Subprimitives 200 Lisp Machine Manual

14. Subprimitives

Subprimitives arc functions which arc not intended to be used by the average program, only
by "system programs”. They allow onc to manipulate the environment at a level lower than
normal Lisp. They arc described in this chapter. Subprimitives usually have names starting with
a % character. ‘The “primitives” described in other sections of the manual typically use
subprimitives to accomplish their work. To some extent the subprimitives take the place of what
in other systems would be individual machine instructions. Subprimitives are normally hand-coded
in microcode.

There is plenty of stuff in this chapter that is not fully explained; there are terms that are
undefined, there are forward references, and so on. Furthermore, most of what is in here is
considered subject to change without notice. In fact, this chapter docs not exactly belong in this
manual, but in some other more low-level manual. Since the latter manual does not exist, it is
here for the interim.

Subprimitives by their very nature cannot do full checking. Improper use of subprimitives can
destroy the environment. Subprimitives come in varying degrees of dangerousness. Those without
a % sign in their name cannot destroy the environment, but arc dependent on "internal” details
of the Lisp implementation. The ones whose names start with a % sign can violate system
conventions if used improperly. The subprimitives are documented here since they need to be
documented somewhere, but this manual does not document all the things you need to know in
order to usc them. Stll other subprimitives are not documented here because they are very
specialized. Most of these are never used explicitly by a programmer; the compiler inserts them
into the program to perform operations which are expressed differently in the source code.

The most common problem you can cause using subprimitives, though by no means the only
one, is to create illcgal pointers: pointers that are, for one reason or another, according to
storage conventions, not allowed to exist. The storage conventions arec not documented; as we
said, you have to be an expert to usc a lot of the functions in this chapter correctly. If you
create such an illegal pointer, it probably will not be detected immediately, but later on parts of
the system may see it, notice that it is illegal, and (probably) halt the Lisp Machine.

In a certain sense car, cdr. rplaca. and rplacd arc subprimitives. If these are given a
locative instcad of a list, they will access or modify the cell addressed by the locative without
regard to what object the cell is inside. Subprimitives can be used to create locatives to strange
places.

SRC:KLL.MAN>FD-SUB.TEXT.6 24-JAN-83

Lisp Machince Manual 201 Data Types

14.1 Data Types

data-type arg

data-type rciurns a symbol that is the name for the internal data-type of the “pointer”
that represents arg. Note that some types as seen by the user are not distinguished from
cach other at this level, and some user types may be represented by more than one
intcrnal type. For example, dtp-extended-number is the symbol that data-type would
return for cither a flonum or a bignum, cven though those two types are quite different.
The typep function (page 11) is a higher-level primitive that is more useful in most cases;
normal programs should always use typep rather than data-type. Some of these type
codes are internal tag fields that are never used in pointers that represent Lisp objects at
all, but they are documented here anyway.

dtp-symbol
dtp-fix

dtp-small-flonum
dtp-extended-number

dtp-list
dtp-locative
dtp-array-pointer
dtp-fef-pointer
dip-u-entry
dtp-closure
dtp-stack-group
dtp-instance
dtp-entity
dtp-select-method
dtp-header

dtp-array-header
dtp-symbol-header
dtp-instance-header

dtp-null

dtp-trap

SRC:KLMAN>FD-SUB.TEXT.6

The object is a symbol.

The object is a fixnum; the numeric value is contained in the
address field of the pointer.

The object is a small flonum; the numeric value is contained in
the address ficld of the pointer.

The object is a flonum or a bignum. This value will also be
used for future numeric types.

The object is a cons.

The object is a locative pointer.

The object is an array.

The object is a compiled function.

The object is a microcode entry.

The object is a closure; see chapter 11, page 180.

The object is a stack-group; see chapter 12, page 186.

The object is an instance of a flavor; see chapter 20, page 321.
The object is an entity; see section 11.4, page 185.

The object is a "select-method™; see page 163.

An internal type used to mark the first word of a multi-word
structure.

An internal type used to mark the first word of an array.
An internal type used to mark the first word of a symbol.
An internal type used to mark the first word of an instance.

Nothing to do with nil. This is used in unbound value and
function cells. An attempt to refer to the contents of a cell that
contains a dip-null gets an error. This is how "unbound
variable” and "undefined function” errors are detected.

The zero data-type, which is not used. This hopes to detect
microcode bugs.

24-JAN-83

Forwarding 202 Lisp Machine Manual

dtp-free This type is used to fill free storage, to catch wild references.

dtp-external-value-cell-pointer
An "invisible pointer” used for cxternal value cells, which are
part of the closure mechanism (scc chapter 11, page 180), and
used by compiled code to address value and function cells.

dtp-header-forward An "invisible pointer” wused to indicate that the structure
containing it has been moved eclsewhere. The "header word" of
the structure is replaced by onc of these invisible pointers. Sce
the function structure-forward (page 203).

dtp-body-forward An invisible pointer” used to indicate that the structure
containing it has been moved clsewhere. This points to the word
containing the header-forward, which points to the new copy of
the structure.

dtp-one-q-forward An "invisible pointer” used to indicate that the single cell
containing it has been moved clsewhere.

dtp-gc-forward This is used by the copying garbage collector to flag the obsolete
copy of an object; it points to the new copy.

q-data-types Variable
The value of gq-data-types is a list of all of the symbolic names for data types described
above under data-type. These are the symbols whose print names begin with "dtp-".
The values of these symbols are the internal numeric data-type codes for the various types.

g-data-types 1pe-code
Given the internal numeric data-type code, returns the corresponding symbolic name.
This "function™ is actually an array.

14.2 Forwarding

An invisible pointer is a kind of pointer that does not represent a Lisp object, but just resides
in memory. There are several kinds of invisible pointer, and there are various rules about where
they may or may not appear. The basic property of an invisible pointer is that if the Lisp
Machine reads a word of memory and finds an invisible pointer there, instead of seeing the
invisible pointer as the result of the read, it does a second read, at the location addressed by the
invisible pointer, and returns that as the result instead. Writing bchaves in a similar fashion.
When the Lisp Machine writes a word of memory it first checks to see if that word contains an
invisible pointer; if so it goes to the location pointed to by the invisible pointer and tries to write
there instead. Many subprimitives that read and write memory do not do this checking.

The simplest kind of invisible pointer has the data type code dtp-one-q-forward. It is used
to forward a single word of memory to someplace else. The invisible pointers with data types
dtp-header-forward and dtp-body-forward are used for moving whole Lisp objects (such as
cons cells or arrays) somewhere else. The dtp-external-value-cell-pointer is very similar to the
dtp-one-q-forward; the difference is that it is not "invisible” to the operation of binding. If the
(internal) value cell of a symbol contains a dtp-external-value-cell-pointer that points to some
other word (the cxternal value cell), then symeval or set operations on the symbol will consider

SRCKLLMAN>FD-SUB.TEXT.6 24-JAN-83

Lisp Machinc Manual 203 Forwarding

the pointer to be invisible and use the external value cell, but binding the symbol will save away
the dtp-external-vaiue-celi-pointer itself, and store the new value into the internal value cell of
the symbol. This is how closures arc implemented.

dtp-gc-forward is not an invisible pointer at all; it only appears in "old space” and will
never be scen by any program other than the garbage colicctor. When an object is found not to
be garbage, and the garbage collector moves it from "old space” to "new space”, a dtp-gc-
forward is left behind to point to the new copy of the object. 'This ensures that other references
to the same object get the same new copy.

structure-forward old-object new-object
This causes references to old-object actually to reference new-object, by storing invisible
pointers in old-object. 1t returns old-object.

An example of the use of structure-forward is adjust-array-size. If the array is being
made bigger and cannot be expanded in place. a new array is allocated, the contents are
copied, and the old array is structure-forwarded to the new one. This forwarding ensures
that pointers to the old array, or to cells within it. continue to work. When the garbage
collector goes to copy the old array, it notices the forwarding and uses the ncw array as
the copy; thus the overhead of forwarding disappears eventually if garbage collection is in
use.

follow-structure-forwarding object
Normally returns object, but if object has been structure-forward’ed, returns the object
at the end of the chain of forwardings. If object is not exactly an object, but a locative
to a cell in the middle of an object, a locative to the corresponding cell in the latest copy
of the object will be returned.

forward-value-cell from-symbol to-symbol
This alters from-symbol so that it always has the same value as to-symbol, by sharing its
value cell. A dtp-one-q-forward invisible pointer is stored into from-symbol’s value cell.
Do not do this while from-symbol is lambda-bound, as the microcode does not bother to
check for that case and something bad will happen when from-symbol gets unbound. The
microcode check is omitted to speed up binding and unbinding.

To forward one arbitrary cell to another (rather than specifically one value cell to
another), given two locatives, do
(%p-store-tag-and-pointer locativel dtp-one-q-forward locative?)

follow-cell1-forwarding loc evepp
Joc is a locative to a cell. Normally Joc is returned, but if the cell has been forwarded,
this follows the chain of forwardings and returns a locative to the final cell. If the cell is

part of a structure which has been forwarded, the chain of structurc forwardings is
followed, too. If evep-p is t, external value cell pointers are followed; if it is nil they are
not.

SRCKLMAN>FD-SUB.TEXT.6 24-JAN-83

Pointer Manipulation 204 [Lisp Machine Manual

14.3 Pointer Manipulation

It should again be emphasized that improper use of these functions can damage or destroy the
Lisp environment. It is possible to create pointers with illegal data-type, pointers to non-cxistent
objects, and pointers to untyped storage, which will completely confuse the garbage collector.

%data-type x
Returns the data-type ficld of x, as a fixnum.

%pointer x _
Returns the pointer field of x. as a fixnum. For most types, this is dangerous since the
garbage collector can copy the object and change its address.

“make-pointer data-type pointer
This makes up a pointer, with data-rype in the data-type field and pointer in the pointer
field. and returns it. data-type should be an internal numeric data-type code; these are
the values of the symbols that start with dtp-. pointer may be any object; its pointer
ficld is used. This is most commonly used for changing the type of a pointer. Do not
use this to make pointers which are not allowed to be in the machine, such as dtp-null,
invisible pointers, etc.

%Zmake-pointer-offset data-type pointer offset
This returns a pointer with data-type in the data-type field, and pointer plus offset in the
pointer field. The data-fype and pointer arguments are like those of %make-pointer;
offset may be any object but is usually a fixnum. The types of the arguments are not
checked; their pointer fields are simply added together. This is useful for constructing
locative pointers into the middle of an object. However, note that it is illegal to have a
pointer to untyped data, such as the inside of a FEF or a numeric array.

%pointer-difference pointer-/ pointer-2
Returns a fixnum which is pointer-1 minus pointer-2. No type checks are made. For the
result to be mcaningful, the two pointers must point into the same object, so that their
difference cannot change as a result of garbage collection.

14.4 Analyzing Structures

%find-structure-header pointer
This subprimitive finds the structure into which pointer points, by searching backward for
a header. It is a basic low-level function used by such things as the garbage collector.
pointer is normally a locative, but its data-type is ignored. Note that it is illegal to point
into an "unboxed" portion of a structure, for instance the middle of a numeric array.

In structure space, the "“containing structure” of a pointer is well-defined by system
storage conventions. In list space, it is considered to be the contiguous, cdr-coded
segment of list surrounding the location pointed to. If a cons of the list has been copied
out by rplacd. the contiguous list includes that pair and ends at that point.

SRCLMANSED-SUB TEXT.6 24-JAN-83

1.isp Machine Manual 205 Creating Objects

%find-structure-leader pointer
This is identical to %find-structure-header, cxcept that if the structure is an array with
a leader, this returns a locative pointer to the leader-header, rather than returning the
array-pointer itsclf. Thus the result of %find-structure-leader is always the lowest
address in the structure. This is the onc used internally by the garbage collector.

%structure-boxed-size object
Returns the number of "boxed Q's" in object. This is the number of words at the front
of the structure which contain normal Lisp objects. Some structures, for example FEFs
and numeric arrays, contain additional "unboxed Q's" following their "boxed Q's”. Note
that the boxed size of a PDI. (either regular or special) does not include Q's above the
current top of the PDL. Those locations are boxed, but their contents arc considered
garbage and are not protected by the garbage collector.

%structure-total-size object
Returns the total number of words occupicd by the representation of object, including
boxed Q’s, unboxed Q’s, and garbage Q's off the ends of PDLs.

14.5 Creating Objects

%allocate-and-initialize data-type header-type header second-word area size

This is the subprimitive for creating most structured-type objects. area is the area in
which it is to be created, as a fixnum or a symbol. size is the number of words to be
allocated. The value returned points to the first word allocated and has data-type data-
ype. Uninterruptibly, the words allocated are initialized so that storage conventions are
preserved at all times. The first word, the header, is initialized to have header-type in its
data-type ficld and header in its pointer field. The second word is initialized to second-
word. The remaining words are initialized to nil. The flag bits of all words are set to 0.
The cdr codes of all words except the last are set to cdr-next; the cdr code of the last
word is set to cdr-nil. It is probably a bad idea to rely on this.

The basic functions for creating list-type objects are cons and make-list; no special
subprimitive is needed. Closures, entities, and select-methods are based on lists, but there is no
primitive for creating them. To create one, create a list and then use %make-pointer to change
the data type from dtp-list to the desired type.

%allocate-and-initialize-array header data-length leader-length area size
This is the subprimitive for creating arrays, called only by make-array. It is different
from %allocate-and-initialize because arrays have a more complicated header structure.

SRCKL.MANDFD-SUB.TEXT.6 24-JAN-83

Copying Data 206 Lisp Machine Manual

14.6 Copying Data

%b1t from 1o count increment
Copics count words, scparated by increment. The word at address from is moved to
address 10, the word at address from + increment is moved to address to + increment, and
so on until count words have been moved.

%blt is uscful for copying parts of structures, making or deleting space inside structures,
and initializing structures.

Only the pointer - fields of from and to are significant; they may be Jocatives or even
fixnums. If onc of them must point to the unboxed data in the middle of a structure,
you must make it a fixnum, and you must do so with interrupts disabled, or eclse garbage
collection could move the structure after you have already created the fixnum.

14.7 Returning Storage

return-storage object
This peculiar function attempts to return object to free storage. If it is a displaced array,
this returns the displaced array itself, not the data that the array points to. Currently
return-storage docs nothing if the object is not at the end of its region, i.. if it was not
either the most recently allocated non-list object in its area, or the most recently allocated
list in its area.

If you still have any references to object anywhere in the Lisp world after this function
returns, the garbage collector can get a fatal error if it sces them. Since the form that
calls this function must get the object from somewhere, it may not be clear how to legally
call return-storage. One of the only ways to do it is as follows:
(defun func ()
(let ((object (make-array 100)))

(return-storage (progl object (setq object nil)))))
so that the variable object does not refer to the object when return-storage is called.
Alternatively, you can free the object and get rid of all pointers to it while interrupts are
turned off with without-interrupts.

You should only call this function if you know what you are doing; otherwise the garbage
collector can get fatal errors. Be careful.

SRCALMAN>FD-SUB.TEXT.6 24-JAN-83

Lisp Machinc Manual 207 l.ocking Subprimitive

14.8 Locking Subprimitive

%store-conditional pointer old new
This is the basic locking primitive. pointer is a locative to a cell which is uninterruptibly
read and written. If the contents of the ccll is eq w old, then it is replaced by wew and

t is returned. Otherwise. nil is returned and the contents of the cell are not changed.

14.9 170 Device Subprimitives

%unibus-read address
Returns as a fixnum the contents of the register at the specified Unibus address. You
must specify a full 18-bit address. This is guaranteed to read the location only once.
Since the Lisp Machine Unibus does not support byte operations, this always references a
16-bit word, and so address will normally be an even number.

%unibus-write address data v
Writes the 16-bit number data at the specified Unibus address, exactly once.

%xbus-read io-offset
Returns the contents of the register at the specified Xbus address. io-offser is an offset
into the 170 portion of Xbus physical address space. This is guaranteed to read the
location exactly once. The returned value can be cither a fixnum or a bignum.

%xbus-write io-offser data
Writes data, which can be a fixnum or a bignum, into the register at the specified Xbus
address. io-offset is an offset into the 1/0 portion of Xbus physical address space. This is
guaranteed to write the location exactly once.

sys:%xbus-write-sync w-loc w-data delay sync-loc sync-mask sync-value
Does (%xbus-write w-loc w-data), but first synchronizes to within about one microsecond
of a certain condition. The synchronization is achieved by looping until
(= (logand (%xbus-read sync-loc) sync-mask) sync-value)
is false, then looping until it is true, then looping delay times. Thus the write happens a
specified delay after the leading edge of the synchronization condition. The number of
microseconds of delay is roughly one third of delay.

sys:Zhalt
Stops the machine.

SRCAL.MAN>FD-SUB.TEXT.6 24-JAN-83

Special Memory Referencing 208 Lisp Machine Manual

14.10 Special Memory Referencing

%p-contents-offset base-pointer offset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having followed
forwarding pointers to the real structure pointed to, it adds offset to the resulting
forwarded base-pointer and returns the contents of that location.

‘There is no %p-contents, since car performs that operation.

#p-contents-as-locative pointer
Given a pointer to a memory location containing a pointer that isn’t allowed to be "in the
machine™ (typically an invisible pointer) this function returns the contents of the location
as a dtp-locative. It changes the disallowed data type to dtp-locative so that you can
safely look at it and sce what it points to.

#%p-contents-as-locative-offset basepointer offset

This checks the cell pointed to by base-pointer for a forwarding pointer. Having followed
forwarding pointers to the real structure pointed to, it adds offser to the resulting
forwarded base-pointer, fetches the contents of that location. and returns it with the data
type changed to dtp-locative in case it was a type that isn’t allowed to be "in the
machine™ (typically an invisible pointer). This can be used, for example, to analyze the
dtp-external-value-cell-pointer pointers in a FEF, which are used by the compiled
code to reference value cells and function cells of symbols.

*p-store-contents pointer value
value is stored into the data-type and pointer fields of the location addressed by pointer.
The cdr-code and flag-bit ficlds remain unchanged. value is returned.

%p-store-contents-offset value base-pointer offset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having followed
forwarding pointers to the real structure pointed to, it adds offser to the resulting
forwarded base-pointer and stores value into the data-type and pointer fields of that
location. The cdr-code and flag-bit fields remain unchanged. value is returned.

%p-store-tag-and-pointer pointer miscfields pnirfield
Creates a Q by taking 8 bits from miscfields and 24 bits from pnirfield, and stores that
into the location addressed by pointer. The low 5 bits of miscfields become the data-type,
the next bit becomes the flag-bit, and the top two bits become the cdr-code. This is a
good way to store a forwarding pointer from one structure to another (for example).

%p-1db ppss pointer
This is like ldb but gets a byte from the location addressed by pointer. Note that you
can load bytes out of the data type etc. bits, not just the pointer ficld, and that the word
loaded out of need not be a fixnum. The result returned is always a fixnum.

SRC:KLLMAN>FD-SUB.TEXT.6 24-JAN-83

Lisp Machine Manual 209 Special Memory Referencing

%p-1db-offset ppss base-pointer offset
- 'This checks the cell pointed to by base-pointer for a forwarding pointer. Having foilowed
forwarding pointers to the real structure pointed to, the byte specified by ppss is loaded
from the contents of the location addressed by the forwarded base-pointer plus offset, and
returnced as a fixnum. This is the way to reference byte ficlds within a structure without
violating system storage conventions.

%p-dpb value ppss pointer
The value, a fixnum, is stored into the byte selected by ppss in the word addressed by
pointer. nil is returned. You can usc this to alter data types, cdr codes, etc.

%p-dpb-offset value ppss base-pointer offset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having followed
forwarding pointers to the real structure pointed to, the value is stored into the byte
specified by ppss in the location addressed by the forwarded base-pointer plus offset. nil is
returned. This is the way to alter unboxed data within a structure without violating
system storage conventions.

%p-mask-field ppss pointer
This is similar to %p-Idb, except that the sclected byte is returned in its original position
within the word instead of right-aligned.

%p-mask-field-offset ppss base-pointer offset
This is similar to %p-Idb-offset, except that the selected byte is returned in its original
position within the word instead of right-aligned.

%p-deposit-field value ppss pointer
This is similar to %p-dpb, except that the selected byte is stored from the corresponding
bits of value rather than the right-aligned bits.

%p-deposit-field-offset value ppss base-pointer offset
This is similar to %p-dpb-offset, except that the sclected byte is stored from the
corresponding bits of value rather than the right-aligned bits.

%p-pointer pointer
Extracts the pointer field of the contents of the location addressed by pointer and returns
it as a fixnum.

%p-data-type pointer
Extracts the data-type ficld of the contents of the location addressed by pointer and returns
it as a fixnum,

W adon _mmla o tg
op-Car-Coue poinier

Extracts the cdr-code ficld of the contents of the location addressed by pointer and returns
it as a fixnum.

SRCLLMAN>FD-SUB.TEXT.6 24-JAN-83

Storage Layout Definitions 210 ILisp Machine Manual

%p-store-pointer pointer value
Clobbers the pointer ficld of the location addressed by pointer to value, and returns value.

%p-store-data-type pointer value
Clobbers the data-type ficld of the location addressed by pointer to value. and returns
value.

4p-store-cdr-code pointer value
Clobbers the cdr-code field of the location addressed by pointer to value, and returns
value.

%*stack-frame-pointer
Returns a locative pointer to its caller’s stack frame. This function is not defined in the
interpreted Lisp environment; it only works in compiled code. Since it turns into a
"misc” instruction, the “cailer’s stack frame" really means “the frame for the FEF that
exccuted the %stack-frame-pointer instruction”.

14.11 Storage Layout Definitions

The following special variables have values which define the most important attributes of the
way Lisp data structures are laid out in storage. In addition to the variables documented here,
there arc many others that are more specialized. They are not documented in this manual since
they are in the system package rather than the global package. The variables whose names start
with %% are byte specifiers, intended to be used with subprimitives such as %p-idb. If you -
change the value of any of these variables, you will probably bring the machine to a crashing
halt.

¥%q-cdr-code Variable
The field of a memory word that contains the cdr-code. See section 5.4, page 72.

%%q-flag-bit Variable
The field of a memory word that contains the flag-bit. In most data structures this bit is
not used by the system and is available for the user. However, it may soon be
reallocated to other purposes.

%%q-data-type Variable

The field of a memory word that contains the data-type code. See page 201.
%%q-pointer Variable

The field of a memory word that contains the pointer address, or immediate data.
%%q-pointer-within-page Variable

The ficld of a memory word that contains the part of the address that lies within a single

page.

SRC:KLMAN>FD-SUB.TEXT.6 24-JAN-83

|isp Machinc Manual 211 Function-Calling Subprimitives

%%aq-typed-pointer Variable
The concatenation of the %%q-data-type and %%gq-pointer ficlds.
%%g-al1-but-typed-pointer Variable
The field of a memory word that contains the tag ficlds, %%q-cdr-code and %%q-flag-
bit.
%%q-all-but-pointer Variable
The concatenation of all fields of a memory word except for %%q - pointer.
%%q-all-but-cdr-code Variable
The concatenation of all ficlds of a memory word except for %%q-cdr-code.
%%q-high-half Variable
%%q-low-half Variable
The two halves of a memory word. These ficlds are only used in storing compiled code.
cdr-normal Variable
cdr-next Variable
cdr-nil Variable
cdr-error Variable

The values of these four variables are the numeric values that go in the cdr-code field of
a memory word. See section 5.4, page 72 for the details of cdr-coding.

14.12 Function-Calling Subprimitives

These subprimitives can be usc {carefully!) to call a function with the number of arguments
variable at run time. They only work in compiled code and are not defined in the interpreted
Lisp cnvironment. The preferred higher-level primitive is lexpr-funcall (page 27).

%open-call-block function n-adi-pairs destination
Starts a call to function. n-adi-pairs is the number of pairs of additional information
words already %push’ed; normally this should be 0. destination is where to put the
result; the useful values are O for the value to be ignored, 1 for the value to go onto the
stack, 3 for the value to be the last argument to the previous open call block, and 2 for
the value to be returned from this frame.

%push value
Pushes value onto the stack. Use this to push the arguments.

yactivate-open-call-block
Causes the call to happen.

%pop

Pops the top value off of the stack and returns it as its value. Use this to recover the
result from a call made by %open-call-block with a destination of 1.

SRCKXLMAN>FD-SUB.TEXT.6 24-JAN-83

Special-Binding Subprimitive 212 lisp Machine Manual

%assure-pd1-room »-words
Call this before doing a sequence of %push’s or %open-call-blocks that will add »-
words to the current frame. This subprimitive checks that the frame will not exceed the
maximum legal frame size, which is 255 words including all overhead. This limit is
dictated by the way stack frames arc linked together. If the frame is going to cxceed the
legal limit, %assure-pdl-room will signal an error.

14.13 Special-Binding Subprimitive

bind /locative value
Binds the cell pointed to by locative to x, in the caller’s environment. This function is
not defined in the interpreted Lisp environment; it only works from compiled code. Since
it trns into an instruction, the "caller’s environment" really mecans "the binding block for
the stack frame that exccuted the bind instruction”. The preferred higher-level primitives
that turn into this arc let (page 17), let-if (page 18), and progv (page 19).
[This will be renamed to %bind in the future]

The binding is in effect for the scope of the innermost binding construct, such as prog or
let—even one that binds no variables itself.

14.14 The Paging System
[Someday this may discuss how it works]

sys:%disk-switches Variable
This variable contains bits that control various disk usage features.

Bit 0 (the least significant bit) enables read-compares after disk read operations. This
causes a considerable slowdown, so it is rarely used.

Bit 1 enables read-compares after disk write operations.

Bit 2 enables the multiple page swap-out feature. When this is enabled, as it is by
default, each time a page is swapped out, up to 20 contiguous pages will also be written
out to the disk if they have been modified. This greatly improves swapping performance.

Bit 3 controls the multiple page swap-in feature, which is also on by default. This feature
causes pages to be swapped in in groups; each time a page is needed, several contiguous
pages are swapped in in the same disk operation. The number of pages swapped in can
be specified for each area using si:set-swap-recommendations-of-area.

si:set-swap-recommendations-of-area area-number recommendation
Specifies that pages of area area-number should be swapped in in groups of
recommendation at a time. This recommendation is used only if the multiple page swap-in
feature is enabled.

SRC:KLMAN>FD-SUB.TEXT.6 24-]JAN-83

[.isp Machine Manual 213 The Paging System

Generally, the more memory a machine has, the higher the swap recommendations should
be to get optimum performance. The recommendations are sct automatically according to
the memory size when the machine is booted.

si:set-aii-swap-recommendations recommendaiion
Specifics the swap-in recommendation of all areas at once.

si:wire-page address &optional (wire-pt)
If wire-p is t, the page containing address is wired-down; that is, it cannot be paged-out.
If wire-p is nil, the page ccases to be wired-down.

si:unwire-page address
(si:unwire-page address) is the same as (si:wire-page address nil).

sys:page-in-structure object
Makes surc that the storage that represents object is in main memory. Any pages that
have been swapped out to disk are read in, using as few disk operations as possible.
Consecutive disk pages are transferred together, taking advantage of the full speed of the
disk. If object is large, this will be much faster than bringing the pages in one at a time
on demand. The storage occupied by object is defined by the %find-structure-leader
and %structure-total-size subprimitives.

sys:page-in-array array &optional from fo
This is a version of sys:page-in-structure that can bring in a portion of an array. from
and fo are lists of subscripts; if they are shorter than the dimensionality of array, the
remaining subscripts are assumed to be zero.

sys:page-in-pixel-array array &optional from to
Like sys:page-in-array except that the lists from and fo, if present, are assumed to have
their subscripts in the order horizontal, vertical, regardless of which of those two is
actually the first axis of the array. See make-pixel-array, page 137.

sys:page-in-words address n-words
Any pages that have been swapped out to disk in the range of address space starting at
address and continuing for n-words are read in with as few disk operations as possible.

sys:page-in-area area-number
sys:page-in-region region-number
All swapped-out pages of the specified region or area are brought into main memory.

sys:page-out-structure object

sys:page-out-array array &optional from fo

sys:page-out-pixel-array array &optional from o

sys:page-out-words address n-words

sys:page-out-area area-number

sys:page-out-region region-number
These are similar to the above, except that they take pages out of main memory rather
than bringing them in. Actually, they only mark the pages as having priority for
replacement by others. Use these operations when you are done with a large object, to

SRCKL.MAN>FD-SUB.TEXT.6 24-JAN-83

‘The Paging System 214 Lisp Machine Manual

make the virtual memory system prefer reclaiming that object's memory over swapping
something clsc out.

sys:%change-page-status virual-address swap-status access-status-and-mela-bits
The page hash table entry for the page containing virtual-address is found and altered as
specified. t is returned if it was found, nil if it was not (presumably the page is swapped
out). swap-status and access-status-and-meta-bits can be nil if those ficlds are not to be
changed. 'This doesn't make any crror checks; you can really screw things up if you call
it with the wrong arguments.

sys:%compute-page-hash virtal-address
This makes the hashing function for the page hash table available to the user.

sys:%create-physical-page physical-address
This is used when adjusting the size of real memory available to the machine. It adds an
entry for the page frame at physical-address to the page hash table, with virtual address
-1, swap status flushable, and map status 120 (read only). This doesn’t make error
checks; you can really screw things up if you call it with the wrong arguments.

sys:%delete-physical-page physical-address
If there is a page in the page frame at physical-address, it is swapped out and its entry is
dcleted from the page hash table, making that page frame unavailable for swapping in of
pages in the future. This doesn’t make error checks; you can really screw things up if
you call it with the wrong arguments.

sys:%4disk-restore high-16-bits low-16-bits
lLoads virtual memory from the partition named by the concatenation of the two 16-bit
arguments, and starts executing it. The name O refers to the default load (the one the
machine loads when it is started up). This is the primitive used by disk-restore (see
page 652).

sys:%disk-save physical-mem-size high-16-bits low-16-bits
Copics virtual memory into the partition named by the concatenation of the two 16-bit
arguments (0 means the default), then restarts the world, as if it had just been restored.
The physical-mem-size argument should come from %sys-com-memory-size in system-
communication-area. This is the primitive used by disk-save (sce page 654).

si:set-memory-size nwords
Specifies the size of physical memory in words. The Lisp machine determines the actual
amount of physical memory when it is booted, but with this function you can tell it to
use less memory than is actually present. This may be useful for comparing performance
based on the amount of memory.

SRC:KLLMAN>FD-SUB.TEXT.6 24-JAN-83

Lisp Machine Manual 215 Closure Subprimitives

14.15 Closure Subprimitives
These functions deal with things like what closures deal with: the distinction between internal
and external value cells and control over how they work.

sys:%binding-instances list-of symbols
This is the primitive that could be used by closure. First, if any of the symbols in /lis-
of-symbols has no cxternal value ccll, a new external value cell is created for it, with the
contents of the internal value cell. Then a list of locatives, twice as long as [list-of
symbols, is created and returned. The clements are grouped in pairs: pointers to the
internal and external value cells, respectively, of cach of the symbols. closure could have
been defined by:
(defun closure (variables function)
(%#make-pointer dtp-closure
(cons function (sys:%binding-instances variables))))

sys:%using-binding-instances instance-list
This function is the primitive operation that invocation of closures could use. It takes a
list such as sys:%binding-instances returns, and for cach pair of clements in the list, it
"adds" a binding to the current stack frame, in the same manner that the bind function
(which should be called %bind) does. These bindings remain in effect until the frame
returns or is unwound.

sys:%using-binding-instances checks for redundant bindings and ignores them. (A
binding is redundant if the symbol is alrecady bound to the desired external value cell)
This check avoids excessive growth of the special pdl in some cases and is also made by
the microcode which invokes closures, entities, and instances.

Given a closure, closure-bindings extracts its list of binding instances, which you can
then pass to sys:%using-binding-instances.

sys:%internal-value-cell symbol
Returns the contents of the internal value cell of symbol. dtp-one-g-forward pointers
are considered invisible, as usual, but dtp-external-value-cell-pointers arc not; this
function can return a dtp-external-value-cell-pointer. Such pointers will be considered
invisible as soon as they leave the "inside of the machine”, meaning internal registers and
the stack.

14.16 Microcode Variables

The following variables’ values actually reside in the scratchpad memory of the processor.
They are put there by dtp-one-q-forward invisible pointers. The values of these variables are
used by the microcode. Many of thesc variables are highly internal and you shouldn’t expect to
understand them.

SRCKL.MAN>FD-SUB.TEXT.6 24-JAN-83

Microcode Variables 216 Lisp Machine Manual

“microcode-version-number Variable
This is the version number of the currently-loaded microcode, obtained from the version
number of the microcode source file.

sys:%number-of-micro-entries Variable
Size of micro-code-entry-area and related areas.

default-cons-area is documented on page 224.

sys:number-cons-area Variable
The arca number of the arca where bignums and flonums arc consed. Normally this
variable contains the value of sys:extra-pdli-area, which cnables the “temporary storage”
feature for numbers, saving garbage collection overhead.

current-stack-group and current-stack-group-resumer are documented on page 188.

_sys:kcurrent-stack-group-state _ Variable
The sg-state of the currently-running stack group.

sys:%current-stack-group-calling-args-pointer Variable
The argument list of the currently-running stack group.

sys:%current-stack-group-calling-args-number Variable
The number of arguments to the currently-running stack group.

sys:%trap-micro-pc Variable
The microcode address of the most recent error trap.

sys:%initial-fef Variable
The function that is called when the machine starts up. Normally this is the definition of
si:lisp-top-level.

sys:%initial-stack-group Variable
The stack group in which the machine starts up.

sys:%error-handler-stack-group Variable
The stack group that receives control when a microcode-detected error occurs. This stack
group cleans up, signals the appropriate condition, or assigns a stack group to run the
debugger on the erring stack group.

sys:%scheduler-stack-group Variable
The stack group that receives control when a sequence break occurs.

sys:%chaos-csr-address Variable
A fixnum, the virtual address that maps to the Unibus location of the Chaosnet interface.

SRC:KLMAN>FD-SUB.TEXT.6 24-JAN-83

Lisp Machine Manual 217 Microcode Variables

%mar-low Variable
- A fixnum, the inclusive lower bound of the region of virtual memory subject to the MAR

feature (sec scction 27.13, page 599).

i

Zmar-high Variable
A fixnum, the inclusive upper bound of the region of virtual memory subject to the MAR
feature (see section 27.13, page 599).

sys:%inhibit-read-only _ Variable
If non-nil, you can write into read-only arcas. This is used by fasload.

self is documented on page 338.

inhibit-scheduling-flag is documented on page 540.

inhibit-scavenging-flag Variable
If non-nil, the scavenger is turned off. The scavenger is the quasi-asynchronous portion of
the garbage collector, which normally runs during consing operations.

sys:scavenger-ws-enable Variable
If this is nil, scavenging can compete for all of thc physical memory of the machine.
Otherwise, it should be a fixnum, which specifies how much physical memory the
scavenger can use: page numbers as high as this number or higher are not available to it.

sys:%region-cons-alarm Variable
Incremented whenever a new region is allocated.

sys:%page-cons-alarm Variabie
Increments whenever a new page is allocated.

sys:%gc-flip-ready Variable
t while the scavenger is running, nil when there are no pointers to oldspace.

sys:%gc-generation-number Variable
A fixnum which is incremented whenever the garbage collector flips, converting one or
more regions from newspace to oldspace. If this number has changed, the %pointer of
an object may have changed.

sys:%disk-run-1ight Variable
A fixnum, the virtual address of the TV buffer location of the run-light which lights up
when the disk is active. This plus 2 is the address of the run-light for the processor.
This minus 2 is the address of the run-light for the garbage collector.

sys:%1oaded-band Variable

A fixnum, the high 24 bits of the name of the disk partition from which virtual memory
was booted. Used to create the greeting message.

SRCKLMAN>FD-SUB.TEXT.6 24-JAN-83

Microcode Variables 218 1.isp Machine Manual

sys:%disk-blocks-per-track ' Variable
sys:%4disk-blocks-per-cylinder Variable
Configuration of the disk being used for paging. Don’t change these!

sys:%disk-switches is documented on page 212.

sys:%qlaryh Variable
‘This is the last array to be called as a function, remembered for the sake of the function
store.

sys:%qlaryl Variable

This is the index used the last time an array was called as a function, remembered for
the sake of the function store.

#mc-code-exit-vector Variable
This is a vector of pointers that microcompiled code uses to refer to quoted constants.

sys:currently-prepared-sheet Variable
Used for communication between the window system and the microcoded graphics
primitives.

sys:alphabetic - case-affects-string-comparison is documented on page 144.
sys:tail-recursion-flag is documented on page 33.
zunderflow is documented on page 104.

The next four have o do with implementing the metering system described in section 32.2, page
637.

sys:%meter-global-enable Variable
t if the metering system is turned on for all stack-groups.

sys:%meter-buffer-pointer Variable
A temporary buffer used by the metering system.

sys:%meter-disk-address Variable
Where the metering system writes its next block of results on the disk.

sys:¥%meter-disk-count Variable
The number of disk blocks remaining for recording of metering information.

sys:lexical-environment Variable
This is the list of previous stack frames used by lexical-closure.

SRC:KLMAN>ED-SUB.TEXT.6 24-JAN-83

[.isp Machine Manual 219 Meters

sys:amem-evcp-vector Variable
- This is a vector of shadow locations for all these microcode variables, used in
implementing closure-binding of them. The microcode does not check for the presence of
external valuc cell pointers in the microcode locations that these variables correspond to;
therefore, when a closure would otherwise try to store an external value cell pointer into
one of them, it gocs in this vector instead.

background-cons-area is documented on page 224.
sys:self-mapping-table is documented on page 356.

sys:%gc-switches Variable
What is this used for?

sys:a-memory-location-names Variable
A list of all of the above symbols (and any others added after this documentation was
written).

14.17 Meters

read-meter name
Returns the contents of the microcode meter named name, which can be a fixnum or a
bignum. name must be one of the symbols listed below.

write-meter name value
Writes value, a fixnum or a bignum, into the microcode meter named name. name must
be one of the symbols listed below.

The microcode meters are as follows:

sys:%count-chaos-transmit-aborts Meter
The number of times transmission on the Chaosnet was aborted, ecither by a collision or
because the receiver was busy.

sys:%count-cons-work Meter
sys:%count-scavenger-work Meter
Internal state of the garbage collection algorithm.

sys:%tv-clock-rate Meter
The number of TV frames per clock sequence break. The default value is 67., which
causes clock sequence breaks to happen about once per second.

sys:%count-first-level-map-reloads Meter
The number of times the first-level virtual-memory map was invalid and had to be
reloaded from the page hash table.

SRCKLMAN>FD-SUB.TEXT.6 24-JAN-83

Mcters 220 1.isp Muchine Manual

sys

sys

sys

sys:

sys:

sys

sys

sys

sys

sys

sys

sys:

:%count-second-level-map-reloads Meter

The number of times the sccond-level virtual-memory map was invalid and had to be
reloaded from the page hash table.

:%count-meta-bits-map-reloads Mefer

The number of times the virtual address map was reloaded to contain only "meta bits",
not an actual physical address.

:%count-pdl1-buffer-read-faults Meter

The number of read references to the pdl buffer that were virtual memory references that
trapped.

%count-pdl-buffer-write-faults AMeter
The number of write references to the pdl buffer that were virtual memory references that
trapped.

%count-pd1-buffer-memory-faults Meter
The number of virtual memory references that trapped in case they should have gone to
the pdl buffer, but turned out to be real memory references afier all (and therefore were
needlessly slowed down).

:%count-disk-page-reads Meter

The number of pages read from the disk.

:%count-disk-page-writes Meter

The number of pages written to the disk.

: %count-fresh—'pages Meter

The number of fresh (newly-consed) pages created in core, which would have otherwise
been read from the disk.

t%count-disk-page-read-operations Meter

The number of paging read operations; this can be smaller than the number of disk pages
read when more than one page at a time is read.

:%count-di sk-paga-wr‘lte-operét‘lons Meter

The number of paging write operations; this can be smaller than the number of disk
pages written when more than one page at a time is written.

:%count-disk-prepages-used Meter

The number of times a page was used after being read in before it was needed.

%count-disk-prepages-not-used Meter
The number of times a page was read in before it was nceded, but got evicted before it
was ever used.

SRC:KIL.MAN>FD-SUB.TEXT.6 24-JAN-83

1.isp Machinc Manual 221 Meters

sys:%count-disk-page-write-waits Merer
- ‘I'he number of times the machine waited for a page to finish being written out in order
to evict the page.

sys:%count-disk-page-write-busys AMefer
The number of times the machine waited for a page to finish being written out in order
to do something clse with the disk.

sys:%disk-wait-time Aeter
The time spent waiting for the disk, in microscconds. This can be used to distinguish
paging time from running time when measuring and optimizing the’ performance of
programs.

sys:%count-disk-errors Meter
The number of recoverable disk errors.

sys:%count-disk-recalibrates Merer
The number of times the disk secck mechanism was recalibrated, usually as part of error
recovery.

sys:%count-disk-ecc-corrected-errors Meter
The number of disk errors that were corrected through the error correcting code.

sys:%count-disk-read-compare-differences Meter
The number of times a read compare was done, no disk error occurred, but the data on
disk did not match the data in memory.

sys:%count-disk-read-compare-rereads Merer
The number of times a disk rcad was done over because after the read a read compare
was donce and did not succeed (either it got an error or the data on disk did not match
the data in memory).

sys:%count-disk-read-compare-rewrites Merer
The number of times a disk write was done over becausc after the write a read compare
was done and did not succeed (cither it got an error or the data on disk did not match
the data in memory).

sys:%disk-error-log-pointer Meter
Address of the next entry to be written in the disk error log. The function si:print-disk-
error-log (sce page 643) prints this log.

sys:%count-aged-pages Meter

The number of times the page age

was being referenced.

-1

set an age trap on a pag

SRCKILMAN>FD-SUB.TEXT.6 24-JAN-83

Mecters 222 ILisp Machine Manual

sys:%count-age-flushed-pages AMeter
‘The number of times the page ager saw that a page still had an age trap and hence made
it "flushable”, a candidate for cviction from main memory.

sys:%aging-depth AMeter
A number from 0 to 3 that controls how long a page must remain unreferenced before it
becomes a candidate for cviction from main memory.

sys:%count-findcore-steps Meter
‘The number of pages inspected by the page replacement algorithm.

sys:%count-findcore-emergencies Meter
‘The number of times no cvictable page was found and extra aging had to be done.

sys:a-memory-counter-block-names Variable
A list of all of the above symbols (and any others added after this documentation was
written).

SRC:KILMAN>FD-SUB.TEXT.6 24-JAN-83

	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222

