Lisp Machine Manual 143 Strings

9. Strings

Strings are a type of array representing a sequence of characters. 'The printed representation
of a string is its characters enclosed in quotation marks, for cxample "foo bar". Strings are
constants, that is, evaluating a string rcturns that string. Strings are the right data type to use for
text-processing.

Strings are arrays of type art-string, where each element holds an eight-bit unsigned fixnum.
 This is because characters are represented as fixnums, and for fundamental characters only eight
bits arc used. A string can also be an array of type art-fat-string, where cach element holds a
sixteen-bit unsigned fixnum; the cxtra bits allow for multiple fonts or an expanded character set.

Characters are actually fixnums, as explained in section 21.1, page 362. Note that you can
type in the fixnums that represent characters using " # /" and " #\"; for example, # /f reads in
as the fixnum that represents the character ", and #\return reads in as the fixnum that
represents the special Return character. See page 374 for details of this syntax.

The functions described in this section provide a variety of useful operations on strings. In
place of a string, most of these functions will accept a symbol or a fixnum as an argument, and
will coerce it into a string. Given a symbol, its print name, which is a string. will be used.
Given a fixnum, a one-character string containing the character designated by that fixnum will be
used. Several of the functions actually work on any type of one-dimensional array and may be
useful for other than string processing; these are the functions such as substring and string-
length which do not depend on the elements of the string being characters.

Since strings are arrays, the usual array-referencing function aref is used to extract the
characters of the string as fixnums. For example,
(aref "frob"™ 1) => 162 ;lower-caser
Note that the character at the beginning of the string is element zero of the array (rather than
one); as usual in Zetalisp, everything is zero-based.

It is also legal to storc into strings (using aset). As with rplaca on lists, this changes the
actual object; one must be careful to understand where side-effects will propagate. When you are
making strings that you intend to change later, you probably want to create an array with a fill-
pointer (sec page 124) so that you can change the length of the string as well as the contents.
The length of a string is always computed using array-active-length, so that if a string has a
fill-pointer, its value will be used as the length.

SRC:<I.MAN>FD-STR.TEXT.3 24-JAN-83



Characters 144 Lisp Machinc Manual

9.1 Characters

character x
character cocrces x to a single character, represented as a fixnum. If x is a number, it
is rcturned. If x is a string or an array, its first clement is returned. If x is a symbol,
the first character of its pname is rcturned. Otherwise an error occurs. The way
characters arc represented as fixnums is explained in section 21.1, page 362.

char-equal chl ch2
This is the primitive for comparing characters for cquality; many of the string functions
call it. chl and ch2 must be fixnums. The result is t if the characters arc equal ignoring
case and font, otherwise nil. %%ch-char is the byte-specifier for the portion of a
character that excludes the font information.

char-lessp chl ch2
This is the primitive for comparing characters for order; many of the string functions call
it. chl and ch2 must be fixnums. The result is t if chA/ comes before ch2 ignoring case
and font, otherwise nil. Details of the ordering of characters are in scction 21.1, page
362.

9.2 Upper and Lower Case Letters

alphabetic-case-affects-string-comparison Variable
This variable is normally nil. If it is t, char-equal. char-lessp, and the string searching
and comparison functions will distinguish between upper-case and lower-case letters. If it
is nil, lower-case characters bechave as if they were the same character but in upper-case.
It is all right to bind this to t around a string operation, but changing its global value to
t will break many system functions and user interfaces and so is not recommended.

char-upcase ch
If ch, which must be a fixnum, is a lower-case alphabetic character its upper-case form is
returned; otherwise, ch itself is returned. If font information is present it is preserved.

char-downcase ch
If ch, which must be a fixnum, is a upper-case alphabetic character its lower-case form is
returned; otherwise, ck itself is returned. If font information is present it is preserved.

string-upcase srwring
Returns a copy of siring, with all lower-case alphabetic characters replaced by the
corresponding upper-case characters.

string-downcase string
Returns a copy of string, with all upper-case alphabetic characters replaced by the
corresponding lower-case characters.

SRCKLMAN>FD-STR.TEXT.3 24-JAN-83



Lisp Machine Manual 145 Basic String Operations

string-capitalize-words swring &optional (copy-pt) (spacest)
Puts cach word in string into lower-case with an upper case initial, and if spaces is non-
nil replaces cach hyphen character with a space.

If copy-p is t, the value is a copy of string, and string itself is unchanged. Otherwise,
string itself is returned, with its contents changed.

9.3 Basic String Operations

string x
string coerces x into a string. Most of the string functions apply this to their string
arguments. If x is a string (or any array), it is returned. If x is a symbol, its pname is
returned. If x is a non-negative fixnum less than 400 octal, a one-character-long string
containing it is created and returned. If x is a pathname (sce chapter 22, page 453), the
"string for printing” is returned. Otherwise, an error is signalled.

If you want to get the printed representatibn of an object into the form of a string, this
function is nor what you should use. You can use format, passing a first argument of nil
(see page 411). You might also want to use with-output-to-string (sce page 151).

string-length swring
string-length returns the number of characters in string. This is 1 if string is a number,
the array-active-length (sce page 130) if string is an array, or the array-active-length
of the pname if string is a symbol.

string-equal siring/ string2 &optional (idx/ 0) (idx2 0) Iiml lim2
string-equal compares two strings, returning t if they are equal and nil if they are not.
The comparison ignores the extra "font" bits in 16-bit strings and ignores alphabetic case.
equal calls string-equal if applied to two strings.

The optional arguments idx! and idx2 are the starting indices into the strings. The
optional arguments fim/ and lim2 are the final indices; the comparison stops just before
the final index. lim! and lim2 default to the lengths of the strings. These arguments are
provided so that you can efficiently compare substrings.
Examples:

(string-equal "Foo" "foo") => t

(string-equal "foo" "bar") => nil

(string-equal "element" "select" 0 1 3 4) => 1t

%string-equal stringl idxl string? idx2 count
%string-equal is the microcode primitive used by string-equal. It returns t if the count
characters of stringl starting at idx! are char-equal to the count characters of string2
starting at idx2, or nil if the characters are not equal or if count runs off the length of
either array.

Instead of a fixnum, count may also be nil. In this case, %string-equal compares the
substring from idx/ to (string-length stringl) against the substring from idx2 to (string-

length string2). If the lengths of these substrings differ, then they are not equal and nil

SRC:KLLMAN>FD-STR.TEXT.3 24-JAN-83



Basic String Operations 146 l.isp Machine Manual

is returned.

Note that string/ and string? must really be strings; the usual coercion of symbols and
fixnums to strings is not performed. This function is documented because certain
programs which require high cfficiency and arce willing to pay the price of less generality
may want to usc %string-equal in place of string-equal.

Examples:
To compare the two strings_foo and bar:
(%string-equal foo 0 bar 0 nil)
To see if the string foo starts with the characters "bar":
(%string-equal foo 0 "bar” 0 3)

string-Vessp stringi string2
string-lessp compares two strings using dictionary order (as defined by char-lessp). The
result is t if stringl is the lesser, or nil if they are equal or string? is the lesser.

string-compare stringl string? &optional (idxI 0) (idx20) Iliml lim2
string-compare compares two strings using dictionary order (as defined by char-lessp).
The arguments are interpreted as in string-equal. The result is O if the strings are equal,
a negative number if stringl is less than string2, or a positive number if siringl is greater
than string?. If the strings are not equal, the absolute value of the number returned is
onc greater than the index (in stringl) where the first difference occurred.

substring string start &optional end area
This extracts a substring of string, starting at the character specified by starr and going up
to but not including the character specified by end. start and end are 0-origin indices.
The length of the returned string is end minus start. If end is not specified it defaults to
the length of string. The areca in which the result is to be consed may be optionally
specified.
Example: ‘
(substring "Nebuchadnezzar"” 4 8) => "chad"

nsubstring siring start &optional end area
nsubstring is the same as substring except that the substring is not copied; instead an
indirect array (sec page 125) is created which shares part of the argument string.
Modifying one string will modify the other.

Note that nsubstring does not necessarily use less storage than substring; an nsubstring
of any length uscs at least as much storage as a substring 12 characters long. So you
shouldn’t use this just "for efficiency”; it is intended for uses in which it is important to
have a substring which, if modified, will cause the original string to be modified too.

string-append &rest strings
Any number of strings are copied and concatenated into a single string. With a single
argument, string-append simply copies it. If therc are no arguments, the value is an
empty string. In fact, arrays of any type may be used as arguments, and the value will
be of the same type as the first argument. Thus string-append can be used to copy and
concatenate any type of 1-dimensional array. If the first argument is not an array (for

SRCKLL.MAN>FD-STR.TEXT.3 24-JAN-83



Lisp Machine Manual 147 v Basic String Operations

example, if it is a character), the value is a string.
Example:
(string-append #/! "foo" #/!) => "lfoo!"

string-nconc modified-string &rest strings

string-nconc is like string-append except that instcad of making a new string containing
the concatenation of its arguments, string-nconc modifies its first argument. modified-
string must have a fill-pointer so that additional characters can be tacked onto it.
Compare this with array-push-extend (page 134). The value of string-nconc is
modified-string or a new, longer copy of it; in the latter case the original copy is
forwarded to the new copy (sce adjust-array-size, page 132). Unlike nconc, string-
nconc with more than two arguments modifies only its first argument, not every argument
but the last.

string-trim char-set string
This returns a substring of string, with all characters in char-set stripped off the
beginning and end. char-set is a set of characters, which can be represented as a list of
characters, a string of characters or a single character.
Example:
(string-trim ’(#\sp) " Dr. No ") => "Dr. No"
(string-trim "ab" "abbafooabb™) => "foo"

string-left-trim char-set string
This returns a substring of string, with all characters in char-set stripped off the
beginning. char-set is a set of characters, which can be represented as a list of characters,
a string of characters or a single character.

string-right-trim charset string
This returns a substring of string, with all characters in char-set stripped off the end.
char-set is a set of characters, which can be represented as a list of characters, a string of
characters or a single character.

string-remove-fonts string
Returns a copy of string with each character truncated to 8 bits; that is, changed to font
zero.

If string is an ordinary string of array type art-string, this does not change anything, but
it makes a difference if string is an art-fat-string.

string-reverse siring
Returns a copy of string with the order of characters reversed. This will reverse a one-
dimensional array of any type.

string-nreverse string
Returns string with the order of characters reversed, smashing the original string rather
than creating a new one. If string is a number, it is simply returned without consing up
a string. This will reverse a one-dimensional array of any type.

SRCKLMAN>FD-STR.TEXT.3 24-JAN-83



String Scarching 148 Lisp Machine Manual

string-pluralize siring
string-pluralize rcturns a string containing the plural of the word in the argument siring.
Any added characters go in the same casc as the last character of string.
Example:
(string-pluralize "event") => "events"
(string-pluralize "Man") => "Men"
(string-pluralize "Can") => "Cans"
(string-pluralize "key") => "keys"
(string-pluralize "TRY") => "TRIES"
For words with multiple plural forms depending on the mcaning, string-pluralize cannot
always do the right thing.

9.4 String Searching

string-search-char char string &optional (from0) to
string-search-char scarches through string starting at the index from, which defaults to
the beginning, and returns the index of the first character that is char-equal to char, or
nil if none is found. If the fo argument is supplied, it is used in place of (string-length
string) to limit the extent of the search.
Example:
(string-search-char #/a "banana") => 1

%string-search-char char string from to
%string-search-char is the microcode primitive called by string-search-char and other
functions. string must be an array and char, from, and 1o must be fixnums. Except for
this Jack of type-coercion, and the fact that nonc of the arguments is optional, %string-
search-char is the same as string-search-char. This function is documented for the
benefit of those who require the maximum possible cfficiency in string searching.

string-search-not-char char siring &optional (from0) to
string-search-not-char searches through string starting at the index from, which defaults
to the beginning, and returns the index of the first character that is not char-equal to
char, or nil if none is found. If the o argument is supplied, it is used in place of
(string-length string) to limit the extent of the search.
Example:
(string-search-not-char #/b "banana") => 1

string-search key string &optional (from0) fto

string-search searches for the string key in the string string. The search begins at from,
which defaults to the beginning of string. The value returned is the index of the first
character of the first instance of key, or nil if none is found. If the 1o argument is
supplied, it is used in place of (string-length string) to limit the extent of the search.
Example:

(string-search "an" "banana") => 1

(string-search "an" "banana" 2) => 3

SRCKLMAN>FD-STR.TEXT.3 | 24-JAN-83



Lisp Machine Manual 149 String Scarching

string-search-set charset string &optional (from0) to
string-search-set scarches through siring looking for a character that is in char-set. The
search begins at the index from. which defaults to the beginning. It returns the index of
the first character that is char-equal to some clement of char-set, or nil if none is found.
If the to argument is supplied, it is used in place of (string-length siring) to limit the
extent of the search. char-set is a sct of characters, which can be represented as a list of
characters, a string of characters or a single character.
Example:
(string-search-set ’(#/n #/0) "banana") => 2
(string-search-set "no" "banana") => 2

string-search-not-set charset string &optional (from0) fo

string-search-not-set scarches through string looking for a character which is not in
char-set. The scarch begins at the index from, which defaults to the beginning. It
returns the index of the first character which is not char-equal to any clement of char
sef, or nil if nonc is found. If the 10 argument is supplied, it is used in place of
(string-length srring) to limit the cxtent of the search. char-set is a set of characters,
which can be represented as a list of characters, a string of characters or a single
character.

Example:

(string-search-not-set ’(#/a #/b) "banana") => 2

string-reverse-search-char char string &optional from (to0)

string-reverse-search-char searches through string in reverse order, starting from the
index one less than from, which defaults to the length of siring, and returns the index of
the first character which is char-equal to char, or nil if none is found. Note that the
index returned is from the beginning of the string, although the search starts from the
end. If the fo argument is supplied, it limits the extent of the search.
Example:

(string-reverse-search-char #/n "banana"™) => 4

string-reverse-search-not-char char string &optional from (10 0)
string-reverse-search-not-char scarches through string in reverse order, starting from
the index one less than from, which defaults to the length of swring, and returns the
index of the first character that is not char-equal to char, or nil if none is found. Note
that the index returned is from the beginning of the string, although the search starts
from the end. If the to argument is supplied, it limits the extent of the search.

Example:
(string-reverse-search-not-char #/a "banana") => 4

string-reverse-search key string &optional from (fo0)

string-reverse-search searches for the string key in the string string. The search
proceeds in reverse order, starting from the index one less than from, which defaults to
the length of string, and returns the index of the first (leftmost) character of the first
instance found, or nil if none is found. Notc that the index returned is from the
beginning of the string, although the scarch starts from the end. The from condition,
restated, is that the instance of key found is the rightmost one whose rightmost character
is before the from th character of string. If the o argument is supplied, it limits the
extent of the search.

SRCKLMAN>FD-STR.TEXT.3 24-JAN-83



170 to Strings 150 [Lisp Machine Manual

Example:
(string-reverse-search "na" "banana") => 4

string-reverse-search-set charser siring &optional from (to0)
string-reverse-search-set scarches through siring in reverse order, starting from the
index onc less than from, which defaults to the length of string, and returns the index of
the first character which is char-equal to some clement of char-sef, or nil if none is
found. Note that the index returned is from the beginning of the string, although the
scarch starts from the end. If the s argument is supplied, it limits the extent of the
scarch. char-set is a set of characters, which can be represented as a list of characters, a
string of characters or a single character.
(string-reverse-search-set "ab" "banana") => 5

string-reverse-search-not-set char-set string &optional from (to0)
string-reverse-search-not-set scarches through string in reverse order, starting from the
index one less than from, which defaults to the length of string, and returns the index of
the first character which is not char-equal to any element of char-ser, or nil if none is
found. Note that the index returned is from the beginning of the string, although the
scarch starts from the end. If the ro argument is supplied, it limits the extent of the
scarch. char-set is a sct of characters, which can be represented as a list of characters, a
string of characters or a single character.
(string-reverse-search-not-set ’(#/a #/n) "banana") => 0

string-subst-char new-char old-char string
Returns a copy of string in which all occurrences of old-char have been replaced by new-
char.

substring-after-char char string &optional start end area
Returns a copy of the portion of string that follows the next occurrence of char after
index siart. The portion copied ends at index end. If char is not found before end, a
null string is returned.

The value is consed in area area, or in default-cons-area, unless it is a null string.
start defaults to zero, and end to the length of string.

See also intern (page 512), which given a string will return "the” symbol with that print
name.

9.5 170 to Strings

The special forms in this section allow you to create 1/0 streams that input from or output to
the contents of a string. See section 21.5, page 391 for documentation of I/Q streams.

with-input-from-string (var string [index] [limid)) body... Special Form
The form
(with-input-from-string (var string)
body)

evaluates the forms in body with the variable var bound to a stream which reads

SRC:KL.MAN>FD-STR.TEXT.3 24-JAN-83



Lisp Machine Manual 151 170 to Strings

characters from the string which is the value of the form string. The value of the special
form is the value of the last form in its body.

The stream is a function that only works inside the with-input-from-string spccial form,
so be careful what you do with it. You cannot use it after control leaves the body, and
you cannot nest two with-input-from-string special forms and usc both strcams since the
special-variable bindings associated with the streams will conflict.

After string you may optionally specify two additional arguments. The first is index:
(with-input-from-string (var string index)
body)

uses index as the starting index into the string, and sets index to the index of the first
character not read when with-input-from-string returns. If the whole string is read,
index will be set to the length of the string. Since it is updated, index may not be a
gencral expression; it must be a variable or a setf-able reference. index is not updated in
the event of an abnormal exit from the body, such as a *throw. The value of index is
not updated until with-input-from-string returns, so you can't use its value within the
body to see how far the reading has gotten.

Currently, usc of the index feature prevents multiple values from being returned out of
the body.

(with-input-from-string (var string index limit)
body)
uses the value of the form limiz, if the value is not nil, in place of the length of the
string. If you want to specify a /imit but not an index, write nil for index.

with-output-to-string (var [string] [index]) body... Special Form
This special form provides a variety of ways to serd output to a string through an I/0
stream.

(with-output-to-string (var)
body)
evaluates the forms in body with var bound to a stream which saves the characters output
to it in a string. The value of the special form is the string.

(with-output-to-string (var string)
body)

will append its output to the string which is the value of the form string. (This is like
the string-nconc function; see page 147.) The value returned is the value of the last
form in the body, rather than the string. Multiple values are not returned. sfring must
have an array-leader; element 0 of the array-leader will be used as the fill-pointer. If
string is too small to contain all the output, adjust-array-size will be used to make it
bigger.

(with-output-to-string (var string index)
body)
is similar to the above except that index is a variable or setf-able reference which contains
the index of the next character to be stored into. It must be initialized outside the with-

SRCKLMAN>FD-STR.TEXT.3 24-JAN-83



Maclisp-Compatible Functions 152 I.isp Machine Manual

output-to-string and will be updated upon normal exit. The value of index is not
updated until with-output-to-string returns, so you can’t usc its value within the body
to sce how far the writing has gotten. The presence of index means that string is not
required to have a fill-pointer; if it does have one it will be updated.

The stream is a "downward closure” simulated with special variables, so be careful what
you do with it. You cannot use it after control leaves the body, and you cannot nest two
with-output-to-string spccial forms and use both strcams since the special-variable
bindings associated with the streams will conflict.

It is OK to use a with-input-from-string and with-output-to-string nested within one
another, so long as there is only one of each.

Another way of doing output to a string is to use the format facility (sec page 411).

9.6 Maclisp-Compatible Functions
The following functions are provided primarily for Maclisp compatibility.

alphalessp stringl string2
(alphalessp stringl string2) is equivalent to (string-lessp stringl string?).

getchar string index
Returns the index th character of string as a symbol. Note that I-origin indexing is used.
This function is mainly for Maclisp compatibility; aref should be used to index into
strings (but aref will not coerce symbols or numbers into strings).

getcharn string index
Returns the index th character of string as a fixnum. Note that l-origin indexing is used.
This function is mainly for Maclisp compatibility; aref should be used to index into
strings (but aref will not coerce symbols or numbers into strings).

ascii x
ascii is like character, but returns a symbol whose printname is the character instead of
returning a fixnum.
Examples:
(ascii 101) => A
(ascii 56) => /.
The symbol returned is interned in the current package (see chapter 24, page 506).

maknam char-list
maknam returns an uninterned symbol whose print-name is a string made up of the
characters in charlist.
Example:
(maknam '(a b #/0 d)) => ab0d

SRCKL.MAN>FD-STR.TEXT.3 24-JAN-83



Lisp Machine Manual 153 A Maclisp-Compatible Functions

implode charlist
implode is like maknam except that the returned symbol is interned in the current
package.

'The samepnamep function is also provided; see page 100.

SRCKI.MAN>FD-STR.TEXT.3 24-JAN-83



	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153

