Stack Groups 186 Lisp Machine Manual

12. Stack Groups

A stack group (usually abbreviated "SG") is a type of Lisp object useful for implementation
of certain advanced control structures such as coroutines and gencrators. Processes, which are a
kind of coroutine, are built on top of stack groups (scc chapter 26, page 538). A stack group
represents a computation and its internal state, including the Lisp stack.

At any time, the computation being performed by the Lisp Machine is associated with one
stack group, called the current or running stack group. The operation of making some stack
group be the current stack group is called a resumption or a stack group switch; the previously
running stack group is said to have resumed the new stack group. The resume operation has two
parts: first, the state of the running computation is saved away inside the current stack group,
and secondly the state saved in the new stack group is restored, and the new stack group is made
current. Then the computation of the new stack group resumes its course.

The stack group itself holds a great deal of state information. It contains the control stack, or
“regular PDL". The control stack is what you are shown by the backtracing commands of the
cerror handler (Control-B, Meta-B, and Control-Meta-B); it remembers the function which is
running, its caller, its caller’s caller, etc., and the point of execution of cach function (the "return
addresses” of cach function). A stack group also contains the environment stack, or "special
PDL". This contains all of the values saved by lambda-binding. The name "stack group” derives
from the cxisience of these two stacks. Finally, the stack group contains various internal state
information (contents of machine registers and so on).

When the state of the current stack group is saved away, all of its bindings are undone, and
when the state is restored, the bindings are put back. Note that although bindings are
temporarily undone, unwind-protect handlers are nof run by a stack-group switch (see let-
globally, page 18).

Each stack group is a separate environment for purposes of function calling, throwing,
dynamic variable binding, and condition signalling. All stack groups run in the same address
space; thus they share the same Lisp data and the same global (not lambda-bound) variables.

When a new stack group is created, it is empty: it doesn’t contain the state of any
computation, so it can’t be resumed. In order to get things going, the stack group must be set to
an initial state. This is done by "presetting” the stack group. To preset a stack group, you
supply a function and a set of arguments. The stack group is placed in such a state that when it
is first resumed, this function will call those arguments. The function is called the “initial”
function of the stack group.

SRC:<I.MANYFD-SG.TEXT.6 24-JAN-83

Lisp Machinec Manual 187 A Resuming of Stack Groups

12.1 Resuming of Stack Groups

The interesting thing that happens to stack groups is that they resume cach other. When one
stack group resumes a second stack group, the current state of lLisp execution is saved away in
the first stack group and is restored from the sccond stack group. Resuming is also called

"switching stack groups”.

At any time, therc is one stack group associated with the current computation; it is called the
current stack group. The computations associated with other stack groups have their states saved
away in memory and are not computing. So the only stack group that can do anything at all, in
particular resuming other stack groups, is the current one.

You can look at things from the point of view of one computation. Suppose it is running
along, and it resumes some stack group. Its state is saved away into the current stack group, and
the computation associated with the one it called starts up. The original computation lies dormant
in the original stack group, while other computations go around resuming each other, until finally
the original stack group is resumed by someone. Then the computation is restored from the stack
group and gets to run again.

There arc several ways that the current stack group can resume other stack groups. This
section describes all of them.

Associated with each stack group is a resumer. The resumer is nil or another stack group.
Some forms of resuming examine and alter the resumer of some stack groups.

Resuming has another ability: it can transmit a Lisp object from the old stack group to the
new stack group. Each stack group specifies a value to transmit whenever it resumes another stack
group; whenever a stack group is resumed, it receives a value.

In the descriptions below, let ¢ stand for the current stack group, s stand for some other
stack group, and x stand for any arbitrary Lisp object.

Stack groups can be used as functions. They accept one argument. If ¢ calls s as a function
with one argument x, then s is resumed, and the object transmitted is x. When ¢ is resumed
(usually—but not necessarily—by s), the object transmitted by that resumption will be returned as
the value of the call to s. This is one of the simple ways to resume a stack group: call it as a
function. The value you transmit is the argument to the function, and the value you receive is
the value returned from the function. Furthermore, this form of resuming sets s’s resumer to be
c.

Another way to resume a stack group is to use stack-group-return. Rather than allowing
you to specify which stack group to resume, this function always resumes the resumer of the
current stack group. Thus, this is a good way to resume whoever it was who resumed you,
assuming he did it by function-calling. stack-group-return takes one argument which is the
object to transmit. It returns when somecone resumes the current stack group, and returns one
value, the object that was transmitted by that resumption. stack-group-return does not affect

the resumer of any stack group.

SRCKIL.MAN>FD-SG.TEXT.6 24-JAN-83

Stack Group States 188 Lisp Machine Manual

The most fundamental way to do resuming is with stack-group-resume, which takes two
arguments: the stack group, and a value to transmit. It returns when somcone resumes the
current stack group, returning the value that was transmitted by that resumption, and does not
affect any stack group’s resumer.

If the initial function of ¢ attempts to return a value x, the regular kind of Lisp function
return cannot take place, since the function did not have any caller (it got there when the stack
group was initialized). So instcad of normal function returning, a "stack group return” happens.
c’s resumer is resumed, and the value transmitted is x. ¢ is left in a state ("cxhausted") from
which it cannot be resumed again: any attempt to resume it will signal an crror. Presctting it will
make it work again.

Those arc the "voluntary” forms of stack group switch; a resumption happens because the
computation said it should. There arc also two "involuntary”" forms, in which another stack group
is resumed without the explicit request of the running program.

If an error occurs, the current stack group resumes the error handler stack group. The value

" transmitted is partially descriptive of the crror, and the error handler looks inside the saved state

of the crring stack group to get the rest of the information. The error handler recovers from the
error by changing the saved state of the erring stack group and then resuming it.

When certain events occur, typically a 1-second clock tick, a sequence break occurs. This
forces the current stack group to resume a special stack group called the scheduler (see section
26.1, page 539). The scheduler implements processes by resuming, one after another, the stack
group of cach process that is ready to run.

current-stack-group-resumer Variable
The binding of this variable is the resumer of the current stack group.

current-stack-group Variable
The value of current-stack-group is the stack group which is currently running. A
program can use this variable to get its hands on its own stack group.

12.2 Stack Group States

A stack group has a swate, which controls what it will do when it is resumed. The code
number for the state is returned by the function sys:sg-current-state. This number will be the
value of onc of the following symbols. Only the states actually used by the current system are
documented here; some other codes are defined but not used.

sys:sg-state-active
The stack group is the current one.

Sys:sg-state-resumable
The stack group is waiting to be resumed, at which time it will pick up
its saved machine state and continue doing what it was doing before.

sys:sg-state-awaiting-return
The stack group called some other stack group as a function. When it is
resumed, it will return from that function call.

SRCKIL.MAN>FD-SG.TEXT.6 24-JAN-83

Lisp Machine Manual 189 Stack Group Functions

sys:sg-state-awaiting -initial-call
‘The stack group has been preset (sce below) but has never been called.
When it is resumed, it will call its initial function with the preset
arguments.

sys:sg-state-exhausted
‘The stack group’s initial function has returned. It cannot be resumed.

sys:sg-state-awaiting-error-recovery
When a stack group gets an crror it goes into this state, which prevents
anything from happening to it until the error handler has looked at it. In
the meantime it cannot be resumed.

sys:sg-state-invoke-call-on-return
When the stack group is resumed, it will call a function. The function
and arguments arc already sct up on the stack. The debugger uses this to
force the stack group being debugged to do things.

12.3 Stack Group Functions

make-stack-group name &optional options
This creates and returns a new stack group. name may be any symbol or string; it is
used in the stack group’s printed representation. options is a list of alternating keywords
and values. The options are not too useful; most calls to make-stack-group don’t need
any options at all. The options are:

'sg-area The area in which to create the stack group structure itself. Defau]ts to
the default area (the value of default-cons-area).

rregular-pd!-area
The area in which to create the regular PDL. Note that this may not be
any area; only certain areas will do, because regular PDLs are cached in
a hardware device called the pd! buffer. The default is sys:pdl-area.

:special-pdl-area
The area in which to create the special PDL. Defaults to the default area
(the value of default-cons-area).

regular-pdl-size
Length of the regular PDL to be created. Defaults to 3000.

:special-pdl-size
Length of the special PDL to be created. Defaults to 2000.

:swap-sv-on-call-out

:swap-sv-of-sg-that-calls-me
These flags default to 1. If these are 0, the system does not maintain
separate binding environments for each stack group. You do not want to
use this feature.

itrap-enable This determines what to do if a microcode error occurs. If it is 1 the
system trics to handle the error; if it is O the machine halts. Defaults to
1. It is zero only in the error handler stack group, a trap in which would

SRCKLMAN>FD-SG.TEXT.6 24-JAN-83

Stack Group Functions 190 Lisp Machinc Manual

not work anyway.

:safe If this flag is 1 (the default), a strict call-return discipline among stack-
groups is enforced. If 0, no restriction on stack-group switching is
imposed.

sys:pdl-overflow (error)y Condition

This condition is signaled when there is overflow on cither the regular pdl or the special
pdl. The :pdi-name operation on the condition instance returns cither :special or
:regular, to tell handlers which one.

The :grow-pdl proceed type is provided. It takes no arguments. Procceding from the
error automatically makes the affected pdl bigger.

eh:pdl1-grow-ratio Variable
This is the factor by which to increase the size of a pdl after an overflow. It is initially
1.5.

stack-group-preset siack-group function &rest arguments
This sets up stack-group so that when it is resumed, fiunction will be applicd to arguments
within the stack group. Both stacks are made empty; all saved statc in the stack group is
destroyed. stack-group-preset is typically used to initialize a stack group just after it is
made, but it may be done to any stack group at any time. Doing this to a stack group
which is not exhausted will destroy its present state without properly cleaning up by
running unwind-protects.

stack-group-resume s x
Resumes s, transmitting the value x. No stack group’s resumer is affected.

si:sg-resumable-p s
t if s’s state permits it to be resumed.

sys:wrong-stack-group-state (error) Condition
This is signaled if, for cxample, you try to resume a stack group which is in the
"exhausted” state.

stack-group-return x
Resumes the current stack group’s resumer, transmitting the value x. No stack group’s
resumer is affected.

symeval-in-stack-group symbol sg &optional frame as-if-current
Evaluates the variable symbol in the binding environment of sg. If frame is not nil, if
evaluates symbol in the binding environment of execution in that frame. (A frame is an
index in the stack group’s regular pdl).

Two values are returned: the symbol’s value, and a locative to where the value is stored.
If as-ifcurrent is not nil, the locative points to where the value would be stored if sg were
running. This may be different from where the value is stored now; for example, the
current binding in stack group sg is stored in symbol’s value cell when sg is running, but
is probably stored in sg’s special pdl when sg is not running. as-ifcurrent makes no

SRC:KL.MAN>FD-SG.TEXT.6 24-JAN-83

Lisp Machine Manual 191 Analyzing Stack Frames

difference if sg actually is the current stack group.

If symbol is unbound in the specified stack group and frame, this will get an unbound-
variable error.

12.4 Analyzing Stack Frames

A stack frame is represented by an index in the regular pdl array of the stack group. The
word at this index is the function executing, or to be called, in the frame. The following words

in the pdl contain the arguments.

sg-regular-pdl sg
Returns the regular pdl of sg. This is an array of type art-reg-pdl. Stack frames are
represented as indices into this array.

sg-regular-pd1-pointer sg
Returns the index in sg’s regular pdl of the last word pushed.

sg-special-pdl sg
Returns the special pdl of sg. This is an array of type art-special-pdl, used to hold
special bindings made by functions exccuting in that stack group.

sg-special-pdl-pointer sg
Returns the index in sg’s special pdl of the last word pushed.

The following functions are used to move from one stack frame to another.

eh:sg-innermost-active sg
Returns (the regular pdl index of) the innermost frame in sg, the one that would be

executing if sg were current. If sg is current, the value is the frame of the caller of this
function.

eh:sg-next-active sg frame
Returns the next active frame out from frame in sg. This is the one that called frame. If

frame is the outermost frame, the value is nil.

eh:sg-previous-active sg frame
Returns the previous active frame in from frame in sg. This is the one called by frame.

If frame is the currently executing frame, the value is nil. If frame is nil, the value is the
outermost or initial frame. :

eh:sg-innermost-open sg

Returns the innermost open frame in sg, which may be the same as the innermost active
or it may be within it. In other respects, this is like eh:sg-innermost-active.

SRC:KLMAN>FD-SG.TEXT.6 24-JAN-83

Analyzing Stack Frames 192 Lisp Machine Manual

eh:sg-next-open sg frame
Like eh:sg-next-active but includes frames which are open, that is, still accumulating
arguments prior to calling the function.

eh:sg-previous-open sg frame
Like eh:sg-previous-active but includes frames which are open, that is, still
accumulating arguments prior to calling the function.

eh:sg-frame-active-p sg frame A
Returns t if frame is active; that is, if the function has been entered.

Running interpreted code involves calls to eval, cond, etc. which would not be there in
compiled code. The following three functions can be used to skip over the stack frames of such
functions, showing only the frames for the functions the user would know about.

eh:sg-next-interesting-active sg frame
Like eh:sg-next-active but skips over uninteresting frames.

eh:sg-previous-interesting-active sg frame
Like eh:sg-previous-active but skips over uninteresting frames.

eh:sg-out-to-interesting-active sg frame
If frame is intcresting, rcturns frame. Otherwise, it returns the next interesting active
frame.

These functions are used to analyze the data in a particular stack frame:

sys:rp—function—viord regpdl frame
Returns the function executing in frame. regpdl should be the sg-regular-pdl of the
stack group.

eh:sg-frame-number-of-spread-args sg frame
Returns the number of arguments received by frame, which should be an active frame.
The rest argument (if any) and arguments received by it, do not count.

eh:sg-frame-arg-value sg frame n
Returns the value of argument number n of stack frame frame in sg. An error is signaled
if n is out of range, if the frame is active. (For an open frame, the number of
arguments is not yet known, so there is no error check.)

The second value is the location in which the argument is stored when sg is running. The
location may not actually be in the stack, if the argument is special. The location may
then contain other contents when the stack group is not running.

eh:sg-frame-rest-arg-value sg frame
Returns the value of the rest argument in frame, or nil if there is none.

The second value is t if the function called in frame expects an explicitly passed rest
argument.

SRC:KLL.MAN>FD-SG.TEXT.6 24-JAN-83

Lisp Machine Manual 193 Analyzing Stack Frames

The third value is t if the rest argument was passed explicitly. If this is nil, the rest arg
is a stack list that overlaps the arguments of stack frame frame. (If passed ecxplicitly, it
may still be a stack list, but not in this frame.)

eh:sg-frame-number-of-locals sg frame
Returns the number of local variables in stack frame frame.

eh:sg-frame-local-value sg frame n
Returns the value of local variable number n of stack frame frame in sg. An error is
signaled if n is out of range.

The second value is the location in which the local is stored when sg is running. The
location may not actually be in the stack; if not, it may have other contents when the
stack group is not running.

eh:sg-frame-value-value sg fiame n &optional create-slot
Returns the value and location of the »’th multiple value frame has rcturned. If frame
has not begun to rcturn values, the value of the value will be nil but the location will
still be valid.

If frame was called with multiple-value-list, it can return any number of values, but
they do not have cells to reccive them until frame returns them. In this case, a non-nil
create-slot means that this function should allocate cells as nccessary so that a valid
location can be returned. Otherwise, the location as well as the value will be nil.

eh:sg-frame-value-1ist sg frame &optional new-number-of-values ‘
Returns three values that describe whether frame’s caller wants multiple values, and any
values frame has returned already.

The first value is a list in which live the values being or to be returned by frame.

The sccond value is nil if this frame has not been invoked to return multiple values, a
number which is the number of values it has been asked for, or a locative, meaning the
frame was called with multiple-value-list. In the last case, the first value includes only
the values frame has returned already, and the locative points to a cell that points to the
cons whose cdr should receive the next link of the list.

The third value is how many values frame has returned so far.

If new-number-of-values is non-nil, it is used to alter the "number of values already
returned” as recorded in the stack group. This may alter the length of the list that is the
first value. The value you get is the altered one, in that case.

eh:sg-frame-special-pd1-range sg frame
Returns two values delimiting the range of sg's special pdl that belongs to the specified
stack frame. The first value is the index of the first special pdl word that belongs to the
frame, and the second value is the index of the next word that does not belong to it.

SRCKLMAN>FD-SG.TEXT.6 24-JAN-83

Input/Output in Stack Groups 194 Lisp Machine Manual

If the specified frame has no special bindings, both values are nil. Otherwise, the
indicated special pdl words describe bindings made on entry to or during exccution in this
frame. The words come in pairs.

The first word of cach pair contains the saved value; the second points to the location
that was bound. When the stack group is not current, the saved value is the value for
the binding made in this frame. When the stack group is current, the saved value is the
shadowed value, and the value for this binding is either in the cell that was bound, or is
the saved value of another binding, at a higher index, of the same cell.

The bit sys:%%specpdl-closure-binding is nonzero in the first word of the pair if the
binding was made before entry to the function itself. This includes bindings made by
closures, and by instances (including self). Otherwise, the binding was made by the
function itsclf. This includes arguments that are declared special.

symeval-in-stack-group can be used to find the value of a special variable at a certain stack
frame.

12.5 Input/Output in Stack Groups

Because each stack group has its own set of dynamic bindings, a stack group will not inherit
its creator's valuc of terminal-io (sce page 399), nor its caller's, unless you make special provision
for this. The terminal-io a stack group gets by default is a "background” stream that does not
normally expect to be used. If it is used, it will turn into a "background window" that will
request the user’s attention. Usually this is because an error printout is trying to be printed on
the stream. [This will all be explained in the window system documentation.]

If you write a program that uses multiple stack groups, and you want them all to do input
and output to the terminal, you should pass the value of terminal-io to the top-level function of
cach stack group as part of the stack-group-preset, and that function should bind the variable
terminal-io.

Another technique is to use a closure as the top-level function of a stack group. This closure
can bind terminal-io and any other variables that should be shared between the stack group and
its creator.

12.6 An Example of Stack Groups

The canonical coroutine example is the so-called samefringe problem: Given two trees,
determine whether they contain the same atoms in the same order, ignoring parenthesis structure.
A better way of saying this is, given two binary trees built out of conses, determine whether the
sequence of atoms on the fringes of the trees is the same, ignoring differences in the arrangement
of the internal skeletons of the two trees. Following the usual rule for trees, nil in the cdr of a
cons is to be ignored.

One way of solving this problem is to use generator coroutines. We make a generator for
each tree. Each time the gencrator is called it returns the next clement of the fringe of its tree.
After the generator has cxamined the entire tree, it returns a special "exhausted” flag. The

SRCKILLMAN>FD-SG.TEXT.6 24-JAN-83

Lisp Machine Manual 195 An Example of Stack Groups

wireeibbman o PP P - TY ey $iem Ao

generator is most naturally written as a recursive function. The use of coroutines, i.e. stack
groups, allows the two generators to recurse separately on two different control stacks without
having to coordinate with each other.

The program is very simple. Constructing it in the usual bottom-up style, we first write a
recursive function that takes a tree and stack-group-returns each clement of its fringe. The
stack-group-return is how the gencrator coroutine delivers its output. We could easily test this
function by changing stack-group-return to print and trying it on some examples.

(defun fringe (tree)
(cond ((atom tree) (stack-group- return tree))
(t (fringe (car tree))
(if (not (null (cdr tree)))
(fringe (cdr tree))))))

Now we package this function inside another, which takes care of returning the special
"exhausted” flag.
(defun fringel (tree exhausted)
(fringe tree)
exhausted)

The samefringe function takes the two trees as arguments and returns t or nil. It creates two
stack groups to act as the two generator coroutines, presets them to run the fringel function,
then goes into a loop comparing the two fringes. The value is nil if a difference is discovered, or
t if they are still the same when the end is reached.

(defun samefringe (treel tree2)
(1et ((sgl (make-stack-group “samefrwngel"))
{sg2 (make-stack-group "samefringe2"))
(exhausted (ncons nil)))
(stack-group-preset sgl #'fringel treel exhausted)
(stack-group-preset sg2 #'fringel tree2 exhausted)
(do ((v1) (vZ)) (nil)
(setq vl (funcall sgl nil)
v2 (funcall sg2 nil))
(cond ((neq vl v2) (return nil))
((eq v1 exhausted) (return t))))))

Now we test it on a couple of examples.
(samefringe "(a b c) "(a (bc))) => 1t
(samefringe *(a b c) ’(a b c d)) => nil

The problem with this is that a stack group is quite a large object, and we make two of them
every time we compare two fringes, This is a lot of unnecessarv overhead. It can easily be
eliminated with a modest amount of explicit storage allocation, using the resource facility (see
page 92). While were at it, we can avoid making the exhausted flag fresh each time; its only
important property is that it not be an atom.

SRC:KLMAN>FD-SG.TEXT.6 24-JAN-83

An Example of Stack Groups 196 Lisp Machine Manual

(defresource samefringe-coroutine ()
:constructor (make-stack-group "for-samefringe"))

(defvar exhausted-flag (ncons nil))

(defun samefringe (treel tree2)
(using-resource (sgl samefringe-coroutine)

(using-resource (sg2 samefringe-coroutine)
(stack-group-preset sgl #'fringel treel exhausted-flag)
(stack-group-preset sg2 #'fringel tree2 exhausted-flag)
(do ((v1) (v2)) (nil)

(setq vl (funcall sgl nil)
vZ (funcall sg2 nil))
(cond ((neg vl v2) (return nil))
((eq vl exhausted-flag) (return t)))))))

Now we can compare the fringes of two trees with no allocation of memory whatsoever.

SRCKLL.MAN>FD-SG.TEXT.6 24-JAN-83

	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196

