Evaluation 14 lisp Machine Manual

3. Evaluation

The following is a complete description of the actions taken by the evaluator, given a form to
cvaluate.

If form is a number, the result is form.
If form is a string, the result is form.

If form is a symbol, the result is the value of form, considered as a variable. If form is
unbound, an error is signalled. The way symbols arc bound to values is explained in section 3.1,
page 15 below.

If form is not any of the above types, and is not a list, an error is signalled.

In all remaining cases, form is a list. The evaluator examines the car of the list to figure out
what to do next. There arc three possibilities: this form may be a special form, a macro form,
or a plain old function form. Conceptually, the cvaluator knows specially about all the symbols
whose appearance in the car of a form make that form a special form, but the way the cvaluator
actually works is as follows. If the car of the form is a symbol, the evaluator finds the object in
the function cell of the symbol (sec chapter 6, page 96) and starts all over as if that object had
been the car of the list. If the car isn’t a symbol, then if it's a cons whose car is the symbol
macro, then this is a macro form; if it is a "spccial function” (sec page 164) then this is a
special form; otherwise, it should be a regular function, and this is a function form.

If form is a special form, then it is handled accordingly; each special form works differently.
All of them are documented in this manual. The internal workings of special forms are explained
in more detail on page 164, but this hardly ever affects you.

If form is a macro form, then the macro is expanded as explained in chapter 17.

If form is a function form, it calls for the application of a function to arguments. The car of
the form is a function or the name of a function. The cdr of the form is a list of subforms.
Each subform is evaluated, sequentially. The values produced by evaluating the subforms are
called the "arguments” to the function. The function is then applied to those arguments.
Whatever results the function returns are the values of the original form.

There is a lot more to be said about cvaluation. The way variables work and the ways in
which they are manipulated, including the binding of arguments, is explained in section 3.1, page
15. A basic cxplanation of functions is in section 3.2, page 21. The way functions can return
more than one value is explained in section 3.5, page 33. The description of all of the kinds of
functions, and the means by which they are manipulated, is in chapter 10. Macros are explained
in chapter 17. The evalhook facility, which lets you do something arbitrary whenever the
evaluator is invoked, is explained in section 27.12, page 598. Special forms are described all over
the manual; each special form is in the section on the facility it is part of.

SRC:KLMAN>FD-EVA.TEXT.13 24-JAN-83

Lisp Machine Manual 15 Variables

3.1 Variables

In Zetalisp, variables are implemented using symbols. Symbols are used for many things in
the language, such as naming functions, naming special forms, and being keywords; they are also
useful to programs written in lisp, as parts of data structures. But when the cvaluator is given a
symbol, it trcats it as a variable, using the value cell to hold the value of the variable. If you
evaluate a symbol, you get back the contents of the symbol's value cell.

There are two different ways of changing the value of a variable. One is to ser the variable.
Sctting a variable changes its value to a new Lisp object, and the previous value of the variable is
forgotten. Sectting of variables is usually done with the setq special form.

The other way to change the value of a variable is with binding (also called “lambda-
binding"). When a variable is bound, its old value is first saved away, and then the value of the
variable is made to be the new Lisp object. When the binding is undone, the saved value is
restored to be the value of the variable. Bindings are always followed by unbindings. The way
this is cnforced is that binding is only done by special forms that are defined to bind some
variables, then cvaluate some subforms, and then unbind thosce variables. So the variables are all
unbound when the form is finished. This means that the cvaluation of the form doesn’t disturb
the values of the variables that are bound:; whatever their old value was, before the evaluation of
the form, gets restored when the cvaluation of the form is completed. If such a form is exited by
a non-local exit of any kind, such as *throw (sce page 55) or return (sce page 52), the bindings
are undone whenever the form is exited.

The simplest construct for binding variables is the let special form. The do and prog special
forms can also bind variables, in the same way let does, but they also control the flow of the
program and so are explained clsewhere (sece page 45). let* is just a sequential version of let; the
other special forms below are only used for esoteric purposes.

Binding is an important part of the process of applying interpreted functions to arguments.
This is explained in the next scction.

When a Lisp function is compiled, the compiler understands the use of symbols as variables.
However, the compiled code generated by the compiler does not actually use symbols to represent
variables. Rather, the compiler converts the references to variables within the program into more
efficient references, that do not involve symbols at all. A variable that has been changed by the
compiler so that it is not implemented as a symbol is called a "local” variable. When a local
variable is bound, a memory cell is allocated in a hidden, internal place (the Lisp control stack)
and the value of the variable is stored in this cell. You cannot use a local variable without first
binding it; you can only use a local variable inside of a special form that binds that variable.
Local variables do not have any "top level” value; they do not even exist outside of the form
that binds them.

The variables which are associated with symbols (the kind which are used by non-compiled
programs) are called "special” variables.

Local variables and special variables do not behave quite the same way, because “binding"
means different things for the two of them. Binding a special variable saves the old value away
and then uses the value cell of the symbol to hold the new valuc, as explained above. Binding a

SRCKLMAN>FD-EVA.TEXT.13 24-JAN-83

Variables 16 Lisp Machine Manual

local variable, however, docs not do anything to the symbol. In fact, it creates a ncw memory
cell to hold the value, i.c. a new local variable.

Thus, if you compile a function, it may do different things after it has been compiled. Here
is an cxample:

(setq a 2) ; Sct the variable a to the value 2,
(defun foo () ; Define a function named foo.

(let ((a b)) ; Bind the symbol a to the value 5.

(bar))) ; Call the function bar.

(defun bar () ; Define a function named bar.

a) ; It just returns the value of the variable a.
(foo) => 5 ; Calling foo returns 5.
(compile ’'foo) ; Now compile foo.
(foo) => 2 ; This time, calling foo returns 2.

This is a very bad thing, because the compiler is only supposed to speed things up, without
changing what the function does. Why did the function foo do something different when it was
compiled? Because a was converted from a special variable into a local variable. After foo was
compiled, it no longer had any cffect on the value cell of the symbol a, and so the symbol
retained its old contents, namely 2.

In most uses of variables in Lisp programs, this problem doesn’t come up. The reason it
happened here is because the function bar refers to the symbol a without first binding a to
anything. A reference to a variable that you didn’t bind yourself is called a free reference; in this
example, bar makes a free reference to a.

We mentioned above that you can’t use a local variable without first binding it. Another way
to say this is that you can’t ever have a free reference to a local variable. If you try to do so,
the compiler will complain. In order for our functions to work, the compiler must be told nof to
convert a into a local variable; a must remain a special variable. Normally, when a function is
compiled, all variables in it are made to be "local”. You can stop the compiler from making a
variable local by "declaring” to the compiler that the variable is "special”. When the compiler
sees references to a variable that has been declared special, it uses the symbol itself as the
variable instcad of making a local variable.

Variables can be declared by the special forms defvar and defconst (sce below), or by
explicit compiler declarations (see page 235). The most common use of special variables is as
"global" variables: variables used by many different functions throughout a program, that have
top-level values.

Had bar been compiled, the compiler would have scen the free reference and printed a
warning message: Warning: a declared special. It would have automatically declared a to be
special and proceeded with the compilation. It knows that free references mean that special

SRC:KILMAN>FD-EVA.TEXT.13 24-JAN-83

Iisp Machine Manual 17 Variables

declarations are needed. But when a function is compiled that binds a variable that you want to
be treated as a special variable but that you have not explicitly declared, there is, in general, no
way for the compiler to automatically detect what has happencd, and it will produce incorrect
output. So you must always provide declarations for all variables that you want to be treated as
special variables.

When you make a variable special with defvar or defconst, or with a global special
declaration, the variable becomes special in all functions that use it. You can also declare a
variable special in one function or cxpression only, using local-declare (sec page 233) or a
declare at the front of a function (sce page 234). These techniques are uscful when the special
* variable is needed only for communication between a handful of functions defined near cach
other, or between onc function and its internal functions.

Here are the special forms used for setting variables.

setq {variable value}... Special Form
The setq special form is used to set the value of a variable or of many variables. The
first value is cvaluated, and the first variable is sct to the result. Then the second value is
cvaluated, the second variable is set to the result, and so on for all the variable/value
pairs. setq returns the last value, i.e. the result of the evaluation of its last subform.
Example:

(setq x (+ 3 2 1) y (cons x nil))

x is set to 6, y is set to (6), and the setq form returns (6). Note that the first variable
was set before the second value form was evaluated, allowing that form to use the new
value of x.

psetq {variable value}... Special Form
A psetq form is just like a setq form, except that the variabics are set "in parailei”; first
all of the value forms are evaluated, and then the variables are set to the resulting values.

Example:
(setq a 1)
(setq b 2)
(psetqg a b b a)
a => 2
b =>1

Here are the special forms used for binding variables.

Tet ((var value)...) body... Special Form
let is used to bind some variables to some objects, and evaluate some forms (the "body")
in the context of those bindings. A let form looks like
(et ((varl vforml)
{(var2 vform2)
ced)
bforml
bform2
o)
When this form is evaluated, first the vforms (the values) are cvaluated. Then the vars are
bound to the values returned by the corresponding vforms. Thus the bindings happen in

SRCKL.MAN>FD-EVA.TEXT.13 24-JAN-83

Variables 18 I.isp Machine Manual

parallel; all the vforms arc evaluated before any of the vars arc bound. Finally, the
bforms (the body) arc cvaluated scquentially, the old values of the variables are restored,
and the result of the last bform is returned.

You may omit the vform from a let clause, in which case it is as if the vform were nil:
the variable is bound to nil. Furthermore, you may replace the entire clause (the list of
the variable and form) with just the variable, which also mecans that the variable gets
bound to nil. Example:

(let ((a (+ 3 3))

(b 'foo)
(c)
d)
cel)
Within the body, a is bound to 6, b is bound to foo, ¢ is bound to nil, and d is bound
to nil.
let* ((var value)..) body... Special Form

let* is the same as let except that the binding is sequential. Each var is bound to the
value of its vform before the next vform is cevaluated. This is useful when the computation
of a vform depends on the value of a variable bound in an ecarlier vform. Example:
(Tets ((a (+ 1 2))
(b (+ a a)))
)
Within the body, a is bound to 3 and b is bound to 6.

let-1if condition ((var value)...) body... Special Form
let-if is a variant of let in which the binding of variables is conditional. The variables
must all be special variables. The let-if special form, typically written as
(1et-if cond
((var-1 val-1) (var2 val-2)...)
body-forml body-form2. . .)
first evaluates thc predicate form cond. If the result is non-nil, the value forms val-1,
val-2, etc. are cvaluated and then the variables var-I, var2, etc. are bound to them. If
the result is nil, the vars and vals are ignored. Finally the body forms are evaluated.

let-globally ({var value)...) body... Special Form

let-globally is similar in form to let (see page 17). The difference is that let-globally
does not bind the variables; instead, it saves the old values and sefs the variables, and
sets up an unwind-protect (scc page 56) to sct them back. The important difference
between let-globally and let is that when the current stack group (sec chapter 12, page
186) co-calls some other stack group, the old values of the variables are not restored.
Thus let-globally makes the new values visible in all stack groups and processes that
don’t bind the variables themselves, not just the current stack group.

SRCKL.MANDFD-EVA.TEXT.13 24-JAN-83

Lisp Machinc Manual 19 Variables

progv

progw

symbol-list value-list body... Special Form

progv is a special form to provide the user with extra contro! over binding. It binds a
list of special variables to a list of values, and then evaluates some forms. The lists of
special variables and values arc computed quantities; this is what makes progv different
from let, prog, and do.

progv first evaluates symbol-list and value-list, and then binds cach symbol to the
corresponding value. 1f too few values are supplied, the remaining symbols arc bound to
nil. If too many values are supplied, the excess values are ignored.

After the symbols have been bound to the values, the body forms are evaluated, and
finally the symbols’ bindings arc undone. The result returned is the value of the last form
in the body. :
Example:

(setq a 'foo b ’bar)

(progv (list a b 'b) (list.b)
(1ist a b foo bar))
=> (foo nil bar nil)
During the cvaluation of the body of this progv, foo is bound to bar, bar is bound to
nil. b is bound to nil, and a retains its top-level value foo.

vars-and-vals-form body... Special Form
progw is a somewhat modified kind of progv. Like progv, it only works for special
variables. First, vars-and-val-forms-form is evaluated. Its value should be a list that looks
like the first subform of a let:

((varl val-form-1)

(var2 val-form-2)

.2
Each element of this list is processed in turn, by evaluating the val-form, and binding the
var to the resulting value. Finally, the body forms are evaluated sequentially, the bindings
are undone, and the result of the last form is returned. Note that the bindings are
sequential, not parallel.

This is a very unusual special form because of the way the evaluator is called on the
result of an evaluation. Thus progw is mainly useful for implementing special forms and
for functions part of whose contract is that they call the interpreter. For an example of
the latter, sec sys:*break-bindings* (page 645); break implements this by using progw.

Here are the special forms for defining special variables.

defvar variable [initial-value] [documentation) Special Form

defvar is the recommended way to declare the use of a global variable in a program.
Placed at top level in a file,
(defvar variable initial-value
"documentation™)
declares variable special for the sake of compilation, and records its location in the file for
the sake of the editor so that you can ask to see where the variable is defined. The
documentation string is remembered and returned if you do (documentation ’variable).

SRCKL.MANDFD-EVATEXT.13 24-JAN-83

Variables 20 Lisp Machine Manual

variable is initialized to the result of evaluating the form initial-value unless it alrcady has
a value, in which case it keeps that value. initial-value is not cvaluated unless it is used;
this is uscful if it docs something cxpensive like creating a large data structure.

If you do not wish to give variable any initial value, usc the symbol :unbound as the
initial-value form. This is trcated specially; no attempt is made to evaluate :unbound.

Using a documentation string is better than using a comment to describe the use of the
variable, “because the documentation string is accessible to system programs that can show
the documentation to you while you are using the machine. While it is still permissible to
omit initial-value and thc documentation string, it is recommended that you put a
documentation string in every defvar.

defvar should be uscd only at top level, never in function definitions, and only for global
variables (those used by more than one function). (defvar foo ’'bar) is roughly equivalent
to
(declare (special foo))
(if (not (boundp ’foo))
(setq foo 'bar))

If defvar is used in a patch file (see section 25.7, page 531) or is a single form (not a
region) cvaluated with the cditor’'s compile/cvaluate from buffer commands, if there is an
initial-value the variable is always set to it regardless of whether it is already bound.

defconst variable initial-value [documentation) Special Form

defconst is the same as defvar except that if an initial value is given the variable is
always set to it regardless of whether it is alrcady bound. The rationale for this is that
defvar declares a global variable, whose value is initialized to something but will then be
changed by the functions that use it to maintain some state. On the other hand,
defconst declares a constant, whose value will be changed only by changes o the
program, never by the operation of the program as written. defconst always sets the
variable to the specified value so that if, while developing or debugging the program, you
change your mind about what the constant value should be, and then you evaluate the
defconst form again, the variable will get the new value. It is nor the intent of defconst
to declarc that the value of varigble will never change; for example, defconst is not
license to the compiler to build assumptions about the value of variable into programs
being compiled.

As with defvar, you should include a documentation string in every defconst.

SRCKL.MAN>FD-EVA.TEXT.13 24-JAN-83

Lisp Machine Manual 21 Functions

3.2 Functions

In the description of cvaluation on page 14, we said that cvaluation of a function form works
by applying the function to the results of evaluating the argument subforms. What is a function,
and what does it mean to apply it? In Zetalisp there are many kinds of functions, and applying
them may do many different kinds of things. For full details, see chapter 10, page 154. Here we
will explain the most basic kinds of functions and how they work. In particular, this scction
explains lambda lists and all their important features.

The simplest kind of user-defined function is the lambda-expression, which is a list that looks

like:
(1ambda lambda-list bodyl body?...)

The first clement of the lambda-expression is the symbol lambda; the second clement is a list
called the lambda list, and the rest of the elements are called the body. The lambda list, in its
simplest form, is just a list of variables. Assuming that this simple form is being used, here is
what happens when a lambda expression is applied to some arguments. First, the number of
arguments and the number of variables in the lambda list must be the same, or else an error is
signalled. FEach variable is bound to the corresponding argument value. Then the forms of the
body arc evaluated scquentially. After this, the bindings are all undone, and the value of the last
form in the body is returned.

This may sound something like the description of let, above. The most important difference
is that the lambda-expression is not a form at all; if you try to evaluate a lambda-expression, you
will get told that lambda is not a defined function. The lambda-cxpression is a function, not a
form. A let form gets evaluated, and the values to which the variables are bound come from the
evaluation of some subforms inside the let form; a lambda-expression gets applied, and the values
are the arguments to which it is applied.

The variables in the lambda list are sometimes called parameters, by analogy with other
languages. Some other terminologies would refer to these as formal parameters, and to arguments
as actual parameters.

Lambda lists can have more complex structure than simply being a list of variables. There are
additional features accessible by using certain keywords (which start with &) and/or lists as
elements of the lambda list.

The principal weakness of the simple lambda lists is that any function written with one must
only take a certain, fixed number of arguments. As we know, many very useful functions, such
as list, append, +, and so on, accept a varying number of arguments. Maclisp solved this
problem by the use of lexprs and Isubrs, which were somewhat inelegant since the parameters had
to be referred to by numbers instead of names (e.g. (arg 3)). (For compatibility reasons, Zetalisp
supports lexprs, but they should not be used in new programs.) Simple lambda lists also require
that arguments be matched with parameters by their position in the sequence. This makes calls
hard to read when there are a great many arguments. Keyword parameters cnable the use of
other styles of call which are more readable.

In general, a function in Zetalisp has zero or more positional parameters, followed if desired
by a single rest parameter, followed by zero or more keyword parameters. The positional and
keyword parameters may be required or optional, but all the optional parameters must follow all

SRCKLL.MAN>FD-EVA.TEXT.13 24-JAN-83

Functions 22 Lisp Machinc Manual

the required ones. "The required/optional distinction does not apply to the rest parameter.

The caller must provide cnough arguments so that cach of the required parameters gets
bound, but he may provide extra arguments for some of the optional parameters. Also, if there
is a rest parameter, he can provide as many cxtra arguments as he wants, and the rest parameter
will be bound to a list of all these extras. Optional parameters may have a defauli-form, which is
a form to be cvaluated to produce the default value for the parameter if no argument is supplied.

Positional paramcters are matched with arguments by the position of the arguments in the
argument list. Keyword parameters are matched with their arguments by matching the keyword
name; the arguments nced not appear in the same order as the parameters. If an optional
positional argument is omitted, then no further arguments can be present. Keyword parameters
allow the caller to decide independently for each one whether to specify it.

Here is the exact cxplanation of how this all works. When apply (the primitive function that
applics functions to arguments) matches up the arguments with the parameters, it follows the
_ following algorithm:

Required positional parameters:

The first required positional parameter is bound to the first argument. apply continues to
bind successive required positional parameters to the successive arguments. If, during this
process, there are no arguments left but therc arc stll some required parameters
(positional or keyword) which have not been bound yet, it is an error ("too few
arguments”).

Optional positional parameters:

After all required parameters are handled, apply continucs with the optional positional
parameters, if any. It binds successive parameter to the next argument. If, during this
process, there are no arguments left, each remaining optional parameter’s default-form is
evaluated, and the parameter is bound to it. This is done one parameter at a time; that
is, first onc default-form is evaluated, and then the parameter is bound to it, then the
next default-form is cvaluated, and so on. This allows the default for an argument to
depend on the previous argument.

After the positional parameters:
Now, if there are no remaining parameters (rest or keyword), and there are no remaining
arguments, we are finished. If there are no more parameters but there are still some
arguments remaining, an error is signaled ("too many arguments”). If parameters remain,

all the remaining arguments are used for both the rest parameter, if any, and the keyword
parameters.

Rest parameter:

If there is a rest parameter, it is bound to a list of all the remaining arguments. If there
are no remaining arguments, it gets bound to nil.

Keyword parameters:

SRC:KL.MAN>FD-EVA.TEXT.13 24-JAN-83

Lisp Machinc Manual 23 Functions

If there are keyword parameters, the same remaining arguments are used to bind them, as
follows. :

"The arguments for the keyword parameters are treated as a list of alternating keyword
symbols and associated values. Each symbol is matched with the keyword parameter
names, and the matching keyword paramater is bound to the value which follows the
symbol. All the remaining arguments are treated in this way. Since the arguments are
usually obtained by cvaluation, ‘those arguments which are keyword symbols are typically
quoted in the call; but they do not have to be. The keyword symbols are compared by
means of eq, which means they must be specified in the correct package. The keyword
symbol for a parameter has the same print name as the parameter, but resides in the
keyword package regardless of what package the parameter name itself resides in. (You
can specify the keyword symbol explicitly in the lambda list if you must; sce below.)

If any keyword parameter has not received a value when all the arguments have been
processed, this is an error if the parameter is required. If it is optional, the default-form
for the parameter is evaluated and the parameter is bound to its value.

There may be a keyword symbol among the arguments which does not match any
keyword parameter name. The function itself specifies whether this is an error. If it is
not an error, then the non-matching symbols and their associated values are ignored. The
function can access these symbols and vaiues through the rest parameter, if there is one.
It is common for a function to check only for certain keywords, and pass its rest
parameter to another function using lexpr-funcall; that function will check for the
keywords that concern it.

The way you cxpress which parameters are required, optional, and rest is by means of
speciaily recognized symbols, which are called &-keywords, in the lambda list. All such symbols’
print names begin with the character "&". A list of all such symbols is the value of the symbol
lambda - list-keywords.

The keywords used here are &key, &optional and &rest. The way they are used is best
explained by means of examples; the following are typical lambda lists, followed by descriptions
of which parameters are positional, rest or keyword; and required or optional.

(abc) a, b, and ¢ are all required and positional. The function must be passed three
arguments.

(a b &optional c)
a and b are required, ¢ is optional. All three are positional. The function may
be passed either two or three arguments.

(&optional a b c)
a, b, and ¢ are all optional and positional. The function may be passed any
number of arguments between zero and three, inclusive.

(&rest a) ais a rest parameter. The function may be passed any number of arguments.

(a b &optional ¢ d &rest e)
a and b are required positional, ¢ and d are optional positional, and e is rest
The function may be passed two or more arguments,

SRCKLMAN>FD-EVA.TEXT.13 24-JAN-83

Functions 24 1 .isp Machine Manual

(&key a b) a and b arc both required keyword parameters. A typical call would look like
(foo ':b 69 ':a '(some elements))
This illustrates that the parameters can be matched in either order. 1f a keyword
is specified twice, the first value is used.

(&key a &optional b) :
a is required keyword, and b is optional keyword. The sample call above would
be legal for this function also; so would
(foo ':a '(some elements))
which doesn’t spccify b.

(x &optional y &rest z &key a b)
x is required positional, y is optional positional, z is rest, and a and b are
optional keyword. One or morc arguments are allowed. Onc or two arguments
specify only the positional parameters. Arguments beyond the second specify both
the rest parameter and the keyword parameters, so that
(foo 1 2 *:b ’(a Tist))

specifies 1 for x, 2 for y, (b (a list)) for z, and (a list) for b. It does not
specify a.

(&rest z &key &optional a b c &allow-other-keys)
z is rest, and a, b and ¢ are optional keyword paramcters. &allow-other-keys
says that absolutely any keyword symbols may appear among the arguments; these
symbols and the values that follow them have no cffect on the keyword
parameters, but do become part of the value of z.

(&rest z &key &allow-other-keys)
This is equivalent to (&rest z). So, for that matter, is the previous example, if
the function does not use the values of a, b and c.

In all of the cases above, the default-form for cach optional parameter is nil. To specify your
own default forms, instead of putting a symbol as the clement of a lambda list, put in a list
whose first element is the symbol (the parameter itself) and whose second clement is the default-
form. Only optional parameters may have default forms; required parameters are never defaulted,
and rest parameters always default to nil. For example:

(a &optional (b 3))
The default-form for b is 3. a is a required parameter, and so it doesn’t have a
default form.

(&optional (a 'foo) &rest d &key b (c (symeval a)))
a’s default-form is 'foo, b’s is nil, and c¢’s is (symeval a). Note that if the
function whose lambda list this is were called on no arguments, a would be
bound to the symbol foo, and ¢ would be bound to the value of the symbol foo;
this illustrates the fact that each variable is bound immediately after its default-
form is evaluated, and so later default-forms may take advantage of earlier
parameters in the lambda list. b and d would be bound to nil.

Occasionally it is important to know whether a certain optional parameter was defaulted or
not. You can’t tell from just examining its value, since if the valuc is the default value, there’s
no way to tell whether the caller passed that value explicitly, or whether the caller didn’t pass any
valuc and the parameter was defaulted. The way to tell for sure is to put a third element into

SRCKLMAN>FD-EVA.TEXT.13 24-JAN-83

Lisp Machinc Manual 25 Functions

the list: the third element should be a variable (a symbol), and that variable is bound to nil if
the parameter ‘was not passed by the caller (and so was defauited), or t if the paramcter was
passed. The new variable is called a "supplied-p” variable; it is bound to t if the parameter is
supplied. For example:

(a &optional (b 3 c))
The default-form for b is 3, and the "supplied-p” variable for b is c. If the
function is called with one argument, b will be bound to 3 and ¢ will be bound
to nil. If the function is called with two arguments, b will be bound to the value
that was passed by the caller (which might be 3), and ¢ will be bound to t.

It is possible to specify a keyword parameter’s symbol independently of its parameter name.
To do this, use mo nested lists to specify the parameter. The outer list is the one which can
contain the default-form and supplied-p variable, if the parameter is optional. The first element
of this list, instead of a symbol, is again a list, whose clements are the keyword symbol and the
parameter variable name. For example:

(&key ((:a a)) &optional ((:b b) t))
This is equivalent to (&key a &optional (b t)).

(&key ((:base base-value)))
This allows a keyword which the user will know under the name :base, without
making the parameter shadow the value of base, which is used for printing
numbers.

It is also possible to include, in the lambda list, some other symbols, which are bound to the
values of their default-forms upon entry to the function. These are not parameters, and they are
never bound to arguments; they just get bound, as if they appeared in a let form. (Whether you
use these aux-variables or bind the variables with let is a stylistic decision.)

To include such symbols, put them after any parameters, preceeded by the &-keyword &aux.
Examples:

(a &optional b &rest c &aux d (e 5) (f (cons a e)))
d, e, and f arc bound, when the function is called, to nil, 5, and a cons of the
first argument and 5.

Note that aux-variables are bound sequentially rather than in parallel.

It is important to realize that the list of arguments to which a rest-parameter is bound is set
up in whatever way is most efficiently implemented, rather than in the way that is most
convenient for the function receiving the arguments. It is not guaranteed to be a "real” list
Sometimes the rest-args list is a stack list (see section 5.8, page 80) stored in the function-calling
stack, and loses its validity when the function returns. If a rest-argument is to be returned or
made part of permanent list-structure, it must first be copied (sec copylist, page 66), as you must
always assume that it is one of these special lists. The system will not detect the error of omitting
to copy a rest-argument; you will simply find that you have a value which seems to change
behind your back.

SRCKLMAN>ED-EVATEXT.13 24-JAN-83

Some Functions and Special Forms 26 I.isp Machine Manual

At other times the rest-args list will be an argument that was given to apply; therefore it is
not safe to rplaca this list as you may modify permanent data structure. An attempt to rplacd a
rest-args list will be unsafe in this case, while in the first case it would cause an error, since lists
in the stack arc impossible to rplacd.

There arc some other keywords in addition to those mentioned here. Sce section 10.7, page
168 for a complete list. You neced to know only about &optional, 8key, and &rest in order to
understand this manual. :

3.3 Some Functions and Special Forms

This section describes some functions and special forms. Some arc parts of the cvaluator, or
closcly related to it. Some have to do specifically with issues discussed above such as keyword
arguments. Some are just fundamental Lisp forms that are very important.

eval x
(eval x) evaluates x, and returns the result.
Example:
(setq x 43 foo ’'bar)
(eval (1ist ’'cons x ’'foo))
=> (43 . bar)

It is unusual to explicitly call eval, since usually evaluation is done implicitly. If you are
writing a simple Lisp program and explicitly calling eval, you are probably doing
something wrong. eval is primarily uscful in programs which deal with Lisp itself, rather
than programs about knowledge or mathematics or games.

Also, if you are only interested in getting at the valuec of a symbol (that is, the contents
of the symbol's value cell), then you should use the primitive function symeval (sce page
96).

Note: the actual name of the compiled code for eval is "si:*eval"; this is because use of
the evalhook featurc binds the function cell of eval. If you don't understand this, you
can safely ignore it.

Note: unlike Maclisp, eval ncver takes a second argument; there are no "binding context
pointers™ in Zetalisp. They are replaced by Closures (sce chapter 11, page 180).

apply f arglist

(apply f arglist) applies the function f to the list of arguments arglist. arglist should be a
list; fcan be any function.
Examples:

(setq fred '+) (apply fred '(1 2)) => 3

(setq fred '-) (apply fred '(1 2)) => -1

(apply ’'cons ’((+ 2 3) 4)) =>

((+23) .4) not (5. 4)

SRC:KL.MAN>ED-EVA.TEXT.13 24-JAN-83

LLisp Machine Manual 27 Some Functions and Special Forms

Of course, arglist may be nil.

Note: unlike Maclisp, apply never takes a third argument; there are no "binding context
. pointers” in Zetalisp.

Compare apply with funcail and evai.

funcall f &rest args :
(funcall f al a2 .. an) applics the function f to the arguments al, a2, .., an. f may

not be a special form nor a macro; this would not be meaningful.
Example:

(cons 1.2) => (1 . 2)

(setq cons 'plus)

(funcall cons 1 2) => 3
This shows that the usc of the symbol cons as the name of a function and the use of
that symbol as the name of a variable do not interact. The cons form invokes the
function named cons. The funcall form evaluates the variable and gets the symbol plus,
which is the name of a different function.

lexpr-funcall f &rest args
lexpr-funcall is like a cross between apply and funcall. (lexpr-funcall fal a2 .. anl)
applics the function fto the arguments a/ through an followed by the clements of the list
L
Examples:
(lexpr-funcall ’plus 1 11 °(1 1 1)) => 6

(1expr-funcall ’plus ’(1 2)) => 3

{1expr-funcall ’(car (a})) => a
:Not the same as (eval '(car (a)))

(defun report-error (&rest args)
(1expr-funcall (function format) error-output args))

lexpr-funcall with two arguments does the same thing as apply. lexpr-funcall with only
one argument treats it as a list of a function and some arguments.

Note: the Maclisp functions subrcall, Isubrcall, and arraycall are not needed on the Lisp
Machine: funcall is just as efficient. arraycall is provided for compatibility; it ignores its first
subform (the Maclisp array type) and is otherwise identical to aref. subrcall and Isubrcall are
not provided.

call function &rest argument-specifications
call offers a very general way of controlling what arguments you pass to a function. You
can provide either individual arguments a la funcall or lists of arguments a la apply, in
any order. In addition, you can make some of the arguments optional. 1f the function is
not prepared to accept all the arguments you specify, no error occurs if the excess
arguments are optional ones. Instead, the excess arguments are simply not passed to the
function.

SRCKL.MAN>FD-EVA.TEXT.13 24-JAN-83

Some Functions and Special Forms 28 Iisp Machine Manual

_quote

The argument-specs are alternating keywords (or lists of keywords) and valucs. Each
keyword or list of keywords says what to do with the value that follows. If a value
happens to require no keywords, provide () as a list of keywords for it.

Two keywords are presently defined: :optional and :spread. :spread says that the
following valuc is a list of arguments. Otherwisc it is a single argument. :optional says
that all the following arguments arc optional. It is not nccessary to specify :optional with
all the following argument-specs, because it is sticky.

Example:

(call #°foo () x ’:spread y '(:optional :spread) z () w)
The arguments passed to foo are the value of x, the clements of the value of y, the
elements of the value of z, and the value of w. The function foo must be prepared to
accept all the arguments which come from x and y, but if it docs not want the rest, they
are ignored.

object Special Form
(quote x) simply returns x. It is useful specifically because x is not evaluated; the quote
is how you make a form that returns an arbitrary Lisp object. quote is used to include
constants in a form.
Examples:

(quote x) => x

(setq x (quote (some Tist))) x => (some list)

Since quote is so useful but somewhat cumbersome to type, the reader normnally converts
any form preceded by a single quote (') character into a quote form.
For example,
(setq x ’(some Tlist))
is converted by read into
(setq x (quote (some list)))

function f Special Form

This means different things depending on whether f is a function or the name of a
function. (Note that in neither case is f evaluated.) The name of a function is a symbol
or a function-spec list (sce section 10.2, page 154). A function is typically a list whose car
is the symbol lambda; however, there are several other kinds of functions available (see
section 10.5, page 160).

If you want to pass an anonymous function as an argument to a function, you could just
use quote; for example:
(mapc (quote (lambda (x) (car x))) some-list)

This works fine as far as the evaluator is concerned. However, the compiler cannot tell
that the first argument is going to be used as a function; for all it knows, mapc will
treat its first argument as a picce of list structure, asking for its car and cdr and so forth.
So the compiler cannot compile the function; it must pass the lambda-expression
unmodified. This means that thc function will not get compiled, which will make it
exccute more slowly than it might otherwise.

SRCKIL.MANDED-EVATEXT.13 24-JAN-83

Lisp Machine Manual 29 Some Functions and Special Forms

The function special form is one way to tell the compiler that it can go ahcad and
compile the lambda-expression. You just use the symbol function instead of quote:

(mapc (function (lambda (x) (car x))) some-list)
This will cause the compiler 1 generate code such that mapc will be passed a compiled-
code object as its first argument.

That's what the compiler does with a function special form whose subform fis a function.
The evaluator, when given such a form, just returns f; that is, it treats function just like
quote.

1

To case typing, the rcader converts #’thing into (function thing). So #’ is similar to
except that it produces a function form instead of a quote form. So the above form
could be written as :

(mapc #’(lambda (x) (car x)) some-1list)

If fis not a function but the name of a function (typically a symbol, but in general any
kind of function spec), then function returns the function definition of f; it is like
fdefinition cxcept that it is a special form instead of a function, and so
(function fred) islike (fdefinition 'fred)
which is like (fsymeval ’fred)
since fred is a symbol. function is the same for the compiler and the interpreter when f
is the name of a function.

Another way of explaining function is that it causes f to be treated the same way as it
would as the car of a form. Evaluating the form (f arg/ arg2..) uses the function
definition of fif it is a symbol, and otherwise expects f to be a list which is a lambda-
expression. Note that the car of a form may not be a non-symbol function spec, to avoid
difficult-to-read code. This can be written as

(funcall (function spec) args...)
You should be careful about whether you use #' or . Suppose you have a program
with a variable x whose value is assumed to contain a function that gets called on some
arguments. If you want that variable to be the car function, there are two things you
could say:

(setq x 'car)
or

(setq x #’car)
The former causes the value of x to be the symbol car, whereas the latter causes the
value of x to be the function object found in the function cell of car. When the time
comes to call the function (the program does (funcall x ...)), either of these two will work
(because if you use a symbol as a function, the contents of the symbol’s function cell is
used as the function, as explained in the beginning of this chapter). Using ’car is
insignificantly slower, because the function call has to indirect through the symbol, but it
allows the function to be redefined, traced (sce page 588), or advised (see page 593). The
latter case, while faster, picks up the function definition out of the symbol car and does
not see any later changes to it.

SRCKLMAN>FD-EVA.TEXT.13 24-JAN-83

Some FFunctions and Special Forms 30 Lisp Machine Manual

false

true

The other way to tell the compiler that an argument that is a lambda expression should
be compiled is for the function that takes the function as an argument to use the
&functional keyword in its lambda list; scc section 10.7, page 168. The basic system
functions that take functions as arguments, such as map and sort, have this &functional
keyword and hence quoted lambda-expressions given to them will be recognized as
functions by the compiler.

In fact, mapc uses &functional and so the cxample given above is bogus; in the
particular case of the first argument to the function mapc, quote and function are

synonymous. It is good style to use function (or #’) anyway, to make the intent of the
program completely clear.

Takes no arguments and returns nil.

'Takes no arguments and returns t.

ignore &rest ignore

Takes any number of arguments and returns nil. This is often useful as a "dummy"
function; if you arc calling a function that takes a function as an argument, and you
want to pass one that doesn’t do anything and won’t mind being called with any argument
pattern, use this.

comment Special Form

comment ignores its form and returns the symbol comment.
Example:
(defun foo (x)
(cond ((null x) 0)
(t (comment x has something in it)
(1+ (foo (cdr x))))))

Usually it is preferable to comment code using the semicolon-macro feature of the
standard input syntax. This allows the user to add comments to his code which are
ignored by the Lisp reader.
Example:

(defun foo (x)

{(cond ((null x) 0)
(t (1+ (foo (cdr x)))) ;X has something in it
))

A problem with such comments is that they are discarded when the form is read into
Lisp. If the function is read into Lisp, modificd, and printed out again, the comment
will be lost. However, this style of operation is hardly ever used; usually the source of a
function is kept in an editor buffer and any changes are made to the buffer, rather than
the actual list structure of the function. Thus, this is not a real problem.

SRCKL.MAN>FD-EVA.TEXT.13 24-JAN-83

Lisp Machine Manual 31 Some Functions and Special Forms

progn

progl

prog2

body... Special Form
The body forms are cvaluated in order from left to right and the value of the last one is

_returned. progn is the primitive control structure construct for "compound statements".

Although lambda-cxpressions, cond forms, do forms, and many other control structure
forms use progn implicitly, that is, they allow multiple forms in their bodies, there are
occasions when one needs to cvaluatc a number of forms for their side-cffects and make
them appear to be a single form. ‘
Example:
(foo (cdr a)
(progn (setq b (extract frob))
(car b))
(cadr b))

(When forml is 'compile, the progn form has a special mecaning to the compiler. This is
discussed in section 17.4.3, page 260.)

first-form body... Special Form
prog1 is similar to progn, but it returns the value of its firsr form rather than its last. It
is most commonly used to evaluate an expression with side effects, and return a value
which must be computed before the side effects happen.
Example:

(setq x (progl y (setq y x)))
interchanges the values of the variables x and y. prog1 never returns multiple values.

first-form second-form body... Special Form
prog2 is similar to progn and progi, but it returns its second form. It is included
largely for compatibility with old programs.

See also bind (page 212), which is a subprimitive that gives you maximal control over

binding.

The following three functions (arg, setarg, and listify) exist only for compatibility with
Maclisp lexprs. To write functions that can accept variable numbers of arguments, use the
&optional and &rest keywords (see section 3.2, page 21).

arg x

(arg nil), when evaluated during the application of a lexpr, gives the number of
arguments supplied to that lexpr. This is primarily a debugging aid, since lexprs also
receive their number of arguments as the value of their lambda-variable.

(arg i), when evaluated during the application of a lexpr, gives the value of the i’th
argument to the lexpr. i must be a fixnum in this case. It is an error if i is less than 1

or greater than the number of arguments supplied to the lexpr.

Example:
(defun foo nargs ;define a lexpr foo.
(print (arg 2)) ;print the second argument.
(+ (arg 1) ;return the sum of the first

(arg (- nargs 1)))) ;and nextto last arguments.

SRCALMAN>FD-EVA.TEXT.13 24-JAN-83

Tail Recursion 32 Lisp Machine Manual

setarg i/ x
setarg is used only during the application of a lexpr. (setarg i x) sets the lexpr's i’th
argument to x. { must be greater than zero and not greater than the number of
arguments passed to the lexpr. After (setarg / x) has been done, (arg /) will return x.

listify n
(listify 1) manufactures a list of n of the arguments of a lexpr. With a positive argument
n, it returns a list of the first n arguments of the lexpr. With a ncgative argument n, it
returns a list of the last (abs n) arguments of the lexpr. Basically, it works as if defined
as follows:
(defun Tistify (n)
(cond ((minusp n)
(1istifyl (arg nil) (+ (arg nil) n 1)))
(t
(1istifyl n 1))))

(defun 1istifyl (n m) ; auxiliary function.
(do ((i n (1- 1))
(result nil (cons (arg i) result)))
((< i m) result)))

3.4 Tail Recursion
When one function ends by calling another function (possibly itself), as in

(defun last (x)
(cond ((atom x) x)
((atom (cdr x)) x)
(t (last (cdr x)))))

it is called tail recursion. 1In general, if X is a form, and Y is a sub-form of X, then if the
value of Y is unconditionally returned as the value of X, with no intervening computation, then
we say that X tail-recursively evaluates Y.

In a tail-recursive situation, it is not strictly necessary to remember anything about the first
call to last when the second one is activated. The stack frame for the first call can be discarded
completely, allowing last to use a bounded amount of stack space independent of the length of
its argument. A system which does this is called rail-recursive.

The Lisp machine system works tail recursively if the variablc tail-recursion-flag is non-nil.
This is often faster, because it reduces the amount of time spent in refilling the hardware’s pdl
buffer. Also, it may cause a program to run in an ordinary-size stack instead of periodically
exhausting its stack. However, you forfeit a certain amount of useful debugging information:
once the outer call to last has been removed from the stack, you can no longer see its frame in
the debugger.

SRC:KL.MAN>FD-EVA.TEXT.13 24-JAN-83

Lisp Machine Manual 3 _ Multiple Values

tail-recursion-flag 4 Variable

made in compiled code.

There are many things which can make it dangerous to discard the outer stack frame. For
example, it may have donc a *catch; it may have bound special variables; it may have a &rest
argument on the stack; it may have asked for the location of an argument or focal variable. 'the
system detects all of these conditions automatically and retains the outer stack framc to bring
about proper cxecution. Some of these conditions occur in eval; as a result, interpreted code is

never completely tail recursive.
/

3.5 Multiple Values

The Lisp Machine includes a facility by which the evaluation of a form can produce more
than onc value. When a function neceds to return more than one result to its caller, multiple
values arc a cleaner way of doing this than returning a list of the values or setq’ing special
variables to the extra values. In most Lisp function calls, multiple values are not used. Special
syntax is required both to produce multiple values and to receive them.

The primitive for producing multiple values is values, which takes any number of arguments
and returns that many values. If the last form in the body of a function is a values with three
arguments, then a call to that function will return three values. The other primitive for producing
multiple values is return, which when given more than onc argument returns all its arguments as
the values of the prog or do from which it is returning. The variant return-from also can
produce multiple values. Many system functions produce multiple values, but they all do it via
the values and return primitives.

The special forms for recciving multiple values are multiple-value, multiple -value-bind, and
multiple-value-list. These consist of a form and an indication of where to put the values
returned by that form. With the first two of these, the caller requests a certain number of
returned values. If fewer values are returned than the number requested, then it is exactly as if
the rtest of the values were present and had the value nil. If too many values are returned, the
rest of the values are ignored. This has the advantage that you don’t have to pay attention to
extra values if you don’t care about them, but it does no error checking on the number of values
actually returned.

values &rest args
Returns multiple values, its arguments. This is the primitive function for producing
multiple values. It is legal to call values with no arguments; it returns no values in that
case.

Returns multiple values, the elements of the lisz. (values-list '(a b ¢)) is the same as
(values 'a ’b 'c). list may be nil, the empty list, which causes no values to be returned.

return and its variants can only be used within the do and prog special forms and their
variants, and so they are explained on page 52.

SRCKLMAN>FD-EVA.TEXT.13 24-JAN-83

Multiple Values 34 Lisp Machine Manual

multiple-value (wariable..) form Special Form
multiple-value is a special form used for calling a function which is expected to return
more than onc value. form is cvaluated, and the variables arc set (not lambda-bound) to
the values returned by form. If more values are returned than there are variables, the
extra values arc ignored. If there are more variables than values returned, extra values of
nil arc supplicd. If nil appecars in the var-list, then the corresponding valuc is ignored
(you can’t usc nil as a variable).
Example:

(multiple-value (symbol already-there-p)
(intern "goo"))

In addition to its first value (the symbol), intern returns a second value, which is t if the
symbol returned as the first value was already interned, or else nil if intern had to create
it. So if the symbol goo was alrcady known, the variable already-there-p will be set to
t, otherwise it will be set to nil. The third value returned by intern will be ignored.

multiple-value is usually used for cffect rather than for value; however, its value is
defined to be the first of the valucs returned by form.

multiple-value-bind (variable..) form body... Special Form
This is similar to multiple-value, but locally binds the variables which receive the values,
rather than setting them, and has a body—a set of forms which are evaluated with these
local bindings in effect. First form is evaluated. Then the variables are bound to the
values returned by form. Then the body forms arc evaluated sequentially, the bindings
are undone, and the result of the last body form is returned. '
Example:
(multiple-value-bind (sym already-there)
(intern string)
;5 If an existing symbol was found, deallocate the string.
(if already-there
(return-storage (progl string (setq string nil))))

sym)

multiple-value-list jform Special Form

multiple-value-list evaluates form, and returns a list of the values it returned. This is
uscful for when you don’t know how many values to expect.
Example:

(setq a (multiple-value-list (intern "goo")))

a => (goo nil #<Package USER 10112147>)
This is similar to the example of multiple-value above; a will be set to a list of three
elements, the three values returned by intern.

When one form finished by tail recursively evaluating a subform (see section 3.4, page 32), all
of the subform’s multiple values are passed back by the outer form. For example, the value of a
cond is the value of the last form in the selected clause. If the last form in that clause produces
multiple values, so does the cond. This passing-back of multiple values of course has no effect
unless eventually one of the special forms for receiving multiple values is reached.

SRC:KLLMAN>FD-EVATEXT.13 24-JAN-83

Lisp Machin¢ Manual 35 Multiple Values

If the outer form returns a value computed by a subform, but not in a tail recursive fashion
(for exampie, if the value of the subform is examined first), multiple values or only single values
may be returned at the discretion of the implementation; users should not depend on whatever
way it happens to work, as it may change in the future or in other implementations. The reason
we don’t guarantce non-transmission of multiple values is because such a guarantee would not be
very uscful and the cfficiency cost of enforcing it would be high. Even setq’ing a variable to the
result of a form, then returning the value of that variable, might pass multiple values if an
optimizing compiler realized that the setqing of the variable was unnecessary. Since cxtra
returned values are generally ignored, it is not vital to eliminate them.

Note that use of a form as an argument to a function never reccives multiple values from that
form. That is, if the form (foo (bar)) is evaluated and the call to bar returns many values, foo
will still only be called on one argument (namely, the first value rcturned), rather than being
called on all the values returned. We choose not to generate several separate arguments from the
several valucs, because this would make the source code obscure; it would not be syntactically
obvious that a single form does not correspond to a single argument. Instead, the first value of a
form is used as the argument and the remaining values are discarded. Receiving of multiple
valucs is done only with the above-mentioned special forms.

For clarity, descriptions of the interaction of several common special forms with multiple
values follow. This can all be deduced from the rule given above. Note well that when it says
that multiple values are not returned, it really means that they may or may not be returned, and
you should not write any programs that depend on which way it works.

The body of a defun or a lambda, and variations such as the body of a function, the body
of a let, etc., pass back multiple values from the last form in the body.

evai, apply, funcali, and iexpr-funcaii pass back muitipie vaiucs from the function calied.

progn passes back multiple values from its last form. progv and progw do so also. prog1
and prog2, however, do not pass back multiple values.

Multiple values are passed back from the last subform of an and or or form, but not from
previous forms since the return is conditional. Remember that multiple values are only passed
back when the value of a sub-form is unconditionally returned from the containing form. For
example, consider the form (or (foo) (bar)). If foo returns a non-nil first value, then only that
value will be returned as the value of the form. But if it returns nil (as its first value), then or
returns whatever values the call to bar returns.

cond passes back multiple values from the last form in the sclected clause, provided that that
last form’s value will be returned unconditionally. This is true if the clause has two or more
forms in it, and is always true for the last clause.

The variants of cond such as if, select, selectq, and dispatch pass back multiple values
from the last form in the selected clause.

The number of values returned by prog depends on the return form used to return from the

prog. (If a prog drops off the end it just returns a single nil.) If return is given two or more
subforms, then prog will return as many values as the return has subforms. However, if the

SRCKLMAN>FD-EVA.TEXT.13 24-JAN-83

Evaluator Errors 36 Lisp Machine Manual

return has only onc subform, then the prog will return all of the values returned by that one
subform. '

do behaves like prog with respect to return. All the values of the last exit-form are returned.

unwind-protect passes back multiple values from its protected form. In a sense, this is an
cxception to the rule; but it is useful, and it makes sense to consider the exccution of the
unwind forms as a byproduct of unwinding the stack and not as part of sequential execution.

*catch does not pass back multiple values from the last form in its body, because it is
defined to return its own second value (sce page 54) to tell you whether the *catch form was
exited normally or abnormally. To do a catch and propagate multiple values, use catch-
continuation.

3.6 Evaluator Errors

Here is a description of the error conditions that the evaluator can signal. This is for use by
those who are writing condition handlers (section 27.2, page 554). The novice should skip this
section.

sys:invalid-form (error) Condition
This is signaled when eval's argument is not a recognizable kind of form; the wrong data
type, perhaps. The condition instance supports the opecration :form, which returns the
supposed form to be evaluated.

sys:invalid-function (error) Condition
This is signaled when eval or apply finds an object that is supposed to be applied to
arguments, but it is not a valid Lisp function. The condition instance supports the
operation :function, which returns the supposed function to be called.

The :new-function proceed type is provided; it expects one argument, a function to call
instead.

sys:invalid-lambda-1ist (sys:invalid-function error) Condition
This condition name is present in addition to sys:invalid-function when the function to
be called looks like an interpreted function, and the only problem is the syntax of its
lambda tist.

sys:too-few-arguments (error) Condition
This condition is signaled when a function is applied to too few arguments. The condition
instance supports the operations :function and :arguments which return the function and
the list of the arguments provided.

The proceed types :additional-arguments and :new-argument-list are provided.” Both
take one argument. In the first case, the argument is a list of arguments to pass in
addition to the ones supplied. In the second, it is a list of arguments to replace the ones
actually supplied.

SRCKL.MAN>FD-EVA.TEXT.13 24-JAN-83

[isp Machine Manual 37 Evaluator Errors

sys:too-many-arguments (error) Condition
type, :fewer-arguments is provided. Its argument is a number, which is how many of
the originally supplied arguments to usc in calling the function again.

sys:missing-keyword-argument (error) Condition
‘T'his is signaled when a required keyword argument is missing. The :keyword operation
on the condition instance returns the missing keyword.

The proceed type :argument-value is provided. It expects onc argument, which is a
value to use for the keyword argument.

sys:undefined-keyword-argument (error) _ Condition
This is signaled when a function that takes keyword arguments is given a keyword that it
does not accept and &allow-other-keys was not used. The :keyword operation on the
condition instance returns the extrancous keyword, and the :value operation returns the
value supplied with it.

The proceed type :new-keyword is provided. It expects one argument, which is a
keyword to use instead of the one supplied.

sys:cell-contents-error (error) Condition Flavor
This condition name categorizes all the errors signaled because of "undefined” objects
found in memory. It includes "unbound" variables, "undefined” functions, and other

things.
:address A locative pointer to the referenced cell.

current-address
A locative pointer to the cell which currently contains the contents that are

found in the referenced cell when the erring stack group is running. This
can be different from the original address in the case of special variable
bindings, which move between special PDLs and symbol value celis.

:cell-type A keyword saying what type of cell was referred to: :function, :value,
:closure, or nil for a cell that is not one of those.

:containing-structure
The object (list, array, symbol) inside which the referenced memory cell is

found.

:data-type
:pointer The data type and pointer fields of the contents of the memory cell, at

the time of the error. Both are fixnums.

The proceed type :no-action takes no argument. If the cell’s contenis are now valid, the
program proceeds, using them. Otherwise the error happens again.

The proceed type :package-dwim looks for symbols with the same name in other
packages; but only if the containing structure is a symbol.

SRCKL.MAN>FD-EVA.TEXT.13 24-JAN-83

Fvaluator Errors 38 [.isp Machine Manual

Two other proceed types take one argument: :new-value and :store-new-value. The
argument is used as the contents of the memory cell. :store-new-value also permanently
stores the argument into the cell.

sys:unbound-variabls (sys:cell-contents-error error) Condition
This condition name categorizes all errors of variables which arc unbound.

sys:unbound-special-variable : Condition
sys:unbound-closure-variable Condition
sys:unbound-instance-variable Condition

These condition names appear in addition to sys:unbound-variable to subcategorize the
kind of variable reference that the error happened in.

sys:undefined-function (sys:cell-contents-error error) Condition
This condition name categorizes errors of function specs that are undefined.

sys:wrong-type-argument (error) Condition
This is signaled when a function checks the type of its argument and rejects it; for
example, if you do (car 1).
The condition instance supports these extra operations:

:arg-name The name of the argument that was crroneous. This may be nil if there is
no name, or if the system no longer remembers which argument it was.

:old-value The value that was supplied for the argument.
:function The function which received and rejected the argument.
:description A symbol which says what sort of object was expected for this argument.

The procecd type :argument-value is provided; it expects one argument, which is a
value to use instead of the erroneous value.

sys:throw-tag-not-seen (error) Condition
This is signaled when *throw (or *unwind-stack) is used and there is no *catch for the
specified tag. The condition instance supports these extra operations:

‘tag The tag being thrown to.

:value The value being thrown (the second argument to *throw).

:count

:action The additional two arguments given to *unwind-stack, if that was used.

The error occurs in the environment of the *throw; no unwinding has yet taken place.

The proceed type :new-tag expects one argument, a tag to throw to instead.

SRCKL.MAN>FD-EVA.TEXT.13 24-JAN-83

	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038

