The Compiler 228 Lisp Machine Manual

16. The Compiler

16.1 The Basic Operations of the Compiler

The purpose of the Lisp compiler is to convert Lisp functions into programs in the Lisp
Machine’s instruction set, so that they will run more quickly and take up less storage. Compiled
functions arc represented in Lisp by FEFs (Function Entry Frames), which contain machine code
as well as various other information. 'The printed representation of a FEF is

#<DTP-FEF-POINTER address name>

If you want to understand the output of the compiler, refer to chapter 28, page 602.

There are three ways to invoke the compiler from the lisp Machine. First, you may have an
interpreted function in the Lisp environment that you would like to compile. The function
compile is used to do this. Sccond, you may have code in an editor buffer that you would like
to compile. The Zwei editor has commands to read code into Lisp and compile it. Third, you
“may have a program (a group of function definitions and other forms) written in a file on the file
system. ‘The function qc-file can translate this file into a QFASL file that describes the compiled
functions and associated data. The QFASL file format is capable of representing an arbitrary
collection of Lisp objects, including shared structure and cycles of pointers. The name derives
from "Q", a prefix oncc used to mean "for the Lisp machine, not for Maclisp”, and "FASL", an
abbreviation for "fast loading".

16.2 How to Invoke the Compiler

compile function-spec &optional definition
If definition is supplied, it should be a lambda-expression. Otherwise function-spec (this is
usually a symbol, but sce section 10.2, page 154 for details) should be defined as an
interpreted function and its definition will be used as the lambda-expression to be
compiled. The compiler converts the lambda-expression into a FEF, saves the lambda-
expression as the :previous-definition property of function-spec if it is a symbol, and
changes finction-spec’s definition to be the FEF. (Sec tdefine, page 169.)

If function-spec’s definition is already a FEF, and that FEF’s debugging info alist records
the interpreted definition it was compiled from, that same definition is compiled again.
The original definition is recorded in a FEF’s debugging info alist whenever the function
is compiled in core (such as by means of compile, but not if the function is loaded from
a QFASL file, except for defsubsts).

uncompile function-spec
If function-spec is defined as a compiled function that records the original definition that
was compiled, then function-spec is redefined with that original definition. This undoes
the effect of calling compile on function-spec.

SRC:KLMAN>COMPIL.TEXT.89 24-JAN-83

Lisp Machine Manual 229 How to Invoke the Compiler

compile-lambda lambda-exp function-spec
- Returns a compiled function object produced by compiling lambda-exp. The function
name recorded by the compiled function object is function-spec, but that function spec is
not defined by compile-lambda.

compile-encapsulations function-spec
Compiles all encapsulations that function-spec currently has. Encapsulations (see scction
10.10, page 175) include tracing, breakons and advice. Compiling tracing or breakons
makes it possible (or at least more possible) to trace or breakon certain functions that are
used in the cvaluator. Compiling advice makes it less costly to advise functions that are
used frequently.

Any encapsulation that is changed will cecase to be compiled; thus, if you add or remove
advice, you must do compile-encapsulations again if you wish the advice to be
compiled again.

compile-encapsulations-flag Variable
If this is non-nil, all encapsulations that are created are compiled automatically.

qc-file filename &optional outpur-file load-flag in-core-flag package file-local-declarations
dont-set-default-p read-then-process-flag

This function takes a formidable number of arguments, but normally only one argument
is supplied. The file filename is given to the compiler, and the output of the compiler is
written to a file whose name is filename except with a file type of "QFASL". The input
format for files to the compiler is described on section 16.3, page 230. Macro definitions,
subst definitions, and special declarations created during the compilation are undone
when the compilation is finished.

The optional arguments allow certain modifications to the standard procedure. output-file
lets you change where the output is written. package lets you specify in what package the
source file is to be read. Normally the system knows, or asks interactively, and you need
not supply this argument. load-flag and in-core-flag are incomprehensible; you don’t want
to use them. file-local-declarations is for compiling multiple files as if they were one.
dont-set-default-p suppresses the changing of the default file name to filename that normally
occurs. :

Normally, a form is read from the file and processed and then another form is read and
processed, and so on. But if read-then-process-flag is non-nil, the whole source file is read
before any of it is processed. This is not done by default; it has the problem that
compile-time reader-macros defined in the file will not work properly.

qc-file-load filename &optional output-file load-flag in-core-flag package functions-defined

Sile-local-declarations dont-set-default-p read-then-process-flag
qc-file-load compiles a file and then loads in the resulting QFASL file.

SRCALMAN>COMPIL.TEXT.89 24-JAN-83

Input to the Compiler 230 Lisp Machine Manual

compiler:compiler-verbose Variable
If this variable is non-nil, the compiler prints the name of cach function that it is about
to compile.

compiler:peep-enable Variable

The peephole optimizer is used if this variable is non-nil. The only reason to set it to nil
is if there is a suspicion of a bug in the optimizer.

Scc also the disassemble function (page 641), which lists the instructions of a compiled
function in symbolic form.

16.3 Input to the Compiler

‘The purpose of qc-file is to take a file and produce a translated version which does the same
thing as the original cxcept that the functions are compiled. gc-file reads through the input file,
processing the forms in it one by one. For cach form, suitable binary output is sent to the
QFASIL. file so that when the QFASL file is loaded the cffect of that source form will be
reproduced. The differences between source files and QFASI. files arc that QFASL files are in a
compressed binary form, which reads much faster but cannot be edited, and that function
definitions in QFASL files have been translated from Lisp forms to FEFs.

So, if the source contains a (defun ..) form at top level, then when the QFASL file is
loaded the function will be defined as a compiled function. If the source file contains a form that
is not of a type known specially to the compiler, then that form (encoded in QFASL format) will
be output "directly” into the QFASL file, so that when the QFASL file is loaded that form will
be evaluated. Thus, if the source file contains (setq x 3), then the compiler will put in the
QFASL file instructions to set x to 3 at load time (that is, when the QFASI. file is loaded into
the Lisp environment). It happens that QFASL files have a specific way to setq a symbol. For a
more general form, the QFASL file would contain instructions to recreate the list structure of a
form and then call eval on it.

The Lisp machine editor ZWEI assumes that source files are formatted so that an open
parenthesis at the left margin (that is, in column zero) indicates the beginning of a function
definition or other top level list (with a few standard exceptions). The compiler assumes that you
follow this indentation convention, enabling it to tell when a close-parenthesis is missing from one
function as soon as the beginning of the next function is reached.

If the compiler finds an open parenthesis in column zero in the middle of a list, it invents
enough close parentheses to close off the list that is in progress. A compiler warning is produced
instcad of an error. After that list has been processed, the open parenthesis is read again. The
compilation of list that was forcefully closed off is probably useless, but the compilation of the
rest of the file is usually correct. You can read the file into the editor and fix and recompile just
the function that was unbalanced.

A similar thing happens on end of file in the middle of a list, so that you get to see any
warnings for the function that was unbalanced.

SRC:CLANANICOMPILTEXT.89 24-JAN-83

Lisp Machine Manual 231 Input to the Compiler

Certain special forms including eval-when, progn, local-declare. declare-flavor-instance-
variables, and comment arc customarily used around lists that start in column zero. These
symbols have a non-nil si:may-surround-defun property that makes the compiler permit this.
You can add such properties to other symbols if you want.

compiler:qc-file-check-indentation Variable
The compiler checks for open-parentheses in column zero if this variable is non-nil.

Sometimes we want to put things in the file that are not merely meant to be translated into
" QFASL form. One such occasion is top level macro definitions; the macros must actually get
defined within the compiler in order for the compiler to be able to cxpand them at compile time.
So when a macro form is scen, usually it should be cvaluated at compile time as well as put into
the QFASL file.

Another thing we sometimes want to put in a file is compiler declarations. These are forms
which should be evaluated at compile time to tell the compiler something. They should not be
put into the QFASL. file, unless they are useful for working incrementally on the functions in the
file, compiling them one by one from the editor.

Therefore, a facility exists to allow the user to tell the compiler just what to do with a form.
One might want a form to be:

Put into the QFASL file (compiled, of course), or not.
Evaluated within the compiler, or not.

Evaluated if the file is read directly into Lisp, or not.

The eval-when special form is used to control this. An eval-when form looks like
(evai-when times-lisi
forml
form2
cel)
The fimes-list may contain one or more of the symbols load, compile, or eval. If load is
present, the forms are written into the QFASL file to be evaluated when the QFASL file is
loaded (except that defun forms will put the compiled definition into the QFASL file instead). If
compile is present, the forms are evaluated in the compiler. If eval is present, the forms are
evaluated when read into Lisp; this is because eval-when is defined as a special form in Lisp.
(The compiler ignores eval in the fimes-list.) For example,
(eval-when (compile eval) (macro foo (x) (cadr x)))
would define foo as a macro in the compiler and when the file is read in interpreted, but not
when the QFASL file is fasloaded.

eval-when (rime..) body Special Form

body...
When seen by the interpreter, if one of the times is the symbol eval then the body forms
are evaluated; otherwise eval-when does nothing.

But when seen by the compiler, this special form does the special things described above.

SRCKL.MAN>COMPIL.TEXT.89 24-JAN-83

Input to the Compiler 232 Lisp Machine Manual

For the rest of this section, we will use lists such as are given to eval-when, c.g. (load
eval), (load compile), ctc., to describe when forms are evaluated.

If a form is not enclosed in an eval-when, then the times at which it will be cvaluated
depend on the form. The following table summarizes at what times cvaluation will take place for
any given form seen at top level by the compiler.

(eval-when times-list form ...)
times-list specifies when the form... should be performed.

(declare (special ...)) or (declare (unspecial ...))
The special or unspecial is performed at (load compile) time.

(declare anything-else)
anything-else is performed only at (compile) time.

(special ...) or (unspecial ...)
(load compile eval)

(macro ...) or (defmacro ...) or (defsubst ...)

or (defflavor ...) or (defstruct ...)
(load compile eval). However, during file to file compilation, the definition is
kept in effect only for the one file. It is not done "for real” until the file is
loaded.

(comment..) Ignored at all times.

(compiler-let ({var val) ...) body...)
Processes the body in its normal fashion, but at (compile eval) time, the
indicated variable bindings are in effect. These variables will typically affect the
operation of the compiler or of macros. See section 17.4.6, page 265.

(local-declare (decl decl ...) body...)
Processes the body in its normal fashion, with the indicated declarations added to
the front of the list which is the value of local-declarations.

(defun ...) or (defmethod ...) or (defselect ...)
(load eval), but at load time what is processed is not this form itself, but the
result of compiling it.

anything-else (load eval)

Sometimes a macro wants to return more than one form for the compiler top level to see
(and to be evaluated). The following facility is provided for such macros. If a form
(progn (quote compile) forml form2 ...)
is seen at the compiler top level, all of the forms are processed as if they had been at compiler
top level. (Of course, in the interpreter they will all be evaluated, and the (quote compile) will
harmlessly evaluate to the symbol compile and be ignored.) See section 17.4.3, page 260, for
additional discussion of this.

SRC:KI.MAN>COMPIL.TEXT.89 24-JAN-83

1isp Machine Manual 233 Compiler Declarations

To prevent an cxpression from being optimized by the compiler, surround it with a call to
dont-optimize.

dont-optimize form Special Form
In cxccution. this is cquivalent to simply form. However, any source-level optimizations
that the compiler would normally nerform on the top level of form are not done.
Examples:
(dont-optimize (apply 'foo (list 'a ’b)))
actually makes a list and calls apply, rather than doing
(foo ’a ’b)

(dont-optimize (si:f]avor-method—tab]e flav))
actually calls si-flavor-method-table as a function, rather than substituting the definition
of that defsubst.

dont-optimize can even be used around a defsubst inside of setf or locf, to prevent
open-coding of the defsubst. In this case, a function will be created at load time to do
the setting or return the location.
(setf (dont-optimize (zwei:buffer-package buffer))
(pkg-find-package "foo"))

Subforms of form, such as arguments, are still optimized or open coded, unless additional
dont-optimize’s appear around them.

16.4 Compiler Declarations

Declarations provide auxiliary information on how to execcule a function or expression
properly, in addition to "what expression to compute”. Many declarations are relevant (0
techniques of compilation and are irrelevant when a function is interpreted. Some do not affect
execution at all and only provide information about the function, for the sake of arglist, for
example.

Declarations may apply to an entire function or to any expression within it. Declarations can
be made around any subexpression by writing a local-declare around the subexpression.
Declarations can be made on an entire function by writing a declare at the front of the function’s
body.

local-declare (declaration...) body... Special Form
A local-declare form looks like
(local-declare (decll decl? ...)

forml

form2

2
Each decl is consed onto the list local-declarations while the forms are being evaluated
(in the interpreter) or compiled (in the compiler).

SRC:K1.MAN>COMPIL.TEXT.89 24-JAN-83

Compiler Declarations 234 Lisp Machine Manual

declare declaration... Special I'orm
The special form declare is used for writing declarations that apply to an entire function
definition,

A declare inside a function definition, just after the argument list. is equivalent to putting
a local-declare around the function definition. More specifically,
(defun foo (a b)
(declare (special a b))
(bar))

is equivalent to
(local-declare ((special a b))
{defun foo (a b)

(bar)))

Note that
(defun foo (a b)
(local-declare ((special a b))
(bar)))
will not do the job, because the declaration is not in effect for the binding of the
arguments of foo.

declare is preferable to local-declare in this sort of situation, becausc it allows the
defuns themselves to be the top-level lists in the file. While local-declare might appear
to have an advantage in that one local-declare may go around several defuns, it tends
to cause trouble to use local-declare in that fashion.

declare has a similar meaning at the front of the body of a progn, prog, let, prog*,
let*, or internal lambda. For example,
(prog (x)
(declare (special x))
.)
is equivalent to
(Tocal-declare ((special x))
(prog (x)
eel))

At top level in the file, (declare declarations...) is equivalent to (eval-when (compile)
declarations...). This use of declare is nearly obsolete, and should be avoided.

Elsewhere, and in the interpreter, declare’s are ignored.

Here is a list of declarations that have system-defined meanings:

(:special varl var2..)
The variables varl, var2, etc. will be treated as special variables during the
compilation of the forms.

(:unspecial varl var2...)
The variables var!/, var2, etc. will be treated as local variables during the

SUC:KLMAN>COMPIL.TEXT.89 24-JAN-83

[.isp Machine Manual 235 Compiler Declarations

compilation of the forms.

(:def name . definition) ,
name will be defined for the compiler during the compilation of the forms. The
compiler uses this to keep track of macros and open-codabic functions (defsubsts)
defined in the file being compiled. Note that the cddr of this item is a function.

(propname symbol value)
Within forms, (getdecl symbol propname) will return value. This is how the
compiler keeps track of defdecls.

These declarations are significant only when they apply to an entire defun

(:arglist . arglis?)
Records arglist as the argument list of the function, to be used instcad of its
lambda-list if anyone asks what its arguments are. This is purely documentation.

(:values . values) or (:return-list . values)
Records values as the return values list of the function, to be used if anyone asks
what values it returns. This is purely documentation.

(si:function-parent parent-function-spec)
Records parent-function-spec as the parent of this function. If, in the editor, you
ask to see the source of this function, and the ecditor doesn’t know where it is,
the editor will show you the source code for the parent function instead.

(:self-ftavor flavorname)
Instance variables of the flavor flavorname, in self, will be accessible in the
function.

Tocal-declarations Variable
The value of this variable is a list of all declarations that are temporarily in effect.
During compilation, it pertains to the code being compiled. During interpretation, it
pertains to the code being interpreted. (It is not used during execution of compiled code,
since all processing of the declarations was done at compile time.)

As a result, at any time a macro is expanded, the value of local-declarations pertains to
the code being expanded.

sys:file-local-declarations Variable
During file-to-file compilation, the value of this variable is a list of all declarations that
are in effect for the rest of the file. Macro definitions, defdecls, and special declarations
that come from defvars are all recorded on this list.

special variable... Special Form
Declares each variable to be "special” for the compiler. Usually it is better to use defvar
or defconst. special is used to make it possible to compile one file that refers to a
variable without first having to load another file that defines the variable.

SRCKL.MAN>COMPIL.TEXT.89 24-JAN-83

Compiler Declarations 236 lisp Machinc Manual

unspecial variable... Special I'orm
Removes any "special” declarations of the variables for the compiler.

When symbol properties are referred to during macro expansion, it is desirable for propertics
defined in a file to be "in effect” for the compilation of the rest of the file. This will not happen
if get and defprop arc used, because the defprop will not be exccuted until the file is loaded.
Instead. you can use getdecl and defdecl. Thesc arc normally the same as get and defprop,
but during file-to-file compilation they also refer to and create declarations.

getdecl symbol property
This is a version of get that allows the properties of the symbol to be overridden by
declarations.

If local-declarations or sys:file-local-declarations contains a declaration of the form
(property symbol value), getdecl returns value. Otherwise, getdec! returns the result of
(get symbol property).

getdecl is typically used in macro definitions. For example, the setf macro uses getdecl
to get the setf property of the function in the expression for the ficld to be set.

putdecl1 symbol property value
Causcs (getdecl symbol property) to return value.

putdecl usually simply docs a putprop. But if executed at compile time during file-to-file
compilation, it instead makes an entry on file-local-declarations of the form (property
symbol value).

In either case, this stores value where getdecl will find it; but if putdecl is done during
compilation, it affects only the rest of that compilation.

defdecl symbol property value Special Form
When exccuted, this is like putdecl except that the arguments are not evaluated. It is
usually the same as defprop except for the order of the arguments.

Unlike defprop. when defdecl is encountered during file-to-file compilation, it is
executed, creating a declaration which remains in effect for the rest of the compilation.
(The defdecl form also goes into the QFASL file to be cxccuted when the file is loaded).
defprop would have no effect whatever at compile time.

defdecl is often useful as a part of the expansion of a macro. It is also useful as a top-
level expression in a source file.

(defdecl foo setf ((foo x) . (set-foo x si:value)))
in a source file would allow (setf (foo arg) value) to be used in functions in that source
file; and, once the file was loaded, by anyone.

The next three functions are primarily for Maclisp compatibility. In Maclisp, they are
declarations, used within a declare at top level in the file.

SRC:(LL.MAN>COMPIL.TEXT.89 24-JAN-83

1.isp Machine Manual 237 Compiler Declarations

*gxpr symbol.. Special Form
Declares each symbol to be the name of a function. In addition it prevents these
functions from appearing in the list of functions referenced but not defined, printed at the
end of the compilation.

*lexpr symibol.. Special Form
Declares cach symbol to be the name of a function. In addition it prevents these
functions from appearing in the list of functions referenced but not defined, printed at the
end of the compilation.

*faxpr symbol... Special Form
Declares cach symbol to be the name of a special form. In addition it prevents these
names from appearing in the list of functions referenced but not defined, printed at the
end of the compilation.

There are some advertised variables whose compile-time values affect the operation of the
compiler. The user may set these variables by including in his file forms such as
(declare (setq open-code-map-switch t))
However, these variables scem not to be needed very often.

run-in-maclisp-switch Variable

If this variable is non-nil, the compiler will try to warn the user about any constructs that
will not work in Maclisp. By no means will all Lisp Machine system functions not built
in to Maclisp be cause for warnings; only those that could not be written by the user in
Maclisp (for example, make-array, value-cell-location, etc.). Also, lambda-list
keywords such as &optiona! and initialized prog variables will be mentioned. This switch
alsc inhibits the warnings for obsolete Maclisp functions. The default value of this
variable is nil.

obsolete-function-warning-switch Variable
If this variable is non-nil, the compiler will try to warn the uscr whenever an "obsolete”
Maclisp-compatibility function such as maknam or samepnamep is used. The default
value is t.

allow-variables-in-function-position-switch Variable
If this variable is non-nil, the compiler allows the use of the name of a variable in
function position to mean that the variable's value should be funcal’d. This is for
compatibility with old Maclisp programs. The default value of this variable is nil.

open-code-map-switch Variable
If this variable is non-nil, the compiler will attempt to produce inline code for the
mapping functions (mapc, mapcar, etc., but not mapatoms) if the function being
mapped is an anonymous lambda-expression. This allows that function to reference the
local variables of the enclosing function without the need for special declarations. The
generated code is also more efficient. The default value is t.

SRC:KLL.MAN>COMPIL.TEXT.89 24-JAN-83

Using Compiler Warnings 238 Lisp Machine Manual

all-special-switch Variable
If this variable is non-nil, the compiler regards all variables as special, regardless of how
they were declared. This provides compatibility with the interpreter at the cost of
cfficiency. The default is nil.

inhibit-style-warnings-switch Variable
If this variable is non-nil, all compiler style-checking is turned off. Style checking is used
to issuc obsolete function warnings, won't-run-in-Maclisp warnings, and other sorts of
warnings. ‘The default value is nil. Sce also the inhibit-style-warnings macro, which
acts on onc level only of an expression.

compiler-let ((variable value)...) body.. Macro
Syntactically identical to let. compiler-let allows compiler switches to be bound locally at
compile time, during the processing of the body forms.
Example:
(compiler-let ((open-code-map-switch nitl))
(map (function (lambda (x) ...)) foo))
will prevent the compiler from open-coding the map. When interpreted, compiler-let is
equivalent to let. 'This is so that global switches which affect the behavior of macro
expanders can be bound locally.

16.5. Using Compiler Warnings

When the compiler prints warnings, it also records them in a data base, organized by file and
by function within file. Old warnings for previous compilations of the same function are thrown
away, %o the data basc contains only warnings that are still applicable. This data base can be
used to visit, in the editor, the functions that got warnings. You can also save the data base and
restore it later.

There are three editor commands that you can use to begin visiting the sites of the recorded
warnings. They differ only in how they decide which files to look through:

Meta-X Edit Warnings
For cach file that has any warnings, asks whether to edit the warnings for that file.

Meta-X Edit File Warnings
Reads the name of a file and then edits the warnings for that file.

Meta- X Edit System Warnings
Reads the name of a system and then edits the warnings for all files in that system (see
defsystem, page 520).

While the warnings are being edited, the warnings themselves appear in a small window at
the top of the editor frame, and the code appears in a large window which occupies the rest of
the editor frame.

As soon as you have finished specifying the file(s) or system to process, the editor will
proceed to visit the code for the first warning. From then on, to move to the next warning, use
the command Control-Shift-W. To move to the previous warning, use Meta-Shift-W. You can
also switch to the warnings window with Control-X O or with the mouse, and move around in

SRC:KL.MAN>COMPIL.TEXT.89 24-JAN-83

|isp Machine Manual 239 Using Compiler Warnings

that buffer. When you usc Control-Shift-W and there are no more warnings after the cursor,
you return to single-window mode.

You can also insert the text of the warnings into any editor buffer:

Meta-X Insert File Warnings
Reads the name of a file and inserts into the buffer after point the text for that file’s
warnings. The mark is left after the warnings. but the region is not turned on.

Meta-X Insert Warnings
Inserts into the buffer after point the text for the warnings of all files that have warnings.
The mark is left after the warnings, but the region is not turned on.

You can also dump the warnings data base into a file and reload it later. Then you can do
Meta-X Edit Warnings again in the later session. You dump the warnings with si:dump-
warnings and load the file again with load. In addition, make-system with the :batch option
writes all the warnings into a file in this way.

si:dump-warnings ouiput-file-pathname &rest warnings-file-pathnames
Writes the warnings for the files named in warnings-file-pathnames (a list of pathnames or
strings) into a file named outpur-file-pathname.

compiler:warn-on-errors Variable
If this variable is non-nil, ecrrors in reading code to be compiled, and errors in macro
expansion within the compiler, produce only warnings; they do not enter the debugger.
The variable is normally t.

The default setting is useful when you do not anticipate ecrrors during compilation,
because it allows the compilation to proceed past such ecrrors. If you have walked away
from the machine, you do not come back to find that your compilation stopped in the
first file and did not finish.

If you find an inexplicable error in reading or macrocxpansion, and wish to use the
debugger to localize it, sect compiler:warn-on-errors to nil and recompile.

16.5.1 Controlling Compiler Warnings

By controlling the compile-time values of the variables run-in-maclisp-switch, obsolete-
function-warning-switch, and inhibit-style-warning-switch (cxplained above), you can enable
or disable some of the warning messages of the compiler. The following special form is also
useful:

inhibit-style-warnings form Macro
Prevents the compiler from performing style-checking on the top level of form. Style-
checking will still be done on the arguments of form. Both obsolete function warnings
and won’t-run-in-Maclisp warnings are done by means of the style-checking mechanism,
so, for example,

(setq bar (inhibit-style-warnings (value-cell-location foo)))
will not warn that value-cell-location will not work in Maclisp, but

SRC:KL.MAN>COMPIL.TEXT.89 24-JAN-83

Using Compiler Warnings 240 Lisp Machine Manual

(inhibit-style-warnings (setq bar (value-cell-location foo)))
will warn, since inhibit-style-warnings applics only to the top level of the form inside it
(in this case, to the setq).

Somctimes functions take argument that they deliberately do not use. Normally the compiler
warns you if your program binds a variable that it never references. In order to disable this
warning for sariables that you know you arc not going to use, there are two things you can do.
The first thing is to name the variables ignore or ignored. The compiler will not complain if a
variable by onc of these names is not used. Furthermore, by special dispensation, it is all right
to have morc than onc variable in a lambda-list that has onc of these names. The other thing
you can do is simply use the variable for effect (ignoring its value) at the front of the function.
Example:

(defun the-function (list fraz-name fraz-size)
fraz-size ; This argument is not used.
o)
This has the advantage that arglist (sce page 172) will return a more meaningful argument list for
. the function, rather than returning somcthing with ignores in it.

The following function is useful for requesting compiler warnings in certain esoteric cases.
Normally, the compiler notices whenever any function x uses (calls) any other function y; it
makes notes of all these uses, and then warns you at the end of the compilation if the function y
got called but was neither defined nor declared (by *expr. see page 237). This usually does what
you want, but sometimes there is no way the compiler can tell that a certain function is being
used. Suppose that instead of x’s containing any forms that call y, x simply stores y away in a
data structurc somewhere, and someplace clse in the program that data structure is accessed and
funcall is done on it. There is no way that the compiler can sce that this is going to happen,
and so it can't notice the function usage, and so it can't create a warning message. In order to
make such warnings happen, you can explicitly call the following function at compile-time.

compiler:function-referenced what by
what is a symbol that is being used as a function. by may be any function spec.
compiler:function-referenced must be called at compile-time while a compilation is in
progress. 1t tells the compiler that the function whar is referenced by by. When the
compilation is finished, if the function whar has not been defined, the compiler will issue
a warning to the effect that by referred to the function what, which was never defined.

You can also tell the compiler about any function it should consider "defined":

compiler:compilation-define function-spec
Junction-spec is marked as "defined” for the sake of the compiler; calls to this function
will not produce warnings.

compiler:make-obsolete function reason Special Form
This special form declares a function to be obsolete; code that calls it will get a compiler
warning, under the control of obsolete-function-warning-switch. This is used by the
compiler to mark as obsolete some Maclisp functions which exist in Zetalisp but should
not be used in new programs. It can also be useful when maintaining a large system, as
a reminder that a function has become obsolete and usage of it should be phased out.
An example of an obsolete-function declaration is:

SRCALMAN>COMPIL.TEXT.89 24-JAN-83

Lisp Machine Manual 241 Using Compiler Warnings

(compiler:make-obsolete create-mumbiefrotz
"use MUMBLIFY with the :FROTZ option instead")

16.5.2 Recording Warnings

The warnings data base is not just for compilation. It can record operations for any number
of different operations on files or parts of files. Compilation is mercly the only operation in the
system that uses it.

Fach operation about which warnings can be recorded should have a name, preferably in the
keyword package. This symbol should have four propertics that tell the system how to print out
the operation name as various parts of speech. For compilation, the operation name is :compile
and the properties are defined as follows:

(defprop :compile "compilation” name-as-action)

(defprop :compile "compiling” name-as-present-participle)
(defprop :compile "compiled" name-as-past-participle)
(defprop :compile "compiler" name-as-agent)

The warnings system considers that these operations are normally performed on files that are
composed of named objects. Fach warning is associated with a filename and then with an object
within the file. It is also possible to record warnings about objects that are not within any file.

To tell the warnings system that you are starting to process all or part of a file, use the
macro si:file-operation-with-warnings.

sys:file-operation-with-warnings (generic-pathname Special Form
operation-name whole-file-p) body...
body is exccuted within a context set up so that warnings can be recorded for operation
operation-name about the file specified by generic-pathname (see page 469).

In the case of compilation, this is done at the level of gc-file (actually, it is done in
compiler:compile -stream).

whole-file-p should be non-nil if the entire contents of the file will be processed inside the
body if it finishes; this implies that any warnings left over from previous iterations of this
operation on this file should be thrown away on exit. This is only relevant to objects that
are not found in the file this time; the assumption is that the objects must have been
deleted from the file and their warnings are no longer appropriate.

All three of the special arguments are specified as expressions that are evaluated.

Within the processing of a file, you must also announce when you are beginning to process
an object:

SRCKL.MAN>COMPIL.TEXT.89 24-JAN-83

Using Compiler Warnings 242 Lisp Machine Manual

sys:object-operation-with-warnings (object-name Special Form
location-function) body...
body is cxccute in a context set up so that warnings arc recorded for the object named
object-name, which can be a symbol or a list. Object names are compared with equal.

In the case of compilation, this macro goes around the processing of a single function.

location-function is cither nil or a function that the editor uses to find the text of the
object. Refer to the file SYS: ZWEI; POSS LISP for more details on this.

object-name and location-function are specified with expressions that are evaluated.

You can cnter this macro recursively. If the inner invocation is for the same object as th
outer one, it has no effect. Otherwise, warnings recorded in the inner invocation apply to
the object specified therein.

Finally, when you detect exceptions, you must make the actual warnings:

sys:record-warning upe severity location-info format-string &rest args
Records one warning for the object and file currently being processed. The text of the
warning is specified by format-stringand args, which arc suitable arguments for format,
but the warning is nor printed when you call this function. Those arguments will be used
A to reprint the warning later.
sys:record-and-print-warning ugpe severity location-info Jormat-string &rest args
Records a warning and also prints it.

ype is a symbol that identifies the specific cause of the warning. Types have meaning
only as defined by a particular operation, and at present nothing makes much use of
them. The system defines one type: si:premature -warnings-marker.

severify measures how important a warning this is. and the general causal classification. It
should be a symbol in the keyword package. Several severities are defined, and should be
used when appropriate, but nothing looks at them:

implausible This warning is about somecthing that is not intrinsically wrong but is
probably due to a mistake of some sort.

:impossible This warning is about something that cannot have a meaning even if
circumstances outside the text being processed are changed.

:probable-error
This is used to indicate something that is certainly an error but can be
made correct by a change somewhere clse; for example, calling a function
with the wrong number of arguments.

:missing-declaration
This is used for warnings about free variables not declared special, and
such. It means that the text was not actually incorrect, but something else
that is supposed o accompany it was missing.

:obsolete This warning is about something that you shouldn’t use any more, but
which still does work.

SRC:.MAN>COMPIL.TEXT.89 24-JAN-83

Lisp Machine Manual 243 Compiler Source-1.evel Optimizers

wery-obsclete
This is about something that doesn’t even work any more.

:maclisp This is for something that doesn’t work in Maclisp.

fatal This indicates a problem so scvere that no semsc can be made of the
object at all. It indicates that the presence or absence of other warnings is
not significant.

error There was a Lisp error in processing the object.

location-info is intended to be used to inform the editor of the precise location in the text
of the cause of this warning. It is not defined as yet, and you should usc nil.

If a warning is encountered while processing data that doesn't really have a name (such as
forms in a source file that arc not function definitions), you can record a warning ecven though
you are not inside an invocation of sys:object-operation-with-warnings. This warning is known
as a premature warning and it will be recorded with the next object that is processed; a message
will be added so that the user can tell which warnings werc premature.

Refer to the file SYS: SYS: QNEW LISP for more information on the warnings data base.

16.6 Compiler Source-Level Optimizers

The compiler stores optimizers for source code on property lists so as to make it casy for the
user to add them. An optimizer can be used to transform code into an cquivalent but more
efficient form (for cxample, (eq obj nil) is transformed into (null obj), which can be compiled
beiter). An optimizer can alse be used to tell the compiler how to compile a special form. For
example, in the interpreter do is a special form, implemented by a function which takes quoted
arguments and calls eval. In the compiler, do is expanded in a macro-like way by an optimizer
into equivalent Lisp code using prog, cond, and go, which the compiler understands.

The compiler finds the optimizers to apply to a form by looking for the compiler:optimizers
property of the symbol that is the car of the form. The value of this property should be a list of
optimizers, each of which must be a function of one argument. The compiler trics each optimizer
in turn, passing the form to be optimized as the argument. An optimizer that returns the original
form unchanged (eq to the argument) has “donc nothing”, and the next optimizer is tried. If the
optimizer returns anything else, it has "done something”, and the whole process starts over again.
Only after all the optimizers have been tried and have done nothing is an ordinary macro
definition processed. This is so that the macro definitions, which will be seen by the interpreter,
can be overridden for the compiler by optimizers.

Optimizers should not be used to define new language features, because they only take effect
in the compiler; the interpreter (that is, the evaluator) doesn’t know about optimizers. So an
optimizer should not change the effect of a form: it should produce another form that does the
same thing, possibly faster or with less memory or something. That is why they are called
optimizers. If you want to actually change the form to do something else, you should be using
macros.

SRC:KI.MAN>COMPIL.TEXT.89 24-JAN-83

Files that Maclisp Must Compile 244 I.isp Machine Manual

compiler:add-optimizer funciion optimizer optimized-into... Special I'orm
Puts optimizer on function’s optimizers list if it isn’t there alrcady. optimizer is the name
of an optimization function, and function is the name of the function calls which are to
be processed. Neither is evaluated.

(compiler:add-optimizer function optimizer optimize-into-1 oplimize-info-2...) also
remembers optimize-into-1, ctc., as names of functions which may be called in place of
Junction as a result of the optimization. Then who-calls of Sunction will also mention
calles of optimize-into-1, etc.

16.7 Files that Maclisp Must Compile

Certain programs are intended to be run both in Maclisp and in Zetalisp. Their source files
nced some special conventions. For example, all special declarations must be enclosed in
declares, so that the Maclisp compiler will sce them. The main issuc is that many functions and
special forms of Zetalisp do not exist in Maclisp. It is suggested that you turn on run-in-
maclisp-switch in such files, which will warn you about a lot of problems that your program
may have if you try to run it in Maclisp.

The macro-character combination #Q causes the object that follows it to be visible only when
compiling for Zetalisp. The combination #M causes the following object to be visible only when
compiling for Maclisp. These work both on subexpressions of the objects in the file and at top
level in the file. To conditionalize top-level objects, however, it is better to put the macros if-
for-lispm and if-for-maclisp around them. The if-for-lispm macro turns off run-in-maclisp-
switch within its object, preventing spurious warnings from the compiler. The #Q macro-
character cannot do this, since it can be used to conditionalize any S-expression, not just a top-
level form.

To allow a file to detect what environment it is being compiled in, the following macros are
provided:

if-for-1ispm form Macro
If (if-for-lispm form) is seen at the top level of the compiler, form is passed to the
compiler top level if the output of the compiler is a QFASL file intended for Zetalisp. If
the Zetalisp interpreter sees this it will evaluate form (the macro expands into form).

if-for-maclisp form Macro
If (if-for-maclisp form) is seen at the top level of the compiler, Jorm is passed to the
compiler top level if the output of the compiler is a FASL file intended for Maclisp (e.g.
if the compiler is COMPLR). If the Zetalisp interpreter sees this it will ignore it (the
macro expands into nil).

if-for-maclisp-else-1ispm maclisp-form lispm-form Macro
If (if-for-maclisp-else-lispm form! form2) is seen at the top level of the compiler,
forml is passed to the compiler top level if the output of the compiler is a FASL file
intended for Maclisp; otherwise form2 is passed to the compiler top level.

SRCALMAN>COMPIL.TEXT.89 24-JAN-83

L.isp Machinc Manual 245 _ Putting Data in QFASL. Files

if-in-Tispm form Macro
‘In Zetalisp, (if-in-lispm form) causes form to be cvaluated; in Maclisp, form is ignored.

if-in-maclisp form Macro
In Maclisp, (if-in-maclisp form) causes form to be cvaluated; in Zetalisp, form is
ignored.

In order to make surc that those macros are defined when reading the file into the Maclisp
~ compiler, you must make the file start with a prelude, which should look like:
(declare (cond ((not (status feature lispm))

(load *|AI: LISPM2; CONDIT|))))

;; Or other suitable filename
This will do nothing when you compile the program on the Lisp Machine. If you compile it with
the Maclisp compiler, it will load in definitions of the above macros, so that they will be
available to your program. The form (status feature lispm) is gencrally useful in other ways; it
evaluates to t when evaluated on the Lisp machine and to nil when evaluated in Maclisp.

16.8 Putting Data in QFASL Files

It is possible to make a QFASL file containing data, rather than a compiled program. This
can be useful to speed up loading of a data structure into the machine, as compared with reading
in printed representations. Also, certain data structures such as arrays do not have a convenient
printed representation as text. but can be saved in QFASL files. For example, the system stores
fonts this way. Each font is in a QFASL file (on the SYS: FONTS; directory) that contains the
data structures for that font. When the file is loaded, the symbol that is the name of the font
gets set to the array that represents the font. Putting data into a QFASL file is often referred to
as "fasdumping the data”.

In compiled programs, the constants are saved in the QFASL file in this way. The compiler
optimizes by making constants that are equal become eq when the file is loaded. This does not
happen when you make a data file yourself; identity of objects is preserved. Note that when a
QFASL file is loaded, objects that were eq when the file was written are still eq; this does not
normally happen with text files.

The following types of objects can be represented in QFASL files: Symbols (but uninterned
symbols will be interned when the file is loaded), numbers of all kinds, lists, strings, arrays of all
kinds, instances, and FEFs.

When an instance is fasdumped (put into a QFASL file), it is sent a :fasd-form message,
which must return a Lisp form that, when evaluated, will recreate the equivalent of that instance.
This is because instances are often part of a large data structure, and simply fasdumping all of
the instance variables and making a new instance with those same values is unlikely to work.
Instances remain eq; the :fasd-form message is only sent the first time a particular instance is
encountered during writing of a QFASL file. If the instance does not accept the :fasd-form
message, it cannot be fasdumped.

SRCKLMAN>COMPIL.TEXT.89 24-JAN-83

Putting Data in QIFASI. Files 246 Lisp Machine Manual

dump-forms-to-file filename forms-list &optional attribute-list
Writes a QFASL file named filename which contains, in cffect. the forms in forms-list.
That is to say, when the file is loaded, its effect will be the same as evaluating those
forms.
Example:
(dump-forms-to-file "foo" '((setq x 1) (setq y 2)))
(1oad "foo")
x =>1
y =>2

atiribute-list is the file attribute list to store in the QFASI. file. It is a list of alternating
keywords and values, and corresponds to the -*- line of a source file. The most useful
keyword in this context is :package, whosc value in the autribute list specifies the package
to be used both in dumping the forms and in loading the file. If no :package keyword
is present, the file will be loaded in whatever package is current at the time.

_compiler:fasd-symbol-value filename symbol
Writes a QFASL file named filename which contains the value of symbol. When the file
is loaded, symbol will be setg'ed to the same value. filename is parsed with the same
defaults that load and qc-file use. The file type defaults to "QFASL".

compiler:fasd-font name
Writes the font named name into a QFASL file with the appropriate name (on the SYS:
FONTS; directory).

compiler:fasd-file-symbols-properties filename symbols properties dump-values-p
dump-functions-p new-symbol-function
This is a way to dump a complex data structure into a QFASL file. The values, the
function definitions, and some of the properties of certain symbols are put into the
QFASL file in such a way that when the file is loaded the symbols will be setqed,
fdefined, and putpropped appropriately. The user can control what happens to symbols
discovered in the data structures being fasdumped.

filename is the name of the file to be written. It is parsed with the same defaults that
load and gc-file use. The file type defaults to "QFASL".

symbols is a list of symbols to be processed. properties is a list of properties which are to
be fasdumped if they are found on the symbols. dump-values-p and dump-functions-p
control whether the values and function definitions are also dumped.

new-symbol-function is called whenever a new symbol is found in the structure being
dumped. It can do nothing, or it can add the symbol to the list to be processed by
calling compiler:fasd-symbol-push. The value returned by new-symbol-function is
ignored.

SRC:KL.MAN>COMPIL.TEXT.89 24-JAN-83

[.isp Machine Manual 247 Analyzing QFAS]. Files

16.9 Analyzing QFASL Files

QFASL files are composed of 16-bit nibbles. The first two nibbles in the file contain fixed
values, which are there so the system can tell a proper QFASL file. The next nibble is the
beginning of the first group. A group starts with a nibbie that specifies an operation. It may be
followed by other nibbles that are arguments,

Most of the groups in a QFASI. file are there to construct objects when the file is loaded.
These objects are recorded in the fasl-table. Each time an object is constructed, it is assigned the
next sequential index in the fasl-table. The indices are used by other groups later in the file, to
refer back to objects already constructed.

To prevent the fasl-table from becoming too large, the QFASL file can be divided into
whacks. The fasl table is cleared out at the beginning of each whack.

The other groups in the QFASL file will perform operations such as evaluating a list
previously constructed or storing an object into a symbol’s function cell or value cell.

If you are having trouble with a QFASIL file and want to find out exactly what it does when
it is loaded, you can use UNFASL to find out.

si:unfasl-print input-file-name
Prints on standard-output a description of the contents of the QFASL file input-file-
name.

si:unfasi-file input-file-name &optional output-file-name
Writes a description of the contents of the QFASL file input-file-name into the output file.
The output file type defaults to UNFASL and the rest of the pathname defaults from
input-file-name.

16.10 Compiler Interlocking

Because the compiler uses a temporary area for its internal data (so as to avoid the need for
frequent garbage collection), it is not reentrant. Only one process can use the compiler at any
given time.

Calling the compiler when it is in use in another process will wait until the other compilation
is finished, and also produce a notification: "Compiler waiting for resources in process
LOSSAGE-5". If the other compilation is proceeding, eventually it will finish and this one will
begin. If the other compilation is hung for some reason, such as because it is waiting to type out
on an unexposed window, or is havmg trouble with file servers, you should go to that process

soh Ae alan

At at: ion tn Bead it ab

A tha +han M.«..
andg Ciuicr causc uic \.Ulllp aliull tu DI Ul aUUIL 1L

compiler:locking-resources body.. Special Form
Executes the body, having locked the compiler lock.

SRC:KLMAN>COMPIL.TEXT.89 24-JAN-83

	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247

