Lisp Machine Manual 223 Areas

15. Areas

Storage in the Lisp Machine is divided into areas. Each arca contains related objects, of any
type. Arcas are intended to give the user control over the paging bchavior of his program,
among other things. Putting frequentiy used data and rarely used data in different arcas can cause
the frequently used data to occupy fewer pages. For example, the system puts the dchugging info
alists of compiled functions in a special arca so that the other list structure the functions point to
will be more compact.

Whenever a new object is created the area to be used can optionally be specified. For
example, instcad of using cons you can usec cons-in-area (sce page 62). Object-creating
functions which take keyword arguments generally accept a :area argument. You can also control
which arca is used by binding default-cons-area (see page 224); most functions that allocate
storage use the value of this variable, by default, to specify the arca to use.

There is a default Working Storage area that collects those objects that the user has not
chosen to control explicitly.

Arcas also give the user a handle to control the garbage collector. Some arcas can be
declared to be "static”, which means that they change slowly and the garbage collector should not
attempt to reclaim any space in them. This can ecliminate a lot of uscless copying. A 'static"
area can be explicitly garbage-collected at infrequent intervals. when it is believed that that might
be worthwhile.

Each area can potentially have a different storage discipline, a different paging algorithm, and
even a different data representation. The microcode will dispatch on an attribute of the area at
the appropriate times. The structure of the machine makes the performance cost of these features
negligible; information about areas is stored in extra bits in the memory mapping hardware where
it can be quickly dispatched on by the microcode; these dispatches usually have to be done
anyway to make the garbage collector work and to implement invisible pointers. This feature is
not currently used by the system, except for the list/structure distinction described below.

Each area has a name and a number. The name is a symbol whose value is the number.
The number is an index into various intcrnal tables. Normally the name is treated as a special
variable, so the number is what is given as an argument to a function that takes an area as an
argument. Thus, areas are not Lisp objects; you cannot pass an area itself as an argument to a
function; you just pass its number. There is a maximum number of areas (set at cold-load
generation time); you can only have that many areas before the various internal tables overflow.
Currently (as this manual is written) the limit is 256. areas, of which 64. already exist when you
start.

The storage of an area consists of one or more regions. Each region is a contiguous section
of address space with certain homogeneous properties. The most important of these is the data
representation type. A given region can only store one type. The two types that exist now are list
and structure. A list is anything made out of conses (a closure for instance). A structure is
anything made out of a block of memory with a header at the front; symbols, strings, arrays,
instances, compiled functions, etc. Since lists and structures cannot be stored in the same region,
they cannot be on the same page. It is necessary to know about this when using arcas o increase

SRCKLMAN>AREAS.TEXT .41 24-JAN-83

Arca Functions and Variables 224 Lisp Machine Manual

locality of reference.

When you create an arca, onc region is created initially. When you try to allocatc memory to
hold an object in some arca, the system trics to find a region that has the right data
representation type to hold this object, and that has cnough room for it to fit. If there isn’t any
such region. it makes a new one (or signals an error; sce the :size option to make-area, bclow).
The size of the new region is an attribute of the arca (controllable by the rregion-size option to
make-area). If regions are too large, memory may get taken up by a region and never used. If
regions arc too small, the system may run out of regions because regions, like arcas, arc defined
by internal tables that have a fixed size (sct at cold-load generation time). Currently (as this
manual is written) the limit is 256. regions, of which about 90. alrcady exist when you start. (If
you're wondering why the limit on regions isn't higher than the limit on areas, as it clearly ought
to be, itU's just because both limits have to be multiples of 256. for internal reasons, and 256.
regions scem to be enough.)

15.1 Area Functions and Variables

default-cons-area Variable
The value of this variable is the number of the area in which objects arc created by
default. It is initially the number of working-storage-area. Giving nil where an area is
required uses the value of default-cons-area. Notc that to put objects into an area
other than working-storage-area you can cither bind this variable or use functions such
as cons-in-area (scc page 62) which take the arca as an explicit argument.

background-cons-area Variable
The value of this variable is the number of a non-temporary area in which objects created
as incidental side effects by system functions should be crcated. This area is used
whenever an object is created that should never be in a temporary area, cven if default-
cons-area iS a temporary area.

By default, this area is working-storage-area.

make-area &rest keywords

Creates a new area, whose name and attributes are specified by the keywords. You must
specify a symbol as a name; the symbol will be setg'ed to the arca-number of the new
arca, and that number will also be returned, so that you can usc make-area as the
initialization of a defvar. The arguments are taken in pairs, the first being a keyword and
the second a "value” for that keyword. The last three keywords documented herein are in
the nature of subprimitives; like the stuff in chapter 14, their meaning is system-
dependent and is not documented here. The following keywords exist:

:name A symbol that will be the name of the area. This item is required.

size The maximum allowed size of the arca, in words. Defaults to infinite.
(Actually, the default is the largest positive fixnum; but the area is not
limited to that size!) If the number of words allocated to the area reaches
this size, attempting to cons an object in the area will signal an error.

rregion-size The approximate size, in words, for regions within this area. The default
: is the arca size if a :size argument was given, otherwise it is a suitable

SRC:KLLMAN>AREAS.TEXT.41 24-JAN-83

I.isp Machine Manual 225 Arca Functions and Variables

medium size. Note that if vou specify :size and not :region-size, the
arca will have exactly one region. When making an arca that will be very
big, it is desirable to make the region size larger than the default region
size to avoid creating very many regions and possibly overflowing the
system’s fixed-size region tables.

representation
The type of object to be contained in the area’s initial region. The
argument to this keyword can be :list. :structure, or a numcric code.
:structure is the default. If you are only going to cons lists in your area,
you should specify :list so you don't get a uscless structure region.

:gc The type of garbage-collection to be employed. The choices arc :dynamic
(which is the default), :static, and :temporary. :static means that the
arca will not be copied by the garbage collector, and nothing in the area
or pointed to by the arca will ever be reclaimed. unless a garbage
collection of this arca is manually requested. :temporary is like :static,
but in addition you are allowed to usc sireset-temporary-area on this
area.

:read -only With an argument of t, causes the area to be made read-only. Defaults to
nil. If an area is read-only, then any attempt to change anything in it
(altering a data object in the area or creating a new object in the area)
will signal an error unless sys:%inhibit-read-only (sce page 217) is bound
to a non-nil value.

:pdl With an argument of t, makes the area suitable for storing regular-pdls of
stack-groups. This is a special attribute duc to the pdl-buffer hardware.
Defaults to nil. Arcas for which this is nil may not be used to store
regular-pdis. Arcas for which this is i arc reiatively siow to access; all
references to pages in the area will take page faults to check whether the
referenced location is really in the pdl-buffer.

sys:%%region-map -bits
Lets you specify the map bits explicitly, overriding the specification from
the other keywords. This is for special hacks only.

sys:%%region-space-type
Lets you specify the space type explicitly, overriding the specification from
the other keywords. This is for special hacks only.

sys:%%region -scavenge-enable
Lets you override the scavenge-enable bit explicitly. This is an internal
flag related to the garbage collector. Don’t mess with this!

[y

areas that are

ist of

-t

11 14 wns Kiva W LiN

displayed by default by the room function (sce page 642).

:room With an argument of t, adds this area to the

Example:
(make-area ':name ’'foo-area
':gc ’:dynamic
*:representation ’:list)

SRC:KILMAN>AREAS.TEXT .41 24-JAN-83

Interesting Areas 226 Lisp Machine Manual

describe-area area :
area may be the name or the number of an arca. Various attributes of the area are
printed.

area-list Variable
The value of area-list is a list of the names of all existing arcas. This list shares storage
with the internal arca name table, so you should not change it. '

%area-number pointer ,
Returns the number of the area to which pointer points, or nil if it does not point within
any known arca. The data-type of pointer is ignored.

%region-number pointer
’ Retrns the number of the region to which pointer points, or nil if it does not point
within any known region. The data-type of pointer is ignored. (This information is
generally not very interesting to users; it is important only inside the system.)

area-name number
Given an arca number, returns the name. This "function” is actually an array.

si:reset-temporary-area area-number
This very dangerous operation marks all the storage in area area-number as free and
available for re-use. Any data in the arca will be lost and pointers to it will become

meaningless. In principle, this operation should only be used if you are sure there are no
pointers into the area.

If the area was not defined as "temporary”, this function gets an error.

See also cons-in-area (page 62), list-in-area (page 65), and room (page 642).

15.2 Interesting Areas

This scction lists the names of some of the areas and tells what they are for. Only the ones
of the most interest to a user are listed; there are many others.

working-storage-area Variable
This is the normal value of default-cons-area. Most working data are consed in this
area.

permanent-storage-area ' Variable

This area is to be used for "permanent” data, which will (almost) never become garbage.
Unlike working -storage-area, the contents of this arca are not continually copied by the
garbage collector; it is a static area.

SRC:KLLMAN>AREAS. TEXT 41 24-JAN-83

[isp Machine Manual 227 Errors Pertaining to Arcas

sys:p-n-string Variable
Print-names of symbols are stored in this arca
sys:nr-sym Variable

This area contains most of the symbols in the Lisp world, except t and nil, which are in
a different place for historical reasons.

sys:pkg-area Variable
This area contains packages, principally the hash tables with which intern keeps track of
symbols.

macro-compiled-program Variable

FEFs (compiled functions) are put here by the compiler and by fasload.

sys:property-list-area | Variable
This arca holds the property lists of symbols.

sys:init-list-area Variable
sys:fasl-constants-area Variable
These two areas contain constants used by compiled programs.

15.3 Errors Pertaining to Areas

sys:area-overflow (error) Condition
This is signaled on an attempt to make an area bigger than its declared maximum size.

The condition instance supports the operations :area-name and :area-maximum-size.

sys:region-table-overflow (error) Condition
This is signaled if you run out of regions.

sys:virtual-memory-overflow (error) Condition
This is signaled if all of virtual memory is part of some region and an attempt is made to
allocate a new region. There may be free space left in some regions in other areas, but
there is no way to apply it to the arca in which storage is to be allocated.

sys:cons-in-fixed-area (error) Condition
This is signaled if an attempt is made add a second region to a fixed area. The fixed
areas are certain areas, created at system initialization, that are only allowed a single
region, because their contents must be contiguous in virtual memory.

SRCKLLMAN>AREAS.TEXT 41 24-JAN-83

	223
	224
	225
	226
	227

