?)
:right-margin-character-flag t-or-nil
The default is nil. If t, if a linc is longer than the width of the window, when it wraps

around to the next line an "1" is put in the right margin.

.truncate-1ine-out-flag r-ornil
The dcfault is nil, but if t when a line is longer than the width of the window it is

truncated.

1.6 Lower-level Display Primitives

[}fere will be explained prepare-sheet. the microcode primitives, and maybe some or. all of
the sheet-mumble functions. Somewhere we arc going to nced scctions on blinkers and fonts,
also. Maybe here is a good place. Or maybe all the displaying-in-a-window stuff should be

moved out into its own chapter?]

1.7 Character Input

Note that these operations are a supersct of the standard stream protocol. Thus a window
may be used directly as a stream.

:ty1 &optional eof ‘
Returns the next input character. Hangs untl a character is available. The eof
argument is ignored since keyboards do not have end-of-file.

:tyi-no-hang
Returns the next input character if onc is immediately available, clsc nil. Never hangs.

cuntyi ch

Returns ch to the head of the input stream. [t will be the next character read. Only '
one character may be untyi'ed at a time.

DSK:LMWIND:BASWIN 4 . ' 30-MAY-80

New Window System 19 Notification

:mouse-buttons burtons-down x y
If a button is pushed with the mouse over an cxposed window that has a :mouse-

buttons method, that window rcceives this message. Buttons-down is a bit-mask of the
buttons pushed. X and y are the coordinates of the mouse relative to this window. The
message is sent at the time the mouse button is first depressed. Encoding of double-
clicks or deferring of command execution until the mouse button is rcleased, if desired,
must be done by this handler. It is a system convention that clicking the right-hand
mouse button twice necarly always gets you the system menu. It is also a system
convention that clicking the left-hand button on an unexposcd mousc-sclectable window
exposes and sclects it

:mouse-moves x y
When the mouse moves while over an cxposed window that handics :mouse-moves, it

receives such a message with the window-relative coordinates of the mouse as arguments.
The mouse-blinker must be moved by this method.

:hand1e-mouse
Sent in the mouse process to the window when the mouse moves into the window’s area

of influence, should track the mousc and send :mouse-moves and :mouse-buttons as
appropriate. Usually calls tv:imouse-default-handler.

:set-mouse-position x y -
Sets the mousc position to x, y. Coordinates are relative to the window. "

1.9 Notification

Notification means teclling the user about an unexpected occurrence, such as an error in a
background process, by printing a message in some suitablc place. The system provides for
such messages to come out cither on the sclected window, if it agrces to accept them (Lisp
listeners do), or on a special window popped-up for that purpose. -

:notify-stream &optional window-of-interest
Sent to the sclected window in order to get a stream via which to notify the user.

Windows like Lisp Listeners simply hand back themselves and ignore window-of-interest.
Windows which don’t want to be corrupted by extrancous output, though, usually
include the pop-up-notification-mixin flavor, which creates a pop-up window for use as
the strcam, and also tells it window-ofinterest, which is the window that the output will
be on behalf of. A pop-up-notification window arranges to sclect window-of-interest
when it is sclected (c.g. by clicking on it with the mousc). The pop-up-notification-
mixin is included in the window flavor.

DSK:LMWIND;BASWIN 4 30-MAY-80

New Window System 21 Margins, Borders, Labels
nil No border here.
t The default function with the default thickness.
a number The default function with the specified thickness.
a symbol That function with its default thickness.

acons (function . thickness)
That function with that thickness.

alist (finction left top right bottom) : ,
That function in the specified rectangular arca. This is the internal form
that everything clse turns into, but if you specify this from the outside
“only the width and height implied by those four numbers will be paid
attention to; the position comes from the relationship with other parts of
the margin system.

The default (and currently only) border function is tv.draw-rectangular-border. Its
default width is 1.

:border-margin-width n-pixels
The width of the white space in the margins between the borders ‘and the inside of the
windc'v. The default is 1. This doesn't do anything unless there arc borders.

:1abel spec .
Controls the label. The default is t, which makes the label display the window’'s name

in the lower-left corner. Choices are:

nil , No label.

f A label with all the default characteristics.

‘top Put it at the top of the window.

:bottom Put it at the bottom of the window. This is usually the default.
a string The label is this string instead of the window’s name.

a font Spcciﬁeé what font to display the label in.

a list (lef? top right bottom font string)
Specifies all of the options. This is the internal form everything else is
" turncd into. Negative numbers mcan up from the bottom or left from
the right. tvicompute-label-position is the function which understands
this. Externally you can control only the height and whéther it goes at
the top of the bottom: the position is controlled by interaction with the
rest of the margin system,

The following messages are relevant.

DSK:LMWIND;BASWIN 4 30-MAY-80

]

New Window System 23 Function Index

Function Index

tv:window-create. < . . - - 2

30-MAY-80

New Window System

ityi .. .
:tyi-no-hang .

ityo . .

untyi
-verify-new-edges .
VSp . .

.....

.....

A7
17
J2

17

12

.....

.14

26

Message Index

30-MAY-80

Window Creation Options

New Window System

‘bit-array 4
-blinker-desclected-visibility . .16
:blinker-function . .16
:blinker-p. 16
-border-margin-width . 21
:borders . . 20
DOUOM . . o o o e e e e e e e e 3
-character-height. . 3
:character-width 3
:deexposcd-typeout-action. . 10
edges. - 3
:edges-from . . 3
ICXPOSEP . . . e e e osonomoee 2
:fontmap. - .. .16
height 3
sintegral-p 4
:io-buffer . . . 18
dabel Coe e 21
deft . .. o o o

‘minimum-height . J
‘minimum-width. . . . 3
more=p. . . . - - - J7
NAME . . o o o o o e e e e 10
priority 10
IProcess .« oo+ o 4
:reverse-video-p. - 16
dght. .« . . o o oo e e 3
-right-margin-character-flag . 17
:rubout-handler-buffer . 18
cqave-bits o o . 4
isuperior. - . 2
HOP o o e e e e e e 3
-truncate-line-out-flag - - 17
7 I 17
swidth, o o e e e e e 3
3 ST 3
W e e e e e e e e e K]

28

Window Creation Optiohs

30-MAY-80

