Lisp Machinc Manual 7 Primitive Object Types

2. Primitive Object Types

2.1 Data Types

He N

This section enumerates some of the various different primitive types of objects in Zetalisp.
The types explained below include symbols, conses, various types of numbers, two kinds of
compiled code objects, locatives, arrays, stack groups, and closurcs. With cach is given the
associated symbolic name, which is returned by the function data-type (page 201).

A symbol (these are sometimes called "atoms” or "atomic symbols™ by other texts) has a print
name, a binding, a definition, a property list, and a package.

The print name is a string, which may be obtained by the function get-pname (page 99).
This string serves as the printed representation (see section 21.2.1, page 367) of the symbol. Each
symbol has a binding (sometimes also called the “value"). which may be any Lisp object. It is
also referred to sometimes as the "contents of the value cell”, since internally every symbol has a
cell called the value cell which holds the binding. It is accessed by the symeval function (page
96), and updated by the set function (page 96). (That is, given a symbol, you usc symeval to
find out what its binding is, and usc set to change its binding.) Each symbol has a definition,
which may also be any Lisp object. It is also referred to as the “contents of the function cell”,
since internally every symbol has a cell called the function cell which holds the definition. The
definition can be accessed by the fsymeval function (page 98), and updated with fset (page 98),
although usually the functions fdefinition and fdefine are employed (page 169). The property list
is a list of an even number of elements; it can be accessed directly by plist (page 99), and
updated directly by setplist (page 99), although usually the functions get, putprop, and remprop
(page 82) are used. The property list is used to associate any number of additional attributes with
a symbol—attributes not used frequently enough to deserve their own cells as the value and
definition do. Symbols alsc have a package cell, which indicates which "package” of names the
symbol belongs to. This is explained further in the scction on packages (chapter 24) and can be
disregarded by the casual user.

The primitive function for creating symbols is make-symbol (page 101), although most
symbols are created by read, intern, or fasload (which call make-symbol themselves.)

A cons is an object that cares about two other objects, arbitrarily named the car and the cdr.
These objects can be accessed with car and cdr (page 61), and updated with rplaca and rplacd
(page 70). The primitive function for creating conses is cons (page 61).

There are several kinds of numbers in Zetalisp. Fixnums represent integers in the range of
2123 to 2123-1. Bignums represent integers of arbitrary size, but they are more expensive to use
than fixnums because they occupy storage and are slower. The system automatically converts
between fixnums and bignums as required. Flonums are floating-point numbers. Small-flonums are
another kind of floating-point numbers, with less range and precision, but less computational
overhead. Rationalnums are exact rational numbers which are represented with a numerator and a
denominator which are integers. Complexnums are numbers which have explicitly represented real
and imaginary parts, which can be any real numbers. Sec chapter 7, page 102 for full details of
these types and the conversions between them.

SRCKL.MAN>FD-DTP.TEXT 4 24-JAN-83

Predicates 8 1.isp Machine Manual

The usual form of compiled, cxccutable code is a Lisp object called a "Function Entry
Frame™ or "FEF". A FEF contains the code for one function. This is analogous to what Maclisp
calls a "subr pointer”. FEIs are produced by the lisp Compiler (chapter 16. page 228), and are
usually found as the definitions of symbols. The printed representation of a FEF includes its
name so that it can be identified.

Another Lisp object which represents executable code is a "microcode entry”. ‘These arc the
microcoded primitive functions of the Lisp system, and any user functions compiled into
microcode.

About the only useful thing to do with any of these compiled code objects is to apply it to
arguments. However, some functions are provided for examining such objects, for user
convenience. Sec arglist (page 172), args-info (page 174), describe (page 641), and
disassemble (page 641).

A locative (sce chapter 13, page 197) is a kind of a pointer to a single memory cell anywhere
in the system. The contents of this cell can be accessed by cdr (see page 61) and updated by
rplacd (sec page 70).

An array (scc chapter 8, page 121) is a set of cells indexed by a tuple of integer subscripts.
The contents of the ceils may be accessed and changed individually. There are scveral types of
arrays. Somc have cclls which may contain any object, while others (numeric arrays) may only
contain small positive numbers. Strings are a type of array; the clements are 8-bit unsigned
numbers which encode characters.

A list is not a primitive data type, but rather a data structure made up out of conses and the
symbol nil. See chapter 5, page 60.

2.2 Predicates

A predicate is a function which tests for some condition involving its arguments and returns
the symbol t if the condition is true, or the symbol nil if it is not true. Most of the following
predicates are for testing what data type an object has; some other general-purpose predicates are
also explained.

By convention, the names of predicates usually end in the letter "p" (which stands for
"predicate”).

The following predicates are for testing data types. These predicates return t if the argument
is of the type indicated by the name of the function, nil if it is of some other type.

symbolp arg
symbolp returns t if its argument is a symbol, otherwise nil.

SRCKLMAN>FD-DTP.TEXT.4 24-JAN-83

Lisp Machine Manual 9 Predicates

nsymbolp arg
nsymbolp returns nil if its argument is a symbol, otherwise t.

listp arg
listp returns t if its argument is a cons, otherwise nil. Note that this means (listp nil) is
nil even though nil is the empty list. [This may be changed in the future.]

nlistp arg
nlistp returns t if its argument is anything besides a cons, otherwise nil. nlistp is identical
to atom, and so (nlistp nil) returns t. [This may be changed in the future, if and when
listp is changed.]

atom arg
The predicate atom returns t if its argument is not a cons, otherwise nil.

consp arg
This returns t if arg is a cons, otherwise nil. At the moment, this is the same as listp;
but while listp may be changed, consp will never be true of nil.

numberp arg
numberp returns t if its argument is any kind of number, otherwise nil.

fixp arg

integerp arg
This returns t if its argument is a representation of an integer, i.e. a fixnum or a bignum,
otherwise nil.

floatp arg
floatp returns t if its argument is a floating-point number, ie. a flonum or a small
flonum, otherwise nil.

fixnump arg
fixnump returns t if its argument is a fixnum, otherwise nil.

bigp arg
bigp returns t if arg is a bignum, otherwise nil.

flonump arg
flonump returns t if arg is a (large) flonum, otherwise nil.

small-floatp arg
small-floatp returns t if arg is a small flonum, otherwise nil.

rationalp arg

Returns t if arg is an exact representation of a rational number; that is, if it is a fixnum,
a bignum or a rationalnum. Otherwise it returns nil.

SRCKLMAN>FD-DTP.TEXT A4 24-JAN-83

Predicates 10 1isp Machinc Manual

complexp arg
Returns t if arg is a complexnum, a number which is explicitly represented as complex.
Otherwisc it returns nil.

Since the system will not in normal operation produce complexnums have a zero
imaginary part, you can usc this as a test for a number which is mathematically not a real
number.,

realp arg
Returns t if arg is a number whose imaginary part is zero. Any fixnum, bignum, flonum
(of any size) or rationalnum satisfies this predicate. Otherwise it returns nil.

Since a complexnum never normally has a zero imaginary part, you can usc this as a test
for numbers that arc mathematically real.

stringp arg
stringp returns t if its argument is a string, otherwise nil.

arrayp arg
arrayp returns t if its argument is an array, otherwisc nil. Note that strings are arrays.

functionp arg &optional allow-special-forms

functionp returns t if its argument is a function (essentially, something that is acceptable
as the first argument to apply), otherwise it returns nil. In addition to interpreted,
compiled, and microcoded functions, functionp is true of closures, select-methods (see
page 163), and symbols whose function definition is functionp. functionp is not true of
objects which can be called as functions but are not normally thought of as functions:
arrays, stack groups, entities, and instances. If allow-special-forms is specified and non-nil,
then functionp will be truec of macros and special-form functions (those with quoted
arguments). Normally functionp returns nil for these since thcy do not behave like
functions. As a special case, functionp of a symbol whose function definition is an array
returns t, because in this case the array is being used as a function rather than as an
object.

subrp arg
subrp returns t if its argument is any compiled code object, otherwise nil. The Lisp
Machine system doesn’t use the term "subr”, but the name of this function comes from
Maclisp.

closurep arg
closurep returns t if its argument is a closure, otherwise nil.

entityp arg

entityp returns t if its argument is an entity, otherwise nil. See section 11.4, page 185 for
information about entities.

SRC:KILMANDED-DTP.TEXT.4 24-JAN-83

Lisp Machinc Manual 11 Predicates

locativep arg
locativep returns 1 if its argument is a locative, otherwise nil.

typep arg &optional fype ,
typep is really two different functions. With one argument, typep is not really a
predicate; it returns a symbol describing the type of its argument. With two arguments,
typep is a predicate which returns t if arg is of type fype, and nil otherwise. Note that
an object can be "of" more than one type, since one type can be a subsct of another.

The symbols that can be returned by typep of one argument are:

:symbol arg is a symbol.

fixnum arg is a fixnum (not a bignum).
:bignum arg is a bignum.

flonum arg is a flonum (not a small-flonum).

:small-flonum arg is a small flonum.

‘rational arg is a rationalnum.

:complex arg is a complexnum.

list arg is a cons.

:locative arg is a locative pointer (see chapter 13, page 197).

:compiled -function ‘
arg is the machine code for a compiled function (sometimes called a
FEF).

:microcode-function
arg is a function written in microcode.

:closure arg is a closure (see chapter 11, page 180).

:select-method
arg is a select-method table (see page 163).

:stack-group arg is a stack-group (see chapter 12, page 186).

:string arg is a string.

:array arg is an array that is not a string.

:random Returned for any built-in data type that does not fit into one of the above
categories.

foo An object of user-defined data type foo (any symbol). The primitive type

of the object could be array, instance, or entity. See Named Structures,
page 312, Flavors, chapter 20, page 321, and Entities section 11.4, page
185.

The type argument to typep of two arguments can be any of the above keyword symbols

(except for :random), the name of a user-defined data type (cither a named structure or a
flavor), or one of the following additional symbols:

SRCKLMAN>FD-DTP.TEXT 4 24-]JAN-83

Predicates 12 Lisp Machine Manual

:atom Any atom (as dctermined by the atom predicate).

linteger Any kind of fixed-point number (fixnum or bignum).

fix The same as :integer.

rational When :rational is used as the sccond argument to typep. integers are

considered rational, cven though typep of a single integer argument will
rewrn fixnum or :bignum rather than :rational.

:float Any kind of floating-point number (flonum or small-flonum).
‘real arg is a number but not a complexnum.
:number Any kind of number.

:named-structure
arg 1S a named structure. typep of one argument returns the named
structure type symbol.

linstance An instance of any flavor. Sece chapter 20, page 321.

:entity An cntity. typep of one argument returns the name of the particular user-
defined type of the entity, rather than :entity.

See also data-type, page 201.

Note that (typep nil) => :symbol, and (typep nil "listy => nil; the latter may be
changed.

The following functions are some other general purpose predicates.

eq x y
(eq x y) => tif and only if x and y are the same object. It should be noted that things
that print the same are not necessarily eq to cach other. In particular, numbers with the
same value need not be eq, and two similar lists are usually not eq.

Examples:

{eq 'a 'b) => nil

{(eq 'a ’a) => t

(eq (cons 'a 'b) (cons 'a 'b)) => nil

(setq x (cons 'a 'b)) (eq x x) => t
Note that in Zetalisp equal fixnums are eq; this is not true in Maclisp. Equality does not
imply eq-ness for other types of numbers. To compare numbers, use =; see page 106.

neq x y
(neg x y) = (not (eq x y)). This is provided simply as an abbreviation for typing
convenience.

eql x y
eql is the same as eq unless both arguments are numbers; in that case, it is the same as

SRCKILMAN>FD-DTP.TEXT 4 24-JAN-83

[.isp Machine Manual 13 Predicates

equal x y
The equal predicate returns t if its arguments arc similar (isomorphic) objects. (cf. eq)
Two numbers arc equal if they have the same value and type (for example, a flonum is
never equal to a fixnum, cven if = is true of them). For conscs, equal is defined
recursively as the two cars being equal and the two cdrs being equal. Two strings are
equal if they have the same length, and the characters composing them are the same; see
string-equal, page 145. Alphabctic casc is ignored (but sce alphabetic-case-affects-
string-comparison, page 144). All other objects are equal if and only if they are eq.
Thus equal could have been defined by:
(defun equal (x y)
(cond ((eq x y) t)
((neq (typep x) (typep y)) nil)
{(numberp x) (= x y))
((stringp x) (string-equal x y))
((listp x) (and {equal (car x) (car y))
(equal (cdr x) (cdr y))))))
As a consequence of the above definition, it can be seen that equal may compute forever
when applied to looped list structure. In addition, eq always implics equal; that is, if
(eq a b) then (equal a b). An intuitive definition of equal (which is not quite correct) is
that two objects are equal if they look the same when printed out. For example:
(setq a ’(1 2 3))
(setq b ’'(1 2 3))
(eq 2 b) => nil
(equal a b) => t
(equal "Foo" "foo") => t
not x
null x

not returns t if x is nil, else nil. null is the same as not; both functions are included for
the sake of clarity. Use null to check whether something is nil; use not to invert the
sense of a logical value. Even though Lisp uses the symbol nil to represent falseness, you
shouldn’t make understanding of your program depend on this fortuitously. For example,
one often writes:

(cond ((not (null Ist)) ...)

(...))
rather than
{(cond (1st ...)

(...))

There is no loss of efficiency, since these will compile into exactly the same instructions.

SRC:KL.MAN>FD-OP.TEXT.2 24-JAN-83

	007
	008
	009
	010
	011
	012
	013

