Lisp Machine Manual 39 A Flow of Control

4. Flow of Control

Lisp provides a variety of structurcs for flow of control.

Function application is the basic methed for construction of programs. Operations are written
as the application of a function to its arguments. Usually, lLisp programs arc written as a large
collection of small functions, cach of which "implements a simple operation. These functions
operate by calling one another. and so larger operations are defined in terms of smaller ones.

A function may always call itself in Lisp. The calling of a function by itself is known as
recursion; it is analogous to mathematical induction.

The performing of an action repeatedly (usually. with some changes between repetitions) is
called iteration, and is provided as a basic control structure in most languages. The do statcment
of PL/1, the for statement of ALGOL/60, and so on are cxamples of iteration primitives. Lisp
provides two general itcration facilities: do and loop, as well as a variety of special-purpose
iteration facilitics. (loop is sufficiently complex that it is explained in its own chapter later in the
manual; sec page 274.) There is also a very general construct to allow the traditional "goto”
control structure, called prog.

A conditional construct is one which allows a program to make a decision, and do one thing
or another based on some logical condition. Lisp provides the simple one-way conditionals and
and or, the simple two-way conditional if, and more general multi-way conditionals such as cond
and selectq. The choice of which form to use in any particular situation is a matter of personal
taste and style.

There are some non-local exit control structures, analogous to the leave, exit, and escape
constructs in many modern languages. The general ones are *catch and *throw; there is also
return and its variants, used for exiting the iteration constructs do, loop, and prog.

Zetalisp also provides a coroutine capability, explained in the section on stack-groups (chapter
12, page 186), and a multiple-process facility (sce chapter 26, page 538). There is also a facility
for generic function calling using message passing; see chapter 20, page 321.

4.1 Conditionals |

if Special Form
if is the simplest conditional form. The "if-then" form looks like:
(if predicate-form then-form)
predicate-form is evaluated, and if the result is non-nil, the then-form is evaluated and its
result is returned. Otherwise, nil is returned.

In the "if-then-else” form, it looks like

(if predicate-form then-form else-form)
predicate-form is cvaluated, and if the result is non-nil, the then-form is evaluated and its
result is returned. Otherwise, the else-form is evaluated and its result is returned.

SRCKLMAN>FD-FLO.TEXT.3 24-JAN-83

Conditionals 40 Lisp Machine Manual

If there are more than three subforms, if assumes you want more than one else-form: if
the predicatc returns nil, they are evaluated scquentially and the result of the last one is
returned.

when condition body... Special Form
If condition cvaluates to something non-nil, the body is exccuted and its value(s) returned.
Otherwise, the value of the when is nil and the body is not exccuted.

unless condition body... Special Form
If condition cvaluates to nil, the body is exccuted and its value(s) returned. Otherwise,
the value of the unless is nil and the body is not executed.

cond » Special Form
The cond special form consists of the symbol cond followed by several clauses. Each
clause consists of a predicate form, called the antecedent, followed by zero or more
consequent forms.

cond (antecedent consequent consequent. . .
q
(antecedent)
(antecedent consequent . . .)

)

The idea is that each clause represents a case which is selected if its antecedent is satisfied
and the antecedents of all preceding clauses were not satisfied. When a clause is selected,
its consequent forms are evaluated.

cond processes its clauses in order from left to right. First, the antecedent of the current
clause is evaluated. If the result is nil, cond advances to the next clause. Otherwise, the
cdr of the clause is treated as a list of consequent forms which are evaluated in order
from left to right. After evaluating the consequents, cond returns without inspecting any
remaining clauses. The value of the cond special form is the value of the last consequent
evaluated, or the value of the antecedent if there were no consequents in the clause. If
cond runs out of clauses, that is, if every antecedent evaluates to nil, and thus no case is
selected, the value of the cond is nil.

Example:
(cond ((zerop x) ; First clause:
(+y 3)) ; (zerop x)isthe antecedent.
; (+ y 3)istheconsequent.
((null y) ;A clause with 2 consequents:

(setq y 4) ; this
(cons x z)) ;and this.

(z) ; A clause with no consequents: the antecedent is
; just z. If z is non-nil, it will be returned.
(t ; An antecedent of t
105) ; is always satisfied.
) ; This is the end of the cond.

SRC:KL.MAN>FD-FLO.TEXT.3 24-JAN-83

Lisp Machine Manual 41 Conditionals

cond-every Special Form
cond-every has the same syntax as cond, but cxecutes every clause whose predicate is
satisfied, not just the first. If a predicate is the symbol otherwise, it is satisfied if and
only if no prcccding predicate is satisfied. The value returned is the valuce of the last

consequent form in the last clause whose predicate is satisfied. Multiple values are not
returned.
and jform... ' Special Form

and cvaluates the forms one at a time, from left to right. If any form evaluates to nil,
and immediately returns nil without evaluating the remaining forms. If all the forms
evaluate to non-nil values, and returns the value of the last form.

and can be used in two different ways. You can use it as a logical and function, bccause
it returns a truc value only if all of its arguments are true. So you can use it as a
predicate:
(if (and socrates-is-a-person
all-people-are-mortal)
(setq socrates-is-mortal t))

Because the order of evaluation is well-defined, you can do
(if (and (boundp ’x)
(eq x 'foo))
(setq y 'bar))
knowing that the x in the eq form will not be evaluated if x is found to be unbound.

You can also use and as a simple conditional form:
(and (setq temp (assq x y))
(rplacd temp z))
(and bright-day
glorious-day
{princ "It is a bright and glorious day."))

Note: (and) =>t, which is the identity for the and operation.

or form... » Special Form
or evaluates the forms one by one from left to right. If a form evaluates to nil, or
proceeds to evaluate the next form. If there are no more forms, or returns nil. But if a
JSorm evaluates to a non-nil value, or immediately returns that value without evaluating
any remaining forms.

As with and, or can be used either as a logical or function, or as a conditional.
(or it-is-fish
it-is-fowi

(print "It is neither fish nor fowl."))

Note: (or) => nil, the identity for this operation.

SRC:KLMAN>FD-FLO.TEXT.3 24-JAN-83

Conditionals 42 Lisp Machine Manual

selectq Special Form
selectq is a conditional which chooses one of its clauses to exccute by comparing the
value of a form against various constants, which are typically keyword symbols. Its form
is as follows:
(selectq key-form

(test consequent consequent . . .)

(test consequent consequent . . .}

(test consequent consequent . . .)
)

The first thing selectq docs is to evaluate key-form; call the resulting value key. Then
selectq considers cach of the clauses in turn. If key matches the clause’s test, the
consequents of this clause are evaluated, and selectq returns the value of the last
consequent. If there are no matches, selectq returns nil.

A test may be any of:

1) A symbol If the key is eq to the symbol, it matches.

2) A number If the key is eq to the number, it matches. Only small
numbers (fixnums) will work.

3) Alist If the key is eq to one of the elements of the list, then it
matches. The elements of the list should be symbols or
fixnums.

4) t or otherwise The symbols t and otherwise are special keywords which

match anything. Either symbol may be used, it makes no
difference; t is mainly for compatibility with Maclisp’s
caseq construct. To be uscful, this should be the last
clause in the selectq.

Note that the tests are not evaluated; if you want them to be evaluated use select rather
than selectq.
Example:
(selectq x
(foo (do-this))
(bar (do-that))
((baz quux mum) (do-the-other-thing))
(otherwise (ferror nil "Never heard of ~S" x)))
is equivalent to '
(cond ((eq x ’foo) (do-this))
({(eq x ’bar) (do-that))
((memg x ’(baz quux mum)) (do-the-other-thing))
(t (ferror nil "Never heard of ~S" x)))

Also see defselect (page 167), a special form for defining a function whose body is like a
selectq.

SRC:KLMAN>FD-FLO.TEXT.3 24-JAN-83

Lisp Machince Manual 43 Conditionals

select Special Form
select-is the same as selectq, except that the clements of the /ests are evaluated before
~ they are used.

This creates a syntactic ambiguity: if (bar baz) is seen the first clement of a clause, is it
a list of two forms, or is it one form? select interprets it as a list of two forms. If you
want to have a clausec whose test is a single form, and that form is a list, you have to
write it as a list of one form.
Example:
{select (frob x)
(foo 1)
((bar baz) 2)
({({current-frob)) 4)
(otherwise 3))
is equivalent to
(let ({var (frob x)))
(cond ((eq var foo) 1)
((or {eq var bar) (eq var baz)) 2)
((eq var (current-frob)) 4)

(t 3)))

selector Special Form
selector is the same as select, except that you get to specify the function used for the
comparison instead of eq. For example,
(selector (frob x) equal
((’(one . two)) {frob-one x))
((’(three . four)) (frob-three x))
{(otherwise (frob-any x)))
is equivalent to
(1et ({var (frob x)))
(cond ((equal var ’{one . two)) (frob-one x))
((equal var ’(three . four)) (frob-three x))
(t (frob-any x})))

select-match Special Form
select-match is like select but each clause can specify a pattern to match the key
against. The general form of use looks like
(select-match key-form
(pattern condition body. . .)
(pattern condition body. . .)

(otherwise body...))

The value of key-form is matched against the patferns one at a time until a match
succeeds and the accompanying condition evaluates to something non-nil. At this point the
body of that clause is executed and its value(s) returned.

SRCKLMAN>FD-FLO.TEXT.3 24-JAN-83

Conditionals 44 l.isp Machinc Manual

The patterns can be arbitrary s-expressions, with variables significd by # ?variable. When
the pattern is matched against the object, the variables arc to bound to their matched
values. Different occurrences of the same variable in a given pattern must match to the
same thing, so that
(select-match '(a b c)

((#7x b #7x) t ’lose)

((#2x b #7y) t ’win)

(otherwise ’'lose-big))
returns win. The variables mentioned in the patrerns need not be bound by the user;
they are bound by the expression resulting from the expansion of the select-match.

The expression # ?ignore or # 7nil matches everything and binds no variable. # ?nil is
preferred.

dispatch Special Form
{dispatch byte-specifier number clauses...) is the same as select (not selectq), but the key
is obtained by evaluating (Idb byte-specifier number). byte-specifier and number are both
evaluated. Byte specifiers and Idb arc explained on page 116.
Example:
(princ (dispatch 0202 cat-type

(0 "Siamese.")

(1 "Persian.")

(2 "Alley.")

(3 (ferror nil

"~S is not a known cat type."

cat-type))))

It is not necessary to include all possible values of the byte which will be dispatched on.

selectq-every Special Form
selectq-every has the same syntax as selectq, but, like cond-every, executes every
sclected clause instcad of just the first one. If an otherwise clause is present, it is
selected if and only if no preceding clause is selected. The value returned is the value of
the last form in the last selected clause. Multiple values are not returned. Example:
(selectg-every animal

((cat dog) (setq legs 4))

((bird man) (setq legs 2))

((cat bird) (put-in-oven animal))

((cat dog man) (beware-of animal)))

caseq Special Form
The caseq special form is provided for Maclisp compatibility. It is exactly the same as
selectq. This is not perfectly compatible with Maclisp, becausc selectq accepts otherwise
as well as t where caseq would not accept otherwise, and because Maclisp does some
errorchecking that selectq does not. Maclisp programs that use caseq will work
correctly so long as they don’t use the symbol otherwise as the key.

SRC:KLMAN>FD-FLO.TEXT.3 24-JAN-83

Lisp Machine Manual 45 _ Iteration

4.2 Iteration

do

Special Form

The do special form provides a simple gencralized iteration facility, with an arbitrary
number of "index variables” whose values are saved when the do is entered and restored
when it is left. ie. they arc bound by the do. The index variables arc used in the
iteration performed by do. At the beginning, they arc initialized to specified values, and
then at the end of cach trip -around the loop the values of the index variables are
changed according to specified rules. do allows the programmer to specify a predicate
which dctermines when the iteration will terminate. The valuc to be returned as the result
of the form may, optionally, be specified.

do comes in two varieties.

The more general, so-called "new-style” do looks like:
(do ((varinitrepeat) ...)
(end-test exit-form . ..)
body. . .)

The first item in the form is a list of zero or more index variable specifiers. Each index
variable specifier is a list of the name of a variable var, an initial value form inif, which
defaults to nil if it is omitted, and a repeat value form repear. If repeat is omitted, the
var is not changed between repetitions. If irit is omitted, the var is initialized to nil.

An index variable specifier can also be just the name of a variable, rather than a list. In
this case, the variable has an initial value of nil, and is not changed between repetitions.

All assignment to the index variables is done in parallel. At the beginning of the first
iteration, all the inir forms are evaluated, then the vars are bound to the values of the
init forms, their old values being saved in the usual way. Note that the inif forms are
evaluated before the vars are bound, ie. lexically outside of the do. At the beginning of
cach succeeding iteration those vars that have repeat forms get set to the values of their
respective repeat forms. Note that all the repeat forms are evaluated before any of the
vars is set.

The second element of the do-form is a list of an end-testing predicate form end-test, and
zero or more forms, called the exit-forms. This resembles a cond clause. At the
beginning of cach iteration, after processing of the variable specificrs, the end-lest is
evaluated. If the result is nil, exccution proceeds with the body of the do. If the result
is not nil, the exit-forms arc evaluated from left to right and then do returns. The value
of the do is the value of the last exit-form, or nil if there were no exit-forms (not the
value of the end-fest, as you might expect by analogy with cond).

Note that the end-fest gets evaluated before the first time the body is evaluated. do first
initializes the variables from the init forms, then it checks the end-test, then it processes
the body, then it deals with the repeat forms, then it tests the end-fest again, and so on.
If the end-test returns a non-nil value the first time, then the body will never be
processed.

SRC:KLMAN>FD-FLO.TEXT.3 24-JAN-83

Iteration 46 Lisp Machine Manual

If the sccond clement of the form is nil, there is no end-test nor exit-forms, and the body
of the do is executed only once. “In this type of do it is an error to have repeats. This
type of do is no more powerful than let; it is obsolete and provided only for Maclisp
compatibility.

If the sccond clement of the form is (nil), the end-test is never true and there are no
exit-forms. 'The body of the do is cxecuted over and over. The infinite loop can be
terminated by use of return or *throw.

If a return special form is evaluated inside the body of a do, then the do immediately
stops, unbinds its variables, and returns the values given to return. Sce page 52 for more
details about return and its variants. go special forms (sec page 52) and prog-tags can
also be used inside the body of a do and they mcan the same thing that they do inside
prog forms, but we discourage their use since they complicate the control structure in a
hard-to-understand way.

The other, so-called "old-style” do looks like:
(do var init repeat end-test body...)

The first time through the loop var gets the valuc of the init form; the remaining times
through the loop it gets the valuc of the repear form, which is re-cvaluated each time.
Note that the init form is evaluated before var is bound, i.e. lexically outside of the do.
Each time around the loop, after var is set, end-test is cvaluated. If it is non-nil, the do
finishes and returns nil. If the end-test evaluated to nil, the body of the loop is exccuted.
As with the new-style do, return and go may be used in the body, and thcy have the
same meaning.

Examples of the older variety of do:
(setq n (array-length foo-array))
(do i 0 (1+ i) (= i n)
(aset 0 foo-array i)) ;zeroes out the array foo-array

(do zz x (cdr zz) (or (null zz)
(zerop (f (car zz)))))
; this applies f to each element of x
; continuously until f returns zero.
; Note that the do has no body.

return forms arc often useful to do simple searches:
(do i 0 (1+ i) (= i n) ;Iterate over the length of foo-array.
(and (= (aref foo-array i) 5) ;Ifwe find an element which

;equals 5,
(return i))) ; then return its index.
Examples of the new form of do:
(do ((i 0 (1+ 1)) ; This is just the same as the above example,
(n (array-length foo-array)))
((= i n)) ; but written as a new-style do.

(aset 0 foo-array i)) ;Note how the setq is avoided.

SRC:KL.MAN>FD-FLO.TEXT.3 24-JAN-83

[Lisp Machine Manual 47 Itcration

(do {{z Vist {cdr.z)) ;zstartsaslistand is cdr'd cach time.
(y other-list) ;ystartsas other-list, and is unchanged by the do.
(x) : x starts as nil and is not changed by the do.
w) ; w starts as nil and is not changed by the do.
(nil) : The end-test is nil, so this is an infinite loop.

body) : Presumably the body uscs return somewhere.

The construction
(do ((x e (cdr x))
(oldx x x))
({null x))

body)
exploits parallel assignment to index variables. On the first iteration, the value of oldx is
whatever value x had before the do was entered. On succeeding iterations, oldx contains
the value that x had on the previous iteration.

In either form of do, the body may contain no forms at all. Very often an iterative
algorithm can be most clearly expressed entirely in the repeais and exit-forms of a new-
style do, and the body is empty.

{do {{x x (cdr xj})
(y y (cdr y))
(z nil (cons (f x y) z))) ;exploits parallel assignment.
((or {null x) (null y))
(nreverse 2)) ;typical use of nreverse.
) ;no do-body required.

s 2

islike (maplist °f x y) (seepage57).
Also sec loop (page 274), a general iteration facility based on a keyword syntax rather than a list-
structure syntax.

do* Special Form
In a word, do* is to do as prog* is to prog.

do* works like do but binds and steps the variables sequentially instead of in parallel.
This means that the inif form for one variable can use the values of previous variables.
The repeat forms refer to the new values of previous variables instead of their old values.
Here is an example:
(do* ((x x1ist (cdr x))
(y (car x) (car x)))
(print (list x y)})

On each iteration, y’s value will be the car of x. The same construction with do would
get an error on entry since x would not have an old value yet.

SRCKLMAN>FD-FLO.TEXT.3 24-JAN-83

[teration 48 Lisp Machinc Manual

do-named Special Form
Sometimes one do is contained inside the body of an outer do. The return function
always retrns from the innermost surrounding do, but sometimes you want to return
from an outer do while within an inner do. You can do this by giving the outer do a
name. You usec do-named instead of do for the outer do, and usc return-from (see
page 53), specifying that name, to return from the do-named.

The syntax of do-named is like do except that the symbol do is immediately followed by
the name, which should be a symbol.

Example:

(do-named george ((a 1 (1+ a))
(d "foo))
((> a4)7)
(do ((c b (cdr c)))
((null c))

(return-from george (cons b d))

--))

If the symbol t is used as the name, then it will be made "invisible" to returns; that is,
returns inside that do-named will rcturn to the next outermost level whose name is not
t. (return-from t ..) will return from a do-named named t. This feature is not
intended to be used by user-written code: it is for macros to expand into.

If the symbol nil is used as the name, it is .as if this were a regular do. Not having a
name is the same as being named nil.

progs and loops can have names just as dos can. Since the same functions are used to
return from all of these forms, all of these names are in the same name-space; a return
returns from the innermost enclosing iteration form, no matter which of these it is, and
so you need to use names if you nest any of them within any other and want to return to
an outer one from inside an inner one.

do*-named Special Form
This special form offers a combination of the features of do* and those of do-named.

dotimes (index count [value-expression]) body... Special Form
dotimes is a convenicnt abbreviation for the most common integer iteration. dotimes
performs body the number of times given by the value of count, with index bound to 0,
1, etc. on successive itcrations. When the count is exhausted, the value of value-
expression is returned; or nil, if value-expression is missing.
Example:
(dotimes (i (// m n))
(frob i))
is equivalent to:

SRC:KLMAN>FD-FLO.TEXT.3 24-]JAN-83

[Lisp Machine Manual 49 Iteration

(do ((i 0 (1+ 1))
(count (// m™n)))
({2 i count))
(frob i))
except that the name count is not used. Note that i takes on values starting at zero
rather than one, and that it stops before taking the valuc (// m n) rather than after.
You can use return and go and prog-tags inside the body, as with do. dotimes forms
return nil or the value of value-expression unless returned from explicitly with return. For
example:
(dotimes (i 5)
(if (eq (aref a i) ’foo)
(return i)))
This form scarches the array that is the value of a, looking for the symbol foo. It
returns the fixnum index of the first element of a that is foo, or else nil if none of the
elements are foo.

dolist (item list [value-expression}) body... Special Form
dolist is a convenient abbreviation for the most common list iteration. dolist performs
body once for cach clement in the list which is the value of lisf, with item bound to the
successive elements. If the list is exhausted, the value of value-expression is returned; or
nil, if value-expression is missing.
Example:
(dolist (item (frobs foo))
{mung item))
is equivalent to:
(do ((1st (frobs foo) (cdr 1st))
{item))
({(nuil 1st))
(setq item (car 1st))
(mung item))
except that the name Ist is not used. You can use return and go and prog-tags inside
the body, as with do.

do-forever body... Special Form
Executes the forms in the body over and over, or until one exits with return.

keyword-extract Special Form
keyword-extract is a semi-obsolete method of decoding keyword arguments, used before
8key (see page 23) was implemented. The form
(keyword-extract key-list iteration-var
keywords flags other-clauses. . .)

evaluates to the list of keyword arguments; it is generally the function’s &rest argument.
iteration-var is a variable used to iterate over the list; sometimes other-clauses will use the
form

(car (setq iteration-var (cdr iteration-var)))
to extract the next element of the list. (Note that this is not the same as pop, because it
does the car after the cdr, not before.)

SRCALMAN>FD-FLO.TEXT.3 24-JAN-83

Iteration 50 Lisp Machine Manual

keywords dcfines the symbols which are keywords to be followed by an argument. Each
clement of keywords is cither the name of a local variable which receives the argument
and is also the keyword. or a list of the keyword and the variable, for use when they are
different or the keyword is not to go in the keyword package. Thus if keywords is (foo
(ugh bletch) bar) then the keywords recognized will be :foo, ugh, and :bar. If :foo is
specified its argument will be stored into foo. If :bar is specificd its argument will be
stored into bar. If ugh is specified its argument will be stored into bletch.

Note that keyword-extract does not bind these local variables; it assumes you will have
done that somewhere elsc in the code that contains the keyword-extract form.

flags defines the symbols which are keywords not followed by an argument. If a flag is
seen its corresponding variable is set to t. (You are assumed to have initialized it to nil
when you bound it with let or &aux.) As in keywords, an clement of flags may be cither
a variable from which the keyword is deduced, or a list of the keyword and the variable.
Note: this style of calling convention is now considered undesirable. The gain in
uniformity from requiring an explicit value with each keyword greatly outweighs the
convenience of not having to say t.

If there are any other-clauses. they arc selectq clauses sclecting on the keyword being
processed. These clauses arc for handling any keywords that are not handled by the
keywords and flags elements. These can be used to do special processing of certain
keywords for which simply storing the argument into a variable is not good enough. After
the other-clauses there will be an otherwise clause to complain about any undefined
keywords found in key-lisi.

prog Special Form
prog is a special form which provides temporary variables, sequential evaluation of forms,
and a "goto" facility. A typical prog looks like:
(prog (varlvar? (var3init3) vard (varsinit5))
lagl
statement]
statement2
tag?

statement3

)
The first subform of a prog is a list of variables, each of which may optionally have an
initialization form. The first thing evaluation of a prog form does is to evaluate all of the
init forms. Then each variable that had an inir form is bound to its value, and the
variables that did not have an init form are bound to nil.
Example:

(prog ((a t) b (c 5) (d (car ’(zz . pp))))
body. ..
)

The initial value of a is t, that of b is nil, that of ¢ is the fixnum 5, and that of d is
the symbol zz. The binding and initialization of the variables is done in parallel; that is,
all the initial values arc computed before any of the variables are changed. prog* (see
page 52) is the same as prog except that this initialization is scquential rather than

SRC:KLMAN>FD-FLO.TEXT.3 24-JAN-83

Lisp Machine Manual 51 A Iteration

parallel.

The part of a prog after the variable list is called the body. Each clement of the body is
cither a symbol, in which case it is called a rag, or anything clsc (almost always a list),

in which casc it is called a statement.

After prog binds the variables, it processes cach form in its body sequentially. rags are
skipped over. statements are evaluated, and their returned values discarded. If the end of
the body is reached, the prog returns nil. However, two special forms may be used in
prog bodies to alter the flow of control. If (return x) is cvaluated, prog stops processing
its body, evaluates x, and returns the result. If (go tag) is cvaluated, prog jumps to the
part of the body labcled with the fag, where processing of the body is continued. 1ag is
not evaluated. return and go and their variants are cxplained fully below.

The compiler requires that go and return forms be lexically within the scope of the prog;
it is not possible for a function called from inside a prog body to return to the prog.
That is, the return or go must be inside the prog itself, not inside a function called by
the prog. (This restriction happens not to be enforced in the interpreter, but since all
programs are eventually compiled, the convention should be adhered to. The restriction
will be imposed in future implementations of the interpreter.)

See also the do special form, which uses a body similar to prog. The do, *catch, and
*throw special forms arc included in Zetalisp as an attempt to encourage goto-less
programming style, which often leads to more readable, more easily maintained code.
The programmer is recommended to use these forms instead of prog wherever reasonable.

If the first subform of a prog is a non-nil symbol (rather than a variable list), it is the
name of the prog, and return-from (sece page 53) can be used to return from it. See
do-named, page 48.

Example:
(prog (x y z) ;x, y, zareprog variables - temporaries.
(setq y (car w) z (cdr w)) ; wis a free variable.
loop
{(cond ({(null y) (return x))
((null z) (go err)))
rejoin
(setq x (cons {cons (car y) (car z))
x))
(setq y (cdr y)
z (cdr z))
(go loop)
err
(break are-you-sure? t)
(setq z y)

(go rejoin))

SRCKLMAN>FD-FLO.TEXT.3 24-JAN-83

lteration 52 1isp Machine Manual

prog* Special Form
The prog* special form is almost the same as prog. The only difference is that the
binding and initialization of the temporary variables is done sequentially, so cach one can
depend on the previous oncs. For example,
(prog* ((y z) (x (car y)))
(return x))
returns the car of the value of z.

go tag Special Form
The go special form is used to do a "go-to" within the body of a do or a prog. The lag
must be a symbol. It is not cvaluated. go transfers control to the point in the body
labelled by a tag eq to the onc given. If there is no such tag in the body, the bodies of
lexically containing progs and dos (if any) are examined as well. If no tag is found, an
error is signalled.

Example:
(prog (x y z)
(setq x some frob)
Toop
do something
(if some predicate (go endtag))
do something more
(if (minusp x) (go loop))
endtag
(return z))

return value... Special Form
return is used to exit from a prog-like special form (prog, prog*, do, do-named,
dotimes, dolist, loop, etc.) The value forms are evaluated, and the resulting values are
returned by the prog as its values.

In addition, break (see page 644) recognizes the typed-in form (return value) specially. If
this form is typed at a break, value will be evaluated and returned as the value of break.
If not specially recognized by break, and not inside a prog-like form, return will cause
an error.
Example:
(do ((x x (cdr x))
(n 0 (*n 2)))
((null x) n)
(cond ((atom (car x))
(setq n (1+ n)))
((memq (caar x) ’(sys boom bleah))
(return n))))

Note that the return form is very unusual: it does not ever return a value itself, in the
conventional sense. It isn’t uscful to write (setqa (return 3)), because when the return
form is evaluated, the containing do or prog is immediately exited, and the setq never
happens.

SRCKL.MANSED-FLO.TEXT.3 24-JAN-83

Lisp Machine Manual 53 Iteration

A return form may appear as or inside an argument to a regular function, but if the
return. is exccuted then the function will never actually be called. The same is true of
go. For example,
(prog ()
{foo (if a (return t) nil)))
foo will actually be called only if a’s value is nil. However, this style of coding is not
recommended. -

return can also be used with multiple arguments, to return multiple values from a prog
or do. For example,
(defun assqn (x table)
(do ((1 table {(cdr 1))
(n 0 (1+ n)))
((nul1 1) nil)
(if (eq (caar 1) x)
(return (car 1) n))))
This function is like assq, but it returns an additional value which is the index in the
table of the entry it found.

However, if you use return with only one subform, then the prog or do will return all
of the values returned by that subform. That is, if you do

(prog ()

(return (foo 2)))
and the function foo returns many values, then the prog will return all of those values.
In fact, this means that
(return {values forml form2 form3))
is the same as
(return forml form2 form3)

To return precisely one value, use (return (values form)).

It is legal to write simply (return), which will return from the prog without returning any
values.

See section 3.5, page 33 for more information.

return-from name value... Special Form
The value forms are evaluated, and then are returned from the innermost containing
prog-like special form whose name is name. See the description of do-named (page 48)
in which named dos and progs are explained.

return-11ist /st
This function is like return except that the prog returns all of the elements of [list; if list
has more than one element, the prog does a multiple-value return.

This is semi-obsolete now, since (return (values-list /ist)) does the same thing.

SRCKL.MAN>FD-FLO.TEXT.3 24-JAN-83

Non-1.ocal Exits 54 ; Iisp Machine Manual

To direct the returned values to a prog or do-named of a specific name, use
(return-from name (values-list list)) .

Also sce defunp (page 159), a variant of defun that incorporates a prog into the function body.

4.3 Non-Local Exits

scatch g body.. Special Form

*catch is a special form uscd with the *throw function to do non-local exits. First ag is
evaluated; the result is called the "tag” of the *catch. Then the body forms are
cvaluated scquentially, and the valuc of the last form is returned. However, if, during
the cvaluation of the body, the function *throw is called with the same tag as the tag of
the *catch, then the evaluation of the body is aborted, and the *catch form immediately
returns the value that was the sccond argument to *throw without further evaluating the
current body form or the rest of the body.

The 1ag’s are used to match up *throw’s with *catch’s. (*catch foo form) will catch a
(*throw ’foo form) but not a (*throw 'bar form). It is an error if *throw is donc when
there is no suitable *catch (or catch-all; sce below).

The values t and nil for g arc special: a *catch whose tag is one of these values will
catch throws to any tag. These are only for internal use by unwind-protect and catch-
all respectively. The only difference between t and nil is in the crror checking; t implies
that after a "clcanup handler” is cxecuted control will be thrown again to the same tag,
therefore it is an error if a specific catch for this tag does not exist higher up in the stack.
With nil, the error check isn’t done.

*catch returns up to four values; trailing null values are not rcturned for reasons of
microcode simplicity, but the values not returned will default to nil if they are received
with the multiple-value or multiple-value-bind special forms. If the catch completes
nommally, the first value is the value of form and the second is nil. If a *throw occurs,
the first value is the second argument to *throw, and the sccond value is the first
argument to *throw, the tag thrown to. The third and fourth values are the third and
fourth arguments to *unwind-stack (see page 56) if that was used in place of *throw;
otherwise these values are nil. To summarize, the four valucs returned by *catch are the
value, the tag, the active-frame-count, and the action.
Example
(*catch ’negative
(mapcar (function (lambda (x)
(cond ((minusp x)
(*throw ’negative x))
(t (f x)))))
y))

which returns a list of f of each element of y if they are all positive, otherwise the first
negative member of y.

SRCKLMAN>FD-FLLO.TEXT.3 24-JAN-83

I.isp Machine Manual 55 Non-1.ocal Exits

Note that *catch returns its own extra values, and so it does nof propagate multiple
values back from the last form.

catch-continuation tag throw-cont non-throw-cont body... Special Form
catch-continuation-if cond-form tag throw-cont Special Form

non-throw-cont body...
The catch-continuation special form makes it convenient to pass back muitipic vaiues
from the body, but still discriminate based on whether exit is normal or duc to a throw.

The body is exccuted inside a *catch on g (which is evaluated). If body returns
normally, the function non-throw-cont is called, passing all the valucs returned by the last
form in body as arguments. This function’s values arc returned from the catch-
continuation. ‘

If on the other hand a throw to tag occurs, the values returned by *catch are passed to
the function throw-cont, and its values are returned.

If either of the continuations is explicitly written as nil, it is not called at all. The
arguments that would have been passed to it are returned instcad. This is cquivalent to
using values as the function; but explicit nil is optimized, so use that.

catch-continuation-if differs only in that the catch is not done if the value of the cond-
form is nil. In this case, the non-throw continuation if any will be always be called.

In the general case, consing is necessary to record the multiple values, but if either
continuation is an explicit #'(lambda ..) with a fixed number of arguments, it is open
coded and the consing is avoided.

*throw fag value

catch
throw

*throw is used with *catch as a structured non-local exit mechanism.

(*throw tag x) throws the value of x back to the most recent *catch labelled with fag or
t or nil. Other *catches are skipped over. Both x and tag are evaluated, unlike the
Maclisp throw function. :

The values t, nil, and O for tag are reserved and used for internal purposes. nil may not
be used, because it would cause an ambiguity in the returned values of *catch. t may
only be used with *unwind-stack. 0 and nil are used internally when returning out of
an unwind-protect.

See the description of *catch for further details.

Jorm tag Macro

form tag Macro

catch and throw are provided only for Maclisp compatibility. (catch form tag) is the
same as (*catch 'tag form), and (throw form tag) is the same as (*throw ’tag form). The
forms of catch and throw without tags are not supported.

SRCKL.MAN>FD-FLO.TEXT.3 24-JAN-83

Non-Local Exits 56 Lisp Machine Manual

*unwind-stack g value active-frame-count action
This is a generalization of *throw provided for program-manipulating programs such as
the error handler.

tag and value arc the same as the corresponding arguments to *throw.

A tag of t invokes a special feature whereby the entire stack is unwound, and then the
function acrion is called (see below). During this process unwind-protects receive control,
but catch-alls do not. This feature is provided for the benefit of system programs which
want to unwind a stack completely.

active-frame-count, if non-nil, is the number of frames to be unwound. The definition of
a "frame"” is implementation-dependent. If this counts down to zero beforc a suitable
*catch is found, the *unwind-stack terminates and thar frame returns value to whoever
called it. This is similar to Maclisp’s freturn function.

If action is non-nil, whenever the *unwind-stack would be ready to terminate (either due
to active-frame-count or due to fag being caught as in *throw), instead acrion is called
with one argument, value. If iag is t. mcaning throw out the whole way, then the
function action is not allowed to return. Otherwise the function action may rcturn and its
value will be returned instead of value from the *catch—or from an arbitrary function if
active-frame-count is in use. In this case the *catch does not return multiple values as it
normally does when thrown to. Note that it is often uscful for action to be a stack-group.

Note that if both active-frame-count and action are nil, *unwind-stack is identical to
*throw.

unwind-protect protected-form cleanup-form... Special Form
Somctimes it is necessary to cvaluate a form and make sure that certain side-effects take
place after the form is evaluated; a typical example is:
(progn

(turn-on-water-faucet)

(hairy-function 3 nil ’foo)

(turn-off-water-faucet))
The non-local exit facility of Lisp creates a situation in which the above code won't work,
however: if hairy-function should do a *throw to a *catch which is outside of the
progn form, then (turn-off-water-faucet) will never be cvaluated (and the faucet will
presumably be left running). This is particularly likely if hairy-function gets an error and
the user tells the error-handler to give up and flush the computation.

In order to allow the above program to work, it can be rewritten using unwind-protect
as follows:
(unwind-protect
(progn (turn-on-water-faucet)
(hairy-function 3 nil ’foo0))

(turn-off-water-faucet))
If hairy-function does a *throw which attempts to quit out of the evaluation of the
unwind-protect, the (turn-off-water-faucet) form will be evaluated in between the time
of the *throw and the time at which the *catch returns. If the progn recturns normally,

SRC:KL.MAN>FD-FLO.TEXT.3 24-JAN-83

Lisp Machine Manual 57 A Mapping

then the (turn-off-water-faucet) is evaluated, and the unwind-protect returns the result
of the progn. :

The general form of unwind-protect looks like
{unwind-protect protected-form

cleanup-forml

cleanup-form?2

..l)
protected-form is evaluated, and when it returns or when it attempts to quit out of the
unwind-protect, thc cleanup-forms are cvaluated. The value of the unwind-protect is
the value of protected-form. Multiple values returned by the protected-form are propagated
back through thc unwind-protect.

The cleanup forms are run in the variable-binding environment that you would expect:
that is, variables bound outside the scope of the unwind-protect special form can be
accessed, but variables bound inside the profected-form can’t be. In other words, the stack
is unwound to the point just outside the protected-form, then the cleanup handler is run,
and then the stack is unwound some more.

catch-all body... Macro
(catch-all form) is like (*catch some-tag form) except that it will catch a *throw to any
tag at all. Since the tag thrown to is the second rcturned value, the caller of catch-all
may continue throwing to that tag if he wants. The one thing that catch-all will not
catch is a *unwind-stack with a tag of t. catch-all is a macro which expands into
*catch with a tag of nil.

If you think you want this, most likely you are mistaken and you really want unwind-
protect.

4.4 Mapping

map fecn &rest lists

mapc fen &rest lists

maplist fen &rest lists

mapcar fcn &rest lists

mapcon fcn &rest lists

mapcan fcn &rest lists
Mapping is a type of iteration in which a function is successively applied to pieces of a
list. There are scveral options for the way in which the pieces of the list are chosen and
for what is done with the results returned by the applications of the function.

For example, mapcar operates on successive elemenis of the list. As it goes down the
list, it calls the function giving it an element of the list as its one argument: first the car,
then the cadr, then the caddr, etc., continuing until the end of the list is reached. The
value returned by mapcar is a list of the results of the successive calls to the function.
An example of the use of mapcar would be mapcar’ing the function abs over the list (1
-2 -45 6.0e15 -4.2), which would be written as {mapcar (function abs) ’(1 -2 -4.5
6.0e15 -4.2)). The result is (1 2 4.5 6.0e15 4.2).

SRCKLMAN>FD-FLO.TEXT.3 24-JAN-83

Mapping 58 l.isp Machine Manual

In gencral, the mapping functions take any number of arguments. For example,

(mapcar f xI x2 ... xn)
In this case f must be a function of n arguments. mapcar will procced down the lists x/,
x2. .., xn in parallel. The first argument to f will come from x/, the sccond from x2,

ctc. The iteration stops as soon as any of the lists is exhausted. (If there are no lists at
all, then there are no lists to be exhausted, so the function will be called repeatedly over
and over. This is an obscure way to write an infinite loop. It is supported for
consistency.) If you want to call a function of many arguments where one of the
arguments successively takes on the values of the clements of a list and the other
arguments arc constant, you can use a circular list for the other arguments to mapcar.
The function circular-list is useful for creating such lists; see page 66.

There are five other mapping functions besides mapcar. maplist is like mapcar except
that the function is applicd to the list and successive cdr's of that list rather than to
successive clements of the list. map and mapc arc like maplist and mapcar respectively,
except that they don't return any useful value. These functions are used when the
function is being called merely for its side-cffects, rather than its returned values.
mapcan and mapcon arc like mapcar and maplist respectively, except that they combine
the results of the function using nconc instead of list. That is, mapcon could have been
defined by
{(defun mapcon (f x y)
{apply ’'nconc (maplist f x y)))
Of course, this definition is less general than the real one.

Somctimes a do or a straightforward recursion is preferable to a map; however, the
mapping functions should be used wherever they naturally apply because this increases the
clarity of the code.

Often f will be a lambda-expression, rather than a symbol; for example,
(mapcar (function (lambda (x) (cons x something)))
some-Tist)

The functional argument to a mapping function must be a function, acceptable to
apply—it cannot be a macro or the name of a special form.

SRCKLMANSFD-FLO.TEXT.3 24-JAN-83

Lisp Machine Manual 59 Mapping

Here is a table showing the relations between the six map functions.

applies function to

| successive | successive |

| sublists | elements |
--------------- L e L Tt 3
its own | | |
second | map | mapc |
argument | | |
——————————————— e et 2
list of the | | |
returns function | maplist | mapcar |
results | | |
——————————————— B e et o
nconc of the | | |
function | mapcon | mapcan |
results |] |
--------------- Bt e o

There are also functions {(mapatoms and mapatoms-all) for mapping over all symbois in
certain packages. See the explanation of packages (chapter 24, page 506).

You can also do what the mapping functions do in a different way by using loop. See
page 274.

SRCKI.MAN>FD-FLLO.TEXT.3 24-JAN-83

	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059

