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5. Manipulating List Structure

This chapter discusses functions that manipulate conses, and higher-level structures made up
of conses such as lists and trees. It also discusses hash tables and resources, which are related
facilitics.

A cons is a primitive Lisp data object that is extremcly simple: it knows about two other
objects, called its car and its cdr. :

A list is recursively defined to be the symbol nil, or a cons whose cdr is a list. A typical list
is a chain of conses: the cdr of cach is the next cons in the chain, and the cdr of the last one is
the symbol nil. The cars of cach of these conses are called the elements of the list. A list has
one clement for cach cons; the empty list, nil, has no clements at all. Here are the printed
representations of some typical lists:

(foo bar) ;This 1ist has two elements.

(a (b c d) e) ;This list has three elements.
Note that the second list has three clements: a, (bcd), and e. The symbols b, ¢, and d are
not elements of the list itself. (They are elements of the list which is the second element of the
original list.)

A "dotted list" is like a list except that the cdr of the last cons does not have to be nil. This
name comes from the printed representation, which includes a "dot" character. Here is an
example:

(ab . c)
This "dotted list" is made of two conses. The car of the first cons is the symbol a, and the cdr
of the first cons is the second cons. The car of the second cons is the symbol b, and the cdr of
the second cons is the symbol c.

A tree is any data structure made up of conses whose cars and cdrs are other conses. The
following are all printed representations of trees:
(foo . bar)

((a . b) (c . d))
((a . b)(cdef (g.5)s) (7. 4))

These definitions are not mutually exclusive. Consider a cons whose car is a and whose cdr is
(b(cd)e). Its printed representation is
(ab (c d) e)
It can be thought of and treated as a cons, or as a list of four elements, or as a tree containing
six conses. You can even think of it as a "dotted list" whose last cons just happens to have nil
as a cdr. Thus, lists and "dotted lists" and trees are not fundamental data types; they are just
ways of thinking about structures of conses.

A circular Iist is like a list except that the cdr of the last cons, instead of being nil, is the
first cons of the list. This means that the conses are all hooked together in a ring, with the cdr
of each cons being the next cons in the ring. While these are perfectly good Lisp objects, and
there are functions to deal with them, many other functions will have trouble with them.
Functions that expect lists as their arguments often iterate down the chain of conses waiting to see
a nil, and when handed a circular list this can cause them to compute forever. The printer (see
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nage 388) is one of these functions; if you try to print a circular list the printer will never stop
producing text. - You have to be careful what you do with circular lists.

The Lisp Machine internally uses a storage scheme called "cdr coding” to represent conses.
This scheme is intended to reduce the amount of storage used in lists. The use of cdr-coding is
invisible to programs except in terms of storage cfficiency: programs will work the same way
whether or not lists are cdr-coded or not. Several of the functions below mention how they deal
with cdr-coding. You can completely ignore all this if you want. However, if you arc writing a
program that allocates a lot of conses and you are concerned with storage cfficiency, you may
want to learn about the cdr-coded representation and how to control it. The cdr-coding scheme is

discussed in section 5.4, page 72.

5.1 Conses

car x
Returns the car of x.
Example:
(car (a b c)) => a

cdr x
Returns the cdr of x.
Example:
(cdr ’(a b c)) => (b c)

Officially car and cdr are only applicable to conses and locatives. However, as a matter of
convenience, car and cdr of nil return nil. car or cdr of anything else is an error.

c...P x
All of the compositions of up to four car’s and cdr’s are defined as functions in their own

right. The names of these functions begin with "¢ and end with "r", and in between is
a sequence of "a™s and "d"s corresponding to the composition performed by the
function.
Example:

(cddadr x) isthesameas (cdr (cdr (car (cdr x))))
The error checking for these functions is exactly the same as for car and cdr above.

cons x y
cons is the primitive function to create a new cons, whose car is x and whose cdr is y.
Examples:
(cons ’a 'b) => (a . b)
(cons ’a (cons 'b {(cons 'c mil))) => (a b c)
(cons ’a *(b c d)) => (a b c d)
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ncons x
(ncons x) is the same as (cons x-nil). The name of the function is from "nil-cons".

xcons x y
xcons (“exchanged cons") is like cons except that the order of the arguments is reversed.
Example:
(xcons ’a 'b) => (b . a)

cons-in-area x y area-number
This function creates a cons in a specific area. (Areas are an advanced feature of storage
management, explained in chapter 15; if you aren’t interested in them, you can safely
skip all this stuff). The first two arguments are the same as the two arguments to cons,
and the third is thc number of the arca in which to create the cons.
Example:
(cons-in-area 'a 'b my-area) => (a . b)

ncons-in-area x area-number
(ncons-in-area x area-number) = (cons-in-area x nil area-number)

xcons-in-area x y area-number
(xcons-in-area x y area-number) = (cons-in-area y x area-number)

The backquote reader macro facility is also generally useful for creating list structure,
especially mostly-constant list structure, or forms constructed by plugging variables into a template.
It is documented in the chapter on macros; see chapter 17, page 248.

car-location cons .
car-location returns a locative pointer to the cell containing the car of cons.

Note: there is no cdr-location function; it is difficult because of the cdr-coding scheme (see
section 5.4, page 72). Instead, the cons itself serves as a "locative” to its cdr (sce page 197).

5.2 Lists

length Iist-or-array
length returns the length of list-or-array. The length of a list is the number of elements
in it; the number of times you can cdr it before you get a non-cons.
Examples:
(length nil) => 0
(length "(a b c d)) => 4
(length ’(a (b c) d)) => 3
(1ength "foobar") => 6
tength could have been defined by:
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(defun length (x)
(if (arrayp x) (array-active-length x)
{(do ({n 0 (1+ n))
(y x (cdr y)))
\

({(null y) n))))
or by
(defun length (x)
(cond ((arrayp x) (array-active-length x))

((null x) 0)

((1+ (length (cdr x}))) ))
first list
sacond [ist
third list
fourth Iist
fifth list
sixth list

seventh [ist

restl
rest2
rest3
rastéd

nth n

These functions take a list as an argument, and return the first, sccond, etc. element of
the list. first is identical to car, second is identical to cadr, and so on. The reason
thesc names are provided is that they make more scnse when you are thinking of the
argument as a list rather than just as a cons.

list

list

list

list

restn returns the rest of the elements of a list, starting with element n (counting the first
clement as the zeroth). Thus rest1 is identical to cdr, rest2 is identical to cddr, and so
on. The reason these names are provided is that they make more sensc when you are
thinking of the argument as a list rather than just as a cons.

list
(nth n list) returns the n’th element of lisz, where the zeroth element is the car of the
list.
Examples:
(nth 1 ’(foo bar gack)) => bar
(nth 3 *(foo bar gack)) => nil
If n is greater than the length of the list, nil is returned.

Note: this is not the same as the InterLisp function called nth, which is similar to but
not exactly the same as the Lisp Machine function nthcdr. Also, some people have used
macros and functions called nth of their own in their Maclisp programs, which may not
work the same way; be careful.
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nth could have been defined by:
(defun nth (n Tlist).
(do ((i n (1- 1))
(1 Tist (cdr 1)))
({zerop i) (car 1))))

nthedr n list .
(nthedr n list) cdrs list n times, and returns the result.
Examples:
(nthcdr 0 (a b c)) => (a b c)
(nthcdr 2 "(a b c)) => (c)
In other words, it returns the n'th cdr of the list. If n is greater than the length of the
list, nil is returned.

This is similar to InterLisp’s function nth, except that the Interlisp function is one-based
instcad of zero-based; sce the Interlisp manual for details. nthedr could have been
defined by:
(defun nthcdr (n list)
(do ((i 0 (1+ i))
(Tist list (cdr Tist)))
((= i n) Tist)))

Tast list

last returns the last cons of list. If list is nil, it returns nil. Note that last is
unfortunately not analogous to first (first returns the first element of a list, but last
doesn’t return the last element of a list); this is a historical artifact.
Example:

(setq x '(a b ¢ d))

(last x) => (d)

(rplacd (last x) '(e f))

x =>"(abcdef)
last could have been defined by:

(defun last (x)

(cond ((atom x) x)
((atom (cdr x)) x)

((last (cdr x))) ))

Tist &rest args
list constructs and returns a list of its arguments.
Example:
(1ist 3 4 "a (car (b . c)) (+ 6 -2)) => (3 4 ab 4)
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list could have been defined by:
. (defun Tist (&rest args)
{(1et ((1ist (make-list (length args))))
(do ({1 list {cdr 1))
{a args {cdr a}})
({null a) 1ist)
(rplaca 1 (car a)))))

Tist* &rest args A
list* is like list except that the last cons of the constructed list is “dotted”. It must be
given at lcast one argument.
Example:
(list* ’a 'b ’c 'd) => (a b c . d)
This is like
(cons 'a (cons 'b (cons ’'c 'd)))

More examples:
(list* "a 'b) => (a . b)
(list* ’a) => a '

list-in-area area-number &rest args
list-in-area is exactly the same as list except that it takes an extra argument, an area
number, and creates the list in that area.

1ist*-in-area area-number &rest args
list*-in-area is exactly the same as list* except that it takes an extra argument, an area
number, and creates the list in that area.

make-1ist length &rest options
This creates and returns a list containing length elements. length should be a fixnum.
options are alternating keywords and values. The keywords may be either of the
following:

.area The value specifies in which area (see chapter 15, page 223) the list
should be created. It should be either an arca number (a fixnum), or nil
to mean the default area.

sinitial-value  The elements of the list will all be this value. It defaults to nil.

make-list always creates a cdr-coded list (see section 5.4, page 72).
Examples: :

(make-1ist 3) => (nil nil nil)

(make-1ist 4 ’':initial-value 7) => (7 77 17)

When make-list was originally implemented, it took exactly two arguments: the area and

the length. This obsolete form is still supported so that old programs will continue to
work, but the new keyword-argument form is preferred.
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circular-list &rest args
circular-list constructs a circular list whose clements are args, repeated infinitely.
circular-list is the same as list cxcept that the list itself is used as the last cdr, instcad of
nil. circular-list is cspecially uscful with mapcar, as in the expression
(mapcar (function +) foo (circular-list 5))
which adds cach clement of foo to S.

circular-list could have been defined by:
(defun circular-list (&rest elements)
(setq elements (copylist* elements))
(rplacd (last elements) elements)
elements)

copylist list &optional area
Returns a list which is equal to list, but not eq. copylist does not copy any elements of
the list: only the conses of the list itself. The returned list is fully cdr-coded (see section
54, page 72) to minimize storage. If the list is "dotted”, that is, if (cdr (last Jiss)) is a
non-nil atom, this will be true of the returned list also. You may optionally specify the
area in which to create the new copy.

copylist* list &optional area
This is the same as copylist except that the last cons of the resulting list is never cdr-
coded (sec scction 5.4, page 72). This makes for increased cfficiency if you nconc
something onto the list later.

copyalist /ist &optional area
copyalist is for copying association lists (sce scction 5.5, page 74). The list is copied, as
in copylist. In addition, cach element of list which is a cons is replaced in the copy by a
new cons with the same car and cdr. You may optionally specify the area in which to
create the new copy.

copytree rree &optional area
copytree copies all the conses of a tree and makes a new maximally cdr-coded tree with
the same fringe. If area is specified, the new trec is constructed in that area.

reverse /st
reverse creates a new list whose elements are the elements of list taken in reverse order.
reverse does not modify its argument, unlike nreverse which is faster but does modify
its argument. The list created by reverse is not cdr-coded.
Example:
(reverse ’(a b (c d) e)) => (e (c d) b a)
reverse could have been defined by:
(defun reverse (x)

(do ((1 x (cdr 1)) ; scan down argument,
(r nil ; putting each element
(cons (car 1) r))) ; intolist, until
((null 1) r))) ; no more elements.
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nravarse /s

nreverse reverses its argument; which should be a list. The argument is destroyed by

rplacd’s all through the list (cf. reverse).

Example: :
{nreverse ‘(a b c)) => (c b a)
nreverse could have been defined by:

(defun nreverse (x)

(cond ((null x) nil)
{((nreversel x nil})}))

(defun nreversel (x y) ; auxiliary function
{cond ((null (cdr x)) (rplacd x y))
((nreversel (cdr x) (rplacd x y)))))
; ; this last call depends on order of argument evaluation.

Currently, nreverse does something inefficient with cdr-coded lists (sec section 5.4, page
72), because it just uses rplacd in the straightforward way. This may be fixed someday.
In the meantime reverse might be preferable in some cases.

append &rest lists
The arguments to append are lists. The result is a list which is the concatenation of the
arguments. The arguments are not changed (cf. nconc).
Example:

(append *(a b c) ’(d e f) nil '(g)) => (ab cde f g)

append makes copies of the conses of all the lists it is given, except for the last one. So
the new list will share the conses of the last argument to append, but all of the other
conses will be newly created. Only the lists are copied, not the elements of the lists.

A version of append which only accepts two arguments could have been defined by:
(defun append2 (x y)
(cond ((null x) y)
((cons (car x) (append2 (cdr x) y)) )))

The generalization to any number of arguments could then be made (relying on car of nil
being nil):
(defun append (&rest args)
(if (< (1ength args) 2) (car args)
(append2 (car args)
(apply (function append) (cdr args)))))

These definitions do not express the full functionality of append; the real definition
minimizes storage utilization by turning all the arguments that are copied into one cdr-
coded list.

To copy a list, use copylist (see page 66); the old practice of using append to copy lists
is unclear and obsolete.
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nconc &rest lists

nconc takes lists as arguments. It returns a list which is the arguments concatcnated
together. The arguments arc changed, rather than copied (cf. append, page 67).
Example:

(setq x "{a b ¢))

(setq y '(d e f))

(nconc x y) => (a b cdef)

Xx => (abcdeft)
Note that the value of x is now different, since its last cons has been rplacd’d to the
value of y. If the nconc form is evaluated again, it would yicld a piece of "circular” list
structure, whose printed representation would be @b cdefdefdef..), repeating
forever.

nconc could have been defined by:

(defun nconc (x y) ; for simplicity, this definition
(cond ((null x) y) ; only works for 2 arguments.
(t (rplacd (last x) y) ;hookyonto x
x))) ; and return the modified x.

areconc x y
(nreconc x y) is exactly the same as (nconc (nreverse x) y) except that it is more
efficient. Both x and y should be lists.

nreconc could have been defined by:
(defun nreconc (x y)
(cond ((null x} y)
((nreversel x y)) ))
using the same nreversel as above.

butlast Ilist
This creates and returns a list with the same clements as list, excepting the last element.
Examples:
(butlast '(a b c d)) => (a b ¢)
{butlast '((a b) (c d))) => ((a b))
(butlast ’(a)) => nil
(butlast nil) => nil
The name is from the phrase "all elements but the last”.

nbutlast /st
This is the destructive version of butlast; it changes the cdr of the second-to-last cons of
the list to nil. If there is no second-to-last cons (that is, if the list has fewer than two
elements) it returns nil.
Examples:
(setq foo '(a b ¢ d))
(nbutlast foo) => (a b c)
foo => (a b c)
(nbutlast '(a)) => nil
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firstn n list

nleft

1diff

union

firstn returns a list of length n, whose clements are the first n elements of list. If [ist is

fewer than n clements long, the remaining elements of the returned list will be nil.
Example:

{(firstn 2 "(a b c d)) => {a b)
(firstn 0 *(a b ¢ d)) => nil
(firstn 6 "(a b ¢ d)) =>"(a b c d nil nil)

n list &optional 1ail
Returns a "tail” of list, i.e. one of the conscs that makes up lisz, or nil. (nleft n list)
returns the last n elements of list. If n is too large, nleft will return /list.

(nleft n list tail) takes cdr of ist enough times that taking n more cdrs would yield /ail,
and returns that. You can see that when fail is nil this is the same as the two-argument
case. If zail is not eq to any tail of lisz, nleft will return nil.

list tail
list should be a list, and il should be one of the conses that make up [ist. Idiff
(meaning "list difference™) will return a new list, whose clements arc thosc elements of list
that appear before tail. ”
Examples:
(setq x "(a b c d e))
(setq y (cdddr x)) => (d e)
(1diff x y) => (a b ¢)
(1diff x nil) => (a b c d e)
(1diff x x) => nil
but
(1diff *(a b c d) '(c d)) => (a b c d)
since the fail was not eq to any part of the list.

list &rest more-lists

If lists are regarded as sets of their elements, union returns a list which is the union of
the lists which are supplied as arguments. If none of the arguments contains any
duplicate elements, ncither does the value returned by union. Elements are compared

using eq.

intersection list &rest more-lists

If lists are regarded as scts of their elements, intersection returns a list which is the
intersection of the lists which are supplied as arguments. If list contains no duplicate
clements, neither does the value returned by intersection. Elements are compared using

eq.

nunion list &rest more-lists

If lists are regarded as sets of their elements, nunion modifies isz to become the union of
the lists which are supplied as arguments. This is donc by adding on, at the end, any
elements of the other lists that were not already in /isz. If none of the arguments
contains any duplicate elements, neither does the value returned by nunion. Elements are
compared using Q.
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As with delg, nunion’s valuc should be stored in place of the first argument if you want
to be sure that the argument is changed. Consider what happens if the argument’s initial
value is nil.

nintersection list &rest more-lists
If lists are regarded as sets of their clements, intersection modifies list to be the
intersection of the lists which are supplied as arguments. This is done by deleting any
clements which do not belong to the intersection. If list initially contains no duplicate
clements, ncither does the value returned by nintersection. Elements are compared using

eq.

As with delg. nunion’s value should be stored in place of the first argument if you want
to be sure that the argument is changed. Consider what happens if the argument’s first
element is removed.

5.3 Alteration of List Structure

The functions rplaca and rplacd are used to make alterations in alrcady-existing list structure;
that is, to change the cars and cdrs of existing conses.

The structure is not copicd but is physically altered; hence caution should be exercised when
using these functions, as strange side-effects can occur if portions of list structurec become shared
unbeknownst to the programmer. The nconc, nreverse, nreconc, and nbutlast functions
already described, and the delq family described later, have the same property.

rplaca x y
(rplaca x y) changes the car of x to y and returns (the modified) x. x must be a cons
or a locative. y may be any Lisp object.
Example:
(setqg g "(a b c))
(rplaca (cdr g) 'd) => (d ¢)
Now g => (a d c)

rplacd x y
(rplacd x y) changes the cdr of x to y and returns (the modified) x. x must be a cons
or a locative. y may be any Lisp object.
Example:
(setqg x "(a b c))
(rplacd x 'd) => (a . d)
Now x => (a . d)

subst new old tree
(subst new old tree) substitutes new for all occurrences of old in tree, and returns the
modificd copy of free. The original free is unchanged, as subst recursively copies all of
tree replacing elements equal to old as it goes.
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Example:
. (subst ’'Tempest 'Hurricane
'(Shakespeare wrote (The Hurricane)))
=> (Shakespeare wrote (The Tempest))

subst could have been defined by:

(defun subst (new 01d tree)
(cond ((equal tree old) new) ;ifitem cqual to old, replace.
((atom tree) tree) ;if no substructure, return arg.
({cons (subst new old (car tree)} ;othcrwise recurse.
(subst new old (cdr tree))))))
Note that this function is not "destructive™; that is, it does not change the car or cdr of
any already-existing list structure.

To copy a tree, use copytree (sece page 66); the old practice of using subst to copy trees
is unclear and obsolete.

Note: certain details of subst may be changed in the future. It may possibly be changed
to use eq rather than equal for the comparison, and possibly may substitute only in cars,
not in cdrs. This is still being discussed.

nsubst new old tree
nsubst is a destructive version of subst. The list structure of tree is altered by replacing
each occurrence of old with new. nsubst could have been defined as
(defun nsubst (new old tree)

(cond ((eq tree old) new) ; If item eq to old, replace.
((atom tree) tree) ; If no substructure, return arg.
(t ; Otherwise, recurse.

(rplaca tree (nsubst new old (car tree)))
(rplacd tree {(nsubst new old (cdr tree)))
tree)))

sub1is alist tree

sublis makes substitutions for symbols in a tree. The first argument to sublis is an
association list (see section 5.5, page 74). The second argument is the tree in which
substitutions are to be made. sublis looks at all symbols in the fringe of the tree; if a
symbol appears in the association list occurrences of it are replaced by the object it is
associated with. The argument is not modified; new conses are created where necessary
and only where necessary, so the newly created tree shares as much of its substructure as
possible with the old. For example, if no substitutions are made, the result is just the
old tree.

Example:

(sublis *((x . 100) (z . zprime))
"(plus x {minus g z x p) 4))
=> (plus 100 (minus g zprime 100 p) 4)
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sublis could have been defined by:
(defun sublis (alist sexp)
(cond ((atom sexp)
{let ({(tem (assq sexp alist)))
(if tem (cdr tem) sexp)))
((let ({car (sublis alist (car sexp)))
(cdr (sublis alist (cdr sexp))))
(if (and (eq (car sexp) car) (eq (cdr sexp) cdr))
sexp
(cons car cdr))))))

nsublis alist tree
nsublis is like sublis but changes the original trec instead of creating new.

nsublis could have been defined by:
(defun nsublis (alist tree)
(cond ((atom tree)
(let ((tem (assq tree alist)))
(if tem (cdr tem) tree)))
(t (rplaca tree (nsublis alist (car tree)))
(rplacd tree (nsublis alist (cdr tree)))
tree)))

5.4 Cdr-Coding

This section explains the internal data format used to store conses inside the Lisp Machine.
Casual users don’t have to worry about this; you can skip this section if you want. It is only
important to read this section if you require extra storage cfficiency in your program.

The usual and obvious internal represcntation of conses in any implementation of Lisp is as a
pair of pointers, contiguous in memory. If we call the amount of storage that it takes to store a
Lisp pointer a "word”, then conses normally occupy two words. One word (say it’s the first)
holds the car, and the other word (say it’s the second) holds the cdr. To get the car or cdr of a
list, you just reference this memory location, and to change the car or cdr, you just store into
this memory location.

Very often, conses are used to store lists. If the above representation is used, a list of n
clements requires two times n words of memory: n to hold the pointers to the elements of the
list, and n to point to the next cons or to nil. To optimize this particular case of using conses,
the Lisp Machine uses a storage representation called "cdr coding" to store lists. The basic goal is
to allow a list of n elements to be stored in only # locations, while allowing conses that are not
parts of lists to be stored in the usual way.

The way it works is that there is an extra two-bit field in every word of memory, called the
"cdr-code” field. There are three mecaningful values that this field can have, which are called cdr-
normal, cdr-next, and cdr-nil. The regular, non-compact way to store a cons is by two
contiguous words, the first of which holds the car and the second of which holds the cdr. In this
case, the cdr code of the first word is cdr-normal. (The cdr code of the second word doesn’t
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matter; as we will see, it is never looked at.) The cons is represented by a pointer to the first of
the two words. - When a list of n clements is stored in the most compact way, pointers to the n
clements occupy # contiguous memory locations. The cdr codes of all these locations are cdr-next,
except the last location whose cdr code is cdr-nil. The list is represented as a pointer to the first
of the n words.

Now. how are the basic operations on conses defined to work based on this data structure?
Finding the car is easy: you just read the contents of the location addressed by the pointer.
Finding the cdr is more complex. First you must rcad the contents of the location addressed by
the pointer, and inspect the cdr-code you find there. If the code is cdr-normal, then you add
~one to the pointer, read the location it addresses. and return the contents of that location; that is,
you rcad the second of the two words. If the code is cdr-next, you add one to the pointer, and
simply return that pointer without doing any more reading; that is, you return a pointer to the
next word in the n-word block. If the code is cdr-nil, you simply return nil.

If you examine these rules, you will find that they work fine even if you mix the two kinds
of storage representation within the same list. There’s no problem with doing that.

How about changing the structure? Like car, rplaca is very easy, you just store into the
location addressed by the pointer. To do rplacd you must read the location addressed by the
pointer and examine the cdr code. If the code is cdr-normal, you just store into the location one
greater than that addressed by the pointer; that is, you store into the second word of the two
words. But if the cdr-code is cdr-next or cdr-nil, there is a problem: there is no memory cell
that is storing the cdr of the cons. That is the cell that has been optimized out; it just doesn’t
exist.

This problem is dealt with by the use of "invisible pointers”. An invisible pointer is a special
kind of pointer, recognized by its data type (Lisp Machine pointers include a data type field as
well as an address field). The way they work is that when the Lisp Machine reads a word from
memory, if that word is an invisible pointer then it proceeds to rcad the word pointed to by the
invisible pointer and use that word instead of the invisible pointer itsclf. Similarly, when it writes
to a location, it first rcads the location, and if it contains an invisible pointer then it writes to the
location addressed by the invisible pointer instead. (This is a somewhat simplified explanation;
actually there are scveral kinds of invisible pointer that are interpreted in different ways at
different times, used for things other than the cdr coding scheme.)

Here's how to do rplacd when the cdr code is cdr-next or cdr-nil. Call the location addressed
by the first argument to rplacd /. First, you allocate two contiguous words in the same area that
I points to. Then you store the old contents of I (the car of the cons) and the second argument
to rplacd (the new cdr of the cons) into these two words. You set the cdr-code of the first of
the two words to cdr-normal. Then you write an invisible pointer, pointing at the first of the two
words, into location /. (It doesn’t matter what the cdr-code of this word is, since the invisible
pointer data type is checked first, as we will see.)

Now, whenever any operation is done to the cons (car, cdr, rplaca, or rplacd), the initial
reading of the word pointed to by the Lisp pointer that represents the cons will find an invisible
pointer in the addressed cell. When the invisible pointer is scen, the address it contains is used
in place of the original address. So the newly-allocated two-word cons will be used for any
operation done on the original object.
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Why is any of this important to users? In fact, it is all invisible to you; cverything works the
same way whether or not compact representation is used, from the point of view of the semantics
of the language. 'That is, the only difference that any of this makes is a difference in cfficiency.
The compact representation is more ecfficient in most cases. However. if the conses are going to
get rplacd’ed, then invisible pointers will be created, extra memory will be allocated, and the
compact representation will be seen to degrade storage cfficiency rather than improve it. Also,
accesses that go through invisible pointers are somewhat slower, since more mcemory references are
nceded. So if you care a lot about storage cfficiency, you should be careful about which lists get
stored in which representations.

You should try to use the normal representation for those data structures that will be subject
to rplacd operations, including nconc and nreverse, and the compact representation for other
structures. ‘The functions cons, xcons, ncons, and their arca variants make conses in the
normal representation.  The functions list, list*, list-in-area, make-list, and append use the
compact representation.  The other list-creating functions, including read, currently make normal
lists, although this might get changed. Some functions, such as sort. take special care to operate
cfficicntly on compact lists (sort effectively treats them as arrays). nreverse is rather slow on
compact lists, currently, since it simple-mindedly uses rplacd, but this will be changed.

(copylist x) is a suitable way to copy a list, converting it into compact form (see page 66).

5.5 Tables

Zetalisp includes functions which simplify the maintenance of tabular data structures of several
varietics. The simplest is a plain list of items, which models (approximately) the concept of a ser.
There are functions to add (cons). remove (delete, delq, del, del-if, del-if-not, remove,
remq, rem, rem-if, rem-if-not), and scarch for (member, memq, mem) items in a list. Set
union, interscction, and difference functions can be easily written using these.

Association lists are very commonly used. An association list is a list of conses. The car of
each cons is a "key" and the cdr is a "datum"”, or a list of associated data. The functions assoc,
assq, ass, memass, and rassoc may bec used to retrieve the data, given the key. For example,

((tweety . bird) (sylvester . cat))
is an association list with two clements. Given a symbol representing the name of an animal, it
can retricve what kind of animal this is.

Structured records can be stored as association lists or as stercotyped cons-structures where
cach clement of the structurc has a certain car-cdr path associated with it. However, these are
better implemented using structure macros (see chapter 19, page 298) or as flavors (chapter 20,
page 321).

Simple list-structure is very convenient, but may not be cfficient cnough for large data bases
because it takes a long time to search a long list. Zetalisp includes hash table facilitics for more
efficicnt but more complex tables (sce section 5.10, page 83), and a hashing function (sxhash) to
aid users in constructing their own facilities.
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5.6 Lists as Tables

memq item list

(memq item list) returns nil if item is not one of the clements of lisz. Otherwise, it
returns the sublist of list beginning with the first occurrence of item; that is, it returns
the first cons of the list whose car is item. The comparison is made by eq. Because
memq returns nil if it doesn’t find anything, and something non-nil if it finds something,
it is often used as a predicate.
Examples:

(memg *a *(1 2 3 4)) => nil

(memq 'a (g (x ay) cadeaf)) = (adeaf)
Note that the value returned by memq is eq to the portion of the list beginning with a.
Thus rplaca on the result of memq may be used, if you first check to make sure memq
did not return nil.

Example:
(let ((sublist (memg x z))) : Search for x in the list z.
(if (not (null sublist)) ;If it is found,
(rplaca sublist y))) ; Replace it with y.

memgq could have been defined by:
(defun memq (item list)
(cond ((null list) nil)
((eq item (car list)) list)
(t (memq item (cdr list))) ))

mémq is hand-coded in microcode and therefore especially fast.

member item list
member is like memq. except equal is used for the comparison, instead of eq.

member could have been defined by:
(defun member (item 1list)
(cond ((null Tist) nil)
((equal item (car list)) Tlist)
(t (member item (cdr list))) ))

mem predicate item list
mem is the same as memq except that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instead of eq. (mem ’eq a
b) is the same as (memq a b). (mem ’equal a b) is the samc as (member a b).

mem is usually used with equality predicates other than eq and equal, such as =, char-
equai or string-equal. It can also be used with non-commutative predicates. The
predicate is called with item as its first argument and the element of list as its second
argument, SO

(mem #'< 4 list)
finds the first clement in list for which (¢ 4 x) is true; that is, it finds the first element

greater than 4.
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find-position-in-list irem list
find-position-in-list looks down list for an clement which is eq to item, like memgq.
However, it returns the numeric index in the list at which it found the first occurence of
item, or nil if it did not find it at all. This function is sort of the complement of nth
(scc page 63). like nth, it is zcro-based.
Examples:
(find-position-in-list ’a "(a b ¢))
(find-position-in-1list 'c "(a b c))
(find-position-in-1ist 'e ’(a b ¢))

1]

> 0
> 2
> nil

H

find-position-in-1ist-equal iem list
find-position-in-list-equal is exactly the same as find-position-in-list, except that the
comparison is done with equal instead of eq.

tailp sublist list
Returns t if sublist is a sublist of list (i.e. one of the conses that makes up Iist).
Otherwise returns nil.  Another way to look at this is that tailp returns t if (nthedr n list)
is sublist, for some value of n. tailp could have been defined by:
(defun tailp (sublist 1ist)
(do 1ist Tist (cdr Tist) (null Tlist)
(if (eq sublist 1ist)
(return t))))

delq item list &optional n
(delq item list) returns the Jist with all occurrences of irem removed. eq is used for the
comparison. The argument /ist is actually modified (rplacd’ed) when instances of item are
spliced out. delq should be used for value, not for effect. That is, use
(setq a (delq 'b a))
rather than
(delq 'b a)
These two are not equivalent when the first element of the value of a is b.

(delq item list n) is like (delq item list) except only the first n instances of item are
deleted. n is allowed to be zero. If n is greater than or cqual to the number of
occurrences of item in the list, all occurrences of item in the list will be deleted.
Example:

(delq 'a (b ac (ab) dae)) =>(bc (ab)de)

delq could have been defined by:
(defun delq (item 1ist &optional (n -1))
(cond ((or (atom 1ist) (zerop n)) list)

((eq item (car 1list))

(delq item (cdr list) (1- n)))

(t (rplacd 1ist (delq item (cdr 1list) n)))))
If the third argument (n) is not supplied, it defaults to -1 which is effectively infinity
since it can be decremented any number of times without reaching zero.
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delete item list &optional n
delete-is the same as delq except that equal is used for the comparison instead of eq.

del predicate item list &optional n
del is the samc as delg cxcept that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instead of ea. (del 'eq a
b) is the same as (delq a b). (cf. mem, page 75)

-

remq item list &optional n
remq is similar to delq, except that the list is not altered; rather, a new list is returned.
Examples:
(setq x "(a b cde f))
(remg 'b x) => (a c de f)
X => (abcdef)
(remg 'b "(abcbab)2)=>(acahb)

remove ifem list &optional n
remove is the same as remq except that equal is used for the comparison instead of eq.

rem predicate item list &optional n
rem is the same as remq except that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instcad of eq. (rem 'eq a
b) is the same as (remq a b). (cf. mem, page 75)

subset predicate list

rem-if-not predicate list
predicate should be a function of one argument. A new list is made by applying predicate
to all of the clements of list and removing the ones for which the predicate returns nil.
One of this function’s names (rem-if-not) means "remove if this condition is not true";
i.e. it keeps the clements for which predicate is true. The other name (subset) refers to
the function’s action if /ist is considered to represent a mathematical set.

subset-not predicate list

rem-1if predicate list
predicate should be a function of one argument. A new list is made by applying predicate
to all of the elements of list and removing the ones for which the predicate returns non-
nil. Onc of this function’s names (rem-if) means "remove if this condition is true". The
other name (subset-not) refers to the function’s action if /ist is considered to represent a
mathematical set.

del1-if predicate list
del-if is just like rem-if except that it modifies /ist rather than creating a new list.

del-if-not predicate list
del-if-not is just like rem-if-not except that it modifies /isz rather than creating a new
list.
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every list predicate &optional step-function
every returns t if predicate returns non-nil when applied to every element of list, or nil if
predicate returns nil for some clement. If step-function is present, it replaces cdr as the
function used to get to the next clement of the list; cddr is a typical function to use
here.

some [ist predicate &optional step-function
some returns a tail of /ist such that the car of the tail is the first clement that the
predicate returns non-nil when applied to, or nil if predicate returns nil for every clement.
If step-function is present, it replaces cdr as the function used to get to the next element
of the list; cddr is a typical function to usc here.

5.7 Association Lists

assq item alist
(assq item alist) looks up item in the association list (list of conses) alist. The value is
the first cons whose car is eq to x, or nil if there is none such.
Examples:

(assq 'r ’({(a . b) (c . d) (r . x) (s .y)(r.2z)))
=> (r . x)

(assq ’fooo ’((foo . bar) (zoo . goo))) => nil
(assq ’b ((abc) (bcd) (xyz))) =>(bcd)

It is okay to rplacd the result of assq as long as it is not nil, if your intention is to
"update” the "table" that was assq’s second argument.
Example:

(setq values '((x . 100) (y . 200) (z . 50)))

(assq 'y values) => (y . 200)

(rptacd (assq 'y values) 201)

(assq 'y values) => (y . 201) now

A typical trick is to say (cdr (assq x y)). Since the cdr of nil is guaranteed to be nil,
this yields nil if no pair is found (or if a pair is found whose cdr is nil.)

assq could have been defined by:
(defun assq (item Tlist)
(cond ((null list) nil)
((eq item (caar 1list)) (car 1list))
((assq item (cdr list))) ))

assoc item alist
assoc is like assq except that the comparison uses equal instead of eq.
Example:
(assoc '(a b) "((x . y) ((ab) . 7) ((c . d) .e)))
=> ((ab) . 7)
assoc could have been defined by:
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(defun assoc (item list)
(cond ((null list) nil)
((equal item (caar list)) (car list))
((assoc item (cdr Tist))) ))

ass predicate item alist
ass is the same as assq cxcept that it takes an cxtra argument which shouid be a
predicate of two arguments, which is used for the comparison instcad of eq. (ass 'eq a
b) is the same as (assq a b). (cf. mem, page 75) As with mem. you may us¢ non-
commutative predicates; the first argument to the predicate is item and the sccond is the
key of the clement of alist.

memass predicate item alist
memass scarches alist just like ass, but returns the portion of the list beginning with the
pair containing item, rather than the pair itself. (car (memass x y z)) = (ass x y z).
(cf. mem, page 75) As with mem, you may usc non-commutative predicates; the first
argument to the predicate is item and the second is the key of the clement of alist.

rassq item alist
rassq means "reverse assq”. It is like assq, but it tries to find an clement of alist whose
cdr (not car) is eq to item. rassq could have been defined by:
(defun rassq (item in-Tist)
(do 1 in-list (cdr 1) (null 1)
(and (eq item (cdar 1))
(return (car 1)))))

rassoc item alist
rassoc is to rassq as assoc is to assq. That is, it finds an element whose cdr is equal
to item.

rass predicate item alist
rass is to rassq as ass is to assq. That is, it takes a predicate to be used instead of eq
(cf. mem, page 75). As with mem, you may usc non-commutative predicates; the first
argument to the predicate is item and the second is the cdr of the element of alist.

sassq item alist fcn
(sassq item alist fen) is like (assq item alist) except that if item is not found in alist,
instead of returning nil, sassq calls the function fen with no arguments. sassq could
have been defined by:
(defun sassq (item alist fcn)
(or (assq item alist)
(apply fcn nil)))

sassq and sassoc (see below) are of limited use. These are primarily leftovers from Lisp
1.5.
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sassoc item alist fcn
(sassoc item alist fen) is like (assoc item alist) cxcept that if item is not found in alist,
instcad of rcturning nil, sassoc calls the function fen with no arguments. sassoc could
have been defined by:
(defun sassoc (item alist fcn)
(or (assoc item alist)
(apply fcn nil)))

pairlis cars cdrs
pairlis takes two lists and makes an association list which associates elements of the first
list with corresponding clements of the second list.
Example:
(pairlis ’(beef clams kitty) ’(roast fried yu-shiang))
=> ((beef . roast) (clams . fried) (kitty . yu-shiang))

5.8 Stack Lists

When you are creating a list that will not be nceded any more once the function that creates
it is finished, it is possible to create the list on the stack instead of by consing it. This avoids
any permanent storage allocation, as the space is reclaimed as part of cxiting the function. By the
same token, it is a little risky; if any pointers to the list remain after the function exits, they will
become meaningless.

These lists are called temporary lists or stack lists. You can create them explicitly using the
special forms with-stack-list and with-stack-list*. &rest arguments also sometimes create stack
lists.

If a stack list, or a list which might be a stack list, is to be returncd or made part of
permanent list-structure, it must first be copied (sec copylist, page 66). The system will not
detect the error of omitting to copy a stack list; you will simply find that you have a value that
seems to change behind your back.

with-stack-1ist (variable element...) body... Special Form
with-stack-1ist* (variable element... tail) body... Special Form
These special forms create stack lists that live inside the stack frame of the function that
they arc used in. You should assume that the stack lists are only valid until the special
form is exited.

(with-stack-1list (foo x y)
(mumb1ify foo))
is equivalent to
(tet ((foo (1list x y)))
(mumblify foo))
except for the fact that foo’s value in the first example is a stack list.

The list created by with-stack-list* looks like the one created by list*. (ail’s value
becomes the ultimate cdr rather than an clement of the list.

SRCKLMANSFD-CON.TEXT.9 24-JAN-83



Lisp Machine Manual 81 Property Lists

It is an crror to do rplacd on a stack list (except for the tail of onc made using with-stack-
list*). rplaca ‘works normally.

sys:rplacd-wrong-representation-type (error) Condition
‘This is signaled if you rplacd a stack list {or a list overlayed with an array, or any other
sort of structure).

5.9 Property Lists

From time immemorial, Lisp has had a kind of tabular data structure called a property Iist
(plist for short). A property list contains zero or more entries; each entry associates from a
keyword symbol (called the property name, or sometimes the indicator) to a Lisp object (called
the value or, sometimes, the property). There are no duplications among the property names; a
property-list can have only one property at a time with a given name.

This is very similar to an association list. The important difference is that a property list is an
object with a unique identity; the operations for adding and removing property-list entries are
side-effecting operations which alter the property-list rather than making a new one. An
association list with no entries would be the empty list (), i.c. the symbol nil. There is only one
empty list, so all empty association lists are the same object. Each empty property-list is a
separate and distinct object.

The implementation of a property list is a memory cell containing a list with an even number
(possibly zero) of clements. Each pair of elements constitutes a property; the first of the pair is
the name and the second is the value. (It would have been possible to use an alist to hold the
pairs; this format was chosen when Lisp was young) The memory cell is there to give the
property list a unique identity and to provide for side-effecting operations.

The term “property list" is sometimes incorrectly used to refer to the list of entries inside the
property list, rather than the property list itself. This is regrettable and confusing.

How do we deal with "memory cells” in Lisp? That is, what kind of Lisp object is a
property list? Rather than being a distinct primitive data type, a property list can exist in one of
three forms:

1. Any cons can be used as a property list. The cdr of the cons holds the list of entries
(property names and values). Using the cons as a property list does not use the car of the cons;
you can use that for anything else.

2. The system associates a property list with every symbol (see section 6.3, page 99). A
symbol can be used wherc a property list is expected; the property-list primitives will
automatically find the symbol’s property list and use it.

3. A flavor instance may have a property list. The property list functions operate on
instances by sending messages to them, so the flavor can store the property list any way it likes.
Sce page 359).
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4. A property list can be a memory cell in the middle of some data structure, such as a list,
an array, an instance, or a defstruct. An arbitrary memory cell of this kind is named by a
locative (sce chapter 13, page 197). Such locatives arc typically created with the loct special form
(sec page 271).

Property lists of the first kind arc called "discmbodied” property lists becausc they are not
associated with a symbol or other data structure. The way to create a disembodied property list is
(ncons nil), or (ncons data) to store data in the car of the property list.

Here is an example of the list of entrics inside the property list of a symbol named b1 which
is being used by a program which deals with blocks:
(color blue on b6 associated-with (b2 b3 b4))

There are three properties, and so the list has six elements. The first property’s name is the
symbol color, and its valuc is the symbol blue. Onc says that "the value of b1’s color property
is blue”. or, informally, that "b1’s color property is blue.” The program is probably representing
the information that the block represented by b1 is painted blue. Similarly, it is probably
representing in the rest of the property list that block b1 is on top of block b6, and that b1 is
associated with blocks b2, b3, and b4.

get plist property-name :
get looks up plist’s property-name property. If it finds such a property, it returns the
value: otherwise, it returns nil. If plist is a symbol, the symbol’s associated property list
is used. For example, if the property list of foo is (baz 3), then
(get 'foo ’baz) => 3
(get ’*foo ’zoo) => nil

get1 plist property-name-list
getl is like get, cxcept that the sccond argument is a list of property names. getl
searches down plist for any of the names in property-name-list, until it finds a property
whose name is one of them. If plist is a symbol, the symbol's associated property list is
used.

getl returns the portion of the list inside plist beginning with the first such property that
it found. So the car of the returned list is a property name, and the cadr is the property
value. If none of the property names on properfy-name-list are on the property list, getl
returns nil. For example, if the property list of foo were

(bar (1 2 3) baz (3 2 1) color blue height six-two)
then

(get1 ’foo ’(baz height))

=> (baz (3 2 1) color blue height six-two)

When more than one of the names in property-name-list is present in plist, which one
getl returns depends on the order of the properties. This is the only thing that depends
on that order. The order maintained by putprop and defprop is not defined (their
behavior with respect to order is not guaranteed and may be changed without notice).
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putprop plisi x property-name _
This gives plist an property-name-property of x. After this is done, (get plist property-
name) will return x. If plist is a symbol, the symbol's associated property list is used.
Example:
(putprop 'Nixon t ’crook)

defprop symbol x property-name ) ' Special Form

defprop is a form of putprop with "unevaluated arguments”, which is somctimes more
convenient for typing. Normally it doesn’t make sense to use a property list rather than a
symbol as the first (or plist) argument.
Example:

(defprop foo bar next-to)
is the same as

(putprop ’'foo ’bar ’next-to)

remprop plist property-name

This removes plist’s property-name property, by splicing it out of the property list. It
returns that portion of the list inside plist of which the former property-name-property was
the car. car of what remprop returns is what get would have returned with the same
arguments. If plist is a symbol, the symbol's associated property list is used. For
example, if the property list of foo was

(color blue height six-three near-to bar)
then

(remprop 'foo 'height) => (six-three near-to bar)
and foo’s property list would be

(color blue near-to bar)
If piist has no properiy-name-property, then remprop has no side-cffect and returns nil.

5.10 Hash Tables

A hash table is a Lisp object that works something like a property list. Each hash table has a
set of entries, cach of which associates a particular key with a particular value (or sequence of
values). The basic functions that deal with hash tables can create entries, delete entries, and find
the value that is associated with a given key. Finding the value is very fast even if there are
many entries, because hashing is used; this is an important advantage of hash tables over
property lists. Hashing is explained in scction 5.10.3, page 87.

A given hash table stores a fixed number of values for each key; by default, there is only
one value. Each time you specify a new value or sequence of values, the old one(s) are lost.

Hash tables come in two kinds, the difference being whether the keys are compared using eq
or using equal. In other words, there are hash tables which hash on Lisp objects (using eq) and
there are hash tables which hash on trees (using equal). The following discussion refers to the eq
kind of hash table; the other kind is described later, and works analogously.

eq hash tables are created with the function make-hash-table, which takes various options.
New entries are added to hash tables with the puthash function. To look up a key and find the
associated value(s), the gethash function is used. To remove an entry, use remhash. Here is a
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simple ¢xample.
(setq a (make-hash-table))
(puthash ’'color ’brown a)
(puthash ’'name ’'fred a)
(gethash 'color a) => brown
(gethash 'name a) => fred

In this cxample, the symbols color and name arc being used as keys, and the symbols
brown and fred arc being used as the associated values. The hash table remembers one value for
each key. since we did not specify otherwise, and has two items in it, onc of which associates
from color to brown, and the other of which associates from name to fred.

Keys do not have to be symbols; they can be any Lisp object. Likewise values can be any
Lisp object. Since eq does not work reliably on numbers (cxcept for fixnums), they should not
be used as keys in an eq hash table.

When a hash table is first created, it has a size, which how many entrics it contains. But
hash tables which are nearly full become slow to search, so if more than a certain fraction of the
entrics become in use, the hash table will grow automatically, and the entrics will be rehashed
(new hash values will be recomputed, and everything will be rearranged so that the fast hash
lookup still works). This is transparent to the caller; it all happens automatically.

The describe function (see page 641) prints a variety of useful information when applied to a
hash table.

This hash table facility is similar to the hasharray facility of Interlisp, and some of the
function names are the same. However, it is notr compatible. The exact dctails and the order of
arguments are designed to be consistent with the rest of Zetalisp rather than with Interlisp. For
instance, the order of arguments to maphash is different, we do not have the Interlisp "system
hash table”, and we do not have the Interlisp restriction that keys and values may not be nil.
Note, however, that the order of arguments to gethash, puthash, and remhash is not consistent
with the Zetalisp’s get, putprop, and remprop, either. This is an unfortunate result of the
haphazard historical development of Lisp.

Hash tables are implemented with a special kind of array. arrayp of a hash table will return
t. However, it is not recommended to use ordinary array operations on a hash table, because the
way the array clements are used to represent the entries is internal and subject to change. Hash
tables should be manipulated only with the functions described below.
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5.10.1 Hash Table Functions

make-hash-table &rest options

make-equal-hash-table &rcst opiions
These functions create new hash tables. make-equai-hash-tabie crcates an equai hash
table. make-hash-table normally creates an eq hash table, but this can be overridden
by keywords as described below. Valid option keywords are:

size Sets the initial size of the hash table, in entries, as a fixnum. The default
is 100 (octal). Thc actual size is rounded up from the size you specify to
the next size that is "good” for the hashing algorithm. The number of
entries you can actually store in the hash table before it is rehashed is at
least the actual size times the rehash threshold (see below).

:number-of-values
Specifies how many values to associate with each key. The default is one.

-area Specifics the area in which the hash table should be created. This is just
like the :area option to make-array (see page 126). Defaults to nil (i.e.
default-cons-area).

:rehash -function
Specifies the function to be used for rehashing when the table becomes
full. Defaults to the internal rehashing function that does the usual thing.
If you want to write your own rchashing function, you will have to
understand all the internals of how hash tables work. These internals are
not documented here, as the best way to learn them is to read the source
code.

:rehash-size  Specifies how much to increase the size of the hash table when it becomes
full. This can be a fixnum which is the number of entries to add, or it
can be a flonum which is the ratio of the new size to the old size. The
default is 1.3, which causes the table to be made 30% bigger each time it
has to grow.

:rehash-threshold
Sets a maximum fraction of the entries which can be in use before the
hash table is made larger and rehashed. . The default is 0.7s0.

:actual-size  Specifies exactly the size for the hash table. Hash tables used by the
microcode for flavor method lookup must be a power of two in size. This
differs from :size in that :size is rounded up to a ncarly prime number,
but :actual-size is used exactly as specified. :actual-size overrides :size.

:hash-function
Specifies a function which, given a key, computes its hash code. For an
eq hash table, the key is the code, and this option’s value should be nil
(which is the default for make-hash-table). make-equal-hash-table
specifies an appropriate function which uses sxhash.

:compare-function
Specifies a function which compares two keys to see if they count as the
same for retrieval from this table. The default is eq, or equal for make-
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equal-hash-table.

funcallable-p Specifies whether the hash table should attempt to handle messages if
applicd as a function. If this option is non-nil, when the hash table is
called as a function it uses the first argument as a hash key to find a
function to call. 'The function is given the same arguments that the hash
table reccived. Funcallable hash tables are somewhat analogous to select-
method objects (sce page 163).

Specifying a funcallable hash table automatically forces certain other
options to have values that the microcode expects to deal with.

eq and equal hash tables are not the only possible kinds. You can create a hash table with
any comparison function you like, as long as you also provide a suitable hash function. Any two
objects which would be regarded as the same by the comparison function should produce the
same hash code under the hash function.

gethash key hash-table
Finds the entry in hash-table whose key is key, and return the associated value. If there
is no such entry, return nil. Returns a sccond value, which is t if an entry was found or
nil if there is no entry for key in this table.

Returns also a third value, a list which overlays the hash table entry. Its car is the key;
the remaining clements are the values in the entry. This is how you can access values
other than the first, if the hash table contains more than one value per entry.

puthash key value hash-table &rest extra-values
Creates an cntry associating key to value; if there is alrcady an entry for key, then
replace the value of that entry with value. Returns value. The hash table automatically
grows if necessary.

If the hash table associates more than one value with each key, the remaining values in
the entry are taken from extra-values.

remhash key hash-table
Removes any entry for key in hash-table. Returns t if there was an entry or nil if there
was not.

swaphash key value hash-table &rest extra-values
This spccifies new value(s) for key like puthash, but returns values describing the
previous state of the entry, just like gethash. In particular, it returns the previous
(replaced) associated value as the first value, and returns t as the second value if the entry
existed previously.

maphash function hash-table
For each entry in hash-table, call function on two arguments: the key of the entry and
the value of the entry.
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If the hash table has more than one value per key, all the values, in order, arc supplicd
as arguments, with the corresponding key.

maphash-return function hash-table
Like maphash, but accumulates and returns a list of all the values returned by function
when it is applied to the items in the hash table.

c1rhash hash-table :
Removes all the entries from hash-table. Returns the hash table itself.

~ 5.10.2 Hash Tables and the Garbage Collector

The eq type hash tables actually hash on the address of the representation of the object.
When the copying garbage collector changes the addresses of objects, it lets the hash facility know
so that gethash will rehash the table based on the new object addresses.

There will eventually be an option to make-hash-table which tells it to make a "non-GC-
protecting” hash table. This is a special kind of hash table with the property that if one of its
keys becomes "garbage”, i.e. is an object not known about by anything other than the hash table,
then the entry for that key will be silently removed from the table. When this option exists it
will be documented in this section.

5.10.3 Hash Primitive

Hashing is a technique used in algorithms to provide fast retrieval of data in large tables. A
function, known as the “hash function”, takes an object that might be used as a key, and
produces a number associated with that key. This number, or some function of it, can be used
to specify where in a table to look for the datum associated with the key. It is always possible
for two different objects to "hash to the same value™; that is, for the hash function to return the
same number for two distinct objects. Good hash functions are designed to minimize this by
evenly distributing their results over the range of possible numbers. However, hash table
algorithms must still deal with this problem by providing a secondary search, sometimes known as
a rehash. For more information, consult a textbook on computer algorithms.

sxhash tree &optional ok-lo-use-address
sxhash computes a hash code of a tree, and returns it as a fixnum. A property of
sxhash is that (equal x y) always implies (= (sxhash x) (sxhash y)). The number
returned by sxhash is always a non-negative fixnum, possibly a large one. sxhash tries
to compute its hash code in such a way that common permutations of an object, such as
interchanging two elements of a list or changing one character in a string, will always
change the hash code.

Here is an example of how to use sxhash in maintaining hash tables of trees:
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(defun knownp (x &aux i bkt) ;look up x in the table
(setq i (abs (remainder (sxhash x) 176)))
;The remainder should be reasonably randomized.
(setq bkt (aref table i))
;bkt is thus a list of all those expressions that
;hash into the same number as does x.
(memq x bkt))

To write an "intern" for trees, one could
(defun sintern (x &aux bkt i tem)
(setq i (abs (remainder (sxhash x) 2n-1)))
;2n-1 stands for a power of 2 minus one.
;This is a good choice to randomize the
;result of the remainder operation.
(setq bkt (aref table i))
(cond ((setq tem (memq x bkt))
(car tem))
(t (aset (cons x bkt) table i)

x)))

If sxhash is given a named structure or a flavor instance, or if one is part of a tree that is
sxhashed, it will ask the object to supply its own hash code by performing the :sxhash operation
if the object supports it. This should return a suitable nonnegative hash code. The casiest way to
compute onc is usually by applying sxhash to onc or more of thc components of the structure or
the instance variables of the instance.

For named structures and flavor instances that do not handle thc :sxhash operation, and
other unusual kinds cof objects, sxhash can optionally use the object’s address as its hash code, if
you specify a non-nil second argument. If you use this option, you must be prepared to deal
with hash codes changing due to garbage collection.

sxhash provides what is called "hashing on equal”; that is, two objects that are equal are
considered to be "the same” by sxhash. In particular, if two strings differ only in alphabetic
case, sxhash will return the same thing for both of them because they arc equal. The value
returned by sxhash does not depend on the value of alphabetic-case-affects-string-
comparison (see page 144).

Therefore, sxhash is useful for retrieving data when two keys that are not the same object
but are equal are considered the same. If you consider two such keys to be different, then you
need "hashing on eq", where two different objects arc always considered different. In some Lisp
implementations, there is an casy way to create a hash function that hashes on eq, namely, by
returning the virtual address of the storage associated with the object. But in other
implementations, of which Zetalisp is one, this doesn’t work, because the address associated with
an object can be changed by the relocating garbage collector. The hash tables created by make-
hash-table deal with this problem by using the appropriate subprimitives so that they interface
correctly with the garbage collector. If you need a hash table that hashes on eq, it is already
provided; if you need an eq hash function for some other reason, you must build it yourself,
either using the provided eq hash table facility or carefully using subprimitives.
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5.11 Sorting

Several functions are provided for sorting arrays and lists. These functions use algorithms
which always terminate no matter what sorting predicate is used, provided only that the predicate
always terminates. The main sorting functions are not siable; that is, equal items may not stay in
their original order. If you want a stable sort, use the stable versions. But if you don’t care
about stability, don’t use them since stable algorithms are significantly slower.

After sorting, the argument (be it list or array) has been rearranged internally so as to be
completely ordered. In the case of an array argument, this is accomplished by permuting the
~ clements of the array, while in the list case, the list is reordered by rplacd’s in the same manner
as nreverse. Thus if the argument should not be clobbered, the user must sort a copy of the
argument, obtainable by fillarray or copylist, as appropriate. Furthermore, sort of a list is like
delq in that it should not be used for effect; the result is conceptually the same as the argument
but in fact is a different Lisp object.

Should the comparison predicate cause an error, such as a wrong type argument €rror, the
state of the list or array being sorted is undefined. However, if the error is corrected the sort
will, of course, proceed correctly.

The sorting package is smart about compact lists; it sorts compact sublists as if they were
arrays. See section 5.4, page 72 for an explanation of compact lists, and A. I Memo 587 by
Guy L. Steele Jr. for an explanation of the sorting algorithm.

sort table predicate
The first argument to sort is an array or a list. The second is a predicate, which must be
applicable to all the objects in the array or list. The predicate should take two arguments,
and return non-nil if and only if the first argument is strictly less than the sccond (in
some appropriate sense).

The sort function proceeds to sort the contents of the array or list under the ordering
imposed by the predicate, and returns the array or list modified into sorted order. Note
that since sorting requires many comparisons, and thus many calls to the predicate,
sorting will be much faster if the predicate is a compiled function rather than interpreted.

Example: Sort a list alphabetically by the first atom found at any level in each element.
(defun mostcar (x)
(cond ((symbolp x) x)
((mostcar (car x)))))

(sort 'fooarray
(function (lambda (x y)
(aiphaiessp (mostcar x) {(mostcar yj)j})))
If fooarray contained these items before the sort:
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(Tokens (The lion sleeps tonight))
(Carpenters (Close to you))
((Rol11ling Stones) (Brown sugar))
((Beach Boys) (I get around))
(Beatles (I want to hold your hand))
then after the sort fooarray would contain:
((Beach Boys) (I get around))
(Beatles (I want to hold your hand))
(Carpenters (Close to you)) '
((Ro11ling Stones) (Brown sugar))
(Tokens (The lion sleeps tonight))

When sort is given a list, it may change the order of the conses of the list (using
rplacd), and so it cannot be uscd merely for side-effect; only the returned value of sort
will be the sorted list. This will mess up the original list; if you nced both the original
list and the sorted list, you must copy the original and sort the copy (see copylist, page
66).

Sorting an array just moves the clements of the array into different places, and so sorting
an array for side-cffect only is all right.

If the argument to sort is an array with a fill pointer, note that, like most functions, sort
considers the active length of the array to be the length, and so only the active part of
the array will be sorted (sec array-active-length, page 130).

sortcar x predicate
sortcar is the same as sort except that the predicate is applied to the cars of the elements
of x, instead of directly to the clements of x. Example:
(sortcar '((3 . dog) (1 . cat) (2 . bird)) #’<)
=> ((1 . cat) (2 . bird) (3 . dog))

Remember that sortcar, when given a list, may change the order of the conses of the list
(using rplacd), and so it cannot be used merely for side-effect;‘ only the returned value of
sortcar will be the sorted list.

stable-sort x predicate
stable-sort is like sort, but if two elements of x are equal, ie. predicate returns nil
when applied to them in either order, then those two eclements will remain in their
original order.

stable-sortcar x predicate
stable-sortcar is like sortcar, but if two elements of x arc equal, i.e. predicate returns
nil when applied to their cars in either order, then those two elements will remain in
their original order.
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sort-grouped-array array group-size predicate
sort-grouped-array considers its array argument to be composed of records of group-size
clements cach. These records are considered as units, and are sorted with respect to one
another. The predicate is applied to the first clement of each record; so the first elements
act as the keys on which the records are sorted.

sort-grouped-array-group-key array group-size predicate
This is like sort-grouped-array except that the predicate is applied to four arguments:
an array, an index into that array. a sccond array, and an index into the second array.
predicate should consider each index as the subscript of the first element of a record in
the corresponding array, and compare the two records. This is more general than sort-
grouped-array since the function can get at all of the elements of the relevant records,
instead of only the first clement.

5.12 Resources

Storage allocation is handled differently by different computer systems. In many languages,
the programmer must spend a lot of time thinking about when variables and storage units are
allocated and deallocated. In Lisp, freeing of allocated storage is normally done automatically by
the Lisp system; when an object is no longer accessible to the Lisp environment, it is garbage
collected. This relieves the programmer of a great burden, and makes writing programs much
easier.

However, automatic freeing of storage incurs an expense: more computer resources must be
devoted to the garbage collector. If a program is designed to allocate temporary storage, which is
then left as garbage, more of the computer must be devoted to the collection of garbage; this
expense can be high. In some cases, the programmer may decide that it is worth putting up with
the inconvenience of having to free storage under program control, rather than letting the system
do it automatically, in order to prevent a great deal of overhead from the garbage collector.

It usually is not worth worrying about frecing of storage when the units of storage are very
small things such as conses or small arrays. Numbers are not a problem, cither; fixnums and
small flonums do not occupy storage, and the system has a special way of garbage-collecting the
other kinds of numbers with low overhead. But when a program allocates and then gives up very
large objects at a high rate (or large objects at a very high rate), it can be very worthwhile to
keep track of that one kind of object manually. Within the Lisp Machine system, there are
several programs that are in this position. The Chaosnet software allocates and frees "packets”,
which are moderately large, at a very high rate. The window system allocatcs and frees certain
kinds of windows, which are very large, moderately often. Both of these programs manage their
objects manually, keeping track of when they are no longer used.

When we say that a program "manually frees" storage, it does not really mean that the

manually
storage is freed in the same scnse that the garbage collector frees storage. Instead, a list of
unused objects is kept. When a new object is desired, the program first looks on the list to sce if
there is one around already, and if there is it uses it. Only if the list is empty does it actually
allocate a new one. When the program is finished with the object, it returns it to this list.
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The functions and special forms in this section perform the above function. The sct of objects
forming cach such list is called a "resource™; for cxample, there might be a Chaosnet packet
resource.  defresource defines a new resource: allocate-resource allocates one of the objects;
deallocate-resource frees onc of the objects (putting it back on the list); and using-resource
temporarily allocates an object and then frees it.

5.12.1 Defining Resources

defresource Special Form
The defresource special form is used to define a new resource. ‘The form looks like this:
(defresource name parameters
keyword value
keyword value

-)

name should be a symbol; it is the namc of the resource and gets a defresource
property of the internal data structure representing the resource.

parameters is a lambda-list giving names and default values (if &optional is used) of
parameters to an object of this type. For cxample. if one had a resource of two-
dimensional arrays to be used as temporary storage in a calculation, the resource would
typically have two parameters, the number of rows and the number of columns. In the
simplest case parameters is ().

The keyword options control how the objects of the resource are made and kept track of.
The following keywords are allowed:

:constructor  The value is cither a form or the name of a function. It is responsible for
making an object, and will be used when someone tries to allocate an
object from the resource and no suitable free objects exist. If the value is
a form, it may access the parameters as variables. If it is a function, it is
given the internal data structure for the resource and any supplied
paramecters as its arguments; it will need to default any unsupplied
optional parameters. This keyword is required.

free-list-size The value is thc number of objects which the resource data structure
should have room, initially, to remember. This is not a hard limit, since
the data structure will be made bigger if necessary.

sinitial-copies The value is a number (or nil which mecans 0). This many objects will be
made as part of the evaluation of the defresource; thus is useful to set
up a pool of free objects during loading of a program. The default is to
make no initial copies.

If initial 'copies are made and there are parameters, all the parameters
must be &optional and the initial copies will have the default values of
the parameters.

sinitializer The value is a form or a function as with :constructor. In addition to
the parameters, a form here may access the variable object (in the current
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package). A function gets the object as its second argument, after the
data structure and beforc the parameters. ‘The purpose of the initializer
function or form is to clean up the contents of the object before each use.
It is called or evaluated each time an object is allocated, whether just
constructed or being reused.

finder The value is a form or a function as with :constructor and sces the same
' arguments. If this option is specified, the resource system does not keep
track of the objects. Instecad, the finder must do so. It will be called
inside a without-interrupts and must find a usable object somchow and
return it.

:matcher The value is a form or a function as with :constructor. In addition to
the parameters, a form here may access the variable object (in the current
package). A function gets the object as its second argument, after the
data structurc and before the parameters. The job of the matcher is to
make sure that the object matches the specified parameters. If no matcher
is supplied, the system will remember the values of the parameters
(including optional ones that defaulted) that were used to construct the
object, and will assume that it matches those particular values for all time.
The comparison is done with equal (not eq). The matcher is called inside
a without -interrupts.

:checker The value is a form or a function, as above. In addition to the
parameters, a form here may access the variables object and in-use-p (in
the current package). A function receives these as its second and third
arguments, after the data structure and before the parameters. The job of
the checker is to determine whether the object is safe to allocate. If no
checker is supplied, the default checker looks only at in-use-p; if the
object has been allocated and not freed it is not safe to allocate, otherwise
it is. The checker is called inside a without-interrupts.

If these options are used with forms (rather than functions), the forms get compiled into
functions as part of the expansion of defresource. The functions, whether user-provided
or gencrated from forms, are given names like (:property resource-name si:resource-
constructor); these names are not guaranteed not to change in the future.

Most of the options are not used in typical cases. Here is an example:
(defresource two-dimensional-array (rows columns)
:constructor (make-array (list rows columns)))

Suppose the array was usually going to be 100 by 100, and you wanted to preallocate one
during loading of the program so that the first time you needed an array you wouldn’t
have to spend the time to create one. You might simply put
(using-resource (foo two-dimensional-array 100 100)
)
after your defresource, which would allocate a 100 by 100 array and then immediately
free it. Alternatively you could write:
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(defresource two-dimensional-array
(&optional (rows 100) (columns 100))
:constructor (make-array (1ist rows columns))
:initial-copies 1)

Here is an example of how you might use the :matcher option. Suppose you wanted to
have a resource of two-dimensional arrays; as above, except that when you allocate one
you don’t carc about the exact size, as long as it is big cnough. Furthermore you realize
that you are going to have a lot of different sizes and if you always allocated one of
cxactly the right size, you would allocate a lot of different arrays and would not reuse a
pre-existing array very often. So you might write:
(defresource sloppy-two-dimensional-array (rows columns)
:constructor {make-array (1ist rows columns))
:matcher (and (2 (array-dimension-n 1 object) rows)
(2 (array-dimension-n 2 object) columns}))

5.12.2 Allocating Resource Objects

allocate-resource name &rest paramelers :
Allocatc an object from the resource specified by name. The various forms and/or
functions given as options to defresource, together with any parameters given to
allocate-resource. control how a suitable object is found and whether a new one has to
be constructed or an old one can be reused.

Note that the using-resource special form is usually what you want to use, rather than
allocate-resource itsclf; sec below.

deallocate-resource name resource
Free the object resource, returning it to the free-object list of the resource specified by
name.

clear-resource name
Forget all of the objects being remembered by the resource specified by name. Future
calls to allocate-resource will create new objects. This function is useful if something
about the resource has been changed incompatibly, such that the old objects are no longer
usable. If an object of the resource is in use when clear-resource is called, an error
will be signalled when that object is deallocated.

using-resource (variable resource paramelters..) body... Special Form
The body forms are evaluated sequentially with variable bound to an object allocated from
the resource named resource, using the given parameters. The parameters (if any) are
evaluated, but resource is not.

using-resource is often more convenient than calling allocate-resource and deallocate-
resource. Furthermore it is carcful to free the object when the body is exited, whether it
returns normally or via *throw. This is done by using unwind-protect; see page 56.
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Here is an example of the use of resources:
(defresource huge-16b-array (&optionai (size 1000))
:constructor (make-array size ':type ’art-16b))

(defun do-complex-computation (x y)
(using-resource (temp-array huge-16b-array)
e ' ; Within the body, the array can be used.
{aset 5 temp-array i)
...)) ;The array is returned at the end.

5.12.3 Accessing the Resource Data Structure

The constructor, initializer, matcher and checker functions receive the internal resource data
structure as an argument. This is a named structure array whose clements record the objects both
free and allocated, and whosc array leader contains sundry other information. This structure
should be accessed using the following primitives:

si:resource-object resource-structure index
Returns the index’th object remembered by the resource. Both free and allocated objects
are remembered.

si:resource-in-use-p resource-structure index
Returns t if the index’th object remembered by the resource has been allocated and not
deallocated. Simply defined resources will not reallocate an object in this state.

si:resource-parameters resource-structure index
Returns the list of parameters from which the index’th object was originally created.

si:resource-n-objects resource-structure
Returns the number of objects currently remembered by the resource. This will include
all objects ever constructed, unless clear-resource has been used.

si:resource-parametizer resource-structure :
Returns a function, created by defresource, which accepts the supplied parameters as
arguments, and returns a complete list of parameter values, including defaults for the
optional ones.
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