Lisp Machine Manual 121 Arrays

8. Arrays

An array is a lisp object that consists of a group of cells, each of which may contain an
object. The individual cells are sclected by numerical subscripts.

The rank of an array (the number of dimensions which t j is the number of
subscripts used to refer to one of the clements of the array. The rank may be any integer from
7ero to seven, inclusively.

‘The lowest value for any subscript is zero; the highest value is a property of the array. Each
dimension has a size, which is the lowest number which is too great to be used as a subscript.
For example, in a one-dimensional array of five elements, the size of the one and only dimension
is five, and the acceptable values of the subscript are zero, one, two, three, and four.

The most basic primitive functions for handling arrays are: make-array, which is used for
the creation of arrays, aref, which is used for examining the contents of arrays, and aset, which
is used for storing into arrays.

An array is a regular Lisp object, and it is common for an array to be the binding of a
symbol, or the car or cdr of a cons, or, in fact, an clement of an array. There are many
functions, described in this chapter, which take arrays as arguments and perform uscful operations
on them.

Another way of handling arrays, inherited from Maclisp, is to treat them as functions. In this
case cach array has a name, which is a symbol whose function definition is the array. Zetalisp
supports this style by allowing an array to be applied to arguments, as if it were a function. The
arguments arc treated as subscripts and the array is referenced appropriately. The store special
form (sec page 142) is also supported. This kind of array referencing is considered to be obsolete
and is slower than the usual kind. It should not be used in new programs.

There are many types of arrays. Some types of arrays can hold Lisp objects of any type; the
other types of arrays can only hold fixnums or flonums. The array types are known by a set of
symbols whose names begin with "art-" (for ARray Type).

The most commonly used type is called art-q. An art-q array simply holds Lisp objects of
any type.

Similar to the art-q type is the art-g-list. Like the art-g. its elements may be any Lisp
object. The difference is that the art-g-list array "doubles” as a list; the function g-l-p will
take an art-g-list array and return a list whose elements are those of the array, and whose actual
substance is that of the array. If you rplaca clements of the list, the corresponding element of
the array will change, and if you store into the array, the corresponding element of the list will
change the same way. An attempt to rplacd the list will cause a sys:rplacd-wrong-
representation-type error, since arrays cannot implement that operation.

There is a set of types called art-1b, art-2b, art-4b, art-8b, and art-16b; these names are
short for "1 bit", "2 bits", and so on. Each element of an art-nb array is a non-negative
fixnum, and only the least significant n bits are remembered in the array; all of the others are

SRC:ALMANDFD-ARR.TEXT.S 24-JAN-83

Arrays 122 lisp Machine Manual

discarded. Thus art-1b arrays storc only 0 and 1, and if you store a 5 into an art-2b array and
look at it later, you will find a 1 rather than a 5.

These arrays arc used when it is known beforchand that the fixnums which will be stored are
non-negative and limited in size to a certain number of bits. Their advantage over the art-q
array is that they occupy less storage, because more than one clement of the array is kept in a
single machine word. (For example, 32 clements of an art-1b array or 2 clements of an art-16b
array will fit into one word).

There are also art-32b arrays which have 32 bits per element. Since fixnums only have 24
bits anyway, these arc the same as art-q arrays except that they only hold fixnums. They are not
compatible with the other "bit" array types and generally should not be used.

Character strings are implemented by the art-string array type. This type acts similarly to the
art-8b; its clements must be fixnums, of which only the least significant cight bits are stored.
However, many important system functions, including read, print, and eval, trcat art-string
arrays very differently from the other kinds of arrays. These arrays are usually called sirings, and

" chapter 9 of this manual deals with functions that manipulate them.

An art-fat-string array is a character string with wider characters, containing 16 bits rather
than 8 bits. The extra bits arc ignored by string operations, such as comparison, on these strings;
typically they arc used to hold font information.

An art-half-fix array contains half-size fixnums. Each clement of the array is a signed 16-bit
integer; the range is from -32768 to 32767 inclusive.

The art-float array type is a special-purpose type whose clements are flonums. When storing
into such an array the value (any kind of number) will be converted to a flonum, using the float
function (see page 113). The advantage of storing flonums in an art-float array rather than an
art-q array is that the numbers in an art-float array are not true Lisp objects. Instead the array
remembers the numerical value, and when it is arefed creates a Lisp object (a flonum) to hold
the valuc. Because the system does special storage management for bignums and flonums that are
intermediate results, the use of art-float arrays can save a lot of work for the garbage collector
and hence greatly increase performance. An intermediate result is a Lisp object passed as an
argument, stored in a local variable, or returned as the value of a function, but not stored into a
special variable, a non-art-float array, or list structure. art-float arrays also provide a locality of
reference advantage over art-q arrays containing flonums, since the flonums are contained in the
array rather than being scparate objects probably on different pages of memory.

The art-fps-float array type is another special-purpose type whose elements are flonums. The
internal format of this array is compatible with the PDP-11/VAX single-precision floating-point
format. The primary purpose of this array type is to interface with the FPS array processor,
which can transfer data directly in and out of such an array.

Any type of number may be stored into an art-fps-float array, but it will in effect be
converted to a flonum, and then rounded off to the 24-bit precision of the PDP-11. If the
magnitude of the number is too large, the largest valid floating-point number will be stored. If
the magnitude is too small, zero will be stored.

SRCKIL.MAN>FD-ARR.TEXT.S 24-JAN-83

Lisp Machine Manual 123 Arrays

When an clement of an art-fps-float array is read. a new flonum is created containing the
value, just as with an art-float array.

The art-complex array type is a special purpose type whose elements are arbitrary numbers,
which may be complex numbers. (Most of the numeric array types can only hold real numbers.)
As compared with an ordinary art-g array. art-complex provides an advantage in garbage
collection similar to what art-float provides for floating point numbers.

The art-complex-float array type is a special purpose type whose elements are numbers (real
or complex) whose real and imaginary parts are both floating point numbers. (If you store a non-
floating-point number into the array, its real and imaginary parts are converted to floating point.)
This provides maximum advantage in garbage collection if all the elements you wish to store in
the array are numbers with floating point real and imaginary parts.

The art-complex-fps-float array type is similar to art-complex-float but each real or
imaginary part is stored in the form used by the FPS array processor. Each element occupies two
words, the first being the rcal part and the second being the imaginary part.

There are three types of arrays which exist only for the implementation of stack groups; these
types are called art-stack-group-head, art-special-pdl. and art-reg-pdl. Their elements may
be any Lisp object; their use is explained in the section on stack groups (secc chapter 12, page
186). - »

array-types Variable
The value of array-types is a list of all of the array type symbols such as art-q, art-4b,
art-string and so on. The values of these symbols are internal array type code numbers
for the corresponding type.

array-types array-type-code
Given an internal numeric array-type code, returns the symbolic name of that type.

array-elements-per-q Variable
array-elements-per-q is an association list (see page 78) which associates cach array type
symbol with the number of array elements stored in one word, for an array of that type.
If the value is negative, it is instead the number of words per array element, for arrays
whose clements are more than one word long.

array-elements-per-q array-type-code
Given the internal array-type code number, returns the number of array elements stored
in one word, for an array of that type. If the valuc is ncgative, it is instead thc number
of words per array element, for arrays whose elements are more than one word long.

array-bits-per-element Variable
The value of array-bits-per-element is an association list (sce page 78) which associates
each array type symbol with the number of bits of unsigned number it can hold, or nil if
it can hold Lisp objects. This can be used to tell whether an array can hold l.isp objects

or not.

SRCKLMAN>FD-ARR.TEXT.S 24-JAN-83

Extra Features of Arrays 124 Lisp Machinc Manual

array-bits-per-element array-type-code
Given the internal array-type code numbers, returns the number of bits per cell for
unsigned numeric arrays, or nil for a type of array that can contain Lisp objects.

array-element-size array
Given an array, returns the number of bits that fit in an clement of that array. For
arrays that can hold gencral Lisp objects, the result is 24, assuming you will be storing
unsigned fixnums in the array.

8.1 Extra Features of Arrays

Any array may have an array leader. An array leader is like a onc-dimensional art-q array
which is attached to the main array. So an array which has a leader acts like two arrays joined
together. The leader can be stored into and examined by a special set of functions, different from
thosc used for the main array: array-leader and store-array-leader. The leader is always one-
dimensional, and always can hold any kind of Lisp object, regardless of the type or rank of the
main part of the array.

Very often the main part of an array will be a homogencous sct of objects, while the leader
will be used to remember a few associated non-homogencous pieces of data. In this case the
leader is not used like an array: cach slot is used differently from the others. Explicit numeric
subscripts should not be used for the leader clements of such an array; instead the leader should
be described by a defstruct (see page 300).

By convention, clement 0 of the array leader of an array is used to hold the number of
elements in the array that are “active” in some sense. When the zeroth element is used this way,
it is called a fill pointer. Many array-processing functions recognize the fill pointer. For instance,
if a string (an array of type art-string) has seven elements, but its fill pointer contains the value
five, then only elements zero through four of the string are considered to be "active™: the string’s
printed representation will be five characters long, string-scarching functions will stop after the
fifth clement, etc.

fill-pointer array
Returns the fill pointer of array, or nil if it does not have one. This function can be
used with setf to sct the array’s fill pointer.

The system does not provide a way to turn off the fill-pointer convention; any array that has
a leader must reserve element 0 for the fill pointer or avoid using many of the array functions.

Leader element 1 is used in conjunction with the "named structure" feature to associate a
"data type” with the array; sec page 312. Element 1 is only treated specially if the array is
flagged as a named structure.

SRCKL.MAN>FD-ARR.TEXT.5 24-JAN-83

Lisp Machine Manual 125 Extra Features of Arrays

8.1.1 Displaced Arrays

The following explanation of displaced arrays is probably not of interest to a beginner; the
section may be passed over without losing the continuity of the manual.

Normally, an array is represented as a small amount of header information, followed by the
contents of the array. However, sometimes it is desirable to have the header information removed
from the actual contents. One such occasion is when the contents of the array must be located in
a special part of the Lisp Machine’s address space, such as the area used for the control of
input/output devices, or the bitmap memory which generates the TV image. Displaced arrays are
also used to reference certain special system tables, which arc at fixed addresses so the microcode
can access them easily.

If you give make-array a fixnum or a locative as the value of the :displaced-to option, it
will crcate a displaced array referring to that location of virtual memory and its successors.
References to elements of the displaced array will access that part of storage, and rcturn the
contents; the regular aref and aset functions are used. If the array is onc whosc clements are
Lisp objects, caution should be used: if the region of address spacc does not contain typed Lisp
objects, the integrity of the storage system and the garbage collector could be damaged. If the
array is one whose clements arc bytes (such as an art-4b type), then there is no problem. It is
important to know, in this case, that the elements of such arrays arc allocated from the right to
the left within the 32-bit words.

It is also possible to have an array whose contents, instead of being located at a fixed place
in virtual memory, arc defined to be those of another array. Such an array is called an indirect
array, and is created by giving make-array an array as the value of the :displaced-to option.
The cffects of this are simple if both arrays have the same type; the two arrays share all
clements. An object stored in a certain element of one can be retrieved from the corresponding
element of the other. This, by itself, is not very useful. However, if the arrays have different
rank, the manner of accessing the clements differs. Thus, creating a one-dimensional array of
nine elements, indirected to a second, two-dimensional array of three clements by three, allows
access to the elements in either a one-dimensional or a two-dimensional manner. Weird effects
can be produced if the new array is of a different type than the old array; this is not generally
recommended. Indirecting an art-mb array to an- art-nb array will do the obvious thing. For
instance, if m is 4 and n is 1, cach element of the first array will contain four bits from the
second array, in right-to-left order.

It is also possible to create an indirect array in such a way that when an attempt is made to
reference it or store into it, a constant number is added to the subscript given. This number is
called the index-offset. 1t is specified at the time the indirect array is created, by giving a fixnum
to make-array as the value of the :displaced-index-offset option. The length of the indirect
array need not be the full length of the array it indirects to; it can be smaller. Thus the indirect
array can cover just a subrange of the original array. The nsubstring function (sce page 146)
creates such arrays. When using index offsets with multi-dimensional arrays, therc is only one
index offset; it is added in to the “linearized" subscript which is the result of multiplying each
subscript by an appropriate cocfficient and adding them together.

SRCKLMAN>FD-ARR.TEXT.5 24-JAN-83

Basic Array Functions 126 l.isp Machine Manual

8.2 Basic Array Functions

make-array dimensions &rest options.
This is the primitive function for making arrays. dimensions should be a list of fixnums
which are the dimensions of the array; the length of the list will be the rank of the array.
For convenicnce when making a onc-dimensional array, the single dimension may be
provided as a fixnum rather than a list of one fixnum.

options are alternating keywords and values. The keywords may be any of the following:

:area The value specifies in which arca (see chapter 15, page 223) the list
should be created. It should be cither an arca number (a fixnum), or nil
to mean the default area.

‘type The value should be a symbolic name of an array type; the most common
of these is art-q, which is thc default. The clements of the array are
initialized according to the type: if the array is of a type whose clements
may only be fixnums or flonums, then every clement of the array will
initially bc 0 or 0.0; otherwise, every element will initially be nil. See
the description of array types on page 121. The value of the option may
also be the value of a symbol which is an array type name (that is, an
internal numeric array type code).

sinitial-value This specifies the value to be stored in each element of the new array. If
it is not specified, it is nil for arrays that can hold arbitrary objects, or O
or 0.0 for numeric arrays.

«displaced-to If this is not nil, then the array will be a displaced array. If the value is
a fixnum or a locative, make-array will creatc a rcgular displaced array
which refers to the specified section of virtual address space. If the value
is an array, make-array will create an indirect array (see page 125).

sleader-length The value should be a fixnum. The array will have a leader with that
many eclements. The clements of the leader will be initialized to nil unless
the :leader-list option is given (see below).

sleader -list The value should be a list. Call the number of elements in the list n.
The first n clements of the leader will be initialized from successive
elements of this list. If the :leader-length option is not specified, then
the length of the leader will be n. If the :leader-length option is given,
and its valuc is greater than n, then the nth and following leader
elements will be initialized to nil. If its value is less than n, an error is
signalled. The leader elements are filled in forward order; that is, the car
of the list will be stored in leader element O, the cadr in element 1, and
SO on.

fill-pointer The value should be a fixnum. The array will have a leader with at least
one clement, and this fixnum will go in that element.

Using the fill-pointer option is equivalent to using :leader-list with a list
one element long. It avoids consing the list, and is also compatible with
Common Lisp.

SRCKL.MAN>FD-ARR.TEXT.S 24-JAN-83

Lisp Machinc Manual 127 Basic Array Functions

.displaced-index-offset
If this is present, the value of the :displaced-to option should be an
array, and the value should be a non-negative fixnum; it is made to be
the index-offset of the created indirect array. (Sec page 125.)

:named - structure -symbol
If this is not nil, it is a symbol to be stored in the named-structure cell of
the array. The array will be tagged as a named structure (sec page 312.)
If the array has a lcader, then this symbol will be stored in leader
element 1 regardless of the value of the :leader-list option. If the array
does not have a leader, then this symbol will be stored in array element
zero.

Examples: .

:; Create a one-dimensional array of five clements.

(make-array 5)

:; Create a two-dimensional array,

:: three by four, with four-bit elements.

(make-array '(3 4) ’:type ’art-4b)

:: Create an array with a three-element leader.

(make-array 5 ’:leader-length 3)

;; Create an array containing S t’s,

:; and a fill pointer saying the array is full.

(make-array 5 ’:initial-value t ':fill-pointer 5)

:; Create a named-structure with five leader

;; elements, initializing some of them.

(setq b (make-array 20 ’:leader-length 5
’:leader-1ist (0 nil foo)
> :named-structure-symbol ’bar))

(array-leader b 0) => 0

(array-leader b 1) => bar

(array-leader b 2) => foo

(array-leader b 3) => nil

(array-leader b 4) => nil

make-array returns the newly-created array, and also returns, as a second value, the
number of words allocated in the process of creating the array, i.e. the %structure-total-
size of the array.

When make-array was originally implemented, it took its arguments in the following
fixed pattern:
(make-array area type dimensions
goptional displaced-to leader

displaced-index-offset

named-structure-symbol)
Jeader was a combination of the :leader-length and :leader-list options, and the list was
in reverse order. This obsolete form is still supported so that old programs will continue
to work, but the new keyword-argument form is preferred.

SRCKLMAN>FD-ARR.TEXT.5 24-JAN-83

Basic Array Functions 128 1.isp Machinc Manual

aref array &rest subscripis
Returns the clement of array selected by the subscripts. The subscripts must be fixnums
and their number must match the rank of array.

ar-1 array i

ar-2 array i j

ar-3 array i j k
These are obsolete versions of aref that only work for one-, two-, or threc-dimensional
arrays, respectively. There is no reason ever to use them.

aset x array &rest subscripts
Stores x into the clement of array selected by the subscripts. The subscripts must be
fixnums and their number must match the rank of array. The returned value is x.

as-1 x array i

as-2 x array i j

as-3 x array i j k
These are obsolete versions of aset that only work for one-, two-, or three-dimensional
arrays, respectively. There is no reason cver to use them.

aloc array &rest subscripts
Returns a locative pointer to the element-cell of array sclected by the subscripts. The
subscripts must be fixnums and their number must match the rank of array. Sec the
explanation of locatives in chapter 13, page 197.

ap-1 array i

ap-2 array i j

ap-3 array i j k
These are obsolete versions of aloc that only work for one-, two-, or three-dimensional
arrays, respectively. There is no reason ever to use them.

The compiler turns aref into ar-1, ar-2, etc. according to the number of subscripts specified,
turns aset into as-1, as-2, ctc., and turns aloc into ap-1, ap-2, etc. For arrays with more
than threc dimensions the compiler uses the slightly less efficient form since the special routines
only exist for one, two and threc dimensions. There is no reason for any program to call ar-1,
as-1, ar-2, ectc. explicitly; they are documented becausc there used to be such a reason, and
many old programs use these functions. New programs should use aref, aset, and aloc.

A related function, provided only for Maclisp compatibility, is arraycall (page 142).

ar-1-force array i

as-1-force value array i

ap-1-force array i
These functions access an array with a single subscript regardless of how many dimensions
the array has. They may be useful for manipulating arrays of varying rank, as an
alternative to maintaining and updating lists of subscripts or to creating one-dimensional
indirect arrays.

SRC:KLLMAN>FD-ARR.TEXT.S 24-JAN-83

Lisp Machinc Manual 129 Basic Array Functions

In using these functions, you must pay attention to the order in which the array clements
are actually stored. Sec scction 8.8, page 137.

array-leader array i
array should be an array with a lcader, and i should be a fixnum. This returns the i th
element of array’s leader. This is analogous to aref.

store-array-leader x array i
array should be an array with a leader, and i should be a fixnum. x may be any object.
x is stored in the ith element of array’s leader. store-array-leader returns x. This is
analogous to aset.

ap-leader array i
array should be an array with a leader, and / should be a fixnum. This returns a locative
pointer to the i th clement of array’s leader. Sce the explanation of locatives, chapter 13,
page 197. This is analogous to aloc.

Here are the conditions signaled for various errors in accessing arrays.

sys:array-has-no-leader (sys:bad-array-mixin error) Condition
This is signaled on a reference to the leader of an array that doesn’t have one. The
condition instance supports the :array operation, which returns the array that was used.

The :new-array proceed-type is provided.

sys:bad-array-mixin Condition Flavor
This mixin is used in the conditions signaled by several kinds of problems pertaining to
arrays. It defines prompting for the :new-array proceed type.

sys:array-wrong-number-of-dimensions (sys:bad-array-mixin Condition
error)
This is signaled when an array is referenced (either reading or writing) with the wrong
number of subscripts; for example, (aref "foo" 1 2).

The :array operation on the condition instance returns the array that was used. The
:subscripts-used operation returns the list of subscripts used.

The :new-array proceed type is provided. It expects one argument, an array to use
instead of the original one.

sys:subscript-out-of-bounds (error) Condition
This is signaled when there are the right number of subscripts but their values specify an

Al Ant tha £ 1 P 1t1 3
clement that falls outside the bounds of the array. The same condition is used by

sys:%instance-ref, etc., when the index is out of bounds in the instance.

The condition instance supports the operations :object and :subscripts-used, which
return the array or instance and the list of subscripts.

SRC:KLMAN>FD-ARR.TEXT.5 24-JAN-83

Getting Information About an Array 130 L.isp Machine Manual

The :new-subscript proceed type is provided. It takes an appropriatc number of
subscripts as arguments. You should provide as many subscripts as there originally were.

sys:number-array-not-allowed (sys:bad-array-mixin error) Condition
This is signaled by an attempt to usc aloc on a numeric array. The :array operation and
the :new-array proceed type arc available.

8.3 Getting Information About an Array

array-type array
Returns the symbolic type of array.
Example:
(setq a (make-array ’(3 5)))
(array-type a) => art-g

array-length array

array may be any array. This returns the total number of clements in array. For a one-
dimensional array, this is one greater than the maximum allowable subscript. (But if fill
pointers are being used, you may want to use array-active-length.)
Example:

(array-length (make-array 3)) => 3

(array-length (make-array '(3 5)))

=> 17 ;octal, which is 15. decimal

array-active-length array
If array does not have a fill pointer, then this returns whatever (array-length array)
would have. If array does have a fill pointer, array-active-length returns it. See the
general explanation of the use of fill pointers on page 124.

array-rank array
Returns the number of dimensions of array.
Example:
(array-rank (make-array ’'(3 5))) => 2

array-dimension array n
Returns the length of dimension n of array, or nil if n is negative or not less than the
rank of array.
(setq a (make-array '(2 3)))
(array-dimension a 0) => 2
(array-dimension a 1) => 3

array-dimension-n n array
arrqy may be any kind of array, and n should be a fixnum. If 7 is between 1 and the
rank of array, this returns the n th dimension of array. If n is O, this returns the length
of the leader of array; if array has no leader it returns nil. If » is any other value, this
returns nil.

SRC:KL.MAN>FD-ARR.TEXT.5 24-JAN-83

Lisp Machine Manual 131 Getting Information About an Array

This function is obsolete.

Examples:
(setq a (make-array (3 5) ’:leader-length 7))
(array-dimension-n 1 a) => 3
{array-dimension-n 2 a) => 5
(array-dimension-n 3 a) => nil
(array-dimension-n a)y =17

o

array-dimensions array
array-dimensions rcturns a list whose elements are the dimensions of array.
Example:
(setq a {make-array (3 5)))
(array-dimensions a) => (3 5)
Note: the list returned by (array-dimensions x) is equal to the cdr of the list returned
by (arraydims x).

arraydims array

array may be any array; it also may be a symbol whose function cell contains an array,
for Maclisp compatibility (sec section 8.11, page 141). arraydims returns a list whose first
clement is the symbolic name of the type of array, and whose remaining clements are its
dimensions.
Example:

(setq a (make-array (3 5)))

{arraydims a) => (art-q 3 5)

array-in-bounds-p array &rest subscripts
This function checks whether subscripts is a legal set of subscripts for array, and returns t
if they are; otherwise it returns nil.

array-displaced-p array
array may be any kind of array. This predicate returns t if array is any kind of displaced
array (including an indirect array). Otherwise it returns nil.

array-indirect-p array
array may be any kind of array. This predicate returns t if array is an indirect array.
Otherwise it returns nil.

array-indexed-p array
array may be any kind of array. This predicate returns t if array is an indirect array with
an index-offset. Otherwise it returns nil.

array-index-offset array
array may be any kind of array. This returns the index offset o
array which has an index offset. Otherwise it returns nil.

£ omsenas 1€ 3 30 on Inds
1 arfay 11 1L Id ail HiJl

SRCKLLMANDFD-ARR.TEXT.S 24-JAN-83

Changing the Sizc of an Array 132 Lisp Machinc Manual

array-has-leader-p array
array may be any array. This predicate rcturns t if array has a leader; otherwise it
returns nil.

array-leader-length array
array may be any array. This returns the length of array’s leader if it has one, or nil if
it does not.

8.4 Changing the Size of an Array

adjust-array-size array new-size
If array is a onc-dimensional array, its size is changed to be new-size. If array has more
than one dimension, its size (array-length) is changed to new-size by changing only the
last dimension.

If array is made smaller, the extra elements are lost; if array is made bigger, the new
clements are initialized in the same fashion as make-array (scc page 126) would initialize
them: either to nil or 0, depending on the type of array.
Example:

(setq a (make-array b))

(aset 'foo a 4)

(aref a 4) => foo

(adjust-array-size a 2)

(aref a 4) => anecrror occurs

If the size of the array is being incrcased, adjust-array-size may have to allocate a new
array somewhere. In that case, it alters array so that references to it will be made to the
new array instead, by means of "invisible pointers” (see structure-forward, page 203).
adjust-array-size will return this new array if it creates one, and otherwise it will return
array. Be carcful to be consistent about using the returned result of adjust-array-size,
because you may end up holding two arrays which are not the same (i.e. not eq), but
which share the same contents.

array-grow array &rest dimensions
array-grow creates a new array of the same type as array, with the specified dimensions.
Those elements of array that are still in bounds are copied into the new array. The
clements of the new array that are not in the bounds of array are initialized to nil or O as
appropriate. If array has a leader, the new array will have a copy of it. array-grow
returns the new array and also forwards array to it, like adjust-array-size.

Unlike adjust-array-size, array-grow always crcates a new array rather than growing or
shrinking the array in place. But array-grow of a multi-dimensional array can change all
the subscripts and move the clements around in memory to keep each element at the
same logical place in the array.

SRC:KLMAN>FD-ARR.TEXT.5 24-JAN-83

Lisp Machine Manual 133 Arrays Overlaid With Lists

si:change-indirect-array array type dimlist displaced-p index-offset
Change an indircct array array’s type, size, or target pointed at. fype specifics the new
array type, dimlist its new dimensions, displaced-p the target it should point to (an array,
locative or fixnum), and index-offset the new offset in the new target.

array is returned.

8.5 Arrays Overlaid With Lists
These functions manipulate art-q-list arrays, which were introduced on page 121.

g-1-p array
array should be an art-q-list array. This returns a list which shares the storage of array.
Example:
(setq a (make-array 4 ’:type ’art-g-list))
(aref a 0) => nil
(setq b (g-1-p a)) => (nil nil nil nil)
(rplaca b t)
b => (t nil nil nil)
{(aref a 0) =
(aset 30 a 2)
b => (t nil 30 nil)

The following two functions work strangely, in the same way that store does, and should not be
used in new programs.

get- list- pointer-into-array array-ref
The argument array-ref is ignored, but should be a reference to an art-q-list array by
applying the array to subscripts (rather than by aref). This returns a list object which is a
portion of the "list" of the array, beginning with the last element of the last array which
has been called as a function.

get-locative-pointer-into-array array-ref
get-locative-pointer-into-array is similar to get-list- pointer-into-array, except that it
returns a locative, and doesn’t require the array to be art-g-list. Use aloc instead of this
function in new programs.

8.6 Adding to the End of an Array

array-push array x
a one-dimensional array which hag a fill nnmtf*r and x may be any nblect

Arravy muat ha
array must o€ a oncé-gunensiona: array willii has a il poiliet 4nc A Hay U dily DGt

array-push attempts to store x in the element of the array designated by the fill pointer,
and increase the fill pointer by one. If the fill pointer docs not designate an clement of
the array (specifically, when it gets too big), it is unaffected and array-push returns nil;
otherwise, the two actions (storing and incrementing) happen uninterruptibly, and array-
push returns the former value of the fill pointer, ie. the array index in which it stored x.
If the array is of type art-q-list, an operation similar to nconc has taken place, in that

SRC:KL.MANDFD-ARR.TEXT.5 24-JAN-83

Copying an Array 134 L.isp Machine Manual

the clement has been added to the list by changing the cdr of the formerly last element.
The cdr coding is updated to ensure this.

array-push-extend array x &optional extension
array-push-extend is just like array-push except that if the fill pointer gets too large,
the array is grown to fit the new clement; i.c. it never "fails" the way array-push does,
and so never returns nil. extension is the number of clements to be added to the array if
it needs to be grown. It defaults to something reasonable, based on the size of the array.

array-pop array
array must be a onc-dimensional array which has a fill pointer. The fill pointer is
decreased by onc and the array clement designated by the new value of the fill pointer is
returned. If the new value does not designate any clement of the array (spccifically, if it
had alrcady reached zero), an error is caused. The two operations (decrementing and
array referencing) happen uninterruptibly. 1f the array is of type art-q-list, an operation
similar to nbutlast has taken place. The cdr coding is updated to ensure this.

sys:fill-pointer-not-fixnum (sysibad-array-mixin error) Condition
This is signaled when onc of the functions in this section is used with an array whose
leader clement zero is not a fixnum. Most other array accessing operations will simply
assume that the array has no fill pointer in such a case, but these cannot be performed
without a fill pointer.

The :array operation on the condition instance returns the array that was used. The
‘new-array proceed type is supported, with one argument, an array.

8.7 Copying an Array

array-initialize array value &optional start end
Stores value into all or part of array. start and end are optional indices which delimit the
part of array to be initialized. They default to the beginning and end of the array.

This function is by far the fastest way to do the job.

fillarray array x
array may be any type of array, or, for Maclisp compatibility, a symbol whose function
cell contains an array. It can also be nil, in which case an array of type art-q is created.
There are two forms of this function, depending on the type of x.

If x is a list, then fillarray fills up array with the elements of list. If x is too short to fill
up all of array, then the last clement of x is used to fill the remaining clements of array.
If x is to long, the extra elements are ignored. If x is nil (the empty list), array is filled
with the default initial value for its array type (nil or 0).

If x is an array (or, for Maclisp compatibility, a symbol whose function cell contains an
array), then the elements of array are filled up from the clements of x. If x is too small,
then the extra elements of array are not affected.

SRC:KL.MAN>FD-ARR.TEXT.5 24-JAN-83

1.isp Machine Manual 135 Copying an Array

If array is multi-dimensional, the elements are accessed in row-major order: the last
subscript varies the most quickly. The same is true of x if it is an array.

fillarray returns array; or, if array was nil, the newly created array.

listarray array &optional [imit
array may be any type of array or, for Maclisp compatibility, a symbol whose function
cell contains an array. listarray crecates and rcturns a list whose elements are those of
array. If limit is present, it should be a fixnum, and only the first Jimit (if there are
more than that many) elements of array are used, and so the maximum length of the
returned list is 7imit.

If array is multi-dimensional, the clements are accessed in row-major order: the last
subscript varies the most quickly.

list-array-leader array &optional limit
array may be any type of array, or, for Maclisp compatibility, a symbol whose function
cell contains an array. list-array-leader creates and returns a list whose clements are
those of array’s leader. If limir is present, it should be a fixnum, and only the first limit
(if there are more than that many) elements of array’s leader are used, and so the
maximum length of the returned list is /Zimit. 1f array has no leader, nil is returned.

copy-array-contents from fo
from and 10 must be arrays. The contents of from is copied into the contents of o,
clement by element. If 10 is shorter than from, the rest of from is ignored. If from is
shorter than fo, the rest of 0 is filled with nil if it is a q-type array, or 0 if it is a
numeric array or a string, or 0.0 if it is a flonum array. This function always returns t.

Note that even if from or to has a leader, the whole array is used; the convention that
leader element 0 is the “active” length of the array is not used by this function. The
leader itself is not copied.

copy-array-contents works on multi-dimensional arrays. from and fo are "linearized"
subscripts, and elements are taken in the order they are stored in memory. Sce array-
index-order, page 137.

copy-array-contents-and-leader from fo
This is just like copy-array-contents, but the leader of from (if any) is also copied into
fo. copy-array-contents copies only the main part of the array.

copy-array-portion from-array from-start from-end to-array to-start lo-end

The portion of the array from-array with indices greater than or equal to from-start and
less than from-end is copied into the portion of the array to-array with indices greater than
or equal to fo-start and less than f0-end, element by element. If there are more elements
in the selected portion of fo-array than in the sclected portion of from-array, the extra
elements are filled with the default value as by copy-array-contents. If there are more
elements in the sclected portion of from-array, the extra ones are ignored. Multi-
dimensicnal arrays are treated the same way as copy-array-contents treats them. This
function always returns t.

SRCKL.MAN>FD-ARR.TEXT.S 24-JAN-83

Copying an Array 136 Lisp Machine Manual

bitblt alu width height from-array from-x from-y to-array to-x to-y
Sfrom-array and to-array must be two-dimensional arrays of bits or bytes (art-1b, art-2b,
art-4b, art-8b, art-16b, or art-32b). bitblt copics a rectangular portion of from-array
into a rectangular portion of fo-array. The value stored can be a Boolean function of the
new valuc and the value alrcady there, under the control of alu (sece below). 'This
function is most commonly uscd in conncction with raster images for TV displays.

The top-left corner of the source rectangle is (ar-2-reverse from-array from-x from-y).
The top-left corner of the destination rectangle is (ar-2-reverse to-array to-x lo-y). width
and height arc the dimensions of both rectangles. If widih or height is zcro, bitblt does
nothing. The x coordinates and width may be used as the first or the second dimension
of the array, according to array-index-order. The choice is made so that x will come
out as horizontal on the TV screen. See page 137.

from-array and to-array are allowed to be the same array. bitblt normally traverses the
arrays in increasing order of x and y subscripts. If width is ncgative, then (abs width) is
used as the width, but the processing of the x dircction is donc backwards, starting with
the highest value of x and working down. If height is negative it is trcated analogously.
When bitblt’ing an array to itself, when the two rectangles overlap, it may be necessary to
work backwards to achicve effects such as shifting the cntire array downwards by a certain
number of rows. Notc that negativity of width or height does not affect the (xy)
coordinates specified by the arguments, which arc still the top-left corner even if bitbit
starts at some other corner.

If the two arrays are of different types, bitblt works bit-wise and not clement-wise. That
is, if you bitblt from an art-2b array into an art-4b array, then two clements of the
from-array will correspond to one clement of the fo-array.

If bitblt goes outside the bounds of the source array, it wraps around. This allows such
operations as the replication of a small stipple pattern through a large array. If bitblt goes
outside the bounds of the destination array, it signals an error.

If src is an element of the source rectangle, and ds/ is the corresponding element of the
destination rectangle, then bitblt changes the value of dst to (boole alu src dst). See the
boole function (page 114). There are symbolic names for some of the most useful alu
functions; they are tv:alu-seta (plain copy), tv:alu-ior (inclusive or), tv:alu-xor
(exclusive or), and tv:alu-andca (and with complement of source).

bitblt is written in highly-optimized microcode and goes very much faster than the same
thing written with ordinary aref and aset operations would. Unfortunately this causes
bitblt to have a couple of strange restrictions. Wrap-around does not work correctly if
from-array is an indircct array with an index-offsct. bitblt will signal an crror if the first
dimensions of from-array and to-array are not both integral multiples of the machine word
length. For art-1b arrays, the first dimension must be a multiple of 32, for art-2b
arrays it must be a multiple of 16., etc.

%blit (page 206) is often useful for copying parts of arrays. It can be used to shift a part of an
array cither up or down.

SRCKL.MAN>FD-ARR.TEXT.S 24-JAN-83

Lisp Machine Manual 137 Order of Array Elements

8.8 Order of Array Elements

Currently, multi-dimensional arrays are stored in column-major order rather than row-major
order as in Maclisp. Row-major order mcans that successive memory locations differ in the last
subscript. while column-major order means that successive memory locations differ in the first
subscript. However, as part of the adoption of Common Lisp, the Lisp machine will switch to
the more standard row-major order. This change will take place a few months from now.

array-index-order Variable
If this variable is non-nil, arrays arc stored in row-major order (last subscript varies
fastest). Otherwise, they are stored in column-major order. The default value of this
symbol is nil.

Most user code has no need to know about which order array elements are stored in. There
are three known reasons to care: use of multidimensional indirect arrays; paging efficiency (if you
want to reference every clement in a multi-dimensional array and move lincarly through memory
to improve locality of reference, you must vary the first subscript fastest rather than the last, in
column-major order); and access to the tv screen or to arrays of pixels copied to or from the
screen with bitblt. The latter is the most important one.

The bits on the screen are actually stored in rows, which means that the dimension that varies
fastest has to be the horizontal position. As a result, if arrays are stored in row-major order, the
horizontal position must be the second subscript, but if arrays arc stored in column-major order,
the horizontal position must be the first subscript. To ease the conversion of code that uses arrays
of pixels, several bridging functions are provided:

make-pixel-array width height &rest options
This is like make-array except that the dimensions of the array are width and height, in
whichever order is correct. width will be the dimension in the subscript that varies fastest
in memory, and height will be the other dimension. options arc passed along to make-
array to specify everything but the size of the array.

pixel-array-width array
Returns the extent of array, a two-dimensional array, in the dimension that varies faster
through memory. For a screen array, this will always be the width.

pixel-array-height array
Returns the extent of array, a two-dimensional array, in the dimension that varies slower
through memory. For a screen array, this will always be the height.

ar-2-reverse array horizontal-index vertical-index
Returns the element of array at horizontal-index and vertical-index. horizontal-index will

PR | Ay,

[N ae tha ciihonrint in whi i
be used as the subscript in whicheve ries faster through memory

gh memory.
as-2-reverse newvalue array horizontal-index vertical-index
Stores newvalue into the element of array at horizontal-index and vertical-index.
horizontal-index will be used as the subscript in whichever dimension varies faster through
memory.

SRCKLMAN>ED-ARR.TEXT.S 24-JAN-83

Matrices and Systems of Lincar Equations 138 Lisp Machine Manual

By replacing calls to make-array, array-dimension-n, aref and aset with these functions,
you can trivially change your code (without changing the order of arguments) so that it will work
no matter what order array clements are stored in. and still display properly on the screen. When
the Big Change happens, you will not even need to recompile your program.

8.9 Matrices and Systems of Linear Equations

The functions in this section perform some uscful matrix opcrations. The matrices are
represented as two-dimensional Lisp arrays. These functions are part of the mathematics package
rather than the kernel array system, hence the "math:" in the names.

math:multiply-matrices marrix-1 matrix-2 &optional matrix-3
Multiplies matrix-1 by matrix-2. 1f wmatrix-3 is supplied, multiply-matrices stores the
results into matrix-3 and returns matrix-3; otherwise it creates an array to contain the
answer and returns that. All matrices must bc two-dimensional arrays, and the first
dimension of matrix-2 must cqual the second dimension of martrix-1.

math;invert-matrix marrix &optional into-matrix
Computes the inverse of matrix. 1If into-matrix is supplied. stores the result into it and
returns it; otherwise it creates an array to hold the result and returns that. marrix must
be two-dimensional and square. The Gauss-Jordan algorithm with partial pivoting is used.
Note: if you want to solve a sct of simultaneous equations, you should not use this
function; use math:decompose and math:solve (see below).

math:transpose-matrix mairix &optional into-matrix
Transposes matrix. If into-matrix is supplied, stores the result into it and returns it;
otherwise it creates an array to hold the result and returns that. matrix must be a two-
dimensional array. into-matrix, if provided, must be two-dimensional and have sufficient
dimensions to hold the transpose of matrix.

math:determinant marrix
Returns the determinant of matrix. matrix must be a two-dimensional square matrix.

The next two functions are used to solve sets of simultancous linear equations.
math:decompose takes a matrix holding the cocfficients of the equations and produces the LU
decomposition; this decomposition can then be passed to math:solve along with a vector of right-
hand sides to get the values of the variables. If you want to solve the same equations for many
different sets of right-hand side values, you only need to call math:decompose once. In terms of
the argument names used below, these two functions exist to solve the vector equation 4 x = b
for x. Ais a matrix. b and x are vectors.

math:decompose a &optional lu ps
Computes the LU decomposition of matrix a. If lu is non-nil, stores the result into it
and returns it; otherwise it creates an array to hold the result, and returns that. The
lower triangle of /u, with ones added along the diagonal, is I, and the upper triangle of
Iu is U, such that the product of L and U is a. Gaussian climination with partial
pivoting is used. The /u array is permuted by rows according to thc permutation array ps,
which is also produced by this function; if the argument ps is supplicd, the permutation

SRC:KLLMAN>FD-ARR.TEXT.S 24-JAN-83

Lisp Machine Manual 139 Plancs

array is stored into it; otherwise, an array is created to hold it. This function rcturns two
values, the LU decomposition and the permutation array.

math:solve [u ps b &optional x
This function takes the 1.U decomposition and associated permutation array produced by
math:decompose and solves the sct of simultancous equations defined by the original
matrix ¢ and the right-hand sides in the vector b. If x is supplied, the solutions are
stored into it and it is returned; otherwise an array is created to hold the solutions and
that is returned. b must be a onc-dimensional array.

math:1ist-2d-array array
Returns a list of lists containing the values in array, which must be a two-dimensional
array. There is onc element for each row; cach clement is a list of the values in that
TOW.

math:fill1-2d-array array list
This is the oppositc of math:list-2d-array. Ilist should be a list of lists, with each
element being a list corresponding to a row. array’s clements are stored from the list.
Unlike fillarray (see page 134), if list is not long enough, math:fill-2d-array "wraps
around”, starting over at the beginning. The lists which are elements of lisz also work
this way.

math:singular-matrix (sys:arithmetic-error error) Condition
This is signaled when any of the matrix manipulation functions in this section has trouble
because of a singular matrix. (In some functions, such as math:determinant, a singular
matrix is not a problem.)

The :matrix operation on the condition instance returns the matrix which is singular.

8.10 Planes

A plane is ecffectively an array whose bounds, in cach dimension, are plus-infinity and minus-
infinity; all integers are legal as indices. Planes may be of any rank. When you create a plane,
you do not need to specify any size, just the rank. You also specify a default value. At that
moment, cvery component of the planc has that value. As you can’t ever change more than a
finite number of components, only a finite region of the plane need actually be stored. When
you refer to an clement for which space has not actually been allocated, you just get the default
value.

The regular array accessing functions don’t work on planes. You can use make-plane to
create a plane, plane-aref or plane-ref to get the value of a component, and plane-aset or
plane-store to store into a component. array-rank will work on a plane.

A plane is actually stored as an array with a leader. The array corresponds to a rectangular,
aligned region of the plane, containing all the components in which a plane-store has been done
(and, usually, others which have never been altered). The lowest-coordinate corner of that
rectangular region is given by the plane-origin in the array leader. The highest-coordinate corner
can be found by adding the plane-origin to the array-dimensions of the array. The plane-

SRC:KLMANDFD-ARR.TEXT.S 24-JAN-83

Planes 140 Lisp Machine Manual

default is the contents of all the clements of the plane that are not actually stored in the array.
The plane-extension is the amount to extend a plane by in any direction when the plane needs
to be cxtended. The default is 32.

If you never use any negative indices, then the plane-origin will be all zeroes and you can
use rcgular array functions, such as aref and aset, to access the portion of the planc that is
actually stored. This can be uscful to speed up certain algorithms. In this case you can cven use
the bitblt function on a two-dimensional plane of bits or bytes, provided you don’t change the
plane-extension to a number that is not a multiple of 32.

make-plane rank &rest options
Creates and returns a plane. rank is the number of dimensions. options is a list of
alternating keyword symbols and values. The allowed keywords are:

‘type The array type symbol (c.g. art-1b) specifying the type of the array out of
which the plane is made.

:default-value The default component value as explained above.

:extension The amount by which to cxtend the plane, as explained above.
Example:

(make-plane 2 ’:type 'art-4b ’:default-value 3)
creates a two-dimensional plane of type art-4b, with default value 3.

plane-origin plane
A list of numbers, giving the lowest coordinate values actually stored.

plane-default plane
This is the contents of the infinite number of plane clements that are not actually stored.

plane-extension plane
The amount to extend the plane by, in any direction, when plane-store is done outside
of the currently-stored portion.

plane-aref plane &rest subscripts

plane-ref plane subscripts
These two functions return the contents of a specified clement of a plane. They differ
only in the way they take their arguments; plane-aref wants the subscripts as arguments,
while plane-ref wants a list of subscripts.

plane-aset datum plane &rest subscripts

plane-store datum plane subscripts
These two functions store darum into the specified element of a plane, extending it if
necessary, and return datum. They differ only in the way they take their arguments;
plane-aset wants the subscripts as arguments, while plane-store wants a list of
subscripts.

SRCKL.MAN>FD-ARR.TEXT.S 24-JAN-83

LLisp Machine Manual 141 Maclisp Array Compatibility

8.11 Maclisp Array Compatibility

The functions in this section are provided only for Maclisp compatibility and should not be
used in new programs.

Fixnum arrays do not exist (howcver, see Zetalisp’s small-positive-integer arrays). Flonum
arrays exist but you do not use them in the same way; no dcclarations are required or allowed.
"Un-garbage-collected” arrays do not exist. Readtables and obarrays are represented as arrays, but
Zetalisp does not use special array types for them. Sec the descriptions of read (page 383) and
intern (page 512) for information about readtables and obarrays (packages). There are no “"decad”
arrays, nor are Multics "external” arrays provided.

The arraycall function exists for compatibility but should not be used (see aref, page 128.)

Subscripts are always checked for validity, regardiess of the value of *rset and whether the
code is compiled or not. However, in a multi-dimensional array, an error is caused only if the
subscripts would have resulted in a reference to storage outside of the array. For cxample, if you
have a 2 by 7 array and refer to an clement with subscripts 3 and 1, no error will be caused
despite the fact that the reference is invalid; but if you refer to element 1 by 100, an error will
be caused. In other words, subscript errors will be caught if and only if they refer to storage
outside the array: some errors are undetected, but they will only clobber (alter randomly) some
other element of the same array, not something completely unpredictable.

Currently, multi-dimensional arrays are stored in column-major order rather than row-major
order as in Maclisp. See section 8.8, page 137 for further discussion of this issue.

loadarrays and dumparrays are not provided. However, arrays can be put into QFASL files;
see section 16.8, page 245.

The *rearray function is not provided, since not all of its functionality is available in
Zetalisp. lts most common uses are implemented by adjust-array-size.

In Maclisp, arrays are usually kept on the array property of symbols, and the symbols are
used instead of the arrays. In order to provide some degree of compatibility for this manner of
using arrays, the array, *array, and store functions are provided, and when arrays are applied
to arguments, the arguments are treated as subscripts and apply returns the corresponding element
of the array.

array "e symbol type &eval &rest dims
This creates an art-q type array in default-array-area with the given dimensions. (That
is, dims is given to make-array as its first argument.) fype is ignored. If symbol is nil,
the array is returned; otherwise, the array is put in the function cell of symbol, and

symbol is returned.

*array symbol type &rest dims
This is just like array, except that all of the arguments are evaluated.

SRC:KLMAN>FD-ARR.TEXT.5 24-JAN-83

Maclisp Array Compatibility 142 Lisp Machine Manual

store array-ref x Special F'orm
store stores x into the specified array eclement. array-ref should be a form which
references an array by calling it as a function (aref forms arc not acceptable). First x is
cvaluated, then array-ref'is evaluated. and then the value of x is stored into the array cell
last referenced by a function call, presumably the one in array-ref.

xstore x array-ref
This is just like store, but it is not a special form; this is because the arguments are in
the other order. This function only exists for the compiler to compile the store special
form into, and should never be used by programs.

arraycall ignored array &rest subscripts

(arraycall t array subl sub2..) is the same as (aref array subl sub2..). It exists for
Maclisp compatibility.

SRCKL.MANYFD-ARR.TEXT.S 24-JAN-83

	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142

