Macros 248 Lisp Machine Manual

17. Macros

17.1 Introduction to Macros

If eval is handed a list whose car is a symbol, then eval inspects the definition of the symbol
to find out what to do. If the definition is a cons, and the car of the cons is the symbol macro,
then the definition (i.e. that cons) is called a macro. The cdr of the cons should be a function of
onc argumcnt. eval applies the function to the form it was originally given, takes whatever is
returned, and evaluates that in licu of the original form.

Here is a simple cxample. Suppose the definition of the symbol first is
(macro lambda (x)
(1ist *car (cadr x)))
This thing is a macro: it is a cons whose car is the symbol macro. What happens if we try to
cvaluate a form (first '(a b ¢))? Well, eval sces that it has a list whose car is a symbol (namely,
first), so it looks at the definition of the symbol and sces that it is a cons whose car is macro:
the definition is a macro.

eval takes the cdr of the cons. which is supposed to be the macro’s expander function, and
calls it providing as an argument the original form that eval was handed. So it calls (lambda (x)
(list 'car (cadr x))) with argument (first (@ b c)). Whatever this rcturns is the expansion of the
macro call. It will be cvaluated in place of the original form.

In this case, x is bound to (first '(a b c¢)), (cadr x) cvaluates to '(a b ¢), and (list 'car
(cadr x)) cvaluates to (car '(a b ¢)), which is the expansion. eval now evaluates the expansion.
(car ’(a b c)) returns a, and so the result is that (first ’(a b c¢)) returns a.

What have we done? We have defined a macro called first. What the macro does is to
translate the form to some other form. QOur translation is very simple—it just translates forms that
look like (first x) into (car x), for any form x. We can do much more intercsting things with
macros, but first we will show how to define a macro.

macro Special Form
The primitive special form for defining macros is macro. A macro definition looks like
this:
(macro name (arg)
body)
name can be any function spec. arg must be a variable. body is a sequence of Lisp
forms that expand the macro; the last form should return the expansion.

To define our first macro, we would say
(macro first (x)
(1ist 'car (cadr x)))

Here are some more simple examples of macros. Suppose we want any form that looks like
(addone x) to be translated into (plus 1 x). To define a macro to do this we would say

SRCKL.MANDMACROS.TEXT.75 24-JAN-83

Iisp Machinc Manual 249 Introduction to Macros

(macro addone (x)
(list *plus ’1 (cadr x)))

Now say we wanted a macro which would translate (increment x) into (setq x (1+ x). This

would be:
{macro increment {x)
(list ’setqg (cadr x) (list '1+ (cadr x))))

Of course, this macro is of limited uscfulness. The reason is that the form in the cadr of the
increment form had better be a symbol. If you tried (increment (car x)), it would be translated
into (setq (car x) (1+ (car x))), and setq would complain. (If you're interested in how to fix
this problem, see setf (page 270); but this is irrelevant to how macros work.)

You can see from this discussion that macros are very different from functions. A function
would not be able to tell what kind of subforms are around in a call to itself; they get evaluated
before the function ever sees them. However, a macro gets to look at the whole form and see
just what is going on there. Macros are not functions; if first is dcfined as a macro, it is not
meaningful to apply first to arguments. A macro does not take arguments at all; its expander
function takes a Lisp form and turns it into another Lisp form.

The purpose of functions is to compute; the purpose of macros is to translate. Macros are
used for a variety of purposes, the most common being extensions to the Lisp language. For
example, Lisp is powerful enough to express many different control structures, but it does not
provide every control structurc anyone might ever possibly want. Instead, if a user wants some
kind of control structurc with a syntax that is not provided, he can translate it into some form
that Lisp does know about.

For example, someone might want a limited iteration construct which increments a variable by
one until it exceeds a limit (like the FOR statement of the BASIC language). He might want it
to look like

(for a 1 100 (print a) (print (* a a)))
To get this, he could write a macro to translate it into

(do a 1 (1+ a) (> a 100) (print a) (print (* a a)))
A macro to do this could be defined with

(macro for (x)

(cons ’do
(cons (cadr x)
(cons (caddr x)
(cons (1list ’1+ (cadr X))
(cons (list '> (cadr x) (cadddr x))
(cddddr x))}))))

Now he has defined his own new control structure primitive, and it will act just as if it were a

special form provided by Lisp itself.

SRC:KL.MAN>MACROS.TEXT.75 24-JAN-83

Aids for Defining Macros 250 1.isp Machine Manual

17.2 Aids for Defining Macros

‘The main problem with the definition for the for macro is that it is verbose and clumsy. If it
is that hard to writec a macro to do a simple specialized iteration construct, one would wonder
how anyone could write macros of any real sophistication.

There arc two things that make the definition so inclegant. Onc is that the programmer must
write things like "(cadr x)" and "(cddddr x)" to refer to the parts of the form he wants to do
things with. The other problem is that the long chains of calls to the list and cons functions are
very hard to read. '

Two features are provided to solve these two problems. The defmacro macro solves the
former, and the "backquote” (*) reader macro solves the latter.

17.2.1 Defmacro

Instead of referring to the parts of our form by "(cadr x)" and such, we would like to give
names to the various pieces of the form, and somchow have the (cadr x) automatically generated.
This is donec by a macro called defmacro. It is easicst to explain what defmacro does by
showing an cxample. Here is how you would write the for macro using defmacro:

(defmacro for (var lower upper . body)
{(cons ’do
(cons var
(cons lower
(cons (list 1+ var)
(cons (list ’> var upper)

body))))))

The (var lower upper . body) is a pattern to match against the body of the form (to be
more precise, to match against the cdr of the argument to the macro’s cxpander function). If
defmacro trics to match the two lists

(var Tower upper . body)

and

(a1 100 (print a) (print (* a a)))
var will get bound to the symbol a, lower to the fixnum 1, upper to the fixnum 100, and body
to the list ((print a) (print (* a a))). Then inside the body of the defmacro, var, lower, upper,
and body arc variables, bound to the matching parts of the macro form.

defmacro Macro

defmacro is a general purpose macro-defining macro. A defmacro form looks like
(defmacro name pattern . body)

The pattern may be anything made up out of symbols and conses. It is matched against
the body of the macro form; both pattern and the form are car'ed and cdred identically,
and whenever a non-nil symbol is hit in pattern, the symbol is bound to the
corresponding part of the form. All of the symbols in pattern can be used as variables
within body. name is the name of the macro to be defined; it can be any function spec
(see section 10.2, page 154). body is evaluated with thesc bindings in effect, and its result
is returned to the evaluator as the expansion of the macro.

SRC:<ILMAN>MACROS.TEXT.75 24-JAN-83

1.isp Machine Manual 251 ‘ Aids for Defining Macros

Note that the pattern need not be a list the way a lambda-list must. In the above example,
the pattern was a "dotted list”, since the symbol body was supposed to match the cddddr of the
macro form. If we wanted a new iteration form, like for except that our example would look like

(for a (1 100) (print a) (print (* a a}))
(just because we thought that was a nicer syntax), then we could do it merely by modifying the
patteri of the defmacro above; the new pattern would be (var (lower upper) . body).

Here is how we would writc our other examples using defmacro:
(defmacro first (the-list)
(1ist ’car the-1list))

(defmacro addone (form)
(1ist *plus 1 form))

(defmacro increment (symbol)
(1ist ’setq symbol (list ’1+ symbol}))
All of these were very simple macros and have very simple patterns, but these examples show
that we can replace the (cadr x) with a rcadable mnemonic name such as the-list or symbol,
which makes the program clearer, and cnables documentation facilities such as the arglist function
to describe the syntax of the special form defined by the macro.

There is another version of defmacro which defines displacing macros (see section 17.6, page
267). defmacro has other, more complex features; sce section 17.7, page 268.

17.2.2 Backquote

Now we deal with the other problem: the long strings of calls to cons and list. This
problem is relieved by introducing some new characters that are special to the Lisp reader. Just
as the single-quote character makes it easier to type things of the form (quote x), so will some
more new special characters make it easier to type forms that creatc new list structure. The
functionality provided by these characters is called the backquote facility, which allows you to
create a list from a template including constant and variable parts.

The backquote facility is used by giving a backquote character ('), followed by a form. If
the form does not contain any use of the comma character, the backquote acts just like a single
quote: it creates a form which, when evaluated, produces the form following the backquote. For
example,

(abc)=>(abc)
‘(abc)=>(abc)
So in the simple cases, backquote is just like the regular single-quote macro. The way to get it to
do interesting things is to include a comma somewhere inside of the form following the
backquote. The comma is followed by a form, and that form gets evaluated even though it is
inside the backquote. For example,
(setq b 1)
‘fabc) =>(abc)
‘(a ,bc) =>(alc)
‘(abc ,(+ b 4) ,(- b 1) (def ,b)) => (abc 5 0 (def 1))
In other words, backquote quotes everything except things preceded by a comma; those things get

SRCKXLMAN>MACROS.TEXT.75 24-JAN-83

Aids for Defining Macros 252 L.isp Machine Manual

cvaluated.

A list following a backquote can be thought of as a template for some new list structure. The
parts of the list that are preceded by commas are forms that fill in slots in the template;
cverything clse is just constant structure that will appear in the result. This is usually what you
want in the body of a macro; some of the form gencrated by the macro is constant, the same
thing on cvery invocation of the macro. Other parts are different every time the macro is called,
often being functions of the form that the macro appeared in (the "arguments” of the macro).
The latter parts arce the ones for which you would use the comma. Several examples of this sort
of use follow.

When the reader sces the “(a ,b ¢) it is actually generating a form such as (list 'a b ’¢).
The actual form generated may usc list, cons, append. or whatever might be a good idea; you
should never have to concern yourself with what it actually turns into. All you need to care
about is what it evaluates to. Actually, it doesn’t use the regular functions cons, list, and so
forth, but uses special ones instead so that the grinder can recognize a form which was created

. with the backquote syntax, and print it using backquote so that it looks like what you typed in.
You should never write any program that depends on this, anyway, becausc backquote makes no
guarantees about how it does what it does. In particular, in some circumstances it may decide to
create constant forms, that will cause sharing of list structure at run time, or it may decide to
create forms that will create new list structure at run time. For cxample, if the readers sees *(r
.,nil), it may produce the same thing as (cons 'r nil), or "(r.nil). Be careful that your program
does not depend on which of these it does.

This is generally found to be pretty confusing by most people; the best way to explain
further seems to be with examples. Here is how we would write our three simple macros using
both the defmacro and backquote facilities.

(defmacro first (the-list)
‘(car ,the-1list))

(defmacro addone (form)
‘(plus 1 ,form))

(defmacro increment (symbol)
‘(setq ,symbol (1+ ,symbol)))
To finally demonstrate how easy it is to define macros with these two facilities, here is the final
form of the for macro.
(defmacro for (var lower upper . body)
‘(do ,var ,lower (1+ ,var) (> ,var ,upper) . ,body))
Look at how much simpler that is than the original definition. Also, look how closely it
resembles the code it is producing. The functionality of the for really stands right out when
written this way.

If a comma inside a backquote form is followed by an “atsign” character (@), it has a special
meaning. The ",@" should be followed by a form whose value is a list; then each of the
clements of the list is put into the list being created by the backquote. In other words, instead of
generating a call to the cons function, backquote generates a call to append. For example, if a
is bound to (x y z), then ‘(1 ,a 2) would evaluate to (1 (x y 2z) 2, but ‘(1 ,@a 2) would
evaluate to (1 x y z 2).

S C:KLMAN>MACROS.TEXT.7S 24-JAN-83

1isp Machine Manual 253 Aids for Defining Macros

Here is an example of a macro definition that uses the ",@" construction. On way to define
do-forever would be for it to cxpand
(do-forever forml form2 form3)
into
(prog ()
a forml
form2
form3

(go a))

You could define the macro by
(defmacro do-forever (&body body)

“(prog ()
a ,@body

(go a)})

A similar construct is ",." (comma, dot). This means the same thing as ",@" except that the
list which is the value of the following form may be modified destructively; backquote uses
nconc rather than append. This should of course be used with caution.

Backquote does not make any guarantees about what parts of the structure it shares and what
parts it copies. You should not do destructive operations such as nconc on the results of
backquote forms such as

‘(,a b c d)
since backquote might choose to implement this as
(cons a '(b c d})
and nconc would smash the constant. On the other hand, it would be safe to nconc the result
of
‘fab ,c ,d)
since there is nothing this couid expand into that does not involve making a new list, such as
(1ist "a 'b c d)

Backquote of coursc guarantees not to do any destructive operations (rplaca, rplacd, nconc)

on the components of the structure it builds, unless the ",." syntax is used.

Advanced macro writers sometimes write "macro-defining macros”: forms which expand into
forms which, when evaluated, define macros. In such macros it is often useful to use nested
backquote constructs. The following example illustrates the use of nested backquotes in the
writing of macro-defining macros.

This example is a very simple version of defstruct (see page 300). You should first
understand the basic description of defstruct before proceeding with this example. The defstruct
below does not accept any options and allows only the simplest kind of items; that is, it allows
only forms like

SRCKL.MAN>MACROS.TEXT.75 24-JAN-83

Aids for Defining Macros 254 I.isp Machine Manual

(defstruct (name)
iteml
item2
item3
item4

.))

We would like this form to expand into
(progn ’'compile
(defmacro iteml (x)
‘(aref ,x 0))
(defmacro item2 (x)
‘(aref ,x 1))
(defmacro item3 (x)
‘(aref ,x 2))
(defmacro itemd (x)
‘(aref ,x 3))
.)

(The meaning of the (progn ’compile ...) is discussed on page 260.) Here is the macro to
perform the expansion:
(defmacro defstruct ((name) . items)

(do ((item-list items (cdr item-list))
(ans nil)
(i 0 (1+1)))

((null item-Tist)
“(progn 'compile . ,(nreverse ans)))
(setq ans
(cons ‘(defmacro ,(car item-list) (x)
‘(aref ,x ,’,i))

ans))))

The interesting part of this definition is the body of the (inner) defmacro form:
‘(aref ,x ,’,i)
Instead of using this backquote construction, we could have written
(Tist ’aref x ,i)
That is, the ",," acts like a comma that matches the outer backquote, while the "," preceding the

x" matches with the inner backquote. Thus, the symbol i is evaluated when the defstruct form
is expanded, whereas the symbol x is cvaluated when the accessor macros are expanded.

Backquote can be useful in situations other than the writing of macros. Whenever there is a

piece of list structure to be consed up, most of which is constant, the use of backquote can make
the program considerably clearer.

SKCKL.MAN>MACROS. TEXT.75 24-JAN-83

Lisp Machine Manual 255 Substitutable Functions

17.3 Substitutable Functions

A substitutable function is a function that is open coded by the compiler. It is like any other
function when applied, but it can be expanded instcad, and in that regard rescmbles a macro.

defsubst Special Form

defsubst is used for defining substitutable functions. It is used just like defun.

(defsubst name lambda-list . body)
and does almost the same thing. 1t defines a function that exccutes identically to the one
that a similar call to defun would define. The difference comes when a function that calls
this one is compiled. Then, the call is open-coded by substituting the substitutable
function’s definition into the code being compiled. The function itself looks like (named-
subst name lambda-list . body). Such a function is called a subst. For example, if we
define :

(defsubst square (x) (* x x))

(defun foo (a b) (square (+ a b)))
then if foo is used interpreted. square will work just as if it had been defined by defun.
If foo is compiled, however, the squaring will be substituted into it and it will compile
just like

(defun foo (a b) (*+ (+ a b) (+ ab)))
square’s definition would be

{named-subst square (x) (* x x))
(The internal formats of substs and named-substs are explained in section 10.5.1, page
161.)

A similar square could be defined as a macro, with

(defmacro square (x) “(* ,x ,x))
In general, anything that is implemented as a subst can be re-implemented as a macro,
just by changing the defsubst to a defmacro and putting in the appropriatc backquote
and commas. The disadvantage of macros is that they are not functions, and so cannot
be applied to arguments. Their advantage is that they can do much more powerful things
than substs can. This is also a disadvantage since macros provide more ways to get into
trouble. If something can be implemented either as a macro or as a subst, it is generally
better to make it a subst.

The lambda-list of a subst may contain &optional and &rest, but no other lambda-list
keywords. If there is a rest-argument, it is replaced in the body with an explicit call to
list:
(defsubst append-to-foo (&rest args)
(setq foo (append args foo)))

(append-to-foo x y 2)
expands to
(setq foo (append (list x y z) foo))

Rest arguments in substs are most useful with lexpr-funcall, because of an optimization
that is done:

SRC:KLL.MAN>MACROS.TEXT.7S 24-JAN-83

Hints to Macro Writers 256 Lisp Machine Manual

(defsubst xhack (&rest indices)
(lexpr-funcall 'xfun xargl indices))

(xhack a (car b))
is equivalent to
(xfun xargl a (car b))
If xfun is itself a subst, it will be expanded in turn.

When a defsubst is compiled, its list structure definition is kept around so that calls can
still be open-coded by the compiler. But non-open-coded calls to the function run at the
speed of compiled code. ‘The interpreted definition is kept in the compiled definition’s
dcbugging info alist (scc page 172). Undeclared free variables used in a defsubst being
compiled do not get any warning, because this is a common practice that works properly
with nonspecial variables when calls are open coded.

If you arc using a defsubst from outside the program to which it belongs, you might
sometimes be better off if it is not open-coded. The decrease in speed might not be
significant, and you would have the advantage that you would not need to recompile your
program if the definition is changed. You can prevent open-coding by putting dont-
optimize around the call to the defsubst.

(dont-optimize (xhack a (car b)))
See page 233.

You will notice that the substitution performed is very simple and takes no care about the
possibility of computing an argument twicc when it really ought to be computed once.
For instance, in the current implementation, the functions

(defsubst reverse-cons (x y) (cons y x))

(defsubst in-order (a b c) (and (< a b) (< b c)))
would present problems. When compiled, because of the substitution a call to reverse-
cons would evaluate its arguments in the wrong order, and a call to in-order could
evaluate its second argument twice. This will be fixed at some point in the future, but
for now the writer of defsubst’s must be cautious. Also all occurrences of the argument
names in the body are replaced with the argument forms, wherever they appear. Thus an
argument name should not be used in the body for anything else, such as a function
name or a symbol in a constant.

As with defun, name can be any function spec.

17.4 Hints to Macro Writers

There are many useful techniques for writing macros. Over the years, Lisp programmers have
discovered techniques that most programmers find useful, and have identified pitfalls that must be
avoided. This section discusses some of these techniques and illustrates them with examples.

The most important thing to keep in mind as you learn to writc macros is that the first thing
you should do is figure out what the macro form is supposed to expand into, and only then
should you start to actually write the code of the macro. If you have a firm grasp of what the
generated Lisp program is supposed to look like, you will find the macro much ecasier to write.

SRC:KL.MAN>MACROS.TEXT.7S 24-JAN-83

Lisp Machine Manual 257 ‘ Hints to Macro Writers

In general any macro that can be written as a substitutable function (sec page 255) should be
written as one, not as a macro, for scveral rcasons: substitutabie functions are casier to write and
to read: they can be passed as functional arguments {for cxample, you can pass them to
mapcar); and there are some subtleties that can occur in macro definitions that nced not be
worricd about in substitutable functions. A macro can bc a substitutable function only if it has
exactly the semantics of a function, rather than of a special form. The macros we will sce in this
section arc not semantically like functions; they must be written as macros.

17.4.1 Name Conflicts

One of the most common errors in writing macros is best illustrated by example. Suppose we
wanted to write dolist (sce page 49) as a macro that expanded into a do (see page 45). The first
step, as always, is to figure out what the expansion should look like. Iet's pick a representative
example form, and figure out what its expansion should be. Here is a typical dolist form.

(dolist (element (append a b))
(push element *big-Tists)
(foo element 3))

We want to create a do form that does the thing that the above dolist form says to do. That
is the basic goal of the macro: it must expand into code that does the same thing that the
original code says to do, but it should be in terms of cxisting lLisp constructs. The do form
might look like this:

(do {(1ist (append a b) (cdr list))
(element))
{(null Tist))
(setqg element {car 1list))
(push element *big-list#)
(foo element 3))

Now we could start writing the macro that would generate this code, and in general convert
any dolist into a do, in an analogous way. However, there is a problem with the above scheme
for expanding the dolist. The above expansion works fine. But what if the input form had been
the following:

(dolist (list (append a b))
(push 1ist *big-lists)
(foo 1list 3))

This is just like the form we saw above, except that the programmer happened to decide to
1 varia d

ARPEeAcTnAT A1 AVRAPAIAT G 1

o o Ll Bk o JRUUE U PEY "P]‘- N o d aeal Toae
UpINE vdilauIC BWSL I4Uuicl Ulail eiement. 1ne CONICsponaliiyg Cxpdiisioi wouid ve.

SRCKLMAN>MACROS.TEXT.75 24-JAN-83

Hints to Macro Writers 258 1.isp Machine Manual

(do ((1ist (append a b) (cdr list))
(Tist))
((pull Tist))
(setq list (car list))
(push 1ist *big-Tists)
(foo 1list 3))

This docsn’t work at all! In fact, this is not even a valid program, since it contains a do that
uses the same variable in two diffcrent iteration clauses.

Here’s another cxample that causes trouble:

(let ((1ist nil))
(dolist (element (append a b))
(push element 1ist)
(foo Tist 3)))

If you work out the expansion of this form, you will sece that there are two variables named
list, and that the programmer meant to refer to the outer one but the generated code for the
push actually uses the inner one.

The problem here is an accidental name conflict. This can happen in any macro that has to
create a new variable. If that variable ever appears in a context in which user codc might access
it, then you have to worry that it might conflict with some other name that the user is using for
his own program.

One way to avoid this problem is to choose a name that is very unlikely to be picked by the
user, simply by choosing an unusual name. This will probably work, but it is inelegant since
there is no guarantee that the user won’t just happen to choose the same name. The way to
really avoid the name conflict is to use an uninterned symbol as the variable in the generated
code. The function gensym (see page 101) is useful for creating such symbols.

Here is the expansion of the original form, using an uninterned symbol created by gensym.

(do ((g0005 (append a b) (cdr g0005))
(element))
((null g0005))
(setq element (car g0005))
(push element *big-lists)
(foo element 3))

This is the right kind of thing to expand into. Now that we understand how the expansion
works, we arc ready to actually write the macro. Here it is:

SRC:KI.MAN>MACROS.TEXT.75 24-JAN-83

Lisp Machine Manual 259 Hints to Macro Writers

(defmacro dolist ((var form) . body)
(let ((dummy {gensym)))
“(do ((,dummy ,form (cdr ,dummy))
(,var))
{{null ,dummy))
(setq .var (car ,dummy))
.body)))

Many system macros do not use gensym for the internal variables in their expansions.
Instcad they use symbols whose print names begin and end with a dot. This provides meaningful
names for these variables when looking at the generated code and when looking at the state of a
computation in the error-handler. However, this convention mecans that users should avoid
naming variables this way.

17.4.2 prog-context Conflicts

A related problem occurs when you write a macro that cxpands into a prog (or a do, or
something that cxpands into prog or do) behind the user’s back (unlike dolist, which is
documented to be like do). Consider the error-restart special form (see page 577). Suppose we
wanted to implement it as a macro that cxpands into a prog. If it expanded into a plain old
prog, then the following (contrived) Lisp program would not behave correctly:

(prog ()
(setq a 3)
(error-restart ((sys:abort error) "Return from F00.")
(cond ((> a 10)
{(return 5))
((> a 4)

(ferror ’lose "You lose."))))

(setq b 7))

The problem is that the return would return from the error-restart instead of the prog. The
way to avoid this problem is to use a named prog whose name is t. The name t is special in
that it is invisible to the return function. If we write error-restart as a macro that expands into
a prog named t, then the return will pass right through the error-restart form and return from
the prog, as it ought to.

When error-restart’s cxpansion is supposed to return from the prog named t, it uses return-
from t.

In general, when a macro expands into a prog or a do around the user’s code, the prog or
do should be named t so that return forms in the user code will return to the right place, unless

the macro is documented as generating a prog/do-like form which may be exited with return.

SRC:KLMAN>MACROS.TEXT.75 24-JAN-83

Hints to Macro Writers 260 Lisp Machine Manual

17.4.3 Macros Expanding into Many Forms

Sometimes a macro wants to do several different things when its cxpansion is evaluated.
Another way to say this is that sometimes a macro wants to cxpand into scveral things, all of
which should happen scquentially at run time (not macro-cxpand time). For cxample, suppose
you wanted to implement defconst (sec page 20) as a macro. defconst must do two things,
declare the variable to be special and set the variable to its initial value. (We will implement a
simplificd defconst that docs only these two things, and docsn’t have any options.) What should
a defconst form cxpand into? Well, what we would like is for an appearance of

(defconst a (+ 4 b))
in a file to be the same thing as the appearance of the following two forms:

(declare (special a))

(setq a (+ 4 b))
However, because of the way that macros work, they only expand into one form, not two. So
we nced to have a defconst form expand into one form that is just like having two forms in the
file.

There is such a form. It looks like this:
(progn ’compile

(decTare (special a))

(setq a (+ 4 b)))
In interpreted Lisp, it is easy to sec what happens here. This is a progn special form, and so all
its subforms are evaluated, in turn. First the form 'compile is evaluated. The result is the
symbol compile; this value is not used, and evaluation of 'compile has no side-effects, so the
‘compile subform is effectively ignored. Then the declare form and the setq form are cvaluated.
So far, so good.

The interesting thing is the way this form is trecated by the compiler. The compiler specially
recognizes any progn form at top level in a file whose first subform is 'compile. When it sees
such a form. it processes each of the remaining subforms of the progn just as if that form had
appeared at top level in the file. So the compiler behaves exactly as if it had encountered the
declare form at top level, and then encountered the setq form at top level, even though neither
of those forms was actually at top-level (they werc both inside the progn). This feature of the
compiler is provided specifically for the benefit of macros that want to expand into several things.

Here is the macro definition:
(defmacro defconst (variable init-form)
‘(progn ’'compile
(declare (special ,variable))
(setq ,variable ,init-form)))

Here is another example of a form that wants to cxpand into several things. We will
implement a special form called define-command, which is intended to be used in order to
define commands in some interactive user subsystem. For each command, there are two things
provided by the define-command form: a function that exccutes the command, and a text string
that contains the documentation for the command (in order to provide an on-line interactive
documentation feature). This macro is a simplified version of a macro that is actually used in the
Zwei editor. Suppose that in this subsystem, commands are always functions of no arguments,
documentation strings are placed on the help property of the name of the command, and the

SRC:KLLMAN>MACROS.TEXT.75 24-JAN-83

1.isp Machine Manual 261 Hints to Macro Writers

names of all commands are put onto a list. A typical cali to define-command would look like:
“(define-command move-to-top
"This command moves you tc the top."
(do ()
{{(at-the-top-p}))
(move-up-one)))
This could expand into:
(progn 'compile
(defprop
move-to-top
"This command moves you to the top."
help)
(push ’move-to-top *command-name-lists)
(defun move-to-top ()
(do ()
((at-the-top-p))
(move-up-one)))
)
The define-command expands into threc forms. The first one sets up the documentation string
and the second one puts the command name onto the list of all command names. The third one
is the defun that actually defines the function itself. Note that the defprop and push happen at
load-time (when the file is loaded); the function, of course, also gets defined at load time. (See
the description of eval-when (page 231) for more discussion of the differences between compile
time, load time, and eval time.)

This technique makes Lisp a powerful language in which to implement your own language.
When you write a large system in Lisp, frequently you can make things much more convenient
and clear by using macros to extend Lisp into a customized language for your application. In the
above example, we have created a little language extension: a new special form that dcfines
commands for our system. It lets the writer of the system put his documentation strings right
next to the code that they document, so that the two can be updated and maintained together.
The way that the Lisp environment works, with load-time cvaluation able to build data structures,
lets the documentation data base and the list of commands be constructed automatically.

17.4.4 Macros that Surround Code

There is a particular kind of macro that is very useful for many applications. This is a macro
that you place "around” some Lisp code, in order to make the evaluation of that code happen in
some context. For a very simple example, we could define a macro called with-output-in-base,
that executes the forms within its body with any output of numbers that is done defaulting to a
specified base.

(defmacro with-output-in-base ((base-form) &body body)
*(let ((base ,base-form))
.body))
A typical use of this macro might look like:

SRC:KLMAN>MACROS.TEXT.75 24-JAN-83

Hints to Macro Writers 262 I.isp Machine Manual

(with-output-in-base (*default-base*)
{print x)
(print y))
which would expand into
(let {(base *default-base*))
{(print x)
(print y))

This example is too trivial to be very useful; it is intended to demonstrate some stylistic
issues. There are some special forms in Zetalisp that are similar to this macro; sec with-open-
file (page 431) and with-input-from-string (page 150), for example. The really interesting thing,
of course, is that you can define your own such special forms for your own specialized
applications. One very powerful application of this technique was used in a system that
manipulates and solves the Rubik’s cube puzzle. The system heavily uses a special form called
with-front-and-top. whose mecaning is "evaluate this code in a context in which this specified
face of the cube is considered the front face, and this other specified face is considered the top
face™.

The first thing to keep in mind when you write this sort of macro is that you can make your
macro much clearer to people who might read your program if you conform to a set of loose
standards of syntactic style. By convention, the names of such special forms start with "with-".
This scems to be a clear way of expressing the concept that we are sctting up a context; the
meaning of the special form is "do this stuff with the following things true”. Another convention
is that any "parameters” to the special form should appear in a list that is the first subform of the
special form, and that the rest of the subforms should make up a body of forms that are
cvaluated scquentially with the last one returned. All of the examples cited above work this way.
In our with-output-in-base cxample, there was one paramcter (the base), which appears as the
first (and only) element of a list that is the first subform of the special form. The extra level of
parentheses in the printed representation serves to separatec the "parameter” forms from the
"body"” forms so that it is textually apparent which is which; it also provides a convenient way to
provide dcfault parameters (a good example is the with-input-from-string special form (page
150), which takes two required and two optional “parameters”). Another convention/technique is
to use the &body keyword in the defmacro to tell the editor how to correctly indent the special
form (see page 268).

The other thing to keep in mind is that control can leave the special form either by the last
form’s returning, or by a non-local cxit (that is, something doing a *throw). You should write
the special form in such a way that cverything will be cleaned up appropriately no matter which
way control exits. In our with-output-in-base example, there is no problem, because non-local
exits undo lambda-bindings. However, in even slightly more complicated cases, an unwind-
protect form (see page 56) is needed: the macro must expand into an unwind-protect that
surrounds the body, with "cleanup” forms that undo the context-setting-up that the macro did.
For cxample, using-resource (sec page 94) is implemented as a macro that does an allocate-
resource and then performs the body inside of an unwind-protect that has a deallocate-
resource in its "cleanup” forms. This way the allocated resource item will be deallocated
whenever control Icaves the using-resource special form.

SRC:KL.MAN>MACROS.TEXT.75 24-JAN-83

1isp Machinc Manual 263 , Hints to Macro Writers

17.4.5 Multiple and Out-of-order Evaluation

In any macro, you should always pay attention to the problem of multiple or out-of-order
cvaluation of user subforms. Here is an example of a macro with such a problem. This macro
defines a special form with two subforms. The first is a reference, and the second is a form.
The special form is defined to create a cons whose car and cdr are both the value of the second
subform, and then to set the reference to be that cons. Here is a possible definition:

(defmacro test (reference form)
_ ‘(setf ,reference (cons ,form ,form)))
Simple cases will work all right:
(test foo 3) ==>
(setf foo (cons 3 3))
But a more complex example, in which the subform has side effects, can produce surprising
results:
(test foo (setq x {1+ x))) ==>
(setf foo (cons (setq x (1+ x))
(setg x (1+ x))))
The resulting code evaluates the setq form twice, and so x is incrcased by two instead of by one.
A better definition of test that avoids this problem is:
(defmacro test (reference form)
(iet ((value (gensym)j)
“(let ((,value ,form))
(setf ,reference (cons ,value ,value}))))
With this definition, the expansion works as follows:

A S R £ onnd e ==
{itest 760 (s8ig X {1+ xyy) ==>

(let ((g0005 (setq x (1+ x))))
(setf foo {cons g0005 g0005)})

In general, when you define a new special form that has some forms as its subforms, you
have to be carcful about just when those forms get cvaluated. If you aren’t carcful, they can get
evaluated more than once, or in an unexpected order, and this can be semantically significant if
the forms have side-effects. Therc’s nothing fundamentally wrong with multiple or out-of-order
cvalation if that is really what you want and if it is what you document your special form to do.
However, it is very common for special forms to simply bchave like functions, and when they are
doing things like what functions do, it's natural to expect them to be function-like in the
evaluation of their subforms. Function forms have their subforms evaluated, each only once, in
left-to-right order, and special forms that are similar to function forms should try to work that
way too for clarity and consistency.

There is a tool that makes it easier for you to follow the principle explained above. It is a
macro called once-only. It is most easily explained by example. You would write test using
once-aonly as follows:

(defmacro test (reference form)
(once-only (form)
‘(setf ,reference (cons ,form ,form))))
This defines test in such a way that the form is only evaluated once, and references to form
inside the macro body refer to that value. once-only automatically introduces a lambda-binding
of a generated symbol to hold the value of the form. Actually, it is more clever than that; it

avoids introducing the lambda-binding for forms whose evaluation is trivial and may be repeated

SRCKL.MAN>MACROS.TEXT.75 24-JAN-83

Hints to Macro Writers 264 LLisp Machine Manual

without harm or cost, such as numbers, symbols, and quoted structure. 'This is just an
optimization that helps produce more cfficient code.

The once-only macro makes it casier to follow the principle, but it does not completcly or
automatically solve the problems of multiple and out-of-order evaluation. It is just a tool that can
solve some of the problems some of the time; it is not a panacea.

The following description attempts to explain what once-only does, but it is a lot casier to
usc once-only by imitating the example above than by trying to understand once-only’s rather
tricky definition.

once-only Macro
A once-only form looks like
(once-only varlist

SJorml

Jorm2

.o)
var-list is a list of variables. The forms are a Lisp program that presumably uses the
values of thosc variables. When the form resulting from the cxpansion of the once-only
is evaluated, the first thing it does is to inspect the values of each of the variables in var-
list. these values are assumed to be Lisp forms. For each of the variables, it binds that
variable either to its current value, if the current value is a trivial form, or to a generated
symbol. Next, once-only cvaluates the forms in this new binding cnvironment and,
when they have been cvaluated, it undoes the bindings. The result of the evaluation of
the last form is presumed to be a Lisp form, typically the expansion of a macro. If all of
the variables have been bound to trivial forms, then once-only just returns that result.
Otherwise, once-only returns the result wrapped in a lambda-combination that binds the
generated symbols to the result of evaluating the respective non-trivial forms.

The cffect is that the program produced by cvaluating the once-only form is coded in
such a way that, each of the forms which was the value of onc of the variables in varlist
will be evaluated only once, unless the form is such as to have no side effects. At the
same time, no unnecessary temporary variables appear in the generated code, but the
body of the once-only is not cluttered up with extrancous code to decide whether
temporary variables are needed.

Caution! A number of system macros, setf for example, fail to follow this convention.
Unexpected multiple evaluation and out-of-order evaluation can occur with them. This was done
for the sake of efficicncy, is prominently mentioned in the documentation of these macros, and
will be fixed in the future. It would be best not to compromise the semantic simplicity of your
own macros in this way.

SRC:KLL.MAN>DMACROS.TEXT.75 24-JAN-83

Lisp Machine Manual 265 Hints to Macro Writers

17.4.6 Nesting Macros

A useful technique for building language extensions is to define programming constructs that
employ two special forms, one of which is used inside the body of the other. Here is a simple
cxample. There are two special forms. The outer one is called with-collection, and the inner
one is called collect. collect takes one subform, which it cvaluates; with-collection just has a
body. whose forms it evaluates sequentially. with-collection returns a list of all of the values
that were given to collect during the cvaluation of the with-collection’s body. For example,

(with-collection
{(dotimes (i 5)
(collect 1)))

=> (1 2 3 4 5)
Remembering the first picce of advice we gave about macros, the next thing to do is to figure out
what the expansion looks like. Here is how the above example could expand:
(Tet ((g0005 nil))
(dotimes (i 5)
(push i g0005))
(nreverse g0005))
Now, how do we write the definition of the macros? Well, with-collection is pretty easy:
(defmacro with-collection (&body body)
(1et ((var (gensym)))
‘(let ((,var nil))
,@body
{nreverse .var))))
The hard part is writing collect. Let’s try it:
{defmacro collect (argument)
‘{push ,argument ,var))
Note that something unusual is going on here: collect is using the variable var freely. It is
depending on the binding that takes place in the body of with-collection in order to get access
to the value of var. Unfortunately, that binding took place when with-collection got expanded;
with-collection’s expander function bound var, and it got unbound when the expander function
was done. By the time the collect form gets expanded, var has long since been unbound. The
macro definitions above do not work. Somchow the cxpander function of with-collection has to
communicate with the expander function of collect to pass over the generated symbol.

The only way for with-collection to convey information to the expander function of collect
is for it to expand into somcthing that passes that information. What we can do is to define a
special variable (which we will call *collect-variable*), and have with-collection expand into a
form that binds this variable to the name of the variable that the collect should use. Now,
consider how this works in the interpreter. The evaluator first sees the with-collection form and
calls the expander function to expand it. The expander function creates the expansion and returns
to the evaluator, which then cvaluates the expansion. The expansion includes in it a let form to
bind *collect-variable* to the generated symbol. When the evaluator sces this let form during
the cvaluation of the expansion of the with-collection form, it sets up the binding and
recursively evaluates the body of the let. Now, during the evaluation of the body of the let, our
special variable is bound, and if the expander function of collect gets run, it is able to see the
value of collection-variable and incorporate the gencrated symbol into its own expansion.

SRCALMAN>MACROS.TEXT.75 24-JAN-83

Hints to Macro Writers 266 1.isp Machine Manual

Writing the macros this way is not quite right. It works finc interpreted, but the problem is
that it does not work when we try to compile Lisp code that uses these special forms. When
code is being compiled, there isn’t any interpreter to do the binding in our new let form: macro
expansion is done at compile time, but generated code does not get run until the results of the
compilation are loaded and run. The way to fix our definitions is to use compiler-let instead of
let. compiler-let (scc page 238) is a special form that cxists specifically to do the sort of thing
we arc trying to do here. compiler-let is identical o let as far as the interpreter is concerned,
so changing our let to a compiler-let won’t affect the behavior in the interpreter; it will continue
to work. When the compiler encounters a compiler-let, however, it actually performs the
bindings that the compiler-let specifies and proceeds to compile the body of the compiler-let
with all of those bindings in effect. In other words, it acts as the interpreter would.

Here’s the right way to write these macros:
(defvar *collect-variable*)

(defmacro with-collection (&body body)
(let ((var (gensym)))
‘(let ((,var nil))
(compiler-let ((*collect-variablex *,var))
,body)
(nreverse ,var))))

(defmacro collect (argument)
‘(push ,argument ,*collect-variablesx))

17.4.7 Functions Used During Expansion

The technique of defining functions to be used during macro expansion deserves explicit
mention here. It may not occur to you, but a macro cxpander function is a Lisp program like
any other Lisp program, and it can benefit in all the usual ways by being broken down into a
collection of functions that do various parts of its work. Usually macro cxpander functions are
pretty simple Lisp programs that take things apart and put them together slightly differently, but
some macros are quite complex and do a lot of work. Secveral features of Zetalisp, including
flavors, loop, and defstruct, are implemented using very complex macros, which, like any
complex well-written Lisp program, are broken down into modular functions. You should keep
this in mind if you ever invent an advanced language cxtension or ever find yourself writing a
five-page expander function.

A particular thing to note is that any functions used by macro-cxpander functions must be
available at compile-time. You can make a function available at compile time by surrounding its
defining form with an (eval-when (compile load eval) ..); scc page 231 for more details.
Doing this mcans that at compile time the definition of the function will be interpreted, not
compiled, and hence will run more slowly. Another approach is to separate macro definitions and
the functions they call during expansion into a separate file, often called a "defs" (dcfinitions) file.
This file defines all the macros but does not use any of them. It can be scparately compiled and
loaded up before compiling the main part of the program, which uses the macros. The system
facility (sce chapter 25, page 520) helps keep these various files straight, compiling and loading
things in the right order.

SRC:KILMAN>MACROS.TEXT.75 24-JAN-83

LLisp Machine Manual 267 Aids for Debugging Macros

17.5 Aids for Debugging Macros

mexp
mexp gocs into a loop in which it reads forms and sequentially expands them, printing
out the tesult of cach cxpansion {using the grinder (sce page 426) to improve readability).
It terminates when it reads an atom (anything that is not a cons). If you typc in a form
that is not a macro form, there will be no expansions and so it will not type anything
out, but just prompt you for another form. This allows you to see what your macros are

cxpanding into, without actually cvaluating the result of the expansion.

17.6 Displacing Macros

Every time the the evaluator sees a macro form, it must call the macro to expand the form.
If this expansion always happens the same way, then it is wasteful to expand the whole form
every time it is reached; why not just expand it once? A macro is passed the macro form itself,
and so it can change the car and cdr of the form to something clse by using rplaca and rplacd!
This way the first time the macro is expanded, the cxpansion will be put where the macro form
used to be, and the next time that form is seen, it will alrcady be cxpanded. A macro that does
this is called a displacing macro, since it displaces the macro form with its expansion.

The major problem with this is that the lLisp form gets changed by its evaluation. [f you
were to write a program which used such a macro, call grindef to look at it, then run the
program and call grindef again, you would sce the expanded macro the sccond time. Presumably
the reason the macro is there at all is that it makes the program look nicer; we would like to
prevent the unnecessary expansions, but still let grindef display the program in 1ts more attractive
form. This is done with the function displace.

Anothing thing to worry about with displacing macros is that if you change the definition of a
displacing macro, then your new definition will not take effect in any form that has already been
displaced. If you redefine a displacing macro, an existing form using the macro will use the new
definition only if the form has never been evaluated.

displace form expansion
form must be a list. displace replaces the car and cdr of form so that it looks like:
(si:displaced original-form expansion)
original-form is equal to form but has a different top-level cons so that the replacing
mentioned above doesn't affect it. si:displaced is a macro, which returns the caddr of its
own macro form. So when the si:displaced form is given to the evaluator, it “expands”
to expansion. displace returns expansion.

The grinder knows specially about si:displaced forms, and will grind such a form as if it had
seen the original form instead of the si:displaced form.

So if we wanted to rewrite our addone macro as a displacing macro, instead of writing
(macro addone (x)
(list ’plus '1 (cadr x)))
we would write

SRC:KL.MAN>MACROS.TEXT.75 24-JAN-83

Advanced Features of Defiacro 268 : Lisp Machine Manual

(macro addone (x)
(displace x (list ’plus '1 (cadr x))))

Of course, we really want to use defmacro to define most macros. Since there is no way to
get at the original macro form itself from inside the body of a defmacro. another version of it is
provided:

defmacro-displace Macro
defmacro-displace is just like defmacro except that it defines a displacing macro, using
the displace function.

Now we can write the displacing version of addone as
(defmacro-displace addone (val)
(list *plus ’1 val))
All we have done in this example is change the defmacro into defmacro-displace. addone is
now a displacing macro.

17.7 Advanced Features of Defmacro

The pattern in a defmacro is more like the lambda-list of a normal function than revealed
above. It is allowed to contain certain &-keywords.

&optional is followed by variable, (variable), (variable default), or (variable default present-p),
exactly the same as in a function. Note that default is still a form to be evaluated, even though
variable is not being bound to the valuc of a form. variable does not have to be a symbol; it can
be a pattern. In this case the first form is disallowed because it is syntactically ambigous. The
pattern must be enclosed in a singleton list. If variable is a pattern, default can be evaluated
more than once.

Using &rest is the same as using a dotted list as the pattern, except that it may be easier to
read and leaves a place to put &aux.

&aux is the same in a macro as in a function, and has nothing to do with pattern matching.
defmacro has a couple of additional keywords not allowed in functions.

&body is identical to &rest except that it informs the editor and the grinder that the
remaining subforms constitute a “"body" rather than "arguments" and should be indented
accordingly.

&list-of pattern requires that the corresponding position of the form being translated must
contain a list (or nil). It matches pattern against each element of that list. FEach variable in
pattern is bound to a list of the corresponding values in each element of the list matched by the
&list-of. This may be clarified by an example. Suppose we want to be able to say things like

SRC:KI.MAN>MACROS.TEXT.75 24-JAN-83

Lisp Machine Manual 269 Functions to Expand Macros

(send-commands (aref turtle-table i)
(forward 100)
(beep)
(1eft 90)
{pen ’down ’'red)
{forward 50)
(pen 'up))
We could define a send-commands macro as follows:
{(defmacro send-commands (object
&body &list-of (command . arguments))
*{(let ((o ,object))
,(mapcar #'(lambda (com args) ‘(send o ',com . ,args))
command arguments)))
Note that this example uses &body together with &list-of, so you don’t sce the list itself; the list
is just the rest of the macro-form.

You can combinc &optional and &list-of. Consider the following example:
(defmacro print-let (x &optional &list-of ({vars vals)
*((base 10.)
(*nopoint t))))
*{(lambda (,@vars) {print ,x))
,@vals))

(print-let foo) ==>

{({lambda (base *nopoint)
(print foo})

12

t)

(print-let foo ((bar 3))) ==>
((1ambda (bar)
{print foo))
3)
In this example we aren’t using &body or anything like it, so you do see the list itself; that is
why you see parentheses around the (bar 3).

17.8 Functions to Expand Macros

The following two functions are provided to allow the user to control expansion of macros;
they are often useful for the writer of advanced macro systems, and in tools that want to examine
and understand code that may contain macros.

macroexpand-1 form
If form is a macro form, this expands it (once) and returns the expanded form.
Otherwise it just returns form. macroexpand-1 cxpands defsubst function forms as well
as macro forms.

SRCKLMAN>MACROS.TEXT.75 24-]JAN-83

Genceralized Variables 270 1.isp Machine Manual

macroexpand form
If form is a macro form, this cxpands it repeatedly until it is not a macro form and
returns the final cxpansion. Otherwise, it just returns form. macroexpand expands
defsubst function forms as well as macro forms.

17.9 Generalized Variables

In Lisp, a variable is something that can remember one picce of data. The main operations
on a variable are to recover that picce of data and to change it. These might be called access
and update. The concept of variables named by symbols, explained in section 3.1, page 15, can
be generalized to any storage location that can remember one piece of data, no matter how that
location is named.

For each kind of generalized variable, there are typically two functions which implement the
conceptual access and wupdate operations. For example, symeval accesses a symbols value cell,
and set updates it. array-leader accesses the contents of an array leader clement, and store-

" array-leader updates it. car accesses the car of a cons, and rplaca updates it.

Rather than thinking of this as two functions, which operate on a storage location somehow
deduced from their arguments, we can shift our point of view and think of the access function as
a name for the storage location. Thus (symeval 'foo) is a name for the value of foo, and (aref a
105) is a name for the 105th element of the array a. Rather than having to remember the
update function associated with each access function, we adopt a uniform way of updating storage
locations named in this way, using the setf special form. This is analogous to the way we use
the setq special form to convert the name of a variable (which is also a form which accesses it)
into a form that updates it.

setf is particularly useful in combination with structurc-accessing macros, such as those created
with defstruct, because the knowledge of the representation of the structure is embedded inside
the macro, and the programmer shouldn’t have to know what it is in order to alter an clement of
the structure.

setf is actually a macro which expands into the appropriate update function. It has a
database, explained below, that associates from access functions to update functions.

setf access-form value Macro

setf takes a form that accesses something and “inverts” the form to produce a
corresponding form to update the thing. A setf expands into an update form, which
stores the result of evaluating the form value into the place referenced by the access-form.
Examples:

(setf (array-leader foo 3) ’bar)

==> (store-array-leader ’'bar foo 3)

(setf a 3) ==> (setq a 3)

(setf (plist ’a) ’(foo bar)) ==> (setplist ’a ’(foo bar))

(setf (aref q 2) 56) ==> (aset 56 q 2)

(setf (cadr w) x) ==> (rplaca (cdr w) x)

SRC:KLLMAN>MACROS.TEXT.75 24-JAN-83

Lisp Machine Manual 271 . Gencralized Variables

If access-form invokes a macro or a substitutable function, then setf expands the access-
- form and starts over again. This lets you usc setf together with defstruct accessor macros.

For the sake of efficiency, the code produced by setf does not preserve order of

interacting side-cffects. For example, if you evaluate

(setq x 3)

(setf (aref a x) (setq x 4))
then the form might set element 3 or element 4 of the array. We do not guarantee
which one it will do; don’t just try it and sce and then depend on it, because it is
subject to change without notice.

Furthermore, the value produced by setf depends on the structure type and is not
guaranteed; setf should be used for side effect only.

Besides the access and update conceptual operations on variables, there is a third basic
operation, which we might call Jocate. Given the name of a storage cell, the locate operation will
return the address of that cell as a locative pointer (sece chapter 13, page 197). This locative
pointer is a first-class Lisp data object which is a kind of reference to the cell. It can be passed
as an argument to a function which operates on any kind of variable, regardless of how it is
named. It can be used to bind the variable, using the bind subprimitive (see page 212).

Of course, this can work only on variables whose implementation is really to store their value
in a memory cell. A variable with an wupdate operation that encrypts the value and an access
operation that decrypts it could not have the locate operation, since the value per se is not
actually stored anywhere.

locf access-form Macro
locf takes a form that accesses some cell, and produces a corresponding form to create a
locative pointer to that cell.
Examples:
(locf (array-leader foo 3)) ==> (ap-leader foo 3)
(locf a) ==> (value-cell-location ’a)
(locf (plist ’a)) ==> (property-cell-location ’a)
(1ocf (aref q 2)) ==> (aloc q 2)

If access-form invokes a macro or a substitutable function, then locf expands the access-
form and starts over again. This lets you use locf together with defstruct accessor macros.

Both setf and locf work by means of property lists. When the form (setf (aref q 2) 56) is
expanded, setf looks for the setf property of the symbol aref. The value of the setf property of
a symbol should be a cons whose car is a pattern to be matched with the access-form and whose
cdr is the corresponding update-form, with the symbol siival in place of the value to be stored.
The setf property of aref is a cons whose car is (aref array . subscripts) and whose cdr is
(aset si:val array . subscripts). If the transformation that setf is to do cannot be expressed as a
simple pattern, an arbitrary function may be used: when the form (setf (foo bar) baz) is being
expanded, if the setf property of foo is a symbol, the function definition of that symbol will be
applied to two arguments, (foc bar) and baz, and the result will be taken to be the expansion of
the setf.

SRCKL.MAN>MACROS.TEXT.75 24-JAN-83

Generalized Variables 272 Lisp Machine Manual

Similarly, the locf function uses the locf property, whose value is analogous. For example,
the locf property of aref is a cons whose car is (aref array . subscripts) and whose cdr is (aloc
array . subscripts). There is no si:val in the case of loct.

Both setf and locf usc getdecl to look for the property, so you can define the property with
detdecl and it will be available for use at compile time in the rest of the same file.

unknown-setf-reference (error) Condition

unknown-locf-reference (error) Condition

‘ These arc signaled when setf or locf docs not know how to cxpand the access-form. The
‘form operation on the condition instance returns the access-form.

incf access-form [amouni] Macro
Increments the vaiue of a generalized variable. (incf ref) increments the value of ref by 1.
(incf ref amount) adds amount to ref and stores the sum back into ref,

inct expands into a setf form, so r¢f can be anything that setf understands as its access-
form. This also means that you should not depend on the returned value of an incf
form.

You must take great care with incf because it may evaluate parts of ref more than once.
For example,

(incf (car (mumble))) ==>

(setf (car (mumble)) (1+ (car (mumble)))) ==>

(rplaca (mumble) (1+ (car (mumble))))
The mumble function is called more than once, whiuch may be significantly inefficient if
mumble is expensive and may be downright wrong if mumble has side-effects. The same
problem can come up with the decf, push, and pop macros (sec below).

decf access-form [amount] Macro
Decrements the value of a generalized variable. (decf ref) decrements the value of ref by
1. (decf ref amount) subtracts amount from ref and stores the difference back into ref.

decf expands into a setf form, so ref can be anything that setf understands as its access-
Jorm. This also means that you should not depend on the returned value of a decf form.

push item access-form Macro
Adds an item to the front of a list that is stored in a generalized variable. (push item
ref) creates a new cons whose car is the result of evaluating ifem and whose cdr is the
contents of ref, and stores the new cons into ref.

The form

(push (hairy-function x y z) variable)
replaces the commonly-used construct

(setq variable (cons (hairy-function x y z) variable))
and is intended to be more explicit and esthetic.

All the caveats that apply to incf apply to push as well: forms within ref may be
cvaluated more than once. The returned value of push is not defined.

SRC:KL.MAN>MACROS.TEXT.75 24-JAN-83

Lisp Machine Manual 273 Generalized Variables

pop access-form Macro
Removes an clement from the front of a Tist that is stored in a generalized variable. (pop

ref) finds the cons in ref, stores the cdr of the cons back into ref, and returns the car of

the cons.

Example:
{(setqg x '{(a b c))
(pop x) => a
x => (b ¢)

All the caveats that apply to incf apply to pop as wcll: forms within ref may be
cvaluated more than once.

SRC:(I,.MAN>MACROS.TEXT.75 24-JAN-83

	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273

