Closures 180 Lisp Machinc Manual

11. Closures

A closure is a type of Lisp functional object uscful for implementing certain advanced access
and control structures. Closures give you more cxplicit control over the cnvironment by allowing
you to save the environment created by the entering of a dynamic contour (i.c. a lambda, do,
prog. progv, let, or any of scveral other special forms) and then to use that environment
clsewhere, cven after the contour has been exited.

11.1 What a Closure Is

There is a view of lambda-binding that we will use in this section because it makes it casier
to explain what closures do. In this view, when a variable is bound, a new value cell is created
for it. The old value cell is saved away somewhere and is inaccessible. Any references to the
variable will get the contents of the new value cell, and any setq’s will change the contents of
the new value cell. When the binding is undone, the new value cell goes away, and the old
value cell, along with its contents, is restored.

For cxample, consider the following sequence of Lisp forms:
(setq a 3)

(let ((a 10))
(print (+ a 6)))

(print a)

Initially there is a value cell for a, and the setq form makes the contents of that value cell
be 3. Then the lambda-combination is evaluated. a is bound to 10: the old value cell, which
still contains a 3, is saved away, and a new valuc cell is created with 10 as its contents. The
reference to a inside the lambda expression evaluates to the current binding of a, which is the
contents of its current value ccll, namely 10. So 16 is printed. Then the binding is undone,
discarding the new value cell, and restoring the old value cell, which still contains a 3. The final
print prints out a 3.

The form (closure var-list function),- where var-list is a list of variables and function is any
function, creates and returns a closure. When this closurc is applied to some arguments, all of
the value cells of the variables on var-list are saved away, and the value cells that those variables
had at the time closure was called (that is, at the time the closure was crcated) are made to be
the value cells of the symbols. Then function is applied to the arguments. (This paragraph is
somewhat complex, but it completely describes the operation of closures; if you don’t understand
it, come back and read it again after reading the next two paragraphs.)

Here is another, lower-level explanation. The closure object stores several things inside it.
First, it saves the function. Secondly, for cach variable in var-list, it remembers what that
variable’s value cell was when the closure was created. Then when the closure is called as a
function, it first temporarily restores the value cells it has remembered inside the closure, and
then applies function to the same arguments to which the closure itself was applied. When the
function returns, the value cells are restored to be as they were before the closure was called.

SRC:KL.MANYFD-CLO.TEXT.6 24-JAN-83



Lisp Machine Manual 181 What a Closure Is

Now, if we evaluate the form
(setq a
‘ (let {{x 3))
{closure '(x) 'frob)))
what happens is that a new value celi is created for x, containing a fixnum 3. Then a closure is
created, which remembers the function frob, the symbol x, and that value cell. Finally the old
value cell of x is restored, and the closurc is returned. Notice that the new value cell is still
around, because it is still known about by the closure. When the closure is applied, say by doing
(funcall a 7), this value ccll will be restored and the value of x will be 3 again. If frob uses x as
a free variable, it will sce 3 as the value.

A closure can be made around any function, using any form that evaluates to a function.
The form could evaluate to a lambda expression, as in '(lambda () x), or to a compiled function,
as would (function (lambda () x)). In the cxample above, the form is 'frob and it cvaluates to
the symbol frob. A symbol is also a good function. It is usually better to close around a symbol
that is the name of the desired function, so that the closure points to the symbol. Then, if the
symbol is redefined, the closure will use the new definition. If you actually prefer that the
closure continue to use the old definition that was current when the closure was made, then close
around the definition of the symbol rather than the symbol itself. In the above example, that
would be done by

{closure '(x) (function frob})

Because of the way closures are implemented, the variables to be closed over must not get
turned into "local variables" by the compiler. Therefore, all such variables must be declared
special. This can be done with an explicit declare (sce page 234), with a special form such as
defvar (page 19), or with let-closed (page 184). In simple cases, a local-declare around the
binding will do the job. Usually the compiler can tell when a special declaration is missing, but
when making a closure the compiler detects this only after acting on the assumption that the
variable is local, by which time it is too late to fix things. The compiler will warn you if this
happens.

In Zetalisp’s implementation of closures, lambda-binding never really allocates any storage to
create new value cells. Value cells are created only by the closure function itself, when they are
needed. Thus, there is no cost associated with closures when they are not in use.

Zetalisp closures are not closures in the true sense, as they do not save the whole variable-
binding environment; however, most of that environment is irrelevant in any given application.
The explicit declaration of the variables that are to be closed allows the implementation to have
high efficiency. It also allows the programmer to choose explicitly for each variable whether it is
to be bound at the point of call or bound at the point of definition (e.g. of creation of the
closure), a choice that is not conveniently available in other languages. In addition the program is
clearer because the intended effect of the closure is made manifest by listing the variables to be
affected.

Closure implementation (which it not usually necessary for you to understand) involves two
kinds of value cells. Every symbol has an internal value cell, which is where its value is normally
stored. When a variable is closed over by a closure, the variable gets an external value cell to
hold its value. The external valuc cells behave according to the lambda-binding model used
earlier in this section. The value in the external value cell is found through the usual access

SRCKL.MAN>FD-CLO.TEXT.6 24-JAN-83



Examples of the Usc of Closures 182 1.isp Machine Manual

mechanisms (such as cvaluating the symbol, calling symeval, ctc.), because the internal value cell
is made 1o contain an invisible pointer to the external valuc cell currently in effect. A symbol
will use such an invisible pointer whenever its current value cell is a value cell that some closure
is remembering; at other times, there won't be an invisible pointer, and the value will just reside
in the internal value cell.

11.2 Examples of the Use of Closures

One thing we can do with closures is to implement a generator, which is a kind of function
which is called successively to obtain successive clements of a scquence. We will implement a
function make-list-generator, which takes a list and returns a generator that will return
successive elements of the list. When it gets to the end it should return nil.

The problem is that in between calls to the generator, the generator must somehow remember
where it is up to in the list. Since all of its bindings arc undonc when it is exited, it cannot save
this information in a bound variable. It could save it in a global variable, but the problem is
" that if we want to have more than one list gencrator at a time, they will all try to use the same
global variable and get in each other’s way.

Here is how we can use closures to solve the problem:
(defun make-1list-generator (1)
{declare (special 1))
(closure (1)
(function (Tlambda ()
(progl (car 1)
(setq 1 (cdr 1)))))))

Now we can make as many list generators as we like; they won’t get in each other’s way because
each has its own (external) value cell for I. FEach of these value cells was created when the
make-list-generator function was entered, and the value cells are remembered by the closures.

The following form uses closures to create an advanced accessing environment:
(defvar a)
(defvar b)

(defun foo () (setgq a 5))

(defun bar () (cons a b))

(let ((a 1) (b 1))
(setq x (closure '(a b) ’foo))
(setq y (closure '(a b) ’bar)))

When the let is entered, new value cells are created for the symbols a and b, and two
closures are created that both point to those value cells. If we do (funcall x), the function foo
will be run, and it will change the contents of the remembered value cell of a to 5. If we then
do (funcally), the function bar will return (5.1). This shows that the value cell of a seen by
the closure y is the same value cell secen by the closure x. The top-level value cell of a is
unaffected.

SRC:KLMAN>FD-CLO.TEXT.6 24-JAN-83



Lisp Machine Manual 183 Closure-Manipulating Functions

Here is how we can create a function that prints always using base 10:
(deff print-in-base-10
(l1et ((base 10.))

{closure ’(base) ’print)))

11.3 Closure-Manipulating Functions

closure varlist function
This creates and returns a closure of function over the variables in var-list. Note that all
variables on var-list must be declared special if the function is to compile correctly.

To test whether an object is a closure, use the closurep predicate (see page 10). The typep
function will return the symbol closure if given a closure. (typep x ’closure) is equivalent to
(closurep x).

symeval-in-closure closure symbol
This returns the binding of symbol in the environment of closure; that is, it returns what
you would get if you restored the value cefls known about by closure and then evaluated
symbol. This allows you to "look around inside" a closure. If symbol is not closed over
by closure, this is just like symeval.

symbol may be a locative pointing to a value cell instead of a symbol (this goes for all the
whatever-in-closure functions).

set-in-closure closure symbol x
- This sets the binding of symbol in the environment of closure to x; that is, it does what
would happen if you restored the value cells known about by closure and then set symbol
to x. This allows you to change the contents of the value cells known about by a
closure. If symbol is not closed over by closure, this is just like set.

locate-in-closure closure symbol
This returns the location of the place in closure where the saved value of symbol is stored.
An cquivalent form is (locf (symeval-in-closure closure symbol)).

boundp-in-closure closure symbol
Returns t if symbol is not "unbound” in closure. This is what (boundp symbol) would
return if executed in closure’s saved environment.

makunbound-in-closure closure symbol
Makes symbol be unbound, inside closure. This is what (makunbound symbol) would do
if executed in closure’s saved environment.

closure-alist closure
Returns an alist of (symbol . value) pairs describing the bindings that the closure performs
when it is called. This list is not the same one that is actually stored in the closure; that
one contains pointers to value cells rather than symbols, and closure-alist translates them
back to symbols so you can understand them. As a result, clobbering part of this list will
not change the closure.

SRCKL.MAN>FD-CLO.TEXT.6 24-JAN-83



Closure-Manipulating Functions 184 [.isp Machine Manual

The list that is returned may contain "unbound" markers if some of the closed-over
variables were unbound in the closure’s environment. In this case, printing the value will
get an error (accessing a cell that contains an unbound marker is always an crror unless
done in a special, careful way) but the value can still be passed around.

closure-variables closure
Returns a list of variables closed over in closure. This is equal to the first argument
specified to the function closure when this closure was created.

closure-function closure
Returns the closed function from closure. This is the function that was the second
argument to closure when the closure was created.

closure-bindings closure
Returns the actual list of bindings to be performed when closure is entered. This list can
be passed 10 sys:%using-binding-instances to enter the closure’s environment without
calling the closure. See page 215.

copy-closure closure
Returns a new closure that has the same function and variable values as closure. The
bindings are not shared between the old closure and the new one, so that if the old
closure changes some closed variable’s values, the values in the new closure do not
change.

let-closed ((variable value)...) function Special Form
When using closures, it is very common to bind a sct of variables with initial values only
in order to make a closure over those variables. Furthermore, the variables must be
declared as "special” for the compiler. let-closed is a special form which docs all of this.
It is best described by example:
(Tet-closed ((a 5) b (c ’'x))
(function (lambda () ...)))

macro-expands into
(Tocal-declare ((special a b c¢))
(Tet ((a 5) b (c ’x))

(closure *(a b c)
(function (Tambda () ...)))))

SRCKLLMAN>ED-CLO.TEXT.6 24-JAN-83



lisp Machin¢c Manual 185 Entitics

11.4 Entities

An entity is almost the same thing as a closure; the data type is nominally different but an
entity behaves just like a closure when applied. The difference is that some system functions,
such as print, operate on them differently. When print sees a closure, it prints the closure in a

standard way. When print sees an entity, it calls the entity to ask the entity to print itsclf.

To some degree, entitics arc made obsolete by flavors (sce chapter 20, page 321). The use of
entities as message-receiving objects is explained in section 20.13, page 357.

entity variable-list function
Returns a newly constructed entity. This function is just like the function closure except

that it returns an entity instead of a closure.

The function argument should be a symbol which has a function definition and a value.
When typep is applied to this entity, it will return the value of that symbol.

To test whether an object is an entity, use the entityp predicate (see page 10). The functions
symeval-in-closure, closure-alist, closure-function, etc. also operate on entities.

SRCKL.MANDFD-CLO.TEXT.6 24-JAN-83



	180
	181
	182
	183
	184
	185

