‘The L.OOP lteration Macro 274 I.isp Machine Manual

18. The LOOP Iteration Macro

18.1 Introduction

loop is a Lisp macro that provides a programmable itcration facility. The same loop module
operates compatibly in Zetalisp, Maclisp (PDP-10 and Multics), and NIL., and a moderately
compatible package is under development for the MDL programming cnvironment. loop was
inspired by the "FOR" facility of CLISP in InterLisp; however, it is not compatible and differs
in several details. '

The general approach is that a form introduced by the word loop generates a single program
loop, into which a large variety of features can be incorporated. The loop consists of some
initialization {prologue) code, a body that may be executed several times, and some exit (epilogue)
code. Variables may be declared local to the loop. The features are concerned with loop
variables, deciding when to end the iteration, putting user-written code into the loop, returning a
value from the construct, and iterating a variable through various real or virtual sets of values.

The loop form consists of a series of clauses, each introduced by a keyword symbol. Forms
appearing in or implied by the clauses of a loop form are classed as those to be executed as
initialization code, body code, and/or exit code; within each part of the template filled in by
loop, they are exccuted strictly in the order implied by the original composition. Thus, just as in
ordinary Lisp code, side-cffects may be used, and one piece of code may depend on following
another for its proper operation. This is the principal philosophic difference from InterLisp’s
"FOR™ facility.

Note that loop forms are intended to look like stylized English rather than Lisp code. There
is a notably low density of parentheses, and many of the keywords are accepted in several
synonymous forms to allow writing of more euphonious and grammatical English. Some find this
notation verbose and distasteful, while others find it flexible and convenient. The former are
invited to stick to do.

Here are some examples to illustrate the use of loop.

(defun print-elements-of-1ist (list-of-elements)
(1oop for element in list-of-elements
do (print element)))

The above function prints each element in its argument, which should be a list. It returns
nil.
(defun gather-alist-entries (list-of-pairs)
(loop for pair in list-of-pairs
collect (car pair)))

gather-alist-entries takes an association list and returns a list of the "keys"; that is,
(gather-alist-entries '((foo 1 2) (bar 259) (baz))) returns {foo bar baz).

SRC:<I.MAN>LOOPTM.TEXT.310 24-JAN-83

|isp Machine Manual 275 _ Clauscs

(defun extract-interesting-numbers (start-value end-value)
(loop for number from start-value to end-value
when (interesting-p number) collect number))

The above function takes two arguments, which should be fixnums, and returns a list of all

the numbers in that range (inclusive) which satisfy the predicate interesting-p.

(defun find-maximum-element (an-array)
(loop for i from 0 below (array-dimension-n 1 an-array)
maximize (aref an-array i})))

find-maximum-element returns the maximum of the elements of its argument, a one-
dimensional array. For Maclisp, aref could be a macro which turns into cither funcall or
arraycall depending on what is known about the type of the array.

(defun my-remove (object 1list)
(loop for element in 1list
unless (equal object element) collect element))

my-remove is like the Lisp function delete, except that it copics the list rather than
destructively splicing out elements. This is similar, although not identical, to the Zetalisp function
remove.

(defun find-frob (1ist)
(loop for element in Tist
when {(frobp element) return element
finally (ferror nil "No frob found in the Tist ~S" 1list)))

This returns the first element of its list argument which satisfies the predicate frobp. If none
is found, an error is generated.

18.2 Clauses

Internally, loop constructs a prog which includes variable bindings, pre-iteration (initialization)
code, post-iteration (exit) code, the body of the iteration, and stepping of variables of iteration to
their next values (which happens on every iteration after executing the body).

A clause consists of the keyword symbol and any Lisp forms and keywords that it deals with.
For example,
{(1loop for x in 1 do (print x)),
contains two clauses, "for x in 1" and "do (print x)". Certain of the parts of the clause

AC AT e N e N o)

i ha Ancnrilad se halne svmrnceirime oo fomeimd sl S sk aleaia A . hn o oinals
Wiil DC UCOLITIDCU ad UCIHE €Apredstory, C.g. (P A) il UIC avUvl. 7l CAPIUOSIUN Laill UL a mﬁsjc
Lisp form, or a series of forms implicitly collected with progn. An expression is terminated by
the next following atom, which is taken to be a keyword. This syntax allows only the first form

in an expression to be atomic, but makes misspelled keywords more easily detectable.

SRCXLMAN>LOOPTM.TEXT.310 24-JAN-83

Clauses 276 L.isp Machine Manual

loop uscs print-name cquality to comparc keywords so that loop forms may be written
without package prefixes; in Lisp implementations that do not have packages, eq is used for
comparison.

Bindings and itcration variable steppings may be performed cither sequentially or in parallel,
which affects how the stepping of one iteration variable may depend on the value of another.
The syntax for distinguishing the two will be described with the corresponding clauses. When a
set of things is "in parallel”, all of the bindings produced will be performed in parallel by a
single lambda binding. Subscquent bindings will be performed inside of that binding
environment.

18.2.1 Iteration-Driving Clauses

These clauses all create a variable of iteration, which is bound locally to the loop and takes
on a new value on cach successive iteration. Note that if more than one iteration-driving clause is
used in the same loop, several variables arc created that all step together through their values;
“when any of the iterations terminates, the entire loop terminates. Nested iterations are not
gencerated; for those, you need a second loop form in the body of the loop. In order not to
producc strange interactions, iteration driving clauses are required to precede any clauses that
produce "body" code: that is, all except those that produce prologue or epilogue code (initially
and finally), bindings (with). the named clause, and the itcration termination clauses (while and
until).

Clauses which drive the iteration may be arranged to perform their testing and stepping either
in series or in parallel. They are by default grouped in series, which allows the stepping
computation of one clause to use the just-computed values of the itcration variables of previous
clauses. They may be made to step "in parallel”, as is the case with the do special form, by
"joining” the iteration clauses with the keyword and. The form this typically takes is something
like

(loop ... for x = (f) and for y = init then (g x) ...)
which sets x to (f) on every iteration, and binds y to the value of init for the first iteration, and
on every iteration thereafter sets it to (g x), where x still has the value from the previous
iteration. Thus, if the calls to f and g are not order-dependent, this would be best written as
(loop ... for y = init then (g x) for x = (f) ...)
because, as a general rule, parallel stepping has more overhcad than scquential stepping.
Similarly, the example
(1oop for sublist on some-list
and for previous = ’'undefined then sublist
eed)
which is equivalent to the do construct
(do ((sublist some-list (cdr sublist))
(previous ’undefined sublist))
((null sublist) ...)
)

in terms of stepping, would be better written as

SRC:KL.MAN>LOOPTM.TEXT.310 24-JAN-83

Lisp Machine Manual 277 Clauses

(1oop for previous = ’undefined then sublist
for sublist on some-list

-)

When iteration driving clauses are joined with and, if the token following the and is not a
keyword that introduces an iteration driving clause, it is assumed to be the same as the keyword
that introduced the most recent clause; thus, the above cxample showing parallel stepping could
have been written as

(Toop for sublist on some-list
and previous = ’undefined then sub11st

+)

The order of evaluation in iteration-driving clauses is that those expressions that are only
evaluated once are evaluated in order at the beginning of the form, during the variable-binding
phase, while those expressions that arc evaluated each time around the loop are evaluated in
order in the body.

One common and simple itcration driving clause is repeat:

repeat expression
This evaluates expression (during the variable binding phase), and causes the loop to
iterate that many times. expression is cxpected to cvaluate to a fixnum. If expression
evaluates to a zero or negative result, the body code will not be executed.

All remaining iteration driving clauses are subdispatches of the keyword for, which is
eynonomoug with ae In all of them a variahle Qf iteratinn is speciﬁed. Note that.. in genera]. if
an iteration driving clause implicitly supplies an endtest, the value of this iteration variable is
undefined as the loop is exited (i.e, when the epilogue code is run). This is discussed in more
detail in section 18.6.

Here are all of the varieties of for clauses. Optional parts arc enclosed in curly brackets. The
data-types as used here are discussed fully in section 18.4.

for var {data-type} in exprl {by expr2}
This iterates over each of the elements in the list expr/. If the by subclause is
present, expr? is evaluated once on entry to the loop to supply the function to be
used to fetch successive sublists, instead of cdr.

for var {data-type} on exprl {by expr2}
This is like the previous for format, except that var is set to successive sublists of the
list instead of successive elements. Note that since var will always be a list, it is not
meaningful to specify a data-type unless var is a destructuring paitern, as described in
the section on destructuring, page 287. Note also that loop uses a null rather than an
atom test to implement both this and the preceding clause.

for var {data-type} = expr
On each iteration, expr is evaluated and var is sct to the result.

for var {data-type} = exprl then expr2
var is bound to expr/ when the loop is entered, and set to expr2 (re-cvaluated) at all
but the first iteration. Since exprl is evaluated during the binding phase, it cannot
reference other iteration variables set before it; for that, use the following:

SRCKL.MAN>LOOPTM.TEXT.310 24-JAN-83

Clauses 278 Lisp Machine Manual

for var {data-1ype} first expri then expr2
This sets var to exprl on the first itcration, and to expr2 (rc-cvaluated) on each
succeeding iteration. The cvaluation of both cxpressions is performed inside of the
loop binding cnvironment, before the loop body. This allows the first value of var to
come from the first value of some other iteration variable, allowing such constructs as
(loop for term in poly
for ans first (car term) then (gcd ans (car term))
finally (return ans))

for var {data-type} from exprI {to expr2} {by expr3}

This performs numeric iteration. var is initialized to expr/, and on ecach succeeding
iteration is incremented by expr3 (default 1). If the to phrase is given, the iteration
terminates when var becomes greater than expr2. Fach of the expressions is evaluated
only once, and the to and by phrases may be written in cither order. downto may

~ be used instead of to, in which case var is decremented by the step value, and the
endtest is adjusted accordingly. If below is used instcad of to, or above instead of
downto. the iteration will be terminated before expr? is reached, rather than after.
Note that the to variant appropriate for the direction of stepping must be used for the
endtest to be formed correctly; i.c. the code will not work if expr3 is negative or
zero. If no limit-specifying clause is given, then the direction of the stepping may be
specificd as being decreasing by using downfrom instcad of from. upfrom may also
be used instead of from; it forces the stepping direction to be increasing. The data-
fype defaults to fixnum,

for var {data-1ype} being exprand its path ...

for var {data-1ype} being {eachlthe} path ...
This provides a user-definable iteration facility. parh names the manner in which the
iteration is to be performed. The cllipsis indicates where various path dependent
preposition/expression pairs may appear. Sce the section on lteration Paths (page 289)
for complete documentation.

18.2.2 Bindings

The with keyword may be used to establish initial bindings, that is, variables that are local to
the loop but are only set once, rather than on cach iteration. The with clause looks like:
with var/ {data-type} { = expri}
{and var2 {data-type} { = expr2}}...
If no expr is given, the variable is initialized to the appropriate value for its data type, usually
nil.

with bindings linked by and are performed in parallel; those not linked are performed
sequentially. That is,
(loop with a = (foo) and b = (bar) and ¢

binds the variables like
((lambda (a b c) ...)
(foo) (bar) nil)
whereas

SRC:KL.MAN>LOOPTM.TEXT.310 24-JAN-83

Lisp Machine Manual 279 Clauses

(loop with a = (foo) with b = (bar a) with ¢ ...)
binds the variables like
((tambda {a)

({1ambda (b)
{{1ambda (c))
nil))
(bar a)))
(foo))

All expr’s in with clauses arc evaluated in the order they arc written, in lambda expressions
surrounding the gencrated prog. The loop expression
(loop with a = xa and b = xb
with ¢ = xc
for d = xd then (f d)
and e = xe then (g e d)
for p in xp
with q = xg
cel)
produces the following binding contour, where t1 is a loop-generated temporary:
({1ambda (a b)
{({(1ambda (c)
{({lambda (d e)
((1ambda (p t1)
((1ambda (q) ...)
xq))
nil xp))
xd xe))
xc))
xa xb)
Because all expressions in with clauses are evaluated during the variable binding phase, they are
best placed near the front of the loop form for stylistic reasons.

For binding more than one variable with no particular initialization, one may use the

construct

with variable-list {data-type-list} {and ...}
as in

with (i j k t1 t2) (fixnum fixnum fixnum) ...
A slightly shorter way of writing this is '

with (i j k) fixnum and (t1 t2)
These are cases of destructuring which loop handles specially; destructuring and data type
keywords are discussed in sections 18.5 and 18.4.

Occasionally there are various implementational reasons for a variable nof to be given a local
type declaration. If this is necessary, the nodeclare clause may be used:

nodeclare variable-list
The variables in variable-list are noted by loop as not requiring local type declarations.
Consider the following:

SRCKLMAN>LOOPTM.TEXT.310 24-JAN-83

Clauses

280 Lisp Machinc Manual

(declare (special k) (fixnum k))
(defun foo (1)
(Toop for x in 1 as k fixnum = (f x) .ol))
If k did not have the fixnum data-type keyword given for it. then loop would bind it
to nil, and some compilers would complain. On the other hand, the fixnum keyword
also produces a local fixnum declaration for k: since K is special, some compilers will
complain (or error out). The solution is to do:
(defun foo (1)
(1oop nodeclare (k) .
for x in 1 as k fixnum = (f x) ...))
which tells loop not to make that local declaration. The nodeclare clause must come
before any reference to the variables so noted. Positioning it incorrectly will cause this
clause to not take effect, and may not be diagnosed.

18.2.3 Entrance and Exit

initially expression

This puts expression into the prologue of the iteration. It will be evaluated before any
other initialization code other than the initial bindings. For the sake of good style,
the initially clause should therefore be placed after any with clauses but before the
main body of the loop.

finally expression

This puts expression into the epilogue of the loop, which is evaluated when the
iteration terminates (other than by an explicit return). For stylistic reasons, then, this
clause should appear last in the loop body. Note that certain clauses may generate
code which terminates the iteration without running the cpilogue code; this behavior
is noted with those clauses. Most notable of these are those described in the section
18.2.7, Aggregated Boolean Tests. This clause may be used to cause the loop to
return values in a non-standard way:
(loop for n in 1

sum n into the-sum

count t into the-count

finally (return (quotient the-sum the-count)))

18.2.4 Side Effects

do expression
doing expression

expression is evaluated each time through the loop, as shown in the print-elements-
of-list example on page 274.

SRC:KILMAN>LOOPTM.TEXT.310 24-JAN-83

Lisp Machine Manual 281 Clauses

18.2.5 Values

The following clauses accumulate a return value for the iteration in some manner. The
general form is
type-of-collection expr {data-type} {into var}
where fype-of-collection is a loop keyword. and expr is the thing being "accumulated” somehow.
If no into is specified, then the accumulation will be returned when the loop terminates. If there
is an into, then when the epilogue of the loop is rcached, var (a variable automatically bound
locally in the loop) will have been sct to the accumulated result and may be used by the cpilogue
code. In this way, a user may accumulate and somchow pass back multiple values from a single
-loop. or use them during the loop. It is safe to reference these variables during the loop, but
they should not be modified until the cpilogue code of the loop is reached. For cxample,
(1oop for x in Tist
collect (foo x) into foo-list
collect (bar x) into bar-1list
collect (baz x) into baz-1list
finally (return (list foo-1ist bar-list baz-1ist)))
has the same effect as
(do ((g0001 1ist (cdr g0001))
(x}) (foo-list) (bar-1ist) (baz-1ist))
{({null g0001)
{(1ist (nreverse foo-1list)
(nreverse bar-Tlist)
{(nreverse baz-list)))

feotn v fearn anNN1Y)
L Sdadds B S i A)
(setq foo-list (cons (foo x) foo-Tist))
(setq bar-1ist {cons {bar x) bar-list})

(setq baz-1ist (cons (baz x) baz-Tist)))
except that loop arranges to form the lists in the correct order, obviating the nreverses at the
end, and allowing the lists to be examined during the computation.

collect expr {into var}
collecting ...
This causes the values of expr on each iteration to be collected into a list.

nconc expr {into var}

nconcing ...
append ...
appending ...

These are like collect, but the results are nconced or appended together as

appropriate.

(loop for i from 1 to 3
nconc {list 1 (= 1 1})}))
=> (112 4329)

count expr {into var} {data-type}
counting ...
If expr evaluates non-nil, a counter is incremented. The data-type defaults to fixnum.

sum expr {data-type} {into var}
summing ...

SRCKILMAN>LOOPTM.TEXT.310 24-JAN-83

Clauses 282 Lisp Machine Manual

Fvaluates expr on cach iteration and accumulates the sum of all the valucs. data-type
defaults to number, which for all practical purposcs is notype. Note that specifying
data-type implics that both the sum and the number being summed (the value of
expr) will be of that type.

maximize expr {data-tyge} {into var}

minimize ...
Computes the maximum (or minimum) of expr over all iterations. data-type dcfaults
to number. Note that if the loop iterates zero times, or if conditionalization prevents
the code of this clause from being exccuted, the result will be meaningless. If loop
can determine that the arithmetic being performed is not contagious (by virtue of
data-type being fixnum, flonum, or small-flonum), then it may choose to code this
by doing an arithmetic comparison rather than calling either max or min. As with the
sum clause, specifying data-type implics that both the result of the max or min
operation and the value being maximized or minimized will be of that type.

Not only may there be multiple accumulations in a loop, but a single accumulation may
" come from multiple places within the same loop form. Obviously, the types of the collection
must be compatible. collect, nconc, and append may all be mixed, as may sum and count,
and maximize and minimize. For example,
(Toop for x in ’(a b c) for y in *((1 2) (3 4) (5 6))
collect x
append y)
=> (a12b34cbE6)
The following computes the average of the entries in the list list-of frobs:
(loop for x in list-of-frobs
count t into count-var
sum x into sum-var
finally (return (quotient sum-var count-var)))

18.2.6 Endtests

The following clauses may be used to provide additional control over when the iteration gets
terminated, possibly causing exit code (due to finally) to be performed and possibly returning a
value (e.g., from collect).

while expr
If expr evaluates to nil, the loop is exited, performing exit code (if any) and returning
any accumulated value. The test is placed in the body of the loop where it is written.
It may appear between sequential for clauses.

until expr
Identical to while (not expr).

This may be needed, for example, to step through a strange data structure, as in
(1oop until (top-of-concept-tree? concept)
for concept = expr then (superior-concept concept)
-)

Note that the placement of the while clause before the for clause is valid in this case because of

SRCKLLMAN>LOOPTM.TEXT.310 24-JAN-83

Lisp Machine Manual 283 Clauses

the definition of this particular variant of for, which binds concept to its first value rather than

Mal ¥ i i1 1 (R LV

setting it from inside the loop.
The following may also be of use in terminating the iteration:

loop-finish Macro
(loop-finish) causes the iteration to terminate "normally”, the same as implicit termination
by an iteration driving clause, or by the use of while or until—the epilogue code (if any)
will be run, and any implicitly collected result will be returned as the value of the loop.
For example, A
(loop for x in (1 2 3 4 5 6)

collect x
do {cond ((= x 4) (loop-finish}))))
=> (12 3 4)
This particular example would be better written as until (= x 4) in place of the do

clause.

18.2.7 Aggregated Boolean Tests

All of these clauses perform some test and may immediately terminate the iteration depending
on the result of that test.

always expr
Causes the loop to return t if expr always evaluates non-null. If expr evaluates to nil
dic loop immcdiatcly iCturns ni, - without Tunning the <piloguc code Gf any, as

specified with the finally clause); otherwise, t will be returned when the loop finishes,
~ after the epilogue code has been run.

never expr
Causes the loop to return t if expr never evaluates non-null. This is equivalent to
always (not expr).

thereis expr
If expr cvaluates non-nil, then the iteration is terminated, and that value is returned
without running the epilogue code.

18.2.8 Conditionalization
These clauses may be used to "conditionalize” the following clause. They may precede any of
the side-effecting or value-producing clauses, such as do, collect, always, or return.

when expr
if expr
If expr evaluates to nil, the following clause will be skipped, otherwise not.

unless expr
This is equivalent to when (not expr)).

SRC:KL.MAN>LOOPTM.TEXT.310 24-JAN-83

Clauses 284 Lisp Machine Manual

Multiple conditionalization clauses may appear in scquence. If one test fails, then any
following tests in the immediate sequence, as well as the clause being conditionalized, are
skipped.

Multiple clauses may be conditionalized under the same test by joining them with and, as in
(1oop for i from a to b
when (zerop (remainder i 3))
collect i and do (print i))
which returns a list of all multiples of 3 from a to b (inclusive) and prints them as they are
being collected.

If-then-clse conditionals may be written using the else keyword, as in
(loop for i from a to b
when (oddp i)
collect i into odd-numbers
else collect i into even-numbers)
Multiple clauses may appear in an else-phrase, using and to join them in the same way as above.

Conditionals may be nested. For example,
(loop for i froma to b
when (zerop (remainder i 3))
do (print i)
and when (zerop (remainder i 2))
collect i)
returns a list of all multiples of 6 from a to b, and prints all multiples of 3 from a to b.

When else is used with nested conditionals, the "dangling else” ambiguity is resolved by
matching the else with the innermost when not alrcady matched with an else. Here is a
complicated example.

(loop for x in 1
when (atom x)
when (memq x *distinguished-symbols#)
do (processt x)
else do (process2 x)
else when (memq (car x) *special-prefixes#)
collect (process3 (car x) (cdr x))
and do (memoize x)
else do (process4 x))

Useful with the conditionalization clauses is the return clause, which causes an explicit return
of its "argument” as the value of the iteration, bypassing any epilogue code. That is,
when exprl return expr2
is equivalent to
when exprl do (return expr2)

Conditionalization of one of the "aggregated boolean value" clauscs simply causes the test that
would causc the itcration to terminate early not to be performed unless the condition succeeds.
For example,

SRC:KLL.MAN>LOOPTM.TEXT.310 24-JAN-83

Lisp Machine Manual 285 Clauses

{1loop for x in 1
when (significant-p x)
do (print x) (princ "is significant.")

and thereis (extra-special-significant-p x))
does not make the extra-special-significant-p check unless the significant-p check succeeds

The format of a conditionalized clause is typically something like
when exprl keyword expr2
If expr? is the keyword it, then a variable is gencrated to hold the value of expr/, and that
variable gets substituted for expr2. Thus, the composition
when exprreturn it
is cquivalent to the clause
thereis expr
and one may collect all non-null values in an itcration by saying
when expression collect it
If multiple clauses are joined with and, the it keyword may only be used in the first. If multiple
whens, unlesses, and/or ifs occur in sequence, the valuc substituted for it will be that of the last
test performed. The it keyword is not recognized in an else-phrase.

18.2.9 Miséellaneous Other Clauses

named name
This gives a name of name to the prog that loop generates, so that one may use the
return-from form to return explicitly out of that particular loop:
(l1oop named sue

do (loop ... do (return-from sue value) ...)

.l)
The return-from form shown causes value to be immediately returned as the value of
the outer loop. Only one name may be given to any particular loop construct. This
feature does not exist in the Maclisp version of loop, since Maclisp does not support
"named progs".

return expression
Immediately returns the value of expression as the value of the loop, without running
the epilogue code. This is most useful with some sort of conditionalization, as
discussed in the previous section. Unlike most of the other clauses, return is not
considered to "gencrate body code”, so it is allowed to occur between iteration
clauses, as in
(1oop for entry in Tist
when (not (numberp entry))

raturn farror \
'Uhulll‘llvl ...’

as frob = (times entry 2)

ce)
If one instead desires the loop to have some return value when it finishes normally,
one may place a call to the return function in the epilogue (with the finally clause,
page 280).

SRCKLMAN>LOOPTM.TEXT 310 24-JAN-83

L.oop Synonyms 286 ILisp Machine Manual

18.3 Loop Synonyms

define-loop-macro keyword Macro
May be used to make keyword, a loop keyword (such as for), into a lisp macro that
may introduce a loop form. For cxample, after evaluating
(define-loop-macro for),
Oonc may now write an itcration as
{(for i from 1 below n do ...)

This facility exists primarily for dichard users of a predecessor of loop. Its unconstrained use
is not recommended, as it tends to decrease the transportability of the code and needlessly uses
up a function name.

18.4 Data Types

In many of the clause descriptions, an optional data-type is shown. A data-type in this sense
"is an atomic symbol, and is recognizable as such by loop. These are used for declaration and
initialization purposes; for example, in
(loop for x in 1
maximize x flonum into the-max
sum x flonum into the-sum
..Y)
the flonum data-type keyword for the maximize clause says that the result of the max operation,
and its "argument” (x), will both be flonums; hence loop may choose to code this operation
specially since it knows there can be no contagious arithmetic. The flonum data-type keyword for
the sum clause bchaves similarly, and in addition causes the-sum to be correctly initialized to
0.0 rather than 0. The flonum keywords will also cause the variables the-max and the-sum to
bc declared to be flonum, in implementations where such a declaration exists. In general, a
numeric data-type more specific than number, whether explicitly specified or defaulted, is
considered by loop to be license to generate code using type-specific arithmetic functions where
rcasonable. The following data-type keywords are recognized by loop (others may be defined; for
that, consult the source code):

fixnum An implementation-dependent limited range integer.
flonum An implementation-dependent limited precision floating point number.

small-flonum
This is recognized in the Zetalisp implementation only, where its only significance
is for initialization purposes, since no such declaration exists.

integer Any integer (no range restriction).
number Any number.
notype Unspecified type (i.c., anything else).

Note that explicit specification of a non-numeric type for a numeric operation (such as the
summing clause) may cause a variable to be initialized to nil when it should be 0.

SRC:KLL.MAN>LOOPTM.TEXT.310 24-JAN-83

L.isp Machine Manual 287 Destructuring

If local data-type declarations must be inhibited, one can usc the nodeclare clause, which is
described on page 279.

18.5 Destructuring

Destructuring provides one with the ability to “simultancously” assign or bind multiple
variables to components of some data structure. Typically this is used with list structure. For
example,

(Toop with (foo . bar) = "(abc) ...)
has the cffect of binding foo to a and bar to (b ¢).

loop’s destructuring support is intended to parallel if not augment that provided by the host
Lisp implementation, with a goal of minimally providing destructuring over list structure patterns.
Thus, in Lisp implementations with no system destructuring support at all, one may still use list-
structure patterns as loop itcration variables and in with bindings. In NIL, loop also supports
destructuring over vectors.

One may specify the data types of the components of a pattern by using a corresponding
pattern of the data type keywords in place of a single data type keyword. This syntax remains
unambiguous because wherever a data type keyword is possible, a loop keyword is the only other
possibility. Thus, if one wants to do

(loop for x in 1
as i fixnum = (car x)
and j fixnum = (cadr x)
and 'k Tixnum = {cddr Xx)
cel)
and no reference to x is needed, one may instead write
(loop for (i j . k) (fixnum fixnum . fixnum) in 1 ...)
To allow some abbreviation of the data type pattern, an atomic component of the data type
pattern is considered to state that all components of the corresponding part of the variable pattern
are of that type. That is, the previous form could be written as
(Toop for (i j . k) fixnum in 1 ...)
This generality allows binding of multiple typed variables in a reasonably concise manner, as in
(loop with (a b c) and (i j k) fixnum ...)
which binds a, b, and ¢ to nil and i, j, and k to O for use as temporaries during the iteration,
and declares i, j, and k to be fixnums for the benefit of the compiler.

(defun map-over-properties (fn symbol)
(loop for (propname propval) on (plist symbol) by ’cddr
do (funcall fn symbol propname propval)))
maps fin over the properties on symbol, giving it arguments of the symbol, the property name,
and the value of that property.

In Lisp implementations wherc loop performs its own destructuring, notably Multics Maclisp
and Zetalisp, one can cause loop to use already provided destructuring support instead:

SRCALMAN>L.OOPTM.TEXT.310 24-JAN-83

‘The Iteration Framework 288 I.isp Machine Manual

si: Toop-use-system-destructuring? Variable

This variable cxists only in loop implementations in Lisps that do not provide
destructuring support in the default environment. It is by default nil. If changed, then
loop will behave as it docs in 1.isps that do provide destructuring support: destructuring
binding will be performed using let. and destructuring assignment will be performed using
desetq. Presumably if one’s personalized environment supplies these macros, then one
should sct this variable to t; however, there is little if any cfficiency loss if this is not
done.

18.6 The Iteration Framework

This section describes the way loop constructs iterations. It is necessary if you will be writing
your own itcration paths, and may be uscful in clarifving what loop does with its input.

loop considers the act of stepping to have four possible parts. Each iteration-driving clause
has some or all of these four parts, which are executed in this order:

pre-step-endlest
This is an endtest which dctermines if it is safe to step to the next value of the
itcration variable.

steps Variables that get "stepped”. This is internally manipulated as a list of the form (var!
vall var2 val? ...); all of those variables are stepped in parallel, meaning that all of the
vals are cvaluated before any of the vars are set.

post-step-enditest
Sometimes you can’t sce if you are done until you step to the next value; that is, the
endtest is a function of the stepped-to value.

pseudo-sleps
Other things that need to be stepped. This is typically used for internal variables that
arc morc convenicntly stepped here. or to set up iteration variables that are functions of
some internal variable(s) actually driving the iteration. This is a list like sieps, but the
variables in it do not get stepped in parallel.

The above alone is actually insufficient in just about all iteration driving clauses that loop
handles. What is missing is that in most cases the stepping and testing for the first time through
the loop is different from that of all other times. So, what loop deals with is two four-tuples as
above; one for the first iteration, and one for the rest. The first may be thought of as describing
code that immediately precedes the loop in the prog, and the second as following the body
code—in fact, loop does just this, but severely perturbs it in order to reduce code duplication.
Two lists of forms are constructed in parallel: one is the first-iteration endtests and steps, the
other the remaining-iterations endtests and steps. These lists have dummy entries in them so that
identical expressions will appear in the same position in both. When loop is done parsing all of
the clauscs, these lists get merged back together such that corresponding identical expressions in
both lists are not duplicated unless they are "simple” and it is worth doing,

Thus, one may get some duplicated code if one has multiple iterations. Alternatively, loop

may decide to use and test a flag variable that indicates whether one iteration has been performed.
In general, sequential iterations have less overhead than parallel iterations, both from the inherent

SRC:KLLMAN>LLOOPTM.TEXT.310 24-JAN-83

Lisp Machine Manual 289 lteration Paths

overhead of stepping multiple variables in parallel, and from the standpoint of potential code
duplication.

One other point that must be noted about parallel stepping is that although the user iteration
variables are guars ntced to be stenped in narallal the nlacement of the endtest for any parfinu]ar

VIV uaraineu WV WppLTu ul paianvi, IV plaluiiiviie Ul uae Vhiuilol v LUl

iteration may be cither before or after the stepping. A notable case of this is
(Toop for i from 1 to 3 and dummy = (print ’foo)
collect i)
=> (12 3)
but prints foo four times. Certain other constructs, such as for var on, may or may not do this
depending on the particular construction.

This problem also means that it may not be safe to examine an iteration variable in the
epilogue of the loop form. As a gencral rule, if an iteration driving clause implicitly supplies an
endtest, then one cannot know the state of the itcration variable when the loop terminates.
Although onc can guess on the basis of whether the iteration variable itself holds the data upon
which the endtest is based, that guess may be wrong. Thus,

(1oop for subl on expr

finally (f subl))
is incorrect, but
(1oop as frob = expr while (g frob)

finally (f frob))
is safe because the endtest is explicitly dissociated from the stepping.

18.7 Iteration Paths

Iteration paths provide a mechanism for user extension of iteration-driving clauses. The
interface is constrained so that the definition of a path need not depend on much of the internals
of loop. The typical form of an iteration path is

for var {data-type} being {each|the} pathname {prepositionl exprl}. ..
pathname is an atomic symbol which is defined as a loop path function. The usage and
defaulting of data-type is up to the path function. Any number of preposition/expression pairs
may be present; the prepositions allowable for any particular path are defined by that path. For
example,

(loop for x being the array-elements of my-array from 1 to 10

cel)

To enhance readability, pathnames are usually defined in both the singular and plural forms; this
particular example could have been written as

(1oop for x being each array-element of my-array from 1 to 10

.2)

Another format, which is not so generally applicable, is
for var {data-type} being expr0 and its pathname {prepositionl exprl}...
In this format, var takes on the value of expr0 the first time through the loop. Support for this
format is usually limited to paths which step through some data structure, such as the "superiors”
of something. Thus, we can hypothesize the cdrs path, such that

SRCKLMAN>L.OOPTM.TEXT.310 24-JAN-83

Iteration Paths 290 lisp Machine Manual

(Toop for x being the cdrs of *(a b ¢ . d) collect x)

=> ((b c . d) (¢ . d) d)
but

(Toop for x being ’(a b ¢ . d) and its cdrs collect x)

=> ((abc.d) (bc.d)(c.d)d)
To satisfy the anthropomorphic among you, his, her, or their may be substituted for the its
keyword, as may each. Egocentricity is not condoned. Some example uses of iteration paths are
shown in section 18.7.1.

Very often, iteration paths step internal variables which the user does not specify, such as an
index into some data-structure. Although in most cases the user does not wish to be concerned
with such low-level matters, it is occasionally uscful to have a handle on such things. loop
provides an additional syntax with which onc may provide a variable name to be used as an
"internal” variable by an iteration path, with the using “"prepositional phrase”. The using phrase
is placed with the other phrases associated with the path, and contains any number of
keyword/variable-name pairs:

(Toop for x being the array-elements of a using (index i)
c.l)
which says that the variable i should be used to hold the index of the array being stepped
through. The particular keywords which may be used are defined by the iteration path; the index
keyword is recognized by all loop sequence paths (section 18.7.1.2). Note that any individual
using phrase applies to only one path; it is parsed along with the "prepositional phrases”. It is
an error if the path docs not call for a variable using that keyword.

By special dispensation, if a pathname is not recognized, then the default-loop-path path
will be invoked upon a syntactic transformation of the original input. Essentially, the loop
fragment '

for var being frob
is taken as if it were

for var being default-Toop-path in frob
and

for var being expr and its frob ...
is taken as if it were

for var being expr and its default-loop-path in frob
Thus, this "undefined pathname hook" only works if the default-loop-path path is defined.
Obviously, the use of this "hook” is competitive, since only one such hook may be in use, and
the potential for syntactic ambiguity exists if frob is the namec of a defined iteration path. This
feature is not for casual use; it is intended for use by large systems that wish to use a special
syntax for some feature they provide.

SRC:KLLMAN>LOOPTM.TEXT.310 24-JAN-83

Lisp Machine Manual 291 _ Iteration Paths

18.7.1 Pre-Defined Paths

loop comes with two pre-defined iteration path functions; one implements a mapatoms-like
iteration path facility and the other is used for defining iteration paths for stepping through
sequences. ‘

18.7.1.1 The Interned-Symbols Path

The interned -symbols iteration path is like a mapatoms for loop.
(1oop for sym being interned-symbols ...)
iterates over all of the symbols in the current package and its superiors (or, in Maclisp, the
current obarray). This is the same set of symbols over which mapatoms iteratcs, although not
necessarily in the same order. The particular package to look in may be specified as in
(1oop for sym being the interned-symbols 1in package ...)
which is like giving a second argument to mapatoms.

In Lisp implementations with some sort of hicrarchical package structure such as Zetalisp, one
may restrict the iteration to be over just the package specified and not its superiors, by using the
local-interned -symbols path:

(loop for sym being the local-interned-symbols {in package}
-)

Example:
(defun my-apropos (sub-string &optional (pkg package))
i TOT 7

U

...........

<!

vl
when (string-search sub-string x)

when (or (boundp x) (fboundp x) (piist x))

do (print-interesting-info x)))

In the Zetalisp and NIL implementations of loop, a package specified with the in preposition may
be anything acceptable to the pkg-find-package function. The code generated by this path will
contain calls to internal loop functions, with the effect that it will be transparent to changes to
the implementation of packages. In the Maclisp implementation, the obarray musf be an array
pointer, not a symbol with an array property.

18.7.1.2 Sequence Iteration

One very common form of iteration is done over the elements of some object that is
accessible by means of an integer index. loop defines an iteration path function for doing this in
a general way and provides a simple interface to allow users to define itcration paths for various
kinds of "indexable" data.

define-loop-sequence-path Macro
(define-loop-sequence-path path-name-or-names
Setch-fun size-fun
sequence-type default-var-type)
path-name-or-names is either an atomic path name or list of path names. fetch-fun is a
function of two arguments, the sequence and the index of the item to be fetched.

SRCKL.MAN>LOOPTM.TEXT.310 24-JAN-83

lteration Paths 292 I.isp Machine Manual

(Indexing is assumed to be zero-origined.) size-fun is a function of one argument, the
sequence; it should return the number of clements in the sequence. sequence-type is the
name of the data-type of the sequence, and default-var-type the name of the data-type of
the clements of the sequence. These last two items arc optional.

The Zetalisp implementation of loop utilizes the Zetalisp array manipulation primitives to
define both array-element and array-elements as itcration paths:
(define-loop-sequence-path (array-element array-elements)

aref array-active-length)
Then, the loop clause
for var being the array-elements of array
will step var over the elements of array, starting from 0. The sequence path function also accepts
in as a synonym for of.

The range and stepping of the iteration may be specified with the use of all of the same
keywords which are accepted by the loop arithmetic stepper (for var from ...): they are by, to,
.downto, from, downfrom, below, and above, and arc interpreted in the same manner. Thus,
(loop for var being the array-elements of array
from 1 by 2
cel)
steps var over all of the odd elements of array, and
(1oop for var being the array-elements of array
downto 0O
-)

steps in "reverse” order.

(define-loop-sequence-path (vector-elements vector-element)
vref vector-length notype notype)
is how the vector-elements iteration path can be defined in NIL (which it is). One can then do
such things as
(defun cons-a-lot (item &restv other-items)
(and other-items
(Toop for x being the vector-elements of other-items
collect (cons item x))))

All such sequence iteration paths allow one to specify the variable to be used as the index
variable, by use of the index keyword with the using prepositional phrase, as described (with an
example) on page 290.

SRC:KLLMAN>L.OOPTM.TEXT.310 24-JAN-83

Lisp Machine Manual 293 lteration Paths

18.7.2 Defining Paths

This section and the next may not be of interest to those not interested in defining their own
iteration paths.

,,,,,

a for or as clausc) produces variables to be bound and pre-iteration (prologue) code. This
breakdown allows a user-interface to loop which does not have to depend on or know about the
internals of loop. To complete this scparation, the iteration path mechanism parses the clause
before giving it to the user function that will return those items. A function to generate code for
a path may be declared to loop with the define-loop-path function:

define-loop-path Macro
(define-loop-path pathname-or-names path-function
list-of-allowable-prepositions
datum-1 datum-2 . ..)
This defines path-function to be the handler for the path(s) pathname-or-names, which may
be either a symbol or a list of symbols. Such a handler should follow the conventions
described below. The datum-i are optional; they are passed in to path-function as a list.

The handler will be called with the following arguments:

path-name
The name of the path that caused the path function to be invoked.

variable
The “iteration variable".
daia-type
The data type supplied with the iteration variable, or nil if none was supplied.

prepositional-phrases
This is a list with entries of the form (preposition expression), in the order in which
they were collected. This may also include some supplied implicitly (c.g. an of phrase
when the iteration is inclusive, and an in phrase for the default-loop-path path); the
ordering will show the order of evaluation that should be followed for the expressions.

inclusive?
This is t if variable should have the starting point of the path as its value on the first
iteration (by virtue of being specified with syntax like for var being expr and its
pathname), nil otherwise. When t, expr will appear in prepositional-phrases with the
of preposition; for example, for x being foo and its cdrs gets prepositional-phrases
of ((of foo)).

allowed-prepositions
This is the list of allowable prepositions declared for the pathname that caused the
path function to be invoked. It and dafa (immediately below) may be used by the
path function such that a single function may handle similar paths.

data This is the list of "data” declared for the pathname that caused the path function to
be invoked. It may, for instance, contain a canonicalized pathname, or a set of
functions or flags to aid the path function in determining what to do. In this way,
the same path function may be able to handle different paths.

SRCKLMAN>LLOOPTM.TEXT.310 24-JAN-83

Iteration Paths 294 Lisp Machine Manual

The handler should return a list of cither six or ten clements:

variable-bindings

This is a list of variables that nced to be bound. The entries in it may be of the
form variable, (variable expression), or (variable expression data-type). Note that it is
the responsibility of the handler to make sure the iteration variable gets bound. All of
these variables will be bound in parallel; if initialization of one depends on others, it
should be donc with a setq in the prologue-forms. Returning only the variable
without any initialization expression is not allowed if the variable is a destructuring
pattern.

prologue-forms
This is a list of forms that should be included in the loop prologue.

the four items of the iteration specification
These are the four items described in section 18.6, page 288: pre-step-endtest, steps,
post-step-endlest, and pseudo-steps.

another four items of iteration specification
If these four items are given, they apply to the first iteration, and the previous four
apply to all succeeding itcrations; otherwise, the previous four apply to all iterations.

Here are the routines that are used by loop to compare keywords for equality. In all cases, a
loken may be any Lisp object, but a keyword is expected to be an atomic symbol. In certain
implementations these functions may be implemented as macros.

si:loop-tequal roken keyword
This is the loop token comparison function. foken is any Lisp object; keyword is the
keyword it is to be compared against. It returns t if they represent the same token,
comparing in a manner appropriate for the implementation.

si:loop-tmember 1ken keyword-list
The member variant of si:loop-tequal.

si:loop-tassoc token keyword-alist
The assoc variant of si:loop-tequal.

If an iteration path function desires to make an internal variable accessible to the user, it
should call the following function instead of gensym:

si:loop-named-variable keyword
This should only be called from within an iteration path function. If keyword has been
specified in a using phrase for this path, the corresponding variable is returned:
otherwise, gensym is called and that new symbol returned. Within a given path function,
this routine should only be called once for any given keyword.

If the user specifies a using preposition containing any keywords for which the path
function does not call si:loop-named-variable, loop will inform the user of his error.

SRC:KL.MAN>LOOPTM.TEXT.310 24-JAN-83

Lisp Machine Manual 295 Iteration Paths

—

8.7.2.1 An Example Path Definition
Here is an example function that defines the string-characters iteration path. This path steps
a variable through ali of the characters of a string. It accepts the format

(1oop for var being the string-characters of sir .o)

The function is defined to handle the path by
(define-loop-path string-characters string-chars-path

(of))

This half-page intentionally left almost blank.

SRC:KI.MAN>LOOPTM.TEXT.310 24-JAN-83

Iteration Paths

296 Lisp Machinc Manual

Here is the function:
(defun string-chars-path (path-name variable data-type

prep-phrases inclusive?

allowed-prepositions data

&aux (bindings nil)
(prologue nil)
(string-var (gensym))
(index-var (gensym))
(size-var (gensym)))

allowed-prepositions data ; unused variables

; To iterate over the characters of a string, we need
: to save the string, save the size of the string,

; step an index variable through that range, setting

the

user’s variable to the character at that index.

; Default the data-type of the user’s variable:

(cond

((rull data-type) (setq data-type ’fixnum)))

; We support exactly one "preposition", which is
; required, so this check suffices:

(cond

((null prep-phrases)
(ferror nil "OF missing in ~S iteration path of ~S"
path-name variable)))

; We do not support "inclusive" iteration:

(cond

; Set
(setq

; Now
(setg

; and
(1ist

((not (null inclusive?))

(ferror nil
"Inclusive stepping not supported in ~S path ~
of ~S (prep phrases = ~:S)"
path-name variable prep-phrases)))

up the bindings
bindings (1ist (1ist variable nil data-type)
(1ist string-var (cadar prep-phrases))
(1ist index-var 0 ’fixnum)
(Tist size-var 0 'fixnum)))
set the size variable
prologue (1list ‘(setq ,size-var (string-length
,string-var))))
return the appropriate stuff, explained below.
bindings
prologue
‘(= ,index-var ,size-var)
nil
nil

; char-n is the NIL string referencing primitive.

; In Zectalisp, aref could be used instead.

(1ist variable ‘(char-n ,string-var ,index-var)
index-var ‘(1+ ,index-var))))

SRC:KIL.MAN>LOOPTM.TEXT.310 24-JAN-83

Lisp Machine Manual 297 Iteration Paths

The first clement of the returned list is the bindings. The sccond is a list of forms to be
placed - in the prologue. The remaining clements specify how the iteration is to be performed.
This cxample is a particularly simple case, for two reasons: the actual "variable of iteration”,
index-var, is purely internal (being gensymmed), and the stepping of it (1+) is such that it
may be performed safely without an cndtest. Thus index-var may be stepped immecdiately after
the setting of the user's variable. causing the iteration specification for the first itcration to be
identical to the iteration specification for all remaining iterations. 'This is advantageous from the
standpoint of the optimizations loop is able to perform, although it is frequently not possible due
to the scmantics of the iteration (c.g., for var first expri then expr2) or to subtleties of the
stepping. It is safe for this path to step the user’s variable in the pseudo-steps (the fourth item of
an iteration specification) rather than the "real” steps (the second), because the step value can
have no dependencies on any other (user) iteration variables. Using the pscudo-steps gencrally
results in some efficiency gains.

If onc desired the index variable in the above definition to be user-accessible through the
using phrase feature with the index keyword, the function would need to be changed in two
ways. First, index-var should be bound to (si:loop-named-variable ‘index) instcad of
(gensym). Sccondly, the efficiency hack of stepping the index variable ahead of the iteration
variable must not be done. This is effected by changing the last form to be

(1ist bindings prologue

nil

(1ist index-var ‘(1+ ,index-var))

‘(= ,index-var ,size-var)

(1list variable ‘(char-n ,string-var ,index-var))

nil

nil

‘(= ,index-var ,size-var)

1ist variable ‘{char-n ,string-var ,index-var)))
Note that although the second ‘(= ,index-var ,size-var) could have been placed carlier (where
the second nil is), it is best for it to match up with the equivalent test in the first iteration
specification grouping.

SRCKLMAN>LOOPTM.TEXT.310 24-JAN-83

	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297

