Numbers 102 Lisp Machine Manual

7. N umbe’rs

Zcetalisp includes several types of numbers, with different characteristics. Most numeric
functions will accept any type of numbers as arguments and do the right thing. That is to say,
they are generic. In Maclisp, there are generic numeric functions (like plus) and there are
specific numeric functions (like +) which only operate on a certain type of number, but are
much more cfficient. In Zetalisp, this distinction does not exist: both function names exist for
compatibility but they are identical. The microprogrammed structure of the machine makes it
possible to have only the generic functions without loss of efficiency.

The types of numbers in Zetalisp are:

fixnum Fixnums are 24-bit 2’s complement binary intcgers. These are the "preferred,
most efficient” type of number.

bignum Bignums are arbitrary-precision binary integers.

rationalnum Rationalnums represent rational numbers cxactly as the quotient of two integers,
cach of which can be a fixnum or a bignum. Rationalnums with a denominator
of one are not normally created, as an integer will be returned instead.

flonum Flonums are floating-point numbers. They have a mantissa of 32 bits and an
exponent of 11 bits, providing a precision of about 9 digits and a range of about
101300. Stable rounding is employed.

small-flonum Small flonums arc another form of floating-point number, with a mantissa of 18
bits and an cxponent of 7 bits, providing a precision of about 5 digits and a
range of about 10t19. Stable rounding is employed. Small flonums are useful
because. like fixnums, and unlike flonums, they don’t require any storage.
Computing with small flonums is more efficient than with regular flonums because
the operations are faster and consing overhead is eliminated.

complexnum Complexnums represent complex numbers with a real part and an imaginary part,
each of which can be any type of number except a complexnum. Complexnums
whose imaginary part is zero are not normally gencrated, as a real number will be
returned instead.

Generally, Lisp objects have a unique identity; each exists, independent of any other, and
you can use the eq predicate to determine whether two references are to the same object or not.
Numbers are the exception to this rule; they don’t work this way. The following function may
return either t or nil. Its behavior is considered undefinedd; as this manual is written, it returns
t when interpreted but nil when compiled.

(defun foo ()
(let ((x (float 5)))
(eq x (car (cons x nil)))))
This is very strange from the point of view of Lisp’s usual object semantics, but the
implementation works this way, in order to gain efficiency, and on the grounds that identity
testing of numbers is not really an interesting thing to do. So the rule is that the result of
applying eq to numbers is undefined, and may return either t or nil at will. If you want to
compare the values of two numbers, use = (see page 106) or eql (page 12).

SRC:KL.MAN>FD-NUM.TEXT.3 24-JAN-83

Lisp Machinc Manual 103 . Numbers

Fixnums and small flonums are exceptions to this rule; some system code knows that eq
works on fixnums used o represent characters or small integers, and uses memq or assq on
them. eq works as well as = as an cquality test for fixnums. Small flonums that are = tend to
be eq also, but it is unwise to depend on this.

The distinction between fixnums and bignums is largely transparent to the user. The user
simply computes with integers, and the system represents some as fixnums and the rest (less
cfficiently) as bignums. The system automatically converts back and forth between fixnums and
bignums based solely on the size of the integer. There are a few "low level” functions which
only work on fixnums; this fact is noted in their documentation. Also, when using eq on
numbers the user needs to be aware of the fixnum/bignum distinction.

Integer computations cannot "overflow”, cxcept for division by zero, since bignums can be of
arbitrary size. Floating-point computations can get cxponent overflow or underflow, if the result is
o large or small to be represented. Exponent overflow always signals an error. Exponent
underflow normally signals an error, and assumes 0.0 as the answer if the user says to proceed
from the error. However, if the value of the variable zunderflow is non-nil, the error is skipped
and computation proceeds with 0.0 in place of the result that was too small.

When an arithmetic function of more than one argument is given arguments of different
numeric types, uniform coercion rules are followed to convert the arguments to a common type,
which is also the type of the result (for functions which return a number). When an integer
meets a rationalnum, the result is a rationalnum. When an integer or rationalnum meets a small
flonum or a flonum, the result is a small flonum or a flonum (respectively). When a small
flonum meets a regular flonum, the result is a regular flonum. When a real number meets a
complexnum, the result is a complexnum.

Thus if the constants in a numerical algorithm are written as small flonums (assuming this
provides adequate precision), and if the input is a small flonum, the computation will be done in
small-flonum mode and the result will be a small flonum, while if the input is a large flonum the
computations will be done in full precision and the result will be a flonum.

Zetalisp never automatically converts between flonums and small flonums, the way it
automatically converts between fixnums and bignums, since this would lead either to incfficiency
or to unexpected numerical inaccuracies. (When a small flonum meets a flonum, the result is a
flonum, but if you use only one type, all the results will be of the same type too.) This means
that a small-flonum computation can get an cxponent overflow error even when the result could
have been represented as a large flonum.

Floating-point numbers retain only a certain number of bits of precision; therefore, the results
of computations are only approximate. Large flonums have 31 bits and small flonums have 17
bits, not counting the sign. The method of approximation is "stable rounding”. The result of an
arithmetic operation will be the flonum which is closest to the exact value. If the exact result fails
precisely halfway between two flonums, the result will be rounded down if the least-significant bit
is 0, or up if the least-significant bit is 1. This choice is arbitrary but insures that no systematic
bias is introduced.

SRCKLMANYFD-NUM.TEXT.3 24-JAN-83

Numbers 104 Lisp Machine Manual

Unlike Maclisp, Zectalisp does not have number declarations in the compiler. . Note that
because fixnums and small flonums require no associated storage they arc as cfficient as declared
numbers in Maclisp. Bignums and (large) flonums are less cfficient; however, bignum and flonum
intermediate results arc garbage-collected in a special way that avoids the overhcad of the full
garbage collector.

The different types of numbers can be distinguished by their printed representations. A

leading or embedded (but nor trailing) decimal point, and/or an cxponent scparated by "e",
indicates a flonum. If a number has an cxponent separated by "s", it is a small flonum. Small
flonums require a special indicator so that naive users will not accidentally compute with the lesser
precision. Fixnums and bignums have similar printed representations since there is no numerical
value that has a choice of whether to be a fixnum or a bignum; an integer is a bignum if and
only if its magnitude is too big for a fixnum. Sce the examples on page 372, in the description

of what the rcader understands.

zunderflow Variable
When this is nil, floating point exponent underflow is an error. When this is t, exponent
underflow proceeds, returning zero as the value. The same thing could be accomplished
with a condition handler. However, zunderflow is useful for Maclisp compatibility, and
is also faster.

sys:floating-exponent-overflow (sys:arithmetic-error error) Condition

sys:floating-exponent-underflow (sys:arithmetic-error error) Condition
sys:floating-exponent-overflow is signaled when the result of an arithmetic operation
should be a floating point number, but the exponent is too large to be represented in the
format to be used for the value. sys:floating-exponent-underflow is signaled when the
exponent is too small.

The condition instance provides two additional opcrations: :function, which returns the
arithmetic function that was called, and :small-float-p, which is t if the result was
supposed to be a small flonum.

sys:floating-exponent-overflow provides the :new-value proceed type. It expects one
argument, a new value.

sys:floating-exponent-underflow provides the :use-zero proceed type, which expects no
argument.

Unfortunately, it is not possible to make the arguments to the operation available.
Perhaps someday they will be.

SRC:KLMAN>FD-NUM.TEXT.3 24-JAN-83

Lisp Machine Manual 105 Numeric Predicates

7.1 Numeric Predicates

zerop x
Returns t if x is zero. Otherwise it returns nil. If x is not a number, zerop causcs an

error. For flonums, this only returns t for exactly 0.0 or 0.0s0; there is no "fuzz".

plusp x .
Returns t if its argument is a positive number, strictly greater than zero. Otherwise it
returns nil. If x is not a number, plusp causes an error.

minusp x
Returns t if its argument is a negative number, strictly less than zero. Otherwise it

returns nil. If x is not a number, Minusp causecs an error.

oddp number
Returns t if number is odd, otherwise nil. If number is not a fixnum or a bignum, oddp

causes an error.

evenp number
Returns t if number is even, otherwise nil. If number is not a fixnum or a bignum,

evenp causes an CITor.

signp test x Special Form
signp is used to test the sign of a number. It is present only for Maclisp compatibility
and is not recommended for use in new programs. signp returns t if x is a number
which satisfies the test, nil if it is not a number or does not meet the test. fest is not
evaluated, but x is. rest can be one of the following:

i x<0
le x<0
e x=10
n x=0
ge x20
g x>0

Examples:
(signp ge 12) => t
(signp le 12) => nil
(signp n 0) => nil
(signp g 'foo) => nil

See also the data-type predicates integerp, rationalp, realp, complexp, floatp, bigp, small-
floatp, and numberp (page 9).

SRCKLL.MAN>FD-NUM.TEXT.3 24-JAN-83

Numcric Comparisons 106 Lisp Machine Manual

7.2 Numeric Comparisons

All of these functions require that their arguments be numbers; they signal an error if given a
non-number. Equality tests work on all types of numbers, automatically performing any required
coercions (as opposed to Maclisp in which gencrally only the spelled-out names work for all kinds
of numbers). Ordering comparisons work only on real numbers, since they arc meaningless on
complex numbers. ,

= X y
Returns t if x and y are numerically equal. An integer can be = to a flonum.

eql x y
Returns t if x and y are both numbers and numerically equal, or if they are eq.

greaterp &rest two-or-more-args

> &rest two-or-more-args
greaterp compares its arguments from left to right. If any argument is not greater than
the next. greaterp returns nil. But if the arguments arc monotonically strictly decreasing,
the result is t.
Examples:

(greaterp 4 3) => t
(greaterp 4 3 2 1 0) => t
(greaterp 4 3 1 2 0) => nil

>= &rest two-or-more-args

2 &rest two-or-more-args
> compares its arguments from left to right. If any argument is less than the next, 2
returns nil. But if the arguments are monotonically decreasing or equal, the result is t.

Tessp &rest iwo-or-more-args
< &rest two-or-more-args
lessp compares its arguments from left to right. If any argument is not less than the
next, lessp returns nil. But if the arguments are monotonically strictly increasing, the
result is t.
Examples:
(lessp 3 4) => t
(lessp 1 1) => nil
(lessp 01 2 3 4) => t
(lessp 01 3 2 4) => nil

{= &rest two-or-more-args

< &rest two-or-more-args
< compares its arguments from left to right. If any argument is greater than the next, <
returns nil. But if the arguments are monotonically increasing or equal, the result is t.

SRCKLMAN>FD-NUM.TEXT.3 24-JAN-83

Lisp Machine Manual 107 Arithmetic

Xy

Returns t if x is not numerically equal to y, and nil otherwise.

max &rest one-or-nore-args
max returns the largest of its arguments, which must all be real.
Example:
(max 1 3 2) => 3
max requires at lcast one argument.

min &rest one-or-more-args
min returns the smallest of its arguments, which must all be real.
Example:
(min 13 2) => 1
min rcquires at least onc argument.

7.3 Arithmetic

All of these functions require that their arguments be numbers, and signal an ecrror if given a
non-number. They work on all types of numbers, automatically performing any required
coercions (as opposed to Maclisp, in which generally only the spefled-out versions work for all
kinds of numbers, and the "$" versions are needed for flonums).

plus &rest args

+ &rest args

+$ &rest args
Returns the sum of its arguments. If there are no arguments, it returns 0, which is the
identity for this operation.

difference arg &rest args
Returns its first argument minus all of the rest of its arguments.

minus x
Returns the negative of x.
Examples:
(minus 1) => -1
(minus -3.0) => 3.0

- arg &rest args

-$ arg &rest args
With only one argument, - is the same as minus; it returns the negative of its argument.
With more than one argument, - is the same as difference; it returns its first argument
minus all of the rest of its arguments.

abs x :
Returns |x|, the absolute value of the number x. abs for real numbers could have been
defined by:

SRCKLMAN>FD-NUM.TEXT.3 24-JAN-83

Arithmetic 108 Lisp Machine Manual

times

(defun abs (x)
(cond ((minusp x) (minus x))

(t x)))

abs of a complex number is
(sqrt (~ (realpart x) 2) (~ (imagpart x) 2))

&rest args

* &rest args
*$ &rest args

Returns the product of its arguments. If therc are no arguments, it returns 1, which is
the identity for this operation.

quotient arg &rest args

Returns the first argument divided by all of the rest of its arguments.

// arg &rest args
//8 arg &rest args

The name of this function is written // rather than / because / is the quoting character
in Lisp syntax and must be doubied. With more than one argument, // is the same as
quotient; it returns the first argument divided by all of the rest of its arguments. With
only onc argument, (// x) is the same as (// 1 x).

quotient and // of two integers returns an integer even if the mathematically correct
value is not an integer. More precisely, the value is the same as the first value of
truncate (sec below). This will eventually be changed, and then the value will be a
rationalnum if necessary so that the it is mathematically correct. All code that relics on
guotient or // to return an integer value rather than a rationalnum should be converted
to use truncate (or floor or ceiling, which may simplify the code further). In the mean
time, use the function %div if you want a rational result.

Examples:
(77 3 2) =>1 :Fixnum-division truncates.
(77 3 -2) => -1
(77 -3 2) => -1
(/7 -3 -2) => 1
(/77 3 2.0) => 1.5
(/7/ 3 2.0s0) => 1.5s0
(/7 84 2) => 2
(77 12. 2. 3.) => 2
(77 4.0) => .25

remainder x y

\ xy

SRC:«1.

Returns the remainder of x divided by y. x and y must be integers (fixnums or
bignums). This is the same as the second value of (truncate x y).

MANSFD-NUM.TEXT.3 24-JAN-83

Lisp Machine Manual 109 Arithmetic

(\32) =1

(\ -3 2) => -1
(\ 3 -2) => 1
(\ -3 -2) => -1

%div dividend divisor
Divides, returning a mathematically correct quotient (a rationalnum if necessary) when the
arguments arc integers. If either argument is a noninteger, the result is the samc as that
of using //.
(%div 1 2) => 1\2

There are four functions for “integer division", the sort which produces a quotient and a
remainder. They differ in how they round the quotient to an integer, and therefore also in the
sign of the remainder. The arguments must be real, since ordering is nceded to compute the
value.

floor x &optional (y1)
floor's first value is the largest integer less than or equal to the quotient of x divided by

y.

The second value is the "remainder”, x minus y times the first value. This has the same
sign as y (or may be zero), regardless of the sign of x.

With one argument, floor’s first value is the largest integer less than or equal to the
argument.

ceiling x &optional (y1)
ceiling’s first value is the smallest integer greater than or equal to the quotient of x
divided by y.

The second value is the "remainder”, x minus y times the first value. This has the
opposite sign from y (or may be zero), regardless of the sign of x.

With one argument, ceiling’s first value is the largest integer less than or equal to the
argument.

truncate x &optional (y1)
truncate is the same as floor if the arguments have the same sign, ceiling if they have
opposite signs. truncate is the function that the divide instruction on most computers
implements.

truncate’s first value is the nearest integer, in the direction of zero, to the quotient of x
divided by y.

The second value is the "remainder”, x minus y times the first value. This has the same
sign as x (or may be zero).

SRC:KLMAN>FD-NUM.TEXT.3 24-JAN-83

Arithmetic 110 Lisp Machine Manual

round x &optional (y1)
round’s first value is the nearest integer to the quotient of x divided by y. If the
quoticnt is midway between two integers, the cven integer of the two is used.

The sccond value is the "remainder”, x minus y times the first value. The sign of this
remainder cannot be predicted from the signs of the arguments alone.

With one argument, round’s first value is the integer nearest to the argument.

sys:divide-by-zero (sys:arithmetic-error error) Condition
Dividing by zero, using any of the above division functions, signals this condition. The
:function opcration on the condition instance returns the name of the division function.
The :dividend operation may be available to return the number that was divided.

addl x
1+ x
1+$ x
(add1 x) is the same as (plus x 1).
subl x
1- x
1-% x

(sub1 x) is the same as (difference x 1). Note that the short name may be confusing:
(1- x) docs not mean 1-x; rather, it means x-1.

ged x y &rest args

\\ x y &rest args
Returns the greatest common divisor of all its arguments. The arguments must be integers
(fixnums or bignums).

expt x y

~xy

~$ xy
Returns x raised to the y’th power. The result is rational (and possibly an integer) if
both arguments are integers, and floating-point if cither x or y or both is floating-point.
If the exponent is an integer a repeated-squaring algorithm is used; otherwise the result is

(exp (* y (log x))).

Currently complex exponents are not allowed, and complex bases are allowed only with
integer exponents.

sys:zero-to-negative-power (sys:arithmetic-error error) Condition
This condition is signaled when expt’s first argument is zero and the second argument is
negative.

SRCALMAN>FD-NUM.TEXT.3 24-JAN-83

Lisp Machine Manual 111 Complex Number Functions

sqrt x
Returns the square root of x. It is currently implemented only for nonnegative real x.

isqrt x
Integer squarc-root. x must be an integer; the result is the greatest integer

cqual to the exact square root of x.

sys:negative-sqrt (sys:arithmetic-error error) Condition
This is signaled when sqrt or isqrt’s argument is negative. The :number operation on the
condition instance will return the argument.

*dif x y

*plus x y

*quo x y

*times x y
These are the internal microcoded arithmetic functions. There is no reason why anyone
should need to write code with these explicitly, since the compiler knows how to gencrate
the appropriate code for plus, +, etc. These names are only here for Maclisp
compatibility.

7.4 Complex Number Functions
See also the predicates realp and complexp (page 10).

complex x &optional y
Returns the complex number whose real part is x and whose imaginary part is y.

If y is zero, a peculiar complexnum is created whose numeric value is actually real. If y
is omitted, a number is used whose value is zero and whose type is the same as that of
x. Note that realp of this peculiar complexnum will be nil even though the mathematical
value is indeed real.

realpart x
Returns the real part of the number x. If x is real, this is the same as x.

imagpart x
Returns the imaginary part of the number x. If x is real, this is zero.

conjugate x
Returns the complex conjugate of the number x. If x is real, this is the same as x.

phase x
Returns the phase angle of the complex number x in its polar form. This is the angle
from the positive x-axis to the ray from the origin through x. The value is always in the
interval [0, 27).

SRCKLMAN>FD-NUM.TEXT.3 24-JAN-83

‘Transcendental Functions 112 Lisp Machine Manual

cis angle
Returns the complex number of unit magnitude whose phase is angle. ‘This is cqual to
(complex (cos angle) (sin angle)).

signum x
Returns a number with unit magnitude and the same phase as x. If x is zero, the value
is zero.

If x is real, the value is cither 1 or -1.

7.5 Transcendental Functions

These functions are only for fioating-point arguments; if given an integer they will convert it
to a flonum. If given a small-flonum, they will return a small-flonum.

Currently complex arguments are not allowed. This will be changed some day.

exp x
Returns e raised to the x’th power, where e is the base of natural logarithms.

log x
Returns the natural logarithm of x.

sys:non-positive-log (sys:arithmetic-error error) Condition
This is signaled when the argument to log is a negative number or zero. The :number
opceration on the condition instance returns that number.

sin x
Returns the sine of x, where x is expressed in radians.

sind x
Returns the sine of x, where x is expressed in degrees.

cos x
Returns the cosine of x, where x is expressed in radians.

cosd x
Returns the cosine of x, where x is expressed in degrees.

atan y x
Returns the angle, in radians, whose tangent is y/x. atan always returns a non-negative
number between zero and 2.

atan2 y x

Returns the angle, in radians, whose tangent is y/x. atan2 always returns a number
between -7 and 7.

SRCKLMAN>FD-NUM.TEXT.3 24-JAN-83

Lisp Machine Manual 113 Numeric Type Conversions

7.6 Numeric Type Conversions

These functions are provided to allow specific conversions of data types to be forced, when
desired.

fix x
Converts x from a flonum (or small-flonum) or rationalnum to an integer, truncating
towards ncgative infinity. The result is a fixnum or a bignum as appropriate. If x is
alrcady a fixnum or a bignum, it is returned unchanged.

fix is the same as floor except that floor returns an additional value. fix is semi-obsolete,
since the functions floor, ceiling, truncate and round provide four different ways of
converting numbers to integers with different kinds of rounding.

fixr x
fixr is the same as round except that round returns an additional value. fixr is considered
obsolete.

float x

Converts any kind of number to a flonum.

small-float x
Converts any kind of number to a small flonum.

numerator x
Returns the numerator of the rational number x. If x is an integer, the value equals x.
If x is not an integer or rationalnum, an error is signaled.

demoninator x
Returns the demoninator of the rational number x. If x is an integer, the value is 1. If
x is not an integer or rationalnum, an error is signaled.

rational x
Converts x to a rational number. If x is an integer or a rationalnum, it is returned
unchanged. If it is a floating point number, it is regarded as an exact fraction whose
numerator is the mantissa and whose denominator is a power of two. For any other
argument, an error is signaled.

rationalize x &optional precision
Returns a rational approximation to x.

If there is only one argument, and it is an integer or a rationalnum, it is returned
unchanged. If the argument is a floating point number, a rational number is returned
which, if converted to a floating point number, would produce the original argument. Of
all such rational numbers, the one chosen has the smallest numerator and denominator.

If there are two arguments, the second one specifies how much precision of the first
argument should be considered significant. precision can be a positive integer (the number
of bits to use), a negative integer (the number of bits to drop at the end), or a floating
point number (minus its exponent is the number of bits to use).

SRCKL.MAN>FD-NUM.TEXT.3 24-JAN-83

l.ogical Operations on Numbers 114 L.isp Machine Manual

If there are two arguments and the first is rational, the value is a “simpler” rational which
approximates it.

7.7 Logical Operations on Numbers

Except for Ish and rot, these functions operate on both fixnums and bignums. Ish and rot
have an inherent word-length limitation and hence only operatc on 24-bit fixnums. Negative
numbers are operated on in their 2’s-complement representation.

lTogior &rest one-or-more-args
Returns: the bit-wise logical inclusive or of its arguments. At least one argument is
required.
Example:
(logior 4002 67) => 4067

Togxor &rest one-or-more-args
Returns the bit-wise logical exclusive or of its arguments. At least one argument is
required.
Example:
(logxor 2531 7777) => 5246

logand &rest one-or-more-args
Returns the bit-wise logical and of its arguments. At least one argument is required.
Examples:
(1logand 3456 707) => 406
(logand 3456 -100) => 3400

lognot number
Returns the logical complement of number. This is the same as logxor'ing number with
-1.
Example:
(lognot 3456) => -3457

boole fnn &rest one-or-more-args .
boole is the generalization of logand, logior, and logxor. fi should be a fixnum
between 0 and 17 octal inclusive; it controls the function which is computed. If the
binary representation of fir is abed (a is the most significant bit, d the least) then the truth
table for the Boolean operation is as follows:

y
] 0 1
0] a ¢
x|
1] b d

SRCKL.MANDFD-NUM.TEXT.3 24-JAN-83

Lisp Machine Manual 115 I .ogical Operations on Numbers

If boole has more than three arguments, it is associated left to right; thus,

(boole fn x y z) = (boole fn (boole fn x y) z)
With two arguments, the result of boole is simply its sccond argument. At least two
arguments arc required.

Examples:
(boole 1 x y) = (logand x y)
(boole 6 x y) = (logxor x y)
(boole 2 x y) = (logand (lognot x) y)

logand, logior, and logxor are usually preferred over the cquivalent forms of boole, to
avoid putting magic numbers in the program.

bit-test x y
bit-test is a predicate which returns t if any of the bits designated by the I's in x are 1's
in y. bit-test is implemented as a macro which expands as follows:
(bit-test x y) ==> (not (zerop (logand x y)))

Ish x y

Returns x shified left y bits if y is positive or zero, or x shifted right |y| bits if y is
negative. Zero bits arc shifted in (at either end) to fill unused positions. x and y must
be fixnums. (In some applications you may find ash uscful for shifting bignums; sece
below.)
Examples:

(1sh 4 1) => 10 ;(octal)

(1sh 14 -2) => 3

(Ish -1 1) => -2

ash x y
Shifts x arithmetically left y bits if y is positive, or right -y bits if y is ncgative. Unused
positions are filled by zeroes from the right, and by copies of the sign bit from the left.
Thus, unlike Ish, the sign of the result is always the same as the sign of x. If x is a
fixnum or a bignum, this is a shifting operation. If x is a flonum, this does scaling
(multiplication by a power of two), rather than actually shifting any bits.

rot xy

Returns x rotated left y bits if y is positive or zero. or x rotated right [y| bits if y is
negative. The rotation considers x as a 24-bit number (unlike Maclisp, which considers x
to be a 36-bit number in both the pdp-10 and Multics implementations). x and y must
be fixnums. (There is no function for rotating bignums.)
Examples:

(rot 12) => 4

(rot 1 -2) => 20000000

(rot -17) => -1

(rot 15 24.) => 15

SRC:KLLMAN>FD-NUM.TEXT.3 24-JAN-83

Byte Manipulation Functions 116 Lisp Machinc Manual

haulong x
This returns the number of significant bits in |x|. x may be a fixnum or a bignum. Is
sign is ignored. 'The result is the least integer strictly greater than the base-2 logarithm of
|x].
Examples:
{haulong 0) => 0
(haulong 3) => 2
(haulong -7) => 3

haipart x n
Returns the high n bits of the binary representation of |x|. or the low -n bits if # is
negative. x may be a fixnum or a bignum; its sign is ignored. haipart could have been
defined by:
(defun haipart (x n)
(setq x (abs x))
(if (minusp n)
(logand x (1- {(ash 1 (- n))))
(ash x {min (- n (haulong x))

0))))

7.8 Byte Manipulation Functions

Several functions are provided for dealing with an arbitrary-width ficld of contiguous bits
appearing anywhere in an integer (a fixnum or a bignum). Such a contiguous set of bits is called
a byte. Note that we are not using the term byte to mean eight bits, but rather any number of
bits within a number. These functions use numbers called byte specifiers to designate a specific
byte position within any word. Byte specifiers are fixnums whose two lowest octal digits represent
the size of the byte, and whose higher (usually two, but sometimes more) octal digits represent
the position of the byte within a number, counting from the right in bits. A position of zero
means that the byte is at the right end of the number. For example, the byte-specifier 0010 (i.e.
10 octal) refers to the lowest eight bits of a word, and the byte-specifier 1010 refers to the next
cight bits. These byte-specifiers will be stylized below as ppss. The maximum value of the ss
digits is 27 (octal), since a byte must fit in a fixnum although bytes can be loaded from and
deposited into bignums. (Bytes are always positive numbers.) The format of byte-specifiers is
taken from the pdp-10 byte instructions.

1db ppss num
ppss specifies a byte of num to be extracted. The ss bits of the byte starting at bit pp are
the lowest ss bits in the returned value, and the rest of the bits in the returned value are
zero. The name of the function, Idb, means "load byte". num may be a fixnum or a
bignum. The returned value is always a fixnum.
Example:
(1db 0306 4567) => 56

SRCKKLMAN>FD-NUM.TEXT.3 24-JAN-83

Lisp Machine Manual 117 Byte Manipulation Functions

load-byte num position size
This is like Idb except that instcad of using a byte specifier, the position and size are
passed as scparate arguments. The argument order is not analogous to that of Idb so that
load -byte can be compatible with Maclisp.

ldb-test ppss y
ldb-test is a predicate which returns t if any of the bits designated by the byte specifier
ppss are I's in y. That is, it returns t if the designated ficld is non-zero. Idb-test is
implemented as a macro which expands as follows:
(1db-test ppss y) ==> (not {zerop (1db ppss y)))

mask-field ppss num
This is similar to Idb; however, the specified byte of num is returned as a number in
position pp of the returned word, instcad of position 0 as with Idb. sum must be a
fixnum.
Example:
(mask-field 0306 4567) => 560

dpb byte ppss num
Returns a number which is the same as num except in the bits specified by ppss. The
low ss bits of byte are placed in those bits. byre is interpreted as being right-justified, as
if it were the result of Idb. num may be a fixnum or a bignum. The name means
"deposit byte".
Example:
(dpb 23 0306 4567) => 4237

deposit-byte num position size byte
This is like dpb except that instead of using a byte specifier, the position and size are
passed as scparate arguments. The argument order is not analogous to that of dpb so that
deposit-byte can be compatible with Maclisp.

deposit-field bylie ppss num
This is like dpb, except that byte is not taken to be left-justified; the ppss bits of byre are
used for the ppss bits of the result, with the rest of the bits taken from aum. num must
be a fixnum. '
Example:
(deposit-field 230 0306 4567) => 4237

The behavior of the following two functions depends on the size of fixnums, and so functions
using them may not work the same way on future implementations of Zetalisp. Their names start
with "%" because they are more like machine-level subprimitives than the previous functions.

%1og1db ppss fixnum

%logldb is like Idb except that it only loads out of fixnums and allows a byte size of 30
(octal), ie. all 24. bits of the fixnum including the sign bit.

SRCKL.MAN>FD-NUM.TEXT.3 24-JAN-83

Random Numbers 118 L.isp Machine Manual

%logdpb byte ppss fixnum
%logdpb is like dpb cxcept that it only deposits into fixnums. Using this to change the
sign-bit will leave the result as a fixnum, while dpb would produce a bignum result for
arithmetic correctness. %logdpb is good for manipulating fixnum bit-masks such as are
used in some internal system tables and data-structures.

7.9 Random Numbers

The functions in this section provide a pscudo-random number generator facility. The basic
function you usc is random, which returns a new pscudo-random number cach time it is called.
Between calls. its state is saved in a data object called a random-array. Usually there is only one
random-array; however, if you want to create a reproducible series of pseude-random numbers,
and be able to reset the state to control when the serics starts over, then you need some of the
other functions here.

random &optional arg random-array
(random) returns a random fixnum, positive or ncgative. If arg is present, a fixnum
between 0 and arg minus 1 inclusive is returned. If random-array is present, the given
array is used instcad of the default one (sce below). Otherwise. the default random-array
is used (and is created if it doesn’t already exist). The algorithm is exccuted inside a
without-interrupts” (sec page 540) so two processes can use the same random-array
without colliding.

si:random-in-range low high
Returns a random flonum in the interval [low, high). The default random-array is used.

A random-array consists of an array of numbers and two pointers into the array. The pointers
circulate around the array; cach time a random number is rcquested, both pointers are advanced
by one, wrapping around at the end of the array. Thus, the distance forward from the first
pointer to the second pointer stays the same, allowing for wraparound. Let the length of the
array be length and the distance between the pointers be offser. To generate a new random
number, cach pointer is set to its old value plus one, modulo length. Then the two clements of
the array addressed by the pointers are added together; the sum is stored back into the array at
the location where the second pointer points, and is returncd as the random number after being
normalized into the right range.

This algorithm produces well-distributed random numbers if length and offser are chosen
carcfully, so that the polynomial xtlength+ xtoffset+1 is irreducible over the mod-2 integers.
The system uses 71. and 35.

The contents of the array of numbers should be initialized to anything moderately random, to
make the algorithm work. The contents get initialized by a simple random number generator,
based on a number called the seed. The initial value of the seed is set when the random-array is
created, and it can be changed. To have several different controllable resettable sources of
random numbers, you can create your own random-arrays. If you don’t care about reproducibility
of sequences, just use random without the random-array argument.

SRCKI.MAN>FD-NUM.TEXT.3 24-JAN-83

Lisp Machine Manual 119 24-Bit Numbers

si:random-create-array length offset seed &optional (area nil)
Creates, initializes, and returns a random-array. length is the lengith of the array. offses is
the distance between the pointers and should be an integer less than length. seed is the
initial value of the seed, and should be a fixnum. This calls sirandom-initialize on the

random array before returning it.

si:random-initialize array &optional new-seed
array must be a random-array, such as is created by sirandom-create-array. If new-
seed is provided, it should be a fixnum, and the seed is set to it. sirrandom-initialize
reinitializes the contents of the array from the seed (calling random changes the contents
of the array and the pointers, but not the seed).

7.10 24-Bit Numbers

Somctimes it is desirable to have a form of arithmetic which has no overflow checking (that
would produce bignums), and truncates results to the word size of the machine. In Zctalisp, this
is provided by the following set of functions. Their answers are correct only modulo 2124

These functions should nor be used for "efficiency”; they arc probably less efficient than the
functions which do check for overflow. They are intended for algorithms which require this sort
of arithmetic, such as hash functions and pscudo-random number generation.

%24-bit-plus x y
Returns the sum of x and y modulo 2t24. Both arguments must be fixnums.

%24-bit-difference x y
Returns the difference of x and y modulo 2924. Both arguments must be fixnums.

%24-bit-times x y
Returns the product of x and y modulo 2t24. Both arguments must be fixnums.

7.11 Double-Precision Arithmetic

These peculiar functions are useful in programs that don’t want to use bignums for one reason
or another. They should usually be avoided, as they are difficult to use and understand, and they
depend on special numbers of bits and on the use of two's-complement notation.

¥multiply-fractions numl! num?2
Returns bits 24 through 46 (the most significant half) of the product of num! and num2.
If you call this and %24-bit-times on the same arguments auml and num?2, regarding
them as integers, you can combine the results into a double-precision product. If numl
and num2 are regarded as two’'s-complement fractions, -1 < num < 1, %multiply-
fractions returns 1/2 of their correct product as a fraction. (The name of this function
isn’t too great.)

SRCKLMAN>FD-NUM.TEXT.3 24-JAN-83

Double-Precision Arithmetic 120 Lisp Machinc Manual

%divide-double dividend[24:46] dividendf0:23] divisor
Divides the double-precision number given by the first two arguments by the third
argument, and returns the single-precision quotient. Causes an error if divisor is zero or if
the quotient won't fit in single precision.

%remainder-double dividend(24:46] dividend[0:23] divisor
Divides the double-precision number given by the first two arguments by the third
argument, and rcturns the remainder. Causes an error if divisor is zero.

%float-double high24 low24
high24 and low24, which must be fixnums, are concatenated to produce a 48-bit unsigned
positive integer. A flonum containing the same value is constructed and returned. Note
that only the 31 most significant bits are retained (after removal of leading zerocs.) This
function is mainly for the bencfit of read.

SRCKL.MAN>FD-NUM.TEXT.3 24-JAN-83

	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120

