Functions 154 1.isp Machine Manual

10. Functions

Functions are the basic building blocks of Lisp programs. This chapter describes the functions
in Zctalisp that arc used to manipulate functions. It also explains how to manipulate special
forms and macros.

This chapter contains internal details intended for those writing programs to manipulate
programs as well as material suitable for the beginner. Feel free to skip sections that look
complicated or uninteresting when reading this for the first time.

10.1 What Is a Function?

There are many different kinds of functions in Zetalisp. Here are the printed representations

of examples of some of them:

foo

(1ambda (x) (car (last x)))

(named-lambda foo (x) (car (last (x))))

{subst (x) (car (last x)))

#<dtp-fef-pointer append 1424771>

#<dtp-u-entry last 270>

fi<dtp-closure 1477464>
We will cxamine these and other types of functions in detail later in this chapter. There is one
thing they all have in common: a function is a Lisp object that can be applied to arguments. All
of the above objects may be applied to some arguments and will return a value. Functions are
Lisp objects and so can be manipulated in all the usual ways; you can pass them as arguments,
return them as values, and make other Lisp objects refer to them.

10.2 Function Specs

The name of a function does not have to be a symbol. Various kinds of lists describe other
places where a function can be found. A Lisp object that describes a place to find a function is
called a function spec. ("Spec” is short for "specification”.) Here are the printed representations of
some typical function specs:

foo

(:property foo bar)

(:method tv:graphics-mixin :draw-1line)
(:internal foo 1)

(:within foo bar)

(:lTocation #<dtp-locative 7435216>)

Function specs have two purposes: they specify a place to remember a function, and they
serve to name functions. The most common kind of function spec is a symbol, which specifies
that the function cell of the symbol is the place to remember the function. We will see all the
kinds of function spec, and what they mean, shortly. Function specs are not the same thing as
functions. You cannot, in gencral, apply a function spec to arguments. The time to use a
function spec is when you want to do something to the function, such as define it, look at its

SRCKL.MAN>FD-FUN.TEXT.9 24-JAN-83

Lisp Machine Manual 155 Function Specs

definition, or compile it.

Some kinds of functions remember their own names, and some don’t. The "name"”
remembered by a function can be any kind of function spec, although it is usually a symbol. In
the examples of functions in the previous section, the onc starting with the symboel named-
lambda, the onc whose printed representation included dtp-fef-pointer, and the ditp-u-entry
remembered names (the function specs foo, append, and last respectively). The others didn’t
remember their names.

To define a function spec means to make that function spec remember a given function. This
is done with the fdefine function; you give fdefine a function spec and a function, and fdefine
remembers the function in the place specified by the function spec. The function associated with
a function spec is called the definition of the function spec. A single function can be the
definition of more than one function spec at the same time, or of no function specs.

To define a function means to create a new function and define a given function spec as that
new function. This is what the defun special form does. Several other special forms, such as
defmethod (page 334) and defselect (page 167), do this too.

These special forms that define functions usually take a function spec, create a function whose
name is that function spec, and then define that function spec to be the newly-created function.
Most function definitions are done this way, and so usually if you go to a function spec and see
what function is there, the function’s name will be the same as the function spec. However, if
you define a function named foo with defun, and then define the symbol bar to be this same
function, the name of the function is unaffected; both foo and bar are defined to be the same
function, and the name of that function is foo, not bar.

A function spec’s definition in general consists of a basic definition surrounded by
encapsulations. Both the basic definition and the encapsulations are functions, but of recognizably
different kinds. What defun creates is a basic definition, and usually that is all there is.
Encapsulations are made by function-altering functions such as trace, breakon and advise. When
the function is called, the entirc definition, which includes the tracing and advice, is used. If the
function is "redefined” with defun, only the basic definition is changed; the encapsulations are
left in place. See the scction on encapsulations, section 10.10, page 175.

A function spec is a Lisp object of one of the following types:

a symbol :
The function is remembered in the function cell of the symbol. See page 98 for an
explanation of function cells and the primitive functions to manipulate them.

(:property symbol property)
The function is remembered on the property list of the symbol; doing (get symbol
property) returns the function. Storing functions on property lists is a frequently-used
technique for dispatching (that is, deciding at run-time which function to call, on the
basis of input data).

(:method flavor-name operation)
(:method flavor-name method-type operation)
(:method flavor-name method-type operation suboperation)
The function is remembered inside internal data structures of the flavor system and is

SRCALMAN>FD-FUN.TEXT.S9 24-JAN-83

Function Specs 156 Lisp Machinc Manual

called automatically as part of handling the operation operation on instances of flavor-
name. Sce the chapter on flavors (chapter 20, page 321) for details.

(:handler flavor-name operation)

This is a name for the function actually called when an operation message is sent to an
instance of the flavor flavor-name. The difference between :handler and :method is that
the handler may be a method inherited from some other flavor or a combined method
automatically written by the flavor system. Mcthods are what you define in source files;
handlers are not. Note that redefining or encapsulating a handler affects only the named
flavor, not any other flavors built out of it. Thus :handler function specs arc often used
with trace (see page 588), breakon (page 591), and advise (page 593).

(:select-method function-spec operation)
This function spec assumes that the definition of function-spec is a sclect-method object
(sce page 163) containing an alist of operation names and functions to handle them, and
refers to onc particular clement of that alist: the one for operation operation.

The function is remembered in that alist element and is called when funcrion-spec’s
definition is called with first argument operation.

:select-method function specs are most often used implicitly through defselect. One of
the things done by
(defselect foo
(:win (x) (cons 'win x))
)

is to define the function spec (:select-method foo :win).

(:lambda-macro name)
This is a name for the function that expands the lambda macro name.

(:location pointer)
The function is stored in the cdr of pointer, which may be a locative or a list. This is
for pointing at an arbitrary place that there is no other way to describe. This form of
function spec isn’t useful in defun (and related special forms) becausc the reader has no
printed representation for locative pointers and always creates ncew lists; these function
specs are intended for programs that manipulate functions (sce section 10.8, page 169).

(:within within-function function-to-affect)
This refers to the meaning of the symbol function-ro-affect, but only where it occurs in
the text of the definition of within-function. 1f you define this function spec as anything
but the symbol function-to-affect itself, then that symbol is replaced throughout the
definition of within-function by a new symbol, which is then defined as you specify. See
the scction on si:rename-within encapsulations (section 10.10.1, page 179) for more
information.

It is rarely useful to define a :within function spec by hand, but often useful to trace or
advise one. For example,

(breakon ’(:within myfunction eval))
allows you to break when eval is called from myfunction. Simply doing (breakon ‘eval)
will probably blow away your machine.

SRCLL.MAN>ED-FUN.TEXT.9 24-JAN-83

LLisp Machine Manual 157 Simple Function Definitions

(:internal finction-spec nuimber)
Some lisp functions contain internal functions, created by (functione (lambda ...)) forms.
These internal functions need names when compiled, but they do not have symbols as
names; instead they are named by :internal function-specs. function-spec is the name of
the containing function. number iS a sequence number; the first internal function the
compiler comes across in a given function will be numbered 0, the next 1, etc. Internal
functions are remembered inside the compiled function object of their containing function.

Here is an cxample defining a function whose name is not a symbol:
(defun (:property foo bar-maker) (thing &optional kind)
(set-the ’bar thing (make-bar ’foo thing kind)))
This puts a function on foo’s bar-maker property. Now you can say
(funcall (get 'foo ’bar-maker) ’baz)

Unlike the other kinds of function spec, a symbol can be used as a function. If you apply a
symbol to arguments, the symbol’s function definition is used instead. If the definition of the first
symbol is another symbol, the definition of the second symbol is used, and so on, any number of
times. But this is an exception; in general, you can’t apply function specs to arguments.

A keyword symbol that identifies function specs (i.e., that may appear in the car of a list
which is a function spec) is identified by a sys:function-spec-handler property whose value is a
function that implements the various manipulations on function specs of that type. The interface
to this function is internal and not documented in this manual.

For compatibility with Maclisp, the function-defining special forms defun, macro, and
defselect (and other defining forms built out of them, such as defunp and defmacro) will also
accept a list

(symbol property)
as a function name. This is translated into
{:property symbol property)

symbol must not be one of the keyword symbols that identify a function spec, since that
would be ambiguous.

10.3 Simple Function Definitions

defun Special Form
defun is the usual way of defining a function that is part of a program. A defun form
looks like:
(defun name lambda-list
body. ..)

name is the function spec you wish to define as a function. The lambda-list is a list of
the names to give to the arguments of the function. Actually, it is a little more general
than that; it can contain Jambda-list keywords such as &optional and &rest. (These
keywords are explained in section 3.2, page 21 and other keywords are explained in
section 10.7, page 168.) See page 166 for some additional syntactic features of defun.

SRCKLMAN>FD-FUN.TEXT.9 24-JAN-83

Simple Function Definitions 158 Lisp Machine Manual

defun creates a list that looks like

(named-Tambda name lambda-list body. . .)
and puts it in the function cell of name. name is now defined as a function and can be
called by other forms.

Examples:
(defun addone (x)
(1+ x))

(defun foo (a &optional (b 5) c &rest e &aux j)
(setq j (+ (addone a) b))
(cond ((not (null c))
(cons j e))

(t 3)))

addone is a function which cxpects a number as an argument, and returns a number one
larger. foo is a complicated function that takes one required argument, two optional
arguments, and any number of additional arguments that arc given to the function as a
list named e.

A declaration (a list starting with declare) can appear as the first element of the body. It
is cquivalent to a local-declare (sce page 233) surrounding the entire defun form. For
example,
(defun foo (x)
(declare (special x))
(bar)) ;bar uses x free.
is equivalent to and preferable to
(local-declare ({special x))
(defun foo (x)
(bar)))
(It is preferable because the cditor expects the open parenthesis of a top-level function
definition to be the first character on a line, which isn’t possible in the second form
without incorrect indentation.)

A documentation string can also appear as the first element of the body (following the
declaration, if there is one). (It shouldn't be the only thing in the body; otherwise it is
the value rcturned by the function and so is not interpreted as documentation. A string
as an element of a body other than the last clement is only evaluated for side-effect, and
since evaluation of strings has no side effects, they aren't useful in this position to do any
computation, so they are interpreted as documentation.) This documentation string
becomes part of the function’s debugging info and can be obtained with the function
documentation (see page 172). The first line of the string should be a complete sentence
that makes sense read by itself, since there are two editor commands to get at the
documentation, one of which is "brief” and prints only the first line. Example:

SRCKL.MAN>FD-FUN.TEXT.9 24-JAN-83

Lisp Machine Manual 159 User Opcrations on Functions

(defun my-append (&rest Tists)

"Like append but copies ail the lists.
This is like the Lisp function append, except that
append copies all lists except the last, whereas
this function copies all of its argument
including the last one."

-)

defunp A Macro
Usually when a function uses prog, the prog form is the entire body of the function; the
definition of such a function looks like (defun name arglist (prog varlist ...)). Although
the usc of prog is generally discouraged, prog fans may want to use this special form.
For convenience, the defunp macro can be used to produce such definitions. A defunp
form such as
(defunp fctn (args)
forml
form2
formn)
expands into
{defun fctn (args)
(prog ()
forml
form2

i;éturn formn)))

You can think of defunp as being like defun except that you can return out of the
middle of the function’s body.

For more information on defining functions, and other ways of doing so, see section 10.6,
page 165.

10.4 User Operations on Functions

Here is a list of the various things a user (as opposed to a program) is likely to want to do to
a function. In all cases, you specify a function spec to say where to find the function.

To print out the definition of the function spec with indentation to make it legible, use
grindef (see page 426). This works only for interpreted functions. If the definition is a compiled
function, it can’t be printed out as Lisp code, but its compiled code can be printed by the
disassembie function (sce page 641).

To find out about how to call the function, you can ask to see its documentation or its
argument names. (The argument names are usually chosen to have mnemonic significance for the
caller). Use arglist (page 172) to sce the argument names and documentation (page 172) to see
the documentation string. There are also editor commands for doing these things: the Control-
Shift-D and Meta-Shift-D commands are for looking at a function’s documentation, and

SRCKLMAN>FD-FUN.TEXTS9 24-JAN-83

Kinds of Functions 160 Lisp Machinc Manual

Control-Shift-A is for looking at an argument list.

Control-Shift-A and Control-Shift-D do not ask for the function name; they act on the
function that is called by the innermost expression which the cursor is inside. Usually this is the
function that will be called by the form you are in the process of writing. They arc available in
the rubout handler as well.

You can see the function’s debugging info alist by means of the function debugging-info (see
page 172).

When you are debugging, you can use trace (see page 588) to obtain a printout or a break
loop whenever the function is called. You can use breakon (sec page 591) to cause the error
handler to be entered whenever the function is called; from there, you can step through further
function calls and returns. You can customize the definition of the function, cither temporarily or
permancently, using advise (sce page 593).

10.5 Kinds of Functions

There are many kinds of functions in Zetalisp. This section bricfly describes cach kind of
function. Note that a function is also a piece of data and can be passed as an argument,
returned, put in a list, and so forth.

There are four kinds of functions, classified by how they work.

First, there are interpreted functions: you define them with defun, they are represented as
list structure, and they arc interpreted by the Lisp evaluator.

Secondly, there are compiled functions: they are defined by compile or by loading a QFASL
file, they are represented by a special Lisp data type, and they are exccuted directly by the
microcode. Similar to compiled functions are microcode functions, which are written in microcode
(either by hand or by the micro-compiler) and executed directly by the hardware.

Thirdly, there are various types of Lisp object that can be applied to arguments, but when
they arc applied they dig up another function somewhere and apply it insicad. These include
dtp-select-method, closures, instances, and entities.

Finally, there arc various types of Lisp object that, when used as functions, do something
special related to the specific data type. These include arrays and stack-groups.

SRCKLMAN>FD-FUN.TEXT.9 24-JAN-83

Lisp Machinc Manual 161 Kinds of Functions

10.5.1 Interpreted Functions

An interpreted function is a piece of list structure that represents a program according to the
rules of the Lisp interpreter. Unlike other kinds of functions, interpreted functions can be printed
out and rcad back in {they have a printed representation that the reader understands), can be
pretty-printed (sec page 426). and can be cxamined with the usual functions for list-structure
manipulation.

There are four kinds of interpreted functions: lambdas, named-lambdas, substs, and
" named-substs. A lambda function is the simplest kind. It is a list that looks like this:
(1ambda lambda-list forml form2...)

The symbol lambda identifies this list as a lambda function. lambda-list is a description of what
arguments the function takes; sce scction 3.2, page 21 for details. The forms make up the body
of the function. When the function is called, the argument variables are bound to the values of
the arguments as described by lambda-list, and then the forms in the body arc cvaluated, onc by
one. The value of the function is the value of its last form.

A named-lambda is like a lambda but contains an extra clement in which the system
remembers the function’s name, documentation, and other information. Having the function’s
name there allows the error handler and other tools to give the user more information. You
would not normally writc a named-lambda yourself; named-lambda exists so that defun can
use it. A named-lambda function looks like this:

(named-lambda name lambda-list body forms. . .)
If the name slot contains a symbol, it is the function’s name. Otherwise it is a list whose car is
the name and whose cdr is the function's debugging information alist. Sce debugging-info, page
172. Note that the name need not be a symbol; it can be any function spec. For example,

(defun (foo bar) (x)

(car (reverse x)))

will give foo a bar property whose value is

(named-lambda ((:property foo bar)) (x) (car (reverse x}))

A subst is just like a lambda as far as the interpreter is concerned. It is a list that looks like

this:
(subst lambda-list forml form2...)

The difference between a subst and a lambda is the way they are handled by the compiler. A
call to a normal function is compiled as a closed subroutine; the compiler gencrates code to
compute the values of the arguments and then apply the function to those values. A call to a
subst is compiled as an open subroutine; the compiler incorporates the body forms of the subst
into the function being compiled, substituting the argument forms for references to the variables
in the subst's lambda-liss. This is a simple-minded but uscful facility for open or in-line coded
functions. It is simple-minded because the argument forms can be evaluated multiple times or out
of order, and so the semantics of a subst may not be the same in the interpreter and the
compiler. substs are described more fully on page 255, with the explanation of defsubst.

A named-subst is the same as a subst except that it has a name just as a named-lambda
does. It looks like
(named-subst name lambda-list forml form2 ...)
where name is interpreted the same way as in a named-lambda.

SRCKL.MANDFD-FUN.TEXT.9 24-JAN-83

Kinds of Functions 162 I.isp Machine Manual

10.5.2 Lambda Macros

Lambda macros may appear in functions where lambda would have previously appeared.
When the compiler or interpreter detects a function whose car is a lambda macro, they "expand”
the macro in much the same way that ordinary Lisp macros arc expanded—the lambda macro is
called with the function as its argument and is expected to return another function as its value.
The definition of a lambda macro (that is, the function which expands it) may be accessed with
the (:lambda-macro name) function spec.

The value returned by the lambda macro expander function may be any valid function.
Usually it is a list starting with lambda. subst, named-lambda or named-subst, but it could
also be another use of a lambda macro, or even a compiled function.

lambda-macro name lambda-list &body body Special Form
Analogously with macro, defines a lambda macro to be called name. lambda-list should
consist of one variable, which will be the function that caused the lambda macro to be
called. The lambda macro must return a function. For example:

(lambda-macro ilisp (x)
‘(lambda (&optional ,@(second x) &rest ignore) . ,(cddr x)))

defines a lambda macro called ilisp which can be used to define functions that accept
arguments like a standard Interlisp function: all arguments are optional and extra
arguments arc ignored. A typical use would be:

(fun-with-functional-arg #'(ilisp (x y z) (list x y z)))

This passes to fun-with-functional-arg a function which will ignore extra arguments
beyond the third, and will default x, y and z to nil.

defliambda-macro Special Form
deflambda-macro is like defmacro, but defines a lambda macro instead of a normal
macro. Here is how ilisp could be defined using deflambda-macro:
(deflambda-macro ilisp (argument-list &body body)
‘(lambda (&optional ,@argument-list &rest ignore) . ,body))

deflambda-macro-displace Special Form
deflambda-macro-displace is like defmacro-displace, but defines a lambda macro
instead of a normal macro.

deffunction function-spec lambda-macro-name lambda-list &body Special Form
body
deffunction defines a function with a definition that uses an arbitrary lambda macro
instead of lambda. It takes arguments like defun, expect that the argument immediatly
following the function specifier is the name of the lambda macro to be used. deffunction
expands the lambda macro immediatly, so the lambda macro must have been previously
defined.

SRC:ALMAN>FD-FUN.TEXTJ9 24-JAN-83

Lisp Machine Manual 163 Kinds of Functions

For example:

(deffunction some-interlisp-like-function ilisp (x y z)
(1ist x y z))

would decfine a function called some-interlisp-like-function with the definition
(ilisp (xy z) (list x y z)).

(defun foo ...) could be considered an abbreviation for (deffunction foo lambda ...)

10.5.3 Compiled Functions

There are two kinds of compiled functions: miacrocoded functions and microcoded functions.
The Lisp compiler converts lambda and named-lambda functions into macrocoded functions. A
macrocoded function’s printed representation looks like:

#<dtp-fef-pointer append 1424771>
This type of Lisp object is also called a "Function Entry Frame”, or "FEF" for short. Like "car”
and "cdr”, the name is historical in origin and doesn’t really mean anything. The object contains
Lisp Machine machine code that does the computation expressed by the function; it also contains
a description of the arguments accepted, any constants required, the name, documentation, and
other things. Unlike Maclisp "subr-objects”, macrocoded functions are full-fledged objects and can
be passed as arguments, stored in data structure, and applied to arguments.

The printed representation of a microcoded function looks like:
#<dtp-u-entry last 270>
Most microcompiled functions are basic Lisp primitives or subprimitives written in Lisp Machine
microcode. You can also convert your own macrocode functions into microcode functions in some
circumstances, using the micro-compiler.

10.5.4 Other Kinds of Functions

A closure is a kind of function that contains another function and a set of special variable
bindings. When the closure is applied, it puts the bindings into effect and then applies the other
function. When that returns, the closure bindings are removed. Closures arc made with the
function closure. See chapter 11, page 180 for more information. Entities are slightly different
from closures; see section 11.4, page 185.

A sclect-method (dtp-select-method) is an alist of symbols and functions. When one is
called the first argument is looked up in the alist to find the particular function to be called. This
function is applied to the rest of the arguments. The alist may have a list of symbols in place of
a symbol, in which case the associated function is called if the first argument is any of the
symbols on the list. If cdr of last of the alist is not nil, it is a default handler function, which
gets called if the message key is not found in the alist. Select-methods can be created with the
defselect special form (sce page 167). If the select-method is the definition of a function-spec,
the individual functions in the alist can be referred to using :select-method function specs (see
page 156).

SRCKLMAN>FD-FUN.TEXT.9 24-JAN-83

Kinds of Functions 164 1.isp Machine Manual

An instance is a message-receiving object that has both a state and a table of message-
handling functions (called merhods). Refer to the chapter on flavors (chapter 20, page 321) for
further information.

An array can be used as a function. The arguments to the array arc the indices and the value
is the contents of the element of the array. This works this way for Maclisp compatibility and is
not rccommended usage. Use aref (page 128) instead.

A stack group can be called as a function. This is one way to pass control to another stack
group. Sec chapter 12, page 186.

10.5.5 Special Forms and Functions

The special forms of Zetalisp, such as quote, let and cond. are actually implemented with
an unusual sort of function.

First. let’s restate the outline of how the evaluator works. When the evaluator is given a list
whose first element is a symbol, the form may be a function form, a special form, or a macro
form (see page 14). If the definition of the symbol is a function, then the function is just applied
to the result of evaluating the rest of the subforms. If the definition is a cons whose car is
macro, then it is a macro form; these are cxplained in chapter 17, page 248. What about
special forms?

A special form is implemented by a function that is flagged to tell the cvaluator to refrain
from evaluating some or all of the arguments to the function. Such functions make use of the
lambda-list keyword "e.

The evaluator, on sceing the "e in the lambda list of an interpreted function (or
something equivalent in a compiled function) skips the evaluation of the arguments to which the
"e applies. Aside from that, it calls the function normally.

For example, quote could be defined as
(defun quote ("e arg) arg)
Evaluation of (quote x) would sce the "e in the definition, applying to the first argument,
so it would refrain from evaluating that argument and would pass the function definition of quote
the object x rather than the value of x. From then on, the definition of quote executed in the
normal fashion, so it returns x.

"e applies to all the following arguments, but it can be cancelled with &eval. A simple
setq that accepted only one variable and one value could be defined as follows:
(defun setq ("e variable &eval value)
(set variable value))
The actual definition of setq is more complicated and uses a lambda list ("e &rest
variables-and-values). Then it must go through the rest-argument, evaluating every other
clement.

The definitions of special forms are designed with the assumption that they will be called by
eval. It does not usually make much sense to call one with funcall or apply. apply does not
evaluate any arguments; its second argument is composed of values of arguments rather than

SRC:KLMAN>FD-FUN.TEXT.9 24-JAN-83

Lisp Machine Manual 165 Function-Defining Special Forms

expressions for them. So there is no way for apply to refrain from cvaluating them. Most special
forms explicitly call eval on some of their arguments, or parts of them, and if called with apply
or funcall they will still do so. This is usually uscless, so calling special forms with apply or
funcall should be avoided. FEncapsulations can do this successfully, because they can arrange that
quoted arguments are quoted also on entry to the encapsulation.

It is possible to define your own special form using "e. Macros can also be used to
accomplish the same thing. It is preferable to implement language extensions as macros rather
than special forms, because macros directly define a Lisp-to-Lisp translation and therefore can be
understood by both the interpreter and the compiler. Special forms, on the other hand, only
extend the interpreter. The compiler has to be modified in an ad hoc way to understand each
new special form so that code using it can be compiled. For example, it would not work for a
compiled function to call the interpreted definition of setq; the set in that definition would not
be able to act on local variables of the compiled function.

Since all real programs are cventually compiled, writing your own special functions is strongly
discouraged. The purpose of "e is to be used in the system’s own standard special forms.

(In fact, many of the special forms in Zetalisp are actually implemented as macros, rather
than as special functions. They're implemented this way because it’s casier to writc a macro than
to write both a new special function and a new ad hoc module in the compiler. However, they’re
sometimes documented in this manual as special forms, rather than macros, because you should
not in any way depend on the way they are implemented; they might be reimplemented as special
functions at any time.)

10.6 Function-Defining Special Forms

defun is a special form that is put in a program to define a function. defsubst and macro
are others. This section explains how these special forms work, how they relate to the different
kinds of functions, and how they interface to the rest of the function-manipulation system.

Function-defining special forms typically take as arguments a function spec and a description
of the function to be made, usually in the form of a list of argument names and some forms that
constitute the body of the function. They construct a function, give it the function spec as its
name, and define the function spec to be the new function. Different special forms make
different kinds of functions. defun makes a named-lambda function, and defsubst makes a
named-subst function. macro makes a macro; though the macro definition is not really a
function, it is like a function as far as definition handling is concerned.

These special forms are used in writing programs because the function names and bodies are
constants. Programs that define functions usually want to compute the functions and their names,
so they use fdefine. Sce page 169.

All of these function-defining special forms alter only the basic definition of the function spec.
Encapsulations are preserved. Sec section 10.10, page 175.

The special forms only create interpreted functions. There is no special way of defining a
compiled function. Compiled functions are made by compiling interpreted ones. The same special

SRCKLMAN>FD-FUN.TEXT.9 24-JAN-83

Function-Defining Special Forms 166 Lisp Machine Manual

form that defines the interpreted function, when processed by the compiler, vields the compiled
function. Scc chapter 16, page 228 for details.

Note that the editor understands these and other "defining” special forms (e.g. defmethod,
defvar, defmacro, defstruct, ctc.) to some cxtent, so that when you ask for the definition of
somcthing, the editor can find it in its source file and show it to you. The general convention is
that anything that is used at top level (not inside a function) and starts with def should be a
special form for defining things and should be understood by the editor. defprop is an exception.

The defun special form (and the defunp macro which expands into a defun) are used for
creating ordinary interpreted functions (sce page 157).

For Maclisp compatibility, a fype symbol may be inscrted between name and lambda-list in
the defun form. The following types are understood:

expr The same as no type.
fexpr "e and &rest arc prefixed to the lambda list.
macro A macro is defined instead of a normal function.

If lambda-list is a non-nil symbol instead of a list, the function is recognized as a Maclisp
lexpr and it is converted in such a way that the arg, setarg, and listify functions can be used to
access its arguments (see page 31).

The defsubst special form is used to create substitutible functions. It is used just like defun
but produces a list starting with named-subst instead of one starting with named-lambda. The
named-subst function acts just like the corresponding named-lambda function when applied,
but it can also be open-coded (incorporated into its callers) by the compiler. See page 255 for
full information.

The macro special form is the primitive means of creating a macro. It gives a function spec
a definition that is a macro definition rather than a actual function. A macro is not a function
because it cannot be applied, but it can appear as the car of a form to be evaluated. Most
macros are created with the more powerful defmacro special form. See chapter 17, page 248.

The defselect special form defines a sclect-method function. See page 167.

Unlike the above special forms, the next two (deff and def) do not create new functions. They
simply serve as hints to the cditor that a function is being stored into a function spec here, and
thercfore if somcone asks for the source code of the definition of that function spec, this is the
place to look for it.

def Special Form
If a function is created in some strange way, wrapping a def spccial form around the
code that creates it informs the editor of the connection. The form
(def function-spec
SJorml form2...)
simply evaluates the forms forml, form2, etc. It is assumed that these forms will create
or obtain a function somechow, and make it the definition of function-spec.

SRCKL.MANYFD-FUN.TEXT.9 24-JAN-83

Lisp Machine Manual 167 Function-Defining Special Forms

Alternatively, vou could put (def function-spec) in front of or anywhere near the forms
which define the function. The editor only uses it to tell which line to put the cursor on.

deff function-spec definition-creator Special Form

deff is a simplified version of def. It evaluates the form definition-creator, which should
produce a function, and makes that function the definition of function-spec, which is not
evaluated. deff is used for giving a function spec a dcfinition which is not obtainable
with the specific defining forms such as defun and macro. For example,

(deff foo ’bar)
will make foo equivalent to bar, with an indirection so that if bar changes foo will
likewise change;

(deff foo (function bar))
copies the definition of bar into foo with no indirection, so that further changes to bar
will have no effect on foo.

. @define Macro

This macro turns into nil, doing nothing. It cxists for the sake of the @ Ilisting
generation program, which uses it to declare names of special forms that define objects
(such as functions) that @ should cross-reference.

defun-compatibility x
This function is used by defun and the compiler to convert Maclisp-style lexpr, fexpr,
and macro defuns to Zetalisp definitions. x should be the cdr of a (defun ..) form.
defun-compatibility will return a corresponding (defun ..) or (macro ..) form, in the
usual Zetalisp format. You shouldn’t ever need to call this yourself.

defselect Special Form

defselect defines a function which is a select-method. This function contains a table of
subfunctions; when it is called, the first argument, a symbol on the keyword package
called the operation, is looked up in the table to determine which subfunction to call.
Each subfunction can take a different number of arguments and have a different pattern
of &optional and &rest arguments. defselect is useful for a variety of "dispatching™ jobs.
By analogy with the more general message-passing facilities described in chapter 20, page
321, the subfunctions arc called methods and the list of arguments is sometimes called a
message.

The special form looks like
(defselect (function-spec default-handler no-which-operations)
(operation (args..)
body...)
(operation (args...)
body...)
)

function-spec is the name of the function to be defined. default-handler is optional; it
must be a symbol and is a function which gets called if the select-method is called with
an unknown operation. If default-handler is unsupplied or nil, then an unknown operation

AANN

causes an error with condition name sys:unciaimed-message (see page 342).

SRCKLMAN>FD-FUN.TEXT.9 24-JAN-83

l.ambda-List Keywords 168 Lisp Machinc Manual

Normally a method for the operation :which-operations is generated automatically based
on the sct of existing methods. The :which-operations operation takes no arguments and
returns a list of all the operations in the defselect. If no-which-operations is non-nil, no
‘which -operations method is created; however, you can supply one yourself.

If function-spec is a symbol, and defaulr-handler and no-which-operations are not supplied,
then the first subform of the defselect may be just finction-spec by itself, not enclosed in
a list.

The remaining subforms in a defselect are the clauses, cach defining one method.
operation is the operation to be handled by this clause or a list of several operations to be
handled by the same clause. args is a lambda-list; it should not include the first
argument, which is the operation. body is the body of the function.

A clause can instead look like:

(operation . symbol)
In this case, symbol is the name of a function that is to be called when the operation
operation is performed. It will be called with the same arguments as the select-method,
including the operation symbol itself.

The individual methods of the defselect can be examined, redefined, traced, etc. using
'select-method function specs (see page 156).

10.7 Lambda-List Keywords

This section documents all the keywords that may appear in the "lambda-list" (argument list)
(sec section 3.2, page 21) of a function, a macro, or a special form. Somc of them are allowed
everywhere, while others are only allowed in one of these contexts; those are so indicated.

lambda-1ist-keywords Variable

The value of this variable is a list of all of the allowed "&" keywords. Some of these are
obsolete and don’t do anything; the remaining ones are listed below.

&optional Separates the required arguments of a function from the optional arguments. See

&rest

&key

section 3.2, page 21.

Separates the required and optional arguments of a function from the rest
argument. There may be only onc rest argument. See page 23 for full
information about rest arguments. See scction 3.2, page 21.

Separates the positional arguments and rest argument of a function from the
keyword arguments. See section 3.2, page 21.

&allow -other-keys

&aux

In a function that accepts keyword arguments, says that keywords that are not
recognized are allowed. They and the corresponding values are ignored, as far as
keyword arguments are concerned, but they do become part of the rest argument,
if there is one.

Scparates the arguments of a function from the auxiliary variables. Following
&aux you can put entrics of the form

SRCKILMAN>FD-FUN.TEXT.9 24-JAN-83

[Lisp Machine Manual 169 How Programs Manipulate Function Specs

&special

&local

&functional

"e

8eval
&list-of
&body

(variable initial-value-form)
or just variable if you want it initialized to nii or dont care what the initial value
is.

Declares the following arguments and/or auxiliary variables to be special within
the scope of this function.

Turns off a preceding &special for the variables that follow.

Preceding an argument, tells the compiler that the value of this argument will be
a function. When a caller of this function is compiled, if it passes a quoted

- constant argument that looks like a function (a list beginning with the symbol

lambda), the compiler will know that it is intended to be a function rather than a
list that happens to start with that symbol, and will compile it.

Declares that the following arguments arc not to be evaluated. This is how you
create a special function. See the caveats about special forms on page 165.

Turns off a preceding "e for the arguments which follow.
This is for macros defined by defmacro only. Refer to page 268.

This is for macros defined by defmacro only. It is similar to &rest, but declares
to grindef and the code-formatting module of the editor that the body forms of a
special form follow and should be indented accordingly. Refer to page 268.

10.8 How Programs Manipulate Function Specs

fdefine function-spec definition &optional (carefullynily (no-query nil)

This is the primitive used by defun and everything else in the system to change the
definition of a function spec. If carefully is non-nil, which it usually should be, then only
the basic definition is changed; the previous basic definition is saved if possible (see
undefun, page 171), and any encapsulations of the function such as tracing and advice
are carried over from the old definition to the new definition. carefully also causes the
user to be queried if the function spec is being redefined by a file different from the one
that defined it originally. However, this warning is suppressed if either the argument no-
query is non-nil, or if the global variable inhibit-fdefine-warnings is t.

If fdefine is called while a file is being loaded, it records what file the function definition
came from so that the editor can find the source code.

If function-spec was already defined as a function, and carefully is non-nil, the function-
spec’s :previous-definition property is used to save the previous definition. This property
is used by the undefun function (page 171), which restores the previous definition. The
properties for different kinds of function specs are stored in different places; when a
function spec is a symbol its propertics are stored on the symbol's property list.

defun and the other function-defining special forms all supply t for carefilly and nil or
nothing for no-query. Operations that construct encapsulations, such as trace, are the
only ones which use nil for carefully.

SRCKLMAN>FD-FUN.TEXT.9 24-JAN-83

How Programs Manipulate Function Specs 170 LLisp Machine Manual

si:racord-source-file-name name &optional (fypedefun) no-query
Record a dcfinition of name, of type fype. type should be defun to record a function
definition; then name is a function spec. (e can also be defvar, defflavor,
defresource, defsignal or anything else you want to use.

The value of sys:fdefine-file-pathname is assumed to be the generic pathname of the
file the definition is coming from, or nil if the definition is not from a file. If a
dcfinition of the same name and type has already been scen but not in the same file, and
no-query is nil, a condition is signaled and then the user is queried.

If si:record-source-file-name returns nil, it means that the user or a condition handler
said the. redefinition should not be performed.

sys:fdefine-file-pathname Variable
While the system is loading a file, this is the generic pathname for the file. The rest of
the time it is nil. fdefine uses this to remember what file defines cach function.

"si:get-source-file-name function-spec &optional type
Rewrns the generic pathname for the file in which Junction-spec reccived a definition of
type type. If fype is nil, the most recent definition is used, regardless of its type.

Junction-spec really is a function spec only if 1ype is defun; for example, if 1ype is defvar,
Junction-spec is a variable name. Other types that are used by the system are defflavor
and defstruct.

This function returns the generic pathname of the source file. To obtain the actual source
file pathname, use the :source-pathname operation (sec page 469).

A second value is returned, which is the type of the definition that was reported.

si:get-all-source-file-names function-spec
Returns a list describing the generic pathnames of all the definitions this function-spec has
received, of all types. The list is an alist whose elements look like
(type pathname. . .)

sys:redefinition (sys:warning) Condition Flavor
This condition, which is not an error, is signaled by si:record-source-file-name when
something is rcdefined by a different file. The handler for this condition can control what
is done about the redefinition.

The condition instance provides the operations :name, «definition-type, :old-pathname
and :new-pathname. :name and :definition-type return the name and type arguments to
si:record-source-file-name. :old-pathname and :new-pathname return two generic
pathnames saying where the old definition was and where this one is. The new pathname
may be nil, meaning that the redefinition is being done by the user, not in any file.

Two proceed types are available, :proceed and :inhibit-definition. The first tells
si:record-source-file-name to return t, the second tells it to return nil. If the condition
is not handled at all, the user is queried or warned according to the value of inhibit-
fdefine-warnings.

SRCKLMAN>FD-FUN.TEXT.9 24-JAN-83

Lisp Machine Manual 171 How Programs Manipulate Function Specs

inhibit-fdefine-warnings Variable
This variable is normally nil. Seitting it to t prevents sirrecord-source-file-name from
warning you and asking about questionable redefinitions such as a function being redefined
by a diffcrent file than defined it originally, or a symbol that belongs to onc package
being defined by a file that belongs to a different package. Sctting it to :just-warn allows
the warnings to be printed out, but prevents the queries from happening; it assumes that
your answer is "yes", i.e. that it is all right to redefine the function.

fset-carefully symbol definition &optional force-flag
This function is obsolete. It is equivalent to
(fdefine symbol definition t force-flag)

fdefinedp function-spec
This returns t if finction-spec has a definition, nil if it does not.

fdefinition function-spec
This returns function-spec’s definition. If it has none, an error occurs.

fdefinition-location fiunction-spec
This returns a locative pointing at the cell which contains function-spec’s definition. For
some kinds of function specs, though not for symbols, this can causc data structure to be
created to hold a definition. For example, if function-spec is of the :property kind, then
an entry may have to be added to the property list if it isn't alrcady there. In practice,
you should write (locf (fdefinition firnction-spec)) instead of calling this function explicitly.

fundefine function-spec

Removes the definition of function-spec. For symbols this is equivalent to fmakunbound.
If the function is encapsulated, fundefine removes both the basic definition and the
encapsulations. Some types of function specs (location for example) do not implement
fundefine. fundefine on a :within function spec removes the replacement of function-to-
affect, putting the definition of within-function back to its normal state. fundefine on a
:method function spec removes the mcthod completely, so that future messages will be
handled by some other method (see the flavor chapter).

undefun finction-spec
If function-spec has a saved previous basic definition, this interchanges the current and
previous basic definitions, leaving the encapsulations alone. If function-spec has no saved
previous definition, undefun asks the user whether to make it undefined.

This undoes the effect of redefining a function. Sece also uncompile (page 228).
si:function-spec-get function-spec indicator

Datrirnce tha valiia ~AF tha fudiartar mnranarty nF fBinafinsm onsa nr mil i€ 3+ A~nnon
ncturns in€ vaiuc o1 N inagicaior propeity Or junciion-spec, OF hil i it 4o¢sn

a property.

s qiinh

+ thny 1
{ nave sucin

SRCALMAN>FD-FUN.TEXTJ9 24-JAN-83

How Programs Examine Functions 172 Lisp Machine Manual

si:function-spec-putprop function-spec value indicator
Gives function-spec an indicator property whose value is value.

si:function-spec-lessp function-spec! function-spec2
Compares the two function specs with an ordering that is uscful in sorting lists of function
specs for presentation to the user.

si:function-parent function-spec
If function-spec does not have its own definition, textually spcaking, but is defined as part
of the decfinition of something else, this function returns the function spec for that
something else. For example, if function-spec is an accessor function for a defstruct, the
value rcturned is the name of the defstruct.

The intent is that if the caller has not been able to find the definition of function-spec in
a more direct fashion, it can try looking for the definition of the function-parent of
Junction-spec. This is used by the editor’s Meta-. command.

10.9 How Programs Examine Functions

These functions take a function as argument and return information about that function.
Some also accept a function spec and operate on its definition. The others do not accept function
specs in general but do accept a symbol as standing for its definition. (Note that a symbol is a
function as well as a function spec).

documentation function
Given a function or a function spec, this finds its documentation string, which is stored
in various different places depending on the kind of function. If there is no
documentation, nil is returned.

debugging-info function
This returns the debugging info alist of fiunction, or nil if it has none.

arglist function &optional real-flag
arglist is given a function or a function spec, and returns its best guess at the nature of
the function’s lambda-list. 1t can also return a second value which is a list of descriptive
names for the values returned by the function.

If function is a symbol, arglist of its function definition is used.

If the function is an actual lambda-expression, its cadr, the lambda-list, is returned. But
if function is compiled, arglist attempts to reconstruct the lambda-list of the original
definition, using whatever dcbugging information was saved by the compiler. Sometimes
the actual names of the bound variables arc not available, and arglist uses the symbol
si:*unknown* for these. Also, sometimes the initialization of an optional parameter is too
complicated for arglist to reconstruct; for these it returns the symbol si:*hairy*.

Some functions’ real argument lists are not what would be most descriptive to a user. A

function may take a rest argument for technical reasons even though there are standard
meanings for the first elements of that argument. For such cases, the definition of the

SRC:KLMAN>FD-FUN.TEXT.9 24-JAN-83

[Lisp Machine Manual 173 How Programs Examine Functions

function can specify, with a local declaration, a value to be returncd when the user asks
about the argument list. Example:
(defun foo (&rest rest-arg)
{declare (arglist x y &rest z))

real-flag allows the caller of arglist to say that the real argument list should be used even
if a declared argument list cxists. Note that while normally declares are only for the
compiler’s benefit, this kind of declare affects all functions, including interpreted
functions.

arglist cannot be relied upon to return the exactly correct answer, since some of the
information may have been lost. Programs interested in how many and what kind of
arguments there are should use args-info instead. In general arglist is to be used for
documentation purposes, not for reconstructing the original source code of the function.

When a function returns multiple values, it is useful to give the values names so that the
caller can be reminded which value is which. By mecans of a return-list declaration in
the function’s definition, entirely analogous to the arglist declaration above, you can
specify a list of mnemonic names for the rcturned values. This list will be returned by
arglist as the second value.
(arglist ’arglist)
=> (function &optional real-flag) and (arglist return-1list)

function-name function &optional try-flavor-name
Returns the name of the function function, if that can be determined. If function does
not describe what its name is, function itself is returned.

If try-flavor-name is non-nil, then if function is a flavor instance (which can, after all, be
used as a function), then the flavor name is returned. If the optional argument is nil,
flavor instances are trcated as anonymous.

eh:arg-name function arg-number
Returns the name of argument number arg-number in function fiunction. Returns nil if
the function doesn’t have such an argument, or if the name is not recorded. &rest
arguments are not obtained with arg-number; use rest-arg-name to obtain the name of
Junction’s &rest argument, if any.

eh:rest-arg-name function
Returns the name of the rest argument of function function, or nil if function does not
have one.

eh:local-name function local-number
Returns the name of local variable number local-number in function funciion. If local-
number is zero, this gets the name of the rest arg in any function that accepts a rest arg.
Returns nil if the function doesn’t have such a local.

SRCL.MAN>FD-FUN.TEXT.9 24-JAN-83

How Programs Examine Functions 174 Lisp Machinc Manual

args-info function
args-info returns a fixnum called the "numeric argument descriptor” of the function,
which describes the way the function takes arguments. This descriptor is used internally
by the microcode, the cvaluator, and the compiler. function can be a function or a
function spec.

The information is stored in various bits and byte fields in the fixnum, which are
referenced by the symbolic names shown below. By the usual Lisp Machine convention,
those starting with a single "%" arc bit-masks (meant to be logand’ed or bit-test'ed with
the number), and those starting with "%%" are byte descriptors (meant to be used with
idb or Idb-test).

Here are the fields:

%%arg-desc-min-args
This is the minimum number of arguments that may be passed to this function,
i.c. the number of required parameters.

%%arg-desc-max-args
This is the maximum number of arguments that may be passed to this function,
ie. the sum of the number of required parameters and the number of optional
paramecters. If there is a rest argument, this is not really the maximum number of
arguments that may be passed; an arbitrarily-large number of arguments is
permitted, subject to limitations on the maximum size of a stack frame (about 200
words).

%arg-desc-evaled-rest
If this bit is set, the function has a rest argument, and it is not quoted.

%arg-desc-quoted-rest
If this bit is set, the function has a rest argument, and it is quoted. Most special
forms have this bit.

%arg-desc-fef-quote-hair
If this bit is set, there are some quoted arguments other than the rest argument
(if any), and the pattern of quoting is too complicated to describe here. The
ADL (Argument Description List) in the FEF should be consulted. This is only
for special forms.

%arg-desc-interpreted
This function is not a compiled-code object, and a numeric argument descriptor
cannot be computed. Usually args-info will not return this bit, although %args-
info will.

%arg-desc-fef-bind -hair
There is argument initialization, or somecthing else too complicated to describe
here. The ADL (Argument Description List) in the FEF should be consulted.

Note that %arg-desc-quoted-rest and %arg-desc-evaled-rest cannot both be set.

SRC:KLMANFD-FUN.TEXT.9 24-JAN-83

Lisp Machine Manual 175 ‘ Encapsulations

%args-info function
This is an internal function; it is like args-info but docs not work for interpreted
functions. Also, function must be a function, not a function spec. It cxists because it has
to be in the microcode anyway, for apply and the basic function-calling mechanism.

10.10 Encapsulations

The dcfinition of a function spec actually has two parts: the basic definition, and
encapsulations. The basic definition is what is created by functions like defun, and encapsulations
arc additions made by trace or advise to the basic definition. The purpose of making the
encapsulation a separate object is to keep track of what was made by defun and what was made
by trace. If defun is done a second time, it replaces the old basic definition with a new one
while leaving the encapsulations alone.

Only advanced users should ever nced to use encapsulations directly via the primitives
explained in this section. The most common things to do with encapsulations arc provided as
higher-level, easier-to-use features: trace (scc page 588), breakon (sce page 591) and advise (see
page 593).

The actual definition of the function spec is the outermost encapsulation; this contains the
next encapsulation, and so on. The innermost encapsulation contains the basic definition. The
way this containing is done is as follows. An encapsulation is actually a function whose debugging
info alist contains an clement of the form

(si:encapsulated-definition uninterned-symbol encapsulation-type)
The presence of such an element in the debugging info alist is how you recognize a function to
be an cncapsulation. An encapsulation is usually an interpreted function (a list starting with
named-lambda) but it can be a compiled function also, if the application which created it wants
to compile it.

uninterned-symbol’s function definition is the thing that the encapsulation contains, usually the
basic definition of the function spec. Or it can be another encapsulation, which has in it another
debugging info item containing another uninterned symbol. Eventually you get to a function
which is not an encapsulation; it does not have the sort of debugging info item which
encapsulations all have. That function is the basic definition of the function spec.

Literally speaking, the definition of the function spec is the outermost encapsulation, period.
The basic definition is not the definition. If you are asking for the definition of the function spec
becausc you want to apply it, the outcrmost encapsulation is exactly what you want. But the
basic definition can be found mechanically from the definition, by following the debugging info
alists. So it makes sense to think of it as a part of the definition. In regard to the function-
defining special forms such as defun, it is convenient to think of the encapsulations as connecting
between the function spec and its basic definition.

An encapsulation is created with the macro si:encapsulate.

SRCKLMAN>FD-FUN.TEXT.9 24-JAN-83

Encapsulations 176 [.isp Machine Manual

si:encapsulate Macro
A call to si:encapsulate looks like
(si:encapsulate function-spec outer-function lype
body-form
extra-debugging-info)
All the subforms of this macro are cvaluated. In fact, the macro could almost be
replaced with an ordinary function, except for the way body-form is handled.

function-spec evaluates to the function spec whose dcfinition the new encapsulation should
become. outer-function is another function spec, which should often be the same one. Its
only purpose is to be used in any error messages from si:encapsulate.

1ype cvaluates to a symbol which identifies the purpose of the encapsulation and says what
the application is. For cxample, that could be advise or trace. The list of possible types
is defined by the system because encapsulations arc supposed to be kept in an order
according to their type (scc si:encapsulation-standard-order, page 177). ¢pe should
have an si:encapsulation-grind-function property which tells grindef what to do with an
cncapsulation of this type.

body-form evaluates to the body of the encapsulation-definition, the code to be executed
when it is called. Backquote is typically used for this expression; sce section 17.2.2, page
251. sicencapsulate is a macro because, while body is being cvaluated, the variable
si:encapsulated-function is bound to a list of the form (function wuninterned-symbol),
referring to the uninterned symbol used to hold the prior definition of function-spec. 1If
si:encapsulate were a function, body-form would just get cvaluated normally by the
evaluator before sicencapsulate ever got invoked, and so there would be no opportunity
to bind sicencapsulated-function. The form body-formt should contain
*(apply ,si:encapsulated-function arglist) somewhere if the encapsulation is to live up to
its name and truly serve to encapsulate the original definition. (The variable arglist is
bound by some of the code which the si:encapsulate macro produces automatically.
When the body of the encapsulation is run arglist's value will be the list of the arguments
which the encapsulation received.)

extra-debugging-info evaluates to a list of extra items to put into the debugging info alist
of the encapsulation function (besides the one starting with si:encapsulated-definition,
which every encapsulation must have). Some applications find this useful for recording
information about the encapsulation for their own later use.

If compile-encapsulations-flag is non-nil, the encapsulation is compiled before it is
installed. The encapsulations on a particular function spec can be compiled by calling
compile-encapsulations. See page 229. Compiled encapsulations can still be
unencapsulated since the information needed to do so is stored in the dcbugging info alist,
which is preserved by compilation. However, applications which wish to modify the code
of the encapsulations they previously created must check for encapsulations that have been
compiled and uncompile them. This can be done by finding the sys:interpreted-
definition entry in the dcbugging info alist, which is present in all compiled functions
except those made by file-to-file compilation. ’

SRC:KL.MAN>FD-FUN.TEXT.9 24-JAN-83

[Lisp Machine Manual 177 Encapsulations

When a special function is encapsulated, the encapsulation is itself a special function with
the samc argument quoting pattern. Therefore, when the outcrmost encapsulation is
started. each argumecnt has been evaluated or not as appropriate. Because cach
encapsulation calls the prior definition with apply, no further evaluation takes place, and
the basic definition of the special form also finds the arguments cvaluated or not as
appropriate. The basic definition may call eval on some of these arguments or parts of
them; the encapsulations should not.

Macros cannot be cncapsulated, but their cxpander functions can be; if the definition of
function-spec is a macro, then si:encapsulate automatically cncapsulates the expander
function instead. In this case, the definition of the uninterned symbol is the original
macro definition, not just the original expander function. It would not work for the
encapsulation to apply the macro definition. So during the evaluation of body-form,
si:encapsulated -function is bound to the form {cdr (function uninterned-symbol)), which
extracts the expander function from the prior definition of the macro.

Because only the expander function is actually encapsulated, the encapsulation does not
see the evaluation or execution of the expansion itself. The value returned by the
encapsulation is the cxpansion of the macro call, not the value computed by the
expansion.

It is possible for one function to have multiple encapsulations, created by different subsystems.
In this case, the order of encapsulations is independent of the order in which they were made. It
depends instead on their types. All possible encapsulation types have a total order and a new
encapsulation is put in the right place among the existing encapsulations according to its type and
their types.

si:encapsulation-standard-order Variable
The value of this variable is a list of the allowed encapsulation types, in the order in
which the encapsulations are supposed to be kept (innermost encapsulations first). If you
want to add new Kkinds of encapsulations, you should add another symbol to this list.
Initially its value is
(advise breakon trace si:rename-within)

advise encapsulations are used to hold advice (see page 593). breakon encapsulations are
used for implementing breakon (sce page S591). trace encapsulations are used for
implementing tracing (sce page 588). si:rename-within encapsulations are used to record
the fact that function specs of the form (:within within-function altered-function) have been
defined. The encapsulation goes on within-function (see section 10.10.1, page 179 for more
information).

Every symbol used as an encapsulation type must be on the list si:encapsulation-standard-
order. In addition, it should have an si:encapsulation-grind-function property whose value is a
function that grindef will call to process encapsulations of that type. This function need not take
care of printing the encapsulated function because grindef will do that itself. But it should print
any information about the encapsulation itself which the user ought to see. Refer to the code for
the grind function for advise to see how to write one.

SRCLLMAN>FD-FUN.TEXT.9 24-JAN-83

Encapsulations 178 v LLisp Machine Manual

To find the right place in the ordering to insert a new encapsulation, it is necessary to parse
existing ones. This is done with the function si:unencapsulate-function-spec.

si:unencapsulate-function-spec finction-spec &optional encapsulation-types
This takes one function spec and returns another. 1f the original function spec is
undefined, or has only a basic definition (that is, its definition is not an encapsulation),
then the original function spec is returned unchanged.

If the definition of function-spec is an encapsulation. then its debugging info is examined
to find the uninterned symbol that holds the encapsulated definition and the encapsulation
type. If the encapsulation is of a type that is to be skipped over, the uninterned symbol
replaces the original function spec and the process repeats.

The value returned is the uninterned symbol from inside the last encapsulation skipped.
This uninterned symbol is the first onc that does not have a definition that is an
encapsulation that should be skipped. Or the value can be Junction-spec if function-spec’s
definition is not an encapsulation that should be skipped.

The types of encapsulations to be skipped over are specified by encapsulation-types. This
can be a list of the types to be skipped, or nil meaning skip all encapsulations (this is the
default). Skipping all encapsulations means returning the uninterned symbol that holds the
basic definition of function-spec. That is, the definition of the function spec returned is
the basic definition of the function spec supplied. Thus,

(fdefinition (si:unencapsulate-function-spec >foo))
returns the basic definition of foo, and

(fdefine (si:unencapsulate-function-spec "foo) ’bar)
sets the basic definition (just like using fdefine with carefully supplied as t).

encapsulation-types can also be a symbol, which should be an encapsulation type; then we
skip all types that are supposed to come outside of the specified type. For example, if
encapsulation-lypes is trace, then we skip all types of encapsulations that come outside of
trace encapsulations, but we do not skip trace encapsulations themselves. The result is a
function spec that is where the trace encapsulation ought to be, if there is one. FEither
the definition of this function spec is a trace encapsulation, or there is no trace
encapsulation anywhere in the definition of function-spec, and this function spec is where
it would belong if there were one. For example,
(Tet ((tem (si:unencapsulate-function-spec spec ’trace)))
(and (eq tem (si:unencapsulate-function-spec tem "(trace)))
(si:encapsulate tem spec 'trace ‘(...body...))))

finds the place where a trace encapsulation ought to go and makes one unless there is
already one there.

(Tet ((tem (si:unencapsulate-function-spec spec "trace)))
(fdefine tem (fdefinition (si:unencapsulate-function-spec
tem ’(trace)))))
eliminates any trace encapsulation by replacing it by whatever it encapsulates. (If there is
no trace encapsulation, this code changes nothing.)

SRCKL.MAN>FD-FUN.TEXT.9 24-JAN-83

[Lisp Machine Manual 179 Encapsulations

These examples show how a subsystem can insert its own type of cncapsulation in the
proper scquence without knowing the names of any other types of encapsulations. Only
the variable si:encapsulation-standard-order, which is used by si:unencapsulate-
function-spec, knows the order.

10.10.1 Rename-Within Encapsulations

One special kind of encapsulation is the type si:rename-within. This encapsulation goes
around a definition in which renamings of functions have been done.

How is this used?

If you define, advise, or trace (within foo bar), then bar gets rcnamed to altered-bar-
within-foo wherever it is called from foo, and foo gets a sirename-within encapsulation to
record the fact. The purpose of the encapsulation is to enable various parts of the system to do
what scems natural to the user. For cxample, grindef (sce page 426) notices the encapsulation,
and so knows to print bar instcad of altered-bar-within-foo when grinding the definition of foo.

Also, if you redefine foo, or trace or advise it, the new definition gets the same renaming
donc (bar replaced by altered-bar-within-foo). To make this work, everyone who alters part of
a function definition should pass the new part of the definition through the function si:rename-
within-new -definition -maybe.

si:rename-within-new-definition-maybe function-spec new-structure
Given new-structure, which is going to become a part of the definition of function-spec,
perform on it the replacements described by the si:rename-within encapsulation in the
definition of finction-spec, if there is one. The altered (copied) list structure is returned.

It is not necessary to call this function yourself when you replace the basic definition
because fdefine with carefully supplied as t does it for you. si:encapsulate does this to
the body of the new encapsulation. So you only need to call si:rename-within-new-
definition-maybe yourself if you are rplac’ing part of the definition.

For proper results, function-spec must be the outer-level function spec. That is, the value
returned by si:unencapsulate-function-spec is nor the right thing to use. It will have
had one or more encapsulations stripped off, including the si:rename-within encapsulation
if any, and so no renamings will be done.

SRCKLMAN>FD-FUN.TEXT.9 24-JAN-83

	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179

