Symbols 96 Lisp Machine Manual

6. Symbols

6.1 The Value Cell

Each symbol has associated with it a value cell, which refers to onc Lisp object. This object
is called the symbol's binding or value, since it is what you get when you cvaluate the symbol.
The binding of symbols to valucs allows symbols to be used as the implementation of variables in
programs.

. The value cell can also be empty, referring to no Lisp object, in which case the symbol is
said to be unbound. This is the initial state of a symbol when it is created. An attempt to
evaluate an unbound symbol causes an error.

Symbols are often used as special variables. Variables and how they work are described in
section 3.1, page 15. The symbols nil and t are always bound to themselves; they may not be
assigned, bound, or otherwisc used as variables. Attempting to change the value of nil or t
usually causes an error.

The functions described here work on symbols, not variables in general. This means that the
functions below won't work if you try to use them on local variables.

set symbol value
set is the primitive for assignment of symbols. The symbol’s value is changed to value;
value may be any Lisp object. set returns value.
Example:
(set (cond ((eq a b) ’c)
(t °d))
*foo)
will either set ¢ to foo or set d to foo.

symeval symbol
symeval is the basic primitive for retrieving a symbol’s value. (symeval symbol) returns
symbol’s current binding. This is the function called by eval when it is given a symbol to
evaluate. If the symbol is unbound, then symeval causes an error.

boundp symbol
boundp returns t if symbol is bound; otherwise, it returns nil.

makunbound symbol
makunbound causes symbol to become unbound.

Example:
(setq a 1)
a=>1

(makunbound ’a)
a => causes an CITor.
makunbound returns its argument.

SRC:KL.MAN>FD-SYM.TEXT.3 24-JAN-83



LLisp Machine Manual 97 The Value Cell

value-cel1-location symbol
value-cell-location returns a locative pointer to symbol’s value cell. Sec the scction on
locatives (chapter 13, page 197). It is preferable to write
(1ocf (symeval symbol))
instead of cailing this function explicitly.

This is actually the internal value cell; there can also be an cxternal value cell. For
details, sce the scction on closures (chapter 11, page 180).

For historical compatibility, value-cell-location of a quoted symbol is recognized
specially by the compiler and treated like variable-location. However, such usage will
result in a compiler warning, and eventually this compatibility feature will be removed.

variable-location symbol Special Form
Returns a locative to the cell in which the value of symbol is stored. symbol is an
unevaluated argument, so the name of the symbol must appear explicitly in the code.

With ordinary special variables, this is equivalent to

{value-cell-location ’symbol)
However, the compiler does not always store the values of variables in the value cells of
symbols. The compiler handles variable-location by producing code that returns a
locative to the cell where the value is actually being kept. For a local variable, this will
be a pointer into the function's stack frame. For a flavor instance variable, this will be a
pointer into the instance which is self’s value.

In addition, if symbol is a special variable which is closed over, the value returned will be
an external value cell, the same as the value of locate-in-closure applied to the proper
closure and symbol. This cell always contains the value which is current only while inside
the closure. Sce page 181.

variable-boundp symbol Special Form
This is non-nil if symbol has a value. All symbols are initially unbound (their value cells
are "empty") until they are set or bound to a value. While this is the case, variable-
boundp returns nil.

It is equivalent to
(location-boundp (variable-location symbol))
symbol is not evaluated.

variable-makunbound symbol Special Form
This makes symbol's value cell "empty" again, making symbol unbound. Evaluating
symbol henceforth will be an error unless symbol is later set or bound.

This is equivalent to

(location-makunbound (variable-location symbol))
symbol is not evaluated.

SRCKLMAN>FD-SYM.TEXT.3 24-JAN-83



The Function Cell 98 Lisp Machine Manual

6.2 The Function Cell

Every symbo! also has associated with it a function cell. The function ccll is similar to the
value cell; it refers to a Lisp object. When a function is referred to by name, that is, when a
symbol is passcd to apply or appears as the car of a form to be cvaluated, that symbol’s function
cell is used to find its definition, the functional object which is to be applied. For cxample,
when evaluating (+ 5 6), the evaluator looks in +'s function cell to find the definition of +, in
this casc a compiled function object, to apply to 5 and 6.

Maclisp does not have function cells; instcad, it looks for special properties on the property
list. This is onc of the major incompatibilitics between the two dialects.

like the value cell, a function cell can be empty, and it can be bound or assigned.
(However, to bind a function cell you must use the bind subprimitive; see page 212.) The
following functions are analogous to the value-cell-related functions in the previous section.

fsymeval symbol
' fsymeval rcturns symbol’s definition, the contents of its function ccll. If the function cell
is empty, fsymeval causes an error.

fset symbol definition
fset stores definition, which may be any Lisp object, into symbol’s function cell. It
returns definition.

fboundp symbol
fooundp returns nil if symbol’s function cell is empty, ie. if symbol is undefined.
Otherwise it returns t.

fmakunbound symbol
fmakunbound causes symbol to be undefined, i.e. its function cell to be empty. It returns
symbol.

function-cel1-location symbol
function-cell-location returns a locative pointer to symbol’s function cell. See the section
on locatives (chapter 13, page 197). It is preferable to write
(locf (fsymeval symbol))
rather than calling this function explicitly.

Since functions are the basic building block of Lisp programs, the system provides a variety
of facilities for dealing with functions. Refer to chapter 10 for details.

SRC:KLMANDFD-SYM.TEXT.3 24-JAN-83



[isp Machine Manual 99 The Property List

6.3 The Property List

Every symbol has an associated property list. See scction 5.9, page 81 for documentation of
property lists. When a symbol is created, its property list is initially empty.

The Lisp language itsclf does not use a symbol’s property list for anything. (This was not
truec in older Lisp implementations, where the print-name, value-cell, and function-cell of a
symbol were kept on its property list.) However, various system programs usc the property list to
associate information with the symbol. For instance, the cditor uses the property list of a symbol
which is the name of a function to remember where it has the source code for that function, and
* the compiler uses the property list of a symbol which is the name of a special form to remember
how to compile that special form.

Because of the existence of print-name, value, function, and package cells, none of the
Maclisp system property names (expr, fexpr, macro, array, subr, Isubr, fsubr, and in former
times value and pname) exist in Zetalisp.

plist symbol
This returns the list which represents the property list of symbol. Note that this is not the
property list itself; you cannot do get on it.

setplist symbol list
This sets the list which represents the property list of symbol to list. setplist is to be
used with caution (or not at all), since property lists sometimes contain internal system
properties, which are used by many useful system functions. Also it is inadvisable to have
the property lists of two different symbols be eq, since the shared list structure will cause
unexpected effects on one symbol if putprop or remprop is done to the other.

property-cell-location symbol
This returns a locative pointer to the location of symbol's property-list cell. This locative
pointer may be passed to get or putprop with the same results as if as symbol itsclf had
been passed. It is preferable to write
(locf (plist symbol))
rather than using this function.

6.4 The Print Name

Every symbol has an associated string called the print-name, or pname for short. This string
is used as the external representation of the symbol: if the string is typed in to read, it is read
as a reference to that symbol (if it is interned), and if the symbol is printed, print types out the
print-name. For more information, see the sections on the reader (see section 21.2.2, page 371)

see section 21.2.1, page 367).

get-pname symbol
This returns the print-name of the symbol symbol.
Example:

(get-pname ’xyz) => "XYZ"

SRCKLMAN>FD-SYM.TEXT.3 24-JAN-83



‘The Package Cell 100 Lisp Machine Manual

samepnamep syml sym?2

This predicate returns t if the two symbols sym/ and sym2 have equal print-names; that
is, if their printed representations arc the same. Upper and lower case letters are
normally considered the same. Strings arc also accepted as arguments; their contents are
used in the comparison. samepnamep is uscful for determining if two symbols would be
the same cxcept that they are in different packages (sce chapter 24, page 506).

Examples: '

(samepnamep ’'xyz (méknam (x y z)) => t

(samepnamep ’xyz (maknam '(w x y)) => nil
(samepnamep ’'xyz "XYZ") => t

This is the samec function as string-equal (sce page 145). samepnamep is provided
mainly so that you can write programs that will work in Maclisp as well as Zetalisp; in
new programs, you should just usc string-equal.

6.5 The Package Cell

Every symbol has a package cell which, for interned symbols, is used to point to the package
which the symbol belongs to. For an uninterned symbol, the package cell contains nil. For
information about packages in general, scc the chapter on packages, chapter 24, page 506. For
information about package cells, see page 513.

6.6 Creating Symbols

The functions in this section are primitives for creating symbols. However, before discussing
them, it is important to point out that most symbols are created by a higher-level mechanism,
namely the reader and the intern function. Nearly all symbols in Lisp are created by virtue of
the reader’s having seen a sequence of input characters that looked like the printed representation
(p.r.) of a symbol. When the reader sees such a p.r., it calls intern (see page 512), which looks
up the scquence of characters in a big table and sces whether any symbol with this print-name
already exists. If it does, read uscs the already-existing symbol. If it does not, then intern
creates a new symbol and puts it into the table; read uses that new symbol.

A symbol that has been put into such a table is called an interned symbol. Interned symbols
are normally created automatically; the first time that someone (such as the rcader) asks for a
symbol with a given print-name, that symbol is automatically created.

These tables are called packages. In Zetalisp, interned symbols are the province of the
package system. Although interned symbols are the most commonly used, they will not be
discussed further here. For morc information, turn to the chapter on packages (chapter 24, page
506).

An uninterned symbol is a symbol used simply as a data object, with no special cataloging.

An uninterned symbol prints the same as an interned symbol with the same print-name, but
cannot be read back in.

SRCKL.MAN>FD-SYM.TEXT.3 24-JAN-83



Lisp Machinc Manual 101 Creating Symbols

The following functions can be used to create uninterned symbols explicitly.

make-symbol prname &optional permanent-p

‘This creates a new uninterned symbol, whose print-name is the string pname. The value
and function bindings will be unbound and the property list will be empty. If permanent-
p is specified, it is assumed that the symbol is going to be interned and probably kept
around forever: in this case it and its pname will be put in the proper areas. If
permanent-p is nil (the default), the symbol goes in the default arca and the pname is not
copied. permanent-p is mostly for the use of intern itself.
Examples:

(setq a (make-symbol "foo")) => foo

(symeval a) => ERROR!
Note that the symbol is not interned; it is simply created and returned.

copysymbol symbol copy-props
This returns a new uninterned symbol with the same print-name as symbol. 1f copy-props
is non-nil, then the value and function-definition of the new symbol will be the same as
those of symbol, and the property list of the new symbol will be a copy of symbol’s. 1If
copy-props is nil, then the new symbol will be unbound and undefined, and its property
list will be empty.

gensym &optional x
gensym invents a print-name, and creates a new symbol with that print-name. It returns
the new, uninterned symbol.

The invented print-name is a character prefix (the value of si:*gensym-prefix) followed
by the decimal representation of a number (the value of si:*gensym-counter), e.g.
g0001. The number is increased by one every time gensym is called.

If the argument x is present and is a fixnum, then si:*gensym-counter is set to x. If x
is a string or a symbol, then si:*gensym-prefix is set to the first character of the string
or of the symbol’s print-name. After handling the argument, gensym creates a symbol as
it would with no argument.

Examples:
if (gensym) => g0007
then (gensym 'foo) => f0008

(gensym 32.) => 0032
(gensym) => f0033

Note that the number is in decimal and always has four digits, and the prefix is always
one character.

gensym is usually used to create a symbol which should not normaily be seen by the
user, and whose print-name is unimportant, except to allow easy distinction by eye
between two such symbols. The optional argument is rarely supplied. The name comes
from "gencrate symbol”, and the symbols produced by it are often called "gensyms".

SRCKL.MAN>FD-SYM.TEXT.3 24-JAN-83



	096
	097
	098
	099
	100
	101

