Defstruct 298 Lisp Machine Manual

19. Defstruct

defstruct provides a facility in Lisp for creating and using aggregate datatypes with named
elements. These are like “structures” in PL/I, or "records” in PASCAL. In the last two chapters
we saw how to usc macros to extend the control structures of Lisp; here we sce how they can be
used to extend Lisp’s data structures as well.

19.1 Introduction to Structure Macros

To explain the basic idea, assume you were writing a Lisp program that dealt with space
ships. In your program, you want to represent a space ship by a Lisp object of some kind. The
interesting things about a space ship, as far as your program is concerned, are its position (X and
Y). velocity (X and Y), and mass. How do you represent a space ship?

Well, the representation could be a list of the x-position, y-position, and so on. Equally well
it could be an array of five clements, the zeroth being the x-position, the first being the y-
position, and so on. The problem with both of these representations is that the "elements” (such
as x-position) occupy places in the object which are quite arbitrary, and hard to remember (Hmm,
was the mass the third or the fourth clement of the array?). This would make programs harder to
write and read. It would not be obvious when reading a program that an cxpression such as
(cadddr ship1) or (aref ship2 3) means "the y component of the ship’s velocity”, and it would
be very easy to write caddr in place of cadddr.

What we would like to see are names, easy to remember and to understand. If the symbol
foo were bound to a representation of a space ship, then
(ship-x-position foo)
could return its x-position, and
(ship-y-position foo)
its y-position, and so forth. The defstruct facility does just this.

defstruct itself is a macro which defines a structure. For the space ship example above, we
might define the structure by saying:
(defstruct (ship)
ship-x-position
ship-y-position
ship-x-velocity
ship-y-velocity
ship-mass)

This says that every ship is an object with five named components. (This is a very simple
case of defstruct; we will see the general form later.) The evaluation of this form does several
things. First, it defines ship-x-position to be a function which, given a ship, returns the x
component of its position. This is called an accessor function, because it accesses a component of
a structure. defstruct defines the other four accessor functions analogously.

SRC:KI.MAN>DEFSTR.TEXT.85 24-JAN-83

Lisp Machine Manual 299 Introduction to Structure Macros

defstruct will also define make-ship to be a macro which expands into the necessary Lisp
code t create a ship object. So (setq x (make-ship)) will make a new ship, and set x to it
This macro is called the constructor macro, because it constructs a new structure.

We also want to be able to change the contents of a structure. To do this, we use the setf
macro (see page 270). as follows (for example):
(setf (ship-x-position x) 100)
Here x is bound to a ship, and after the evaluation of the setf form, the ship-x-position of that
ship will be 100. Another way to change the contents of a structure is to use the alterant macro,
which is described later, in section 19.4.3, page 310.

How does all this map into the familiar primitives of Lisp? In this simple example, we left
the choice of implementation technique up to defstruct; it will choose to represent a ship as an
array. The array has five elements, which are the five components of the ship. The accessor
functions are defined thus:

{(defun ship-x-function (ship)
(aref ship 0))
The constructor macro (make-ship) expands into (make-array 5), which makes an array of the
appropriate size to be a ship. Note that a program which uses ships need not contain any explicit
knowledge that ships are represented as five-clement arrays; this is kept hidden by defstruct.

The accessor functions are not actually ordinary functions; instead they arc substs (see section
10.5.1, page 161). This difference has two implications: it allows setf to understand the accessor
functions, and it allows the compiler to substitute the body of an accessor function directly into
any function that uses it, making compiled programs that use defstruct exactly equal in efficiency
to programs that "do it by hand." Thus writing (ship-mass s) is exactly equivalent to writing
(aref s 4), and writing (setf (ship-mass s) m) is exactly equivalent to writing (aset m s 4),
when the program is compiled. It is also possible to tell defstruct to implement the accessor
functions as macros; this is not normally done in Zetalisp, however.

We can now use the describe-defstruct function to look at the ship object, and see what its
contents are:
(describe-defstruct x ’ship) =>.

#<art-q-5 17073131> is a ship

ship-x-position: 100
ship-y-position: nil
ship-x-velocity: nil
ship-y-velocity: nil
ship-mass: nil

fi<art-q-5 17073131>
(The describe-defstruct function is explained more fully on page 301.)

By itself, this simple example provides a powerful structure definition tool. But, in fact,
defstruct has many other features. First of all, we might want to specify what kind of Lisp
object to use for the "implementation” of the structure. The example above implemented a
"ship" as an array, but defstruct can also implement structures as array-leaders, lists, and other
things. (For array-leaders, the accessor functions call array-ieader, for lists, nth, and so on.)

SRCKL.MAN>DEFSTR.TEXT.85 24-JAN-83

How to Use Defstruct 300 Lisp Machinc Manual

Most structures are implemented as arrays. Lists take slightly less storage, but elements near
the end of a long list arc slower to access. Array lcaders allow you to have a homogencous
aggregate (the array) and a heterogencous aggregate with named clements (the leader) tied together
into one object.

defstruct allows you to specify to the constructor macro what the various clements of the
structure should be initialized to. It also lets you give, in the defstruct form, default values for
the initialization of cach clement.

The defstruct in Zetalisp also works in various dialects of Maclisp, and so it has some
features that arc not uscful in Zetalisp. When possible, the Maclisp-specific features attempt to do
something rcasonable or harmless in Zetalisp, to make it casier to write code that will run equally
well in Zetalisp and Maclisp. (Note that this defstruct is not necessarily the default one installed
in Maclisp!)

19.2 How to Use Defstruct

defstruct Macro
A call to defstruct looks like:
(defstruct (name option-1 option-2 ...)
slot-description-1
slot-description-2
cel)
name must be a symbol; it is the name of the structure. It is given a si:defstruct-
description property that describes the attributes and elements of the structure; this is
intended to be used by programs that examine Lisp programs and that want to display the
contents of structures in a helpful way. namte is used for other things, described below.

Each option may be either a symbol, which should be one of the recognized option names
listed in the next section, or a list, whose car should be one of the option names and the
rest of which should be "arguments” to the option. Some options have arguments that
default; others require that arguments be given explicitly,

Each slot-description may be in any of three forms:

1) slot-name

(2) (slot-name default-init)

(3) ((slot-name-1 byte-spec-1 default-init-1)
(slot-name-2 byte-spec-2 default-init-2)

)

Each slot-description allocates one element of the physical structure, even though in form
(3) several slots are defined.

Each slot-name must always be a symbol; an accessor function is defined for each slot.

In form (1), slot-name simply defines a slot with the given name. An accessor function
will be defined with the name slot-name (but see the :conc-name option, page 303).
Form (2) is similar, but allows a default initialization for the slot. Initialization is
explained further on page 308. Form (3) lets you pack several slots into a single element

SRC:KLLMAN>DEFSTR.TEXT.85 24-JAN-83

Lisp Machine Manual 301 Options to Defstruct

of the physical underlying structure, using the byte field feature of defstruct, which is
explained on page 310.

Because evaluation of a defstruct form causes many functions and macros to be defined, you
must take care not to define the same name with two different defstruct forms. A name can only
have onc function definition at a time; if it is redefined, the latest definition is the one that takes
effect, and the ecarlier definition is clobbered. (This is no different from the requirement that each
defun which is intended to define a distinct function must have a distinct name.)

To systematize this necessary carcfulness, as well as for clarity in the code, it is conventional
to prefix the names of all of the accessor functions with some text unique to the structure. In the
example above, all the names started with ship-. The :conc-name option can be used to
provide such prefixes automatically (sce page 303). Similarly, the conventional name for the
constructor macro in the example above was make-ship, and the conventional name for the
alterant macro (see section 19.4.3, page 310) was alter-ship.

The describe-defstruct function lets you examine an instance of a structure.

describe-defstruct insiance &optional name
describe-defstruct takes an instance of a structure, and prints out a description of the
instance, including the contents of each of its slots. name should be the name of the
structure; you must provide the name of the structure so that describe-defstruct can
know what structure instance is an instance of, and thercfore figure out what the names of
the slots of instance are.

If instance is a named structure, you don’t have to provide name, since it is just the
named structure symbol of instance. Normally the describe function (see page 641) will
call describe-defstruct if it is asked to describe a named structure; however some named
structures have their own idea of how to describe themselves. See page 312 for more
information about named structures.

19.3 Options to Defstruct
This section explains each .of the options that can be given to defstruct.

Here is an example that shows the typical syntax of a call to defstruct that gives several
options.
(defstruct (foo (:type :array)
(:make-array (:type ’art-8b :leader-length 3))
:conc-name
(:size-symbol foo))

‘type The ‘type option specifies what kind of Lisp object will be used to implement the
structure. It must be given one argument, which must be one of the symbols
enumerated below, or a user-defined type. If the option itsclf is not provided,
the type defaults to :array. You can define your own types; this is explained in
section 19.9, page 316.

SRCKLMAN>DEFSTR.TEXT.85 24-JAN-83

Options to Defstruct 302 1.isp Machine Manual

:constructor

:alterant

:predicate

:array Usc an array, storing components in the body of the array.

:named-array
Like :array, but make the array a named structurc (see page 312) using
the name of the structure as the named structure symbol. Flement 0 of
the array will hold the named structure symbol and so will not be used to
hold a component of the structure.

:array -leader
Usc an array, storing components in the leader of the array. (See the
:make-array option, described below.)

:named-array-leader
Like -array-leader. but make the array a named structure (see page 312)
using the name of the structurc as the named structure symbol. Element
1 of the leader will hold the named structure symbol and so will not be
used to hold a component of the structure.

list Use a list.

:named-list
Like :list, but the first element of the list will hold the symbol that is the
name of the structure and so will not be used as a component.

fixnum-array
Like :array, but the type of the array is art-32b.

flonum-array
Like :array, but the type of the array is art-float.

itree The structure is implemented out of a binary tree of conses, with the
leaves serving as the slots.

fixnum
This unusual type implements the structure as a single fixnum. The
structurc may only have one slot. This is only useful with the byte field
feature (see page 310); it lets you store a bunch of small numbers within
fields of a fixnum, giving the ficlds names.

:grouped-array
This is described in section 19.6, page 312.

This option takes one argument, which specifies the name of the constructor
macro. If the argument is not provided or if the option itsclf is not provided, the
name of the constructor is made by concatenating the string "make-" to the
name of the structure. If the argument is provided and is nil, no constructor is
defined. Use of the constructor macro is explained in section 19.4.1, page 308.

This option takes one argument, which specifies the name of the alterant macro.
If the argument is not provided or if the option itsclf is not provided, the name
of the altcrant is made by concatenating the string "alter-" to the name of the
structure. If the argument is provided and is nil, no altcrant is defined. Use of
the alterant macro is explained in section 19.4.3, page 310.

The :predicate option causes defstruct to generatc a predicate to recognize

SRC:KLLMAN>DEFSTR.TEXT.85 24-JAN-83

1 isp Machine Manual 303 Options to Defstruct

:copier

instances of the structure. Naturally it only works for "named" types. The
argument to the :predicate option is the name of the predicate. If the option is
present without an argument, then the name is formed by concatcnating "-p" to
the end of the name symbol of the structure. If the option is not present, then
no predicate is generated. Fxample:
(defstruct (foo :named :predicate)

foo-a

foo-b)
defines a single argument function, foo-p, that is true only of instances of this
structure.

This option causes defstruct to generate a single argument function that will copy
instances of this structure. Its argument is the name of the copying function. If
the option is present without an argument, then the name is formed by
concatenating "copy-" with the name of the structure. Example:
(defstruct (foo (:type :1ist) :copier)
foo-a
foo-b)
Generates a function approximately like:
(defun copy-foo (x)
(1ist (car x) (cadr X))

:default-pointer

.conc-name

Normally, the accessors defined by defstruct expect to be given exactly one
argument. However, if the :default-pointer argument is used, the argument to

cach accessor ¢ optional | If vou use an accessor in the usual way it will do the

usual thing, but if you invoke it without its argument, it will behave as if you
had invoked it on the result of evaluating the form which is the argument to the
.default-pointer argument. Here is an example:

(defstruct (room (:default-pointer sdefault-room#*))
room-name
room-contents)

(room-name Xx) ==> (aref x 0)
(room-name) ==> (aref =*default-room* 0)

If the argument to the :default-pointer argument is not given, it defaults to the
name of the structure.

It is conventional to begin the names of all the accessor functions of a structure
with a specific prefix, usually the name of the structure followed by a hyphen.
The :conc-name option allows you to specify this prefix and have it concatenated
onto the front of all the slot names o make the namcs of the accessor functions.
The argument should be a symbol; its print-name is used as the prefix. If
-conc-name is specified without an argument, the prefix will be the name of the
structure followed by a hyphen. If you do not specify the :conc-name option,
the names of the accessors are the same as the slot names, and it is up to you to
name the slots according to some suitable convention.

SRC:<L.MAN>DEFSTR.TEXT85 24-JAN-83

Options to Defstruct 304 Lisp Machine Manual

:include

The constructor and alterant macros arc given slot names, not accessor names. It
is important to keep this in mind when using :conc-name, since it causes the
slot and accessor names to be different. Here is an example:
(defstruct (door :conc-name)
knob-color
width)

(setq d (make-door knob-color ’red width 5.0))

(door-knob-color d) ==> red

‘This option is used for building a new structure definition as an extension of an
old structure definition. Suppose you have a structure called person that looks
like this:

(defstruct (person :conc-name)
name
age
sex)

Now suppose you want to make a new structure to represent an astronaut. Since
astronauts are people too, you would like them to also have the attributes of
name, age, and sex, and you would like Lisp functions that operate on person
structures to operate just as well on astronaut structures. You can do this by
defining astronaut with the :include option, as follows:

(defstruct (astronaut (:include person))
helmet-size
(favorite-beverage ’'tang))

The :include option inserts the slots of the included structure at the front of the
list of slots for this structure. That is, an astronaut will have five slots; first the
threc defined in person, and then after those the two defined in astronaut itself.
The accessor functions defined by the person structure can be applied to instances
of the astronaut structure, and they will work correctly. The following examples
illustrate how you can use astronaut structures:;

(setq x (make-astronaut name ’buzz
age 45.
sex t
helmet-size 17.5))

(person-name x) => buzz
(favorite-beverage x) => tang

Note that the :conc-name option was not inherited from the included structure;
it only applies to the accessor functions of person and not to those of astronaut.
Similarly, the :default-pointer and :but-first options, as well as the :conc-name
option, only apply to the accessor functions for the structure in which they are

SRC:KI.MAN>DEFSTR.TEXT.85 24-JAN-83

Lisp Machine Manual 305 Options to Defstruct

enclosed: they are not inherited if you :include a structure that uses them.

The argument to the :include option is required, and must be the name of some
previously defined structure of the same type as this structure. include does not
work with structures of type :tree or of typc :grouped-array.

The following is an advanced feature. Sometimes, when one structure includes

another, the default values for the slots that came from the included structure are

not what you want. The new structure can specify different default values for the

included slots than the included structure specifies, by giving the :include option
- as:

(:include name new-init-1 ... new-init-n)

Each new-init is either the name of an included slot or a list of the form (name-
of-included-slot inir-form). If it is just a slot name, then in the new structure the
slot will have no initial value. Otherwise its initial valuc form will be replaced by
the init-form. The old (included) structure is unmodified.

For example, if we had wanted to define astronaut so that the default age for an
astronaut is 45., then we could have said:
(defstruct (astronaut (:include person (age 45.3)))
helmet-size
(favorite-beverage ’'tang))

‘named This means that vou want to use one of the "named" types. If you specify a type
of :array, :array-leader, or :ist, and give the :named option, then the :named-
array, :named-array-leader, or :named-list type will be used instead. Asking
for type :array and giving the :named option as well is the same as asking for
the type :named-array; the only difference is stylistic.

:make-array If the structure being defined is implemented as an array, this option may be
used to control those aspects of the array that are not otherwise constrained by
defstruct. For example, you might want to control the arca in which the array is
allocated. Also, if you are creating a structure of type :array-leader, you almost
certainly want to specify the dimensions of the array to be created, and you may
want to specify the type of the array. Of course, this option is only meaningful if
the structure is, in fact, being implemented by an array.

The argument to the :make-array option should be a list of alternating keyword
symbols to the make-array function (sec page 126), and forms whose values are
the arguments to those keywords. For cxample, (:make-array (:type ’art-16b))
would request that the type of the array be art-16b. Note that the keyword
symbol is not evaluated.

defstruct overrides any of the :make-array options that it needs to. For
example, if your structure is of type :array, then defstruct will supply the size of
that array regardless of what you say in the :make-array option. If you use the
initial-value make-array option, it will initialize all the slots, but defstruct’s
own initializations will be done afterward.

SRC:<I.MAN>DEFSTR.TEXT.85 24-JAN-83

Options to Defstruct 306 Lisp Machine Manual

times

:size-symbol

:size-macro

.initial - offset

‘but-first

Constructor macros for structures implemented as arrays all allow the keyword
‘make-array to be supplied. Attributes supplied therein overide any :make-array
option attributes supplied in the original defstruct form. If some attribute appears
in neither the invocation of the constructor nor in the :make-array option to
defstruct, then the constructor will chose appropriate defaults.

If a structure is of type :array-leader, you probably want to specify the
dimensions of the array. The dimensions of an array are given to :make-array as
a position argument rather than a keyword argument, so there is no way to
specify them in the above syntax. To solve this problem, you can use the
keyword :dimensions or the keyword :length (they mean the same thing), with a
value that is anything acceptable as make-array’s first argument.

This option is used for structures of type :grouped-array to control the number
of repetitions of the structure that will be allocated by the constructor macro.
(See scction 19.6, page 312.) The constructor macro will also allow :times to be
used as a keyword that will override the value given in the original defstruct
form. If :times appears in neither the invocation of the constructor nor in the
:make-array option to defstruct, then the constructor will only allocate one
instance of the structure.

The :size-symbol option allows a user to specify a global variable whose value
will be the "size" of the structure; this variable is declared with defconst. The
exact mcaning of the size varics, but in general this number is the one you would
need to know if you were going to allocate one of these structures yourself. The
symbol will have this value both at compile time and at run time. If this option
is present without an argument, then the name of the structure is concatenated
with "-size" to produce the symbol.

This is similar to the :size-symbol option. A macro of no arguments is defined
that cxpands into the size of the structurc. The name of this macro defaults as
with :size-symbol.

This allows you to tell defstruct to skip over a certain number of slots before it
starts allocating the slots described in the body. This option requires an argument
(which must be a fixnum), which is the number of slots you want defstruct to
skip. To make use of this option requires that you have some familiarity with
how defstruct is implementing your structure; otherwise, you will be unable to
make use of the slots that defstruct has left unused.

This option is best explained by example:

(defstruct (head (:type :1list)
(:default-pointer person)
(:but-first person-head))
nose
mouth
eyes)

SRCKL.MAN>DEFSTR.TEXT.85 24-JAN-83

Lisp Machine Manual 307 Options to Defstruct

(nose x) ==>
=>(

r {person-head x))
(nose) (

ca
car {person-head person))

The idea is that :but-first’s argument will be an accessor from some other
structure, and it is never cexpected that this structure will be found outside of that
slot of that other structure. Actually, you can use any onc-argument function, or
a macro that acts like a onc-argument function. It is an crror for the :but-first
option to be used without an argument. '

.callable-accessors

:eval-when

property

:print

This option controls whether accessors are really functions, and therefore
"callable”, or whether they are really macros. With an argument of t, or with no
argument, or if the option is not provided, then the accessors are really functions.
Specifically, they arc substs, so that they have all the efficiency of macros in
compiled programs, while still being function objects that can be manipulated
(passed to mapcar, etc.). If the argument is nil then the accessors will really be
macros.

Normally the functions and macros defined by defstruct are defined at cval-time,
compile-time, and load-time. This option allows the user to control this behavior.
The argument to the :eval-when option is just like the list that is the first
subform of an eval-when special form (sce page 231). For cxample, (:eval-
when (:eval :compile)) will cause the functions and macros to be defined only
when the code is running interpreted or inside the compiler.

For each structure defined by defstruct, a property list is maintained for the
recording of arbitrary properties about that structure. (That is, there is one
property list per structure definition, not one for each instantiation of the
structure.)

The :property option can be used to give a defstruct an arbitrary property.
(:property property-name value) gives the defstruct a property-name property of
value. Neither argument is evaluated. To access the property list, the user will
have to look inside the defstruct-description structurc himself (see page 315).

This allows the user to control the printed representation of his structure in an a
way independent of the Lisp dialect in use. Here is an example:
(defstruct (foo :named
(:print "#<Foo ~§ ~S>"
(foo-a foo) (foo-b foo)))

foo-a

foo-b)
Of course, this only works if you use some named type, so that the system can
recognize examples of this structure automatically.

The arguments to the :print option are arguments to the format function (except
for the stream of course!). They arc cvaluated in an environment where the name
symbol of the structure (foo in this case) is bound to the instance of the structure
to be printed.

SRCKLMAN>DEFSTR.TEXT.85 24-JAN-83

Using the Constructor and Altcrant Macros 308 LLisp Machine Manual

‘This works by defining, automatically, a named structure handler. Do not use the
;print option if you define a named structure handler yoursclf, as they will
conflict.

lype In addition to the options listed above, any currently defined type (any legal
argument to the :type option) can be used as an option. ‘This is mostly for
compatibility with the old version of defstruct. It allows you to say just fype
instcad of (itype mpe). It is an crror to give an argument to one of these
options.

other Finally, if an option isn’t found among thosc listed above, defstruct checks the
property list of the name of the option to sce if it has a non-nil :defstruct-option
property. If it does have such a property, then if the option is of the form
(option-name value), it is treated just like (:property option-name value). That is,
the defstruct is given an option-name property of value. It is an error to use
such an option without a value.

This provides a primitive way for you to definc your own options to defstruct,
particularly in conncction with user-defined types (see scction 199, page 316).
Several of the options listed above are actually implemented using this mechanism.

19.4 Using the Constructor and Alterant Macros

After you have dcfined a new structure with defstruct, you can create instances of this
structure using the constructor macro, and you can alter the values of its slots using the alterant
macro. By default, defstruct defines both the constructor and the alterant, forming their names
by concatenating "make-" and "alter-", respectively, onto the name of the structure. You can
specify the names yourself by passing the name you want to use as the argument to the
:constructor or :alterant options, or specify that you don’t want the macro created at all by
passing nil as the argument.

19.4.1 Constructor Macros

A call to a constructor macro, in general, has the form
(name-of-constructor-macro
symbol-1 form-1
symbol-2 form-2
-)

Each symbol may be either the name of a slor of the structure, or a specially recognized
keyword. All the forms are evaluated.

If symbol is the name of a slor (not the name of an accessor), then that element of the
created structure will be initialized to the value of form. If no symbol is present for a given slot,
then the slot will be initialized to the result of evaluating the default initialization form specified
in the call to defstruct. (In other words, the initialization form specified to the constructor
overrides the initialization form specified to defstruct.) If the defstruct itsclf also did not specify
any initialization, the eclement's initial value is undefined. You should always specify the

SRCKL.MAN>DEFSTR.TEXT.85 24-JAN-83

I.isp Machine Manual 309 Using the Constructor and Alterant Macros

initialization. cither in the defstruct or in the constructor macro, if you carc about the initial
value of the slot.

Notes: The order of evaluation of the initialization forms is not necessarily the same as the
order in which they appear in the constructor call, nor the order in which they appcar in the
defstruct; you should make sure your code does not depend on the order of cvaluation. The
forms are re-cvaluated on every constructor-macro call, so that if, for ecxample, the form
(gensym) were used as an initialization form, cither in a call to a constructor macro or as a
default initialization in the defstruct, then every call to the constructor macro would create a new
symbol.

There are two symbols that arc specially recognized by the constructor. They are :make-
array, which should only be used for :array and -array-leader type structurcs (or the named
versions of those types), and :times, which should only be used for :grouped-array type
structures. If one of these symbols appears instead of a slot name, then it is interpreted just as
the :make-array option or the :times option (see page 305), and it overrides what was requested
in that option. For example:

(make-ship ship-x-position 10.0
ship-y-position 12.0
:make-array (:leader-length 5 :area disaster-area))

19.4.2 By-position Constructor Macros

If the :constructor option is given as (:constructor name arglist), then instead of making a
keyword driven constructor. defstruct defines a "luntiion siyle” constructor, taking argumentis
whose meaning is determined by the argument’s position rather than by a keyword. The arglist is
used to describe what the arguments to the constructor will be. in the simplest case something
like (:constructor make-foo (a b c)) defines make-foo to be a three-argument constructor macro
whose arguments arc used to initialize the slots named a, b, and c.

In addition, the keywords &optional, &rest, and &aux are recognized in the argument list.
They work in the way you might expect, but there are a few fine points worthy of explanation:

(:constructor make-foo
(a &optional b (c ’sea) &rest d &aux e (f ‘eff)))

This defines make-foo to be a constructor of one or more arguments. The first argument is
used to initialize the a slot. The second argument is used to initialize the b slot. If there isn’t
any sccond argument, then the default value given in the body of the defstruct (if given) is used
instead. The third argument is used to initialize the ¢ slot. If there isn't any third argument,
then the symbol sea is used instead. Any arguments following the third argument are collected
inio a list and used to initialize the d slot. If there are three or fewer arguments, then nil is
placed in the d slot. The e slot is not initialized; its initial value is undefined. Finally, the f slot
is initialized to contain the symbol eff.

The actions taken in the b and e cases were carefully chosen to allow the user to specify all
possible behaviors. Note that the &aux “variables” can be used to completely override the default
initializations given in the body.

SRC:KLLMAN>DEFSTR.TEXT.85 24-JAN-83

Byte Ficlds 310 1.isp Machine Manual

Since there is so much freedom in defining constructors this way, it would be cruel to only
allow the :constructor option to be given once. So, by special dispensation, you are allowed to
give the :constructor option more than once, so that you can define several different constructors.
each with a different syntax.

Note that even these "function style” constructors do not guarantee that their argumnents will
be cvaluated in the order that you wrote them. Also note that you cannot specify the :make-
array nor :times information in this form of constructor macro.

19.4.3 Alterant Macros

A call to the alterant macro, in general, has the form
(name-of-alterant-macro instance-form
slot-name-1 form-1
slot-name-2 form-2
)
instance-form is cvaluated and should return an instance of the structure. Each form is evaluated
and the corresponding slot is changed to have the result as its new value. The slots are altered
after all the forms are cvaluated, so you can exchange the values of two slots, as follows:
(alter-ship enterprise
ship-x-position (ship-y-position enterprise)
ship-y-position (ship-x-position enterprise))

As with the constructor macro, the order of evaluation of the forms is undefined. Using the
altcrant macro can produce more ecfficient Lisp than using consccutive setfs when you are altering
two byte ficlds of the same object, or when you are using the :but-first option.

19.5 Byte Fields

The byte field feature of defstruct allows you to specify that several slots of your structure
are bytes (see scction 7.8, page 116) in an integer stored in one element of the structure. For
example, suppose we had the following structure:

(defstruct (phone-book-entry (:type :1list))
name
address
(area-code 617.)
exchange
line-number)

This will work correctly. However, it wastes space. Area codes and exchange numbers are
always less than 1000., and so both can fit into 10. bit ficlds when expressed as binary numbers.
Since Lisp Machine fixnums have (more than) 20. bits, both of thesc values can be packed into a
single fixnum. To tell defstruct to do so, you can change the structure definition to the
following:

SRCKILMAN>DEFSTR.TEXT.85 24-JAN-83

1.isp Machine Manual 311 ‘ Byte Ficlds

(defstruct (phone-book-entry (:type :list))
name
address
((area-code #01212 617.)
(exchange #00012))
i

Tine-number)

The magic octal numbers # 01212 and #00012 are byte specifiers to be used with the
functions Idb and dpb. The accessors, constructor, and alterant will now operate as follows:

(area-code pbe) ==> (1db #01212 (caddr pbe))
(exchange pbe) ==> (1db #00012 (caddr pbe))

(make-phone-book-entry
name "Fred Derf"
address "259 Octal St."
exchange ex
line-number 7788.)

==> (list "Fred Derf" "259 Octal St." (dpb ex 12 2322000) 17154)

(alter-phone-book-entry pbe
area-code ac
exchange ex)

==> ((lambda (g0530)
{setf {nth 2 g0530)
(dpb ac 1212 (dpb ex 12 (nth 2 g0530)))))
pbe)

Note that the alterant macro is optimized to only read and write the sccond element of the
list once, even though you are altering two different byte fields within it. This is more efficient
than using two setfs. Additional optimization by the alterant macro occurs if the byte specifiers in
the defstruct slot descriptions are constants. However, you don’t need to worry about the details
of how the alterant macro does its work.

If the byte specifier is nil, then the accessor will be defined to be the usual kind that accesses
the entire Lisp object, thus returning all the byte field components as a fixnum. These slots may
have default initialization forms.

The byte specifier nced not be a constant; a variable or, indeed, any Lisp form, is legal as a
byte specifier. It will be evaluated cach time the slot is accessed. Of course, unless you are
doing something very strange you will not want the byte specificr to change between accesses.

Constructor macros initialize words divided into byte fields as if they were deposited in in the
following order:

SRC:KLMAN>DEFSTR.TEXT.85 24-JAN-83

Grouped Arrays 312 Lisp Machine Manual

1) Initializations for the cntire word given in the defstruct form.

2) Initializations for the byte ficlds given in the defstruct form.

3) Initalizations for the entirc word given in the constructor macro form.
4) Initializations for the byte ficlds given in the constructor macro form.

Alterant macros work similarly: the modification for the entire Lisp object is done first,
followed by modifications to specific byte fields. 1f any byte fields being initialized or altered
overlap cach other, the action of the constructor and alterant will be unpredictable.

19.6 Grouped Arrays

The grouped array feature allows you to store several instances of a structure side-by-side
within an array. This feature is somewhat limited; it does not support the :include and :named
- options.

The accessor functions are defined to take an extra argument, which should be an integer,
and is the index into the array of where this instance of the structure starts. This index should
normally be a multiple of the size of the structure, for things to make sense. Note that the index
is the first argument to the accessor function and the structure is the second argument, the
oppositc of what you might expect. This is because the structure is &optional if the :default-
pointer option is used.

Note that the "size" of the structure (for purposes of the :size-symbol and :size-macro
options) is the number of elements in one instance of the structure; the actual length of the array
is the product of the size of the structure and the number of instances. The number of instances
to be created by the constructor macro is given as the argument to the :times option to defstruct,
or the :times keyword of the constructor macro.

19.7 Named Structures

The named siructure feature provides a very simple form of user-defined data type. Any array
may be made a named structure, although usually the :named option of defstruct is used to
creatc named structures. The principal advantages to a named structure are that it has a more
informative printed representation than a normal array and that the describe function knows how
to give a detailed description of it. (You don’t have to use describe-defstruct, because describe
can figure out what the names of the slots of the structure are by looking at the named structure’s
name.) Because of these improved user-interface features it is recommended that “system" data
structures be implemented with named structures.

Another kind of user-defined data type, more advanced but less efficient when just used as a
record structure, is provided by the flavor feature (sce chapter 20, page 321).

A named structure has an associated symbol, called its "named structure symbol”, which
represents what uscr-defined type it is an instance of; the typep function, applied to the named
structure, will return this symbol. If the array has a leader, then the symbol is found in clement

SRC:KLL.MAN>DEFSTR.TEXT .85 24-JAN-83

Lisp Machine Manual 313 Named Structures

1 of the lcader; otherwise it is found i)
is to be a named structure, it must have a leader, since a symbol cannot be stored in any

clement of a numeric array.)

3

-

1 clement 0 of the array. (Note: if a numeric-type array

M S

If you call typep with two arguments, the first being an instance of a named structure and
the second being its named structurc symbel, typep will return t. t will alse be returned if the
sccond argument is the named structure symbol of a :named defstruct included (using the
include option, sce page 304), directly or indirectly, by the defstruct for this structure. For
example, if the structure astronaut includes the structure person, and person is a named
structure, then giving typep an instance of an astronaut as the first argument, and the symbol
person as the sccond argument, will return t. This reflects the fact that an astronaut is, in fact,
a person, as well as being an astronaut.

You may associate with a named structure a function that will handle various operations that
can be done on the named structure. Currently, you can control how the named structure is
printed, and what describe will do with it.

To provide such a handler function, make the function be the named-structure-invoke
property of the named structure symbol. The functions which know about named structures will
apply this handler function to several arguments. The first is a "keyword” symbol to identify the
calling function, and the second is the named structure itself. The rest of the arguments passed
depend on the caller; any named structure function should have a "&rest" paramecter to absorb
any extra arguments that might be passed. Just what the function is expected to do depends on
the keyword it is passed as its first argument. The following are the keywords defined at present:

:which-operations
Should return a list of the names of the operations the function handles.

:print-seif The arguments are :print-self, the named structure, the stream to output to, the
current depth in list-structure, and t if slashification is enabled (prin1 versus
princ). The printed representation of the named structure should be output to the
stream. If the named structure symbol is not defined as a function, or :print-self
is not in its :which-operations list, the printer will default to a reasonable
printed representation, namely:

#<named-structure-symbol octal-address>

:describe The arguments are :describe and the named structure. It should output a
description of itself to standard-output. If the named structure symbol is not
defined as a function, or :describe is not in its :which-operations list, the
describe system will check whether the named structure was created by using the
:named option of defstruct; if so, the names and values of the structure’s fields
will be enumerated.

:sxhash The arguments are :sxhash, the named structure, and a flag. It should return a
hash code to use as the value of sxhash for this structure. It is often useful to
call sxhash on some (perhaps all) of the components of the structure and
combine the results.

The flag says that it is permissible to use the structure’s address in forming the
hash code. For some kinds of structure, there may be no way to generate a good
hash code except to use the address. If the flag is nil, they must simply do the

SRC:KI.MAN>DEFSTR.TEXT.85 24-JAN-83

Named Structures 314 I.isp Machine Manual

best they can, even if it means always returning zero.

It is permissible to return nil for :sxhash. Then sxhash will produce a hash code
in its default fashion.

Here is an example of a simple named-structure handler function:
(defun (person named-structure-invoke) (op self &rest args)
(selectq op
(:which-operations ’(:print-self))
(:print-self
(format (first args)
(if (third args) "#<person ~A>" "~A")
(person-name self)))))
For this definition to have any cffect, the person defstruct used as an example earlier must be
modified to include the :named attribute.

This handler causes a person structure to include its name in its printed representation; it also
causcs princ of a person to print just the name. with no "#<" syntax. Even though the
astronaut structure of our cxamples :includes the person structure. this named-structure handler
will not be invoked when an astronaut is printed, and an astronaut will not include his name in
his printed representation. This is because named structures are not as general as flavors (see
chapter 20, page 321).

The following functions operate on named structures.

named-structure-p x
This semi-predicate returns nil if x is not a named structure; otherwise it returns x’s
named structure symbol.

named-structure-symbol x
x should be a named structure. This returns x’s named structure symbol: if x has an
array lcader, element 1 of the leader is returned, otherwise clement 0 of the array is
returned.

make-array-into-named-structure array
array is made to be a named structure and is returned.

named-structure-invoke operation structure &rest args
operation should be a keyword symbol, and structure should be a named structure. The
handler function of the named structure symbol, found as the value of the named-
structure-invoke property of the symbol, is called with appropriate arguments. (This
function used to take its first two arguments in the opposite order, and that argument
order will continue to work indefinitely, but it should not be used in new programs.)

Sec also the :named -structure-symbol keyword to make-array, page 126.

SRCKIL.MAN>DEFSTR. TEXT.85 24-JAN-83

Lisp Machine Manual 315 The si:defstruct-description Structure

19.8 The si:defstruct-description Structure

This scction discusses the internal structures used by defstruct that might be uscful to
programs that want to interface to defstruct nicely. For example, if you want to write a program
that examines structures and displays them the way describe (sce page 641) and the inspector do,
your program will work by cxamining these structures. The information in this section is also
necessary for anyone who is thinking of defining his own structure types.

, Whenever the user defines a new structure using defstruct, defstruct creates an instance of

the si:defstruct-description structure. This structure can be found as the sidefstruct-
description property of the name of the structure; it contains such useful information as the
name of the structure, the number of slots in the structure, and so on.

The si:defstruct-description structure is defined as follows, in the system-internals package
(also called the si package):

(defstruct (defstruct-description
(:default-pointer description)
(:conc-name defstruct-description-))
name
size
property-alist
slot-alist)
(This is a simplified version of the rcal definition. There are other slots in the structure, which
we aren’t telling vou ahout.)

The name slot contains the symbol supplied by the user to be the name of his structure,
such as spaceship or phone-book-entry.

The size slot contains the total number of locations in an instance of this kind of structure.
This is not the same number as that obtained from the :size-symbol or :size-macro options to
defstruct. A named structure, for example, usually uses up an extra location to store the name
of the structure, so the :size-macro option will get a number one larger than that stored in the
defstruct description.

The property-alist slot contains an alist with pairs of the form (property-name . property)
containing properties placed therc by the :property option to defstruct or by property names used
as options to defstruct (sce the :property option, page 307).

The slot-alist slot contains an alist of pairs of the form (sloz-name . slot-description). A slot-
description is an instance of the defstruct-slot-description structure. The defstruct-slot-
description structure is defined something like this, also in the si package:

SRC:KL.MAN>DEFSTR.TEXT.85 24-JAN-83

Extensions to Defstruct 316 Lisp Machine Manual

(defstruct (defstruct-slot-description

(:default-pointer slot-description)
(:conc-name defstruct-slot-description-))

number

Ppss

init-code

ref-macro-name)

(This is also a simplified version of the real definition.)

The -number slot contains the number of the location of this slot in an instance of the
structure. lLocations are numbered, starting with 0, and continuing up to a number onc less than
the size of the structure. The actual location of the slot is determined by the reference-consing
function associated with the type of the structure; sce page 317.

The ppss slot contains the byte specifier code for this slot if this slot is a byte field of its
location. If this slot is the entire location, then the ppss slot contains nil.

The init-code slot contains the initialization code supplied for this slot by the user in his
defstruct form. If there is no initialization code for this slot then the init-code slot contains the
symbol si:%%defstruct-empty%%.

The ref-macro-name slot contains the symbol that is defined as a macro or a subst that
expands into a reference to this slot (that is, the name of the accessor function).

19.9 Extensions to Defstruct

The macro defstruct-define-type can be used to teach defstruct about new types that it can
use to implement structures.

defstruct-define-type Macro
This macro is used for teaching defstruct about new types; it is described in the rest of
this chapter.

19.9.1 An Example

Let us start by cxamining a sample call to defstruct-define-type. This is how the :list type
of structure might have been defined:

(defstruct-define-type :1ist
(:cons (initialization-list description keyword-options)
:list
“(list . ,initialization-1ist))
(:ref (slot-number description argument)
‘(nth ,sTot-number ,argument)))

This is the simplest possible form of, defstruct-define-type. It provides defstruct with two
Lisp forms: onc for creating forms ‘s construct instances of the structure, and one for creating
forms to become the bodies of actessors for slots of the structure.

SRCKLMANDDEFSTR.TEXT.85 24-JAN-83

Lisp Machine Manual 37 Extensions to Defstruct

The kevword :cons is followed by a list of three variables that will be bound while the
constructor-creating form is evaluated. The first, initialization-list, will be bound to a list of the
initialization forms for the slots of the structure. The sccond, description, will be bound to the
defstruct-description structure for the structure (sce page 315). The third variable and the list
keyword will be explained later.

The keyword :ref is followed by a list of three variables that will be bound while the
accessor-creating form is evaluated. The first, slot-number, will bound to the number of the slot
that the new accessor should reference. The second, description, will be bound to the
defstruct-description structure for the structurc. The third, argument, will be bound to the
form that was provided as the argument to the accessor.

19.9.2 Syntax of defstruct-define-type
The syntax of defstruct-define-type is:

(defstruct-define-type fype
option-1
option-2
cel)
where each option is cither the symbolic name of an option or a list of the form (option-name .
rest). Different options interpret rest in different ways. The symbol #ype is given an si:defstruct-
type-description property of a structure that describes the type completely.

19.9.3 Options to defstruct-define-type

This section is a catalog of all the options currently known about by defstruct-define-type.

‘cons With the :cons option to defstruct-define-type you supply defstruct with the
code to cons up a form that will construct an instance of a structure of this type.

The :cons option has the syntax:
(:cons (inits description keywords) kind
body)
body is some code that should construct and return a piece of code that will
construct, initialize, and return an instance of a structurc of this type.

The symbol inits will be bound to the information that the constructor conser
should use to initialize the slots of the structure. The exact form of this argument
is determined by the symbol kind. There are currently two kinds of initialization.
There is the :list kind, where inits is bound to a list of initializations, in the
correct order, with nils in uninitialized slots. And there is the :afist kind, where
inits is bound to an alist with pairs of the form (slot-number . init-code).

The symbol description will be bound to the instance of the defstruct-description
structure (sce page 315) that defstruct maintains for this particular structure. This
is so that the constructor conser can find out such things as the total size of the
structure it is supposed to create.

SRCKL.MAN>DEFSTR.TEXT.85 24-JAN-83

Extensions to Defstruct 318 lisp Machine Manual

The symbol keywords will be bound to an alist with pairs of the form (keyword .
value), where cach keyword was a keyword supplied to the constructor macro that
wasn't the name of a slot, and value was the lisp object that followed the
keyword. This is how you can make your own special keywords, like the existing
'make-array and :times kcywords. Scc the scction on using the constructor
macro, scction 19.4.1, page 308. You specify thc list of acceptable keywords with
the :keywords option (scc page 319).

It is an error not to supply the :cons option to defstruct-define-type.

ref ' With the :ref option to defstruct-define-type you supply defstruct with the code
to cons up a form that will reference an instance of a structure of this type.

The ref option has the syntax:
(:ref (number description arg-1 ... arg-n)
body)
body is some code that should construct and return a picce of code that will
reference an instance of a structure of this type.’

The symbol number will be bound to the location of the slot that is to be
referenced. This is the same number that is found in the number slot of the
defstruct-slot-description structurc (see page 316).

The symbol description will be bound to the instance of the defstruct-description
structure that defstruct maintains for this particular structure.

The symbols arg-i are bound to the forms supplied to the accessor as arguments.
Normally there should be only one of these. The last argument is the one that
will be defaulted by the :default-pointer option (see page 303). defstruct will
check that the user has supplied exactly n arguments to the accessor function
before calling the reference consing code.

It is an error not to supply the :ref option to defstruct-define-type.

:overhead The :overhead option to defstruct-define-type is how the user declares to
defstruct that the implementation of this particular type of structure "uses up"
somc number of locations in the object actually constructed. This option is used
by various "named" types of structures that store the name of the structure in one
location.

The syntax of :overhead is (:overhead n), where n is a fixnum that says how
many locations of overhead this type needs.

This number is used only by the :size-macro and :size-symbol options to
defstruct (see page 306).

:named The :named option to defstruct-define-type controls the use of the :named
option to defstruct. With no argument, the :named option means that this type
is an acceptable "named structure”. With an argument, as in (:named type-name),
the symbol type-name should be the name of some other structure type that
defstruct should use if somcone asks for the named version of this type. (For

SRCKILL.MAN>DEFSTR.TEXT.85 24-JAN-83

Lisp Machine Manual 319 Extensions to Defstruct

‘keywords

:predicate

:copier

defstruct

example, in the definition of the :list typc the :named option is used like this:
(:named :named-list).)

The :keywords option to defstruct-define-type allows the user to define
additional constructor keywords for this type of structure. (The :make-array
constructor keyword for structures of type :array is an exampic.) The syntax is:
(keywords keyword-1 ... keywerd-n) where cach keyword is a symbol that the
constructor conser expects to find in the keywords alist (explained above).

With the :predicate option to defstruct-define-type, defstruct is told how to
produce predicates for a particular type (for the :predicate option to defstruct).
Its syntax is:
(predicate (description name)
body. ..)
The variable description will be bound to the defstruct-description structure
maintained for the structure we are to generate a predicate for. The variable name
is bound to the symbol that is to be defined as a predicate. body is a piece of
code to evaluate to return the defining form for the predicate. A typical use of
this option might look like:
{(predicate (description name)
*(defun ,name (x)
(and (frobbozp x)
(eq (frobbozref x 0)
*,(defstruct-description-name)))))

defstruct knows how to generate a copicr function using the constructor and
Nevertheless it is sometimes desirable to specify a specific method of copying a
particular defstruct type. The :copier option to defstruct-define-type allow this
to be done:

{(copier (description name)

body)
As with the :predicate option, description is bound to an instance of the
defstruct-description structure, name is bound to the symbol to be defined, and
body is some code to evaluate to get the defining form. For example:

{copier (description name)

*(fset-carefully ’,name ’'copy-frobboz))

The :defstruct option to defstruct-define-type allows the user to run some code
and return some forms as part of the expansion of the defstruct macro.

The :defstruct option has the syntax:
(:defstruct (description)
body)
body is a piece of code that will be run whenever defstruct is expanding a
defstruct form that defines a structure of this type. The symbol description will
be bound to the instance of the defstruct-description structure that defstruct
maintains for this particular structure.

SRCKL.MAN>DEFSTR.TEXT.85 24-JAN-83

Fxtensions to Defstruct 320 L.isp Machine Manual

The value returned by the body should be a Jist of forms to be included with
those that the defstruct expands into. ‘Thus. if you only want to run some code
at defstruct-cxpand time, and you don’t want to actually output any additional
code, then you should be careful to return nil from the code in this option.

SRCLKLMANDDEFSTR.TEXT.85 24-JAN-83

	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320

